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The Manin-Mumford conjecture

Let K be a field and A be an Abelian variety over K , that is : A is
a projective variety which is also an Abelian group.
If K = C, A is a complex torus Cd/Λ.

Mordell-Weil : if K is a number field, then A(K ) is a finitely
generated abelian group.

Let Tor(A) be the set of torsion points.
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Mordell-Weil : if K is a number field, then A(K ) is a finitely
generated abelian group.

Let Tor(A) be the set of torsion points.

Conjecture (Manin-Mumford) :

Assume K = Q. If X ⊂ A is an irreducible subvariety such that
Tor(A) ∩ X is Zariski-dense in X , then X is the translate of an
Abelian subvariety by a torsion point.
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The Manin-Mumford conjecture

Several other proofs and variants of the conjecture were obtained
since then. Most notably (for us), the approach of Szpiro, Ullmo
and Zhang (1998) uses equidistribution properties of torsion points.

This is one among many statements in number theory of the
following kind : “if a subvariety contains a Zariski dense subset of
special points, then it is itself special”.
(other famous example : André-Oort conjecture)

Note : if dimX = 1, Zariski dense just means infinite.
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A particular case

Consider the multiplicative group (C∗)2. Torsion points are of the
form (ξ1, ξ2), where the ξi are roots of unity.

(A variant of) Manin-Mumford predicts that if X ⊂ (C∗)2 is an
irreducible algebraic curve defined over Q containing infinitely
many such points, then

X = (ξ0
1 , ξ

0
2) · G ,

where G ⊂ (C∗)2 is a subgroup (equivalently X admits an
equation of the form xayb = u where a and b are coprime integers
and u is a root of unity).

Example

Consider X = {x + y = 0}. Then X contains all points of the form
(ξ,−ξ), with ξ a root of unity. And indeed X = (1,−1) ·∆, where
∆ = {(x , x), x ∈ C∗} is the diagonal subgroup.
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Dynamical reformulation

For every integer d ≥ 2 there is a dynamical system md : A→ A
induced by multiplication by d .

Exercise
For every d ≥ 2, Tor(A) = Preper(md) (the set of preperiodic
points)

Raynaud’s theorem reformulates as : if X ⊂ A is an irreducible
subvariety such that Preper(md) is Zariski dense in X , then X is
itself preperiodic.

Note : this point of view goes back to Northcott (1950) !
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The dynamical Manin-Mumford conjecture

Conjecture (S.-W. Zhang, 1995) :

Let K be an algebraically closed field of characteristic 0. Let
f : X → X be a polarized endomorphism. Let Y be an irreducible
subvariety such that Preper(f ) ∩ Y is Zariski dense in Y . Then Y
is preperiodic.

By “standard” specialization arguments it may be assumed that
K ⊂ C, so this can be approached using holomorphic dynamics
techniques.

Polarized endomorphisms include integer multiplication on Abelian
varieties, as well as holomorphic self mappings of Pk(C) (we can
also take products). It holds true on Abelian varieties by Raynaud’s
Theorem.
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Dynamical Manin-Mumford (continued)

Ghioca, Tucker and Zhang (2009) found a simple counter-example
to the general formulation of the conjecture : let E = C/Z[i ] and f
be defined on E × E by

f (x , y) = (5x , (3 + 4i)y).

Then f is polarized and the torsion points of E × E are preperiodic
under f . In particular the diagonal contains infinitely many
preperiodic points. On the other hand the diagonal is not periodic.

Anyway we see that this map is “special”.

GTZ proposed a corrected version of the conjecture with an
additional technical assumption.
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Dynamical Manin-Mumford (continued)

Some cases of the conjecture are known, in particular for product
maps on (P1)n, that is, of the form

(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)),

where the fi are not Lattès maps and Y ⊂ (P1)n is a line
(Ghioca-Tucker-Zhang, see also Medvedev-Scanlon).

Note : for (f , g) acting on P1 × P1, the diagonal ∆ contains
infinitely many preperiodic points iff f and g have infinitely many
preperiodic points in common (“unlikely intersection problem”, cf.
Baker and DeMarco)
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Dynamical Manin-Mumford (continued)

Dynamical Manin-Mumford (DMM) problem :

Let X be a quasiprojective variety and f : X → X a dominant
endomorphism. Describe all the positive dimensional irreducible
subvarieties Y ⊂ X such that Preper(f ) ∩ Y is Zariski dense in Y .

Hopefully in this case either Y is preperiodic or f is “special”.

