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Part II



Using coordinates given by the identifying M
A

⇥M
A

= C2 \ L,
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

(x, y) 7! x.

The forgetful map µB

A

on Moduli spaces is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := �(L) in C2. The intersection L1 \ L2

coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the intersections L1 \ W and
L2 \W is isomorphic to the complement of finitely many points in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
Fix generators r and s of the free group ⇡1(MA

,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.
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Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
10

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L = ⇡1(W ,~V),

S = image of ⇡1(TB

/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};

that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA

,~
A

).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�
f

, �
A,B

: T
B

! T
A

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�
f

: G
f

! Mod
A

and �
A,B

: G
A,B

! Mod
A

.

The group G
A,B

= Mod
B

, and the homomorphism �
A,B

: Mod
B

! Mod
A

is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group G

f

and the homomorphism �
f

: G
f

!
Mod

A

, except for the fact that the group G
f

contains the subgroup of liftable mapping classes
as defined in Section 2. Since the subgroup of liftable mapping classes has finite index in
Mod

B

[KPS], so G
f

has finite index in Mod
B

.
The group L = G

f

, and the group S is the equalizer of �
f

and �
A,B

. The spaceW = T
B

/L,
and there are induced maps

p1 = �0
f

: W ! M
A

and p2 = (�
A,B

)0 � q : W ! M
A

where q : W ! M
B

is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefB
A

(f). We have:

• the space V is the image of DefB
A

(f) in W , and it is contained in the equalizer of
p1, p2 : W ! M

A

,
• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA

,~
A

),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)⇤. For these examples, the space V
is connected (see Corollary 4.3). We will then show that E has infinite index in S, thereby
establishing Theorem 1.2 with Proposition 3.4.

6

consisting of hfi for which the critical points of f do not belong to the same periodic cycle.
(The normalization of the curve Per4(0)⇤ is studied in [R] where it is denoted as V4,0).
Let f : P1 ! P1 represent an element of Per4(0)⇤. Define the set A to be the set of points

in a superattracting 4-cycle, and define the set B := A [ cv(f), where cv(f) is the set of
critical values of f . Consider the associated deformation space DefB

A

(f). By Theorem 1.1,
DefB

A

(f) is a 1-dimensional submanifold of T
B

which is 2-dimensional. The following theorem
is our main result.

Theorem 1.2 (Main Theorem). For hfi 2 Per4(0)⇤, the space DefB
A

(f) has infinitely many

connected components.

The proof of Theorem 1.2 reduces to a comparison of the stabilizer of DefB
A

(f) in the au-
tomorphism group Mod

B

of the Teichmüller space T
B

, with the stabilizer of a connected
component of DefB

A

(f). This is essentially a fundamental group computation which we ulti-
mately complete in Section 4.

Remark 1.3. The authors learned that Firsova, Kahn, and Selinger proved a related result
in [FKS]. Their work was completed independently, and at the same time that the authors
proved Theorem 1.2.

2. Preliminaries

2.1. Moduli space. Let A ✓ S2 be a finite set containing at least 3 points. Themoduli space

M
A

of the pair (S2, A) is the space of injective maps ' : A ,! P1 modulo postcomposition by
Möbius transformations. The spaceM

A

is a complex manifold isomorphic to the complement
of finitely many hyperplanes in C|A|�3.
If � represents an element of the Teichmüller space T

A

, the restriction � 7! �|
A

induces a
universal covering map T

A

! M
A

which is a local biholomorphism with respect to the com-
plex structures on T

A

and M
A

. The group of deck transformations is naturally isomorphic
to the pure mapping class group Mod

A

, the quotient of the group of orientation-preserving
homeomorphisms (S2, A) ! (S2, A) fixing A pointwise by the subgroup of such maps iso-
topic to the identity relative to A. This group acts freely and properly discontinuously on
T
A

.

2.2. The pullback map. Let f : (S2, A) ! (S2, B) be an orientation-preserving branched
cover so that A,B ✓ S2 are finite sets containing at least 3 points, and B contains the
critical values of f . The map �

f

: T
B

! T
A

is defined in the following way. Let � : S2 ! P1

be an orientation-preserving homeomorphism. By the Uniformization Theorem, there exist

• a homeomorphism  : S2 ! P1, and
• a rational map F : P1 ! P1,

such that the following diagram commutes.

(S2, A)

f

✏✏

 

//

�
P1, (A)

�

F

✏✏

(S2, B)
�

//

�
P1,�(B)

�

The map �
f

: T
B

! T
A

is defined as �
f

: [�] 7! [ ].
3

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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/L/S

Using coordinates given by the identifying M
A

⇥M
A

= C2 \ L,
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

(x, y) 7! x.

The forgetful map µB

A

on Moduli spaces is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
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� : C2 ! C2

(x, y) 7! (y, x),
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coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the intersections L1 \ W and
L2 \W is isomorphic to the complement of finitely many points in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .
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,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.

10

i

Theorem: 

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏
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= �
t

|
A

. This
implies [ 

t

] = �
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As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB
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(f) in the
whole deck group Mod
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for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
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be the stabilizer of DefB
A

(f) in Mod
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DefB
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(f)

✏✏

� �
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✏✏

DefB
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✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
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B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A
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, which can be identified with C2 � L, where L = L
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where x, y are the coordinates in C2.

9

has infinitely many components.

Fix 

1.3. A family of quadratic rational maps. Let M2 be the moduli space of quadratic
rational maps: the space of quadratic rational maps up to conjugation by Möbius trans-
formations. The algebraic curve Per4(0) ✓ M2 consists of conjugacy classes of maps with
a superattracting cycle of period 4. That is, for hfi 2 Per4(0) the map f : P1 ! P1 has
a critical point which is periodic of period 4. Define Per4(0)⇤ ✓ Per4(0) to be the subset
consisting of hfi for which the critical points of f do not belong to the same periodic cycle.
The normalization of the curve Per4(0)⇤ is studied in [R] where it is denoted as V4,0.
Let f : P1 ! P1 represent an element of Per4(0)⇤. Define the set A to be the set of points

in a superattracting 4-cycle, and define the set B := A [ cv(f), where cv(f) is the set of
critical values of f . Consider the associated deformation space DefB

A

(f). By Theorem 1.3,
DefB

A

(f) is a 1-dimensional submanifold of T
B

which is 2-dimensional. The following theorem
is our main result.

Theorem 1.4 (Main Theorem). For hfi 2 Per4(0)⇤, the space DefB
A

(f) has infinitely many

connected components.

The proof of Theorem 1.4 reduces to a comparison of the stabilizer of DefB
A

(f) in the au-
tomorphism group Mod

B

of the Teichmüller space T
B

, with the stabilizer of a connected
component of DefB

A

(f). Section 2 presents necessary background definitions and properties.
A main tool in this paper is an intermediate space W defined in Section 3 which plays an
important role in the comparison of the pullback map �

f

and the forgetful map �inc. This
space also appears in several previous works [DH], [BN], [BEKP], [K], [L], [KPS]. For our
particular family of examples, we study the topology of W , and make explicit fundamental
group computations in Section 4.

Remark 1.2. The authors learned that T. Firsova, J. Kahn, and N. Selinger proved a related
result in [FKS]. Their work was completed independently, and at the same time that the
authors proved Theorem 1.4.

Acknowledgments. We would like to thank M. Astorg, L. Bartholdi, A. Epstein, J. Hub-
bard, C. McMullen, and D. Thurston for helpful conversations related to this work.

2. Preliminaries

2.1. Teichmüller space. Given a finite set A ✓ P1 which contains at least 3 points, we
define the Teichmüller space T

A

:= Teich(P1, A) as the quotient of the space of all orientation-
preserving homeomorphisms � : P1 ! P1 by the equivalence relation ⇠ where �1 ⇠ �2 if
there exists a Möbius transformation ⌫ such that ⌫ � �1 = �2 on A, and ⌫ � �1 is isotopic
to �2 relative to A. The space T

A

is a complex manifold of dimension |A|� 3, and it comes
with a canonical basepoint ~ := [id].
The moduli space M

A

of the pair (P1, A) is the space of injective maps ' : A ,! P1

modulo postcomposition by Möbius transformations. The space M
A

is a complex manifold
isomorphic to the complement of finitely many hyperplanes in C|A|�3.
If � represents an element of the Teichmüller space T

A

, the restriction � 7! �|
A

induces a
universal covering map T

A

! M
A

which is a local biholomorphism with respect to the com-
plex structures on T

A

and M
A

. The group of deck transformations is naturally isomorphic
to the pure mapping class group Mod

A

, the quotient of the group of orientation-preserving
homeomorphisms h : P1 ! P1 fixing A pointwise by the subgroup of such maps isotopic to
the identity relative to A. This group acts freely and properly discontinuously on T

A

.
3

Recall

Enough to show that the index of E:=                    in S

To simplify the arguments that follow, we hereafter assume that V and (equivalently)
DefB

A

(f)/S
f

are connected. There is no loss of generality in the following, since by definition
we have ⇡1(V ,~V) := ⇡1(V0,~V), where V0 is the connected component of V containing ~V .
We have the commutative diagram:

⇡1(Def
B

A

(f)/S
f

,~)
◆⇤
//

⌫⇤ '
✏✏

⇡1(TB

/S
f

,~)
� _

!⇤
✏✏

⇡1(V ,~V)
i⇤

// ⇡1(W ,~V)

Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L
f

= ⇡1(W ,~V),

S
f

= !⇤(⇡1(TB

/S
f

,~)), and

E
f

= i⇤(⇡1(V ,~V)).

This gives the commutative diagram

⇡1(Def
B

A

(f)/S
f

,~)
(!�◆)⇤

//

i⇤
✏✏

S
f� _

✏✏

E
f

� �
// L

f

Proposition 4.4. The map ◆⇤ is injective if and only if i⇤ is injective, and ◆⇤ is surjective

if and only if E
f

= S
f

as subgroups of L
f

.

Corollary 4.5. The deformation space DefB
A

(f) is connected if and only if (! � ◆)⇤ is sur-

jective, and D0 (the connected component of DefB
A

(f) containing ~) is simply-connected if

and only if i⇤ is injective.

Using the above identifications and Diagram (1), the maps

L
f

m
M

||
x

x

x

x

x

x

x

x

x �f

""

F

F

F

F

F

F

F

F

F

Mod
B

�B
A

//_______ Mod
A

on subgroups translate to the maps induced on fundamental groups

⇡1(W ,~V)
(µB)⇤

wwn

n

n

n

n

n

n

n

n

n

n

n

(µA)⇤

''

P

P

P

P

P

P

P

P

P

P

P

P

⇡1(MB

,~
B

)
(µB

A)⇤

//___________ ⇡1(MA

,~
A

)

and we can rewrite S
f

as

S
f

= {� 2 ⇡1(W ,~V) |
�
µB

A

� µ
B

�
⇤ (�) = (µ

A

)⇤(�)} = Equalizer((µB

A

� µ
B

)⇤, (µA

)⇤).
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is infinite.

To prove the Theorem:



3.4. The geometric stabilizer. Recall that D0 ✓ DefB
A

(f) is the connected component
containing ~. The geometric stabilizer of f : (P1, A) ! (P1, B) is the subgroup

E
f

:= {g 2 S
f

| g · D0 = D0}.
The following proposition is essential to the proof of Theorem 1.4.

Proposition 3.4. If DefB
A

(f)/S
f

is connected, there is a bijection between the connected

components of DefB
A

(f) and the (left) cosets of E
f

in S
f

.

To prove Theorem 1.4, we will compare S
f

and E
f

inside the fundamental group of W .

3.5. Quotients. Consider the composition ⌫ := ! � ◆

DefB
A

(f)/S
f

� � ◆

//

⌫

77

T
B

/S
f

!

//W = T
B

/L
f

where the map ◆ is induced by the inclusion DefB
A

(f) ,! T
B

, and ! is the covering map
corresponding to S

f

✓ L
f

. We define:

V := ⌫(DefB
A

(f)/S
f

) ✓ W .

