## Satellite copies of the Mandelbrot set

Luna Lomonaco

USP

Joint work with Carsten Petersen

June 2, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Quadratic polynomials on $\widehat{\mathbb{C}}$

$$\begin{split} P_c(z) &= z^2 + c, \ \infty \ (\text{super}) \text{attracting fixed point, with basin } \mathcal{A}_c(\infty) \\ \text{Filled Julia set } \mathcal{K}_c &= \mathcal{K}_{P_c} = \widehat{\mathbb{C}} \setminus \mathcal{A}_c(\infty) \\ \text{Mandelbrot set: set of parameters for which } \mathcal{K}_c \text{ is connected} \\ \heartsuit \ (\text{or } H_1): \ P_c \text{ has an attracting fixed point } (\alpha \text{ f.p.}), \\ H_{p/q}: \ P_c \text{ has a period } q \text{ attracting cycle,} \\ \alpha \text{ repelling of rotation number } p/q, \end{split}$$

 $\partial \heartsuit \cap \partial H_{p/q} = c_{p/q}$ , and  $P'_{c_{p/q}}(\alpha) = e^{2\pi i p/q}$ . At  $c_{p/q}$ ,  $\alpha$  collides with a p/q-repelling cycle. In  $H_{p/q}$ 

the cycle becomes attracting and  $\alpha$  repelling.



## Little copies of M inside M

#### ▶ Striking: apparent little copies of *M* in *M*.



Their presence is explained by the theory of polynomial-like maps.

(日)、

э

## Polynomial-like mappings

- A (deg d) polynomial-like map is a triple (f, U', U), where U' ⊂⊂ U and f : U' → U is a (deg d) proper and holomorphic map.
- $K_f = \{z \in U' \mid f^n(z) \in U', \forall n \ge 0\},\$
- ▶ Straightening theorem (Douady-Hubbard, '85) Every (deg d) polynomial-like map  $f : U' \to U$  is hybrid equivalent to a (deg d) polynomial, a unique such member if  $K_f$  is connected.







Theorem (D-H,'85) (Under some conditions) there exists a homeomorphism χ between the connectedness locus of an analytic family of deg 2 polynomial-like maps and the Mandelbrot set M.



## Copies of M inside M

There are 2 kinds of copies:

- 1. Primitive copies of *M*, when the the little Julia sets are disjoint (like in the previous slide)
- 2. Satellite copies of *M*, when the little Julia sets touch at their  $\beta$ -fixed point (like in this slide).



- ▶ Primitive copies of *M*:  $\chi$  homeo (DH,'85), qc (Lyubich, '99),
- Satellite copies of M: χ homeo except at the root (DH,'85), qc outside a neighborhood of the root (Ly, '99).



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Haissinsky ('00):  $\chi$  homeomorphism at the root in the satellite case.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Haissinsky ('00):  $\chi$  homeomorphism at the root in the satellite case.





ロト・日本・モト・モー・ショーのへで

- ► We can take a parabolic-like restriction of the roots
- (parabolic-like map: 'polyn.-like map with parab. external map'
- model family:  $P_A(z) = z + 1/z + A, A \in \mathbb{C}$ )



L. ('14): roots of any 2 satel. copies have restrictions qc conj.



Figure : *м*<sub>1</sub>.

Are the satellite copies mutually qc homeomorphic?

• Consider 
$$\xi_{\frac{p}{q},\frac{p}{Q}} := \chi_{P/Q}^{-1} \circ \chi_{p/q} : M_{p/q} \to M_{P/Q}$$
:

- 1.  $\xi_{\frac{p}{a},\frac{p}{Q}}$  qc away from nbh of root,
- 2. roots hybrid conjugate on corresponding ears (but not nbh)



Figure : The map 
$$\xi_{\frac{1}{3},\frac{1}{2}} = \chi_{1/2}^{-1} \circ \chi_{1/3} : M_{1/3} \to M_{1/2}$$
.

## Ideas

 $(f_{\lambda})$  an. family of pol-like with connectedness locus  $M_{p/q} \setminus root$ ,  $(g_{\nu})$  an. family of pol-like with connectedness locus  $M_{P/Q} \setminus root$ .

Assume  $\exists$  a uniform external equivalence between corresponding pol-like: a family of uniformly quasiconformal maps  $\Psi_{\lambda} : A_{\lambda} \to A_{\nu}$  between fundamental annuli of  $f_{\lambda}$  and  $g_{\nu}$  respectively. Then

- ▶ by Rickmann lemma, for each  $\lambda \in M_{p/q} \setminus root$ ,  $f_{\lambda} \sim_{qc} g_{\nu}$  uniformly.
- hope to construct some holomorphic motion between M<sub>p/q</sub> \ root and M<sub>p/q</sub> \ root, and so prove that ξ is qc.



