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Streching rays are thé‘\@nalogous in degree 3

of the external rays of tﬁ‘e; Mandelbrot set.
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Remember that they allow to switch between parameter plane and
dynamical plane.
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Remember that they allow to switch between parameter plane and
dynamical plane.

Streching rays were defined by Branner and Hubbard in the paper
describing

P3 the space of cubic polynomials.
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Through each P € P3 there is a stretching ray.
Roughly speaking it is a curve of polynomials

s €]0,+o0[ +— Ps€Ps3
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Through each P € P3 there is a stretching ray.
Roughly speaking it is a curve of polynomials

s €]0,+o0[ +— Ps€Ps3

Ps is obtained by changing the complex structure near infinity
in the basin of P

stretching along the external rays of P.
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For P € C, there is no deformation : S(P) = P
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For P € C, there is no deformation : S(P) = P
Otherwise, one critical point
c1(Ps) € Rp,(61)
or two
c2(Ps) € Rp,(62)

get closer and closer to the Julia set.
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For P € C, there is no deformation : S(P) = P
Otherwise, one critical point
c1(Ps) € Rp,(61)
or two
c2(Ps) € Rp,(62)
get closer and closer to the Julia set.

The stretching ray accumulates the connectedness locus

C ={R € P3| J(R) is connected}.
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Questions :
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Questions :

® Do the stretching rays always land?
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® Do we know some landing property?
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Questions :

® Do the stretching rays always land?
No : Buff-Henriksen, Komori-Nakane
® Where do they accumulate?
® Do we know some landing property?
® Do we know accessible points from stretching rays 7

® |s there a place where no stretching ray accumulate?
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Recall the degree 2 case :

0 is periodic by multiplication by 2 = Ry,(6)/ands :
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Proof:

P. Roesch (I2M, UPS) S ing rays june 2016 9/ 56



Recall the degree 2 case :

0 is periodic by multiplication by 2 = Ry,(6)/ands :

Proof:
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Recall the degree 2 case :

0 is periodic by multiplication by 2 = Ry,(6)/ands :

Proof:
Let co € Acc(Rm(0)),

R, (0) lands at a periodic point, either repelling or parabolic.
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Recall the degree 2 case :

0 is periodic by multiplication by 2 = Ry,(6)/ands :

Proof:
Let co € Acc(Rm(0)),
R, (0) lands at a periodic point, either repelling or parabolic.

if repelling, by stability R.(#) lands
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Recall the degree 2 case :

0 is periodic by multiplication by 2 = Ry,(6)/ands :

Proof:
Let co € Acc(Rm(0)),
R, (0) lands at a periodic point, either repelling or parabolic.
if repelling, by stability R.(#) lands

Recall ¢ € Ry(6) means that R.(6/2) and R.(6/2 + 1/2) break on the
critical point.

Finite number of parabolic point of a given period.
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Same story happen in degree 3

if a critical point is on a ray of periodic angle.
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Same story happen in degree 3
if a critical point is on a ray of periodic angle.
Let us focus on 8 =0 :
P € P3 with ¢; € R(0)

Q € Acc(S(P))
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Same story happen in degree 3
if a critical point is on a ray of periodic angle.
Let us focus on § =0 :
P € P3 with ¢; € R(0)
Q € Acc(S(P))

Then Q has a fixed parabolic point of mulitplier 1.
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Same story happen in degree 3
if a critical point is on a ray of periodic angle.
Let us focus on 8 =0 :
P € P3 with ¢; € R(0)
Q € Acc(S(P))

Then Q has a fixed parabolic point of mulitplier 1.

The second critical point allows some flexibility when P is in the shift locus

S3 :={P € P3| both critical points escape to co}

P. Roesch (I2M, UPS) Streching rays june 2016 10 / 56



june 2016 11 / 56




Streching rays




The cubic parabolic slice Per;(1)

It consists in cubic polynomials with & parabolic fixed point of multiplier 1.
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The cubic parabolic slice Per;(1)

It consists in cubic polynomials with £ parabolic fixed point of multiplier 1.

Per(1) = {P.(z) = 22+ az® + z| a € C}
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Note that P, and P, are analytically conjugate iff 8/ = —a.
We can follow outside [—+/3, /3] the critical points c; (a) and c_(a).

Crit(k,n) = {a € Pers(1) | Q;(c—(a)) = Q7 (c+(a)}

For any Q € Crit(k,n) NC there exists P € S3 such that S(P) lands at Q.
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Theorem (Nakane, R)
Let P € S3 having critical portrait {0,1/3},{0 +1/3,0 +2/3} with

30 =0 mod 1.
If the stretching ray S(P) lands

® either there is a critical orbit relation between c; and ¢

® or it lands at Qo(z) = z + 2.
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Beltrami forms

A Beltrami form p is a (—1, 1)-differential.