Since Mod
B

acts freely and properly discontinuously on T
B

, W is a connected manifold of
dimension |B|�3. If f : (P1, A) ! (P1, B) is not a Lattès map, then by Theorem 1.3, DefB

A

(f)
is a (possibly disconnected) submanifold of T

B

, in which case V is a (possibly disconnected)
submanifold of W of dimension |B � A|.
Proposition 3.5. The map ⌫ : DefB

A

(f)/S
f

! W is an embedding.

Proof. Suppose that ⌧, ⌧ 0 2 DefB
A

(f) satisfy g ·⌧ = ⌧ 0 for some g 2 L
f

. Then by Corollary 3.3,
g 2 S

f

, so ⌫ is injective. Since ◆ is an embedding and ! is a covering map, ⌫ is an embedding.
⇤

Recall that q : T
B

! T
B

/S
f

is the quotient map. The following corollary is immediate.

Corollary 3.6. The map

(⌫ � q)|DefBA(f) : Def
B

A

(f) ! V
is a regular covering map.

As mentioned in Section 3.1, the space W comes equipped with maps

µ
B

: W ! M
B

and µ
A

: W ! M
A

so that Diagram (3), excluding the dashed arrow, commutes. The map µ
B

: W ! M
B

is a
finite covering map, while the map µ

A

: W ! M
A

can be just about anything [BEKP].

T
B

�f
//

✏✏

""

D

D

D

D

D

D

D

D

T
A

✏✏

W
µB

||
z

z

z

z

z

z

z

z

µA

""

D

D

D

D

D

D

D

D

M
B

µ

B
A

//_______ M
A

(3)
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!
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B

, and ! is the covering map
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. We define:

V := ⌫(DefB
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(f)/S
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Since Mod
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acts freely and properly discontinuously on T
B

, W is a connected manifold of
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! W is an embedding.

Proof. Suppose that ⌧, ⌧ 0 2 DefB
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(f) satisfy g ·⌧ = ⌧ 0 for some g 2 L
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g 2 S

f

, so ⌫ is injective. Since ◆ is an embedding and ! is a covering map, ⌫ is an embedding.
⇤

Recall that q : T
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! T
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is the quotient map. The following corollary is immediate.
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(⌫ � q)|DefBA(f) : Def
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(f) ! V
is a regular covering map.
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is a
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containing ~. The geometric stabilizer of f : (P1, A) ! (P1, B) is the subgroup
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:= {g 2 S
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(f) and the (left) cosets of E
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(f) satisfy g ·⌧ = ⌧ 0 for some g 2 L
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, so ⌫ is injective. Since ◆ is an embedding and ! is a covering map, ⌫ is an embedding.
⇤
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! T
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is the quotient map. The following corollary is immediate.
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(⌫ � q)|DefBA(f) : Def
B

A

(f) ! V
is a regular covering map.

As mentioned in Section 3.1, the space W comes equipped with maps

µ
B

: W ! M
B

and µ
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: W ! M
A

so that Diagram (3), excluding the dashed arrow, commutes. The map µ
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B

is a
finite covering map, while the map µ
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loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L = ⇡1(W ,~V),

S = image of ⇡1(TB

/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};

that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA

,~
A

).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�
f

, �
A,B

: T
B

! T
A

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�
f

: G
f

! Mod
A

and �
A,B

: G
A,B

! Mod
A

.

The group G
A,B

= Mod
B

, and the homomorphism �
A,B

: Mod
B

! Mod
A

is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group G

f

and the homomorphism �
f

: G
f

!
Mod

A

, except for the fact that the group G
f

contains the subgroup of liftable mapping classes
as defined in Section ??. Since the subgroup of liftable mapping classes has finite index in
Mod

B

[?], so G
f

has finite index in Mod
B

.
The group L = G

f

, and the group S is the equalizer of �
f

and �
A,B

. The spaceW = T
B

/L,
and there are induced maps

p1 = �0
f

: W ! M
A

and p2 = (�
A,B

)0 � q : W ! M
A

where q : W ! M
B

is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefB
A

(f). We have:

• the space V is the image of DefB
A

(f) in W , and it is contained in the equalizer of
p1, p2 : W ! M

A

,
• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA

,~
A

),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
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as a path on   

3.4. The geometric stabilizer. Recall that D0 ✓ DefB
A

(f) is the connected component
containing ~. The geometric stabilizer of f : (P1, A) ! (P1, B) is the subgroup

E
f

:= {g 2 S
f

| g · D0 = D0}.
The following proposition is essential to the proof of Theorem 1.4.

Proposition 3.4. If DefB
A

(f)/S
f

is connected, there is a bijection between the connected

components of DefB
A

(f) and the (left) cosets of E
f

in S
f

.

To prove Theorem 1.4, we will compare S
f

and E
f

inside the fundamental group of W .

3.5. Quotients. Consider the composition ⌫ := ! � ◆

DefB
A

(f)/S
f

� � ◆

//

⌫
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T
B

/S
f

!

//W = T
B

/L
f

where the map ◆ is induced by the inclusion DefB
A

(f) ,! T
B

, and ! is the covering map
corresponding to S

f

✓ L
f

. We define:

V := ⌫(DefB
A

(f)/S
f

) ✓ W .

Since Mod
B

acts freely and properly discontinuously on T
B

, W is a connected manifold of
dimension |B|�3. If f : (P1, A) ! (P1, B) is not a Lattès map, then by Theorem 1.3, DefB

A

(f)
is a (possibly disconnected) submanifold of T

B

, in which case V is a (possibly disconnected)
submanifold of W of dimension |B � A|.
Proposition 3.5. The map ⌫ : DefB

A

(f)/S
f

! W is an embedding.

Proof. Suppose that ⌧, ⌧ 0 2 DefB
A

(f) satisfy g ·⌧ = ⌧ 0 for some g 2 L
f

. Then by Corollary 3.3,
g 2 S

f

, so ⌫ is injective. Since ◆ is an embedding and ! is a covering map, ⌫ is an embedding.
⇤

Recall that q : T
B

! T
B

/S
f

is the quotient map. The following corollary is immediate.

Corollary 3.6. The map

(⌫ � q)|DefBA(f) : Def
B

A

(f) ! V
is a regular covering map.

As mentioned in Section 3.1, the space W comes equipped with maps

µ
B

: W ! M
B

and µ
A

: W ! M
A

so that Diagram (3), excluding the dashed arrow, commutes. The map µ
B

: W ! M
B

is a
finite covering map, while the map µ

A

: W ! M
A

can be just about anything [BEKP].
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//_______ M
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2.1. Fundamental groups. In this section, we review some notions from the theory of
covering spaces that will be required for the proof of Theorem 3.
The canonical basepoint ~ of T

B

lies in D
f

and determines basepoints

~V 2 V
f

✓ W
f

, ~
B

2 M
B

, and ~
A

2 M
A

.

Proposition 2.2. The basepoints determined by ~ define identifications

PMod
B

= ⇡
1

(M
B

,~
B

)

PMod
A

= ⇡
1

(M
A

,~
A

)

G
f

= ⇡
1

(W
f

,~V)

S
f

= !⇤(⇡1

(T
B

/S
f

,~)) ✓ G
f

.

such that

�
f

= (µ
A

)⇤, �B

A

= (µB

A

)⇤, and �B

A

|
Gf

=
�
µB

A

� µ
B

�
⇤ .

Proof. The proofs that

�B

A

= (µB

A

)⇤ and �B

A

|
Gf

=
�
µB

A

� µ
B

�
⇤

are immediate from the definitions and from the identifications above. We will prove that
�

f

= (µ
A

)⇤. Let � be an oriented loop in W
f

based at ~V , and set ↵ := µ
A

(�), an
oriented loop in M

A

based at ~
A

. By the identifications above, [�] 2 ⇡
1

(W
f

,~V) determines
some g 2 G

f

, and [↵] 2 ⇡
1

(M
A

,~
A

) determines some h 2 PMod
A

. Because Diagram (2)
commutes, we have

�
f

(g ·~) = h · �
f

(~).

Because g 2 G
f

, we must have h = �
f

(g). ⇤

Proposition 2.3. We have

S
f

= {� 2 G
f

| (µ
A

)⇤(�) =
�
µB

A

� µ
B

�
⇤ (�)}.

Proof. This is a direct consequence of Proposition 2.2. ⇤

Let i : V
f

,! W
f

be the inclusion. We have the following commutative diagrams.

(D
f

/S
f

,~)

!�◆
✏✏

� � ◆ // (T
B

/S
f

,~)

!

✏✏

(V
f

,~V)
� � i // (W

f

,~V)

⇡
1

(D
f

/S
f

,~)
◆⇤ //

(!�◆)⇤
✏✏

⇡
1

(T
B

/S
f

,~)

!⇤
✏✏

⇡
1

(V
f

,~V)
i⇤// !⇤(⇡1

(T
B

/S
f

,~)) = S
f

It follows from Proposition 1.1 the map (! � ◆)⇤ is an isomorphism. As a consequence we
have the following result.

Proposition 2.4. The map ◆⇤ is injective (respectively surjective) if and only if i⇤ is injective
(respectively surjective).
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emanating  
from the (canonical) basepoint *f

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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in



3.4. The geometric stabilizer. Recall that D0 ✓ DefB
A

(f) is the connected component
containing ~. The geometric stabilizer of f : (P1, A) ! (P1, B) is the subgroup

E
f

:= {g 2 S
f

| g · D0 = D0}.
The following proposition is essential to the proof of Theorem 1.4.

Proposition 3.4. If DefB
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is connected, there is a bijection between the connected

components of DefB
A

(f) and the (left) cosets of E
f

in S
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.

To prove Theorem 1.4, we will compare S
f

and E
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inside the fundamental group of W .
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The following proposition is essential to the proof of Theorem 1.4.

Proposition 3.4. If DefB
A

(f)/S
f

is connected, there is a bijection between the connected

components of DefB
A

(f) and the (left) cosets of E
f

in S
f

.

To prove Theorem 1.4, we will compare S
f

and E
f

inside the fundamental group of W .

3.5. Quotients. Consider the composition ⌫ := ! � ◆

DefB
A

(f)/S
f
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⌫

77

T
B

/S
f
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//W = T
B

/L
f

where the map ◆ is induced by the inclusion DefB
A

(f) ,! T
B

, and ! is the covering map
corresponding to S

f

✓ L
f

. We define:

V := ⌫(DefB
A

(f)/S
f

) ✓ W .

Since Mod
B

acts freely and properly discontinuously on T
B

, W is a connected manifold of
dimension |B|�3. If f : (P1, A) ! (P1, B) is not a Lattès map, then by Theorem 1.3, DefB

A

(f)
is a (possibly disconnected) submanifold of T

B

, in which case V is a (possibly disconnected)
submanifold of W of dimension |B � A|.
Proposition 3.5. The map ⌫ : DefB

A

(f)/S
f

! W is an embedding.

Proof. Suppose that ⌧, ⌧ 0 2 DefB
A

(f) satisfy g ·⌧ = ⌧ 0 for some g 2 L
f

. Then by Corollary 3.3,
g 2 S

f

, so ⌫ is injective. Since ◆ is an embedding and ! is a covering map, ⌫ is an embedding.
⇤

Recall that q : T
B

! T
B

/S
f

is the quotient map. The following corollary is immediate.

Corollary 3.6. The map

(⌫ � q)|DefBA(f) : Def
B
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(f) ! V
is a regular covering map.

As mentioned in Section 3.1, the space W comes equipped with maps

µ
B

: W ! M
B

and µ
A

: W ! M
A

so that Diagram (3), excluding the dashed arrow, commutes. The map µ
B

: W ! M
B

is a
finite covering map, while the map µ

A

: W ! M
A

can be just about anything [BEKP].
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loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L = ⇡1(W ,~V),

S = image of ⇡1(TB

/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};

that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA

,~
A

).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�
f

, �
A,B

: T
B

! T
A

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�
f

: G
f

! Mod
A

and �
A,B

: G
A,B

! Mod
A

.

