Infinitesimal Computations in Arithmetic Dynamics

Adam Epstein

University of Warwick

Parameter Spaces

The parameter space Rat_D of all degree D rational maps

$$f: \mathbb{P}^1 \to \mathbb{P}^1$$

is a smooth affine algebraic variety of dimension 2D + 1.

• The group **Aut** of all projective transformations acts on \mathbf{Rat}_D by conjugation. For D > 1 the quotient moduli space \mathbf{rat}_D is an affine algebraic variety of dimension 2D - 2.

We consider various infinitesimal questions concerning such spaces.

Questions

To what extent is the quotient projection

$$Rat_D \rightarrow rat_D$$

a submersion?

When does iteration

$$\mathsf{Rat}_D \to \mathsf{Rat}_{D^n}$$
 $f \mapsto f^n$

induce an immersion?

- These spaces have various dynamically significant subspaces, determined by such conditions as the existence of:
 - cycles with specified period and multiplier,
 - parabolic cycle with specified degeneracy and index,
 - critical orbit relations with specified combinatorics.

When are these smooth? When do they intersect transversely?

Overview

We must address certain basic issues:

- We need to describe the tangent and cotangent spaces of Rat_D intrinsically. This is not merely a matter of aesthetics: we are interested in results valid over fields for which the standard machinery of complex analytic geometry is unavailable.
- We need a calculus for the intrinsic computation of derivatives and coderivatives.

We begin by reviewing notions and formalism from algebraic geometry.

Fields

Let \mathbb{K} be an algebraically closed field.

- Up to isomorphism, there is a unique minimal algebraically closed field of any given characteristic :

 - $\overline{\mathbb{F}}_p$ for characteristic p.
- Various properties of algebraically closed fields, and all first order properties, depend only on the characteristic.
- Lefschetz Principle: There is just one algebraic geometry in any given characteristic.
- In particular, $\overline{\mathbb{Q}}$ and \mathbb{C} yield the same algebraic geometry.

Varieties

A *variety* over \mathbb{K} is a **locally ringed space** which is everywhere locally isomorphic to the maximal ideal spectrum of a finitely generated **reduced** K-algebra.

- The specification of a variety X consists of an underlying set equipped with a **Zariski topology**, together with a **structure sheaf** \mathcal{O}_X organizing the data of which \mathbb{K} -valued functions are defined and holomorphic on which open subsets.
- Fundamental examples : Affine spaces \mathbb{A}^n , projective spaces \mathbb{P}^n , affine and (quasi-)projective varieties cut out by radical ideals in the corresponding polynomial rings.
- The formalism provides algebraic definitions of such notions as smoothness, tangent and cotangent bundles, and other machinery of differential geometry. These specialize to the standard notions for varieties over \mathbb{C} .
- **Reduced** means only trivial nilpotent elements : $h^m = 0 \Rightarrow h = 0$.

Morphisms

A *morphism* of K-varieties

$$f: X \to Y$$

is specified by a continuous map between the underlying topological spaces which is suitably compatible with the structure sheaves:

$$h \in \mathcal{O}_Y(W) \Rightarrow h \circ f \in \mathcal{O}_X(f^{-1}(W))$$

for any open $W\subseteq Y$. A morphism between smooth varieties induces \mathbb{K} -linear maps between tangent spaces

$$D_X f: T_X X \to T_{f(X)} Y$$

and K-linear maps between cotangent spaces

$$D_X^*f:T_{f(X)}^*Y\to T_X^*X.$$

Ramification

A morphism of smooth K-varieties

$$f: X \to Y$$

is *inseparable* if $D_x f = 0$ at every $x \in X$, and *separable* otherwise.

- If char $\mathbb{K} = 0$ then f is inseparable if and only if it is constant.
- If char $\mathbb{K} = p$ then $f : \mathbb{P}^1 \to \mathbb{P}^1$ given by $z \mapsto z^p$ is inseparable.

A separable morphism of smooth algebraic curves has local degree 1 at all but finitely many points. Such a map has *wild* ramification at $x \in X$ if the local degree is a multiple of the field characteristic

$$\operatorname{char} \mathbb{K} | \operatorname{deg}_{x} f$$

and *tame* ramification otherwise. A morphism is *tame* if it is everywhere tamely ramified. If $\operatorname{char} \mathbb{K} = 0$ then every nonconstant morphism is tame.

A version of the Riemann-Hurwitz Theorem applies to separable morphisms of curves. Such a morphism $f: X \to Y$ has a ramification divisor Γ_f whose order at x is the vanishing order of $D_x f$: this quantity is always at least $\deg_x f$, with equality if and only if f is tamely ramified at x.