It is expressed as u(z)dz/dz = u(z)dz 1dz.
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Beltrama forms

A Beltrami form p is a (—1, 1)-differential.
It is expressed as u(z)dz/dz = u(z)dz 1dz.

The Beltrami coefficient 14(z) defines a.e. an infinitesimal ellipse at T,U

with dilatation equal to
1+ |pu(2)]

1—|u(z)
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Beltrami forms

A Beltrami form p is a (—1, 1)-differential.
It is expressed as u(z)dz/dz = u(z)dz 1dz.

The Beltrami coefficient 14(z) defines a.e. an infinitesimal ellipse at T,U

with dilatation equal to
1+ |pu(2)]

1—|u(2)|
A Beltrami form is P invariant if (P*u) = u where

P'(2)
Pl

(P*p)(2) = u(P(2))

june 2016 28 / 56
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Quasi-conformal deformations of P

Let 1 be a P-invariant Beltrami form with ||u]/c < 1.
Then for t in the disk |t| < 1 the Beltrami form

Wt = tu is also P-invariant.
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Quasi-conformal deformations of P

Let 1 be a P-invariant Beltrami form with ||u]/c < 1.

Then for t in the disk |t| < 1 the Beltrami form

Wt = tu is also P-invariant.

By the Measurable Riemann Mapping theorem with normalization

for |t| < 1 we get a map x; satisfying

pie(2) = g% (2),
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Quasi-conformal deformations of P

Let 1 be a P-invariant Beltrami form with ||u]/c < 1.

Then for t in the disk |t| < 1 the Beltrami form

e = tp is also P-invariant.

By the Measurable Riemann Mapping theorem with normalization

for |t| < 1 we get a map x; satisfying
5Xt
me\z) = 7— \Z),
(@)= 5 ()
and an analytic family of polynomials :

Pt:XtOPOXt_l
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Streching rays

Let wp the Bottcher coordinates at co with “’PT(Z) — 1.
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Streching rays
Let wp the Bottcher coordinates at co with ”PT(Z) — 1.

The pull back by oy, of the standard structure on U :

oE
pp = (logowp)™

is a P forward invariant Beltrami form.
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Streching rays
Let wp the Bottcher coordinates at co with WPT(Z) — 1.
The pull back by oy, of the standard structure on U :
dz
tp = (log O‘PP)*E

is a P forward invariant Beltrami form.

The extension is still P invariant

[ (logopp o P™)* gﬁ on By the basin of co
FP=1 0 outside B(o0)

june 2016
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Streching rays

Let wp the Bottcher coordinates at co with WPT(Z) — 1.

The pull back by oy, of the standard structure on U :

(lo )" dz
= (e} _—
Up goyp dz
is a P forward invariant Beltrami form.
The extension is still P invariant
[ (logopp o P™)* § on By the basin of co
FP=1 0 outside B(o0)

Xt defines a holomorphic motion ( Branner-Hubbard motion) .

The stretching ray is S(P) = {P: | t € [-1,1]}.

2016
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tup correspgnds to an &llipse field on B(oo) with
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tup correspgnds to an &llipse field on B(oo) with

, The major axis is
" tangent to external rays for t € (—1,0
orthogonal to external rays for t € (0,
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tup correspgnds to an &llipse field on B(oo) with

, The major axis is
~tangent to external rays for t € (—1,0
orthogonal to external rays for t € (0,
en t — —1, thefratio of major to minor axis tends to oo
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tup correspgnds to an &llipse field on B(o0) with g

, The major axis is
~tangent to external rays for t € (—1,0
orthogonal to external rays for t € (0,
en t — —1, thefratio of major to minor axis tends to oo

Xt pushes’ the points closer to ulia set along the rays.
Streching rays june 2016




A is the set of polynomial Q in Peri(1) such that both critical points
belong to the same Fatou component (immediate basin of 0).

