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À André

In this paper we study foliations F on compact manifolds M , of real codimen-
sion 2, with a transversal holomorphic structure. We construct a decomposition
of M into dynamically defined components, similar to the Fatou/Julia sets for it-
eration of rational functions, or the region of discontinuity/limit set partition for
Kleinian groups in PSL(2, C). All this in tune with Sullivan’s well known dictionary
between the different guises of conformal dynamics [14].

The tool we use to generate the partition of M is a subspace of “C0-infinitesimal
automorphisms” of F , i.e. a subspace of the space of continuous vector fields of
modulus of continuity ε log ε such that the flow they generate consists of homeo-
morphisms of M sending the leaves of F topologically onto the leaves of F . One
is not really interested in all the “infinitesimal automorphisms”, since there are
the “trivial” ones, which correspond to the vector fields tangent to the foliation.
So, taking the infinitesimal automorphisms modulo these “trivial” vector fields,
we obtain sections of the normal bundle ν1,0 of F which are constant along the
leaves. More precisely, we denote by H0(M, CF (ν1,0)) the complex vector space of
continuous sections X of ν1,0 which are constant along the leaves and that have
distributional derivatives in L2 with ∂̄X essentially bounded (see 1.2).

This opens a fundamental dichotomy for points on M :

1) The Fatou set Fatou(F) of F ; it is the open subset formed by points x ∈ M
with X(x) �= 0 for some X ∈ H0(M, CF (ν1,0)).

2) The Julia set Julia(F) of F ; it is the closed subset of M defined by X(x) = 0
for all X ∈ H0(M, CF (ν1,0)).

Let Fatou(F) = ∪kFk be the decomposition of the Fatou set into connected
components (open and F-saturated). Denote by Fk the restriction of the foliation
F to Fk. The elements of H0(M, CF (ν1,0)) may be lifted to vector fields on M which
are uniquely integrable (see 1.2), giving rise to flows preserving the foliation. Since
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the codimension of the foliation is 1 over C and we can multiply by complex numbers
of the form e2iπθ, we obtain that the foliation Fk is transitive, i.e. there are ambient
leaf preserving isotopies sending any leaf in Fk to any other leaf of Fk. These facts
allow us to apply Molino’s theory of “transversely complete foliations” [12].

Theorem 1. Let F be a transversely holomorphic foliation of complex codimen-
sion 1 on a compact connected manifold M and let Fk be the restriction of F to
some connected component Fk of the Fatou set. Then there are three exclusive
cases:

1) Wandering component: the leaves of Fk are closed in Fk.

2) Semi-wandering component: the closures of the leaves of Fk form a real
codimension 1 foliation of Fk which has the structure of a fiber bundle over a 1-
dimensional manifold.

3) Dense component: the leaves of Fk are dense in Fk.

We analyze the components separately to obtain:

Theorem 2 (wandering components). 1) Let Fk be a “wandering component”
of the Fatou set. Then the leaf space of Fk is a finite Riemann surface Σk, i.e. it
is Hausdorff and compact minus a finite number of points. The natural projection
Fk → Σk has the structure of a locally trivial fiber bundle.

2) There is a finite number of “wandering components” in the Fatou set, except
possibly for those for which the leaf space is a sphere minus 1, 2 or 3 points.

Recall that if G is a Lie group, a foliation is called a G-Lie foliation if it is defined
by a collection of submersions from open sets to G in such a way that any two of
these submersions agree on the intersection of their domains of definitions modulo
a post-composition by some left translation in G (see [12]). In dimension 2, there
are only two simply connected Lie groups; R

2 and the affine group Aff(R) of the
real line (consisting of maps x �→ ax + b with a ∈ R

∗
+, b ∈ R). Of course, R

2 is
identified with C so that an R

2-Lie foliation is obviously transversely holomorphic.
The group Aff(R) acts holomorphically, freely and transitively, on the upper half
spaceH, so that one can identify Aff(R) with the Riemann surfaceH in such a way
that the left translations of Aff(R) act holomorphically (but note that the right
translations don’t act holomorphically!). This means that an Aff(R)-Lie foliation
is canonically a transversely holomorphic foliation.

Theorem 3 (semi-wandering components). Let Fk be a “semi-wandering com-
ponent” of the Fatou set. Then the closures of the leaves of Fk define a real analytic
foliation F̄k given by a locally trivial fibration of Fk on the circle or an interval.
The foliation Fk is a G-Lie foliation, where G = C or Aff(R). The lift of Fk to
the universal cover F̃k is given by a locally trivial fibration of F̃k onto some strip
{z ∈ C | α < �(z) < β} (with −∞ ≤ α < β ≤ +∞).
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Theorem 4 (dense components). Let Fk be a “dense component” of the Fatou
set. Then Fk is an ergodic foliation in Fk (with respect to the Lebesgue measure
class of M). There are two possibilities:

1) Fk is an R
2-Lie foliation. The Julia set consists of a finite number of compact

leaves and the Fatou set is connected. The foliation is defined by a meromorphic
closed basic 1-form having poles on the Julia set.

2) Fk is an Aff(R)-Lie foliation.

The lift of Fk to the universal cover F̃k of Fk is given by the fibers of a locally
trivial fibration of F̃k onto C (in case 1) or onto the upper half space (in case 2).

We may then further decompose the Julia set of F in the measurable category.
An F-invariant measurable set J ⊂ M is said to be recurrent in the measurable
sense if there is no transversal disc D containing a Borel set B ⊂ J ∩ D with
positive (2-dimensional) Lebesgue measure and such that distinct points in B are
in distinct leaves of F .

Theorem 5. Let (M,F) be a transversely holomorphic foliated compact mani-
fold such that the Lebesgue measure of the Julia set is positive. Then there is a
(Lebesgue) measurable foliated partition of the Julia set Julia(F) = J0 ∪ . . . ∪
Jr , r ≥ 0 such that:

1) For k ≥ 1 the sets Jk have positive Lebesgue measure and F|Jk
is ergodic with

respect to the Lebesgue measure class. The space of essentially bounded measurable
basic Beltrami differentials on Jk is 1-dimensional.

2) J0 is empty or it is a recurrent set in the measurable sense. There are no
non-zero essentially bounded measurable basic Beltrami differentials on J0.

In the absence of the regions of homogeneity given by the Fatou set, one ob-
tains the decomposition of the manifold into a finite number of Lebesgue ergodic
components plus the rigid recurrent set J0. Note that if the leaves with nontrivial
holonomy are dense, then Fatou(F) is empty, so that indeed there are no Fatou
components in this case.

In section 8, we describe a variety of examples that illustrate the previous theory.
In particular, we show how it can be applied to holomorphic foliations in compact
complex surfaces with “generic” singularities (see example 8.1). Indeed, by some
“cut and paste” construction, we can easily construct non singular foliations from
these singular foliations. In particular, we can generalize the definitions of the
Fatou and Julia sets for such singular foliations. We obtain:

Theorem 6. Let F be a holomorphic foliation in CP 2 with Poincaré type singu-
larities. Then:

1) if the Fatou set of F is non-empty, then F restricted to its connected compo-
nents is “homogeneous”, as described in the above Theorems 1, 2, 3 and 4,
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2) if the Julia set has positive Lebesgue measure then we may further decompose
the Julia set into a finite number of measurable pieces like in Theorem 5.

We note that the above Theorem is always giving information for an arbitrary
F with Poincaré type singularities. Namely, either there are some “homogeneous
regions” in F , or in the absence of them, we have a unique finite measurable de-
composition of CP 2 into ergodic or recurrent components.

In the proof we use the solution of ∂̄ with measurable coefficients and the finite-
ness of certain cohomology groups. It is through the solution of the ∂̄ problem that
we introduce a measurable point of view in the foliation. A. Haefliger observed that
the theory here developed can be extended to compactly generated pseudogroups as
defined in [9], and similar conclusions may be obtained in this more general context.
We could have done so, but the exposition would have been harder to follow.

While doing this work, we have been inspired by the words and personalities of
Lars Ahlfors, André Haefliger and Dennis Sullivan, to whom we are most thankful.

1. The Fatou and Julia Sets of Transversely Holomorphic Foliations

1.1. Transversely Holomorphic Foliations

Let M be a compact connected manifold of dimension d + 2. A transversely
holomorphic foliation F may be defined by an atlas {Ui, ϕi, ϕij}. The Ui ⊂ M
are open sets covering M . The maps ϕi: Ui → ϕi(Ui) ⊂ C are submersions with
connected fibers and the holomorphic maps ϕij : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) are
such that ϕij ◦ ϕj = ϕi on Ui ∩ Uj . That is, (M,F) is a transversely holomorphic
foliation of complex codimension 1 (see for instance [7,8]). The foliation gives rise
to a decomposition of M into leaves of dimension d; each connected component of
the intersection of a leaf with Ui is a fiber of ϕi. Two transversely holomorphic
foliations F1 and F2 on M are equivalent if there is a foliated homeomorphism
σ: (M,F1)→ (M,F2), which is transversely holomorphic.

