Satellite copies of the Mandelbrot set

Luna Lomonaco

USP

Joint work with Carsten Petersen

June 2, 2016

Quadratic polynomials on $\widehat{\mathbb{C}}$

$P_{c}(z)=z^{2}+c, \infty$ (super)attracting fixed point, with basin $\mathcal{A}_{c}(\infty)$
Filled Julia set $K_{c}=K_{P_{c}}=\widehat{\mathbb{C}} \backslash \mathcal{A}_{c}(\infty)$
Mandelbrot set: set of parameters for which K_{c} is connected
$\bigcirc\left(\right.$ or $\left.H_{1}\right): P_{c}$ has an attracting fixed point (α f.p.),
$H_{p / q}: P_{c}$ has a period q attracting cycle, α repelling of rotation number p / q,
$\partial \circlearrowleft \cap \partial H_{p / q}=c_{p / q}$, and $P_{c_{p / q}}^{\prime}(\alpha)=e^{2 \pi i p / q}$.
At $c_{p / q}, \alpha$ collides with a p / q-repelling cycle. In $H_{p / q}$
the cycle becomes attracting and α repelling.

Little copies of M inside M

- Striking: apparent little copies of M in M.

- Their presence is explained by the theory of polynomial-like maps.

Polynomial-like mappings

- A (deg d) polynomial-like map is a triple $\left(f, U^{\prime}, U\right)$, where $U^{\prime} \subset \subset U$ and $f: U^{\prime} \rightarrow U$ is a ($\operatorname{deg} d$) proper and holomorphic map.
- $K_{f}=\left\{z \in U^{\prime} \mid f^{n}(z) \in U^{\prime}, \forall n \geq 0\right\}$,
- Straightening theorem (Douady-Hubbard, '85) Every ($\operatorname{deg} d$) polynomial-like map $f: U^{\prime} \rightarrow U$ is hybrid equivalent to a (deg d) polynomial, a unique such member if K_{f} is connected.

Figure : K_{c}, c center of the period 3 component

Figure : $\kappa_{0}, 0$ center of the main component

- Theorem (D-H,'85) (Under some conditions) there exists a homeomorphism χ between the connectedness locus of an analytic family of deg 2 polynomial-like maps and the Mandelbrot set M.

Copies of M inside M

There are 2 kinds of copies:

1. Primitive copies of M, when the the little Julia sets are disjoint (like in the previous slide)
2. Satellite copies of M, when the little Julia sets touch at their β-fixed point (like in this slide).

- Primitive copies of M : χ homeo (DH,'85), qc (Lyubich, '99),
- Satellite copies of M : χ homeo except at the root (DH,'85), qc outside a neighborhood of the root (Ly, '99).

M and its little copies

- Haissinsky ('00): χ homeomorphism at the root in the satellite case.

M and its little copies

- Haissinsky ('00): χ homeomorphism at the root in the satellite case.

M and its little copies

- We can take a parabolic-like restriction of the roots
- (parabolic-like map: 'polyn.-like map with parab. external map'
- model family: $\left.P_{A}(z)=z+1 / z+A, A \in \mathbb{C}\right)$

Figure : Parabolic-like map.

- L. ('14): roots of any 2 satel. copies have restrictions qc conj.

Figure : Filled Julia set of $P_{0}(z)=z^{2}+1 / z$.

M and its little copies

Are the satellite copies mutually qc homeomorphic?

- Consider $\xi_{\frac{p}{q}, \frac{P}{Q}}:=\chi_{P / Q}^{-1} \circ \chi_{P / q}: M_{P / q} \rightarrow M_{P / Q}:$

1. $\xi_{\frac{p}{q}, \frac{P}{Q}}$ qc away from nbh of root,
2. roots hybrid conjugate on corresponding ears (but not nbh)

Figure: The map $\xi_{\frac{1}{3}, \frac{1}{2}}=\chi_{1 / 2}^{-1} \circ \chi_{1 / 3}: M_{1 / 3} \rightarrow M_{1 / 2}$.

Ideas

$\left(f_{\lambda}\right)$ an. family of pol-like with connectedness locus $M_{p / q} \backslash$ root, $\left(g_{\nu}\right)$ an. family of pol-like with connectedness locus $M_{P / Q} \backslash$ root.

Assume \exists a uniform external equivalence between corresponding pol-like:
a family of uniformly quasiconformal maps $\Psi_{\lambda}: A_{\lambda} \rightarrow A_{\nu}$ between fundamental annuli of f_{λ} and g_{ν} respectively. Then

- by Rickmann lemma, for each $\lambda \in M_{p / q} \backslash$ root, $f_{\lambda} \sim_{q c} g_{\nu}$ uniformly.
- hope to construct some holomorphic motion between $M_{p / q} \backslash$ root and $M_{p / q} \backslash$ root, and so prove that ξ is qc.

