The Secret Combinatorial Garden of Siegel

Rodrigo Pérez
1UPUI

Jackfest, Cancin, June 3, 2016



Linearization

f2) =Xz + w2’ + a2’ + ...



Linearization

f2) =Xz + w2’ + a2’ + ...

(Can always rescale so that the radius of convergence of f is 1)



Linearization

f2) =Xz + w2’ + a2’ + ...

(Can always rescale so that the radius of convergence of f is 1)

floy=o0, f(0)=x



Linearization

f2) =Xz + w2’ + a2’ + ...

(Can always rescale so that the radius of convergence of f is 1)
fO)=0, f(0)=A

Make the problem interesting: A = *™*, with o ¢ Q.



Linearization

f2) =Xz + w2’ + a2’ + ...

(Can always rescale so that the radius of convergence of f is 1)
fO)=0, f(0)=A

Make the problem interesting: A = *™*, with o ¢ Q.

Can f be linearized? i.e., is there



Linearization

f2) =Xz + w2’ + a2’ + ...

(Can always rescale so that the radius of convergence of f is 1)
fO)=0, f(0)=A

Make the problem interesting: A = *™*, with o ¢ Q.
Can f be linearized? i.e., is there
o(z) =az+ e +...

such that

e(Xz) = (fop)(z) ?



Linearization

f2) =Xz + w2’ + a2’ + ...

(Can always rescale so that the radius of convergence of f is 1)
fO)=0, f(0)=A

Make the problem interesting: A = *™*, with o ¢ Q.
Can f be linearized? i.e., is there
o(z) =az+ e +...

such that
p(A2) = (fop)(z) 7

(Can always rescale so that ¢; = 1)



Linearization
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(Can always rescale so that the radius of convergence of f is 1)
flo)y=0, f(0)=x

Make the problem interesting: A = ™%, with o ¢ Q.
Can f be linearized? i.e., is there
o(z) =az+ e +...

such that
p(A2) = (fop)(z) 7

(Can always rescale so that ¢; = 1)

(C. L. Siegel, 1942): Quite often!

Hailed by a member of this audience as

s

“one of the landmark papers of the twentieth century.
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Diophantine Condition: &, < (2k)", for some v > 1.
Not good: a large product of sp-terms becomes factorial. . .

Siegel’s philosophy: “Once an sp-term is large, it takes several steps before
another sp-term can have comparable size”

MNP —1) =N -1)— (N —1)
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Lemma
Givenr + 1 indices ko > ... > k. > 1, the following holds:

r

[Tey < @)™ R T (b = o)
p=0
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Binomial decomposition

s=(OOX+OEOOX+OO00OX

Given n, every sequence bsi1, b, ..., b satisfying
n:b5+1>-bs>-...>-b1:1
(here, a > bmeans 2b > a > b. In particular, b, > by = 1 forces b, = 2)

will contribute the following monomial to a,:

bs b s+1
X
(bs+1 - bs) (bz - bl)

so that a, is the sum of all such contributions.

Q: What do the binomials count?



Filling seq.  # of descents  contribution

11111 0 X°
11115 0 X°
11121 1 X(1+X)
11321 2 X1+ X)?
12142 2 x'(1+X)*
12214 1 X°(1+ X)
12345 0 X¢

For n = 6 there are 5! sequences: 8 with two descents, 70 with one descent, and 42
with none:

as =8X"* + 86X’ + 120X°
=(8X* +16X° + 8X°®) + 70X° + 112X°
=8X*(1+ X)* +70X°(1 + X) + 42X°(1 + X)°

> x > 0: Highest degree coefficient is factorial, and therefore a, grows
super-exponentially

> x < —1: All terms have same sign and will not cancel. Therefore a, grows
super-exponentially

> x = —1: Only non-zero term comes from sequences without descents. These
are classically counted by Catalan numbers

x€(—1,0)7



Analysis. . . finally!

Define S,(r) = sum of monomial contributions from sequences that end in r.

n—1
=7 S.())
j=1

By induction
n—1
Sppa( XZS +X) ) S0) (<r<n-2)
j=r+1

There is no descent at the last position, so the last two terms are given by

n—1

Surr(n—1) = Sup1(n) =X > S.()

j=1

To simplify notation, define Y = (1 + X)



Analysis. . . finally!

