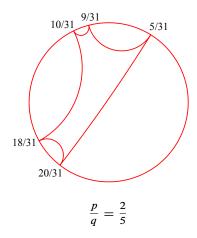
Rotation Sets and Polynomial Dynamics

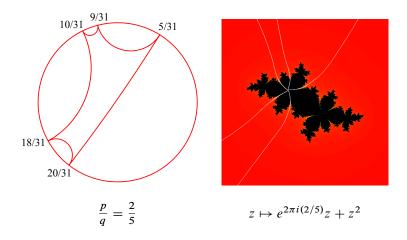
> Jackfest, Cancún May 30, 2016

For every rational number p/q there is a unique periodic orbit in \mathbb{R}/\mathbb{Z} under the doubling map $t \mapsto 2t \pmod{\mathbb{Z}}$ whose rotation number is p/q:

For every rational number p/q there is a unique periodic orbit in \mathbb{R}/\mathbb{Z} under the doubling map $t \mapsto 2t \pmod{\mathbb{Z}}$ whose rotation number is p/q:

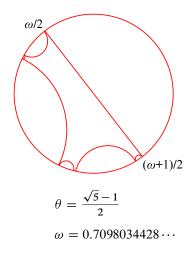


For every rational number p/q there is a unique periodic orbit in \mathbb{R}/\mathbb{Z} under the doubling map $t \mapsto 2t \pmod{\mathbb{Z}}$ whose rotation number is p/q:

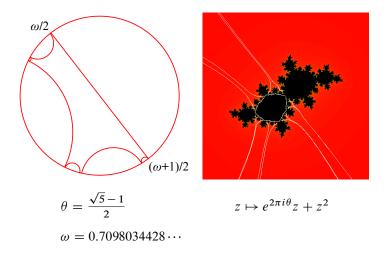


Similarly, for every irrational number θ , there is a unique compact invariant (Cantor) set in \mathbb{R}/\mathbb{Z} whose rotation number under doubling is θ :

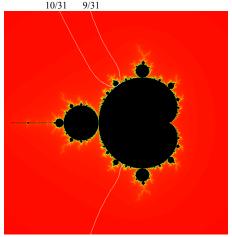
Similarly, for every irrational number θ , there is a unique compact invariant (Cantor) set in \mathbb{R}/\mathbb{Z} whose rotation number under doubling is θ :



Similarly, for every irrational number θ , there is a unique compact invariant (Cantor) set in \mathbb{R}/\mathbb{Z} whose rotation number under doubling is θ :



These "rotation sets" describe angles of the external rays that land on the boundary of the main cardioid of the Mandelbrot set:



Problem: Extend this theory to higher degrees.

Problem: Extend this theory to higher degrees.

• Abstract part: Understanding the structure of rotation sets under multiplication by $d \ge 2$.

Problem: Extend this theory to higher degrees.

 Abstract part: Understanding the structure of rotation sets under multiplication by *d* ≥ 2.

• Concrete part: Realizing rotation sets in suitable spaces of degree *d* polynomials.

- (1993) Goldberg and Milnor: Rational rotation sets, fixed point portraits of polynomials
- (1994) Bullett and Sentenac: Rotation sets under doubling
- (1996) Goldberg and Tresser: Irrational rotation sets via Farey trees
- (2006) Blokh, Malaugh, Mayer, Oversteegen, and Parris: Rotation sets under multiplication by d
- (2015) Bonifant, Buff, and Milnor: Rotation sets under tripling, antipode preserving cubic maps

Fix an integer $d \ge 2$.

 $m_d : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is the *multiplication by* d map defined by

 $m_d(t) = d t \pmod{\mathbb{Z}}$

Fix an integer $d \ge 2$.

 $m_d: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is the *multiplication by* d map defined by

 $m_d(t) = d t \pmod{\mathbb{Z}}$

Definition

A non-empty compact set $X \subset \mathbb{R}/\mathbb{Z}$ is a *rotation set* for m_d if

- $m_d(X) = X$, and
- the restriction $m_d|_X$ extends to a degree 1 monotone map of the circle.

Fix an integer $d \ge 2$.

 $m_d: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is the *multiplication by* d map defined by

 $m_d(t) = d t \pmod{\mathbb{Z}}$

Definition

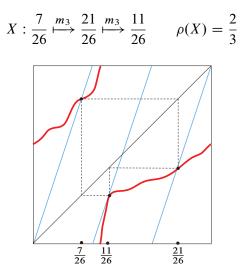
A non-empty compact set $X \subset \mathbb{R}/\mathbb{Z}$ is a *rotation set* for m_d if

- $m_d(X) = X$, and
- the restriction $m_d|_X$ extends to a degree 1 monotone map of the circle.