The group G
A,B

= Mod
B

, and the homomorphism �
A,B

: Mod
B

! Mod
A

is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group G

f

and the homomorphism �
f

: G
f

!
Mod

A

, except for the fact that the group G
f

contains the subgroup of liftable mapping classes
as defined in Section ??. Since the subgroup of liftable mapping classes has finite index in
Mod

B

[?], so G
f

has finite index in Mod
B

.
The group L = G

f

, and the group S is the equalizer of �
f

and �
A,B

. The spaceW = T
B

/L,
and there are induced maps

p1 = �0
f

: W ! M
A

and p2 = (�
A,B

)0 � q : W ! M
A

where q : W ! M
B

is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefB
A

(f). We have:

• the space V is the image of DefB
A

(f) in W , and it is contained in the equalizer of
p1, p2 : W ! M

A

,
• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA

,~
A

),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)

⇤. For these examples, the space V
is connected (see Corollary ??). We will then show that E has infinite index in S, thereby
establishing Theorem ?? with Proposition ??.
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2.1. Fundamental groups. In this section, we review some notions from the theory of
covering spaces that will be required for the proof of Theorem 3.
The canonical basepoint ~ of T

B

lies in D
f

and determines basepoints

~V 2 V
f

✓ W
f

, ~
B

2 M
B

, and ~
A

2 M
A

.

Proposition 2.2. The basepoints determined by ~ define identifications

PMod
B

= ⇡
1

(M
B

,~
B

)

PMod
A

= ⇡
1

(M
A

,~
A

)

G
f

= ⇡
1

(W
f

,~V)

S
f

= !⇤(⇡1

(T
B

/S
f

,~)) ✓ G
f

.

such that

�
f

= (µ
A

)⇤, �B

A

= (µB

A

)⇤, and �B

A

|
Gf

=
�
µB

A

� µ
B

�
⇤ .

Proof. The proofs that

�B

A

= (µB

A

)⇤ and �B

A

|
Gf

=
�
µB

A

� µ
B

�
⇤

are immediate from the definitions and from the identifications above. We will prove that
�

f

= (µ
A

)⇤. Let � be an oriented loop in W
f

based at ~V , and set ↵ := µ
A

(�), an
oriented loop in M

A

based at ~
A

. By the identifications above, [�] 2 ⇡
1

(W
f

,~V) determines
some g 2 G

f

, and [↵] 2 ⇡
1

(M
A

,~
A

) determines some h 2 PMod
A

. Because Diagram (2)
commutes, we have

�
f

(g ·~) = h · �
f

(~).

Because g 2 G
f

, we must have h = �
f

(g). ⇤

Proposition 2.3. We have

S
f

= {� 2 G
f

| (µ
A

)⇤(�) =
�
µB

A

� µ
B

�
⇤ (�)}.

Proof. This is a direct consequence of Proposition 2.2. ⇤

Let i : V
f

,! W
f

be the inclusion. We have the following commutative diagrams.

(D
f

/S
f

,~)

!�◆
✏✏

� � ◆ // (T
B

/S
f

,~)

!

✏✏

(V
f

,~V)
� � i // (W

f

,~V)

⇡
1

(D
f

/S
f

,~)
◆⇤ //

(!�◆)⇤
✏✏

⇡
1

(T
B

/S
f

,~)

!⇤
✏✏

⇡
1

(V
f

,~V)
i⇤// !⇤(⇡1

(T
B

/S
f

,~)) = S
f

It follows from Proposition 1.1 the map (! � ◆)⇤ is an isomorphism. As a consequence we
have the following result.

Proposition 2.4. The map ◆⇤ is injective (respectively surjective) if and only if i⇤ is injective
(respectively surjective).
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need not map to the same point 

where the vertical arrows are quotient maps and ~ is the equivalence class in the quotient
spaces containing ~.

Proposition 2.1. Suppose that D
f

/S
f

is connected. Then D
f

is connected if and only if the

induced map on fundamental groups

◆⇤ : ⇡1

(D
f

/S
f

,~) ! ⇡
1

(T
B

/S
f

,~)

is surjective; the components of D
f

are simply-connected if and only if ◆⇤ is injective.

Proof. The proof follows from standard facts from covering space theory. The covering map
q : (T

B

,~) ! (T
B

/S
f

,~) is the regular cover defined by an epimorphism

↵ : ⇡
1

(T
B

/S
f

,~) ! S
f

.

Since T
B

is simply-connected, ↵ is an isomorphism, and q�1(~) has a natural identification
with the images of ~ under the action of S

f

. Consider the connected component X of
q�1(D

f

/S
f

) containing ~. Then q|
X

: (X,~) ! (D
f

/S
f

,~) is the regular cover defined by
the composition ↵� ◆⇤, and the image H is the group of covering transformations of q|

X

. The
space X equals the entire preimage D

f

/S
f

if and only if it contains the entire fiber q�1(~),
which is true if and only if H = S

f

. This proves part one of the statement.
For the second part, the fundamental group of X is the kernel of ↵�◆⇤. Since ↵ is injective,

⇡
1

(X,~) is the trivial group if and only if ◆⇤ is injective. ⇤

The quotient W
f

:= T
B

/G
f

is a connected complex manifold of dimension |B| � 3, and
the quotient D

f

/S
f

is a (possibly disconnected) complex submanifold of T
B

/S
f

of dimension
|B � A|. The space W

f

comes equipped with maps

µ
B

: W
f

! M
B

and µ
A

: W
f

! M
A

so that the diagram below commutes.

D
f

� � ◆ //

p

✏✏

T
B

�f //

q

✏✏

T
A

✏✏

D
f

/S
f

� � ◆ // T
B

/S
f

!

✏✏

W
f

:= T
B

/G
f

µB

✏✏

µA

))SS
SSS

SSS
SSS

SSS
S

M
B

M
A

(2)

The map µ
B

: W
f

! M
B

is a finite cover and the map µ
A

: W
f

! M
A

can be just about
anything; for example, it may be constant [BEKP]. It follows from Proposition 1.1, that
! � ◆ is injective. Let V

f

✓ W
f

denote its image. The space V
f

is a subset of the equalizer
of the pair of maps µ

A

: W
f

! M
A

and µB

A

� µ
B

: W
f

! M
A

; that is

V
f

✓ {w 2 W
f

| µ
A

(w) = µB

A

� µ
B

(w)}.
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or even in the same fiber over  



3.4. The geometric stabilizer. Recall that D0 ✓ DefB
A

(f) is the connected component
containing ~. The geometric stabilizer of f : (P1, A) ! (P1, B) is the subgroup

E
f

:= {g 2 S
f

| g · D0 = D0}.
The following proposition is essential to the proof of Theorem 1.4.

Proposition 3.4. If DefB
A

(f)/S
f

is connected, there is a bijection between the connected

components of DefB
A

(f) and the (left) cosets of E
f

in S
f

.

To prove Theorem 1.4, we will compare S
f

and E
f

inside the fundamental group of W .

3.5. Quotients. Consider the composition ⌫ := ! � ◆

DefB
A

(f)/S
f

� � ◆

//

⌫

77

T
B

/S
f

!

//W = T
B

/L
f

where the map ◆ is induced by the inclusion DefB
A

(f) ,! T
B

, and ! is the covering map
corresponding to S

f

✓ L
f

. We define:

V := ⌫(DefB
A

(f)/S
f

) ✓ W .

Since Mod
B

acts freely and properly discontinuously on T
B

, W is a connected manifold of
dimension |B|�3. If f : (P1, A) ! (P1, B) is not a Lattès map, then by Theorem 1.3, DefB

A

(f)
is a (possibly disconnected) submanifold of T

B

, in which case V is a (possibly disconnected)
submanifold of W of dimension |B � A|.
Proposition 3.5. The map ⌫ : DefB

A

(f)/S
f

! W is an embedding.

Proof. Suppose that ⌧, ⌧ 0 2 DefB
A

(f) satisfy g ·⌧ = ⌧ 0 for some g 2 L
f

. Then by Corollary 3.3,
g 2 S

f

, so ⌫ is injective. Since ◆ is an embedding and ! is a covering map, ⌫ is an embedding.
⇤

Recall that q : T
B

! T
B

/S
f

is the quotient map. The following corollary is immediate.

Corollary 3.6. The map

(⌫ � q)|DefBA(f) : Def
B

A

(f) ! V
is a regular covering map.

As mentioned in Section 3.1, the space W comes equipped with maps

µ
B

: W ! M
B

and µ
A

: W ! M
A

so that Diagram (3), excluding the dashed arrow, commutes. The map µ
B

: W ! M
B

is a
finite covering map, while the map µ

A

: W ! M
A

can be just about anything [BEKP].

T
B

�f
//

✏✏

""

D

D

D

D

D

D

D

D

T
A

✏✏

W
µB

||
z

z

z

z

z

z

z

z

µA

""

D

D

D

D

D

D

D

D

M
B

µ

B
A

//_______ M
A

(3)
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loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L = ⇡1(W ,~V),

S = image of ⇡1(TB

/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};

that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA

,~
A

).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�
f

, �
A,B

: T
B

! T
A

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�
f

: G
f

! Mod
A

and �
A,B

: G
A,B

! Mod
A

.

The group G
A,B

= Mod
B

, and the homomorphism �
A,B

: Mod
B

! Mod
A

is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group G

f

and the homomorphism �
f

: G
f

!
Mod

A

, except for the fact that the group G
f

contains the subgroup of liftable mapping classes
as defined in Section ??. Since the subgroup of liftable mapping classes has finite index in
Mod

B

[?], so G
f

has finite index in Mod
B

.
The group L = G

f

, and the group S is the equalizer of �
f

and �
A,B

. The spaceW = T
B

/L,
and there are induced maps

p1 = �0
f

: W ! M
A

and p2 = (�
A,B

)0 � q : W ! M
A

where q : W ! M
B

is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefB
A

(f). We have:

• the space V is the image of DefB
A

(f) in W , and it is contained in the equalizer of
p1, p2 : W ! M

A

,
• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA

,~
A

),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)

⇤. For these examples, the space V
is connected (see Corollary ??). We will then show that E has infinite index in S, thereby
establishing Theorem ?? with Proposition ??.
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g 2 S g 2 E g 2 L
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2.1. Fundamental groups. In this section, we review some notions from the theory of
covering spaces that will be required for the proof of Theorem 3.
The canonical basepoint ~ of T

B

lies in D
f

and determines basepoints

~V 2 V
f

✓ W
f

, ~
B

2 M
B

, and ~
A

2 M
A

.

Proposition 2.2. The basepoints determined by ~ define identifications

PMod
B

= ⇡
1

(M
B

,~
B

)

PMod
A

= ⇡
1

(M
A

,~
A

)

G
f

= ⇡
1

(W
f

,~V)

S
f

= !⇤(⇡1

(T
B

/S
f

,~)) ✓ G
f

.

such that

�
f

= (µ
A

)⇤, �B

A

= (µB

A

)⇤, and �B

A

|
Gf

=
�
µB

A

� µ
B

�
⇤ .

Proof. The proofs that

�B

A

= (µB

A

)⇤ and �B

A

|
Gf

=
�
µB

A

� µ
B

�
⇤

are immediate from the definitions and from the identifications above. We will prove that
�

f

= (µ
A

)⇤. Let � be an oriented loop in W
f

based at ~V , and set ↵ := µ
A

(�), an
oriented loop in M

A

based at ~
A

. By the identifications above, [�] 2 ⇡
1

(W
f

,~V) determines
some g 2 G

f

, and [↵] 2 ⇡
1

(M
A

,~
A

) determines some h 2 PMod
A

. Because Diagram (2)
commutes, we have

�
f

(g ·~) = h · �
f

(~).

Because g 2 G
f

, we must have h = �
f

(g). ⇤

Proposition 2.3. We have

S
f

= {� 2 G
f

| (µ
A

)⇤(�) =
�
µB

A

� µ
B

�
⇤ (�)}.

