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Streching rays are the analogous in degree 3

of the external rays of the Mandelbrot set.

P. Roesch (I2M, UPS) Streching rays june 2016 2 / 56



Streching rays are the analogous in degree 3

of the external rays of the Mandelbrot set.

P. Roesch (I2M, UPS) Streching rays june 2016 2 / 56



Remember that they allow to switch between parameter plane and
dynamical plane.
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Remember that they allow to switch between parameter plane and
dynamical plane.

←→

Streching rays were defined by Branner and Hubbard in the paper
describing

P3 the space of cubic polynomials.

P. Roesch (I2M, UPS) Streching rays june 2016 5 / 56



Remember that they allow to switch between parameter plane and
dynamical plane.

←→

Streching rays were defined by Branner and Hubbard in the paper
describing

P3 the space of cubic polynomials.

P. Roesch (I2M, UPS) Streching rays june 2016 5 / 56



Remember that they allow to switch between parameter plane and
dynamical plane.

←→

Streching rays were defined by Branner and Hubbard in the paper
describing

P3 the space of cubic polynomials.

P. Roesch (I2M, UPS) Streching rays june 2016 5 / 56



Remember that they allow to switch between parameter plane and
dynamical plane.

←→

Streching rays were defined by Branner and Hubbard in the paper
describing

P3 the space of cubic polynomials.

P. Roesch (I2M, UPS) Streching rays june 2016 5 / 56



Through each P ∈ P3 there is a stretching ray.

Roughly speaking it is a curve of polynomials

s ∈]0,+∞[ 7→ Ps ∈ P3

Ps is obtained by changing the complex structure near infinity

in the basin of P

stretching along the external rays of P.
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For P ∈ C, there is no deformation : S(P) = P

Otherwise, one critical point

c1(Ps) ∈ RPs (θ1)

or two

c2(Ps) ∈ RPs (θ2)

get closer and closer to the Julia set.

The stretching ray accumulates the connectedness locus

C = {R ∈ P3 | J(R) is connected}.
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Questions :

Do the stretching rays always land?

No : Buff-Henriksen, Komori-Nakane

Where do they accumulate?

Do we know some landing property?

Do we know accessible points from stretching rays ?

Is there a place where no stretching ray accumulate?
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Recall the degree 2 case :

θ is periodic by multiplication by 2 =⇒ RM(θ)lands :

Proof:

Let c0 ∈ Acc(RM(θ)),

Rc0(θ) lands at a periodic point, either repelling or parabolic.

if repelling, by stability Rc(θ) lands

Recall c ∈ RM(θ) means that Rc(θ/2) and Rc(θ/2 + 1/2) break on the
critical point.

Finite number of parabolic point of a given period.
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Same story happen in degree 3

if a critical point is on a ray of periodic angle.

Let us focus on θ = 0 :

P ∈ P3 with c1 ∈ R(0)

Q ∈ Acc(S(P))

Then Q has a fixed parabolic point of mulitplier 1.

The second critical point allows some flexibility when P is in the shift locus

S3 := {P ∈ P3 | both critical points escape to ∞}
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The cubic parabolic slice Per1(1)

It consists in cubic polynomials with a parabolic fixed point of multiplier 1.

Per1(1) = {Pa(z) = z3 + az2 + z | a ∈ C}
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Note that Pa and Pa′ are analytically conjugate iff a′ = −a.
We can follow outside [−

√
3,
√

3] the critical points c+(a) and c−(a).

Crit(k, n) = {a ∈ Per1(1) | Qk
a (c−(a)) = Qn

a (c+(a))}

Theorem (Nakane, R)

For any Q ∈ Crit(k , n) ∩ C there exists P ∈ S3 such that S(P) lands at Q.
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Theorem (Nakane, R)

Let P ∈ S3 having critical portrait {0, 1/3}, {θ + 1/3, θ + 2/3} with
3mθ = 0 mod 1.

If the stretching ray S(P) lands

either there is a critical orbit relation between c1 and c2

or it lands at Q0(z) = z + z3.
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Beltrami forms

A Beltrami form µ is a (−1, 1)-differential.