- For any separable $f: \mathbb{P}^1 \to \mathbb{P}^1$ of degree D, the ramification divisor Γ_f has degree 2D-2.
- If char $\mathbb{K} = p$ the morphism given by $z \mapsto z + z^p$ is wild, and it is ramified only at ∞ .

Sheaves

We work mainly with the sheaves associated to line bundles on \mathbb{P}^1 :

- • O the sheaf of germs of holomorphic vector fields,
- \bullet Ω the sheaf of germs of holomorphic differentials,
- Q the sheaf of germs of holomorphic quadratic differentials.

Given such a sheaf $\mathcal L$ and a divisor $\mathbf D$ on $\mathbb P^1$, we denote by $\mathcal L_{\mathbf D}$ the sheaf of germs of meromorphic sections s with

$$\operatorname{ord}_{x}s+\operatorname{ord}_{x}\mathbf{D}\geq0$$

of the original line bundle. The quotient $\mathcal{L}_{\mathbf{D}}/\mathcal{L}$ is a *skyscraper sheaf*.

Cohomology

A short exact sequence of sheaves

$$0 o \mathcal{A} o \mathcal{B} o \mathcal{C} o 0$$

induces a llong exact sequence of cohomology groups

$$0 \to H^0(\mathcal{A}) \to H^0(\mathcal{B}) \to H^0(\mathcal{C}) \to H^1(\mathcal{A}) \to H^1(\mathcal{B}) \to H^1(\mathcal{C}) \to \cdots.$$

The functor H^0 delivers the space of global sections. For sheaves given by line bundles on smooth algebraic curves, the functor H^1 may be computed via répartitions (adeles).

Tangent Spaces

Proposition

For any $f \in \mathbf{Rat}_D$,

$$T_f \mathbf{Rat}_D \stackrel{\mathrm{can}}{\cong} H^0(f^*\Theta)$$

$$\stackrel{\mathrm{can}}{\cong} H^0(\Theta_{\Gamma_f}) \text{ if f is separable.}$$

Proof: For a curve $\lambda \mapsto f_{\lambda}$ in \mathbf{Rat}_D with $f_0 = f$, the tangent is given by the function which sends $x \in \mathbb{P}^1$ to the vector $f(x) \in T_f \mathbb{P}^1$ tangent to the curve $x \mapsto f_{\lambda}(x)$ in \mathbb{P}^1 . If f is separable then $D_X f$ is invertible at all but finitely many $x \in \mathbb{P}^1$ whence

$$(D_X f)^{-1} \dot{f}(X)$$

is a meromorphic vector field on \mathbb{P}^1 . \square

Composition

Composition induces morphisms

$$\begin{array}{cccc} \mathbf{Rat}_{D_1} \times \mathbf{Rat}_{D_2} & \to & \mathbf{Rat}_{D_2D_1} \\ (f_1, f_2) & \mapsto & f_2 \circ f_1 \end{array}.$$

Proposition

At separable f_1 , f_2 the derivative of composition is given by

$$\begin{array}{cccc} H^0(\Theta_{\Gamma_{f_1}}) \oplus H^0(\Theta_{\Gamma_{f_2}}) & \to & H^0(\Theta_{\Gamma_{f_2} \circ f_1}) \\ \\ (\mathfrak{v}_1, \mathfrak{v}_2) & \mapsto & \mathfrak{v}_1 + f_1^* \mathfrak{v}_2 \end{array}$$

Proof : Chain Rule.

Orbits

Conjugation induces morphisms

$$\begin{array}{ccc} \operatorname{Aut} & \to & \operatorname{Rat}_D \\ \alpha & \mapsto & \alpha^{-1} \circ f \circ \alpha \end{array}.$$

Corollary

For separable f the derivative of the orbit at the identity is given by

$$\begin{array}{ccc} H^0(\Theta) & \to & H^0(\Theta_{\Gamma_f}) \\ \mathfrak{v} & \mapsto & \mathfrak{v} - f^*\mathfrak{v} \end{array}.$$

Iteration

Iteration induces endomorphisms

$$egin{array}{cccc} \mathbf{Rat}_D &
ightarrow & \mathbf{Rat}_{D^n} \ f & \mapsto & f^n \end{array}.$$

Corollary

At separable f the derivative of iteration is given by

$$\begin{array}{ccc} H^0(\Theta_{\Gamma_f}) & \to & H^0(\Theta_{\Gamma_{f^n}}) \\ \mathfrak{v} & \mapsto & \sum\limits_{k=0}^{n-1} (f^k)^* \mathfrak{v} \end{array}.$$

Invariant Vector Fields

Theorem

Let $f \in \mathbf{Rat}_D$ be separable, let $v \neq 0$ a meromorphic vector field on \mathbb{P}^1 , and suppose $f^*v = \lambda v$ for some $\lambda \in \mathbb{K}$.

