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Introduction

Science is concerned with describing the world. Mathematics is an
important tool. One can use Mathematics to write equations for
how a system will change over time.

To get manageable equations, the usual procedure is to suppress
some of the parameters which play a part in the system. This
simplifies the Mathematical equations.
It is important to ask whether the Mathematical results still
describe the situation accurately. In this paper, we will investigate
rigorously whether one can recover precise results when one
suppresses some variables.
We will do this in the case of one dimensional complex dynamics,
where the exact theory is highly developed.
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Introduction

Questions similar to those addressed above were studied by Takens,
Detecting strange attractors in turbulence, in Dynamical Systems
and Turbulence, Warwick 1980, Lecture Notes in Mathematics
898, 1981, 366-381 where the following result was proved.

Theorem
Takens Let M be a compact manifold of dimension m. For pairs
(φ, y),
φ : M → M a C2 diffeomorphism
and y : M → R a C2 function,
it is a generic property that the map Φ(φ,y) : M → R2m+1, defined
by

Φ(φ,y)(x) = (y(x), y(φ(x)), . . . , y(φ2m(x)))

is an embedding.

Hence all information about the original dynamical system can be
retrieved from the suppressed dynamical system.
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Introduction

Han Peters and I have started an investigation of this. The first
problem is to find out how to investigate such questions.

Is it at all possible to say anything? What kind of precise questions
can one ask? What kind of theorems can one try to prove? What
are the right fruitful concepts?
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One Dimensional Complex Dynamics

To approach this problem, we focus on a system which is
mathematically well understood and then suppress one variable.
We chose complex dynamics in one complex dimension.
The dynamical system is that of a complex polynomial P : C → C.
Let z0 = x0 + iy0 be a point, and let P◦n(z0) = zn = xn + iyn. This
is the orbit of x0 and the study of dynamics is the study of orbits.

Our goal is to restrict attention to the sequence of xn. Try to find
Theorems about these sequences. But to actually prove these
theorems we feel free to use all we know about the complex
dynamics.
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One Dimensional Complex Dynamics

So we have a real dynamical system where complex analysis is used
essentially to prove the theorems. In fact as we found out during
this project we need to use the theory of complex analysis in higher
dimension as well. This is especially since we need properties of
complex varieties.

John Erik Fornæss Complex Dynamics
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It doesn’t always work

There are some complex polynomials where the orbits of the real
parts does not at all reflect the dynamics of the original system.
One such example is P(z) = −iz2 + ia where a is a large real
number. This maps the y−axis to itself and the interesting
dynamics happens on the y− axis. So all we see is the real map
0 → 0. The map on the y axis is y → y2 + a. For such a map all
the chaotic behaviour happens on a Cantor set in the y axis.

John Erik Fornæss Complex Dynamics
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Orbits

Lemma
Let P be a complex polynomial of degree d ≥ 2. Then there can
be at most one vertical line which is mapped to a vertical line. For
all other lines, the number of points which is mapped to any other
given vertical line is at most d .

Lemma
There exists an integer N so that if z0,w0 are two points with
orbits zn = xn + iyn,wn = un + ivn and xn = un for all n ≤ N − 1,
then xn = un for all n.
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Orbits

Proof.
We consider the polynomials Qn =Re(Pn(x + iy)− Pn(u + iv)),
Zn = {Q0 = · · · = Qn = 0}. If we complexify, these are
holomorphic polynomials and since Zn ⊃ Zn+1 these must be
stationary.

Let Φ : C → RN , Φ(z) = (x , x1, . . . , xN−1) Set S = Φ(C). Then
we have a semiconjugacy with the map Q : S → S ,
Q(x0, . . . , xN−1) = (x1, . . . , xN)

A polynomial extends to a holomorphic map P on P1, mapping ∞
to ∞. Likewise we extend Q to S := S ∪∞, sending ∞ to itself.
Similarly we extend Φ.

Unfortunate difficulty: In the example P = −iz2 + ia the map Φ is
not continuous. Also S ∪∞ is not compact.

John Erik Fornæss Complex Dynamics



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Orbits

Proof.
We consider the polynomials Qn =Re(Pn(x + iy)− Pn(u + iv)),
Zn = {Q0 = · · · = Qn = 0}. If we complexify, these are
holomorphic polynomials and since Zn ⊃ Zn+1 these must be
stationary.

Let Φ : C → RN , Φ(z) = (x , x1, . . . , xN−1) Set S = Φ(C). Then
we have a semiconjugacy with the map Q : S → S ,
Q(x0, . . . , xN−1) = (x1, . . . , xN)

A polynomial extends to a holomorphic map P on P1, mapping ∞
to ∞. Likewise we extend Q to S := S ∪∞, sending ∞ to itself.
Similarly we extend Φ.

Unfortunate difficulty: In the example P = −iz2 + ia the map Φ is
not continuous. Also S ∪∞ is not compact.

John Erik Fornæss Complex Dynamics



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Orbits

Proof.
We consider the polynomials Qn =Re(Pn(x + iy)− Pn(u + iv)),
Zn = {Q0 = · · · = Qn = 0}. If we complexify, these are
holomorphic polynomials and since Zn ⊃ Zn+1 these must be
stationary.