It is expressed as µ(z)dz/dz = µ(z)dz−1dz .

The Beltrami coefficient µ(z) defines a.e. an infinitesimal ellipse at TzU
with dilatation equal to

1 + |µ(z)|
1− |µ(z)|

.

A Beltrami form is P invariant if (P∗µ) = µ where

(P∗µ)(z) = µ(P(z))
P ′(z)

P ′(z)
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Quasi-conformal deformations of P

Let µ be a P-invariant Beltrami form with ‖µ‖∞ ≤ 1.

Then for t in the disk |t| < 1 the Beltrami form

µt = tµ is also P-invariant.

By the Measurable Riemann Mapping theorem with normalization

for |t| < 1 we get a map χt satisfying

µt(z) =
∂χt

∂χt
(z),

and an analytic family of polynomials :

Pt = χt ◦ P ◦ χ−1t
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Streching rays

Let ϕP the Böttcher coordinates at ∞ with ϕP(z)
z → 1.

The pull back by ◦ϕp of the standard structure on U :

µp = (log ◦ϕP)∗
dz

dz

is a P forward invariant Beltrami form.

The extension is still P invariant

µP =

{
(log ◦ϕP ◦ Pn)∗ dzdz on B∞ the basin of ∞
0 outside B(∞)

χt defines a holomorphic motion ( Branner-Hubbard motion) .

The stretching ray is S(P) = {Pt | t ∈ [−1, 1]}.
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Let ϕP the Böttcher coordinates at ∞ with ϕP(z)
z → 1.

The pull back by ◦ϕp of the standard structure on U :

µp = (log ◦ϕP)∗
dz

dz

is a P forward invariant Beltrami form.

The extension is still P invariant

µP =

{
(log ◦ϕP ◦ Pn)∗ dzdz on B∞ the basin of ∞
0 outside B(∞)

χt defines a holomorphic motion ( Branner-Hubbard motion) .

The stretching ray is S(P) = {Pt | t ∈ [−1, 1]}.

P. Roesch (I2M, UPS) Streching rays june 2016 30 / 56



Streching rays
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S-ray

Geometrically, tµP corresponds to an ellipse field on B(∞) with constant
ellipticity.

The major axis is
tangent to external rays for t ∈ (−1, 0)
orthogonal to external rays for t ∈ (0, 1)

When t → −1, the ratio of major to minor axis tends to ∞.
χt “pushes” the points closer to the filled Julia set along the rays.
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A is the set of polynomial Q in Per1(1) such that both critical points
belong to the same Fatou component (immediate basin of 0).

P. Roesch (I2M, UPS) Streching rays june 2016 32 / 56



Accumulation to A

Let P 6= Q be such that Q ∈ Acc(S(P)) ∩ A then,

Theorem (Willumsen)

All periodic points of P are repelling and Q is not parabolic attracting

The Julia set K (P) is a Cantor set

The 0 (or 1/2)-external ray of P branches at a critical point

For the other critical point of P either
I it escapes and falls eventually into the 0-external ray
I it is the landing or branching point of a θ-external ray with

0 /∈ {3kθ, k ∈ N} but 0 ∈ {3kθ, k ∈ N}
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The locus of parabolic attracting maps in A is the lemniscate{
a |
∣∣∣∣a2 − 1

2

∣∣∣∣ < 1

2

}

No S-ray accumulates at this lemniscate.
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The parabolic point 0 is parabolic attracting if

Re(i(Q, 0)) > 1 where i(Q, 0) =
1

2iπ

∮
dz

z − Q(z)

Here Qa(z) = z + az2 + z3 we get i(Q, 0) = 1
a2

Re(
1

a2
) > 1 ⇐⇒ |a2 − 1

2
| < 1

2

Assume |a2 − 1
2 | <

1
2

Any polynomial P sufficiently close to Qa has an attracting fixed point.
(Epstein-Yampolsky)

Then any polynomial in S(P) has an attracting fixed point and so does Qa.

