Thurston's characterization theorem for branched covers

Nikita Selinger

Cancun, 2016

A *Thurston map* is a pair (f, P_f) where $f: \mathbb{S}^2 \to \mathbb{S}^2$ is an orientation-preserving branched self-cover of \mathbb{S}^2 of degree $d_f \ge 2$ and P_f is a finite forward invariant set that contains all critical values of f.

A *Thurston map* is a pair (f, P_f) where $f: \mathbb{S}^2 \to \mathbb{S}^2$ is an orientation-preserving branched self-cover of \mathbb{S}^2 of degree $d_f \ge 2$ and P_f is a finite forward invariant set that contains all critical values of f.

In particular, the branched cover f must be postcritically finite.

Two Thurston maps *f* and *g* are combinatorially equivalent if and only if there exist two homeomorphisms $h_1, h_2: \mathbb{S}^2 \to \mathbb{S}^2$ such that the diagram

commutes, $h_1|_{P_f} = h_2|_{P_f}$, and h_1 and h_2 are homotopic relative to P_f .

Theorem (Thurston's Theorem)

A postcritically finite branched cover $f: \mathbb{S}^2 \to \mathbb{S}^2$ with hyperbolic orbifold is either Thurston-equivalent to a rational map g (which is then necessarily unique up to conjugation by a Möbius transformation), or f has a Thurston obstruction. a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f (i.e. it is not homotopic to a boundary component of our surface)

- a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f (i.e. it is not homotopic to a boundary component of our surface)
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves

- a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f (i.e. it is not homotopic to a boundary component of our surface)
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves
- f⁻¹(Γ) is the multicurve of all essential mutually non-homotopic preimages of curves in Γ

- a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f (i.e. it is not homotopic to a boundary component of our surface)
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves
- f⁻¹(Γ) is the multicurve of all essential mutually non-homotopic preimages of curves in Γ
- A multicurve Γ is *invariant* if $f^{-1}(\Gamma) \subseteq \Gamma$

- a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f (i.e. it is not homotopic to a boundary component of our surface)
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves
- f⁻¹(Γ) is the multicurve of all essential mutually non-homotopic preimages of curves in Γ
- A multicurve Γ is *invariant* if $f^{-1}(\Gamma) \subseteq \Gamma$
- A multicurve Γ is completely invariant if $f^{-1}(\Gamma) = \Gamma$

On a hyperbolic Riemann surface:

- Every essential simple closed curve is homotopic to a hyperbolic geodesic.
- Collar Theorem. There is an explicit function w(l) so that a geodesic of length l has a collar of width w(l) embedded in the surface and w(l) → ∞ as l → 0.
- Every annulus (cylinder) is biholomorphic to a unique annulus bounded by |z| = 1 and |z| = R. The conformal modulus of the annulus is defined as $\frac{1}{2\pi} logR$.
- Schwartz Theorem. Conformal moduli of annuli are superadditive.

Denote by C the set of all homotopy classes of essential simple closed curves. Define Thurston linear operator $M \colon \mathbb{R}^{C} \to \mathbb{R}^{C}$ by setting

$$M(\gamma) = \sum_{f(\gamma_i)=\gamma} \frac{1}{\deg f|_{\gamma_i}} \gamma_i.$$

Every multicurve Γ has its associated *Thurston matrix* M_{Γ} which is the restriction of M to \mathbb{R}^{Γ} .

Denote by C the set of all homotopy classes of essential simple closed curves. Define Thurston linear operator $M \colon \mathbb{R}^{C} \to \mathbb{R}^{C}$ by setting

$$M(\gamma) = \sum_{f(\gamma_i) = \gamma} \frac{1}{\deg f|_{\gamma_i}} \gamma_i.$$

Every multicurve Γ has its associated *Thurston matrix* M_{Γ} which is the restriction of M to \mathbb{R}^{Γ} .

Definition

Since all entries of M_{Γ} are non-negative real, the leading eigenvalue λ_{Γ} of M_{Γ} is also real and non-negative. A multicurve Γ is a *Thurston obstruction* if $\lambda_{\Gamma} \geq 1$.

An example of Thurston obstruction

For a rational map, we must have $\sum 1/d_i < 1$.

Teichmüller space

Let \mathcal{T}_f be the Teichmüller space modeled on the marked surface (\mathbb{S}^2 , P_f). Recall that \mathcal{T}_f can be defined as the quotient of the space of all diffeomorphisms from (\mathbb{S}^2 , P_f) to the Riemann sphere modulo a certain equivalence relation. We write $\tau = \langle h \rangle$ if a point τ is represented by a homeomorphism *h*.