Proof. This is a direct consequence of Proposition 2.2. ⇤

Let i : V
f

,! W
f

be the inclusion. We have the following commutative diagrams.

(D
f

/S
f

,~)

!�◆
✏✏

� � ◆ // (T
B

/S
f

,~)

!

✏✏

(V
f

,~V)
� � i // (W

f

,~V)

⇡
1

(D
f

/S
f

,~)
◆⇤ //

(!�◆)⇤
✏✏

⇡
1

(T
B

/S
f

,~)

!⇤
✏✏

⇡
1

(V
f

,~V)
i⇤// !⇤(⇡1

(T
B

/S
f

,~)) = S
f

It follows from Proposition 1.1 the map (! � ◆)⇤ is an isomorphism. As a consequence we
have the following result.

Proposition 2.4. The map ◆⇤ is injective (respectively surjective) if and only if i⇤ is injective
(respectively surjective).
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Case: L

The red endpoint maps under the 
two maps to points in the same 
fiber over        as the image of  

Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ C2 \ L = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
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3.4. The geometric stabilizer. Recall that D0 ✓ DefB
A

(f) is the connected component
containing ~. The geometric stabilizer of f : (P1, A) ! (P1, B) is the subgroup

E
f

:= {g 2 S
f

| g · D0 = D0}.
The following proposition is essential to the proof of Theorem 1.4.

Proposition 3.4. If DefB
A

(f)/S
f

is connected, there is a bijection between the connected

components of DefB
A

(f) and the (left) cosets of E
f

in S
f

.

To prove Theorem 1.4, we will compare S
f

and E
f

inside the fundamental group of W .

3.5. Quotients. Consider the composition ⌫ := ! � ◆

DefB
A

(f)/S
f

� � ◆

//

⌫

77

T
B

/S
f

!

//W = T
B

/L
f

where the map ◆ is induced by the inclusion DefB
A

(f) ,! T
B

, and ! is the covering map
corresponding to S

f

✓ L
f

. We define:

V := ⌫(DefB
A

(f)/S
f

) ✓ W .

Since Mod
B

acts freely and properly discontinuously on T
B

, W is a connected manifold of
dimension |B|�3. If f : (P1, A) ! (P1, B) is not a Lattès map, then by Theorem 1.3, DefB

A

(f)
is a (possibly disconnected) submanifold of T

B

, in which case V is a (possibly disconnected)
submanifold of W of dimension |B � A|.
Proposition 3.5. The map ⌫ : DefB

A

(f)/S
f

! W is an embedding.

Proof. Suppose that ⌧, ⌧ 0 2 DefB
A

(f) satisfy g ·⌧ = ⌧ 0 for some g 2 L
f

. Then by Corollary 3.3,
g 2 S

f

, so ⌫ is injective. Since ◆ is an embedding and ! is a covering map, ⌫ is an embedding.
⇤

Recall that q : T
B

! T
B

/S
f

is the quotient map. The following corollary is immediate.

Corollary 3.6. The map

(⌫ � q)|DefBA(f) : Def
B

A

(f) ! V
is a regular covering map.

As mentioned in Section 3.1, the space W comes equipped with maps

µ
B

: W ! M
B

and µ
A

: W ! M
A

so that Diagram (3), excluding the dashed arrow, commutes. The map µ
B

: W ! M
B

is a
finite covering map, while the map µ

A

: W ! M
A

can be just about anything [BEKP].
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loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L = ⇡1(W ,~V),

S = image of ⇡1(TB

/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};

that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA

,~
A

).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�
f

, �
A,B

: T
B

! T
A

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�
f

: G
f

! Mod
A

and �
A,B

: G
A,B

! Mod
A

.

The group G
A,B

= Mod
B

, and the homomorphism �
A,B

: Mod
B

! Mod
A

is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group G

f

and the homomorphism �
f

: G
f

!
Mod

A

, except for the fact that the group G
f

contains the subgroup of liftable mapping classes
as defined in Section ??. Since the subgroup of liftable mapping classes has finite index in
Mod

B

[?], so G
f

has finite index in Mod
B

.
The group L = G

f

, and the group S is the equalizer of �
f

and �
A,B

. The spaceW = T
B

/L,
and there are induced maps

p1 = �0
f

: W ! M
A

and p2 = (�
A,B

)0 � q : W ! M
A

where q : W ! M
B

is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefB
A

(f). We have:

• the space V is the image of DefB
A

(f) in W , and it is contained in the equalizer of
p1, p2 : W ! M

A

,
• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA

,~
A

),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)

⇤. For these examples, the space V
is connected (see Corollary ??). We will then show that E has infinite index in S, thereby
establishing Theorem ?? with Proposition ??.
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As mentioned in Section 3.1, the space W comes equipped with maps

µ
B

: W ! M
B

and µ
A

: W ! M
A

so that Diagram (3), excluding the dashed arrow, commutes. The map µ
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finite covering map, while the map µ

A
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can be just about anything [BEKP].
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loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L = ⇡1(W ,~V),

S = image of ⇡1(TB

/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};

that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA

,~
A

).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�
f

, �
A,B

: T
B

! T
A

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�
f

: G
f

! Mod
A

and �
A,B

: G
A,B

! Mod
A

.

The group G
A,B

= Mod
B

, and the homomorphism �
A,B

: Mod
B

! Mod
A

is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group G

f

and the homomorphism �
f

: G
f

!
Mod

A

, except for the fact that the group G
f

contains the subgroup of liftable mapping classes
as defined in Section ??. Since the subgroup of liftable mapping classes has finite index in
Mod

B

[?], so G
f

has finite index in Mod
B

.
The group L = G

f

, and the group S is the equalizer of �
f

and �
A,B

. The spaceW = T
B

/L,
and there are induced maps

p1 = �0
f

: W ! M
A

and p2 = (�
A,B

)0 � q : W ! M
A

where q : W ! M
B

is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefB
A

(f). We have:

• the space V is the image of DefB
A

(f) in W , and it is contained in the equalizer of
p1, p2 : W ! M

A

,
• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA

,~
A

),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)

⇤. For these examples, the space V
is connected (see Corollary ??). We will then show that E has infinite index in S, thereby
establishing Theorem ?? with Proposition ??.
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 To compute E and S, we fix coordinates for 

Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
Fix generators r and s of the free group ⇡1(MA

,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.
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.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

In other words, for � 2 L,

� 2 S� = ⇠⌘,

if and only if

⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

and

p1(⌘) = p2(⇠).

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy

C1 ✓ L1 \W and C2 ✓ L2 \W .
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), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.
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satisfying the combinatorial conditions below, where the marked points are distinct:

0

2

✏✏

1

✏✏

1

✏✏

x

✏✏

⇤
2

✏✏

1 1 y 0 z

that is, 0 is a critical point of F , cv(F ) = {1, z}, and
F (0) = 1, F (1) = 1, F (1) = y, and F (x) = 0.

As can easily be verified, such a rational map F : P1 ! P1 must be of the following form:

F (t) =
(x� t)(�tx+ y + t+ x� 1)

(x� 1)t2
, where z =

(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

Note that the map F has a superattracting cycle of the form in Line (3) if and only if x = y.
There is an isomorphism

W ! C2 �� given by (x, y, z, F ) 7! (x, y)

where � consists of all “forbidden” pairs (x, y) leading to collisions of points in {0, 1,1, z},
or collisions of points in {0, 1,1, y, z}. The set � can be computed explicitly:

� = {(x, y) 2 C2 | x = 0, y = 0, y = 1, x = 1, y � 1 + x = 0, x2 � y � 2x+ 1 = 0,

x2 + y � 1 = 0, or 2xy + x2 � y � 2x+ 1 = 0}.
We will use (x, y) as coordinates on W .

Proposition 4.1. The maps p1, p2 : W ! M
A

, and q : W ! M
B

are expressed in these

coordinates as follows:

p1 : (x, y) 7! x p2 : (x, y) 7! y q : (x, y) 7! (y, z) where z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

In these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

4.2. The space V. We establish some properties of V in our particular setting.

Proposition 4.2. In these coordinates, the space V ✓ W is equal to the diagonal; that is,

V = {(x, y) 2 W | x = y},
and V is isomorphic to the normalization of Per4(0)⇤.

Proof. For purposes of this proof, set D := {(x, y) 2 W | x = y}. By Line (2), V ✓ D. Let
� : [0, 1] ! D be a path with the property that �(0) = ~V . Because T

B

! W is a covering
map, there is a unique lift e� : [0, 1] ! T

B

with e�(0) = ~. We prove that e�(t) 2 DefB
A

(f)
for all t 2 [0, 1], establishing the result. Let �

t

: P1 ! P1 be a homeomorphism representing
e�(t), which satisfies

�
t

|{0,1,1} = id|{0,1,1}.

There is a homeomorphism  
t

: P1 ! P1 representing �
f

(e�(t)), which satisfies

 
t

|{0,1,1} = id|{0,1,1},
8

satisfying the combinatorial conditions below, where the marked points are distinct:

0

2

✏✏

1

✏✏

1

✏✏

x

✏✏

⇤
2

✏✏

1 1 y 0 z

that is, 0 is a critical point of F , cv(F ) = {1, z}, and
F (0) = 1, F (1) = 1, F (1) = y, and F (x) = 0.

As can easily be verified, such a rational map F : P1 ! P1 must be of the following form:

F (t) =
(x� t)(�tx+ y + t+ x� 1)

(x� 1)t2
, where z =

(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

Note that the map F has a superattracting cycle of the form in Line (3) if and only if x = y.
There is an isomorphism

W ! C2 �� given by (x, y, z, F ) 7! (x, y)

where � consists of all “forbidden” pairs (x, y) leading to collisions of points in {0, 1,1, z},
or collisions of points in {0, 1,1, y, z}. The set � can be computed explicitly:

� = {(x, y) 2 C2 | x = 0, y = 0, y = 1, x = 1, y � 1 + x = 0, x2 � y � 2x+ 1 = 0,

x2 + y � 1 = 0, or 2xy + x2 � y � 2x+ 1 = 0}.
We will use (x, y) as coordinates on W .

Proposition 4.1. The maps p1, p2 : W ! M
A

, and q : W ! M
B

are expressed in these

coordinates as follows:

p1 : (x, y) 7! x p2 : (x, y) 7! y q : (x, y) 7! (y, z) where z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

In these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

4.2. The space V. We establish some properties of V in our particular setting.

Proposition 4.2. In these coordinates, the space V ✓ W is equal to the diagonal; that is,

V = {(x, y) 2 W | x = y},
and V is isomorphic to the normalization of Per4(0)⇤.

Proof. For purposes of this proof, set D := {(x, y) 2 W | x = y}. By Line (2), V ✓ D. Let
� : [0, 1] ! D be a path with the property that �(0) = ~V . Because T

B

! W is a covering
map, there is a unique lift e� : [0, 1] ! T

B

with e�(0) = ~. We prove that e�(t) 2 DefB
A

(f)
for all t 2 [0, 1], establishing the result. Let �

t

: P1 ! P1 be a homeomorphism representing
e�(t), which satisfies

�
t

|{0,1,1} = id|{0,1,1}.

There is a homeomorphism  
t

: P1 ! P1 representing �
f

(e�(t)), which satisfies

 
t

|{0,1,1} = id|{0,1,1},
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Embed in 

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1.
9



Coordinates for 

Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
Fix generators r and s of the free group ⇡1(MA

,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.
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Identifying M
A
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= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
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B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µB

A

on Moduli spaces is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.

Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),
satisfy

C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
Fix generators r and s of the free group ⇡1(MA

,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.
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Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ C2 \ L = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

In other words, for � 2 L,

� 2 S� = ⇠⌘,

if and only if

⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

and

p1(⌘) = p2(⇠).