In the following we study this problem for polynomial
automorphisms of C2.
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Dynamical Manin-Mumford (continued)

Dynamical Manin-Mumford (DMM) problem :

Let X be a quasiprojective variety and f : X → X a dominant
endomorphism. Describe all the positive dimensional irreducible
subvarieties Y ⊂ X such that Preper(f ) ∩ Y is Zariski dense in Y .

Hopefully in this case either Y is preperiodic or f is “special”.

In the following we study this problem for polynomial
automorphisms of C2.

Romain Dujardin & Charles Favre Manin, Mumford and Hénon
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Polynomial automorphisms of C2

Consider the space Aut(C2) of polynomial automorphisms of the
affine plane : polynomial mappings with polynomial inverse.

Notice that for automorphisms, preperiodic=periodic.

An automorphism f ∈ Aut(C2) has constant Jacobian Jac(f ) ∈ C∗.

Basic family of examples : Hénon maps

h : (z ,w) 7→ (aw + p(z), az), deg(p) = d , a ∈ C∗
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Polynomial automorphisms of C2

Friedland-Milnor : f ∈ Aut(C2) is conjugate in Aut(C2) to either :

I an affine map ;

I an elementary map (x , y) 7→ (ax + b, y + P(x)) ;

I a composition h1 ◦ · · · ◦ hk where the hi are Hénon mappings.

The DMM problem is uninteresting in the first two cases so we
assume f is a product of Hénon maps (a “Hénon-type”
transformation).

Note : all this is valid over any algebraically closed field of
characteristic 0.

Romain Dujardin & Charles Favre Manin, Mumford and Hénon
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DMM problem for polynomial automorphisms of C2

Theorem (Bedford-Smillie)

A Hénon-type automorphism f admits no invariant (hence no
periodic) algebraic curve.

So the DMM problem formulates as :

Problem
Can f possess infinitely many periodic points on an algebraic
curve ? If so, is it “special” ?

Answer : yes !
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A Hénon-type automorphism f admits no invariant (hence no
periodic) algebraic curve.

So the DMM problem formulates as :

Problem
Can f possess infinitely many periodic points on an algebraic
curve ? If so, is it “special” ?

Answer : yes !

Romain Dujardin & Charles Favre Manin, Mumford and Hénon
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Reversible mappings

A polynomial automorphism is reversible if f is conjugate to its
inverse : f −1 = σ−1f σ. Typically, σ is a linear involution. Note
that if f is reversible then Jac(f ) = ±1.
Examples include all Hénon mappings of Jacobian 1 :

f (x , y) = (p(x)− y , x) and σ(x , y) = (y , x).

Notice that Fix(σ) = ∆ = {(x , x), x ∈ C}.

Proposition :

If f −1 = σ−1f σ and σ is an involution with a curve of fixed points
C , then f admits infinitely many periodic points on C .

Note : Gomez and Meiss proved that under these assumptions,
then σ is conjugate to (x , y) 7→ (y , x) so C is always the diagonal.
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Reversible mappings (continued)

Proposition :

If f −1 = σ−1f σ and σ is an involution with a curve of fixed points
C , then f admits infinitely many periodic points on C .

Proof : indeed if x ∈ f n(∆) ∩∆ then

f −n(x) = σf nσ(x) = σf n(x) = f n(x)

so f n(∆) ∩∆ ⊂ Fix(f 2n).

On the other hand #f n(∆) ∩∆ ≈ dn so the result follows.
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DMM conjecture for polynomial automorphisms

Conjecture :

These are the only examples. More precisely, if f is a Hénon-type
automorphism and C ⊂ C2 an algebraic curve such that Per(f)∩ C
is infinite then there exists n ≥ 1 and an involution σ such that
Fix(σ) = C and σf nσ = f −n.

Notice that in this case Jac(f ) must be a root of unity.
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Main results

Theorem A
Let f be a Hénon-type automorphism, and assume that there
exists an algebraic curve containing infinitely many periodic points.
Then Jac(f ) is algebraic over Q and |Jac(f )| = 1, together with all
its Galois conjugates.

Remark :
We actually show that if |Jac(f )| 6= 1 the number of periodic
points on an algebraic curve of degree ≤ d is bounded by a
constant N(d , f ) (not effective).
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Main results

Theorem A
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Main results

Theorem B
Let f be a Hénon-type automorphism, and assume that there exists
an algebraic curve C containing infinitely many periodic points.
Assume that the following transversality assumption (T) holds :

∃p ∈ Reg(C ) ∩ Per(f ), such that TpC is not periodic under dfp.