Moduli space

The corresponding moduli (or configuration) space \mathcal{M}_f is easy to understand. It is the space of all injections *h* from P_f into \mathbb{P} up to Moebius transformations. If we fix values of all *h* on selected three points of P_f to be $0, 1, \infty$, then we see that M_f is canonically isomorphic to $\mathbb{C}^{p-3} \setminus \Delta$ where Δ is a union of hyperplanes given by $z_i = z_j$ or $z_i \in \{0, 1, \infty\}$.

Pullback map

Suppose we have a (unbranched) covering map $h: A \to B$ between finite type surfaces A and B. Then we can define $h^*: \mathcal{T}(B) \to \mathcal{T}(A)$ that acts by pulling back complex structures from B to A.

Pullback map

Suppose we have a (unbranched) covering map $h: A \to B$ between finite type surfaces A and B. Then we can define $h^*: \mathcal{T}(B) \to \mathcal{T}(A)$ that acts by pulling back complex structures from B to A.

Projection map

Suppose we have an inclusion map $i: A \to B$ between finite type surfaces A and B. This happens exactly when A can be obtained from B by removing finitely many points. Then we can define the forgetful projection $i_*: \mathcal{T}(A) \to \mathcal{T}(B)$ which "forgets" the positions of extra marked points.

Thurston's iteration

In our setting we have the unbranched cover $f: \mathbb{S}^2 \setminus f^{-1}(P_f) \to \mathbb{S}^2 \setminus P_f$ and the identity injection $\mathrm{id}: \mathbb{S}^2 \setminus f^{-1}(P_f) \to \mathbb{S}^2 \setminus P_f$ since $f^{-1}(P_f) \supset P_f$. Denote $\sigma_f = \mathrm{id}_* \circ f^*: \mathcal{T}_f \to \mathcal{T}_f$.

Thurston's iteration

In our setting we have the unbranched cover $f: \mathbb{S}^2 \setminus f^{-1}(P_f) \to \mathbb{S}^2 \setminus P_f$ and the identity injection $\operatorname{id}: \mathbb{S}^2 \setminus f^{-1}(P_f) \to \mathbb{S}^2 \setminus P_f$ since $f^{-1}(P_f) \supset P_f$. Denote $\sigma_f = \operatorname{id}_* \circ f^*: \mathcal{T}_f \to \mathcal{T}_f$.

Another definition of Thurston's iteration

$$(\mathbb{S}^{2}, P_{f}) \xrightarrow{h_{1}} (\mathbb{P}, h_{1}(P_{f}))$$

$$f \downarrow \qquad f_{\tau} \downarrow \qquad (1)$$

$$(\mathbb{S}^{2}, P_{f}) \xrightarrow{h_{\tau}} (\mathbb{P}, h_{\tau}(P_{f}))$$

Fixed Points of σ_f

Another definition of Thurston's iteration

Lemma

A Thurston map f is equivalent to a rational function if and only if σ_f has a fixed point.

The push-forward operator is locally defined by the formula

$$g_*q|_U=\sum_i g_i^*q,$$

where g_i are all inverse branches of g.

The push-forward operator is locally defined by the formula

$$g_*q|_U=\sum_i g_i^*q,$$

where g_i are all inverse branches of g.

Lemma

 σ_f is a holomorphic self-map of \mathcal{T}_f and the co-derivative of σ_f satisfies $(d\sigma_f(\tau))^* = (f_{\tau})_*$ where $(f_{\tau})_*$ is the push-forward operator on quadratic differentials.

Metric definitions

For a meromorphic integrable quadratic differential on $\ensuremath{\mathbb{P}}$ we define

its Teichmüller norm

$$\| q \|_{ au} = 2 \int_{\mathbb{P}} | q |$$

and

its Weil-Petersson norm

$$\|\boldsymbol{q}\|_{\boldsymbol{WP}} = \left(\int_{\mathbb{P}} \rho^{-2} |\boldsymbol{q}|^2\right)^{1/2}$$

Estimates on the norm of $d\sigma_f^*$

Lemma

 $\|(\boldsymbol{d}\sigma_f)^*\|_T \leq 1.$

Estimates on the norm of $d\sigma_f^*$

Lemma

 $\|(\boldsymbol{d}\sigma_f)^*\|_T \leq 1.$

Proof.

$$\int_U |g_*q| = \int_U |\sum_i g_i^*q| \leq \sum_i \int_U |g_i^*q| = \sum_i \int_{U_i} |q|$$

Estimates on the norm of $d\sigma_f^*$

Lemma

 $\|(\boldsymbol{d}\sigma_f)^*\|_T\leq 1.$

Proof.

$$\int_U |g_* q| = \int_U |\sum_i g_i^* q| \leq \sum_i \int_U |g_i^* q| = \sum_i \int_{U_i} |q|$$

Corollary (almost)

There exists at most one fixed point of σ_f , hence the uniqueness in Thurston's theorem follows.