Problem

When $q \neq Q$, setting $\Lambda_{\beta}=\log \left(f_{\lambda}^{\prime}(\beta)\right)$ and $N_{\beta}=\log \left(g_{\nu}^{\prime}(\beta)\right)$,

$$
d_{\mathbb{H}}\left(\Lambda_{\beta}, N_{\beta}\right) \rightarrow \infty
$$

approaching the root, so the corresponding pol-like f_{λ}, g_{ν} are not uniformly hybrid equivalent approaching the root.

Problem

When $q \neq Q$, setting $\Lambda_{\beta}=\log \left(f_{\lambda}^{\prime}(\beta)\right)$ and $N_{\beta}=\log \left(g_{\nu}^{\prime}(\beta)\right)$,

$$
d_{\mathbb{H}}\left(\Lambda_{\beta}, N_{\beta}\right) \rightarrow \infty
$$

approaching the root, so the corresponding pol-like f_{λ}, g_{ν} are not uniformly hybrid equivalent approaching the root.

Eureka!

- If corresponding families uniformly qc equivalent
- then Teichmüller distance between corresponding pol-like is uniformly bounded
- so in particular $d_{\mathbb{H}}\left(\Lambda_{\beta}, N_{\beta}\right)<C$

Satellite copies, result

- $M_{p / q}$ satellite copy attached to \bigcirc at c, where P_{c} has a fixed point with multiplier $\lambda=e^{2 \pi i p / q}$ (so $\chi_{p / q}^{-1}(\Omega)=H_{p / q}$)
- Theorem (L-Petersen, 2015): For p / q and P / Q irreducible rationals with $q \neq Q$,

$$
\xi_{\frac{p}{q}, \frac{P}{Q}}:=\chi_{P / Q}^{-1} \circ \chi_{P / q}: M_{P / q} \rightarrow M_{P / Q}
$$

is not quasi-conformal, i.e. it does not admit a quasi-conformal extension to any neighborhood of the root.

Figure: The $\operatorname{map} \xi_{\frac{1}{3}, \frac{1}{2}}=\chi_{1 / 2}^{-1} \circ \chi_{1 / 3}: M_{1 / 3} \rightarrow M_{1 / 2}$.

Setting

- Parametrize: $P_{\lambda}=\lambda z+z^{2}\left(\right.$ rel: $\left.\lambda \rightarrow c(\lambda)=\frac{\lambda}{2}-\frac{\lambda^{2}}{4}\right)$, so λ is multiplier of α-fixed point 0
- $\lambda \in M_{p / q},\left(f_{\lambda}, U_{\lambda}^{\prime}, U_{\lambda}\right)$ polynomial-like restriction of P_{λ}^{q}, then 0 is β-fixed point for f_{λ} with multiplier λ^{q},
- $\nu=\xi(\lambda) \in M_{P / Q},\left(g_{\nu}, V_{\nu}^{\prime}, V_{\nu}\right)$ polynomial-like res. of P_{ν}^{Q}, then 0 is β-fixed point for g_{ν} with multiplier ν^{Q},
- $\Lambda=\log \left(\lambda^{q}\right), N(\nu)=\log \left(\nu^{Q}\right)$, and lift $\xi: \lambda \rightarrow \nu$ to $\hat{\xi}: \Lambda \rightarrow N$.

Strategy:

1. Find a lower bound for K_{ϕ} for any $\phi: f_{\lambda} \sim_{q c} g_{\nu}$
2. Translate it to a lower bound for K_{ξ} (Plough in the dynamical plane, and harvest in parameter space)
3. Send the lower bound to infinity

1-Lower bound for qc conjugacy, dynamical plane

- Proposition: $\lambda \in M_{p / q}, \nu=\xi(\lambda) \in M_{P / Q}, \Lambda=\log \left(\lambda^{q}\right)$, $N(\nu)=\log \left(\nu^{Q}\right)$. Any quasi-conformal conjugacy ϕ between f_{λ} and g_{ν} has:

$$
\lim _{r \rightarrow 0} \log \left\|K_{\phi}\right\|_{\infty, \mathbb{D}(r)} \geq d_{\mathbb{H}_{+}}(\Lambda, N)
$$

- Proof of the Proposition:

1. ϕ induces a qc homeomorphism between the corresponding (marked) quotient tori

$$
\left(\left(D_{1} \backslash\{0\}\right) / f, \gamma_{f}\right) \text { and }\left(\left(D_{2} \backslash\{0\}\right) / g, \gamma_{g}\right)
$$

2.

$$
\begin{aligned}
& \left(T_{\wedge}:=\mathbb{C} /(\wedge \mathbb{Z}-i 2 \pi \mathbb{Z}), \Pi_{\Lambda}([0, \wedge]) \sim_{T}\left(\left(D_{1} \backslash\{0\}\right) / f, \gamma_{f}\right),\right. \\
& \left(T_{N}:=\mathbb{C} /(N \mathbb{Z}-i 2 \pi \mathbb{Z}), \Pi_{N}([0, N]) \sim_{T}\left(\left(D_{2} \backslash\{0\}\right) / g, \gamma_{g}\right)\right.
\end{aligned}
$$

3. $\lim _{r \rightarrow 0} \log \left\|K_{\phi}\right\|_{\infty, \mathbb{D}(r)} \geq \inf _{\varphi} \log K_{\varphi}=: d_{T}\left(T_{\Lambda}, T_{N}\right)=d_{\mathbb{H}_{+}}(\Lambda, N)$.

2-Lower bound for $K_{\hat{\xi}}$, parameter plane

1. Holomorphic motion argument (for passing from dynamical plane to parameter plane)
2. Generalization of the Teichmüller Thm for non-compact setting (we have map between grids, respecting homotopy type of 2 curves), give:
Theorem: $\Lambda^{*} \in \Lambda\left(M_{p / q}\right)$ Misiurewicz parameter s.t. the critical value is prefixed to $\beta_{f}, N^{*}=\hat{\xi}\left(\Lambda^{*}\right)$. Then

$$
\lim _{r \rightarrow 0} \log \left\|K_{\hat{\xi}}\right\|_{\infty, \mathbb{D}\left(\Lambda^{*}, r\right)} \geq d_{\mathbb{H}_{+}}\left(\Lambda^{*}, \Lambda^{*}\right)
$$

- By Yoccoz inequality, $\operatorname{diam}_{\mathbb{H}_{+}}\left(\left(L^{p / q}\right)_{\frac{n^{2}-1}{n^{3}}}\right) \xrightarrow{n \rightarrow \infty} 0$ so it's enough to prove $d_{\mathbb{H}_{+}}(\Lambda, N)$ unbounded on $\partial \triangle_{p / q}$!

3 -About $d_{\mathbb{H}_{+}}\left(\Lambda^{*}, N^{*}\right)$

- For $\lambda \in M_{p / q}$, consider f_{λ} :
- 0 is β-fixed point with multiplier λ^{q},
- $\alpha(\lambda)$ is α-fixed point with multiplier $\rho(\lambda)\left(\rho: n b h\left(\bigcirc_{p / q}\right) \rightarrow n b h(\mathbb{D})\right)$
- Since ϕ_{λ} hybrid, if $\nu=\xi(\lambda), \rho(\lambda)=\rho(\nu)$.
- Invert: take ρ as parameter! Computations show:

$$
\begin{aligned}
& \Lambda(\rho)=-\frac{\log (\rho)}{q}-\left(\frac{\log (\rho)}{q}\right)^{2} \cdot \operatorname{Resit}\left(f_{e^{2 \pi i p / q}}, 0\right)+O\left(\left(\frac{\log \rho}{q}\right)^{3}\right) \\
& N(\rho)=-\frac{\log (\rho)}{Q}-\left(\frac{\log (\rho)}{Q}\right)^{2} \cdot \operatorname{Resit}\left(g_{e^{2 \pi i P / Q}}, 0\right)+O\left(\left(\frac{\log \rho}{Q}\right)^{3}\right)
\end{aligned}
$$

- So, for $q \neq Q$, and $\rho=e^{i t} \in \mathbb{S}^{1}, d_{\mathbb{H}_{+}}(\Lambda(\rho), N(\rho)) \xrightarrow{\rho \rightarrow 1} \infty$

End: for a sequence $\Lambda_{n}^{*} \in\left(L^{p / q}\right)_{\frac{n^{2}-1}{n^{3}}} \cap M_{p / q}$,

$$
\lim _{r \rightarrow 0} \log \left\|K_{\hat{\xi}}\right\|_{\infty, \mathbb{D}\left(\Lambda^{*}, r\right)} \geq d_{\mathbb{H}_{+}}\left(\Lambda_{n}^{*}, N_{n}^{*}\right) \xrightarrow{n \rightarrow \infty} \infty .
$$

Thank you for your attention!

Happy birthday Jack!

happytarthday