The *rotation number* $\rho(X) \in [0, 1)$ is defined as the rotation number of any degree 1 monotone extension of $m_d|_X$.

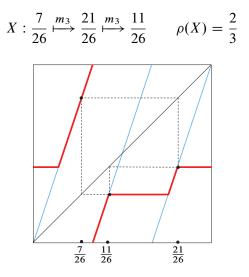
3. Rotation sets

Example:



3. Rotation sets

Example:



Every rotation set is nowhere dense, whereas a randomly chosen point on the circle has a dense orbit under m_d . Every rotation set is nowhere dense, whereas a randomly chosen point on the circle has a dense orbit under m_d .

Theorem

The union of all rotation sets for m_d has Lebesgue measure zero.

Let *X* be a rotation set for m_d .

Definition

- Each connected component I of $(\mathbb{R}/\mathbb{Z}) \setminus X$ is called a *gap* of X.
- *I* is *minor* if |I| < 1/d, and *major* otherwise.
- *I* is *taut* if |I| = n/d for some integer *n*, and *loose* otherwise.
- The *multiplicity* of I is the integer part of d|I|.

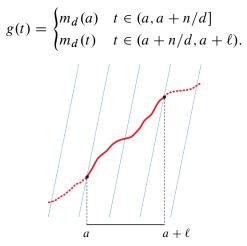
Assume $\rho(X) \neq 0$. Define the *standard monotone map* g as follows: On a minor gap, set $g = m_d$.

On a major gap $(a, a + \ell)$ of multiplicity *n*, set

$$g(t) = \begin{cases} m_d(a) & t \in (a, a + n/d] \\ m_d(t) & t \in (a + n/d, a + \ell). \end{cases}$$

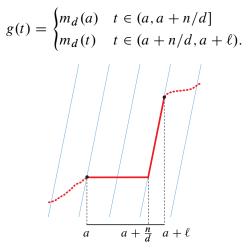
Assume $\rho(X) \neq 0$. Define the *standard monotone map* g as follows: On a minor gap, set $g = m_d$.

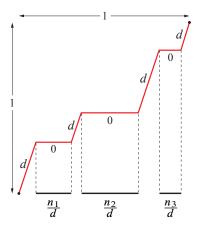
On a major gap $(a, a + \ell)$ of multiplicity *n*, set

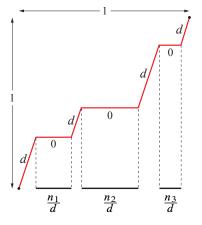


Assume $\rho(X) \neq 0$. Define the *standard monotone map* g as follows: On a minor gap, set $g = m_d$.

On a major gap $(a, a + \ell)$ of multiplicity *n*, set

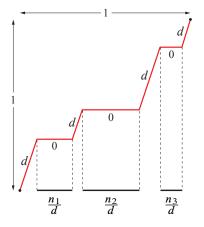






Theorem

X has d - 1 major gaps counting multiplicities.



Theorem

X has d - 1 major gaps counting multiplicities.

$$\sum \frac{n_i}{d} = 1 - \frac{1}{d}$$

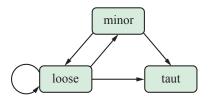
$$\Longrightarrow \sum n_i = d - 1.$$

Theorem

Every gap is either periodic or it eventually maps to a taut gap.

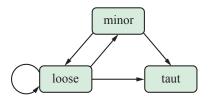
Theorem

Every gap is either periodic or it eventually maps to a taut gap.



Theorem

Every gap is either periodic or it eventually maps to a taut gap.



Corollary

If $\rho(X)$ is irrational, every gap of X eventually maps to a taut gap. In particular, at least one major gap of X is taut.

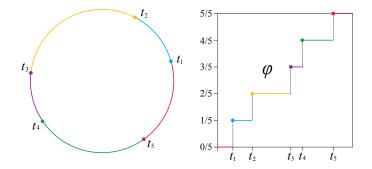
• Let X be a *minimal* rotation set with $\rho(X) = \theta$. Then X is a q-cycle if $\theta = p/q$ and is a Cantor set if θ is irrational.

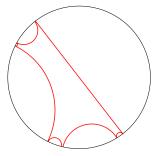
• Let X be a *minimal* rotation set with $\rho(X) = \theta$. Then X is a q-cycle if $\theta = p/q$ and is a Cantor set if θ is irrational.