1.2. Infinitesimal Automorphisms of (M,F) and their Flows

The transversely holomorphic foliation (M,F) defines a subbundle τ of the tan-
gent bundle TM of M consisting of those vectors which are tangent to the leaves
with quotient bundle ν1,0:

0 → τ → TM
π→ ν1,0 → 0. (1.1)

We say that the germ of a section X of a vector bundle on M at a point x ∈ M
has modulus of continuity ε log ε if there is a positive constant C, a coordinate chart
U containing x, and a trivialization of the bundle over U , such that for x1, x2 ∈ U
we have

|X(x1)−X(x2)| < −C|x1 − x2| log(|x1 − x2|).
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We will denote by Cε log ε(E) the sheaf of sections of the vector bundle E on M
which are of modulus of continuity ε log ε. They are fine sheaves, since we can use
partitions of unity. The sheaves of sections of (1.1) of modulus of continuity ε log ε
give rise to an exact sequence of fine sheaves on M :

0 → Cε log ε(τ)→ Cε log ε(TM ) π→ Cε log ε(ν1,0)→ 0. (1.2)

The normal bundle ν1,0 to the foliation F defined in (1.1) is “flat along the
leaves”. This structure may be seen by observing that the normal bundle may be
defined by the cocycle ∂ϕji

∂z ◦ ϕi : Ui ∩ Uj → C
� which is constant on the fibers of

ϕi. Any time that we have a bundle which is flat along the leaves we can speak
of sections which are constant along the leaves. We will call these sections basic
sections. We can apply this to any bundle obtained by tensor algebra with the
normal bundle, like ν1,0 ⊗ ν0,1∗.

The basic sections of the bundle ν1,0 ⊗ ν0,1∗ will be called basic Beltrami dif-
ferentials. Denote by L∞

F (ν1,0 ⊗ ν0,1∗) the sheaf of germs of essentially bounded
measurable basic Beltrami differentials on (M,F). They are defined modulo sets
of measure 0 with respect to the Lebesgue measure class of M , since they are
equivalence classes of measurable sections.

The basic sections of the bundle ν1,0 will be called basic normal vector fields.
We will consider continuous basic normal vector fields satisfying very weak differ-
entiability conditions. Denote by CF (ν1,0) the sheaf of germs of continuous basic
sections of ν1,0 with distributional derivatives locally in L2 with

∂̄σ ∈ L∞
F (ν1,0 ⊗ ν0,1∗).

Observe that the condition that distributional derivatives are locally in L2 actually
follows from the fact that ∂̄σ is essentially bounded: see lemma 3, page 90 of [2].
CF (ν1,0) is a subsheaf of Cε log ε

F (ν1,0), since these vectors fields are of type ε log ε

[11,13]. Define Cε log ε
F (TM ) as the subsheaf π−1CF (ν1,0), giving rise to the exact

sequence of sheaves:

0 → Cε log ε(τ)→ Cε log ε
F (TM )→ CF (ν1,0)→ 0. (1.3)

Cε log ε
F (TM ) consists of germs of vector fields of type ε log ε which project to the

normal bundle as a section σ which is constant along the leaves and which has
distributional derivatives locally in L2 with ∂̄σ locally essentially bounded.

The first sheaf in (1.3) is a fine sheaf, so it has no higher cohomology groups. The
long exact sequence of cohomology groups of (1.3) gives rise to an exact sequence
of global sections

0 → H0(M, Cε log ε(τ))→ H0(M, Cε log ε
F (TM ))→ H0(M, CF (ν1,0))→ 0. (1.4)

This implies that we may lift any basic normal vector field X ∈ H0(M, CF (ν1,0))
to a vector field on M of type ε log ε. Vector fields of type ε log ε have the property
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of being uniquely integrable, in the sense that the differential equation ẋ = X(x)
has a unique solution for a given initial condition, and so defines a local flow [11,13].
Summarizing:

Lemma 1.1. 1) We may lift any basic normal vector field X ∈ H0(M, CF (ν1,0))
to a vector field in H0(M, Cε log ε

F (TM )).

2) Any vector field X ∈ H0(M, Cε log ε
F (TM )) in the compact manifold M gives

rise to a global 1-parameter flow Φ : M × R → M preserving the foliation F .

If X ∈ H0(M, Cε log ε(τ)) then it is a “trivial” automorphism, since its flow is
preserving each individual leaf. The elements in H0(M, CF (ν1,0)) represent then
the “non-trivial infinitesimal symmetries of F”.

We note that if Y ∈ H0(M, CF (ν1,0)) then it has to vanish on every leaf that
has non-trivial holonomy. This is so, since fixed points of conformal maps in C

different from the identity are isolated. Hence the flow obtained by integrating Y
preserves each of the leaves with non-trivial holonomy, which is a set with an at
most countable number of leaves. If the union of these leaves is dense in M , then
H0(M, CF (ν1,0)) = 0.

We have continuous dependence of the solution with respect to variation of the
initial conditions and the vector field [11].

1.3. The Fatou and Julia Sets of a Transversely Holomorphic Foliation

Definition 1.3. The Julia set of the transversely holomorphic foliated compact
manifold (M,F) is the closed subset Julia(F) of M where all the elements of
H0(M, CF (ν1,0)) vanish:

Julia(F) = {x ∈ M | X(x) = 0 , ∀X ∈ H0(M, CF (ν1,0))}.

The Fatou set Fatou(F) = M \ Julia(F) of (M,F) is the complement of the Julia
set, and hence open and F-saturated. Its connected components will be called the
Fatou components of (M,F).

2. Basic Beltrami Differentials

We have from [8] the following exact sequence of sheaves:

0→ ΘF → CF (ν1,0) ∂̄→ L∞
F (ν1,0 ⊗ ν0,1∗)→ 0 (2.1)

where ∂̄ is the operator ∂/∂z̄ in the transversal complex variable z. The kernel sheaf
ΘF consists of those sections of the normal bundle which are constant along the
leaves and are holomorphic. They correspond to the holomorphic infinitesimal au-
tomorphisms of F . If X ∈ H0(M, Cε log ε(TM )) with projection π(X) ∈ H0(M, ΘF ),
then the flow generated by X preserves F and is holomorphic in the transversal
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variables, providing a 1-parameter family of isomorphisms of the transversely holo-
morphic foliation F .

The long exact sequence of cohomology groups of (2.1) is

0 → H0(M, ΘF )→ H0(M, CF (ν1,0)) ∂̄→ H0(M,L∞
F (ν1,0 ⊗ ν0,1∗)) δ→ H1(M, ΘF )

(2.2)
We endow H0(M,L∞

F (ν1,0 ⊗ ν0,1∗)) with the essential supremum norm, where it
becomes a Banach space. On H0(M, CF (ν1,0)) we introduce the norm

||σ|| = max
p∈M

|σ(p)|+ sup
p∈M

|∂̄σ|

which endows it with a Banach space structure, where the middle map in (2.2) is
continuous. Note that if a sequence of continuous functions fn converges uniformly
to a function f and if the distributions ∂̄fn are L∞ functions which converge in L∞

to a function g then ∂̄f = g as a distribution; this guarantees the completeness of
the normed space H0(M, CF (ν1,0)).

We have:

Proposition 2.1 ([7,8]). If (M,F) is a transversely holomorphic foliation in the
compact manifold M , then the vector spaces H�(M, ΘF ) are finite dimensional and

∂̄H0(M, CF (ν1,0)) ⊂ H0(M,L∞
F (ν1,0 ⊗ ν0,1∗))

is a closed subspace of finite codimension.

3. Classification of Components of the Fatou Set

Let (M,F) be a transversely holomorphic foliation in the compact manifold M
and let Fatou(F) = ∪kFk be the decomposition of the Fatou set into connected
components (open and F-saturated). Denote by Fk the restriction of the foliation
F to Fk.

Let X ∈ H0(M, CF (ν1,0)) be a basic normal vector field such that it is not iden-
tically 0 on Fk. Choose X̃, Ỹ ∈ H0(M, Cε log ε

F (TM )) lifting X and iX respectively
as in (1.3) and consider the map

φ : M × C → M (3.1)

which associates to (x, teiθ) the point of M obtained by flowing with the vector
field

X̃θ = (cos θ)X̃ + (sin θ)Ỹ

a time t > 0, and the identity for t = 0. This map φ is continuous and satisfies the
partial additivity property:

φ(x, (t1 + t2)eiθ) = φ(φ(x, t1eiθ), t2eiθ) (3.2)
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reflecting the fact that the restriction of φ to M × {Reiθ} corresponds to the flow
generated by the vector field X̃θ on M . The fact that X is basic implies that the
maps

φ(−, teiθ) : M → M

are preserving Fk.