- In this situation, $\lambda \neq 0$ and v is holomorphic.
- Furthermore, if f is tame then $\lambda = \pm \frac{1}{D}$ and, up to conjugacy, $f(z) = z^{\pm D}$ with v a scalar multiple of $z \frac{\partial}{\partial z}$.

Thus, if char $\mathbb{K} = 0$ and D > 1 then $f^* v \neq v$. However, if char $\mathbb{K} = p$,

- $f^*v = v$ for the tame $f(z) = z^{\pm D}$ and $v = z \frac{\partial}{\partial z}$ when $p|(D \pm 1)$.
- $f^*v = \lambda v$ for the wild $f(z) = \frac{1}{\lambda}z + z^p$ and $v = \frac{\partial}{\partial z}$.

Lemma

Let $f \in \mathbf{Rat}_D$ where D > 1. Then any finite backward invariant set contains at most two points. Moreover, any such point is periodic of period 1 or 2, and f has local degree D at any such point.

Proof: Since \mathbb{K} is algebraically closed, if x has finite backward orbit then some point in the backward orbit is periodic, hence every point in the backward orbit of x is periodic, whence each is the unique preimage of its image. Thus, f has local degree D at every such point, so the period is at most 2. \square

Proof of Theorem : By the invariance of v, for any point x

$$\operatorname{ord}_{x} \mathfrak{v} - 1 = \operatorname{ord}_{x} f^{*} \mathfrak{v} - 1 \leq \operatorname{deg}_{x} f \cdot (\operatorname{ord}_{f(x)} \mathfrak{v} - 1)$$

with equality if and only if f is tamely ramified at x. Thus, $\lambda \neq 0$, since f is tamely ramified at all but finitely many points. Moreover,

$$\operatorname{ord}_{f(x)} \mathfrak{v} < 0 \quad \Rightarrow \quad \operatorname{ord}_{x} \mathfrak{v} < 0$$

and if f(x) = x then

$$\operatorname{ord}_{x} \mathfrak{v} < 0 \quad \Rightarrow \quad \deg_{x} f = 1.$$

Thus, the pole set of v is a finite backward invariant set containing no fixed critical points. Furthermore, if f is tame then

$$\operatorname{ord}_{f(x)} \mathfrak{v} > 0 \quad \Rightarrow \quad \operatorname{ord}_{x} \mathfrak{v} > 0$$

so the zero set of v is also a finite backward invariant set. The conclusions follow by the Lemma. \Box

Immersions

Proposition

If $\operatorname{char} \mathbb{K} = 0$ and D > 1, or if $\operatorname{char} \mathbb{K} \not\mid (D \pm 1)$ and f is tame, then

$$\begin{array}{ccc} \mathbf{Aut} & \rightarrow & \mathbf{Rat}_D \\ \alpha & \mapsto & \alpha^{-1} \circ f \circ \alpha \end{array}$$

is an immersion.

Proof: The derivative at α is the linear map

$$H^0(\Theta) \rightarrow H^0(\Theta_{\Gamma_f})$$
 $\mathfrak{v} \mapsto \mathfrak{v} - f^*\mathfrak{v}$

whose kernel consists of all v such that $f^*v = v$.

Immersions

Corollary

In the above setting, if f has trivial automorphism group then \mathbf{rat}_D is smooth at the corresponding point, and the quotient projection

$$\mathbf{Rat}_D \rightarrow \mathbf{rat}_D$$

is a submersion at f.

Proposition

If $\operatorname{char} \mathbb{K} = 0$ and D > 1, or if $D < \operatorname{char} \mathbb{K} \not\mid ((\pm D)^n - 1)$, then iteration

$$Rat_D \rightarrow Rat_{D^n}$$

is an immersion.

Proof: If char $\mathbb{K} = 0$ or char $\mathbb{K} > D$ then every $f \in \mathbf{Rat}_D$ is tame, hence separable. At separable f, the derivative of immersion is the linear map

$$H^0(\Theta_{\Gamma_f}) \rightarrow H^0(\Theta_{\Gamma_{f^n}})$$
 $v \mapsto \sum_{k=0}^{n-1} (f^k)^* v$

whose kernel consists of all v such that $f^*v = \lambda v$ for some $\lambda \in \mathbb{K}$ with $\sum_{n=1}^{n-1} \lambda^k = 0$, and $\lambda^n = 1$ for any such λ .