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy

C1 ✓ L1 \W and C2 ✓ L2 \W .
10

Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
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Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
Fix generators r and s of the free group ⇡1(MA

,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.
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Identifying M
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= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),
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t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
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is a loop around 1, each turning once, counter-clockwise around the punctures.
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satisfying the combinatorial conditions below, where the marked points are distinct:

0

2

✏✏

1

✏✏

1

✏✏

x

✏✏

⇤
2

✏✏

1 1 y 0 z

that is, 0 is a critical point of F , cv(F ) = {1, z}, and
F (0) = 1, F (1) = 1, F (1) = y, and F (x) = 0.

As can easily be verified, such a rational map F : P1 ! P1 must be of the following form:

F (t) =
(x� t)(�tx+ y + t+ x� 1)

(x� 1)t2
, where z =

(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

Note that the map F has a superattracting cycle of the form in Line (3) if and only if x = y.
There is an isomorphism

W ! C2 �� given by (x, y, z, F ) 7! (x, y)

where � consists of all “forbidden” pairs (x, y) leading to collisions of points in {0, 1,1, z},
or collisions of points in {0, 1,1, y, z}. The set � can be computed explicitly:

� = {(x, y) 2 C2 | x = 0, y = 0, y = 1, x = 1, y � 1 + x = 0, x2 � y � 2x+ 1 = 0,

x2 + y � 1 = 0, or 2xy + x2 � y � 2x+ 1 = 0}.
We will use (x, y) as coordinates on W .

Proposition 4.1. The maps p1, p2 : W ! M
A

, and q : W ! M
B

are expressed in these

coordinates as follows:

p1 : (x, y) 7! x p2 : (x, y) 7! y q : (x, y) 7! (y, z) where z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

In these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

4.2. The space V. We establish some properties of V in our particular setting.

Proposition 4.2. In these coordinates, the space V ✓ W is equal to the diagonal; that is,

V = {(x, y) 2 W | x = y},
and V is isomorphic to the normalization of Per4(0)⇤.

Proof. For purposes of this proof, set D := {(x, y) 2 W | x = y}. By Line (2), V ✓ D. Let
� : [0, 1] ! D be a path with the property that �(0) = ~V . Because T

B

! W is a covering
map, there is a unique lift e� : [0, 1] ! T

B

with e�(0) = ~. We prove that e�(t) 2 DefB
A

(f)
for all t 2 [0, 1], establishing the result. Let �

t

: P1 ! P1 be a homeomorphism representing
e�(t), which satisfies

�
t

|{0,1,1} = id|{0,1,1}.

There is a homeomorphism  
t

: P1 ! P1 representing �
f

(e�(t)), which satisfies

 
t

|{0,1,1} = id|{0,1,1},
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F (0) = 1, F (1) = 1, F (1) = y, and F (x) = 0.
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(x� 1)t2
, where z =

(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

Note that the map F has a superattracting cycle of the form in Line (3) if and only if x = y.
There is an isomorphism

W ! C2 �� given by (x, y, z, F ) 7! (x, y)

where � consists of all “forbidden” pairs (x, y) leading to collisions of points in {0, 1,1, z},
or collisions of points in {0, 1,1, y, z}. The set � can be computed explicitly:

� = {(x, y) 2 C2 | x = 0, y = 0, y = 1, x = 1, y � 1 + x = 0, x2 � y � 2x+ 1 = 0,

x2 + y � 1 = 0, or 2xy + x2 � y � 2x+ 1 = 0}.
We will use (x, y) as coordinates on W .

Proposition 4.1. The maps p1, p2 : W ! M
A

, and q : W ! M
B

are expressed in these

coordinates as follows:

p1 : (x, y) 7! x p2 : (x, y) 7! y q : (x, y) 7! (y, z) where z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
.

In these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

4.2. The space V. We establish some properties of V in our particular setting.

Proposition 4.2. In these coordinates, the space V ✓ W is equal to the diagonal; that is,

V = {(x, y) 2 W | x = y},
and V is isomorphic to the normalization of Per4(0)⇤.

Proof. For purposes of this proof, set D := {(x, y) 2 W | x = y}. By Line (2), V ✓ D. Let
� : [0, 1] ! D be a path with the property that �(0) = ~V . Because T

B

! W is a covering
map, there is a unique lift e� : [0, 1] ! T

B

with e�(0) = ~. We prove that e�(t) 2 DefB
A

(f)
for all t 2 [0, 1], establishing the result. Let �

t

: P1 ! P1 be a homeomorphism representing
e�(t), which satisfies

�
t

|{0,1,1} = id|{0,1,1}.

There is a homeomorphism  
t

: P1 ! P1 representing �
f

(e�(t)), which satisfies

 
t

|{0,1,1} = id|{0,1,1},
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where z is a rational function of x, y (defined in Proposition ??), and
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= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
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on Moduli spaces is given by
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: M
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! M
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The space V is the intersection of W with the diagonal line L
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Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an
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4.3. The proof. To establish Theorem ??, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem ?? then
follows from Proposition ??.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy

C1 ✓ L1 \W and C2 ✓ L2 \W .
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and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
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A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1.
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Proof. Let G
f

✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.2, S
f

✓ G
f

.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S
f

✏✏

� � ◆
// T

B

/S
f

✏✏

!

&&

M

M

M

M

M

M

M

M

M

M

M

DefB
A

(f)/G
f

� �
// T

B

/G
f

✏✏

W = T
B

/L
f

µB
xx

p

p

p

p

p

p

p

p

p

p

p

M
B

By Proposition 3.5 and Corollary 4.4, the map

µ
B

� ! � ◆ : DefB
A

(f)/S
f

! M
B

is injective, and hence the covering map

DefB
A

(f)/S
f

! DefB
A

(f)/G
f

is a homeomorphism. Thus S
f

= G
f

. ⇤

4.3. Proof of Theorem 1.4. To establish our main result, it su�ces to find an element
� 2 S

f

none of whose (nonzero) powers lie in E
f

. This implies that E
f

has infinite index in
S
f

, and Theorem 1.4 then follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := �(L) in C2. The intersection L1 \ L2

coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the intersections L1 \ W and

Figure 2. The lines L1 and L2 in W .
12

Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
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Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

For � 2 L,

� 2 S , � = ⇠⌘, ⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

4.3. The proof. To establish Theorem ??, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem ?? then
follows from Proposition ??.

Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.

Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),
satisfy

C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),
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� 2 L , � = ⇠⌘, ⇠ 2 Im(⇡1(L!)), ⌘ 2 Im(⇡1(L2))

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,
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What is S?



Proof. Let G
f

✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.2, S
f

✓ G
f

.
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DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S
f

✏✏

� � ◆
// T

B

/S
f

✏✏

!

&&

M

M

M

M

M

M

M

M

M

M

M

DefB
A

(f)/G
f

� �
// T

B

/G
f

✏✏

W = T
B

/L
f

µB
xx

p

p

p

p

p

p

p

p

p

p

p

M
B

By Proposition 3.5 and Corollary 4.4, the map

µ
B

� ! � ◆ : DefB
A

(f)/S
f

! M
B

is injective, and hence the covering map

DefB
A

(f)/S
f

! DefB
A

(f)/G
f

is a homeomorphism. Thus S
f

= G
f

. ⇤

4.3. Proof of Theorem 1.4. To establish our main result, it su�ces to find an element
� 2 S

f

none of whose (nonzero) powers lie in E
f

. This implies that E
f

has infinite index in
S
f

, and Theorem 1.4 then follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := �(L) in C2. The intersection L1 \ L2

coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the intersections L1 \ W and

Figure 2. The lines L1 and L2 in W .
12

Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
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Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

For � 2 L,

� 2 S , � = ⇠⌘, ⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

4.3. The proof. To establish Theorem ??, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem ?? then
follows from Proposition ??.

Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.

Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),
satisfy

C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),
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The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy

C1 ✓ L1 \W and C2 ✓ L2 \W .
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Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ C2 \ L = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
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are given with respect to these coordinates by

µ
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B
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µ
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= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
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µ
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A
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The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

In other words, for � 2 L,
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⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

and

p1(⌘) = p2(⇠).
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Remark: it follows that

What is S?



Simplify  

Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
10



Proof. Let G
f

✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.2, S
f

✓ G
f

.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S
f

✏✏

� � ◆
// T

B

/S
f

✏✏

!

&&

M

M

M

M

M

M

M

M

M

M

M

DefB
A

(f)/G
f

� �
// T

B

/G
f

✏✏

W = T
B

/L
f

µB
xxp

p

p

p

p

p

p

p

p

p

p

M
B

By Proposition 3.5 and Corollary 4.4, the map

µ
B

� ! � ◆ : DefB
A

(f)/S
f

! M
B

is injective, and hence the covering map

DefB
A

(f)/S
f

! DefB
A

(f)/G
f

is a homeomorphism. Thus S
f

= G
f

. ⇤

4.3. Proof of Theorem 1.4. To establish our main result, it su�ces to find an element
� 2 S
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none of whose (nonzero) powers lie in E
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. This implies that E
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has infinite index in
S
f

, and Theorem 1.4 then follows from Proposition 3.4.
Consider the map
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and the lines L1 := {(x, y) | x = 3/4}, and L2 := �(L) in C2. The intersection L1 \ L2

coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the intersections L1 \ W and

Figure 2. The lines L1 and L2 in W .
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Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .
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where
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Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
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The map

! : cW ! W := {(u, v) 2 C2}� ({v = 0} [ {u = 1} [ {v + 1 = u})
(x, y) 7! (x+ y, xy)

is a branched covering map of degree 2, branched along the diagonal {x = y}. Let bV be the

Zariski closure of V in cW ; that is,

bV = {(x, y) | x = y} \ cW .

By Proposition 4.2, V is isomorphic to the normalization of Per4(0)⇤. The space bV is iso-
morphic to the normalization of Per4(0) as can be easily verified (see [M2]).
The map ! restricts to a homeomorphism bV ! V := !(bV), which is the graph of the
(punctured) parabola

V = {(u, v) 2 W | v = u2/4}.
Now consider the pencil of lines through (u, v) = (1, 0) in C2 parametrized by slope. This

Figure 1. The maps ! and ⇢, with L1, L2 and bV and their images drawn
with dashed and dotted lines; the right hand picture depicts W blown up at
(1, 0) with exceptional curve E .

defines a fiber bundle ⇢ : W ! P1 � {0, 1,1} whose fibers are isomorphic to C⇤. Thus,

⇡1(W ,!(~V)) = Z⇥H,

where H := ⇡1(P1 � {0, 1,1}, (⇢ � !)(~V)). Figure 1 illustrates the maps ! : cW ! W and
⇢ : W ! P1 � {0, 1,1}. On the right-most figure, W is embedded in the blow up of C2 at
(u, v) = (1, 0) with exceptional curve E ; the map ⇢ can be considered as a projection onto E .

⇡1(cW ) // // ⇡1(W ) // // ⇡1(C \ {0, 1})

Proposition 4.9. No nonzero power of � lies in E.
12
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and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1.
9

The map is surjective on fundamental groups

Simplify  

Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
10



Proof. Let G
f

✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.2, S
f

✓ G
f

.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S
f

✏✏

� � ◆
// T

B

/S
f

✏✏

!

&&

M

M

M

M

M

M

M

M

M

M

M

DefB
A

(f)/G
f

� �
// T

B

/G
f

✏✏

W = T
B

/L
f

µB
xxp

p

p

p

p

p

p

p

p

p

p

M
B

By Proposition 3.5 and Corollary 4.4, the map

µ
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� ! � ◆ : DefB
A

(f)/S
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! M
B

is injective, and hence the covering map

DefB
A

(f)/S
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! DefB
A

(f)/G
f

is a homeomorphism. Thus S
f

= G
f

. ⇤

4.3. Proof of Theorem 1.4. To establish our main result, it su�ces to find an element
� 2 S

f

none of whose (nonzero) powers lie in E
f

. This implies that E
f

has infinite index in
S
f

, and Theorem 1.4 then follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := �(L) in C2. The intersection L1 \ L2

coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the intersections L1 \ W and

Figure 2. The lines L1 and L2 in W .
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conjugates and one which is at (1,1)). On the right is a picture of W near
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u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB
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A
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Thus we have

µ
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|W µB
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� µ
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Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
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The map

! : cW ! W := {(u, v) 2 C2}� ({v = 0} [ {u = 1} [ {v + 1 = u})
(x, y) 7! (x+ y, xy)

is a branched covering map of degree 2, branched along the diagonal {x = y}. Let bV be the

Zariski closure of V in cW ; that is,

bV = {(x, y) | x = y} \ cW .