Lemma 3.1. Let Fk be the foliation in a Fatou component Fk of (M,F) as above.
Then:

a) Given x1, x2 ∈ Fk there is an F preserving homeomorphism of M sending x1

to x2.

b) The leaves L of Fk are either dense or nowhere dense.

c) The closures of the leaves

{K} = {L̄ | L is a leaf of Fk} (3.3)

form a partition of Fk. All the elements in the partition are ambient homeomorphic.
The sets K are union of Fk leaves, and given two leaves in K there is a Fk-leaf
preserving homeomorphism of K sending one to the other.

d) If a leaf L ⊂ Fk is not closed, then it is recurrent, i.e. it accumulates on
itself.

e) Let X ∈ H0(M, CF (ν1,0)) such that X(x1) �= 0 for some x1 ∈ Fk. Then
X(x2) �= 0 for x2 ∈ L̄x1 ∩ Fk, where Lx1 is the leaf of Fk passing through x1.

Proof. We follow some arguments from [12].

a) The existence of normal basic vector fields implies that we can move to nearby
leaves with (3.1). Integrating vector fields tangent to the leaves, we may move to any
point on the same leaf. A composition of maps of both types proves the assertion.

b) If the interior of L̄ is non-empty, then for a leaf L′ in the topological boundary
∂L̄, its interior is empty, since it is contained in ∂L̄, contradicting the homogeneity
of a).

c) The argument is similar to a), and rests on the existence of non-vanishing
basic normal vector fields.

d) A non-recurrent leaf is open in its closure, and hence the leaf through an
accumulation point of L cannot be dense in L̄ (it is contained in the boundary of
L ⊂ L̄), as required by the homogeneity properties in c).

e) If x2 ∈ Lx1 , we have X(x2) �= 0, since X is a basic vector field. If X(x2) = 0
with x2 ∈ L̄x1 then X would vanish on Lx2 , which is dense in L̄x2 = L̄x1 , so we
would also have X(x1) = 0. �

Proof of Theorem 1. Assume that the leaves L of Fk are not closed and are not
dense. We have to show that possibility 2) is realized. Let X ∈ H0(M, CF (ν1,0)) be
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a basic normal vector field not identically zero on Fk, choose liftings X̃θ and obtain
the map φ as in (3.1). Choose x ∈ Fk with X(x) �= 0, then φ restricted to {x} ×C

gives a map φx : C → M , transversal to the foliation Fk. Since we are assuming
that the leaf Lx is not closed, then it is recurrent by Lemma 3.1.d), so that we may
choose a sequence of points in C:

tneiθn , tn → 0 , θn → θ0 , φ(Lx, tneiθn) = Lx. (3.4)

We want to deduce from this, that for the above angle θ0 and for any t ∈ R we have

φ(Lx, teiθ0) ⊂ L̄x. (3.5)

Using the additivity property (3.2), we deduce from (3.4) that for any integer j
we also have

φ(Lx, jtneiθn) = Lx, (3.6)

and in particular for any given t > 0 we may find a sequence of integers jn with
the property that jntneiθn converges to teiθ0 . Taking the limits in (3.6) we obtain
(3.5). Note that (3.5) implies that

φ(Lx × Reiθ0) ⊂ L̄x. (3.7)

Let F ′
k ⊂ Fk be the open foliated set where X �= 0. It is also a union of elements

of the partition K, by property e). We introduce the real codimension 1 topological
foliation G in F ′

k defined by the distribution

τ ⊕ RX̃θ0 .

Pulling back G via φx we obtain the foliation defined by a non-vanishing vector
field Z with a leaf tangent to the line Reiθ0 ⊂ C. If Mx denotes the leaf of G which
passes through x, we have L̄x = M̄x. The set φ−1

x (M̄x) consists of a closed set
of solutions of Z. By hypothesis that Lx is not dense in Fk and the homogeneity
property in Lemma 3.1.a, we deduce that it is a discrete or a Cantor set of Z-orbits.
Assume it is a Cantor set. For arbitrary eiθ1 different from eiθ0 the line passing
through 0 and direction eiθ1 intersects φ−1

x (M̄x) in a Cantor set, so we may find a
sequence

λneiθ1 → 0 , Lφ(x,λneiθ1 ) = Lx.

But repeating the initial argument of the proof to this new sequence, we obtain

φ(x, Reiθ1) ⊂ L̄x

that contradicts that Lx is not dense. This implies that the leaf Mx is closed in
F ′
k. Hence L̄x = Mx is a topological d + 1 dimensional manifold parametrized by

(3.7). The bundle structure is deduced from the isotopies in (3.1). �

4. Fatou Components with Dense Leaves

We recall:
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Theorem (Rado [6]). Let f be a complex valued continuous function defined on
the closed disc D̄ ⊂ C which is holomorphic in {z ∈ D | f(z) �= 0}. Then f is a
holomorphic function on D.

Proof of Theorem 4. The leaves L of Fk are dense in Fk by Lemma 3.1.b. Let
Xk ∈ H0(Fk, CF (ν1,0)) \ {0}. The section Xk is nowhere vanishing on Fk, for
otherwise it would have to vanish identically on some leaf (it is basic), but since the
leaves are dense, it would have to vanish identically everywhere. Similarly, any two
such normal vector fields have to be linearly C-dependent, since they are linearly
dependent over one point, and so a combination of them vanishes on this point,
and hence identically. It follows that H0(Fk, CF (ν1,0)) is 1-dimensional.

The restriction map from M to Fk and the ∂̄ operator define a commutative
diagram

∂̄ : H0(M, CF (ν1,0)) → H0(M,L∞
F (ν1,0 ⊗ ν0,1∗))

↓ ↓
∂̄ : H0(Fk, CF (ν1,0)) → H0(Fk,L∞

F (ν1,0 ⊗ ν0,1∗))
, (4.1)

where the vertical arrows are surjective: the one on the left due to the fact that
H0(Fk, CF (ν1,0)) is 1-dimensional and the hypothesis that X(x) �= 0 for x ∈ Fk

and some X ∈ H0(M, CF (ν1,0)). The one on the right since we have a canonical
decomposition

H0(M,L∞
F (ν1,0⊗ν0,1∗)) = H0(M \Fk,L∞

F (ν1,0⊗ν0,1∗))⊕H0(Fk,L∞
F (ν1,0⊗ν0,1∗))

given by the extension by 0 on Fk or M \ Fk respectively. Here we are using in a
significant way that we are working with measurable sections. By Proposition 2.1
we have that the top map in (4.1) has finite codimension, hence the space of basic
measurable Beltrami differentials H0(Fk,L∞

F (ν1,0 ⊗ ν0,1∗)) on Fk is finite dimen-
sional.

The space of basic Beltrami differentials is a module over the space of basic
measurable functions. The finite dimensionality of the space of essentially bounded
basic measurable Beltrami differentials on Fk implies that we may find a basis of the
form ρ1µ, . . . , ρmµ where ρj are characteristic functions of F-saturated measurable
sets Vj ⊂ Fk and µ ∈ H0(Fk,L∞

F (ν1,0 ⊗ ν0,1∗)) having support on ∪Vj . Since we
can move the measurable sets Vj with the flow generated by Xk (Lemma 1.1), we
see that j = 1 and V1 = Fk. Note that the flow generated by Xk is transversely
quasiconformal in the transverse direction, hence absolutely continuous with respect
to the transverse Lebesgue measure. In particular, this flow maps a measurable F-
saturated set with zero Lebesgue measure to another set with the same property.
This shows that Fk is ergodic.

We now construct a 1-form ωk : TFk → C defining Fk. Let vx ∈ TxFk be a
tangent vector at x. Define the complex number ωk(vx) by

ωk(vx)Xk(x) = π(vx),
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where π is as in (1.1). It is a C-linear form and basic, since Xk is. The kernel of ωk

defines the distribution τ associated to the foliation in (1.2). In a foliated chart ωk

is the pull-back of a 1-form A(z)dz by a submersion defining the foliation locally.
This function A is continuous and, as a distribution, ∂A/∂z̄ is essentially bounded.
The 2-forms dωk = ∂A/∂z̄ dz̄ ∧ dz and ωk ∧ ω̄k are basic, so by ergodicity they are
linearly dependent i.e. dωk = α ωk ∧ ω̄k for some constant α.

If α = 0, then ωk is a closed 1-form which is holomorphic on Fk, since dωk =
∂̄ωk = ∂A/∂z̄ dz̄ ∧ dz = 0. Let X ∈ H0(M, CF (ν1,0)) be a non-zero normal vector
field on Fk and let D be a small disc transversal to F at a point in the boundary
of Fk. In D the normal vector field X induces a vector field B(z)∂/∂z where B is
holomorphic in D ∩ Fk and is 0 on D ∩ Julia(F).

We now show that D ∩ Fk is dense in D. Assume it is not dense, then define
a function C(z) as B on D ∩ Fk and 0 on the complement. It is a continuous
function on D which is holomorphic where non-zero. So by Rado’s Theorem it is
holomorphic, but then it is 0 since it vanishes on D \ Fk. This contradicts that X
was non-zero on Fk. Hence D ∩ Fk is dense in D.

Since D ∩ Fk is dense, B is holomorphic where non-vanishing, so by Rado’s
Theorem again, B is holomorphic on D. Hence the boundary of Fk in D consists
of isolated points and the normal basic vector field X is transversely holomorphic
on M . This proves part 1) of Theorem 4.

