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Local anti-holomorphic dynamics

e f:(X,x)— (X, x) is a anti-holomorphic germ fixing x € X.

@ Dyf: Ty X — TxX is an anti-C-linear map; it has two
eigenvalues p > 0 and —p < 0.

@ f°2 is holomorphic; it fixes x with multiplier p?> > 0.
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Local anti-holomorphic dynamics

e f:(X,x)— (X, x) is a anti-holomorphic germ fixing x € X.

@ Dyf: Ty X — TxX is an anti-C-linear map; it has two
eigenvalues p > 0 and —p < 0.

@ f°2 is holomorphic; it fixes x with multiplier p?> > 0.

An example: the tricorn family.
° Py (z)=Z+c.
@ x is a fixed point of Pg.
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Germs tangentto z — z

We are interested in the case p = 1.

@ Dif: TyX — TxX is conjugateto C > z+— z € C.
@ D,f fixes aline Ay C TyX.
@ f°2 has m attracting axes and m repelling axes.

Ay is a union of attracting and/or repelling axes for f°2.
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Germs tangentto z — z

We are interested in the case p = 1.

@ Dif: TyX — TxX is conjugateto C > z+— z € C.
@ D,f fixes aline Ay C TyX.
@ f°2 has m attracting axis and m repelling axis.

Ay is a union of attracting and/or repelling axis for f°2.
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The tricorn family

@ x is periodic of odd period p for P; and f := PgP.
@ The number of attracting petals is either m=1 or m= 2.

@ If m=1, then A is the union of the attracting direction
and the repelling direction.
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The tricorn family

@ x is periodic of odd period p for P; and f := PgP.
@ The number of attracting petals is either m=1 or m= 2.

@ If m=1, then A is the union of the attracting direction
and the repelling direction.

If m =2, then Ay is the union of the two repelling directions.
/o
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The bifurcation locus for the family (P.(z) = 22 + €)cec
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The parabolic locus

What does the set of parameters ¢ € C for which P has a
parabolic periodic orbit of odd period p look like?
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The parabolic locus

What does the set of parameters ¢ € C for which P has a
parabolic periodic orbit of odd period p look like?
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For p = 1, the locus is the image of the circle C(0, 1/2) by the
map z — ¢ = z + Z°.

Bonifant-Buff-Milnor Perturbations of maps tangentto z — z



The parabolic locus

Theorem (Mukherjee, Nakane, Schleicher)

The boundary of every hyperbolic component of odd period is a
simple closed curve consisting of exactly 3 parabolic cusp
points as well as 3 parabolic arcs, each connecting two
parabolic cusps.

Period p = 1
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The parabolic locus

Theorem (Mukherjee, Nakane, Schleicher)

The boundary of every hyperbolic component of odd period is a
simple closed curve consisting of exactly 3 parabolic cusp
points as well as 3 parabolic arcs, each connecting two
parabolic cusps.

e

Period p = 3
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The parabolic locus

Theorem (Mukherjee, Nakane, Schleicher)

The boundary of every hyperbolic component of odd period is a
simple closed curve consisting of exactly 3 parabolic cusp
points as well as 3 parabolic arcs, each connecting two
parabolic cusps.

S

Period p =5
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Local picture near a parabolic arc

Proposition (Bonifant-B-Milnor)

Arcs are smooth.
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Local picture near a parabolic arc

Proposition (Bonifant-B-Milnor)
Arcs are smooth.

Proposition (Bonifant-B-Milnor)

If P, has a parabolic point with odd period p and 1 attracting
petal, there is a coordinate function u : (C, ¢y) — (R, 0) such
that

@ ifu(c) =0, P22P has a multiple fixed point close to x;
@ ifu(c) #0, P22 has two distinct fixed points close to x;
e ifu(c) > 0, they are fixed by P3P, one is attracting, one is

repelling;
e ifu(c) < 0, they form a repelling cycle of period 2 for PZP.
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Local picture near a parabolic arc
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Local picture near a parabolic cusp

Proposition (Bonifant-B-Milnor)
Cusps are ordinary cusps.
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Local picture near a parabolic cusp

Proposition (Bonifant-B-Milnor)
Cusps are ordinary cusps.