Streching rays june 2016 82 / 56



Accumulation to A

Let P # Q be such that Q € Acc(S(P)) N A then,

Theorem (Willumsen)

®» All periodic points of P are repelling and @ is not parabolic attracting
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Accumulation to A

Let P # Q be such that Q € Acc(S(P)) N A then,

Theorem (Willumsen)

®

All periodic points of P are repelling and Q is not parabolic attracting
The Julia set K(P) is a Cantor set

The 0 (or 1/2)-external ray of P branches at a critical point
For the other critical point of P either

@

@®
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®
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Accumulation to A

Let P # Q be such that Q € Acc(S(P)) N A then,

Theorem (Willumsen)

®

All periodic points of P are repelling and Q is not parabolic attracting
The Julia set K(P) is a Cantor set

The 0 (or 1/2)-external ray of P branches at a critical point
For the other critical point of P either

@

@®

it escapes and falls eventually into the 0-external ray
it is the landing or branching point of a 0-external ray with

0¢ {30, ke N} but 0¢c {340,k c N}
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The locus of parabolic attracting maps in A is the lemniscate
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The parabolic point 0 is parabolic attracting if

Re(i(Q,0)) > 1 where i(Q,0) = 1 %Z_dz

2ir

Q(2)
Here Q,(z) = z + az® + z* we get i(Q,0) = %

1 , 1,1
Re(?)>1 < |a —§]<§
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The parabolic point 0 is parabolic attracting if

Re(i(Q,0)) > 1 where i(Q,0) = 2; f z—dg(z)

Here Q,(z) = z + az? + 23 we get i(Q,0) = %

1
)>1 = |a° —f]<f

Re(— :

32

Assume |2 — 1| < 1

Any polynomial P sufficiently close to @, has an attracting fixed point.
(Epstein-Yampolsky)

Then any polynomial in S(P) has an attracting fixed point and so does Q..
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The parabolic point 0 is parabolic attracting if

Re(i(Q,0)) > 1 where i(Q,0) = 2:/l7r f z—dg(z)

Here Q,(z) = z + az? + 23 we get i(Q,0) = %

1
)>1 = |a° —f]<f

Re(— :

32

Assume |2 — 1| < 1

Any polynomial P sufficiently close to @, has an attracting fixed point.
(Epstein-Yampolsky)

Then any polynomial in S(P) has an attracting fixed point and so does Q..

The fixed point —a is attracting iff its multiplier a®> + 1 is in D.
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Sketch of proof for the first Theorem

Let P(z) = Az + az® + z3 with critical points c_(a, ), ci(a,\).

—at+va®? -3\
ct(a,\) = —s
Let Crit(k,0) = {P | PX(c_(a,\) = ci(a, \)} to simplify n = 0.
© For any P € Crit(k,0) with critical point on the 0-external ray, every
polynomial in S(P) is in Crit(k,0) with critical point on the
0-external ray.
® Crit(k,0) N Peri(1) is finite.
© Then S(P) lands in Crit(k,0) N Pery(1).
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Conversely let Q € Crit(k,0) N Per;(1)
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Conversely let Q € Crit(k,0) N Per;(1)

® In a neighborhood of @, there is a local parametrization by s € D :
Ps(z) = A(s)z + a(s)z? + 23 in Crit(k,0)
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® A(s), a(s) are holomorphic and non constant so A(D) is an open
neighborhood of 1.
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defined for s in A, some open set with 0 € A,
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® In a neighborhood of @, there is a local parametrization by s € D :
Ps(z) = A(s)z + a(s)z? + 23 in Crit(k,0)
® A(s), a(s) are holomorphic and non constant so A(D) is an open
neighborhood of 1.

© (Douady-Lavaurs-Shishikura) There exist perturb Fatou coordinates
defined for s in A, some open set with 0 € A,

© Let x(s) = c;(s) and y(s) such that ¢s(y(s)) = t for some fixed
t > 1 where s is the Bottcher map
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Conversely let Q € Crit(k,0) N Per;(1)
® In a neighborhood of @, there is a local parametrization by s € D :
Ps(z) = A(s)z + a(s)z? + 23 in Crit(k,0)
® A(s), a(s) are holomorphic and non constant so A(D) is an open
neighborhood of 1.

© (Douady-Lavaurs-Shishikura) There exist perturb Fatou coordinates
defined for s in A, some open set with 0 € A,

© Let x(s) = c;(s) and y(s) such that ¢s(y(s)) = t for some fixed
t > 1 where s is the Bottcher map

(Tan Lei : parabolic orbit correspondence)
For n large the equations

P"(x(s)) = y(s) and ®_s(x(s)) + n — %(5) N O)

have a common solution s, in A,.
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Conversely let Q € Crit(k,0) N Per;(1)
® In a neighborhood of @, there is a local parametrization by s € D :
Ps(z) = A(s)z + a(s)z? + 23 in Crit(k,0)
® A(s), a(s) are holomorphic and non constant so A(D) is an open
neighborhood of 1.