If α �= 0, we can assume that α = i/2 replacing X by some of its multiples.
Consider the 1-form η = �(z)−1 dz (with complex values but not holomorphic)
on the upper half space H = {z ∈ C | �(z) > 0}. This 1-form η is invariant
under the action of Aff(R) on H and satisfies the same relation as ωk, i.e. dη =
i/2 η ∧ η̄. It follows that in each open set Ui ∩ Fk of the foliation atlas of Fk,
one can find a map fi : Ui ∩ Fk → H such that f�

i η = ωk ; this is indeed a very
special (and elementary) case of Maurer-Cartan theory. Note that these maps fi are
holomorphic (submersions) since their differentials are C-linear in the transversal
direction. Observe also that a local diffeomorphism of some open connected set in
H preserves the form η if and only if it is the restriction of some element of Aff(R).
It follows that these maps fi are unique up to post-composition by some element
of Aff(R). Summarizing, we showed that Fk admits a structure of an Aff(R)-Lie
foliation.

The rest of Theorem 4 follows from the general description of G-Lie foliations;
there is a submersion of the universal cover F̃k in G whose fibers define the lifted
foliation [12]. Moreover, since we assume that there are non trivial complete basic
vector fields, we can use the flows they generate to show that this submersion is
actually a locally trivial fibration onto G. �

The reader will find in [5] a complete description of the holonomy pseudogroups
which can occur in case 1) of Theorem 4.

5. Fatou Components with Semi-wandering Leaves
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We prove here a result stronger than Theorem 3:

Theorem 5.1. Let Fk ⊂ M be a “semi-wandering component”. Then the closures
of the leaves of Fk define a real analytic foliation F̄k given by a locally trivial
fibration of Fk on the circle S

1 (case a) or an interval (case b). The foliation Fk

is a G-Lie foliation, where G = C (case I) or Aff(R) (case II). The lift of Fk to
the universal cover F̃k is given by a locally trivial fibration π : F̃k → V ⊂ C which
is equivariant under some h : π1(Fk) → Γ ⊂ G (i.e. π(γ.x) = h(γ)(π(x)) for all
γ ∈ π1(Fk) and x ∈ F̃k) and such that:

case Ia) V = C and the closure Γ̄ of Γ ⊂ C is R× iZ ⊂ C;

case Ib) V is a strip {z ∈ C | α < �(z) < β} with −∞ ≤ α < β ≤ ∞ and the
closure Γ̄ is R ⊂ C.

case IIa) V is the upper half plane H = {z ∈ C | �(z) > 0} and the closure Γ̄ is
{x �→ λnx + b , n ∈ Z, b ∈ R} for some λ > 0,

case IIb) does not occur, or more precisely, coincides with case Ib.

Proof. Pick a point x0 ∈ Fk and a transversal disc D containing x0 and identified
with some disc in C (using the transversely holomorphic structure).

Let X be a basic normal vector field inducing a continuous vector field on D
(still denoted by X). Restricting D if necessary, we may assume that X does not
vanish on D. Let D1 ⊂ D be an open disc containing x0 and such that D̄1 ⊂ D.
There is some ε > 0 such that for any x ∈ D1 the flows φt and ψt of X and iX on
D are defined at x for |t| ≤ ε. Choose D1 so small that each element of D1 can be
written in a unique way in the form φt ◦ ψs(x0) with |t| ≤ ε , |s| ≤ ε.

Let Hol be the holonomy pseudogroup restricted to D. We know by section 3
that we may choose X such that the closure of the orbit of x0 by Hol is the orbit
of X through x0.

Lemma 5.2. There is a non-vanishing holomorphic vector field Z in D1 such
that the orbits of Z (considered as a real vector field) are the closures of the orbits
of Hol in D1. This vector field is unique up to multiplication by a real constant.

Proof. LetHol0 ⊂ Hol be the subset consisting of elements γ defined at x0 and such
that γ(x0) ∈ D1. For each γ ∈ Hol0 there is a real number τ(γ0) with |τ(γ0)| ≤ ε
such that γ(x0) = φτ(γ)(x0).

Since X and iX are basic, each γ ∈ Hol0 is the restriction of some other element
γ̂ of Hol0 defined on all D1:

γ̂(φtψs(x0)) = φtψs(γ(x0)) = φtψsφτ(γ)(x0). (5.1)

Let τ be small enough so that φτ (x0) ∈ D1. We know that there is a sequence
γn ∈ Hol0 such that γn(x0) converges to φτ (x0). Formula (5.1) shows that γ̂n
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converges uniformly to the map

h(τ) : φtψs(x0) ∈ D1 �→ φtψsφτ (x0) ∈ D.

Being a uniform limit of the holomorphic maps γ̂n, this last map is holomorphic.
Hence, for each real τ small enough, we constructed a holomorphic embedding h(τ)
of D1 in D. We claim that h(τ1 + τ2) = h(τ1) ◦ h(τ2) for small τ1, τ2 (where it
makes sense). Indeed, h(τ1 + τ2) ◦ h(τ2)−1 ◦ h(τ1)−1 fixes x0 and commutes with
φt and ψs (since it is a limit of elements of Hol0). Hence it is the identity on its
domain of definition. We therefore constructed a local flow, hence a vector field
Z. A vector field whose local flow consists of holomorphic maps is a holomorphic
vector field so that Z is holomorphic. The maps h(τ) being limits of elements of
Hol send orbit closures to orbit closures so that the orbits of the local flow h(τ) are
the orbit closures of Hol0. This proves the existence part of the Lemma.

As for uniqueness, it is obvious that another choice would be of the form gZ,
where g has to be real and holomorphic, hence constant. �

Consider the local complex flow of the vector field Z. This gives a parametriza-
tion of D1 by some open set in C. Modifying Z by a constant, or changing x0 ∈ D1,
amounts to a modification of the parameter z by some affine map z �→ az + b
with a ∈ R

∗ and b ∈ C. It follows that (Fk,F) is equipped with a canonical
transversely affine structure, modeled on the action of the 3 dimensional group
GC = {az + b , a ∈ R

∗, b ∈ C} on C.

According to the general theory of such foliations (see [12]), there is a global
holomorphic submersion

π : F̃k → V ⊂ C

of the universal cover F̃k of Fk onto some open domain V ⊂ C whose fibers define
the lifted foliation F̃ . Moreover, there is a homomorphism h : π1(Fk) → Γ ⊂ GC

such that π(γ.x) = h(γ)(π(x)) for all γ ∈ π1(Fk) and x ∈ F̃k.

Of course, V has to be Γ-invariant. Note also that for each point z ∈ V there is
a complete vector field X on V such that X(z) �= 0, which is Γ-invariant and which
can be lifted to a complete vector field on F̃k. It follows that π is a locally trivial
fibration over V (paths can be lifted to the total space).

Let Γ̄ be the closure of Γ in GC. We know that for each z ∈ V the orbit Γ̄.z
intersects a neighborhood of z on a horizontal segment (since ∂/∂z corresponds to
the local holomorphic vector field Z that we constructed on D1). It follows that V
is a strip {z ∈ C | α < �(z) < β} with −∞ ≤ α < β ≤ ∞.

Note that a Γ-invariant vector field is also Γ̄-invariant and that a vector field on
C invariant by a homothety z �→ az + b , a �= 1, has to vanish at the fixed point.
Hence, Γ̄ acts freely on V . We now consider several cases:

1) If V = C, then Γ has to act by translations (since az + b with a �= 1 would
have a fixed point). This is case I. As for Γ̄, it is a closed subgroup of dimension 1
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of the group of translations. Hence it is (up to conjugation by a homothety) R× iZ
(case a) or R ⊂ C, (case b).

2) If V is a strip different from all C, after conjugating by a homothety it can
be transformed to {z ∈ C | 0 < �(z) < 1} or {z ∈ C | �(z) > 0}. The set of affine
maps az + b preserving {z ∈ C | 0 < �(z) < 1} and with no fixed point in the strip
contains only real translations. This case is Ib.

The group of affine maps az + b preserving H = {z ∈ C | �(z) > 0} is the real
affine group {az + b , a ∈ R

�
+, b ∈ R}. This is case II. As for the closure Γ̄ it is a

1-dimensional closed subgroup of Aff(R). It can be either of the form

{λnz + b , n ∈ Z, b ∈ R} for some λ > 0,

(this is case IIa), or of the form {x + b , b ∈ R}, if it consists only of translations.
In this case, the foliation is not only transversely affine, but transversely C, so that
case IIb is really a special case of Ib. Of course, the assertion that F̄k is a locally
trivial fibration over S

1 or R should be clear by now. �

6. Fatou Components with Wandering Leaves

Let (M,F) be a transversely holomorphic foliated compact manifold. A point
x ∈ M is wandering if there is a small disc D transverse to F such that two distinct
points of D are in distinct leaves of F . A leaf is wandering if it has one wandering
point (and hence all its points are wandering). Let ΩF ⊂ M be the wandering set
consisting of all wandering points. A component Fk of the Fatou set is a wandering
component of the Fatou set if Fk ∩ ΩF �= ∅, and then by Lemma 3.1 we have that
all its points are wandering Fk ⊂ ΩF . A leaf in the Fatou set is wandering if and
only if it is closed in Fatou(F), by Lemma 3.1.d.