Proposition (Bonifant-B-Milnor)
If P, has a parabolic point with odd period p and 2 attracting
petal, there is coordinate system (u, v) : (C, ¢g) — (R?,(0,0))
such that
e if u3(c) = v(c), then P3?P has two distinct fixed points
close to x; one is repelling and the other has multiplier 1;
both are fixed by PP ;

e if u3(c) # v3(c), then P3P has three distinct fixed points
close to x;
e ifud(c) > v?(c), they are fixed by P3P ; one is attracting and
the other two are repelling;
e ifu’(c) < v3(c), one is repelling and fixed by P;°; the other
two are attracting and form a cycle of period 2 for PgP.
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Splitting of a multiple fixed point

@ X is a Riemann surface.

@ (fy : X — X)aen is @ holomorphic family of holomorphic
maps.

@ f,, has a multiple fixed point x with multiplicity m + 1.

@ As )\ moves away from )\, the fixed point splits into m + 1
fixed points x1(\), . .., Xme1(A), counting multiplicities.

A priori, those fixed points do not depend holomorphically on .

How can we study the splitting of those fixed points?
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Splitting of a multiple fixed point

@ (:(X,x)— (C,0)is alocal coordinate such that
CO f— C + Cm+1 +O(<—2m+1)'

@ B()) is the barycenter of the points ¢ (x;())).

@ for k € [2, m+ 1], ox()) are the elementary symmetric
functions of the differences ¢ (x;(\)) — B()).

Definition

The splitting of the fixed points is generic in the family (f)xen if
the map A — (02()),...,om11(N)) is a local submersion at Ao.
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Complexification of the tricorn family

@ X =CqyuCos.
@ A:=C?andfor \:=(c1,c) €A, fy: X — X is defined by

fL:Cqy >z l—>Z12+CQEC2 and f)\:C2922|—>Z§+C1 e Cy.

@ The tricorn family corresponds to the slice ¢, = ¢;.

Proposition

Assume f;’f has a multiple fixed point. Then the splitting of the
fixed point is generic in the family (f;p )AeA-
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Complexification of the tricorn family

@ X =CqyuCos.
@ A:=C?andfor \:=(c1,c) €A, fy: X — X is defined by

fL:Cqy >z l—>Z12+CQEC2 and f)\:C2922|—>Z§+C1 e Cy.

@ The tricorn family corresponds to the slice ¢, = ¢;.

Proposition

Assume f;’f has a multiple fixed point. Then the splitting of the
fixed point is generic in the family (f;p )AeA-

@ The proof relies on the implicit function theorem. We need
to identify the derivatives of the functions oy.

Bonifant-Buff-Milnor Perturbations of maps tangentto z — z



Complexification of the tricorn family

@ X =CqyuCos.
@ A:=C?andfor \:=(c1,c) €A, fy: X — X is defined by

fL:Cqy >z l—>Z12+CQEC2 and f)\:C2922|—>Z§+C1 e Cy.

@ The tricorn family corresponds to the slice ¢, = ¢;.

Proposition

Assume f;’f has a multiple fixed point. Then the splitting of the
fixed point is generic in the family (f;p )AeA-

@ The proof relies on the implicit function theorem. We need
to identify the derivatives of the functions oy.

@ From now on, we assume m = 2. We need to show that
D,,02 and Dy o3 are linearly independent.
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The tangent space to the family (£,")ca

o f:= f/\O'
@ t+— )\ is a complex curve.
dfy
@ &=+ .
£ dt =0

@ 7 is the meromorphic vector field on X defined by

Dfon =¢.
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The tangent space to the family (£,")ca

o f:= f/\O'
@ t+— )\ is a complex curve.
dfy
@ &=+ .
£ dt =0

@ 7 is the meromorphic vector field on X defined by

Dfon =¢.
dfP
® &=ty
@ 7, is the meromorphic vector field on X defined by
Df*Pon, =&,
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The tangent space to the family (£,")ca

o f:= f/\O'
@ t+— )\ is a complex curve.
dfy
@ &=+ .
£ dt =0

@ 7 is the meromorphic vector field on X defined by

Dfon =¢.
dfyP
® &=ty
@ 7, is the meromorphic vector field on X defined by
Df*Pon, =&,

np=mn+fn+...+ P
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The derivative D) o

Proposition

Writing n, = (ho + h1¢ + - )dc, we have

Dy,02(§) =y and Dy,o3(¢) = —
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The derivative D) o