© (Douady-Lavaurs-Shishikura) There exist perturb Fatou coordinates
defined for s in A, some open set with 0 € A,

© Let x(s) = c;(s) and y(s) such that ¢s(y(s)) = t for some fixed
t > 1 where s is the Bottcher map

(Tan Lei : parabolic orbit correspondence)
For n large the equations

P"(x(s)) = y(s) and ®_s(x(s)) + n — %(5) N O)

have a common solution s, in A,.

© Then x(s) is on the 0-ray because P is univalent in the "petal until”

x(s).
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We get in any neigborhood of @ a polynomial P € Crit(k,0) such that cy
is on the O-ray.

Let P; be such a sequence.
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We get in any neigborhood of @ a polynomial P € Crit(k,0) such that cy
is on the O-ray.

Let P; be such a sequence.

The stretching rays S(P;) are finitely many :
the non critical preimage of P;(c_) has to be on some ray of angle 6 where
6 satisfies 39 = 0. This determines finitely many choices.
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We get in any neigborhood of @ a polynomial P € Crit(k,0) such that cy
is on the O-ray.

Let P; be such a sequence.

The stretching rays S(P;) are finitely many :
the non critical preimage of P;(c_) has to be on some ray of angle 6 where
0 satisfies 30 = 0. This determines finitely many choices.

A subsequence P, belongs to the same stretching ray. Hence this S-ray
accumulates to Q.
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Sketch of proof of the second Theorem

Theorem (Nakane, R)

Let P € S3 having critical portrait {0,1/3},{6 +1/3,60 +2/3} with
30 =0 mod 1.

If the stretching ray S(P) lands

® either there is a critical orbit relation between c¢; and ¢

© or it lands at Qy(z) = z + 2.

june 2016 40 / 56
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Sketch of proof of the second Theorem

Theorem (Nakane, R)
Let P € S3 having critical portrait {0,1/3},{6 +1/3,60 +2/3} with
30 =0 mod 1.

If the stretching ray S(P) lands
® either there is a critical orbit relation between c¢; and ¢

© or it lands at Qy(z) = z + 2.
Assume S(P) lands at Q € Peri(1) and Q # Qo.

@ the Bottcher vector

n(P) = Iog(gp(cz)l)ogéog(gp(q)), gp is the Green map

is constant along S(P).
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Sketch of proof of the second Theorem

Theorem (Nakane, R)
Let P € S3 having critical portrait {0,1/3},{6 +1/3,60 +2/3} with
30 =0 mod 1.

If the stretching ray S(P) lands
® either there is a critical orbit relation between c¢; and ¢

© or it lands at Qy(z) = z + 2.
Assume S(P) lands at Q € Peri(1) and Q # Qo.

@ the Bottcher vector

n(P) = |og(gp(C2)|)o;;0g(gP(C1)), gp is the Green map

is constant along S(P).
® both critical points of @ are in the basin of 0.
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® the Bottcher vector

n(P) = |°g(gP(C2)|)og;’°g(gP(C1))

, is constant along S(P).
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® the Bottcher vector

n(P) = log(gp(c2)) — log(gp(c1))

g3 , is constant along S(P).

® There exists Fatou perturb coordinates in a neighborhood of @
containing the end of S(P)
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® the Bottcher vector

n(P) = |°g(gP(C2)|)o;;°g(gP(C1))

, is constant along S(P).

® There exists Fatou perturb coordinates in a neighborhood of @
containing the end of S(P)

® both critical points of @ are in the basin of 0.
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® the Bottcher vector

n(P) = |°g(gP(C2)|)o;;0g(gP(Cl))

, is constant along S(P).

® There exists Fatou perturb coordinates in a neighborhood of @
containing the end of S(P)

® both critical points of @ are in the basin of 0.

® Y = Acc{o(Ps) = ¢s.4(c1) — ¢s,—(c1) mod 1} is a curve turning at
least once in the Ecalle cylinder
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® the Bottcher vector

n(P) = |°g(gP(C2)|)o;;0g(gP(Cl))

, is constant along S(P).

® There exists Fatou perturb coordinates in a neighborhood of @
containing the end of S(P)

® both critical points of @ are in the basin of 0.
® Y = Acc{o(Ps) = ¢s.4(c1) — ¢s,—(c1) mod 1} is a curve turning at
least once in the Ecalle cylinder

log | ot
® It is mapped to R/Z by h = %03%’*
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There exist Fatou perturb coordinates

(#p,,+ : Up,+ = C) — (¢q,+ : Ug+ — C)
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There exist Fatou perturb coordinates

(¢p,+ - Up, + = C) — (¢@,+ : Ug,+ — C) Residue Formula :

1,1 1 dz
1-As  1-X, 270 Jizee z2— Ps(2)