We say that a point x1 ∈ Σ in a non-Hausdorff Riemann surface is a non-
Hausdorff point if there is a point x2 ∈ Σ \ {x1} such that any neighborhood of x1

intersects every neighborhood of x2.

Lemma 6.1. Let Ωk be a connected component of the wandering set of F and let
Sk be its leaf space. Then:

1) Sk is possibly a non-Hausdorff Riemann surface and the set of non-Hausdorff
points of Sk has empty interior.

2) There exists a component Fk of the Fatou set contained in Ωk.

Proof. By definition, the leaf space Sk is a connected Riemann surface, possibly
non-Hausdorff. Cover Sk by countably many discs Dj such that there are transver-
sal discs D̃j to the foliation that project injectively to Dj . For any j1, j2 consider
the topological boundary
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∂(Dj1 ∩Dj2) = Dj1 ∩Dj2 \Dj1 ∩Dj2 .

This is a closed set with empty interior. Let Bd be the union of all these topo-
logical boundaries. By Baire’s Theorem (which obviously applies to non-Hausdorff
manifolds) Bd has empty interior. In order to prove the first part of the Lemma,
it suffices to prove that any non-Hausdorff point of Sk is necessarily in Bd.

Let x1 ∈ Sk \ Bd, x2 ∈ Sk \ {x1} and let us show that they have disjoint
neighborhoods. Let x1 ∈ Dj1 and x2 ∈ Dj2 . Since x1 /∈ Bd then it is not in
Dj1 ∩ (D̄j2 \Dj2). Hence, there are two possibilities:

i) x1 ∈ Dj1 \ D̄j2 . Then there is a neighborhood of x1 which is disjoint from Dj2

which is a neighborhood of x2, or

ii) x1 ∈ Dj1 ∩Dj2 , then x1 and x2 are both in Dj2 , which is a disc. Hence there
are disjoint neighborhoods of x1 and x2.

This proves part 1. To prove part 2 it suffices to prove that there are basic
normal vector fields X ∈ H0(M, CF (ν1,0)) which are non-identically 0 on Ωk. Take
a transversal disc D to the foliation that injects to the leaf space. Any measurable
Beltrami coefficient on D may be extended to a basic Beltrami coefficient on the F-
saturation of D and then as 0 on the complement. Since we may construct an infinite
vector space of such, by Lemma 3.1, we may find one, say µ with µ = ∂̄X. This X
is non-zero on Ωk, and so Ωk∩Fatou(F) �= ∅. By the homogeneity properties of the
foliation in the Fatou component Fk in Lemma 2.1, we obtain that Fk ⊂ Ωk. �

Proof of Theorem 2. Let Fk be a component of the Fatou set with wandering leaves,
and Σk its leaf space. The locally trivial bundle structure of the leaves is obtained
by restricting the map (3.1) to L0 × C → Fk, which is a covering map. This also
shows that the leaf space Σk is a (possibly non-Hausdorff) Riemann surface.

The set of non-Hausdorff points of Σk is obviously invariant under any homeo-
morphism of Σk. But by Lemma 3.1 we have a transitive group of homeomorphisms
of Σk being induced from homeomorphisms of M preserving F . Hence there are
no special points on Σk. The set of non-Hausdorff points is empty, and Σk is a
Hausdorff Riemann surface.

The restriction map from M to Fk and the ∂̄ operator define a commutative
diagram

∂̄ : H0(M, CF (ν1,0)) → H0(Fk,L∞
F (ν1,0 ⊗ ν0,1∗)) ⊕H0(M \ Fk,L∞

F (ν1,0 ⊗ ν0,1∗))

↓ Res1 ↓ Res2
∂̄ : H0(Fk, CF (ν1,0)) → H0(Fk,L∞

F (ν1,0 ⊗ ν0,1∗))

(6.1)

The top horizontal map has closed range of finite codimension by Proposition 2.1
and the right vertical map is surjective, hence Res2 ◦ ∂̄ has closed range of finite
codimension. Note that

H0(M,L∞
F (ν1,0⊗ν0,1∗)) = H0(Fk,L∞

F (ν1,0⊗ν0,1∗))⊕H0(M \Fk,L∞
F (ν1,0⊗ν0,1∗)),
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since we are working there on the measurable category.

Since basic sections of bundles on Fk correspond to sections on corresponding
bundles on Σk, we have that the horizontal lower map in (6.1) corresponds to the
map

∂̄ : H0(Σk, C(τ1,0
Σk

))→ H0(Σk,L∞
Σk

(τ1,0
Σk
⊗ τ0,1∗

Σk
)), (6.2)

where τ1,0
Σk

is the tangent bundle of the Riemann surface Σk.

If Σk is compact or isomorphic to the sphere minus 1 or 2 points, then it is a finite
Riemann surface, and we are done. So we can assume that the Riemann surface Σk

is non-compact and hyperbolic, i.e. covered by the unit disc D. First, recall that
then Σk is a Stein manifold, so that in particular the map (6.2) is surjective, since
the following group in the long exact sequence would be H1(Σk, τ1,0

Σk
), which is then

0 by Cartan’s Theorem B. The classical infinitesimal Teichmüller Theory indicates
that one should not look at all vector fields on Σk, but only at those which give
rise to a complete flow. Let MΣk

⊂ H0(Σk, C(τ1,0
Σk

)) be the set of vector fields on
Σk which have the property that when lifted to the universal covering space of Σk,
and after identifying this covering space with the unit disc, extend as 0 to the unit
circle. Then the map

∂̄ :MΣk
→ H0(Σk,L∞

Σk
(τ1,0

Σk
⊗ τ0,1∗

Σk
)) (6.3)

has closed range and the cokernel of the map is the tangent space to Teichmüller
space, or equivalently, its dual consists of the integrable quadratic differentials (see
[1], Lemmas 8 and 9).

Lemma 6.2. The restriction map Res1 : H0(M, CF (ν1,0)) → H0(Σk, C(τ1,0
Σk

)) has
image in MΣk

.

Assuming the Lemma, we have shown that in diagram (6.1) Res2 ◦ ∂̄ has closed
range of finite codimension, and since the diagram (6.1) commutes and the above
Lemma, we have that (6.3) has closed range of finite codimension, and so by The-
orem 1 in [1], Σk is a finite Riemann surface.

Proof of Lemma 6.2. Let X ∈ H0(M, CF (ν1,0)) and choose two liftings X̃, Ỹ

in H0(M, Cε log ε
F (TM )) of X and iX as in (1.3). Let X ′ be the vector field in

H0(Σk, C(τ1,0
Σk

)) induced from X and let X̃ ′ be the lift of X ′ to the unit disc D via
the uniformization of Σk. Since X is a complete vector field, so are X ′ and X̃ ′. Let
Φ : D×R → D denote the flow of X̃ ′, which now is a group action. Using the fact
that this is a 1-parameter family of quasiconformal maps inducing bijections of the
disc that extend continuously to the boundary, we see that it has to preserve the
boundary of D, but since the same argument applies to the vector field iX̃ ′, we
conclude that X̃ ′ vanishes on the boundary, and hence the Lemma. �

There can only be a finite number of components that have non-trivial deforma-
tions, since each contributes with a positive constant to the finite codimensional
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space (6.1). So we only have to worry about rigid Riemann surfaces: spheres minus
0, 1, 2, or 3 points. The sphere may appear only once:

Lemma 6.3. If the leaf space of a wandering Fatou component is a sphere, then
there is only one Fatou component.

Proof. For Σk = C̄, we may find a finite number X1, . . . , Xr ∈ H0(M, CF (ν1,0))
in such a way that for every point in Σk the induced vector fields Y1, . . . , Yr do
not vanish simultaneously. Let Z be a holomorphic vector field on Σk. There is a
constant C > 0 such that

|Z(x)| ≤ C max{|Y1(x)|, . . . , |Yr(x)|}.

But then if Z̃ denotes the normal vector field on Fk obtained by lifting Z, we have

|Z̃(x)| ≤ C max{|X1(x)|, . . . , |Xr(x)|}.

Since these last ones have a continuous extension to ∂Fk as 0, so does Z̃. Extend Z̃

as 0 on M \Fk. Apply now Rado’s Theorem, to see that Z̃ is (locally) holomorphic,
so that in particular the Julia set is at most a finite number of leaves and the Fatou
set is connected. �

This finishes the proof of Theorem 2. �

Proposition 6.4. There is a one to one correspondence between the connected
components of the wandering set ΩF and the Fatou components with wandering
leaves, with Fk ⊂ Ωk. We have that Ωk \Fk consists of a discrete set of leaves, and
each of these leaves is associated to a puncture of the leaf space Σk of the Fatou
component Fk. If two of these leaves are associated to the same puncture, then the
corresponding points in the leaf space Sk of Ωk may not be separated.