By Proposition 4.2, V is isomorphic to the normalization of Per4(0)⇤. The space bV is iso-
morphic to the normalization of Per4(0) as can be easily verified (see [M2]).
The map ! restricts to a homeomorphism bV ! V := !(bV), which is the graph of the
(punctured) parabola

V = {(u, v) 2 W | v = u2/4}.
Now consider the pencil of lines through (u, v) = (1, 0) in C2 parametrized by slope. This

Figure 1. The maps ! and ⇢, with L1, L2 and bV and their images drawn
with dashed and dotted lines; the right hand picture depicts W blown up at
(1, 0) with exceptional curve E .

defines a fiber bundle ⇢ : W ! P1 � {0, 1,1} whose fibers are isomorphic to C⇤. Thus,

⇡1(W ,!(~V)) = Z⇥H,

where H := ⇡1(P1 � {0, 1,1}, (⇢ � !)(~V)). Figure 1 illustrates the maps ! : cW ! W and
⇢ : W ! P1 � {0, 1,1}. On the right-most figure, W is embedded in the blow up of C2 at
(u, v) = (1, 0) with exceptional curve E ; the map ⇢ can be considered as a projection onto E .

⇡1(cW ) // // ⇡1(W ) // // ⇡1(C \ {0, 1})

Proposition 4.9. No nonzero power of � lies in E.
12
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and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1.
9

The map is surjective on fundamental groups

Simplify  

Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
10

Mod out by the diagonal reflection and blow up a point
Next



The map

! : cW ! W := {(u, v) 2 C2}� ({v = 0} [ {u = 1} [ {v + 1 = u})
(x, y) 7! (x+ y, xy)

is a branched covering map of degree 2, branched along the diagonal {x = y}. Let bV be the

Zariski closure of V in cW ; that is,

bV = {(x, y) | x = y} \ cW .

By Proposition 4.2, V is isomorphic to the normalization of Per4(0)⇤. The space bV is iso-
morphic to the normalization of Per4(0) as can be easily verified (see [M2]).
The map ! restricts to a homeomorphism bV ! V := !(bV), which is the graph of the
(punctured) parabola

V = {(u, v) 2 W | v = u2/4}.
Now consider the pencil of lines through (u, v) = (1, 0) in C2 parametrized by slope. This

Figure 1. The maps ! and ⇢, with L1, L2 and bV and their images drawn
with dashed and dotted lines; the right hand picture depicts W blown up at
(1, 0) with exceptional curve E .

defines a fiber bundle ⇢ : W ! P1 � {0, 1,1} whose fibers are isomorphic to C⇤. Thus,

⇡1(W ,!(~V)) = Z⇥H,

where H := ⇡1(P1 � {0, 1,1}, (⇢ � !)(~V)). Figure 1 illustrates the maps ! : cW ! W and
⇢ : W ! P1 � {0, 1,1}. On the right-most figure, W is embedded in the blow up of C2 at
(u, v) = (1, 0) with exceptional curve E ; the map ⇢ can be considered as a projection onto E .

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure 1. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,
12
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Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
10

⇡1(cW )
!

// // ⇡1(W )
⇢

// // ⇡1(C \ {0, 1})

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure 1. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,

and hence !⇤(�) (and all of its powers) must be in the kernel of ⇢⇤. On the other hand, ⇢
restricts to a degree 2 covering map

⇢|V : V ! P1 � {0, 1,1},
so (⇢|V)⇤ is an injection on fundamental groups. Thus, no nonzero power of � can map to
an element of ⇡1(V ,!(~V)) under !⇤. This implies no nonzero power of � lies in E

f

. ⇤
Thus �nE form distinct cosets. Theorem 1.2 now follows from Propositions 4.7 and 4.9.
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All these maps are surjective, so index of images of E in S stays	
the same or decreases.  

loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L = ⇡1(W ,~V),

S = image of ⇡1(TB

/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};

that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA

,~
A

).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�
f

, �
A,B

: T
B

! T
A

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�
f

: G
f

! Mod
A

and �
A,B

: G
A,B

! Mod
A

.

The group G
A,B

= Mod
B

, and the homomorphism �
A,B

: Mod
B

! Mod
A

is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group G

f

and the homomorphism �
f

: G
f

!
Mod

A

, except for the fact that the group G
f

contains the subgroup of liftable mapping classes
as defined in Section ??. Since the subgroup of liftable mapping classes has finite index in
Mod

B

[?], so G
f

has finite index in Mod
B

.
The group L = G

f

, and the group S is the equalizer of �
f

and �
A,B

. The spaceW = T
B

/L,
and there are induced maps

p1 = �0
f

: W ! M
A

and p2 = (�
A,B

)0 � q : W ! M
A

where q : W ! M
B

is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefB
A

(f). We have:

• the space V is the image of DefB
A

(f) in W , and it is contained in the equalizer of
p1, p2 : W ! M

A

,
• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA

,~
A

),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)

⇤. For these examples, the space V
is connected (see Corollary ??). We will then show that E has infinite index in S, thereby
establishing Theorem ?? with Proposition ??.
g 2 S g 2 E g 2 L, E ✓ S ✓ L ✓ Mod

B

6



The map

! : cW ! W := {(u, v) 2 C2}� ({v = 0} [ {u = 1} [ {v + 1 = u})
(x, y) 7! (x+ y, xy)

is a branched covering map of degree 2, branched along the diagonal {x = y}. Let bV be the

Zariski closure of V in cW ; that is,

bV = {(x, y) | x = y} \ cW .

By Proposition 4.2, V is isomorphic to the normalization of Per4(0)⇤. The space bV is iso-
morphic to the normalization of Per4(0) as can be easily verified (see [M2]).
The map ! restricts to a homeomorphism bV ! V := !(bV), which is the graph of the
(punctured) parabola

V = {(u, v) 2 W | v = u2/4}.
Now consider the pencil of lines through (u, v) = (1, 0) in C2 parametrized by slope. This

Figure 1. The maps ! and ⇢, with L1, L2 and bV and their images drawn
with dashed and dotted lines; the right hand picture depicts W blown up at
(1, 0) with exceptional curve E .

defines a fiber bundle ⇢ : W ! P1 � {0, 1,1} whose fibers are isomorphic to C⇤. Thus,

⇡1(W ,!(~V)) = Z⇥H,

where H := ⇡1(P1 � {0, 1,1}, (⇢ � !)(~V)). Figure 1 illustrates the maps ! : cW ! W and
⇢ : W ! P1 � {0, 1,1}. On the right-most figure, W is embedded in the blow up of C2 at
(u, v) = (1, 0) with exceptional curve E ; the map ⇢ can be considered as a projection onto E .

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure 1. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,
12

Simplify  

Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
10

!|b
V

: bV ! V

is an isomorphism
V ! C2 \ {0, 1}

is a covering.

⇡1(cW )
!⇤
// // ⇡1(W )

⇢⇤
// // ⇡1(C \ {0, 1})

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure ??. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,

and hence !⇤(�) (and all of its powers) must be in the kernel of ⇢⇤. On the other hand, ⇢
restricts to a degree 2 covering map

⇢|V : V ! P1 � {0, 1,1},
so (⇢|V)⇤ is an injection on fundamental groups. Thus, no nonzero power of � can map to
an element of ⇡1(V ,!(~V)) under !⇤. This implies no nonzero power of � lies in E

f

. ⇤
Thus �nE form distinct cosets. Theorem ?? now follows from Propositions ?? and ??.
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[C] D. Cheniot Une démonstration du théorème de Zariski sur les sections hyperplanes d’une hypersurface
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V ! C2 \ {0, 1}

is a covering.

⇡1(cW )
!⇤
// // ⇡1(W )

⇢⇤
// // ⇡1(C \ {0, 1})

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure ??. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,

and hence !⇤(�) (and all of its powers) must be in the kernel of ⇢⇤. On the other hand, ⇢
restricts to a degree 2 covering map

⇢|V : V ! P1 � {0, 1,1},
so (⇢|V)⇤ is an injection on fundamental groups. Thus, no nonzero power of � can map to
an element of ⇡1(V ,!(~V)) under !⇤. This implies no nonzero power of � lies in E

f

. ⇤
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is a (degree 2) covering so injective on 	
fundamental groups

This implies that nontrivial elements of the kernel of	
cannot lie in the image of E in            .  

Remark 4.8. The space cW is isomorphic to M0,5, the moduli space of 5 points on P1,
and as a quasiprojective variety it can be identified with the complement of the well-studied
Ceva line arrangement in the complex projective plane. Its fundamental group has been
computed by several people (see [?] for example), using the Zariski-van Kampen technique
for computing the fundamental group of complements of plane algebraic [?] (cf. [?] [?]). This
technique was a motivation for the argument that we describe below.

The map

! : cW ! W := {(u, v) 2 C2}� ({v = 0} [ {u = 1} [ {v + 1 = u})
(x, y) 7! (x+ y, xy)

is a branched covering map of degree 2, branched along the diagonal {x = y}. Let bV be the

Zariski closure of V in cW ; that is,

bV = {(x, y) | x = y} \ cW .

By Proposition ??, V is isomorphic to the normalization of Per4(0)
⇤. The space bV is isomor-

phic to the normalization of Per4(0) as can be easily verified (see [?]).
The map ! restricts to a homeomorphism bV ! V := !(bV), which is the graph of the
(punctured) parabola

V = {(u, v) 2 W | v = u2/4}.
Now consider the pencil of lines through (u, v) = (1, 0) in C2 parametrized by slope. This

Figure 1. The maps ! and ⇢, with L1, L2 and bV and their images drawn
with dashed and dotted lines; the right hand picture depicts W blown up at
(1, 0) with exceptional curve E .

defines a fiber bundle ⇢ : W ! P1 � {0, 1,1} whose fibers are isomorphic to C⇤. Thus,

⇡1(W ,!(~V)) = Z⇥H,

where H := ⇡1(P1 � {0, 1,1}, (⇢ �!)(~V)). Figure ?? illustrates the maps ! : cW ! W and
⇢ : W ! P1 � {0, 1,1}. On the right-most figure, W is embedded in the blow up of C2 at
(u, v) = (1, 0) with exceptional curve E ; the map ⇢ can be considered as a projection onto E .
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Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ C2 \ L = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B
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B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

In other words, for � 2 L,
� 2 S

if and only if
� = ⇠⌘,

⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

and
p1(⌘) = p2(⇠).

Corollary 4.6. The subgroup S is not normal in L.

4.3. The proof. To establish Theorem ??, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem ?? then
follows from Proposition ??.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Let � = ⇠⌘ where ⇠ 2 Im(⇡1(L1) ! ⇡1(W)) is non-trivial, ⇢(!(⇠)) = 1, and ⌘ = �(⇠).

Then
� 2 S

and
�n 62 E
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The map

! : cW ! W := {(u, v) 2 C2}� ({v = 0} [ {u = 1} [ {v + 1 = u})
(x, y) 7! (x+ y, xy)

is a branched covering map of degree 2, branched along the diagonal {x = y}. Let bV be the

Zariski closure of V in cW ; that is,

bV = {(x, y) | x = y} \ cW .

