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Problem

Problem

We try to associate three dimensional objects to rational maps in a
way consistent with the conformal structure and, hopefully, with
the dynamics.
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Two basic examples.

The map z 7→ zn.

C
exp
��

z 7→nz // C
exp
��

C∗ z 7→zn // C∗.
The Lattés family.

C
℘

��

z 7→nz // C
℘

��
C Rn // C.
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Geometric Extensions

Let S1 and S2 be two conformal orbifolds supported on the
Riemann sphere such that

R : S1 → S2

is a holomorphic covering. Assume that there exist two Kleinian
groups Γ1 and Γ2 with components W1 and W2 of the
discontinuity sets Ω(Γ1) and Ω(Γ2), respectively, and

Si = Wi/StabWi
(Γi ).
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Assume that there exist α(R) : W1 →W2 a Möbius map with

W1

��

α(R) //W2

��
S1

R // S2

which induces a homomorphism from Γ1 to Γ2.
If Mi := B3 ∪ Ω(Γi )/Γi . Then α(R) induces a unique Möbius
morphism

R̃ : M1 → M2.
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Poincaré extensions

Definition

If Ω(Γi )/Γi
∼= Si , we call R̃ the Poincaré extension of R.

Note that the degree is

deg(R̃) = [Γ2 : α(R)Γ1α(R)−1].

In fact, deg(R) ≤ deg(R̃) with equality when

StabWi
(Γi ) = Γi .
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Geometric extension

Let φi : ∂Mi → Si be identification maps. Assume that there is a
homeomorphic extension Φi : Mi → B̄3. Then the map
Φ2 ◦ R̃ ◦ Φ−1

1 is called geometric if and only if satisfies the
following conditions.

1 The sets Φi (Mi ∪ ∂Mi ) are of the form B̄3 \ {
⋃
γj} where

each γj is either a geodesic or a family of finitely many
geodesic rays with common starting point. There are no more
than countably many curves γj .

2 There exist a continuous extension, on all B3, which maps
complementary geodesics to complementary geodesics.
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Poincaré extensions

Blaschke maps
Cobordisms



Problem
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Equivariance under Möbius actions

Let A ⊂ Ratd(C). Assume that there exist a map

Ext : A→ End(B̄3)

such that Ext(R) is an extension of R for every R ∈ A. Then for
every pair of maps h, g in Mob we define

Ẽxt(g ◦ R ◦ h) = ĝ ◦ Ext(R) ◦ ĥ

where ĝ and ĥ are the classical Poincaré extensions of the maps g
and h, respectively.
If Ẽxt is a map from the Möbius bi-orbit of A to End(B̄3), then we
call Ext a conformally natural extension of A.
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A list of desirable conditions

1 Geometric.

2 Same degree.

3 Dynamical. These are extensions Ext such that
Ext(Rn) = Ext(R)n for n = 1, 2, ....

4 Semigroup Homomorphisms. A stronger version of the
previous property is to find semigroups S, of rational maps,
for which there is an extension Ext defined in all S such that

Ext(R ◦ Q) = Ext(R) ◦ Ext(Q).

5 Equivariance under Möbius actions. When defined on
saturated sets under the left and right actions of PSL(2,C).
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Blaschke maps

A Blaschke map B : C̄→ C̄ is a rational map that leaves the unit
disk ∆ invariant. If d is the degree of B, then there exist
θ ∈ [0, 2π] and d points {a1, ..., ad} in ∆ such that

B(z) = e iθ
(

z − a1

1− ā1z

)
...

(
z − ad

1− ādz

)
.
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For the semigroup of Blaschke maps we have the following
theorem:

Theorem

Let B be the semigroup of all Blaschke maps, then there exist an
extension defined on B that satisfies conditions 1 to 4. This
extension is conformally natural with respect to PSL(2,R).
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Theorem

Let S be a subsemigroup of Blaschke maps, then the extension
above restricted on S is conformally natural with respect to all
Möbius transformations if and only if S does not intersect the
Möbius bi orbit of maps of the form z 7→ zn.
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Motivation

Given Fuchsian uniformizations Γ1 and Γ2 for R : S1 → S2, then we
get another rational map Q∗ induced by the action on the
complement of the unit disk such that we have the following
diagram commutes:
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C̄

φ
��

R // C̄

ψ
��

C̄

z̄
��

Q∗
// C̄

z̄
��

C̄ Q // C̄.
This construction motivates the following definition.
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Definition

Two rational maps R : S1 → S2 and R̃ : S̃1 → S̃2 are cobordant if:

There are geometrically finite Kleinian groups Γ1 and Γ2 such
that B3

⋃
Ω(Γ1)/Γ1 = M1 and B3

⋃
Ω(Γ2)/Γ2 = M2 so the

following diagram commutes:

B3
⋃

Ω(Γ1)

��

// B3
⋃

Ω(Γ2)

��
M1

< // M2

∂M1 = S1 t S̃1, ∂M2 = S2 t S̃2.

The restriction of < to the boundaries S1 and S̃1 belong to
the same conformal class of R and R̃, respectively.

Cobordism is an equivalence relation.
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We say that two branched coverings R and Q, of the Riemann
sphere onto itself, are Hurwitz equivalent if there are
quasiconformal homeomorphisms φ and ψ, making the following
diagram commutative

C̄

φ
��

R // C̄

ψ
��

C̄ Q // C̄.

Given a rational map R, the Hurwitz space H(R) is the set of all
rational maps Q that are Hurwitz equivalent to R. The topology
we are considering on H(R) is the compact-open topology.

Theorem

If R1 and R2 are Hurwitz equivalent, then R1(z) ∼cob R̄2(z̄).
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Cobordisms of families of rational functions

Once we have considered cobordisms of two maps, we can define
cobordisms of finite family of rational maps as shown in the
following image:
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Given a finite family of Riemann surfaces of finite type
{S1,S2, ...,Sn}, then there exist Riemann surface S0 and a Kleinian
group Γ such that

Ω(Γ)/Γ = S0 t S1 t ... t Sn.

In fact, it is possible to find a group Γ without extra components.
What can we say about rational maps?
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Theorem

Given a finite family of rational maps {R1, ...,Rn}, then there exist
a finite collection of rational maps {Q1, ...,Qm} such that the
extended collection {Q1, ...,Qm,R1, ...,Rn} forms a family of
cobordant rational maps.


