A disconnected deformation space of rational maps

Eriko Hironaka American Mathematical Society Sarah Koch
University of
Michigan

Preliminaries

$$S^2 \qquad \qquad A,B\subseteq S^2 \text{ finite} \\ 3\leqslant |A|,|B|$$

Preliminaries

$$S^{2} \qquad A, B \subseteq S^{2} \text{ finite}$$

$$3 \leqslant |A|, |B|$$

$$(S^2, A)$$

$$\downarrow^f$$
 (S^2, B)

 $\mathcal{T}_A := \text{classes of } \phi : S^2 \to \mathbb{P}^1 \text{ where } \phi_1 \sim \phi_2 \text{ if}$ there is $\mu \in \text{Aut}(\mathbb{P}^1)$ so that $\phi_1 = \mu \circ \phi_2$ on A, and ϕ_1 is isotopic to $\mu \circ \phi_2$ rel A.

 \mathcal{T}_A is a complex manifold of dimension |A|-3

 $\mathcal{T}_A := \text{classes of } \phi : S^2 \to \mathbb{P}^1 \text{ where } \phi_1 \sim \phi_2 \text{ if}$ there is $\mu \in \text{Aut}(\mathbb{P}^1)$ so that $\phi_1 = \mu \circ \phi_2$ on A, and ϕ_1 is isotopic to $\mu \circ \phi_2$ rel A.

 \mathcal{T}_A is a complex manifold of dimension |A|-3

$$A, B \subseteq S^2$$

 \mathcal{T}_{B} \mathcal{T}_{A}

 $\mathcal{T}_A := \text{classes of } \phi: S^2 \to \mathbb{P}^1 \text{ where } \phi_1 \sim \phi_2 \text{ if}$ there is $\mu \in \text{Aut}(\mathbb{P}^1)$ so that $\phi_1 = \mu \circ \phi_2$ on A, and ϕ_1 is isotopic to $\mu \circ \phi_2$ rel A.

 \mathcal{T}_A is a complex manifold of dimension |A|-3

$$A, B \subseteq S^2$$

$$A \subseteq B$$

 $\mathcal{T}_A := \text{classes of } \phi: S^2 \to \mathbb{P}^1 \text{ where } \phi_1 \sim \phi_2 \text{ if}$ there is $\mu \in \text{Aut}(\mathbb{P}^1)$ so that $\phi_1 = \mu \circ \phi_2$ on A, and ϕ_1 is isotopic to $\mu \circ \phi_2$ rel A.

 \mathcal{T}_A is a complex manifold of dimension |A|-3

$$A, B \subseteq S^2$$

$$f:(S^2,A)\to(S^2,B)$$

The deformation space

 $\mathcal{T}_A := \text{classes of } \phi: S^2 \to \mathbb{P}^1 \text{ where } \phi_1 \sim \phi_2 \text{ if }$ there is $\mu \in \operatorname{Aut}(\mathbb{P}^1)$ so that $\phi_1 = \mu \circ \phi_2$ on A, and ϕ_1 is isotopic to $\mu \circ \phi_2$ rel A.

 \mathcal{T}_A is a complex manifold of dimension |A|-3

$$A, B \subseteq S^2$$

$$A \subseteq B$$

$$f:(S^2,A)\to(S^2,B)$$

 $f: (S^2, A) \to (S^2, B)$

B contains critical values of f

$$Def_A^B(f) := \{ \tau \in \mathcal{T}_B \mid \sigma_f(\tau) = \sigma_{A,B}(\tau) \}$$

 $\sigma_{A,B}$

$$A \subseteq B$$

$$\mathcal{T}_{B} \underbrace{\qquad \qquad \mathcal{T}_{A,B}} \mathcal{T}_{A,B}$$

 $\sigma_{A,B}$ maps the class of ϕ in \mathcal{T}_B to the class of ϕ in \mathcal{T}_A

$$A \subseteq B$$

$$\mathcal{T}_B$$
 $\sigma_{A,B}$ \mathcal{T}_A

 $\sigma_{A,B}$ maps the class of ϕ in \mathcal{T}_B to the class of ϕ in \mathcal{T}_A

The pullback map

$$f: (S^2, A) \to (S^2, B)$$

$$A \subseteq B$$

$$\mathcal{T}_B$$
 $\sigma_{A,B}$ \mathcal{T}_A

 $\sigma_{A,B}$ maps the class of ϕ in \mathcal{T}_B to the class of ϕ in \mathcal{T}_A