Proof. We have Σk ⊂ Sk, where Σk is a finite Riemann Surface. Let Σ̄k be the
compact Riemann surface obtained by adjoining the punctures to Σk. By the
Riemann-Roch Theorem, we may find a meromorphic function on Σ̄k which has
poles at exactly Λk = Σ̄k \Σk. Let xn ∈ Σk be a sequence of points converging to a
point x∞ ∈ Sk. We claim that limn→∞ f(xn) = ∞. Suppose otherwise. By taking
a subsequence we may assume that limn→∞ f(xn) = a. Take small discs around
the points f−1(a) in Σk. The points xn are not in these discs for large n, since they
tend to Sk \ Σk, but this is a contradiction, since limn→∞ f(xn) = a. Extend f to
Sk by defining it to be ∞ in Sk \Σk. By our previous argument, it follows that f is
continuous so that Rado’s theorem implies that f is indeed holomorphic. It follows
that Sk \ Σk consists of isolated points (maybe not separated). �

7. Measurable Decomposition of the Julia set

Proof of Theorem 5. Since the sections of L∞
F (ν1,0 ⊗ ν0,1∗) are measurable, the

space of global sections admits a splitting as a sum of closed subspaces:
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H0(M,L∞
F (ν1,0 ⊗ ν0,1∗)) = H0(Julia(F),L∞

F (ν1,0 ⊗ ν0,1∗)) ⊕H0(Fatou(F),L∞
F (ν1,0 ⊗ ν0,1∗))

where we can think of sections in each factor as being global measurable sections,
extended by 0 on the complementary set.

We claim that for the ∂̄ operator in (2.2)

H0(M, CF (ν1,0)) ∂̄→ H0(M,L∞
F (ν1,0 ⊗ ν0,1∗)),

we have
∂̄H0(M, CF (ν1,0)) ∩H0(Julia(F),L∞

F (ν1,0 ⊗ ν0,1∗)) = 0.

Assume that ∂̄X is an element of the intersection. Hence X is a basic normal vector
field which is holomorphic on the Fatou set and vanishes on the Julia set. Take a
trivializing chart R

d ×D around a point in Julia(F), where X will be represented
by a continuous function f(z) that is holomorphic on the complement of the Julia
set. In particular f is continuous in D and holomorphic in D \ {f = 0}. Hence by
Rado’s Theorem, f is holomorphic in D, so that ∂̄X = 0 on all of M . This proves
our claim.

By Proposition 2.1 we have then that H0(Julia(F),L∞
F (ν1,0 ⊗ ν0,1∗)) is a finite

dimensional vector space. It is a module over the basic measurable functions of
Julia(F), and by taking quotients of its elements, we obtain such basic measurable
functions. The only way that such quotients form a finite dimensional space is
that there are saturated measurable sets J1, . . . , Jr with characteristic functions
ρ1, . . . , ρr such that a basis is obtained with ρ1µ, . . . , ρrµ, for a suitably chosen µ.
We then define J0 as Julia(F) \ ∪r

j=1Jj . This proves Theorem 5. �

8. Examples

Consider a codimension 2 transversely oriented foliation F on a compact man-
ifold M and assume that the normal bundle is equipped with a Riemannian met-
ric which is conformally invariant under the holonomy pseudogroup. Then local
transversals are equipped with a conformal structure and hence can be locally
parametrized by open sets in C (any Riemannian metric in dimension 2 is locally
conformally flat). Using these local parameters on transversals, one sees that F can
also be considered as a transversely holomorphic foliation in complex codimension 1.
Conversely, any transversely holomorphic foliation in complex codimension 1 can be
equipped with such a Riemannian metric so that the two notions actually coincide.

There are many examples of transversely holomorphic foliations. We would like
to describe some of them emphasizing the dichotomy Fatou/Julia set.

Example 8.1. Consider a vector field in C
2

X = P (z, w)
∂

∂z
+ Q(z, w)

∂

∂w
,
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where P and Q are two polynomials without common factors. This defines by
integration a holomorphic foliation in C

2\{P = Q = 0} that is tangent to the plane
field CX and it extends in a canonical way to a holomorphic foliation of the complex
projective plane CP 2 minus a finite number of points, called the singularities of the
foliation. For a generic polynomial vector field the singular points are of Poincaré
type, meaning that the eigenvalues of the linear part DX(x) at a singular point x
are R-linearly independent. We may then apply Poincaré’s Linearization Theorem
(see for instance [3]) that tells us that in local coordinates around the singular point
x = (0, 0) the vector field X is linear and diagonal.

The condition of R-linear independence of the eigenvalues implies that the leaves
of the foliation are transversal to the spheres S

3 ⊂ C
2 centered at the origin. The

intersection of the linear foliation with the sphere S
3 gives a foliation of S

3 by
leaves of dimension 1. The leaves of this foliation consist of two closed orbits which
correspond to the two axes, and all other leaves are born in one of these closed
orbit and die at the other, having then a simple attractor-repellor dynamics.

If all the singular points on CP 2 of the foliation defined by X are of Poincaré type
we may remove a small ball around each of the singular points M1 = CP 2\∪Bi. The
compact manifold with boundary M1 carries a foliation that is arriving transversely
at each boundary component. We may now apply to M1 the double construction;
M is obtained with two copies of M1, reversing the orientation of the leaves of
one of them, and gluing along the boundary components with the identity. The
manifold M has a transversely holomorphic foliation G (the transversal holomorphic
structure can be seen from Schwarz reflection principle).

Now let us translate our definitions and conclusions from M back to the singular
foliation in CP 2. Since Poincaré type singularities have a cone-like structure, what
follows is independent of the size of the small balls removed. Intersect the Fatou set
of the foliation G of M with M1 and extend this open set using the cone structure
to the foliation inside the balls Bi. This gives an open set in CP 2 that we may
call the Fatou set of the singular foliation F on CP 2. In the same way, we define
the Julia set of F as the closed set in CP 2 obtained by adding the singular points
of F to the saturation of Julia(G) ∩M1 (note that the singular points are in the
closure of the separatrices, which are contained in the Julia set since they have
non-trivial holonomy). The decomposition obtained in this way of CP 2 has open
Fatou components and a closed Julia set. One sees then that Theorem 6 follows
directly from Theorems 1 to 5.

Example 8.2. Let F be a transversely holomorphic foliation in a connected com-
pact manifold M such that it has a non-trivial basic holomorphic normal vector
field, i.e. H0(M, ΘF ) �= 0, where ΘF is defined in (2.1).

If H0(M, ΘF ) has dimension at least 2, let X1 and X2 be two linearly indepen-
dent elements. The subsets defined by

{x ∈ M | (λ1X1 + λ2X2)(x) = 0}

consist of a finite number of leaves of the foliation, since X1 and X2 are basic and
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holomorphic. The leaves can come with a multiplicity, if the expression vanishes
of higher order than 1 in some leaf. Call L(λ1,λ2) the set obtained by canceling
the common factors (if any, and with multiplicities). The holomorphic map to the
1-dimensional projective line

φ = (X1 : X2) : M → CP 1

has fibers precisely L(λ1,λ2). Hence such a foliation will have all leaves compact and
it can be considered as well known.

Let now F be a transversely holomorphic foliation in the connected compact
manifold M such that H0(M, ΘF ) has dimension 1, and let X be a generator. The
Julia set of F is {x ∈ M | X(x) = 0}, and hence it is empty, if X is non-vanishing,
or consists of a finite number of leaves of F . This example corresponds to type 1)
in Theorem 4.

We can think that the foliations arising from this example are of special type,
that is, one expects that a generic foliation has no transverse holomorphic auto-
morphisms: H0(M, ΘF ) = 0.

Example 8.3. Any codimension 2 Riemannian foliation on a compact manifold
is of course transversely conformal. This kind of foliation is well understood (see
[12]). A Seifert foliation F on a compact manifold M is a foliation such that all
leaves are compact and have finite holonomy. This implies that F is Riemannian. In
the codimension 2 oriented case, such a Seifert foliation is defined by a locally trivial
fibration of M on some “orbifold Riemann surface” Σ. There is a finite number
of leaves with non trivial holonomy which correspond to the singular points of Σ.
Any flow preserving the foliation has to preserve these “singular fibers”. Away
from these fibers, the foliation is homogeneous so that in this situation the Julia
set consists of finitely many compact leaves. This example shows some of the limits
of our definition since from the dynamical point of view, one may have preferred
to consider these singular fibers in the Fatou set; after all their holonomy group is
finite so that the dynamics in the neighborhood of these leaves is not very “chaotic”.