$$\|(\boldsymbol{d}\sigma_f)^*\|_{WP} \leq \sqrt{\boldsymbol{d}}.$$

$$\|(\boldsymbol{d}\sigma_f)^*\|_{WP} \leq \sqrt{\boldsymbol{d}}.$$

Proof.

$$\begin{split} \int_{U} \frac{|g_*q|^2}{\rho^2} &= \int_{U} \frac{|\sum_i g_i^*q|^2}{\rho^2} \leq d \sum_i \int_{U} \frac{|g_i^*q|^2}{\rho^2} = \\ &= d \sum_i \int_{U_i} \frac{|q|^2}{g^*\rho^2} \leq d \int_{g^{-1}(U)} \frac{|q|^2}{\rho_1^2}, \end{split}$$

$$\|(\boldsymbol{d}\sigma_f)^*\|_{WP} \leq \sqrt{\boldsymbol{d}}.$$

Proof.

$$egin{aligned} &\int_{U}rac{|g_{*}q|^{2}}{
ho^{2}} = \int_{U}rac{|\sum_{i}g_{i}^{*}q|^{2}}{
ho^{2}} \leq d\sum_{i}\int_{U}rac{|g_{i}^{*}q|^{2}}{
ho^{2}} = \ &= d\sum_{i}\int_{U_{i}}rac{|q|^{2}}{g^{*}
ho^{2}} \leq d\int_{g^{-1}(U)}rac{|q|^{2}}{
ho_{1}^{2}}, \end{aligned}$$

Corollary

 σ_f is Lipschitz with respect to the WP-metric.

- The Thurston boundary the set (*PML*) of measured laminations on *S*
- The augmented Teichmüller space \overline{T}_f the set of all noded stable Riemann surfaces of the same type

- The Thurston boundary the set (*PML*) of measured laminations on *S*
- The augmented Teichmüller space $\overline{\mathcal{T}}_f$ the set of all noded stable Riemann surfaces of the same type

The augmented Teichmüller space \overline{T}_f is homeomorphic to the WP-completion of the Teichmüller space.

- The Thurston boundary the set (*PML*) of measured laminations on *S*
- The augmented Teichmüller space $\overline{\mathcal{T}}_f$ the set of all noded stable Riemann surfaces of the same type

The augmented Teichmüller space \overline{T}_f is homeomorphic to the WP-completion of the Teichmüller space.

Corollary

 σ_f extends continuously to $\overline{\mathcal{T}}_f$.

There exist postcritically finite branched covers f such that Thurston's pullback map does not extend to the Thurston boundary of the Teichmüller space.

There exist postcritically finite branched covers f such that Thurston's pullback map does not extend to the Thurston boundary of the Teichmüller space.

Recall that $\sigma_f = id_* \circ f^*$ is a composition of

- *h*^{*}: *T*(S², *P_f*) → *T*(S², *f*⁻¹(*P_f*)) that acts by pulling back complex structures
- id_{*}: T(S², f⁻¹(P_f)) → T(S², P_f) which "forgets" the positions of extra punctures

There exist postcritically finite branched covers f such that Thurston's pullback map does not extend to the Thurston boundary of the Teichmüller space.

Recall that $\sigma_f = id_* \circ f^*$ is a composition of

- *h*^{*}: *T*(S², *P_f*) → *T*(S², *f*⁻¹(*P_f*)) that acts by pulling back complex structures this map extends to any reasonable boundary notion
- id_{*}: T(S², f⁻¹(P_f)) → T(S², P_f) which "forgets" the positions of extra punctures goes in the "wrong direction", we can not push forward measured laminations

The augmented Teichmüller space T
_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S_∅.

- The augmented Teichmüller space T
 _f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S₀.
- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological nodal surface with marked points.

- The augmented Teichmüller space T
 _f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S₀.
- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological nodal surface with marked points.
- S_Γ is the product of Teichmüller spaces of these components.

- The augmented Teichmüller space T
 _f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S₀.
- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological nodal surface with marked points.
- S_Γ is the product of Teichmüller spaces of these components.
- Within each stratum one can define its own natural Teichmüller and Weil-Petersson metrics.

- The augmented Teichmüller space T
 _f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S₀.
- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological nodal surface with marked points.
- S_Γ is the product of Teichmüller spaces of these components.
- Within each stratum one can define its own natural Teichmüller and Weil-Petersson metrics.
- The quotient AM_f of \overline{T}_f by the action of the mapping class group is compact.

We represent points in \overline{T}_f not only by homeomorphisms but also by continuous maps from (\mathbb{S}^2, P_f) to a nodal Riemann surface that are allowed to send a whole simple closed curve to a node. Consider such an *h* representing some point in \overline{T}_f . We represent points in \overline{T}_f not only by homeomorphisms but also by continuous maps from (\mathbb{S}^2, P_f) to a nodal Riemann surface that are allowed to send a whole simple closed curve to a node. Consider such an *h* representing some point in \overline{T}_f .