The pullback map

$$f:(S^2,A)\to (S^2,B)$$

$$au_B$$
 au_A

$$A \subseteq B$$

$$\mathcal{T}_B$$
 $\sigma_{A,B}$ \mathcal{T}_A

 $\sigma_{A,B}$ maps the class of ϕ in \mathcal{T}_B to the class of ϕ in \mathcal{T}_A

The pullback map

$$f:(S^2,A)\to (S^2,B)$$

$$\mathcal{T}_B$$
 \mathcal{T}_A

$$(S^{2}, A)$$

$$\downarrow f$$

$$(S^{2}, B) \xrightarrow{\phi} (\mathbb{P}^{1}, \phi(B))$$

$$A \subseteq B$$

$$\mathcal{T}_B$$
 $\sigma_{A,B}$ \mathcal{T}_A

 $\sigma_{A,B}$ maps the class of ϕ in \mathcal{T}_B to the class of ϕ in \mathcal{T}_A

The pullback map

$$f:(S^2,A)\to (S^2,B)$$

$$\mathcal{T}_B$$
 \mathcal{T}_A

$$(S^{2}, A) \xrightarrow{\psi} (\mathbb{P}^{1}, \psi(A))$$

$$\downarrow^{f} \qquad \downarrow^{F}$$

$$(S^{2}, B) \xrightarrow{\phi} (\mathbb{P}^{1}, \phi(B))$$

$$A \subseteq B$$

$$\mathcal{T}_B$$
 $\sigma_{A,B}$ \mathcal{T}_A

 $\sigma_{A,B}$ maps the class of ϕ in \mathcal{T}_B to the class of ϕ in \mathcal{T}_A

The pullback map

$$f:(S^2,A)\to (S^2,B)$$

$$au_B$$
 au_A

$$(S^{2}, A) \xrightarrow{\psi} (\mathbb{P}^{1}, \psi(A))$$

$$\downarrow^{f} \qquad \downarrow^{F}$$

$$(S^{2}, B) \xrightarrow{\phi} (\mathbb{P}^{1}, \phi(B))$$

$$\sigma_f: [\phi] \mapsto [\psi]$$

$$\operatorname{Def}_{A}^{B}(f) \hookrightarrow \mathcal{T}_{B} \xrightarrow{\sigma_{A,B}} \mathcal{T}_{A} \xrightarrow{\operatorname{cv}(f) \subseteq B} A \subseteq B$$

$$(S^{2}, A) \xrightarrow{\psi} (\mathbb{P}^{1}, \psi(A))$$

$$\downarrow^{f} \qquad \downarrow^{F}$$

$$(S^{2}, B) \xrightarrow{\phi} (\mathbb{P}^{1}, \phi(B))$$

$$\operatorname{Def}_{A}^{B}(f) \hookrightarrow \mathcal{T}_{B} \xrightarrow{\sigma_{A,B}} \mathcal{T}_{A} \qquad \operatorname{cv}(f) \subseteq B$$

$$\phi|_A = \psi|_A$$
 and

 ϕ is isotopic to ψ rel A.

$$(S^{2}, A) \xrightarrow{\psi} (\mathbb{P}^{1}, \psi(A))$$

$$\downarrow^{f} \qquad \downarrow^{F}$$

$$(S^{2}, B) \xrightarrow{\phi} (\mathbb{P}^{1}, \phi(B))$$

$$\operatorname{Def}_{A}^{B}(f) \hookrightarrow \mathcal{T}_{B} \xrightarrow{\sigma_{A,B}} \mathcal{T}_{A} \qquad \operatorname{cv}(f) \subseteq B$$

$$A \subseteq B$$

$$\phi|_A = \psi|_A$$
 and

 ϕ is isotopic to ψ rel A.

$$(S^{2}, A) \xrightarrow{\psi} (\mathbb{P}^{1}, \psi(A))$$

$$\downarrow^{f} \qquad \downarrow^{F}$$

$$(S^{2}, B) \xrightarrow{\phi} (\mathbb{P}^{1}, \phi(B))$$

$$\operatorname{Def}_A^B(f) \neq \emptyset$$

$$f:(S^2,A)\to (S^2,B)$$
 is combinatorially equivalent to a rational map

The dynamical case

If A = B, Thurston proved:

Theorem. The space $\operatorname{Def}_B^B(f) \neq \emptyset$ if and only if the map $f:(S^2,B) \to (S^2,B)$ admits no obstructing multicurves.