By Proposition 4.2, V is isomorphic to the normalization of Per4(0)⇤. The space bV is iso-
morphic to the normalization of Per4(0) as can be easily verified (see [M2]).
The map ! restricts to a homeomorphism bV ! V := !(bV), which is the graph of the
(punctured) parabola

V = {(u, v) 2 W | v = u2/4}.
Now consider the pencil of lines through (u, v) = (1, 0) in C2 parametrized by slope. This

Figure 1. The maps ! and ⇢, with L1, L2 and bV and their images drawn
with dashed and dotted lines; the right hand picture depicts W blown up at
(1, 0) with exceptional curve E .

defines a fiber bundle ⇢ : W ! P1 � {0, 1,1} whose fibers are isomorphic to C⇤. Thus,

⇡1(W ,!(~V)) = Z⇥H,

where H := ⇡1(P1 � {0, 1,1}, (⇢ � !)(~V)). Figure 1 illustrates the maps ! : cW ! W and
⇢ : W ! P1 � {0, 1,1}. On the right-most figure, W is embedded in the blow up of C2 at
(u, v) = (1, 0) with exceptional curve E ; the map ⇢ can be considered as a projection onto E .

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure 1. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,
12

Simplify  

Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
10

Recall that to prove main theorem it is enough to find an 
infinite set of cosets of E in S.
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⇢ : W ! P1 � {0, 1,1}. On the right-most figure, W is embedded in the blow up of C2 at
(u, v) = (1, 0) with exceptional curve E ; the map ⇢ can be considered as a projection onto E .

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
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Let  

Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ C2 \ L = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

In other words, for � 2 L,
� 2 S

if and only if
� = ⇠⌘,

⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

and
p1(⌘) = p2(⇠).

Corollary 4.6. The subgroup S is not normal in L.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .
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(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
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Corollary 4.6. The subgroup S is not normal in L.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map
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(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
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Then

Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ C2 \ L = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

In other words, for � 2 L,
� 2 S

if and only if
� = ⇠⌘,

⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

and
p1(⌘) = p2(⇠).

Corollary 4.6. The subgroup S is not normal in L.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Let � = ⇠⌘ where ⇠ 2 Im(⇡1(L1) ! ⇡1(W)) is non-trivial, ⇢(!(⇠)) = 1, and ⌘ = �(⇠).

Then
� 2 S

and
�n 62 E
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and for all n.   So 

⇡1(cW ) // // ⇡1(W ) // // ⇡1(C \ {0, 1})

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure 1. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,

and hence !⇤(�) (and all of its powers) must be in the kernel of ⇢⇤. On the other hand, ⇢
restricts to a degree 2 covering map

⇢|V : V ! P1 � {0, 1,1},
so (⇢|V)⇤ is an injection on fundamental groups. Thus, no nonzero power of � can map to
an element of ⇡1(V ,!(~V)) under !⇤. This implies no nonzero power of � lies in E

f

. ⇤
Thus �nE form distinct cosets. Theorem 1.2 now follows from Propositions 4.7 and 4.9.
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form distinct cosets of E in S.

We can do this explicitly:

where is the symmetry across the diagonal x = y. 
is nontrivial in  

Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ C2 \ L = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B
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B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

In other words, for � 2 L,
� 2 S

if and only if
� = ⇠⌘,

⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

and
p1(⌘) = p2(⇠).

Corollary 4.6. The subgroup S is not normal in L.

4.3. The proof. To establish Theorem ??, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem ?? then
follows from Proposition ??.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Let � = ⇠⌘ where ⇠ 2 Im(⇡1(L1) ! ⇡1(W)) is non-trivial, ⇢(!(⇠)) = 1, and ⌘ = �(⇠).

Then
� 2 S

and
�n 62 E

10

,and lies in the kernel of   

!|b
V

: bV ! V

is an isomorphism
V ! C2 \ {0, 1}

is a covering.

⇡1(cW )
!⇤
// // ⇡1(W )

⇢⇤
// // ⇡1(C \ {0, 1})

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure ??. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,

and hence !⇤(�) (and all of its powers) must be in the kernel of ⇢⇤. On the other hand, ⇢
restricts to a degree 2 covering map

⇢|V : V ! P1 � {0, 1,1},
so (⇢|V)⇤ is an injection on fundamental groups. Thus, no nonzero power of � can map to
an element of ⇡1(V ,!(~V)) under !⇤. This implies no nonzero power of � lies in E

f

. ⇤
Thus �nE form distinct cosets. Theorem ?? now follows from Propositions ?? and ??.
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projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d’une courbe
projective plane. Comp. Math. 27: (1973) 141–158.

[DH] A. Douady, & J. H. Hubbard, A proof of Thurston’s characterization of rational functions. Acta
Math. 171(2): (1993) 263–297.

[E] A. Epstein Transversality in holomorphic dynamics manuscript available at
http://www.warwick.ac.uk/~mases

[FKS] T. Firsova, J. Kahn, & N. Selinger Non-contractibility of deformation space. Preprint, 2016.
[H] E. Hironaka Abelian coverings of the complex projective plane branched along configurations of real

lines. Memoirs AMS 105 (1993).
[vK] E. van Kampen On the fundamental group of an algebraic curve. Amer. Jour. Math. 55: (1933)

255–260.
[K] S. Koch Teichmüller theory and critically finite endomorphisms. Adv. Math. 248: (2013) 573–617.
[KPS] S. Koch, K. Pilgrim, & N. Selinger Pullback invariants of Thurston maps. Trans. AMS Published

electronically http://dx.doi.org/10.1090/tran/6482 (2015).
[L] R. Lodge Boundary values of the Thurston pullback map. Conform. Geom. Dyn. 17: (2013) 77–118.
[M1] J. Milnor On Lattès maps in: P. Hjorth, C. L. Petersen, Dynamics on the Riemann Sphere. A Bodil

Branner Festschrift, European Math. Soc., (2006).
13

!|b
V

: bV ! V

is an isomorphism
V ! C2 \ {0, 1}

is a covering.

⇡1(cW )
!⇤
// // ⇡1(W )

⇢⇤
// // ⇡1(C \ {0, 1})

Proposition 4.9. No nonzero power of � lies in E.

Proof. Since (p1)⇤(!⇤(�)) = (p1)⇤(�) = r · s has infinite order in ⇡1(MA

,~
A

), the element
!⇤(�) has infinite order in ⇡1(W ,!(~V)). The restrictions of ⇢ � ! to L1 and L2 map �1
and �2 to the exterior of the line segment connecting 0, 1,1 drawn on the right diagram in
Figure ??. Thus,

(⇢ � !)⇤(�1) = (⇢ � !)⇤(�2) = 1,

and hence !⇤(�) (and all of its powers) must be in the kernel of ⇢⇤. On the other hand, ⇢
restricts to a degree 2 covering map

⇢|V : V ! P1 � {0, 1,1},
so (⇢|V)⇤ is an injection on fundamental groups. Thus, no nonzero power of � can map to
an element of ⇡1(V ,!(~V)) under !⇤. This implies no nonzero power of � lies in E

f

. ⇤
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for all n 6= 1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy

C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set

�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
Fix generators r and s of the free group ⇡1(MA

,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.

Proposition 4.7. The element

� := �1 · �2 2 ⇡1(W ,~V)

lies in S.

Proof. We must show that (p1)⇤(�) = (p2)⇤(�). Since the path �1 lies in the fiber of p1 above
the basepoint ~

A

we have

(p1)⇤(�1) = 1.

The image (p1)⇤(�2) = r · s.
(⇠)

Thus,

(p1)⇤(�) = (p1)⇤(�1) · (p1)⇤(�2)
= r · s
= (p1)⇤(�2) · (p1)⇤(�1)
= (p1)⇤(� � �)
= (p2)⇤(�).

⇤

Since, p1(�n) = (r · s)n we see that �n 6= 1 for all n 6= 0. To show that no nonzero power of

� lies in E, we first inject W into a simpler space cW , and then we work with a quotient W
defined below.
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(let      a loop on L encircling the intersections of L  
with the horizontal red lines) 

Identifying M
A

⇥M
A

= C2 \ L, defines coordinates for W , and
we have

W = C2 \ (L [ C) ⇢ C2 \ L = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

= C \ {0, 1}
(x, y) 7! x.

The forgetful map µ
A,B

on Moduli spaces is given by

µ
A,B

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

Lemma 4.5. The element � 2 L lies in S if and only if � = ⇠⌘ where ⇠ is the image of an

element in ⇡1(L1), ⌘ is an element of ⇡1(L2) and p1(⌘) = p2(⇠).

⇠
In other words, for � 2 L,

� 2 S

if and only if
� = ⇠⌘,

⇠ 2 Im(⇡1(L1)), ⌘ 2 Im(⇡1(L2))

and
p1(⌘) = p2(⇠).

Corollary 4.6. The subgroup S is not normal in L.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := {(x, y) | y = 3/4} = �(L) in C2.
The intersection L1 \ L2 coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the
intersections L1 \W and L2 \W is isomorphic to the complement of finitely many points
in P1.
Let � = ⇠⌘ where ⇠ 2 Im(⇡1(L1) ! ⇡1(W)) is non-trivial, ⇢(!(⇠)) = 1, and ⌘ = �(⇠).

Then
� 2 S

10



We have exhibited an infinite set of cosets of E in S.

It follows that E has infinite index in S and hence 

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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 has infinitely many connected components as claimed.

Using coordinates given by the identifying M
A

⇥M
A

= C2 \ L,
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

(x, y) 7! x.

The forgetful map µB

A

on Moduli spaces is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := �(L) in C2. The intersection L1 \ L2

coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the intersections L1 \ W and
L2 \W is isomorphic to the complement of finitely many points in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
Fix generators r and s of the free group ⇡1(MA

,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.
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Figure 1. On the left is the space W drawn in R2 in (x, y)-coordinates; it
is the complement of the curves in �, which are drawn in color. The black
diagonal line is V , and it intersects � in 10 points (two of which are complex
conjugates and one which is at (1,1)). On the right is a picture of W near
(x, y) = (1,1) drawn in (u, v)-coordinates, where x = 2u

u�2 and y = 2v
v�2 .

the map µ
B

is a degree 4 covering map,

µ
B

: W ! M
B

(x, y) 7! (y, z)

where

z =
(�x2 + y + 2x� 1)2

4x(y � 1 + x)(1� x)
;

and the map µB

A

is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

Thus we have

µ
A

= proj
x

|W µB

A

� µ
B

= proj
y

|W .

And in these coordinates, ~V = (3/4, 3/4).

Proof. All of these assertions follow directly from the definitions. ⇤

The following corollary is immediate.

Corollary 4.2. We have S
f

= {� 2 ⇡1(W ,~V) | (proj
x

)⇤(�) = (proj
y

)⇤(�)}.
10

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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loss of generality in what follows, since by definition we have ⇡1(V ,~V) := ⇡1(V0,~V), where
V0 is the connected component of V containing ~V .
Making the canonical identifications defined by the basepoints, we have

Mod
B

= ⇡1(MB

,~
B

),

Mod
A

= ⇡1(MA

,~
A

),

L = ⇡1(W ,~V),

S = image of ⇡1(TB

/S,~) in ⇡1(W ,~V), and

E = image of ⇡1(V ,~V) in ⇡1(W ,~V).

Under these identifications,

S = {� 2 ⇡1(W ,~V) | (p1)⇤(�) = (p2)⇤(�)};

that is, S is the equalizer of the induced maps ⇡1(W ,~V) ! ⇡1(MA

,~
A

).

3.5. In our case. Let f : (P1, A) ! (P1, B) be a rational map so that A,B ✓ P1 are finite
sets containing at least 3 points, B contains the critical values of f , and B contains A. The
maps

�
f

, �
A,B

: T
B

! T
A

are our two maps on Teichmüller space, and they determine the companion homomorphisms

�
f

: G
f

! Mod
A

and �
A,B

: G
A,B

! Mod
A

.