P. Roesch (I2M, UPS) Streching rays june 2016 42 / 56



There exist Fatou perturb coordinates

(¢p,+ - Up, + = C) — (¢@,+ : Ug,+ — C) Residue Formula :

1,1 1 dz
1-As  1-X, 270 Jizee z2— Ps(2)

So1— s~ —(1— X))
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There exist Fatou perturb coordinates

(pp.+ : Up,+ = C) — (¢ + : Ug.+ — C) Residue Formula :

1 i 1 i dz
izj== Z — Ps(2)

1- X  1-X  2mi

Sol—As~—(1—=M\,) [Im(As —1)| > |Re(As — 1)| and
[Im(As — 1)| > |Re(As — 1))
otherwise one fixed point is attracting.
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¢5(C1) =0, ¢S . ¢_

|
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¢5(C1) =0, ¢S . ¢_

¢+,s = ¢s + ts — ¢+

m

|

P. Roesch (I2M, UPS) Streching rays june 2016



log
log 3 A7)

log

[id]
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J [6—.] [H+s] [id]

Ts
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log(gp,(c2(Ps))) — log(gp.(c1(Ps)))

= ((2) — ¢(a)

= ¢p,(Pd(c2)) € Rp,(0) on [pp, (P (cr)), p, (PSHTIIT) (cr)]

They all belong to Up, - — Uq, -
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5(Ps) = ¢s(c1) — ¢s,—(c1) = ¢s,4 (1) = b5 (PE(c1)) — k

P. Roesch (I2M, UPS) Streching rays june 2016 50 / 56
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5(Ps) = ¢s(c1) — ¢s,—(c1) = ¢s,4 (1) = b5 (PE(c1)) — k

For ks large P%(c1) € Rp,(0) N Up, + — Ro(0) N Uqg +

So Im(&(Ps)) is bounded.
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5(Ps) = ¢s.+(PX(c1)) — k is continuous so
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5(Ps) = ¢s.+(PX(c1)) — k is continuous so

Y = Acc{G(Ps)) mod 1} is connected
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Re(6(Ps)) — —oo (ks — +00) so X is a curve turning around C/Z.
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5(Ps) = ¢s.+(PX(c1)) — k is continuous so

Y = Acc{5(Ps)) mod 1} is connected

Re(6(Ps)) — —oo (ks — +00) so X is a curve turning around C/Z.
For any o € ¥, 3s, such that o(Ps,) — 0.

For any & such that [6] = o, Tk, such that 5(Ps,) + k, — & then
Pk — gz = ¢5}+ o Tz 0¢q,—.

gs(c1) € Ro(0) and {((gs(c1)) | da lift of o € L} covers R/Z.
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So ¢([¢](gs(c1)) + [n]) = ¢ ([¢](g5(c1))) + 7 mod 1 forany o € ¥

so for any x € R/Z the magic formula holds

P(x+ ) =9¢(x)+7 mod 1
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So ¥([¢](gz(c1)) + [n]) = ¥([¢l(g5(c1))) + 7 mod 1 for any o €
so for any x € R/Z the magic formula holds
Y(x+[n]) =¥(x) +7 mod 1

By analytic extension this is true on the annulus and extends continuously
to the boundary so for any z in the annulus

Y(z+[n])) =¢(z)+7 mod 1.
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Then 1) is a conjugacy between two rotations, the rotation numbers
coincide :

[] = [7]
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Then 1) is a conjugacy between two rotations, the rotation numbers
coincide :

[] = [7]
So [7] is real.
If 7 € R\ Q then z + n[7] is dense in the circle

hence the annulus is round and the boundary ¢¢ +(Jg) is a real analytic
curve
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Then 1) is a conjugacy between two rotations, the rotation numbers
coincide :

[] = [7]
So [7] is real.
If 7 € R\ Q then z + n[7] is dense in the circle

hence the annulus is round and the boundary ¢q +(Jg) is a real analytic
curve

Thus the Julia set also contradiction since cusps are dense!

P. Roesch (I2M, UPS) Streching rays june 2016 54 / 56



If [7] # 0 is rational suppose of the form 1/q.
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If [7] # 0 is rational suppose of the form 1/q.
Then ¢ 4 (J) is invariant by Ty /.

Let zp be the landing point of a ray of the form p/3™ a pre-image of the
parabolic point.

Then 21 = ¢!, © T1/q 0 ¢g,+(20) should be a cusp.
But its external angle is 3/9=™ which is irrational.

Contradiction. Since the cusps are exactly the pre-images of the parabolic
point. (McMullen)
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Happy Birthday Jack

P. Roesch (I2M, UPS)