Corollary

In the above setting, the iteration morphism

 $Rat_D \rightarrow Rat_{D^n}$

has finite fibres.

Lemma

For rational $f: \mathbb{P}^1 \to \mathbb{P}^1$ and any fixed point ζ ,

- The variation of the multiplier is given by $[q]_{\zeta}$ where $q = \frac{1+o(1)}{z^2} dz^2$ has invianriant polar part.
- The variation of the holomorphic index is given by $\left[\frac{f'(z)}{(z-f(z))^2} dz^2\right]_{\zeta}$.

Infinitesimal Holomorphic Index Formula:

$$\sum_{f(\zeta)=\zeta} \left[\frac{f'(z)}{(z-f(z))^2} dz^2 \right]_{\zeta}$$

is 0 in $H^1(\mathcal{Q}_{-\Gamma_f})$.

Theorem

For any proper subset of the fixed point set, the corresponding indices yield independent local coordinates for \mathbf{Rat}_D at any f.

Short Exact Sequences

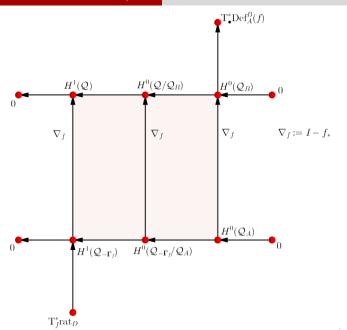
Let *A* and *B* be finite subsets of \mathbb{P}^1 such that $\#A \geq 3$ and $B \supseteq A \cup f(A) \cup S(f)$ where S(f) is the critical value set of *f*.

Consider the morphism of short exact sequences of sheaves

where the vertical arrows are given by $I - f^*$.

There is an induced morphism of long exact sequences in cohomology.

Serre Duality yields the following diagram of \mathbb{K} -linear maps :



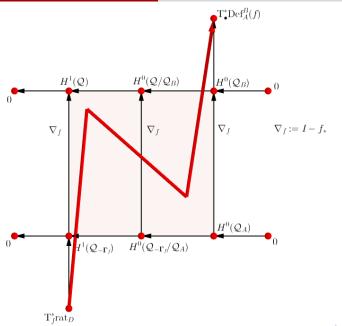
Now let **A** and **B** be positive divisors with support *A* and *B*.

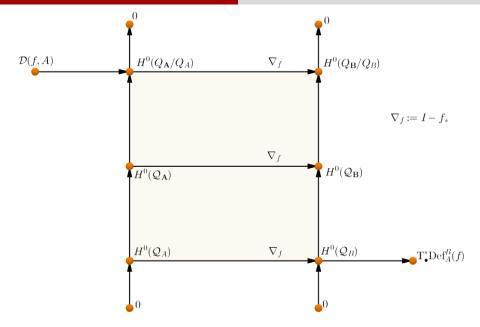
Consider the morphism of short exact sequences of sheaves

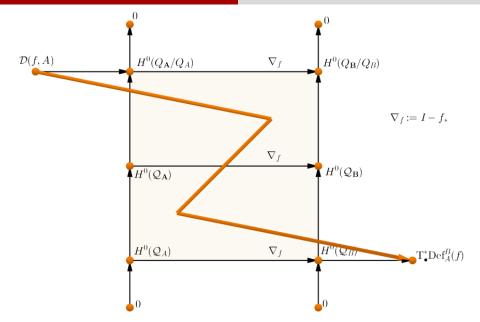
where the vertical arrows are given by $I - f^*$.

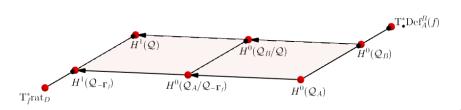
There is an induced morphism of long exact sequences in cohomology.

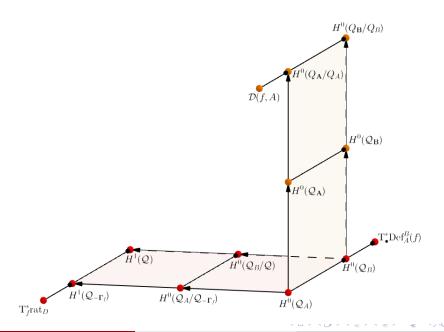
Serre Duality yields the following diagram of \mathbb{K} -linear maps :