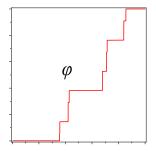
• There is a degree 1 monotone map $\varphi : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, normalized by $\varphi(0) = 0$, which satisfies

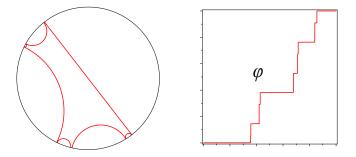
$$\varphi \circ m_d = R_\theta \circ \varphi \qquad \text{on } X$$

and is constant on every gap of X. We call this φ the *semiconjugacy* associated with X.









• X supports a unique m_d -invariant probability measure μ , which satisfies

$$\varphi(t) = \int_0^t d\mu.$$

Consider the d - 1 fixed points of m_d :

$$z_i = \frac{i}{d-1}, \qquad 0 \le i \le d-2.$$

Consider the d - 1 fixed points of m_d :

$$z_i = \frac{i}{d-1}, \qquad 0 \le i \le d-2.$$

Theorem

Each major gap of multiplicity n contains exactly n fixed points of m_d .

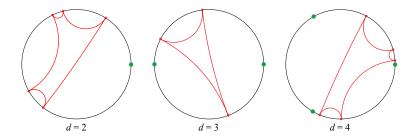
5. Minimal rotation sets

Consider the d - 1 fixed points of m_d :

$$z_i = \frac{i}{d-1}, \qquad 0 \le i \le d-2.$$

Theorem

Each major gap of multiplicity n contains exactly n fixed points of m_d .



Definition

The *deployment vector* of X is

$$\delta(X) = (\delta_1, \dots, \delta_{d-1}) \in \Delta^{d-2} \subset \mathbb{R}^{d-1},$$

where

$$\delta_i = \mu[z_{i-1}, z_i).$$

Definition

The *deployment vector* of X is

$$\delta(X) = (\delta_1, \dots, \delta_{d-1}) \in \Delta^{d-2} \subset \mathbb{R}^{d-1},$$

where

$$\delta_i = \mu[z_{i-1}, z_i).$$

Note that when $\theta = p/q$ in lowest terms, $q\delta(X) \in \mathbb{Z}^{d-1}$.

Theorem (Goldberg-Tresser)

Given an "admissible" pair $(\theta, \delta) \in (\mathbb{R}/\mathbb{Z}) \times \Delta^{d-2}$ there is a unique minimal rotation set $X = X_{\theta,\delta}$ with $\rho(X) = \theta$ and $\delta(X) = \delta$.

Thus, the space of all minimal rotation sets for m_d of a given rotation number θ is

Theorem (Goldberg-Tresser)

Given an "admissible" pair $(\theta, \delta) \in (\mathbb{R}/\mathbb{Z}) \times \Delta^{d-2}$ there is a unique minimal rotation set $X = X_{\theta,\delta}$ with $\rho(X) = \theta$ and $\delta(X) = \delta$.

Thus, the space of all minimal rotation sets for m_d of a given rotation number θ is

• finite with $\binom{q+d-2}{q}$ elements if $\theta = p/q$.

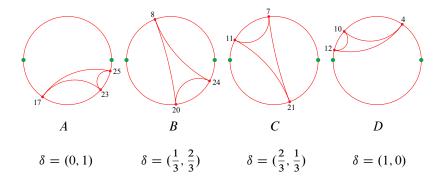
Theorem (Goldberg-Tresser)

Given an "admissible" pair $(\theta, \delta) \in (\mathbb{R}/\mathbb{Z}) \times \Delta^{d-2}$ there is a unique minimal rotation set $X = X_{\theta,\delta}$ with $\rho(X) = \theta$ and $\delta(X) = \delta$.

Thus, the space of all minimal rotation sets for m_d of a given rotation number θ is

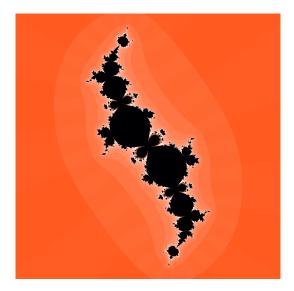
- finite with $\binom{q+d-2}{q}$ elements if $\theta = p/q$.
- isomorphic to the simplex Δ^{d-2} if θ is irrational.