Define S,(r) = sum of monomial contributions from sequences that end in r.
n—1
=2_50)
j=1
By induction

Spia(r XZS,, +YZSn (1<r<n-2)

Jj=r+1

There is no descent at the last position, so the last two terms are given by

Sup1(n—1) = Sppa(n XZS



Analysis. .. finally! (2)

S =XS50)+Y S 80)  (<r<n-2) )

j=1 j=r+1
For every n we have a string of n — 1 values. Collect them into a vector and rescale:
sni=[S(1)/(n—=2)!,...,S(n—1)/(n—2)]" e R""

Consider the n x (n — 1) matrix A, whose (i, j)-entry is X if i > j,and Y
otherwise. Then (1) becomes

Su1 = (An- 52)/(n—1)

LetE,: R,_; — L? [0, 1] map the standard basis vector ¢; to the characteristic

function of the interval [i;ll, nil)

> The vector s, maps to the function E,(s,) such that E,(s,)(u) = (i'i(’;)!

whenever u € [I=%, L)

» A, embeds as a linear operator A, : L*[0,1] — L*[0, 1] so that (1) becomes

mme:mmw:Aamwymmmm



Restate

an=(n+1)! [ si(v)dv

Eu(sue) () = [Ansil (@) = [ ca(t, v) - Eu(s)(v) dv

O\HC\
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Restate

an = (n+ l)!/o1 sa(v) dv

Bisn12)(0) = [usl(0) = [l ) B(5)(5) v

The kernel a, is a piecewise constant function whose value at

(wv) € [5,3) x [ 75) s
X ifi>]
an(u,v) = - i.e., equal to (An)i ;).
() {Y otherwise ( 9 ( n)l’])

To prove {an} grows super-exponentially we need to find a sequence ny so the
exponential rate of decay of [ s, is bounded from below



Kernels

En(sn)(w) = [Ausi)(u) = / n(1, v) - Eu(s) () dv

For (u,v) € [54, 1) x [E£4, 1)

s
Oén(”: V) = {X iz

Y otherwise



Kernels

X ifi>]
an(u, v) =
Y otherwise
Limit operator: T : L*[0,1] — L*[0, 1] given by
1
(1) = [ wtaw) f(3)
0

with kernel

(4, v) X ifu>v
Kk(u,v) =
Y otherwise



Kernels

En(sn)(w) = [Ausi)(u) = / n(1, v) - Eu(s) () dv

For (u,v) € [54, 1) x [E£4, 1)

s
Oén(”: V) = {X iz

Y otherwise
Limit operator: T : L*[0,1] — L*[0, 1] given by
(1)) = [ wtw)- f3)

with kernel
{x ifu>v
k(u,v) =

Y otherwise

Lemma T is the limit of {A,} in the operator norm:

17— Adle < 2
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Eigenstuff for T

(1) () = /fv)dv+Y/f
Eigenvalues:

-1
 log|£|+ (2m+ 1)mi

(mez)

Eigenfunctions:

fm(u) _ |§|ue(2m+1)7ﬂu (m e Z)

With the correct (weighted) norm

oo [ X () dv

the family of eigenfunctions forms an orthonormal basis for L*[0, 1]



Real eigenspace

fm(u) _ |§|ue(2m+l)7riu (m c Z)

Note that for m > 0 the pair of functions f{ 1), fm are complex conjugate and
their eigenvalues have the same magnitude. As a consequence, a convenient basis
for the subspace L% [0, 1] C L?[0, 1] of real-valued functions is
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Note that for m > 0 the pair of functions f{ 1), fm are complex conjugate and
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for the subspace L% [0, 1] C L?[0, 1] of real-valued functions is
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{|§|u cos(mu), |§|u sin(wu)}

so that L4[0,1] = E @ E*.



Real eigenspace

fm(u) _ |§|ue(2m+l)7riu (m c Z)

Note that for m > 0 the pair of functions f{ 1), fm are complex conjugate and
their eigenvalues have the same magnitude. As a consequence, a convenient basis
for the subspace L% [0, 1] C L?[0, 1] of real-valued functions is

{|§|ucos((2m + D7u), !%!usin((Zm + l)ﬂu)}mzo

The eigenfunctions f; and f; with largest eigenvalue A span a complex
two-dimensional subspace of L*[0, 1]. Let E C %[0, 1] denote the real slice of this
subspace generated by

{|§|u cos(mu), |§|u sin(wu)}

so that L4[0,1] = E @ E*.
By Parseval’s theorem we can define the angle 6, by

1
sinf. = 7HP snlle
llsnll2

Intuitively, the closer 8, is to 0, the better s, resembles a function in E.
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Step 1: We use the shape properties of the sequence S, to show that the angles 6, are
bounded away from 7 /2.
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Proof outline

Step 1: We use the shape properties of the sequence S, to show that the angles 6, are
bounded away from 7 /2.

Step 2: The sequence {0,} converges to 0, so the functions s, become progressively
sinusoidal.

Step 3: There is a sequence of indices {nc} such that {|a,,|} is comparable to
{lIsn|l2}- Meanwhile, ||sn||2 > (A — )" for arbitrarily small £, and the result
follows
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What next?

Discard the variable X and recover the original sp-terms.

Instead of a power of X, each filling sequence F contributes now a product of
sp-terms that is determined by the set of descents of F

We classify filling sequences into exponentially many classes according to descent
patterns

If done correctly, the contributions of filling sequences within each class will cancel
when the rotation number of X is bounded type.

If done TRULY correctly, the cancellation within a class leaves a polynomially large
contribution, and then we can estimate the correct rate of exponential growth of

the coefficients a, of <p_1

Work in progress...



THANK You JAck!!



