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Jack “el Maravilloso”:

You have this wonderful
ability to be everywhere in Math.
Everywhere I've gone, there you were,
always saying something deep and wonderful,
you make it all look so simple!!
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A Holomorphic Foliation i1s a
Mathematical Object which

IS very simple to
prescribe (algebraically)

but 1S very elusive to
describe (geometrically)

(failing to allow for a clear and
complete mental grasp)



Algebraically, for a;,b;r € C, j,k > O:
A polynomial vector field in 2 variables:
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Properties




Menu:

Entree
Structure Theorem:
Fatou-Julia-Sullivan decomposition into a
finite number of components.
(Ingredients: Quasiconformal Maps,
Beltrami Equation, Teichmuller Theory.)

Main Course
Equidistribution:

Existence of a finite number of measures
capturing the assymptotic behaviour of
almost every leaf.
(Ingredients: Hyperbolic geodesic Flow,
Hopf's Argument, Partial Hyperbolic
Dynamics.)

Dessert
Complex Lorenz Flow: Evidence of a
Non-chaotic attractor.
Ingredients: Numerical Simulations.




Riccati Foliation:

X(21,22) =a(z +[bn(~1)+bl( 1)42+b2(~1)42 =
Example.
1)
1)X(21,22) = a(z 9= Z1 )ig

dzy _ bo(z1) _ cj

d.'zl a.(zl) 21 — dj
cdz

2(:1) =X [ L5 = clog(1 - d))

l|-r1 - J
Additive Monodromy
p:m(C—{dy,...,d}) —C

2)}”(21, 32) - ﬂ'( <

IS E.f:l
2(21) = EZ I 17% = H eCilog(z1—d;)

Multiplicative Monodromy
g . WI(C — {d].'f «sey d;}) — C*



Ricatti Foliation:
: 0 5 O
X(21,22) = a(z1)—+[bo(21)+b1(21)22+b2(21)25] —
dz1 dzo
Monodromy

p:m(C—{dy,...,dr}) — PSL(2,C’

Via the monodromy representation,
Ahlfors finiteness Theorem for finitely
generated discrete subgroups of PSL(2,C
becomes a Theorem for Riccati equations

All you now about finitely generated
subgroups of PSL(2,C) becomes a
Theorem for Riccati Equations.

Question: Does this generalize for
general Holomorphic Foliations?



T he space:
A compact complex 2-dimensional
manifold S:
An Algebraic Surface

The Object:
A Rational Vector Field X on S

Main Algebraic or Topological Invariant:
The integer Homology class of the poles
of X in H?(S,C)

The Families of Objects:
Fixing the homology class of the pole
produces finite dimensional compact

families




Local Description:

¢
Cancel denominators: A

Holomorphic Vector Field X: )

Non-Singular Points X # 0 Ui

Local Flow Box

Singular Points:
Blow Up
Generic Perturbation
Poincaré Linealization




Transverse Dynamics
Holonomy Pseudogroup
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An infinitesimal automorphism of a
holomorphic foliation (S, F) is a vector
field on S which in local foliated
coordinates

(21,22) =& 01
has the form
'3 0
Y(21,22) = 4(~1)—1+B( 1, «-2)—1

A ., B are continuous of modulus =log(=).

The term .4(:1)(-,{:’—1 is a
'normal vector field
which is constant along the leaves’'.

g,—l( ) is a
'normal Beltraml differential
constant along the leaves'.




We introduce the sheaves of functions
FM=Foliated Measurable
FC=Foliated Continuous
FO=Foliated Holomorphic

The sheaves of sections of the normal
bundle »19:
FO(v19)=Foliated Holomorphic
FC(r1-9)=Fol. Cont. sections o with
distributional derivatives in L2 and Jo
essentially bounded

The vector space of global sections
HO(s, Fe(v'?))
Fatou(F) :={z € M /3X € H(S, Fc(*?)) X (z) # 0}

Julia(F):={z € M /X(z) =0vX € HO(S, FC(»1°))}



Fatou(F) = UrF},

connected components (open and
F-saturated)

}-k L= ]‘-lpk

The elements of HY(S, 7C(+*:P)) may be
lifted to vector fields on A/ which are
uniquely integrable giving rise to flows

preserving the foliation.

Since the C-codimension of the foliation
is 1 we may multiply X by ¢2'™, and
obtain that the foliation 7, is transitive,
i.e. there are ambient leaf preserving
iIsotopies sending any leaf in I, to any
other leaf of F.



Theorem 1 (Ghys,* ,Saludes, 2001) Let F
be a holomorphic foliation with Poincaré
type singularities in the compact complex
surface S and let 7. be the restriction of 7
to some connected component F. of the
Fatou set. Then there are three exclusive
cases:

1) Wandering component: the leaves of
F,. are closed in Fj.

2) Semi-wandering component: the clo-
sures of the leaves of 7, form a real codi-
mension 1 foliation of F. which has the
structure of a fiber bundle over a 1-dimensional
manifold.

3) Dense component: the leaves of 7, are
dense in [}.



