Rotation Sets and
 Polynomial Dynamics

Jackfest, Cancún
May 30, 2016

For every rational number p / q there is a unique periodic orbit in \mathbb{R} / \mathbb{Z} under the doubling map $t \mapsto 2 t(\bmod \mathbb{Z})$ whose rotation number is p / q :

For every rational number p / q there is a unique periodic orbit in \mathbb{R} / \mathbb{Z} under the doubling map $t \mapsto 2 t(\bmod \mathbb{Z})$ whose rotation number is p / q :

$$
\frac{p}{q}=\frac{2}{5}
$$

For every rational number p / q there is a unique periodic orbit in \mathbb{R} / \mathbb{Z} under the doubling map $t \mapsto 2 t(\bmod \mathbb{Z})$ whose rotation number is p / q :

$$
\frac{p}{q}=\frac{2}{5}
$$

$z \mapsto e^{2 \pi i(2 / 5)} z+z^{2}$

Similarly, for every irrational number θ, there is a unique compact invariant (Cantor) set in \mathbb{R} / \mathbb{Z} whose rotation number under doubling is θ :

Similarly, for every irrational number θ, there is a unique compact invariant (Cantor) set in \mathbb{R} / \mathbb{Z} whose rotation number under doubling is θ :

$$
\begin{aligned}
& \theta=\frac{\sqrt{5}-1}{2} \\
& \omega=0.7098034428 \cdots
\end{aligned}
$$

1. Motivation

Similarly, for every irrational number θ, there is a unique compact invariant (Cantor) set in \mathbb{R} / \mathbb{Z} whose rotation number under doubling is θ :

$$
\begin{aligned}
& \theta=\frac{\sqrt{5}-1}{2} \\
& \omega=0.7098034428 \ldots
\end{aligned}
$$

$z \mapsto e^{2 \pi i \theta} z+z^{2}$

These "rotation sets" describe angles of the external rays that land on the boundary of the main cardioid of the Mandelbrot set:

Problem: Extend this theory to higher degrees.

Problem: Extend this theory to higher degrees.

- Abstract part: Understanding the structure of rotation sets under multiplication by $d \geq 2$.

Problem: Extend this theory to higher degrees.

- Abstract part: Understanding the structure of rotation sets under multiplication by $d \geq 2$.
- Concrete part: Realizing rotation sets in suitable spaces of degree d polynomials.

2. Earlier work

(1993) Goldberg and Milnor: Rational rotation sets, fixed point portraits of polynomials
(1994) Bullett and Sentenac: Rotation sets under doubling
(1996) Goldberg and Tresser: Irrational rotation sets via Farey trees
(2006) Blokh, Malaugh, Mayer, Oversteegen, and Parris: Rotation sets under multiplication by d
(2015) Bonifant, Buff, and Milnor: Rotation sets under tripling, antipode preserving cubic maps

3. Rotation sets

Fix an integer $d \geq 2$.
$m_{d}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ is the multiplication by d map defined by

$$
m_{d}(t)=d t \quad(\bmod \mathbb{Z})
$$

3. Rotation sets

Fix an integer $d \geq 2$.
$m_{d}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ is the multiplication by d map defined by

$$
m_{d}(t)=d t \quad(\bmod \mathbb{Z})
$$

Definition

A non-empty compact set $X \subset \mathbb{R} / \mathbb{Z}$ is a rotation set for m_{d} if

- $m_{d}(X)=X$, and
- the restriction $\left.m_{d}\right|_{X}$ extends to a degree 1 monotone map of the circle.

3. Rotation sets

Fix an integer $d \geq 2$.
$m_{d}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ is the multiplication by d map defined by

$$
m_{d}(t)=d t \quad(\bmod \mathbb{Z})
$$

Definition

A non-empty compact set $X \subset \mathbb{R} / \mathbb{Z}$ is a rotation set for m_{d} if

- $m_{d}(X)=X$, and
- the restriction $\left.m_{d}\right|_{X}$ extends to a degree 1 monotone map of the circle.

The rotation number $\rho(X) \in[0,1)$ is defined as the rotation number of any degree 1 monotone extension of $\left.m_{d}\right|_{X}$.

3. Rotation sets

Example:

$$
X: \frac{7}{26} \stackrel{m_{3}}{\longmapsto} \frac{21}{26} \stackrel{m_{3}}{\longmapsto} \frac{11}{26} \quad \rho(X)=\frac{2}{3}
$$

3. Rotation sets

Example:

$$
X: \frac{7}{26} \stackrel{m_{3}}{\longmapsto} \frac{21}{26} \stackrel{m_{3}}{\longmapsto} \frac{11}{26} \quad \rho(X)=\frac{2}{3}
$$

Every rotation set is nowhere dense, whereas a randomly chosen point on the circle has a dense orbit under m_{d}.

3. Rotation sets

Every rotation set is nowhere dense, whereas a randomly chosen point on the circle has a dense orbit under m_{d}.

Theorem

The union of all rotation sets for m_{d} has Lebesgue measure zero.