Let Φ : C → RN , Φ(z) = (x , x1, . . . , xN−1) Set S = Φ(C). Then
we have a semiconjugacy with the map Q : S → S ,
Q(x0, . . . , xN−1) = (x1, . . . , xN)

A polynomial extends to a holomorphic map P on P1, mapping ∞
to ∞. Likewise we extend Q to S := S ∪∞, sending ∞ to itself.
Similarly we extend Φ.

Unfortunate difficulty: In the example P = −iz2 + ia the map Φ is
not continuous. Also S ∪∞ is not compact.

John Erik Fornæss Complex Dynamics



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Orbits

Proof.
We consider the polynomials Qn =Re(Pn(x + iy)− Pn(u + iv)),
Zn = {Q0 = · · · = Qn = 0}. If we complexify, these are
holomorphic polynomials and since Zn ⊃ Zn+1 these must be
stationary.

Let Φ : C → RN , Φ(z) = (x , x1, . . . , xN−1) Set S = Φ(C). Then
we have a semiconjugacy with the map Q : S → S ,
Q(x0, . . . , xN−1) = (x1, . . . , xN)

A polynomial extends to a holomorphic map P on P1, mapping ∞
to ∞. Likewise we extend Q to S := S ∪∞, sending ∞ to itself.
Similarly we extend Φ.

Unfortunate difficulty: In the example P = −iz2 + ia the map Φ is
not continuous. Also S ∪∞ is not compact.

John Erik Fornæss Complex Dynamics



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Exceptional Maps

Let P(z) = ad + · · · be a polynomial of degree d for which adzd is
purely imaginary when z is imagninary. Then P is said to be
exceptional. Otherwise, P is non-exceptional.

Lemma
P is non exceptional if and only if S ∪∞ is compact and Φ is
continuous.

In this work we restrict to non exceptional maps.

One useful concept is that of mirrors. Two points z0,w0 are
mirrors of each other if the orbits xn = un for all n. So these points
are indistuingshable. If P(z) =

∑
ajz j and all the aj are real, then

the points z , z are mirrored.

John Erik Fornæss Complex Dynamics
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Mirrors

Let M = {(z ,w) ∈ C2} where z ,w are mirrored.

Lemma
If P does not have real coefficients, then M is real analytic of
dimension at most 1 (if we add the diagonal we get dimension 2.)
If P has real coefficients we get in addition the set (z , z).

John Erik Fornæss Complex Dynamics
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Proof

Sketch of proof. Suppose there exists open sets U,V ⊂ C and a
real analytic diffeomorphism Ψ : U → V such that U,V are
mirrored. Then one complexifies z = x + iy ,w = u + iv as
complex variables z ′,w ′, u′, v ′ in C4. Then the equation of being
mirrored becomes holomorphic. One then can use the
complexification of Re(P(x + iy)) to get a holomorphic function on
C2. Mirroring sends (x ′, y ′) to (x ′,λ(x ′, y ′)). This can be
continued by analytic continuation to |x ′| large. Restricting back
to R4 one shows that this continuation preserves reals for |x | large.
Hence one gets an open set of mirrored points arbitrarily close to
∞ in C. In C one has Bottcher coordinates so that P(z) = azd .
This allows after calculations to conclude that the original P has
real coefficients, so the mirroring was just z and z .
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Entropy

We focus in this paper on entropy. Entropy is a measure of chaos
in a system. We thought it would be a reasonable challenge to find
an analogue of the following classical result.

Theorem
(Brolin, Lyubich, Mane) Let P be a complex polynomial of degree
d ≥ 2. Then there is a unique probability measure µ on C which is
invariant, ergodic and of maximal entropy, log d .
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Main Result

Our main result is that the same is true for the real dynamical

system Q : S ⊂ RN → S , measure ν. But we need to assume that
P is non exceptional.

Explain words: Let F : X → X . A probability measure λ is
invariant if λ(F−1(E )) = λ(E ) for all measurable sets E .

An invariant measure is ergodic: If E ⊂ X and F−1(E ) = E
except for sets of measure 0. Then λ(E ) equals 0 or 1.
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Slide

Metric entropy: Let U ⊂ X × X be an open neighborhood of the
diagonal. For n ≥ 1, Let

B(x ,U, n) = {(y ∈ X ; (x , y), (F (x),F (y)), . . . , (F n−1(x),F n−1(y)) ∈ U.}
The entropy at x :

hλ(F , x ,U) = lim inf
n

−1

n
log(λ(B(x ,U, n)))

The smaller the balls, the larger the entropy. Large entropy means
the points spread out faster when you iterate.

hλ(F , x) = sup
U

hλ(F , x ,U).

Fact: Invariance and ergodicity of λ implies that hλ(F , x) = hλ(F )
is constant almost everywhere dλ. This is then the metric entropy.

Result: The relation between µ and ν. The measure ν is the
push-forward of µ : For E ⊂ S , ν(E ) = µ(Φ−1(E )).
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THANK YOU FOR LISTENING
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