The fixed point −a is attracting iff its multiplier a2 + 1 is in D.
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Sketch of proof for the first Theorem

Let P(z) = λz + az2 + z3 with critical points c−(a, λ), c+(a, λ).

c±(a, λ) =
−a±

√
a2 − 3λ

3

Let Crit(k , 0) = {P | Pk(c−(a, λ) = c+(a, λ)} to simplify n = 0.

For any P ∈ Crit(k, 0) with critical point on the 0-external ray, every
polynomial in S(P) is in Crit(k , 0) with critical point on the
0-external ray.

Crit(k , 0) ∩ Per1(1) is finite.

Then S(P) lands in Crit(k , 0) ∩ Per1(1).
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Conversely let Q ∈ Crit(k , 0) ∩ Per1(1)

In a neighborhood of Q, there is a local parametrization by s ∈ D :
Ps(z) = λ(s)z + a(s)z2 + z3 in Crit(k, 0)

λ(s), a(s) are holomorphic and non constant so λ(D) is an open
neighborhood of 1.

(Douady-Lavaurs-Shishikura) There exist perturb Fatou coordinates
defined for s in ∆r some open set with 0 ∈ ∂∆r

Let x(s) = c+(s) and y(s) such that ϕs(y(s)) = t for some fixed
t > 1 where ϕs is the Böttcher map

(Tan Lei : parabolic orbit correspondence)
For n large the equations

Pn(x(s)) = y(s) and Φ−,s(x(s)) + n − 1

σ
(s) = Φ+,s(y(s))

have a common solution sn in ∆r .

Then x(s) is on the 0-ray because P is univalent in the ”petal until”
x(s).
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We get in any neigborhood of Q a polynomial P ∈ Crit(k , 0) such that c+
is on the 0-ray.

Let Pi be such a sequence.

The stretching rays S(Pi ) are finitely many :
the non critical preimage of Pi (c−) has to be on some ray of angle θ where
θ satisfies 3kθ = 0. This determines finitely many choices.

A subsequence Pnj belongs to the same stretching ray. Hence this S-ray
accumulates to Q.
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Sketch of proof of the second Theorem

Theorem (Nakane, R)

Let P ∈ S3 having critical portrait {0, 1/3}, {θ + 1/3, θ + 2/3} with
3mθ = 0 mod 1.

If the stretching ray S(P) lands

either there is a critical orbit relation between c1 and c2

or it lands at Q0(z) = z + z3.

Assume S(P) lands at Q ∈ Per1(1) and Q 6= Q0.

1 the Böttcher vector

η(P) =
log(gP(c2))− log(gP(c1))

log 3
, gP is the Green map

is constant along S(P).

2 both critical points of Q are in the basin of 0.

P. Roesch (I2M, UPS) Streching rays june 2016 40 / 56



Sketch of proof of the second Theorem

Theorem (Nakane, R)

Let P ∈ S3 having critical portrait {0, 1/3}, {θ + 1/3, θ + 2/3} with
3mθ = 0 mod 1.

If the stretching ray S(P) lands

either there is a critical orbit relation between c1 and c2

or it lands at Q0(z) = z + z3.

Assume S(P) lands at Q ∈ Per1(1) and Q 6= Q0.
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1 the Böttcher vector

η(P) =
log(gP(c2))− log(gP(c1))

log 3
, is constant along S(P).

2 There exists Fatou perturb coordinates in a neighborhood of Q
containing the end of S(P)

3 both critical points of Q are in the basin of 0.

4 Σ = Acc{σ(Ps) = φs,+(c1)− φs,−(c1) mod 1} is a curve turning at
least once in the Ecalle cylinder

5 It is mapped to R/Z by h =
log logϕQ◦φ−1

Q,+

log 3

6 there is a magic formula h−1(z + η) = h−1(z) + τ mod 1 where
τ = φQ,−(c2)− φQ,−(c1) is the Fatou vector

7 Then the Julia set is invariant by translation by [τ ].

8 This is possible only if τ is an integer, then there is a critical orbit
relation.
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There exist Fatou perturb coordinates