4. Gaps

Let X be a rotation set for m_{d}.

Definition

- Each connected component I of $(\mathbb{R} / \mathbb{Z}) \backslash X$ is called a gap of X.
- I is minor if $|I|<1 / d$, and major otherwise.
- I is taut if $|I|=n / d$ for some integer n, and loose otherwise.
- The multiplicity of I is the integer part of $d|I|$.

4. Gaps

Assume $\rho(X) \neq 0$. Define the standard monotone map g as follows:
On a minor gap, set $g=m_{d}$.
On a major gap ($a, a+\ell$) of multiplicity n, set

$$
g(t)= \begin{cases}m_{d}(a) & t \in(a, a+n / d] \\ m_{d}(t) & t \in(a+n / d, a+\ell)\end{cases}
$$

4. Gaps

Assume $\rho(X) \neq 0$. Define the standard monotone map g as follows:
On a minor gap, set $g=m_{d}$.
On a major gap ($a, a+\ell$) of multiplicity n, set

$$
g(t)= \begin{cases}m_{d}(a) & t \in(a, a+n / d] \\ m_{d}(t) & t \in(a+n / d, a+\ell)\end{cases}
$$

4. Gaps

Assume $\rho(X) \neq 0$. Define the standard monotone map g as follows:
On a minor gap, set $g=m_{d}$.
On a major gap ($a, a+\ell$) of multiplicity n, set

$$
g(t)= \begin{cases}m_{d}(a) & t \in(a, a+n / d] \\ m_{d}(t) & t \in(a+n / d, a+\ell)\end{cases}
$$

4. Gaps

4. Gaps

Theorem
X has $d-1$ major gaps counting multiplicities.

4. Gaps

Theorem

X has $d-1$ major gaps counting multiplicities.

$$
\begin{aligned}
& \sum \frac{n_{i}}{d}=1-\frac{1}{d} \\
& \Longrightarrow \sum n_{i}=d-1
\end{aligned}
$$

4. Gaps

Theorem

Every gap is either periodic or it eventually maps to a taut gap.

4. Gaps

Theorem

Every gap is either periodic or it eventually maps to a taut gap.

4. Gaps

Theorem

Every gap is either periodic or it eventually maps to a taut gap.

Corollary

If $\rho(X)$ is irrational, every gap of X eventually maps to a taut gap. In particular, at least one major gap of X is taut.

5. Minimal rotation sets

- Let X be a minimal rotation set with $\rho(X)=\theta$. Then X is a q-cycle if $\theta=p / q$ and is a Cantor set if θ is irrational.
- Let X be a minimal rotation set with $\rho(X)=\theta$. Then X is a q-cycle if $\theta=p / q$ and is a Cantor set if θ is irrational.
- There is a degree 1 monotone map $\varphi: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$, normalized by $\varphi(0)=0$, which satisfies

$$
\varphi \circ m_{d}=R_{\theta} \circ \varphi \quad \text { on } X
$$

and is constant on every gap of X. We call this φ the semiconjugacy associated with X.

5. Minimal rotation sets

5. Minimal rotation sets

- X supports a unique m_{d}-invariant probability measure μ, which satisfies

$$
\varphi(t)=\int_{0}^{t} d \mu
$$

5. Minimal rotation sets

Consider the $d-1$ fixed points of m_{d} :

$$
z_{i}=\frac{i}{d-1}, \quad 0 \leq i \leq d-2
$$

5. Minimal rotation sets

Consider the $d-1$ fixed points of m_{d} :

$$
z_{i}=\frac{i}{d-1}, \quad 0 \leq i \leq d-2
$$

Theorem

Each major gap of multiplicity n contains exactly n fixed points of m_{d}.

Consider the $d-1$ fixed points of m_{d} :

$$
z_{i}=\frac{i}{d-1}, \quad 0 \leq i \leq d-2
$$

Theorem

Each major gap of multiplicity n contains exactly n fixed points of m_{d}.

5. Minimal rotation sets

Definition

The deployment vector of X is

$$
\delta(X)=\left(\delta_{1}, \ldots, \delta_{d-1}\right) \in \Delta^{d-2} \subset \mathbb{R}^{d-1}
$$

where

$$
\delta_{i}=\mu\left[z_{i-1}, z_{i}\right)
$$

5. Minimal rotation sets

Definition

The deployment vector of X is

$$
\delta(X)=\left(\delta_{1}, \ldots, \delta_{d-1}\right) \in \Delta^{d-2} \subset \mathbb{R}^{d-1}
$$

where

$$
\delta_{i}=\mu\left[z_{i-1}, z_{i}\right)
$$

Note that when $\theta=p / q$ in lowest terms, $q \delta(X) \in \mathbb{Z}^{d-1}$.

Theorem (Goldberg-Tresser)

Given an "admissible" pair $(\theta, \delta) \in(\mathbb{R} / \mathbb{Z}) \times \Delta^{d-2}$ there is a unique minimal rotation set $X=X_{\theta, \delta}$ with $\rho(X)=\theta$ and $\delta(X)=\delta$.