Example 8.4. Let B be a compact connected manifold and h : π1(B) →
PSL(2, C) be any homomorphism from its fundamental group to the group of pro-
jective transformations of the Riemann sphere CP 1. Using the classical suspension
method, one constructs a foliation F on some compact manifold M which fibers over
B and whose transversal structure is given by the group Γ = h(π1(B)) ⊂ PSL(2, C)
acting on the Riemann sphere. Basic normal vector fields correspond to Γ-invariant
vector fields on CP 1. If there is such a non trivial invariant vector field, Γ acts freely
on the open set where it is non zero. It is easy to see that it is only possible if Γ is
either discrete or abelian or conjugate to a subgroup of the affine group of the real
line Aff(R), considered as a subgroup of PSL(2, C).

If Γ is discrete, we are in the classical situation of Kleinian groups. The Riemann
sphere is the disjoint union of the limit set Λ and the discontinuity domain Ω. The
limit set yields a compact part in M which is obviously contained in the Julia set
of F . It is not exactly true that the discontinuity domain corresponds to the Fatou
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set. Indeed, the action of Γ on Ω is proper but might have some non trivial isolated
fixed points so that every continuous Γ-invariant vector field on CP 1 has to vanish
at these fixed points. However, it is not difficult to check that for every point in
Ω with trivial stabilizer there is a Γ-invariant continuous vector vector field X on
CP 1 which is not vanishing at this point. One can moreover choose X such that
∂̄X is essentially bounded. Hence the Fatou set is precisely the open set in M
corresponding to points of Ω with trivial stabilizer under the Γ action.

If Γ is non discrete and abelian, it is contained in a one parameter subgroup of
PSL(2, C). Hence there is a holomorphic Γ-invariant vector field on CP 1. In this
elementary situation the Fatou set corresponds to the complement of the one or
two singularities of this vector field. The Julia set consists of one or two compact
leaves.

Suppose now that Γ is non discrete, non abelian and contained in Aff(R). Con-
sider the action of the group Aff(R) on the Riemann sphere CP 1  C ∪ {∞}.
It has four orbits; the upper and lower half planes, the real axis and the point
at infinity. Restricted to the upper half plane, this action is conjugated to left
translations of Aff(R) on itself, hence commuting with right translations. These
right translations define an action of Aff(R) on H which is not holomorphic but
quasiconformal. One checks easily that this action, extended by the identity in
CP 1 \ H, is a continuous action of Aff(R) on CP 1. Moreover the one parameter
subgroup corresponding to translations is indeed associated to a vector field X+

with ∂̄X+ locally integrable. In formula, this vector field is X+ = y ∂
∂x for y > 0

and X+ = 0 for y ≤ 0 and one verifies that X+ has the required regularity also in
the neighborhood of ∞. Of course, one can make exactly the same computations
for the lower half plane so that we get another continuous vector field X− on CP 1

which is invariant under the action of Aff(R) on CP 1 and which now vanishes on
the upper half plane.

The decomposition of CP 1 in four orbits defines a decomposition of M in four
parts. The two vector fields X+, X− give rise to normal basic vector fields so that
the two open sets in M corresponding to upper and lower half planes are contained
in the Fatou set. Since Γ is non abelian, every continuous Γ-invariant vector field
on CP 1 has to vanish on the real axis so that the two parts corresponding to the
real axis and the point ∞ are in the Julia set. In these examples, the Julia set is
a real codimension 1 hypersurface in M . All leaves in this Julia set are dense in
the Julia set except the compact leaf corresponding to the point ∞. The Fatou set
contains two open components. In each one, the foliation is transversely modeled
on the action of h(π1(B)) on Aff(R)  H. If Γ is dense in Aff(R), then leaves
are dense in each Fatou component. Otherwise, the closure of Γ is the group of
transformations {λnx + b, n ∈ Z, b ∈ R}, for some λ > 0 and the leaf closures in
each Fatou component define a locally trivial fibration over the circle.

Recall that the dynamics of Riccati’s equations in CP 2 is equivalent to the
dynamics of a finitely generated subgroup of PSL(2, C). Hence the examples that
we described can also be considered in the context of (singular) foliations in CP 2

or CP 1 × CP 1, as in example 8.1.

21



     

Example 8.5. The affine group Aff(R) acts isometrically, freely and transi-
tively, on the upper half plane H equipped with the Poincaré metric. Choose some
Lie group G such that there exists a surjection π : G → Aff(R) and some discrete
subgroup Γ in G with Γ\G compact. The foliation on G given by the fibers of π is
invariant under left translations by Γ so that it defines a foliation F on Γ\G. The
transversal structure of F is given by the left action of π(Γ) on Aff(R)  H. In
particular, F is a transversely holomorphic codimension 1 foliation which is also a
Riemannian foliation. Since any right invariant vector field X on Aff(R) defines
a basic normal vector field, we see that the Fatou set of F is the whole manifold
Γ\G. If π(Γ) is dense in Aff(R), all leaves are dense. Otherwise, one can show
that the closures of the leaves are codimension 1 manifolds in Γ\G which constitute
the fibers of some fibration on the circle.

Let us describe some explicit examples of such G and Γ that will be useful later.
Let K be a totally real number field of degree n over the rationals and let ι denote
one of the n embeddings of K in R. Let O ⊂ K the ring of algebraic integers in K

and U be the group of units in O. Denote by U+ the group of totally positive units,
i.e. those which are mapped in R

�
+ by all embeddings in R. As it is well known, O

is a free Z-module of rank n and U+ is a free abelian group of rank n−1 (Dirichlet’s
units theorem). Since U+ obviously acts by multiplication on O, one can define the
semi-product Γ of U+ and O. “Tensoring” by the reals, we get a linear action of
U+ ⊗ R  R

n−1 on O ⊗ R  R
n and the corresponding semi-direct product is a

2n− 1 dimensional Lie group G which obviously contains a copy of Γ as a discrete
cocompact subgroup. Now the embedding ι defines a homomorphism π from Γ into
Aff(R), sending the integer x ∈ O to the translation by ι(x) and the unit u ∈ U+

to the multiplication by ι(u). This homomorphism extends to a surjection π from
G to Aff(R). In this way we get explicit examples of codimension 1 transversely
holomorphic foliations for which the Fatou set is the whole manifold Γ\G. The
leaves are dense precisely when ι(U+) is dense in R

�
+, i.e. if and only if n > 2.

Example 8.6. Let us now consider Riemannian examples in the same spirit
for which the Fatou set is empty. Consider a discrete torsion free subgroup ∆ of
PSL(2, R)n such that the quotient PSL(2, R)n/∆ is compact. For n ≥ 2, there are
examples such that the projection π(∆) of ∆ in the first factor of PSL(2, R)n is a
dense subgroup (see [4]). The action of ∆ on the nth-power Hn of the upper half
plane is free and cocompact and obviously preserves the complex codimension 1
foliation given by the projection on the first factor. In this way, we get a compact
complex manifold equipped with a codimension 1 transversely holomorphic foliation
F whose transversal structure is given by the action of π(∆) on H. This action has
dense orbits and there is no non trivial invariant vector field since, by density, such
a vector field would be invariant under the full group PSL(2, R). This foliation F
is therefore Riemannian and the Fatou set is empty.

Example 8.7. Let us come back to our totally real number field K of degree n
over the rationals and keep the notations of example 8.5. Let ∆ = PSL(2, O) ⊂
PSL(2, K). Using the n embeddings of K in R, we get an embedding of ∆ in
PSL(2, R)n as a discrete subgroup. However, strictly speaking, ∆ is not of the form
described in example 8.6 for two reasons. Firstly, ∆ might contain elements of finite

22



     

order, so we replace it by some of its finite index torsion free subgroups. Secondly,
∆ is not cocompact in PSL(2, R)n. The complex manifold M = Hn/∆ has a finite
number of “cusps” which can be analyzed in detail (see [10]). Each end has a
neighborhood of the form S × R

+ where S is a real codimension 1 submanifold in
M (hence of real dimension 2n−1) which is transverse to the foliation F . Moreover,
the foliation induced on this submanifold S is conjugated, up to some finite cover,
to one of the examples 8.5. That will allow us, later on, to do some surgery on
these examples in order to produce new examples. For the time being, note that
after deleting these cusps neighborhoods, we get a foliation on a compact manifold
with boundary, transversal to the boundary. The double of this manifold provides
an example with empty Fatou set.

In the special case n = 2, the complex surface M = H2/∆ can be made into
a compact complex singular surface by adding one point at each cusp, and then
desingularizing the resulting singular complex surface. The result is a smooth
compact (algebraic) surface S equipped with a foliation which is isomorphic, outside
of some exceptional divisor, to the horizontal foliation on H2/∆. According to
Hirzebruch, for some very explicit choices of the quadratic number field K, this
surface S is birationaly equivalent to the complex projective plane [10]. In these
cases, transporting the foliation by the birational isomorphism, we finally get an
example of a foliation F on CP 2, hence given by a polynomial differential equation
like in example 8.1.