### Problem

When  $q \neq Q$ , setting  $\Lambda_{\beta} = Log(f'_{\lambda}(\beta))$  and  $N_{\beta} = Log(g'_{\nu}(\beta))$ ,  $d_{\mathbb{H}}(\Lambda_{\beta}, N_{\beta}) \rightarrow \infty$ 

approaching the root, so the corresponding pol-like  $f_{\lambda}$ ,  $g_{\nu}$  are not uniformly hybrid equivalent approaching the root.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Problem

When 
$$q \neq Q$$
, setting  $\Lambda_{\beta} = Log(f'_{\lambda}(\beta))$  and  $N_{\beta} = Log(g'_{\nu}(\beta))$ ,  
 $d_{\mathbb{H}}(\Lambda_{\beta}, N_{\beta}) \rightarrow \infty$ 

approaching the root, so the corresponding pol-like  $f_{\lambda}$ ,  $g_{\nu}$  are not uniformly hybrid equivalent approaching the root.

#### Eureka!

- If corresponding families uniformly qc equivalent
- then Teichmüller distance between corresponding pol-like is uniformly bounded
- so in particular  $d_{\mathbb{H}}(\Lambda_{\beta}, N_{\beta}) < C$

## Satellite copies, result

- ►  $M_{p/q}$  satellite copy attached to  $\heartsuit$  at c, where  $P_c$  has a fixed point with multiplier  $\lambda = e^{2\pi i p/q}$  (so  $\chi_{p/q}^{-1}(\heartsuit) = H_{p/q}$ )
- ▶ Theorem (L-Petersen, 2015): For p/q and P/Q irreducible rationals with  $q \neq Q$ ,

$$\xi_{\frac{p}{q},\frac{p}{Q}} := \chi_{P/Q}^{-1} \circ \chi_{p/q} : M_{p/q} \to M_{P/Q}$$

is not quasi-conformal, *i.e.* it does not admit a quasi-conformal extension to any neighborhood of the root.



$$\text{Figure}: \text{ The map } \xi_{\frac{1}{3},\frac{1}{2}} = \chi_{1/2}^{-1} \circ \chi_{1/3}: M_{1/3} \xrightarrow{\rightarrow} M_{1/2} \xrightarrow{} S_{1/2} \xrightarrow{} S_{1/$$

#### Setting

- ▶ Parametrize:  $P_{\lambda} = \lambda z + z^2$  (rel:  $\lambda \to c(\lambda) = \frac{\lambda}{2} \frac{\lambda^2}{4}$ ), so  $\lambda$  is multiplier of  $\alpha$ -fixed point 0
- λ ∈ M<sub>p/q</sub>, (f<sub>λ</sub>, U'<sub>λ</sub>, U<sub>λ</sub>) polynomial-like restriction of P<sup>q</sup><sub>λ</sub>, then 0 is β-fixed point for f<sub>λ</sub> with multiplier λ<sup>q</sup>,
- ►  $\nu = \xi(\lambda) \in M_{P/Q}$ ,  $(g_{\nu}, V'_{\nu}, V_{\nu})$  polynomial-like res. of  $P^Q_{\nu}$ , then 0 is  $\beta$ -fixed point for  $g_{\nu}$  with multiplier  $\nu^Q$ ,
- $\Lambda = \text{Log}(\lambda^q), \ N(\nu) = \text{Log}(\nu^Q), \text{ and lift } \xi : \lambda \to \nu \text{ to } \hat{\xi} : \Lambda \to N.$

### Strategy:

- 1. Find a lower bound for  $K_{\phi}$  for any  $\phi$ :  $f_{\lambda} \sim_{qc} g_{\nu}$
- 2. Translate it to a lower bound for  $K_{\xi}$ (*Plough in the dynamical plane, and harvest in parameter space*)

3. Send the lower bound to infinity

## 1-Lower bound for qc conjugacy, dynamical plane

▶ **Proposition:**  $\lambda \in M_{p/q}$ ,  $\nu = \xi(\lambda) \in M_{P/Q}$ ,  $\Lambda = \text{Log}(\lambda^q)$ ,  $N(\nu) = \text{Log}(\nu^Q)$ . Any quasi-conformal conjugacy  $\phi$  between  $f_{\lambda}$  and  $g_{\nu}$  has:

$$\lim_{r\to 0} \text{Log } ||K_{\phi}||_{\infty,\mathbb{D}(r)} \geq d_{\mathbb{H}_+}(\Lambda, N),$$