Thus, the space of all minimal rotation sets for m_{d} of a given rotation number θ is

Theorem (Goldberg-Tresser)

Given an "admissible" pair $(\theta, \delta) \in(\mathbb{R} / \mathbb{Z}) \times \Delta^{d-2}$ there is a unique minimal rotation set $X=X_{\theta, \delta}$ with $\rho(X)=\theta$ and $\delta(X)=\delta$.

Thus, the space of all minimal rotation sets for m_{d} of a given rotation number θ is

- finite with $\binom{q+d-2}{q}$ elements if $\theta=p / q$.

Theorem (Goldberg-Tresser)

Given an "admissible" pair $(\theta, \delta) \in(\mathbb{R} / \mathbb{Z}) \times \Delta^{d-2}$ there is a unique minimal rotation set $X=X_{\theta, \delta}$ with $\rho(X)=\theta$ and $\delta(X)=\delta$.

Thus, the space of all minimal rotation sets for m_{d} of a given rotation number θ is

- finite with $\binom{q+d-2}{q}$ elements if $\theta=p / q$.
- isomorphic to the simplex Δ^{d-2} if θ is irrational.

6. The cubic case

Example: Under the tripling map m_{3}, there are four 3-cycles with rotation number $\theta=2 / 3$:

A
$\delta=(0,1)$
$\delta=\left(\frac{1}{3}, \frac{2}{3}\right)$
$\delta=\left(\frac{2}{3}, \frac{1}{3}\right)$
$\delta=(1,0)$

6. The cubic case

Connectedness locus of the cubic family

$$
f_{a}(z)=e^{2 \pi i \theta} z+a z^{2}+z^{3} \quad \text { with } \quad a \in \mathbb{C}
$$

6. Cubic polynomials

$$
\theta=2 / 3
$$

6. Cubic polynomials

6. Cubic polynomials

$$
\theta=3 / 5
$$

6. Cubic polynomials

$$
\theta=5 / 8
$$

6. Cubic polynomials

$$
\theta=8 / 13
$$

6. Cubic polynomials

$$
\theta=13 / 21
$$

6. Cubic polynomials

$$
\theta=(\sqrt{5}-1) / 2
$$

6. Cubic polynomials

$$
\theta=(\sqrt{5}-1) / 2
$$

7. Unified proof of the deployment theorem

- Let

$$
\sigma_{i}=\delta_{1}+\cdots+\delta_{i} \quad 1 \leq i \leq d-1
$$

7. Unified proof of the deployment theorem

- Let

$$
\sigma_{i}=\delta_{1}+\cdots+\delta_{i} \quad 1 \leq i \leq d-1
$$

- Consider the gap measure

$$
v=\sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_{i}-k \theta}
$$

7. Unified proof of the deployment theorem

- Let

$$
\sigma_{i}=\delta_{1}+\cdots+\delta_{i} \quad 1 \leq i \leq d-1
$$

- Consider the gap measure

$$
v=\sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_{i}-k \theta}
$$

- Integrate: $\psi(t)=\int_{0}^{t} d v$
- Let

$$
\sigma_{i}=\delta_{1}+\cdots+\delta_{i} \quad 1 \leq i \leq d-1
$$

- Consider the gap measure

$$
v=\sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_{i}-k \theta}
$$

- Integrate: $\psi(t)=\int_{0}^{t} d \nu$
- The semiconjugacy associated with X will be

$$
\varphi(t)=\psi^{-1}(t+a)
$$

for suitable a.

8. Some corollaries

In general, the assignment $(\theta, \delta) \mapsto X_{\theta, \delta}$ is only lower semicontinuous.

In general, the assignment $(\theta, \delta) \mapsto X_{\theta, \delta}$ is only lower semicontinuous.

Theorem

The following conditions are equivalent:
(i) $(\theta, \delta) \mapsto X_{\theta, \delta}$ is continuous at $\left(\theta_{0}, \delta_{0}\right)$.
(ii) $X_{\theta_{0}, \delta_{0}}$ is maximal.
(iii) $X_{\theta_{0}, \delta_{0}}$ is a Cantor set with $d-1$ major gaps of length $1 / d$.
(iv) The points $\sigma_{1}, \ldots, \sigma_{d-1}$ have disjoint orbits under R_{θ}.

8. Some corollaries

Let ω denote the leading angle of $X_{\theta, \delta}$.

Theorem

$$
\begin{aligned}
\omega & =\frac{1}{d-1} v(0, \theta]+\frac{N_{0}}{d-1} \\
& =\frac{1}{d-1} \sum_{i=1}^{d-1} \sum_{0<\sigma_{i}-k \theta \leq \theta} \frac{1}{d^{k+1}}+\frac{N_{0}}{d-1}
\end{aligned}
$$

where $N_{0} \geq 0$ is the length of the initial segment of 0 's in δ.

$\mathcal{H A P P Y}$

BIRTH゙거A JACK!