Example: Under the tripling map m_3 , there are four 3-cycles with rotation number $\theta = 2/3$:

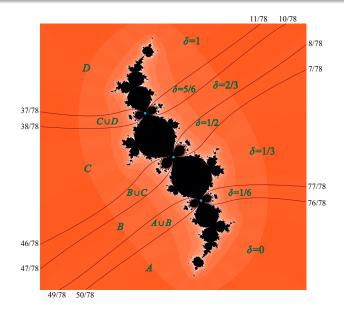


Connectedness locus of the cubic family

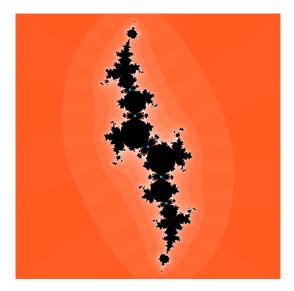
$$f_a(z) = e^{2\pi i \theta} z + a z^2 + z^3$$
 with $a \in \mathbb{C}$



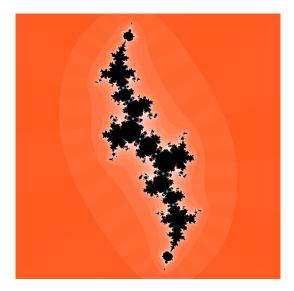
 $\theta = 2/3$



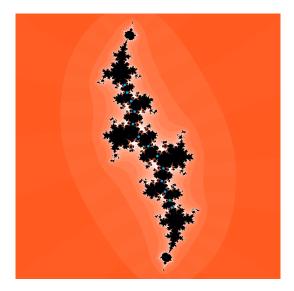
 $\theta = 2/3$



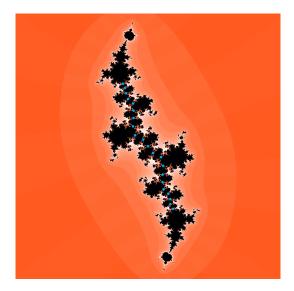
 $\theta = 3/5$



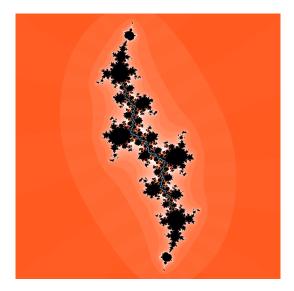
 $\theta = 5/8$



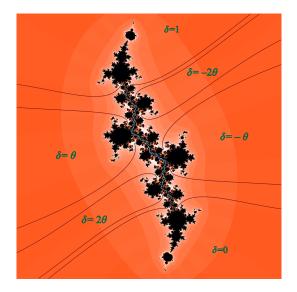
 $\theta = 8/13$



 $\theta = 13/21$



$$\theta = (\sqrt{5} - 1)/2$$



$$\theta = (\sqrt{5} - 1)/2$$

• Let

$$\sigma_i = \delta_1 + \dots + \delta_i \qquad 1 \le i \le d - 1$$

• Let

$$\sigma_i = \delta_1 + \dots + \delta_i \qquad 1 \le i \le d - 1$$

• Consider the *gap measure*

$$\nu = \sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_i - k\theta}$$

• Let

$$\sigma_i = \delta_1 + \dots + \delta_i \qquad 1 \le i \le d - 1$$

• Consider the *gap measure*

$$\nu = \sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_i - k\theta},$$

• Integrate:
$$\psi(t) = \int_0^t dv$$

• Let

$$\sigma_i = \delta_1 + \dots + \delta_i \qquad 1 \le i \le d-1$$

• Consider the *gap measure*

$$\nu = \sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_i - k\theta},$$

• Integrate:
$$\psi(t) = \int_0^t dv$$

• The semiconjugacy associated with *X* will be

$$\varphi(t) = \psi^{-1}(t+a)$$

for suitable a.

In general, the assignment $(\theta, \delta) \mapsto X_{\theta, \delta}$ is only lower semicontinuous.

In general, the assignment $(\theta, \delta) \mapsto X_{\theta, \delta}$ is only lower semicontinuous.

Theorem

The following conditions are equivalent:

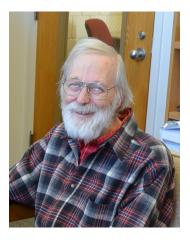
(i) $(\theta, \delta) \mapsto X_{\theta, \delta}$ is continuous at (θ_0, δ_0) .

- (ii) X_{θ_0,δ_0} is maximal.
- (iii) X_{θ_0,δ_0} is a Cantor set with d-1 major gaps of length 1/d.
- (iv) The points $\sigma_1, \ldots, \sigma_{d-1}$ have disjoint orbits under R_{θ} .

Let ω denote the *leading angle* of $X_{\theta,\delta}$.

Theorem $\omega = \frac{1}{d-1} \nu(0,\theta] + \frac{N_0}{d-1}$ $= \frac{1}{d-1} \sum_{i=1}^{d-1} \sum_{0 < \sigma_i - k\theta \le \theta} \frac{1}{d^{k+1}} + \frac{N_0}{d-1}$

where $N_0 \ge 0$ is the length of the initial segment of 0's in δ .



HAPPY BIRTHDAY JACK!