On cobordism of rational functions.

Carlos Cabrera

Unidad Cuernavaca Instituto de Matemáticas, UNAM

(Joint work with P. Makienko and G. Sienra.)
Problem

We try to associate three dimensional objects to rational maps in a way consistent with the conformal structure and, hopefully, with the dynamics.
Two basic examples.

The map $z \mapsto z^n$.

The Lattés family.
Let S_1 and S_2 be two conformal orbifolds supported on the Riemann sphere such that

$$R : S_1 \rightarrow S_2$$

is a holomorphic covering. Assume that there exist two Kleinian groups Γ_1 and Γ_2 with components W_1 and W_2 of the discontinuity sets $\Omega(\Gamma_1)$ and $\Omega(\Gamma_2)$, respectively, and

$$S_i = W_i/\text{Stab}_{W_i}(\Gamma_i).$$
Assume that there exist $\alpha(R) : W_1 \to W_2$ a Möbius map with

\[
\begin{array}{ccc}
W_1 & \xrightarrow{\alpha(R)} & W_2 \\
\downarrow & & \downarrow \\
S_1 & \xrightarrow{R} & S_2
\end{array}
\]

which induces a homomorphism from Γ_1 to Γ_2.

If $M_i := B^3 \cup \Omega(\Gamma_i)/\Gamma_i$. Then $\alpha(R)$ induces a unique Möbius morphism

\[\tilde{R} : M_1 \to M_2.\]
Poincaré extensions

Definition

If $\Omega(\Gamma_i)/\Gamma_i \cong S_i$, we call \tilde{R} the Poincaré extension of R.

Note that the degree is

$$\deg(\tilde{R}) = [\Gamma_2 : \alpha(R)\Gamma_1\alpha(R)^{-1}].$$

In fact, $\deg(R) \leq \deg(\tilde{R})$ with equality when $\text{Stab}_{W_i}(\Gamma_i) = \Gamma_i$.
Let $\phi_i : \partial M_i \to S_i$ be identification maps. Assume that there is a homeomorphic extension $\Phi_i : M_i \to \bar{B}^3$. Then the map $\Phi_2 \circ \tilde{R} \circ \Phi_1^{-1}$ is called geometric if and only if satisfies the following conditions.

1. The sets $\Phi_i(M_i \cup \partial M_i)$ are of the form $\bar{B}^3 \setminus \bigcup \gamma_j$ where each γ_j is either a geodesic or a family of finitely many geodesic rays with common starting point. There are no more than countably many curves γ_j.

2. There exist a continuous extension, on all B^3, which maps complementary geodesics to complementary geodesics.
Problem
Poincaré extensions
Blaschke maps
Cobordisms
Let $A \subset \text{Rat}_d(\mathbb{C})$. Assume that there exist a map

$$\text{Ext} : A \to \text{End}(\tilde{B}^3)$$

such that $\text{Ext}(R)$ is an extension of R for every $R \in A$. Then for every pair of maps h, g in Mob we define

$$\tilde{\text{Ext}}(g \circ R \circ h) = \hat{g} \circ \text{Ext}(R) \circ \hat{h}$$

where \hat{g} and \hat{h} are the classical Poincaré extensions of the maps g and h, respectively.

If $\tilde{\text{Ext}}$ is a map from the Möbius bi-orbit of A to $\text{End}(\tilde{B}^3)$, then we call Ext a conformally natural extension of A.
A list of desirable conditions

2. Same degree.

3. Dynamical. These are extensions Ext such that $Ext(R^n) = Ext(R)^n$ for $n = 1, 2, ...$

4. Semigroup Homomorphisms. A stronger version of the previous property is to find semigroups S, of rational maps, for which there is an extension Ext defined in all S such that

$$Ext(R \circ Q) = Ext(R) \circ Ext(Q).$$

5. Equivariance under Möbius actions. When defined on saturated sets under the left and right actions of $PSL(2, \mathbb{C})$.
A Blaschke map $B : \mathbb{C} \to \mathbb{C}$ is a rational map that leaves the unit disk Δ invariant. If d is the degree of B, then there exist $\theta \in [0, 2\pi]$ and d points $\{a_1, ..., a_d\}$ in Δ such that

$$B(z) = e^{i\theta} \left(\frac{z - a_1}{1 - \bar{a}_1 z} \right) \ldots \left(\frac{z - a_d}{1 - \bar{a}_d z} \right).$$
For the semigroup of Blaschke maps we have the following theorem:

Theorem

Let B be the semigroup of all Blaschke maps, then there exist an extension defined on B that satisfies conditions 1 to 4. This extension is conformally natural with respect to $\text{PSL}(2, \mathbb{R})$.
Theorem

Let S be a subsemigroup of Blaschke maps, then the extension above restricted on S is conformally natural with respect to all Möbius transformations if and only if S does not intersect the Möbius bi orbit of maps of the form $z \mapsto z^n$.
Motivation

Given Fuchsian uniformizations Γ_1 and Γ_2 for $R : S_1 \to S_2$, then we get another rational map Q^* induced by the action on the complement of the unit disk such that we have the following diagram commutes:
This construction motivates the following definition.
Two rational maps $R : S_1 \to S_2$ and $\tilde{R} : \tilde{S}_1 \to \tilde{S}_2$ are cobordant if:

- There are geometrically finite Kleinian groups Γ_1 and Γ_2 such that $B^3 \cup \Omega(\Gamma_1) / \Gamma_1 = M_1$ and $B^3 \cup \Omega(\Gamma_2) / \Gamma_2 = M_2$ so the following diagram commutes:

$$
\begin{array}{ccc}
B^3 \cup \Omega(\Gamma_1) & \xrightarrow{\mathbb{R}} & B^3 \cup \Omega(\Gamma_2) \\
\downarrow & & \downarrow \\
M_1 & \xrightarrow{\mathbb{R}} & M_2
\end{array}
$$

- $\partial M_1 = S_1 \sqcup \tilde{S}_1$, $\partial M_2 = S_2 \sqcup \tilde{S}_2$.

The restriction of \mathbb{R} to the boundaries S_1 and \tilde{S}_1 belong to the same conformal class of R and \tilde{R}, respectively.

Cobordism is an equivalence relation.
Problem
Poincaré extensions
Blaschke maps
Cobordisms
We say that two branched coverings R and Q, of the Riemann sphere onto itself, are *Hurwitz equivalent* if there are quasiconformal homeomorphisms ϕ and ψ, making the following diagram commutative

$$
\begin{array}{ccc}
\overset{\phi}{\mathbb{C}} & \xrightarrow{R} & \overset{\psi}{\mathbb{C}} \\
\downarrow & & \downarrow \\
\overset{\phi}{\mathbb{C}} & \xrightarrow{Q} & \overset{\psi}{\mathbb{C}}
\end{array}
$$

Given a rational map R, the Hurwitz space $H(R)$ is the set of all rational maps Q that are Hurwitz equivalent to R. The topology we are considering on $H(R)$ is the compact-open topology.
We say that two branched coverings R and Q, of the Riemann sphere onto itself, are \textit{Hurwitz equivalent} if there are quasiconformal homeomorphisms ϕ and ψ, making the following diagram commutative

$$
\begin{array}{ccc}
\tilde{\mathbb{C}} & \xrightarrow{R} & \tilde{\mathbb{C}} \\
\phi \downarrow & & \downarrow \psi \\
\tilde{\mathbb{C}} & \xrightarrow{Q} & \tilde{\mathbb{C}}.
\end{array}
$$

Given a rational map R, the Hurwitz space $H(R)$ is the set of all rational maps Q that are Hurwitz equivalent to R. The topology we are considering on $H(R)$ is the compact-open topology.

\textbf{Theorem}

\textit{If R_1 and R_2 are Hurwitz equivalent, then $R_1(z) \sim_{\text{cob}} \bar{R}_2(\bar{z})$.}
Cobordisms of families of rational functions

Once we have considered cobordisms of two maps, we can define cobordisms of finite family of rational maps as shown in the following image:
Given a finite family of Riemann surfaces of finite type \(\{ S_1, S_2, \ldots, S_n \} \), then there exist Riemann surface \(S_0 \) and a Kleinian group \(\Gamma \) such that

\[
\Omega(\Gamma)/\Gamma = S_0 \sqcup S_1 \sqcup \ldots \sqcup S_n.
\]

In fact, it is possible to find a group \(\Gamma \) without extra components. What can we say about rational maps?
Theorem

Given a finite family of rational maps \(\{ R_1, ..., R_n \} \), then there exist a finite collection of rational maps \(\{ Q_1, ..., Q_m \} \) such that the extended collection \(\{ Q_1, ..., Q_m, R_1, ..., R_n \} \) forms a family of cobordant rational maps.