We complete this diagram as before

Action of σ_f on $\overline{\mathcal{T}}_f$

Theorem

The map σ_f as defined above is continuous on $\overline{\mathcal{T}}_f$.

Remark.

Note that by definition σ_f maps any stratum S_{Γ} into the stratum $S_{f^{-1}(\Gamma)}$, therefore invariant boundary strata are in one-to-one correspondence with completely invariant multicurves.

If $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_m\}$ is a completely invariant positive multicurve and $\lambda_{\Gamma} \geq 1$, then S_{Γ} is weakly attracting.

If $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_m\}$ is a completely invariant positive multicurve and $\lambda_{\Gamma} \geq 1$, then S_{Γ} is weakly attracting.

Lemma

If $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_m\}$ is a completely invariant multicurve and $\lambda_{\Gamma} < 1$, then S_{Γ} is weakly repelling.

Pick any starting point $\tau \in \mathcal{T}_f$ and consider $\tau_n = \sigma_f^n(\tau)$. Take an accumulation point in $\overline{\mathcal{M}}_f$ of the projection of τ_n to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that τ_n accumulates on some $\tau_0 \in S_{\Gamma}$. Pick any starting point $\tau \in \mathcal{T}_f$ and consider $\tau_n = \sigma_f^n(\tau)$. Take an accumulation point in $\overline{\mathcal{M}}_f$ of the projection of τ_n to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that τ_n accumulates on some $\tau_0 \in \mathcal{S}_{\Gamma}$.

• If $\Gamma = \emptyset$ then τ_0 is a fixed point of σ_f .

Pick any starting point $\tau \in \mathcal{T}_f$ and consider $\tau_n = \sigma_f^n(\tau)$. Take an accumulation point in $\overline{\mathcal{M}}_f$ of the projection of τ_n to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that τ_n accumulates on some $\tau_0 \in \mathcal{S}_{\Gamma}$.

- If $\Gamma = \emptyset$ then τ_0 is a fixed point of σ_f .
- If Γ ≠ Ø then Γ must be a Thurston obstruction. Otherwise,
 S_Γ is weakly repelling and therefore τ_n can not have an accumulation point there.

There exists an intermediate cover \mathcal{M}'_f of \mathcal{M}_f (so that $\mathcal{T}_f \xrightarrow{\pi_1} \mathcal{M}'_f \xrightarrow{\pi_2} \mathcal{M}_f$ are covers and $\pi_2 \circ \pi_1 = \pi$) such that i. π_2 is finite,

commutes for some map $\tilde{\sigma}_f \colon \mathcal{M}'_f \to \mathcal{M}_f$, iii. If $\pi_1(\tau_1) = \pi_1(\tau_2)$ then $f_{\tau_1} = f_{\tau_2}$ up to pre- and post-composition by Moebius transformations.

Pilgrim's theorems

Definition

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $I(\gamma, \sigma_f^n(\tau)) \rightarrow 0$ for all $\tau \in \mathcal{T}_f$

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $I(\gamma, \sigma_f^n(\tau)) \rightarrow 0$ for all $\tau \in \mathcal{T}_f$

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $I(\gamma, \sigma_f^n(\tau)) \rightarrow 0$ for all $\tau \in \mathcal{T}_f$

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma_f^n(\tau)) \ge L$ holds for all n.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma_f^n(\tau)) \ge L$ holds for all n.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction. — the accumulation set of τ_n is a subset of S_{Γ_f}

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma_f^n(\tau)) \ge L$ holds for all n.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction. — the accumulation set of τ_n is a subset of S_{Γ_f}

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma_f^n(\tau)) \ge L$ holds for all n. — projection of the accumulation set of τ_n to the compactified moduli space is precompact in $S_{[\Gamma_f]}$

The action on any invariant stratum on the boundary is given by pullbacks of complex structures by a collection of maps σ_{f^C} for all components *C* of any surface in the stratum. Combinatorics of the process is very simple: we have a map from a finite set into itself, every component is pre-periodic. The whole action, therefore, can be characterized by studying cycles of components. For each cycle *Y* there are three cases, the composition f^Y of all coverings in the cycle is either of the following:

- a homeomorphism,
- a Thurston map with a parabolic orbifold,
- a Thurston map with a hyperbolic orbifold.

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $I(\gamma, \sigma_f^n(\tau)) \rightarrow 0$ for all $\tau \in \mathcal{T}_f$

Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} has hyperbolic orbifold then f^{Y} is not obstructed and, hence, equivalent to a rational map.