- Proof of the Proposition:
  - 1.  $\phi$  induces a qc homeomorphism between the corresponding (marked) quotient tori

$$((D_1 \setminus \{0\})/f, \gamma_f)$$
 and  $((D_2 \setminus \{0\})/g, \gamma_g)$ 

2.

$$\begin{aligned} (T_{\Lambda} := \mathbb{C}/(\Lambda \mathbb{Z} - i2\pi\mathbb{Z}), \Pi_{\Lambda}([0,\Lambda]) \sim_{T} ((D_{1} \setminus \{0\})/f, \gamma_{f}), \\ (T_{N} := \mathbb{C}/(N\mathbb{Z} - i2\pi\mathbb{Z}), \Pi_{N}([0,N]) \sim_{T} ((D_{2} \setminus \{0\})/g, \gamma_{g}) \end{aligned}$$

3.  $\lim_{r\to 0} \log ||K_{\phi}||_{\infty,\mathbb{D}(r)} \geq \inf_{\varphi} \log K_{\varphi} =: d_T(T_{\Lambda}, T_N) = d_{\mathbb{H}_+}(\Lambda, N).$ 

2-Lower bound for  $K_{\hat{\varepsilon}}$ , parameter plane

1. Holomorphic motion argument

(for passing from dynamical plane to parameter plane)

2. Generalization of the Teichmüller Thm for non-compact setting (we have map between grids, respecting homotopy type of 2 curves),

give:

**Theorem:**  $\Lambda^* \in \Lambda(M_{p/q})$  Misiurewicz parameter s.t. the critical value is prefixed to  $\beta_f$ ,  $N^* = \hat{\xi}(\Lambda^*)$ . Then

$$\lim_{r\to 0} \log ||K_{\hat{\xi}}||_{\infty,\mathbb{D}(\Lambda^*,r)} \geq d_{\mathbb{H}_+}(\Lambda^*,N^*).$$

By Yoccoz inequality, diam<sub>ℍ+</sub>((L<sup>p/q</sup>)<sub>n<sup>2</sup>-1</sub>) → 0 so it's enough to prove d<sub>ℍ+</sub>(Λ, N) unbounded on ∂♡<sub>p/q</sub>!

# 3-About $d_{\mathbb{H}_+}(\Lambda^*, N^*)$

- For  $\lambda \in M_{p/q}$ , consider  $f_{\lambda}$ :
  - 0 is  $\beta$ -fixed point with multiplier  $\lambda^q$ ,
  - $\alpha(\lambda)$  is  $\alpha$ -fixed point with multiplier  $\rho(\lambda)$   $(\rho : nbh(\heartsuit_{p/q}) \to nbh(\mathbb{D}))$
- Since  $\phi_{\lambda}$  hybrid, if  $\nu = \xi(\lambda)$ ,  $\rho(\lambda) = \rho(\nu)$ .
- Invert: take  $\rho$  as parameter! Computations show:

$$\Lambda(\rho) = -\frac{\mathsf{Log}(\rho)}{q} - \left(\frac{\mathsf{Log}(\rho)}{q}\right)^2 \cdot \mathsf{Resit}(f_{e^{2\pi i p/q}}, 0) + O\left(\left(\frac{\mathsf{Log}\rho}{q}\right)^3\right),$$

$$N(\rho) = -\frac{\mathrm{Log}(\rho)}{Q} - \left(\frac{\mathrm{Log}(\rho)}{Q}\right)^2 \cdot \mathrm{Resit}(g_{e^{2\pi i P/Q}}, 0) + O\left(\left(\frac{\mathrm{Log}\rho}{Q}\right)^3\right).$$

► So, for  $q \neq Q$ , and  $\rho = e^{it} \in \mathbb{S}^1$ ,  $d_{\mathbb{H}_+}(\Lambda(\rho), N(\rho)) \xrightarrow{\rho \to 1} \infty$ End: for a sequence  $\Lambda_n^* \in (L^{p/q})_{\frac{n^2-1}{n^3}} \cap M_{p/q}$ ,

$$\lim_{r\to 0} \log ||K_{\hat{\xi}}||_{\infty,\mathbb{D}(\Lambda^*,r)} \geq d_{\mathbb{H}_+}(\Lambda_n^*,N_n^*) \stackrel{n\to\infty}{\longrightarrow} \infty.$$

# Thank you for your attention!



・ロト ・聞ト ・ヨト ・ヨト

∃ <\0<</p>

# Happy birthday Jack!

happylcrthday