Example 8.8. In example 8.4, we choose a manifold B of the form Γ\G as in
example 8.5 and we choose h to be the natural homomorphism π : Γ→ Aff(R) ⊂
PSL(2, C). We still denote by F the corresponding suspended foliation, on a mani-
fold M which fibers over B = Γ\G with fibers diffeomorphic to CP 1. Let us analyze
the Fatou component corresponding to the upper half plane. This can be described
as the quotient of G × Aff(R) by the subgroup of elements of the form (γ, π(γ))
with γ ∈ Γ and the foliation is given by the projection on the second factor. Now,
consider the subgroup of G×Aff(R) consisting of elements (g1, g2) with π(g1) = g2.
This is invariant under the Γ action and defines a submanifold W embedded into
the Fatou component. Of course, W is diffeomorphic to Γ\G and is transversal to
the foliation in the Fatou component. In other words, if we choose properly B and
h in example 8.4, we can find a codimension 2 submanifold W embedded in one of
the Fatou components, transversely to the foliation, in such a way that the induced
foliation on W is an Example 8.5. Dig out a small tubular neighborhood of W in
M in order to get a compact manifold M with a boundary diffeomorphic to W ×S

1

and transverse to the foliation. We can then take the double of M . The result is a
new compact boundaryless manifold M1 equipped with a transversely holomorphic
foliation F1 with the following properties.

The Fatou set of F1 consists of three components; indeed the Fatou component
of F which does not contain W has been doubled, giving rise to two disjoint com-
ponents and the Fatou component containing W gives rise to a single component.
The Julia set consists of the disjoint union of two codimension 1 submanifolds, each
containing a compact leaf.
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Inside M1, we can again find another copy of W embedded in a Fatou component,
we can delete a tubular neighborhood of this copy and glue M on its boundary.
Iterating this process, we get a family of examples of transversely holomorphic
foliations on compact manifolds whose Fatou set consists of an arbitrary number of
connected components and whose Julia set is the disjoint union of codimension 1
submanifolds.

Example 8.9. Start with the manifold with boundary M that we described in
example 8.8. Instead of taking a double, we may glue some other piece with the
same boundary. We have seen such a piece in example 8.7. Indeed, to a totally
real number field K, we associated a discrete subgroup ∆ and a complex manifold
Hn/∆. In order to simplify our puzzle game, assume that the number field is such
that Hn/∆ has only one cusp (this means that O is a principal ring). Since we
know that each cusp has a neighborhood bounded by a hypersurface isomorphic to
an example 8.5, if we delete this neighborhood toHn/∆, we get a compact manifold
with boundary equipped with a foliation transversal to the boundary inducing a
foliation conjugated to some example 8.5. Crossing with a circle, we get a compact
manifold M̂ with boundary which has the same boundary as M with the same
foliation induced on the boundary. Gluing these two manifolds, we get an example
of a transversely holomorphic foliation on a compact manifold with the following
properties:

The Julia set consists of two parts. The first is the Julia set in M , i.e. a compact
codimension 1 submanifold containing a compact leaf. The second is the union of M̂
and of the component of the Fatou component in M which contains the boundary.
Indeed we know that there is no non trivial basic vector fields in Hn/∆ hence in M̂ .
Note in particular that the Julia set might have non empty interior without being
the whole manifold (contrary to the situation of rational maps or Kleinian groups).
Of course, we can play the same game again; digging out tubular neighborhoods of
W , assembling these jigsaw puzzles together, using also copies of M̂ .

Summarizing: we constructed examples of foliations of compact manifolds M
containing finitely many disjoint codimension 1 real submanifolds T1, . . . , Tm and
such that the Fatou set consists of some of the connected components of M \ ∪Ti

and the Julia set consists of the Ti together with the other connected components
of the complement. Moreover, the combinatorics of this situation can be arbitrarily
prescribed. More precisely, consider the graph whose vertices are the connected
components of M \ ∪Ti and whose edges correspond to adjacent components. This
is a finite graph with two types of vertices since a component may be in the Fatou or
Julia set. The reader may verify that our construction is flexible enough to provide
examples with an arbitrary finite graph and that one can prescribe arbitrarily the
set of vertices corresponding to Fatou components.

In these examples, note that the foliation restricted to the Julia set is not ergodic
as soon as there are at least two open components in the Julia set. Note that in
these examples the ergodic components of the Julia set are open sets of the Julia
set.
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Example 8.10. Let us indicate another way of modifying the previous examples
using ramified covers. Start with an example 8.4 associated to a homomorphism
h : π1(B) → Aff(R) ⊂ PSL(2, C). Choose h such that the ambient manifold M
is diffeomorphic to a product B × CP 1. There is a compact leaf corresponding to
∞ whose holonomy group, changing coordinates to look in the neighborhood of the
origin, consists of germs of maps of the form z �→ az/1+ bz with a ∈ R

�
+ and b ∈ R.

We can now consider the Hopf fibration S
3 → CP 1. Pulling back, we get a foliation

on M ′ = B×S
3 with a compact leaf L which is B times a fiber of the Hopf fibration.

In particular, there is a non trivial homomorphism from the fundamental group of
the complement M ′ \L onto Z. It follows that one can find a connected finite cover
of M ′ \ L with an arbitrary number n of sheets. In other words, there is a finite
ramified covering of M ′ ramified along L. One can pull-back the foliation F on the
total space of this cover M ′

n; one easily checks that the corresponding foliation Fn

can be equipped with a transversal holomorphic structure. This foliation Fn has
a compact leaf whose holonomy group has been ramified, i.e. consisting of germs
of the form z �→ (azn/1 + bzn)1/n with a ∈ R

�
+ and b ∈ R. This foliation Fn

again has a unique compact leaf and two Fatou components. The Julia set is not a
submanifold anymore; it consists of a finite number of codimension 1 submanifolds
meeting along the compact leaf.

Non Examples 8.11. We give two examples of non transversely holomorphic
foliations displaying some features that cannot occur in the holomorphic case by
our results.

Consider a projective transformation f : RP 2 → RP 2 associated to a 3 × 3
real matrix which is diagonalizable over the reals with distinct eigenvalues. It is a
diffeomorphism with three fixed points and all other points are wandering under
iteration of f . However, the quotient of the complement of the three fixed points in
RP 2 by the iterates of f is a non Hausdorff surface having a curve of non Hausdorff
points. The suspension of f gives a 1-dimensional foliation on a compact 3-manifold
with three compact leaves and such that all other leaves are wandering but such that
the space of non wandering leaves is non Hausdorff. This shows that Theorem 2 is
not true for non transversely holomorphic foliations.

Let g be a linear Anosov automorphism of the 2-dimensional torus R
2/Z

2. It
is an area preserving diffeomorphism which is ergodic. Consider now a small per-
turbation g′ of g which is such that the origin is still a fixed point but in such a
way that the Jacobian at the origin is different from 1. The classical theory of
Anosov diffeomorphisms shows that g′ is now totally dissipative with respect to the
Lebesgue measure; there is a Borel set B ⊂ R

2/Z
2 which is disjoint from all its iter-

ates (g′)n(B), n ∈ Z and such that the union of these (g′)i(B) covers almost all the
torus (with respect to the Lebesgue measure). Note that, by structural stability,
the two diffeomorphisms g, g′ are conjugate by some (non absolutely continuous!)
homeomorphism of the torus. The suspension of g′ gives a codimension 2 non holo-
morphic foliation with no non trivial basic vector field which is totally dissipative
with respect to the Lebesgue measure. Theorem 5 shows that this is not possible
in the holomorphic case.
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9. Some questions

We finish with a list of a few questions that arose in this study of the dynamical
behavior of transversely holomorphic foliations.

Wandering components
Is the number of wandering Fatou components finite? In order to answer this

question, one should understand those wandering Fatou components whose leaf
space is the sphere minus 1, 2 or 3 points.

Is the space of wandering leaves Hausdorff? We saw in 6.4 that this space is not
quite contained in the Fatou set and that there might be isolated non Hausdorff
points. However we know no example of such a situation.

Semi-wandering components
These semi-wandering components are analogous to Siegel discs or Herman rings

for rational maps. However, the examples that we gave in section 8 are not so
interesting from that point of view since their boundaries are very regular. Is it
always the case for a general semi-wandering component?

We saw that the transverse structure in such a semi-wandering component is
given by some group Γ acting affinely on some strip. Is this group Γ finitely gener-
ated?

Is the number of semi-wandering components finite? It is easy to see that the
components of type a) have a modulus so that there is a finite number of them.

Dense components
The most interesting case is the Aff(R) case. It is easy to show that there is a

finite number of such components since there is an invariant Beltrami differential
on the upper half space invariant under Aff(R). Can one describe further this
type of component? In particular, is it the case that their boundaries are regular?
Is the corresponding group Γ ⊂ Aff(R) finitely (resp. compactly) generated?

Julia set
It would be interesting to understand better the topological and ergodic dynam-

ics inside the Julia set.

Are the ergodic components in Julia(F) open in Julia(F)?

Is the Julia set the closure of leaves with non-trivial holonomy?

Generic situation
For a generic polynomial vector field in the complex projective plane, is it true

that the semi-wandering and dense parts of the Fatou set are empty? Can one
describe the wandering part?
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