Theorem. The space $Def_B^B(f)$ is connected.

The dynamical case

If A = B, Thurston proved:

Theorem. The space $\operatorname{Def}_B^B(f) \neq \emptyset$ if and only if the map $f:(S^2,B) \to (S^2,B)$ admits no obstructing multicurves.

Theorem. The space $Def_B^B(f)$ is connected.

Local structure

The following result is due to Epstein.

Theorem. Let $f: (\mathbb{P}^1, A) \to (\mathbb{P}^1, B)$ be a rational map which is not of Lattès type. Then $\operatorname{Def}_A^B(f)$ is a complex analytic submanifold of \mathcal{T}_B of dimension |B - A|.

A disconnected deformation space

$$\operatorname{Per}_{4}(0) \subseteq \operatorname{M}_{2}$$

$$0 \xrightarrow{2} \infty \longrightarrow 1 \longrightarrow a \qquad * \xrightarrow{2} b$$

$$A = \{0, 1, \infty, a\} \quad B = A \cup \{b\} \quad b \notin A$$

$$\dim(\operatorname{Def}_{A}^{B}(f)) = 1 \quad \dim(\mathcal{T}_{B}) = 2 \quad \dim(\mathcal{T}_{A}) = 1$$

Theorem. (H–K)

For $\langle f \rangle \in \operatorname{Per}_4(0)^*$, $\operatorname{Def}_A^B(f)$ has infinitely many connected components.

Tanya Firsova, Jeremy Kahn, and Nikita Selinger proved a related result

Work of Mary Rees

Moduli space

 $\mathcal{M}_A := \{ \text{injective } \varphi : A \hookrightarrow \mathbb{P}^1 \text{ up to postcomposition} \}$ with Möbius transformations}

 \mathcal{M}_A is a complex manifold, isomorphic to $\mathbb{C}^{|A|-3}$ — {finitely many hyperplanes}

Moduli space

 $\mathcal{M}_A := \{ \text{injective } \varphi : A \hookrightarrow \mathbb{P}^1 \text{ up to postcomposition} \}$ with Möbius transformations}

 \mathcal{M}_A is a complex manifold, isomorphic to $\mathbb{C}^{|A|-3}$ – {finitely many hyperplanes}

Modular group Mod_A isomorphic to pure mapping class group of (S^2, A)

The induced homomorphism

$$\sigma: \mathcal{T}_B \to \mathcal{T}_A$$

$$G_{\sigma} := \{g \in \text{Mod}_B \mid \text{there exists } g' \in \text{Mod}_A \text{ so that} \}$$

for all $\tau \in \mathcal{T}_B$, $\sigma(g \cdot \tau) = g' \cdot \sigma(\tau) \}$

The induced homomorphism

$$\sigma: \mathcal{T}_B \to \mathcal{T}_A$$

 $G_{\sigma} := \{g \in \text{Mod}_B \mid \text{there exists } g' \in \text{Mod}_A \text{ so that} \}$ for all $\tau \in \mathcal{T}_B$, $\sigma(g \cdot \tau) = g' \cdot \sigma(\tau) \}$

 $\Phi_{\sigma}: G_{\sigma} \to \mathrm{Mod}_A$ given by $\Phi_{\sigma}: g \mapsto g'$

 $\Phi_1: G_1 \to \mathrm{Mod}_A$

 $\Phi_2: G_2 \to \mathrm{Mod}_A$

$$e^{\gamma \mathcal{O}_{\mathcal{D}}^{\uparrow}} \to \mathcal{T}_{B} \underbrace{\sigma_{1}}_{\sigma_{2}} \mathcal{T}_{A}$$

$$\Phi_1: G_1 \to \mathrm{Mod}_A$$

$$\Phi_2: G_2 \to \mathrm{Mod}_A$$

$$\mathcal{D} := \{ \tau \in \mathcal{T}_B \mid \sigma_1(\tau) = \sigma_2(\tau) \}$$

$$S := \{ g \in G_1 \cap G_2 \mid \Phi_1(g) = \Phi_2(g) \}$$

Let $g \in G_1 \cap G_2$. TFAE:

$$(1) g \in S$$

(2)
$$g \cdot \mathcal{D} \cap \mathcal{D} \neq \emptyset$$

(3)
$$g \cdot \mathcal{D} = \mathcal{D}$$

$$\mathcal{D} \hookrightarrow \mathcal{T}_B \xrightarrow{\sigma_1} \mathcal{T}_A$$

$$\Phi_1: G_1 \to \mathrm{Mod}_A$$

$$\Phi_2: G_2 \to \mathrm{Mod}_A$$

$$\mathcal{D} := \{ \tau \in \mathcal{T}_B \mid \sigma_1(\tau) = \sigma_2(\tau) \}$$

$$S := \{ g \in G_1 \cap G_2 \mid \Phi_1(g) = \Phi_2(g) \}$$

$$\begin{array}{ccc}
\mathcal{D} & \longrightarrow \mathcal{T}_B \\
\downarrow & & \downarrow \\
\mathcal{D}/S & \longrightarrow \mathcal{T}_B/S
\end{array}$$

Let $g \in G_1 \cap G_2$. TFAE:

$$(1) g \in S$$

(2)
$$g \cdot \mathcal{D} \cap \mathcal{D} \neq \emptyset$$

$$(3) g \cdot \mathcal{D} = \mathcal{D}$$

$$\mathcal{D} \xrightarrow{} \mathcal{T}_{B} \qquad \text{Let } \circledast \in \mathcal{D}$$

$$\downarrow \qquad \qquad \qquad \mathcal{D}_{0} := \text{the component of } \mathcal{D} \text{ containing } \circledast$$

$$\mathcal{D}/S \xrightarrow{} \mathcal{T}_{B}/S \qquad E := \{g \in S \mid g \cdot \mathcal{D}_{0} = \mathcal{D}_{0}\}$$

 \mathcal{D} is connected if and only if E = S

Proposition. If \mathcal{D}/S is connected, there is a bijection between the connected components of \mathcal{D} and the cosets of E in S.

$$\mathcal{T}_B$$
 σ_f
 σ_A
 $\sigma_{A,B}$

$$\Phi_f: G_f \to \mathrm{Mod}_A$$

 G_f contains the liftable mapping classes

$$\mathcal{D} = \mathrm{Def}_A^B(f)$$

$$\Phi_{A,B}: G_{A,B} \to Mod_A$$
$$G_{A,B} = Mod_B$$

$$\mathcal{T}_B$$
 σ_f
 σ_A
 $\sigma_{A,B}$

$$\Phi_f: G_f \to \mathrm{Mod}_A$$

 G_f contains the liftable mapping classes

$$\mathcal{D} = \mathrm{Def}_A^B(f)$$

$$\Phi_{A,B}: G_{A,B} \to \operatorname{Mod}_{A}$$

$$G_{A,B} = \operatorname{Mod}_{B}$$

$$\mathcal{D} \longrightarrow \mathcal{T}_{B} \longrightarrow \mathcal{T}_{A}$$

$$\mathcal{D}/S \hookrightarrow \mathcal{T}_{B}/S$$

$$\mathcal{T}_{B}/G_{f} \longrightarrow \mathcal{T}_{A}$$

$$\mathcal{M}_{B} \longrightarrow \mathcal{M}_{A}$$

$$\Phi_f: G_f \to \mathrm{Mod}_A$$

 G_f contains the liftable mapping classes

$$\mathcal{D} = \mathrm{Def}_A^B(f)$$

 \mathcal{D}/S maps to the equalizer of the two maps $\mathcal{T}_B/\mathrm{G}_f o \mathcal{M}_A$

$$\Phi_{A,B}: G_{A,B} \to \operatorname{Mod}_{A}$$

$$G_{A,B} = \operatorname{Mod}_{B}$$

$$\mathcal{D} \longrightarrow \mathcal{T}_{B} \longrightarrow \mathcal{T}_{A}$$

$$\mathcal{D}/S \longrightarrow \mathcal{T}_{B}/S$$
injective
$$\mathcal{T}_{B}/G_{f} \longrightarrow \mathcal{M}_{A}$$

For our $f: (\mathbb{P}^1, A) \to (\mathbb{P}^1, B)$, $\circledast = [\mathrm{id}] \in \mathcal{D}$ $\mathcal{D}/\mathrm{S} \text{ is connected}$