Theorem 2 1) Let . be a “wandering com-
ponent” of the Fatou set. Then the leaf
space of 7, is a finite Riemann surface I,
i.e. 1t iIs Hausdorff and compact minus a fi-
nite number of points. The natural projec-
tion F;, — 2, has the structure of a locally
trivial fiber bundile.

2) There is a finite number of “wandering
components” in the Fatou set.



Theorem 3 (semi-wandering components):
Let /. be a “semi-wandering component”
of the Fatou set. Then the closures of
the leaves of F;. define a real analytic foli-
ation 7. given by a locally trivial fibration
of F;. on the circle or an interval. The fo-
liation 7, is a (G-Lie foliation, where ¢ = C
or Aff(). The lift of 7. to the universal
cover I is given by a locally trivial fibration
of I, onto some strip {: € C | a < 3(z) < A)
(with — 0 < a < 8 < +x).




Theorem 4 (dense components): Let I}
be a “dense component” of the Fatou set.
Then 7. is an ergodic foliation in F. (with
respect to the Lebesgue measure class of
Al'). There are two possibilities:

1) 7. is an E2-Lie foliation. The Julia
set consists of a finite number of compact
leaves and the Fatou set is connected. The
foliation is defined by a meromorphic closed
basic 1-form having poles on the Julia set.

2) F. is an Aff()-Lie foliation.

The lift of 7, to the universal cover F, of
Fi. is given by the fibers of a locally trivial
fibration of F. onto C (in case 1) or onto
the upper half space (in case 2).



We may then further decompose the
Julia set of 7 in the measurable category.
An F-invariant measurable set J C Al is
said to be recurrent in the measurable sense
If there is no transversal disc D
containing a Borel set B C Jn D with
positive (2-dimensional) Lebesgue
measure and such that distinct points in
B are in distinct leaves of F.



Theorem 5 Let (A, F) be a transversely holo-
morphic foliated compact manifold such
that the Lebesgue measure of the Julia set
iIs positive. Then there is a (Lebesgue)
measurable foliated partition of the Julia
set Julia(F) = JpU...UJ, , r > 0 such that:

1) For k > 1 the sets .J. have positive
Lebesgue measure and 7| is ergodic with
respect to the Lebesgue measure class.
The space of essentially bounded measur-
able basic Beltrami differentials on J. is
1-dimensional.

2) Jp is empty or it is a recurrent set in
the measurable sense. There are no non-
Zero essentially bounded measurable basic
Beltrami differentials on .J;.



) ) New Category:
Main Point:

Infinitesimal Teichmuller T heory

Teichmuller Theory
Foliated Beltrami Equation: .F ‘FF

A measurable Beltrami coefficient is /\ %Q
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Foliated Beltrami Equation .
00 _ o0 fip (i
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T he solutions construct for us a new

transversely holomorphic foliation
JFu on S which is topologically 7
but has new transversal structure.

We have a universal family of these
parametrized by a ball

HD(S, FJM(PI'D 5_; p*o‘l ))1

Teich(F) := H(S, FMu'C © v*%1)),/ ~

Transversely Holomorphic Foliations



Infinitesimal Teichmuller T heory

Understand the map

d: HO(Se }_C(l/l.o)) — HO(S, }_a'\/f(l/l‘ozj}:u‘o'l))

Fundamental Fact:

The Kernel is finite dimensional
HO(S, FO(L10))
The image is closed of finite codimension
and the cokernel embeds in
HY(S, FCc(v19)).

Remark:
Both are finite dimensional
or both are infinite dimensional

Right hand side is with measurable
coefficients
S0 no problem on gluing on open sets



New Ingredient for the main course:
Geodesic Flow on Comp. Hyperbolic Surfaces:

Let (" be a compact Riemann surface of
genus g > 2 provided with its hyperbolic
metric, obtained from the Poincaré
metric on the unit disc and the
Uniformization Theorem. Let 71C be the
unit tangent bundles to
e: TS xR — T!C
the geodesic flow. 7'1C' has the Liouville
measure JdLiouv (hyperbolic metric on ),

Haar measure on TPIS) which is
e~invariant.
Theorem(E. Hopf): The geodesic flow
iIs ergodic, i.e. For almost any initial
vp € T1S the geodesic starting at vy
equidistributes on 715 according to dLiouv
i.e.
e(vp, [0,T] m(dLH‘H—‘H[DJ] )

limy . = d Liouv
T = 1

B




Another new ingredient:

Oseledec’'s Theorem: Let i be an ergodic
invariant measure on the dynamical
system ¢ . M xE—- Mand C a
multiplicative cocycle of the dynamical
system such that for each t € T, the maps
z — log||C(z,t)|| and = — log||C(z,t)" 1| are
Ll-integrable with respect to ;. Then for
p-almost all » and each non-zero vector
u € R" the limit

|C (2, t Jul|
t—+oo ¢ el
exists and assumes, depending on u but
not on =, up to n different values. These
are the Lyapunov exponents. Further, if
A1 > ... > A\ are the different limits then
there are subspaces

R” = I Divellyy O£ m-{-l - {0}

such that the limitis A; for ve E; - K+,
and j=1,...m