The group G
A,B

= Mod
B

, and the homomorphism �
A,B

: Mod
B

! Mod
A

is the forgetful

homomorphism, corresponding to forgetting the points in B � A.
In general, there is not much to say about the group G

f

and the homomorphism �
f

: G
f

!
Mod

A

, except for the fact that the group G
f

contains the subgroup of liftable mapping classes
as defined in Section 2. Since the subgroup of liftable mapping classes has finite index in
Mod

B

[KPS], so G
f

has finite index in Mod
B

.
The group L = G

f

, and the group S is the equalizer of �
f

and �
A,B

. The spaceW = T
B

/L,
and there are induced maps

p1 = �0
f

: W ! M
A

and p2 = (�
A,B

)0 � q : W ! M
A

where q : W ! M
B

is the natural covering projection.
Because f : (P1, A) ! (P1, B) is rational, there is a canonical basepoint ~ := [id] 2

DefB
A

(f). We have:

• the space V is the image of DefB
A

(f) in W , and it is contained in the equalizer of
p1, p2 : W ! M

A

,
• the group S is identified with the equalizer of (p1)⇤, (p2)⇤ : ⇡1(W ,~V) ! ⇡1(MA

,~
A

),
• the group E is identified with ⇡1(V ,~V) in ⇡1(W ,~V).

In the next section, we will explicitly compute the spaces V ,! W , and compare E and S
inside ⇡1(W ,~V) for our particular maps hfi 2 Per4(0)⇤. For these examples, the space V
is connected (see Corollary 4.3). We will then show that E has infinite index in S, thereby
establishing Theorem 1.2 with Proposition 3.4.
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consisting of hfi for which the critical points of f do not belong to the same periodic cycle.
(The normalization of the curve Per4(0)⇤ is studied in [R] where it is denoted as V4,0).
Let f : P1 ! P1 represent an element of Per4(0)⇤. Define the set A to be the set of points

in a superattracting 4-cycle, and define the set B := A [ cv(f), where cv(f) is the set of
critical values of f . Consider the associated deformation space DefB

A

(f). By Theorem 1.1,
DefB

A

(f) is a 1-dimensional submanifold of T
B

which is 2-dimensional. The following theorem
is our main result.

Theorem 1.2 (Main Theorem). For hfi 2 Per4(0)⇤, the space DefB
A

(f) has infinitely many

connected components.

The proof of Theorem 1.2 reduces to a comparison of the stabilizer of DefB
A

(f) in the au-
tomorphism group Mod

B

of the Teichmüller space T
B

, with the stabilizer of a connected
component of DefB

A

(f). This is essentially a fundamental group computation which we ulti-
mately complete in Section 4.

Remark 1.3. The authors learned that Firsova, Kahn, and Selinger proved a related result
in [FKS]. Their work was completed independently, and at the same time that the authors
proved Theorem 1.2.

2. Preliminaries

2.1. Moduli space. Let A ✓ S2 be a finite set containing at least 3 points. Themoduli space

M
A

of the pair (S2, A) is the space of injective maps ' : A ,! P1 modulo postcomposition by
Möbius transformations. The spaceM

A

is a complex manifold isomorphic to the complement
of finitely many hyperplanes in C|A|�3.
If � represents an element of the Teichmüller space T

A

, the restriction � 7! �|
A

induces a
universal covering map T

A

! M
A

which is a local biholomorphism with respect to the com-
plex structures on T

A

and M
A

. The group of deck transformations is naturally isomorphic
to the pure mapping class group Mod

A

, the quotient of the group of orientation-preserving
homeomorphisms (S2, A) ! (S2, A) fixing A pointwise by the subgroup of such maps iso-
topic to the identity relative to A. This group acts freely and properly discontinuously on
T
A

.

2.2. The pullback map. Let f : (S2, A) ! (S2, B) be an orientation-preserving branched
cover so that A,B ✓ S2 are finite sets containing at least 3 points, and B contains the
critical values of f . The map �

f

: T
B

! T
A

is defined in the following way. Let � : S2 ! P1

be an orientation-preserving homeomorphism. By the Uniformization Theorem, there exist

• a homeomorphism  : S2 ! P1, and
• a rational map F : P1 ! P1,

such that the following diagram commutes.

(S2, A)

f

✏✏

 

//

�
P1, (A)

�

F

✏✏

(S2, B)
�

//

�
P1,�(B)

�

The map �
f

: T
B

! T
A

is defined as �
f

: [�] 7! [ ].
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and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S
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DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L
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M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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Using coordinates given by the identifying M
A

⇥M
A

= C2 \ L,
we have

W = C2 \ (L [ C) ⇢ (C2 \ L) = M
A

⇥M
A

Thus, W can be identified with C2 � C where C ◆ L is a finite union of algebraic curves.
The projection maps µ

B

, µ
A

are given with respect to these coordinates by

µ
B

: W ! M
B

(x, y) 7! (y, z)

where z is a rational function of x, y (defined in Proposition ??), and

µ
A

: W ! M
A

(x, y) 7! x.

The forgetful map µB

A

on Moduli spaces is given by

µB

A

: M
B

! M
A

(y, z) 7! y.

The space V is the intersection of W with the diagonal line L
x=y

.

4.3. The proof. To establish Theorem 1.2, it su�ces to find an element � 2 S none of whose
(nonzero) powers lie in E. This implies that E has infinite index in S, and Theorem 1.2 then
follows from Proposition 3.4.
Consider the map

� : C2 ! C2

(x, y) 7! (y, x),

and the lines L1 := {(x, y) | x = 3/4}, and L2 := �(L) in C2. The intersection L1 \ L2

coincides with the basepoint ~V = (3/4, 3/4) 2 V . Each of the intersections L1 \ W and
L2 \W is isomorphic to the complement of finitely many points in P1.
Choose a radius R > 1 so that the circles C1 and C2 of radius R, centered at (3/4, 3/4),

satisfy
C1 ✓ L1 \W and C2 ✓ L2 \W .

Let

 : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Rit),

` : [0, 1] ! L1 \W
t 7! (3/4, 3/4 +Re2⇡i(t+1/2)),

and set
�1 :=  · ` ·  and �2 := � � �1,

where  is the path defined by (t) = (1� t). By the choice of R, the loops �1 in L1 \W
and �2 in L2 \W both determine well-defined, nontrivial elements of ⇡1(W ,~V).
Fix generators r and s of the free group ⇡1(MA

,~
A

), so that r is a loop around 0 and s
is a loop around 1, each turning once, counter-clockwise around the punctures.
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i

Theorem: 

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram
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f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
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// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
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f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
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are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏
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// T

B

✏✏

DefB
A

(f)/S

✏✏
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// T

B

/S
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DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L
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rr
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M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1,
where x, y are the coordinates in C2.
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has infinitely many components.
Summary: Fix 

1.3. A family of quadratic rational maps. Let M2 be the moduli space of quadratic
rational maps: the space of quadratic rational maps up to conjugation by Möbius trans-
formations. The algebraic curve Per4(0) ✓ M2 consists of conjugacy classes of maps with
a superattracting cycle of period 4. That is, for hfi 2 Per4(0) the map f : P1 ! P1 has
a critical point which is periodic of period 4. Define Per4(0)⇤ ✓ Per4(0) to be the subset
consisting of hfi for which the critical points of f do not belong to the same periodic cycle.
The normalization of the curve Per4(0)⇤ is studied in [R] where it is denoted as V4,0.
Let f : P1 ! P1 represent an element of Per4(0)⇤. Define the set A to be the set of points

in a superattracting 4-cycle, and define the set B := A [ cv(f), where cv(f) is the set of
critical values of f . Consider the associated deformation space DefB

A

(f). By Theorem 1.3,
DefB

A

(f) is a 1-dimensional submanifold of T
B

which is 2-dimensional. The following theorem
is our main result.

Theorem 1.4 (Main Theorem). For hfi 2 Per4(0)⇤, the space DefB
A

(f) has infinitely many

connected components.

The proof of Theorem 1.4 reduces to a comparison of the stabilizer of DefB
A

(f) in the au-
tomorphism group Mod

B

of the Teichmüller space T
B

, with the stabilizer of a connected
component of DefB

A

(f). Section 2 presents necessary background definitions and properties.
A main tool in this paper is an intermediate space W defined in Section 3 which plays an
important role in the comparison of the pullback map �

f

and the forgetful map �inc. This
space also appears in several previous works [DH], [BN], [BEKP], [K], [L], [KPS]. For our
particular family of examples, we study the topology of W , and make explicit fundamental
group computations in Section 4.

Remark 1.2. The authors learned that T. Firsova, J. Kahn, and N. Selinger proved a related
result in [FKS]. Their work was completed independently, and at the same time that the
authors proved Theorem 1.4.

Acknowledgments. We would like to thank M. Astorg, L. Bartholdi, A. Epstein, J. Hub-
bard, C. McMullen, and D. Thurston for helpful conversations related to this work.

2. Preliminaries

2.1. Teichmüller space. Given a finite set A ✓ P1 which contains at least 3 points, we
define the Teichmüller space T

A

:= Teich(P1, A) as the quotient of the space of all orientation-
preserving homeomorphisms � : P1 ! P1 by the equivalence relation ⇠ where �1 ⇠ �2 if
there exists a Möbius transformation ⌫ such that ⌫ � �1 = �2 on A, and ⌫ � �1 is isotopic
to �2 relative to A. The space T

A

is a complex manifold of dimension |A|� 3, and it comes
with a canonical basepoint ~ := [id].
The moduli space M

A

of the pair (P1, A) is the space of injective maps ' : A ,! P1

modulo postcomposition by Möbius transformations. The space M
A

is a complex manifold
isomorphic to the complement of finitely many hyperplanes in C|A|�3.
If � represents an element of the Teichmüller space T

A

, the restriction � 7! �|
A

induces a
universal covering map T

A

! M
A

which is a local biholomorphism with respect to the com-
plex structures on T

A

and M
A

. The group of deck transformations is naturally isomorphic
to the pure mapping class group Mod

A

, the quotient of the group of orientation-preserving
homeomorphisms h : P1 ! P1 fixing A pointwise by the subgroup of such maps isotopic to
the identity relative to A. This group acts freely and properly discontinuously on T

A

.
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Proof:

/S

D

/E
D is a 
connected 
component 
of 

and a rational map F
t

: (P1, 
t

(A)) ! (P1,�
t

(B)) such that the diagram

(S2, A)

f

✏✏

 t
// (P1, 

t

(B))

Ft

✏✏

(S2, B)
�t

// (P1,�
t

(B))

commutes. The path e� defines an isotopy from �
t

: P1 ! P1 to the identity, and the path
�
f

�e� defines an isotopy from  
t

: P1 ! P1 to the identity. The composition ��1
t

� 
t

: P1 ! P1

is isotopic to the identity relative to A because �(t) 2 D and therefore  
t

|
A

= �
t

|
A

. This
implies [ 

t

] = �
A,B

([�
t

]); that is, �
A,B

(e�(t)) = �
f

(e�(t)).
It follows by construction that D is isomorphic to the normalization of Per4(0)⇤ (see [M2],

[R]). ⇤
Corollary 4.3. The space V is connected, and the restrictions

q|V : V ! M
B

and p1|V : V ! M
A

are injective.

Proof. By the above choice of coordinates, V is isomorphic to P1 with 10 punctures. It is
easily verified that the restrictions above are injective. ⇤
As a consequence of Corollary 4.3, the group S is equal to the stabilizer of DefB

A

(f) in the
whole deck group Mod

B

for our family of examples f : (P1, A) ! (P1, B).

Proposition 4.4. The stabilizer of DefB
A

(f) in Mod
B

is S.

Proof. Let G ✓ Mod
B

be the stabilizer of DefB
A

(f) in Mod
B

. By Proposition 3.1, S ✓ G.
Consider the commutative diagram:

DefB
A

(f)

✏✏

� �
// T

B

✏✏

DefB
A

(f)/S

✏✏

� �
// T

B

/S

✏✏ %%

LL
LL

LL
LL

LL

DefB
A

(f)/G �
�

// T
B

/G

✏✏

W = T
B

/L

xxrr
rr
rr
rr
rr

M
B

By Proposition 3.2 and Corollary 4.3, the natural map

DefB
A

(f)/S ! M
B

is injective, so S = G. ⇤
To summarize: in our example, the space W naturally embeds as a Zariski closed subset

of M
A

⇥M
A

, which can be identified with C2 � L, where L = L
x=0 [ L

x=1 [ L
y=0 [ L

y=1.
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Thank you!