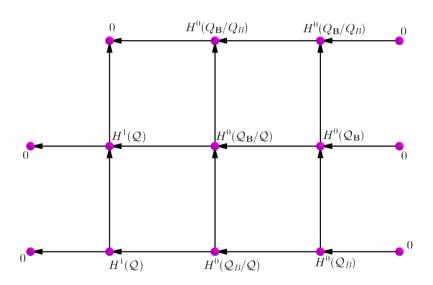


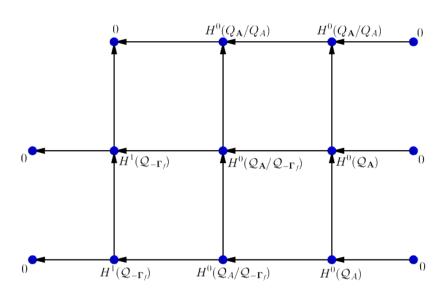


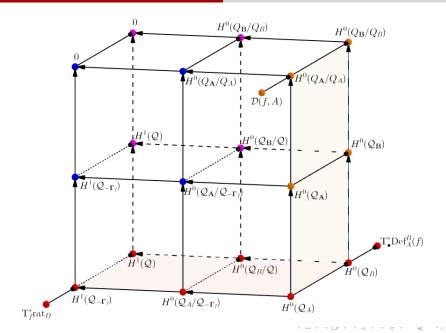


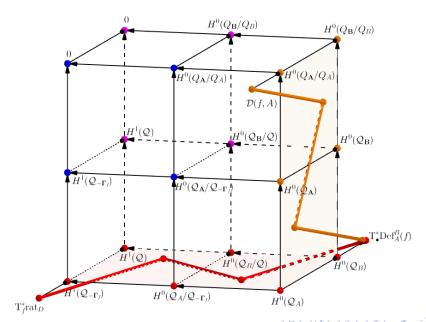


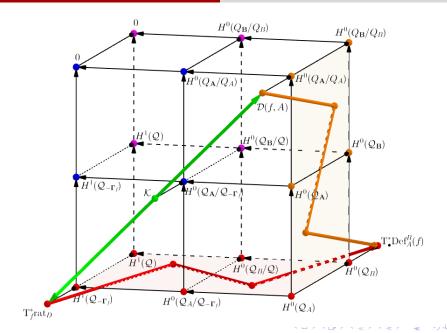


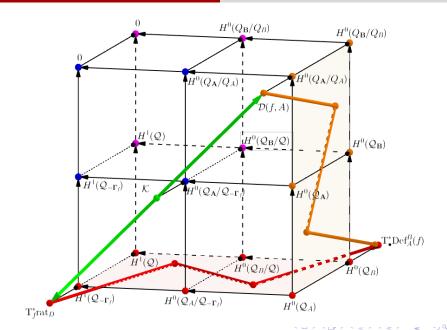




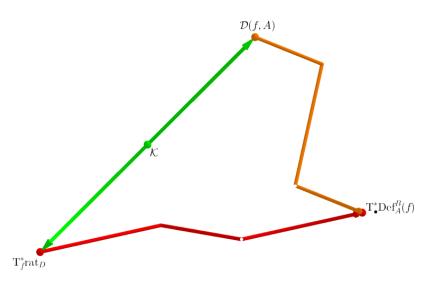


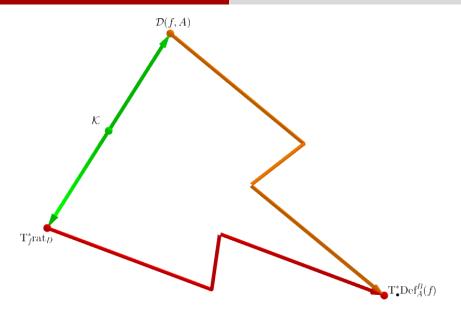






n





Thus,

$$\mathcal{K} \cong \mathcal{T}_{[f]}^* \mathbf{rat}_D \oplus \mathcal{D}(f, A)$$

canonically, and the maps

$$\mathcal{K} \to T_{ullet}^* Def_A^B(f)$$

sum to 0. It follows that if \mathbf{q} is a system of invariant polar parts of quadratic differentials, and if q is any meromorphic quadratic differential on \mathbb{P}^1 with the corresponding invariant divergences and with all poles in A, then

$$\langle \mathbf{A}_f \boldsymbol{\varpi}, [\mathbf{q}] \rangle = -\langle \boldsymbol{\varpi}, \nabla_f \boldsymbol{q} \rangle$$

where

$$\blacktriangle_f: T_{\bullet}Def(f) \to T_{[f]}rat_D$$

is the connecting homomorphism.

Happy Birthday, Jack!