(φPs ,± : UPs ,± → C) −→ (φQ,± : UQ,± → C)

Residue Formula :

1

1− λs
+

1

1− λ′s
=

1

2πi

∫
|z|=ε

dz

z − Ps(z)

So 1− λs ∼ −(1− λ′s) |Im(λs − 1)| ≥ |Re(λs − 1)| and
|Im(λs − 1)| ≥ |Re(λs − 1)|

otherwise one fixed point is attracting.
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Fatourep
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φ+
φ−
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φ+
φ−

φ−(c1) = 0
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φs
φs
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φs
φs

φs(c1) = 0, φs → φ−
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φs
φs

φs(c1) = 0, φs → φ−

φ+,s = φs + ts → φ+
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Tσ̃

ϕQ log
log
log 3

[φ+][φ−]
[id ]

[ζ]

ψ
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Tσ̃

ϕPs log
log
log 3

[φ+,s ][φ−,s ]
[id ]

[ζ]

ψ
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both critical points are in the basin of 0
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η = η(Ps) =
log(gPs (c2(PS)))− log(gPs (c1(Ps)))

log 3
= ζ(c2)− ζ(c1)

⇐⇒ ϕPs (Ps
j(c2)) ∈ RPs (0) on [ϕPs (Ps

j+[η](c1)), ϕPs (Ps
j+[η]+1)(c1)]

They all belong to UPs ,− → UQ,−.
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σ̃(Ps) = φs,+(c1)− φs,−(c1) = φs,+(c1) = φs,+(Pk
s (c1))− k

For ks large Pks
s (c1) ∈ RPs (0) ∩ UPs ,+ −→ RQ(0) ∩ UQ,+

So Im(σ̃(Ps)) is bounded.
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σ̃(Ps) = φs,+(Pk
s (c1))− k is continuous so

Σ = Acc{σ̃(Ps)) mod 1} is connected

Re(σ̃(Ps))→ −∞ (ks → +∞) so Σ is a curve turning around C/Z.

For any σ ∈ Σ, ∃sn such that σ(Psn)→ σ.

For any σ̃ such that [σ̃] = σ, ∃kn such that σ̃(Psn) + kn → σ̃ then
Pkn
sn → gσ̃ = φ−1Q,+ ◦ Tσ̃ ◦ φQ,−.

gσ̃(c1) ∈ RQ(0) and {ζ(gσ̃(c1)) | σ̃a lift of σ ∈ Σ} covers R/Z.
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•c1 •c2 •gσ̃(c1) •gσ̃(c2)

•φ−(c1) •φ−(c2) •g+
σ̃(c1) •g+

σ̃(c2) •ζ(gσ̃(c1)) •ζ(gσ̃(c2))

Tσ̃

[ζ]

ψ

gσ̃

[φ+][φ−]

τ τ η
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So ψ([ζ](gσ̃(c1)) + [η]) = ψ([ζ](gσ̃(c1))) + τ mod 1 for any σ ∈ Σ

so for any x ∈ R/Z the magic formula holds

ψ(x + [η]) = ψ(x) + τ mod 1

By analytic extension this is true on the annulus and extends continuously
to the boundary so for any z in the annulus

ψ(z + [η]) = ψ(z) + τ mod 1.
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Then ψ is a conjugacy between two rotations, the rotation numbers
coincide :

[η] = [τ ]

So [τ ] is real.

If τ ∈ R \Q then z + n[τ ] is dense in the circle

hence the annulus is round and the boundary φQ,+(JQ) is a real analytic
curve

Thus the Julia set also contradiction since cusps are dense!
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If [τ ] 6= 0 is rational suppose of the form 1/q.

Then φQ,+(J) is invariant by T1/q.

Let z0 be the landing point of a ray of the form p/3m a pre-image of the
parabolic point.

Then z1 = φ−1Q,+ ◦ T1/q ◦ φQ,+(z0) should be a cusp.

But its external angle is 31/q−m which is irrational.

Contradiction. Since the cusps are exactly the pre-images of the parabolic
point. (McMullen)
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Happy Birthday Jack
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