Proposition

Writing n, = (ho + h1¢ + - )dc, we have

Dy,02(§) =y and Dy,o3(¢) = —

Proof.
@ Set Q1(¢) = —a3(Ar) + o2(\r) - ¢ + ¢3, so that

CoflP —¢=u(C) - Qul¢ — Br)-
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The derivative D) o

Proposition

Writing n, = (ho + h1¢ + - )dc, we have

Dy,02(§) =y and Dy,o3(¢) = —

Proof.
@ Set Q1(¢) = —a3(Ar) + o2(\r) - ¢ + ¢3, so that

CoflP —¢=u(C) - Qul¢ — Br)-

@ Then,
d¢o&, = Q(C) +0(¢?) = —Dy,03(€) + Diyo2(€) - ¢ + O(¢?).
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The derivative D) o

Proposition

Writing n, = (ho + h1¢ + - )dC’ we have

Dy,02(§) = hi and Dy,05(§) = —ho.

Proof.
@ Set Q1(¢) = —a3(Ar) + o2(\r) - ¢ + ¢3, so that

CoflP —¢=u(C) - Qul¢ — Br)-

@ Then,
d¢o&, = Q(C) +0(¢?) = —Dy,03(€) + Diyo2(€) - ¢ + O(¢?).

@ fis tangent to to the identity to order 2, so that
do&p = d(¢ o f)(mp) = d((mp) +O(¢?) = ho + m¢ +O(¢?).
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Quadratic differentials

Definition

A quadratic differential g on X is a field of symmetric and
bilinear forms.

If n and @ are two vector fields on X, then
@ q(n,0): X — Cis a function,
@ q(n,6) =q(0,n) and
@ qg-n:=4g(n,-)isai-formon X.

In particular, we can consider the residue

res(q - 1, X).
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The derivative D) o

Forj € [0, p], set
x:=14(x) and (= o P
For k € {1,2}, let g, be the meromorphic quadratic differential
on X:
@ which is holomorphic outside the cycle,

@ whose polar part at x; is that of dg‘j?/cjk and
@ which has at most triple poles at infinity.
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The derivative D) o

Forj € [0, p], set
Xj = foj(x) and ¢=Co folp—=i).

For k € {1,2}, let g, be the meromorphic quadratic differential
on X:

@ which is holomorphic outside the cycle,

@ whose polar part at x; is that of dg‘j?/cjk and

@ which has at most triple poles at infinity.

P
Dy,02(§) = Zfes(‘-b -1, Xj)-
J=1
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Pushing-forward

@ f: X~{01,02} — X~{c1,c} is a covering of degree 2.
@ the push-forward f.q is defined by

f.g:=> g°q
g

where g ranges among the inverse branches of f.
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Pushing-forward

@ f: X~{01,02} — X~{c1,c} is a covering of degree 2.
@ the push-forward f.q is defined by

f.g:=> g°q
g

where g ranges among the inverse branches of f.

@ The polar part of g4 and g, along the cycle are invariant,
so that

Viqi:=qy—fqy and Viq, =g, —£q;

dz? dz?
Vect ( LI — > .
21 —C Zo—Co

belong to
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The derivative D) o

D),02(§) = res(Viqy - £(01), (01)) + res(V¢qy - £(02), f(02)).

and

Dy,02(€) = —res(Veqy - £(01), 1(01)) — res(Vrqy - £(02), 1(02))

v
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The derivative D) o

D),02(§) = res(Viqy - £(01), (01)) + res(V¢qy - £(02), f(02)).
and
Dy,02(€) = —res(Veqy - £(01),£(01)) — res(V¢qy - £(02), £(02)).

Proof.

—res(VGz - £(01), F(01)) = —res(£. g5 - £(01), £(01))
= —res(qz - .01)

p
= res(qp - . ).

=1

v

Bonifant-Buff-Milnor Perturbations of maps tangentto z — z




Injectivity of V¢

To prove that D)0 and D, o3 are linearly independent, it is
enough to prove that V¢q, and V(q, are linearly independent.
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Injectivity of V¢

To prove that D)0 and D, o3 are linearly independent, it is
enough to prove that V¢q, and V(q, are linearly independent.

Lemma (Epstein)
V¢ is injective on Vect(q4, q5).

Proof. The proof relies on the Contraction Principle: if V is
compactly contained in C~ (x), then

- f[god [gon-gfon- [, 0
| ital [ < [ Sa=3 [gal- [
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The bifurcation locus for the family (Az + 2% 4+ 102%),cc
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