Then Jac(f ) is a root of unity.
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Main results

We also obtain a result on unlikely intersections (which is related
to DMM for product maps f ⊗ g) :

Theorem C
Let f and g be two Hénon type automorphisms, defined over a
number field.
Then if f and g share a set of periodic points that is Zariski dense,
then there exists integers m and n such that f m = gn.

This is a generalization of results by Baker-DeMarco and
Yuan-Zhang for one-dimensional rational maps.
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Strategy of proof

The proofs of these results rely on the approach of Szpiro, Ullmo
and Zhang to the Manin-Mumford conjecture (equistribution of
points of small height).

Interesting phenomenon : while the statements are purely
algebraic, the proofs use arithmetic tools (in particular the notion
of height). So in a first stage we assume that all mappings are
defined over a number field.

For Theorems A and B, “standard” specialization arguments then
show that the result holds in the complex case as well, and actually
also on every algebraically closed field of characteristic zero. (for
Theorem C this is still in progress)
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Applying the equidistribution theorem

Recall that f is assumed to be a product of Hénon mappings
f = h1 ◦ · · · ◦ hk with hi (x , y) = (aiy + pi (x), x) and deg(f ) = d ,
defined over Q. Then one can define the (forward) Green function

z 7→ G+(z) = lim
n→∞

1

dn
log+ ‖f n(z)‖ ,

and similarly G− in backward time. G+, G− and
G = max(G+,G−) are plurisubharmonic and
G (z) = log ‖z‖+ O(1) at infinity.

To be able to apply arithmetic equidistribution, it is important that
the same theory makes sense also in the non-Archimedean fields
Cp, p ≥ 2 prime (this is non-trivial and due to Kawaguchi).
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f = h1 ◦ · · · ◦ hk with hi (x , y) = (aiy + pi (x), x) and deg(f ) = d ,
defined over Q. Then one can define the (forward) Green function

z 7→ G+(z) = lim
n→∞

1

dn
log+ ‖f n(z)‖ ,

and similarly G− in backward time. G+, G− and
G = max(G+,G−) are plurisubharmonic and
G (z) = log ‖z‖+ O(1) at infinity.

To be able to apply arithmetic equidistribution, it is important that
the same theory makes sense also in the non-Archimedean fields
Cp, p ≥ 2 prime (this is non-trivial and due to Kawaguchi).

Romain Dujardin & Charles Favre Manin, Mumford and Hénon



Applying the equidistribution theorem

Then equidistribution theorems due to Autissier and Thuillier
imply :

Proposition :

Let f be an automorphism defined over a number field. Assume
that (pn) is an infinite sequence of periodic points inside a curve
C . Then C is defined over Q and the sequence of probability
measures µn equidistributed over the Galois conjugates of pn
converges to α∆(G+|C ) where α is a positive rational number
depending only on C .
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Applying the equidistribution theorem

But we can also do the same in negative time, and µn also
converges to β∆(G−|C ). Finally :

Proposition :

Let f be an automorphism defined over a number field, possessing
infinitely many periodic points on a curve C . There exists positive
rational numbers α(C ) and β(C ) and a harmonic function H such
that along C , αG+ = βG− + H.

In the following we assume H = 0 and α = β = 1, which does not
affect the argument.
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Proof of Theorem B

Recall the statement

Theorem B
Let f be a Hénon-type automorphism over C and let C be an
algebraic curve containing infinitely many periodic points. Assume
that the following transversality assumption (T) holds :

∃p ∈ Reg(C ) ∩ Per(f ), such that TpC is not periodic under dfp.

Then Jac(f ) is a root of unity.

Recall that here f is supposed to be defined on a number field.
Iterating, we may assume that assume that p is fixed.
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Proof of Theorem B

We will prove the theorem under the simplifying assumption that p
is a saddle point (by Bedford, Lyubich and Smillie, most periodic
points are saddles, so this is not unreasonable).

Choose local coordinates (x , y) so that W u
loc = {y = 0} and

W s
loc = {x = 0}.

Denote by u and s the respective unstable and stable eigenvalues
at p (which is 0 in our coordinates). Then

f (x , y) = (ux + h.o.t., sy + h.o.t.)

Rescaling lemma

There exist local coordinates (x , y) as above so that if ξ and η are
small enough, then

f n
(
ξ

un
, η

)
→ (ξ, 0) uniformly in (ξ, η) as n→∞.
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Proof of Theorem B (continued)

Recall that by equidistribution we have that G+|C = G−|C . We
now use this symmetry and the rescaling lemma to show that
|us| = |Jac(f )| = 1.