For our
$$f: (\mathbb{P}^1, A) \to (\mathbb{P}^1, B)$$
, $\circledast = [\mathrm{id}] \in \mathcal{D}$ \mathcal{D}/S is connected $\mathcal{W} := \mathcal{T}_B/\mathrm{G}_f$ $\mathcal{V} := \mathrm{image\ of\ } \mathcal{D}/\mathrm{S\ in\ } \mathcal{W}$

For our
$$f: (\mathbb{P}^1, A) \to (\mathbb{P}^1, B)$$
, $\circledast = [\mathrm{id}] \in \mathcal{D}$ \mathcal{D}/S is connected $\mathcal{W} := \mathcal{T}_B/\mathrm{G}_f$ $\mathcal{V} := \mathrm{image\ of\ } \mathcal{D}/\mathrm{S}\ \mathrm{in\ } \mathcal{W}$ $\mathcal{V} = \mathrm{Equalizer}(\mu_A, \mu_{A,B} \circ \mu_B)$

$$\mathcal{D} \longrightarrow \mathcal{T}_B$$
 \mathcal{T}_A
 $\mathcal{D}/S \hookrightarrow \mathcal{T}_B/S$
injective

 \mathcal{W}
 μ_B
 \mathcal{M}_B
 $\mu_{A,B}$
 \mathcal{M}_A

For our
$$f: (\mathbb{P}^1, A) \to (\mathbb{P}^1, B)$$
, $\circledast = [\mathrm{id}] \in \mathcal{D}$ \mathcal{D}/S is connected $\mathcal{W} := \mathcal{T}_B/\mathrm{G}_f$ $\mathcal{V} := \mathrm{image\ of\ } \mathcal{D}/\mathrm{S\ in\ } \mathcal{W}$ $\mathcal{V} = \mathrm{Equalizer}(\mu_A, \mu_{A,B} \circ \mu_B)$

 $S = \text{Equalizer}((\mu_A)_*, (\mu_{A,B} \circ \mu_B)_*)$

$$\operatorname{Mod}_{B} = \pi_{1}(\mathcal{M}_{B}, \circledast_{B})$$
 $\operatorname{Mod}_{A} = \pi_{1}(\mathcal{M}_{A}, \circledast_{A})$ slogan?
 $G_{f} = \pi_{1}(\mathcal{W}, \circledast_{\mathcal{V}})$
 $E = \operatorname{image of} \pi_{1}(\mathcal{V}, \circledast_{\mathcal{V}}) \operatorname{in} \pi_{1}(\mathcal{W}, \circledast_{\mathcal{V}})$

Our example

$$f: (\mathbb{P}^1, A) \to (\mathbb{P}^1, B)$$

$$f: z \mapsto \frac{(4z-3)(z+2)}{4z^2}$$

$$A = \{0, 1, \infty, 3/4\}$$
 $B = A \cup \{121/96\}$

Our example

$$f: (\mathbb{P}^1, A) \to (\mathbb{P}^1, B)$$

$$f: z \mapsto \frac{(4z-3)(z+2)}{4z^2}$$

$$A = \{0, 1, \infty, 3/4\}$$
 $B = A \cup \{121/96\}$

 \mathcal{W}

$$(x, y, z, F) \leftrightarrow (x, y)$$

$$F(t) = \frac{(x-t)(-tx+y+t+x-1)}{(x-1)t^2}$$

$$z = \frac{(-x^2 + y + 2x - 1)^2}{4x(y - 1 + x)(1 - x)}$$

Our example

$$f: (\mathbb{P}^1, A) \to (\mathbb{P}^1, B)$$

$$f: z \mapsto \frac{(4z-3)(z+2)}{4z^2}$$

$$A = \{0, 1, \infty, 3/4\}$$
 $B = A \cup \{121/96\}$

$$\mathcal{W}$$

$$(x, y, z, F) \leftrightarrow (x, y)$$

$$(x,y)$$

$$x$$

$$(y,z) \longrightarrow y$$

$$F(t) = \frac{(x-t)(-tx+y+t+x-1)}{(x-1)t^2}$$

$$z = \frac{(-x^2 + y + 2x - 1)^2}{4x(y - 1 + x)(1 - x)}$$