Due to (T) the local picture is like this :

W u
loc(p)

W s
loc(p)

C

Let y = ψ(x) be a local
equation of C .
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Proof of Theorem B (continued)

Assume by contradiction that |us| > 1. Then

dnG+

(
ξ

un
, ψ

(
ξ

un

))
= G+ ◦ f n

(
ξ

un
, ψ

(
ξ

un

))
→ G+(ξ, 0)

by the rescaling Lemma. But by symmetry
G+(x , ψ(x)) = G−(x , ψ(x)), so the above quantity equals

dnG−
(
ξ

un
, ψ

(
ξ

un

))
= G− ◦ f −n

(
ξ

un
, ψ

(
ξ

un

))
≈ G−

(
0, s−nψ

(
ξ

un

))
→ G−(0, 0) = 0

We conclude that G+|W u
loc(p) ≡ 0, a contradiction since

W u
loc(p) 6⊂ K+. Hence |us| ≤ 1

Reversing the roles of u and s we conclude that
|us| = |Jac(f )| = 1.

Romain Dujardin & Charles Favre Manin, Mumford and Hénon



Proof of Theorem B (continued)

Notice that all Galois conjugates of Jac(f ) have modulus 1 since
our assumption on periodic points is purely algebraic.

How to proceed to prove that Jac(f ) is a root of unity ?

We use
the classical

Lemma
An algebraic number α is a root of unity iff |α|v = 1 for every
place v of Q[α]. Explicitly, this means that for p ∈ P ∪ {∞}, if τ
is any embedding of Q[α] into Cp, then |τ(α)|p = 1.

For Archimedean places v , we just proved that |Jac(f )|v = 1
(assuming that p is a saddle at such places).
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How to proceed to prove that Jac(f ) is a root of unity ? We use
the classical

Lemma
An algebraic number α is a root of unity iff |α|v = 1 for every
place v of Q[α]. Explicitly, this means that for p ∈ P ∪ {∞}, if τ
is any embedding of Q[α] into Cp, then |τ(α)|p = 1.

For Archimedean places v , we just proved that |Jac(f )|v = 1
(assuming that p is a saddle at such places).

Romain Dujardin & Charles Favre Manin, Mumford and Hénon



Proof of Theorem B (continued)

Now fix a non-Archimedean place v . All that was said before
makes sense in Cv , including the existence of Green functions, the
equidistribution theorem, etc. (this relies on the technology of
Berkovich spaces, non-Archimedean potential theory, etc).

Consider our periodic point p ∈ C satisfying the transversality
assumption (T).

Non-archimedean Lemma
If the place v is non-Archimedean, then either |u|v = |s|v = 1 or p
is a saddle.

In the first case we directly get that |Jac(f )|v = 1. In the second
we repeat the above proof (rescaling and G+ = G− on C ), which
again works over Cv , to conclude that |us|v = 1.

So at all places we have that |Jac(f )|v = 1, therefore Jac(f ) is a
root of unity.
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Proof of Theorem B (continued)

Now fix a non-Archimedean place v . All that was said before
makes sense in Cv , including the existence of Green functions, the
equidistribution theorem, etc. (this relies on the technology of
Berkovich spaces, non-Archimedean potential theory, etc).

Consider our periodic point p ∈ C satisfying the transversality
assumption (T).

Non-archimedean Lemma
If the place v is non-Archimedean, then either |u|v = |s|v = 1 or p
is a saddle.

In the first case we directly get that |Jac(f )|v = 1. In the second
we repeat the above proof (rescaling and G+ = G− on C ), which
again works over Cv , to conclude that |us|v = 1.

So at all places we have that |Jac(f )|v = 1, therefore Jac(f ) is a
root of unity.

Romain Dujardin & Charles Favre Manin, Mumford and Hénon



Proof of Theorems A and B

How to prove that |Jac(f )| = 1 at Archimedean places without the
additional assumption that p is a saddle ? Prove Theorem A !

To prove Theorem A, rather than working with stable and unstable
manifolds of periodic points in C (which are not known to be
saddles), we use Pesin stable and unstable manifolds of the
maximal entropy measure µ, which are known to be a.s. transverse
to C .

We show that the local Hölder exponent θ+ of G+|C satisfies
θ+ = χu

log d a.e. (this is similar to Young’s formula), where χu is the
unstable Lyapunov exponent of µ.

But since G+|C = G−|C , |χu| = |χs |, i.e. χs = −χu, therefore
|Jac(f )| = 1 and we are done.
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Thanks !
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