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Local anti-holomorphic dynamics

f : (X , x)→ (X , x) is a anti-holomorphic germ fixing x ∈ X .
Dx f : TxX → TxX is an anti-C-linear map; it has two
eigenvalues ρ ≥ 0 and −ρ ≤ 0.
f ◦2 is holomorphic; it fixes x with multiplier ρ2 ≥ 0.

An example: the tricorn family.

Pc(z) = z̄2 + c.
x is a fixed point of Pc .
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Germs tangent to z 7→ z̄

We are interested in the case ρ = 1.

Dx f : TxX → TxX is conjugate to C 3 z 7→ z̄ ∈ C.
Dx f fixes a line ∆x ⊂ TxX .
f ◦2 has m attracting axes and m repelling axes.

Lemma

∆x is a union of attracting and/or repelling axes for f ◦2.
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The tricorn family

Pc(z) = z̄2 + c.
x is periodic of odd period p for Pc and f := P◦pc .
The number of attracting petals is either m = 1 or m = 2.
If m = 1, then ∆x is the union of the attracting direction
and the repelling direction.

Lemma
If m = 2, then ∆x is the union of the two repelling directions.
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The bifurcation locus for the family (Pc(z) = z̄2 + c)c∈C
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The parabolic locus

Question
What does the set of parameters c ∈ C for which Pc has a
parabolic periodic orbit of odd period p look like?

For p = 1, the locus is the image of the circle C(0,1/2) by the
map z 7→ c = z + z̄2.
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The parabolic locus

Theorem (Mukherjee, Nakane, Schleicher)
The boundary of every hyperbolic component of odd period is a
simple closed curve consisting of exactly 3 parabolic cusp
points as well as 3 parabolic arcs, each connecting two
parabolic cusps.

Period p = 1
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Theorem (Mukherjee, Nakane, Schleicher)
The boundary of every hyperbolic component of odd period is a
simple closed curve consisting of exactly 3 parabolic cusp
points as well as 3 parabolic arcs, each connecting two
parabolic cusps.
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The parabolic locus

Theorem (Mukherjee, Nakane, Schleicher)
The boundary of every hyperbolic component of odd period is a
simple closed curve consisting of exactly 3 parabolic cusp
points as well as 3 parabolic arcs, each connecting two
parabolic cusps.

Period p = 5
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Local picture near a parabolic arc

Proposition (Bonifant-B-Milnor)
Arcs are smooth.

Proposition (Bonifant-B-Milnor)
If Pc0 has a parabolic point with odd period p and 1 attracting
petal, there is a coordinate function u : (C, c0)→ (R,0) such
that

if u(c) = 0, P◦2p
c has a multiple fixed point close to x;

if u(c) 6= 0, P◦2p
c has two distinct fixed points close to x;

if u(c) > 0, they are fixed by P◦p
c , one is attracting, one is

repelling;
if u(c) < 0, they form a repelling cycle of period 2 for P◦p

c .
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Local picture near a parabolic arc
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Local picture near a parabolic cusp

Proposition (Bonifant-B-Milnor)
Cusps are ordinary cusps.

Proposition (Bonifant-B-Milnor)
If Pc0 has a parabolic point with odd period p and 2 attracting
petal, there is coordinate system (u, v) : (C, c0)→

(
R2, (0,0)

)
such that

if u3(c) = v2(c), then P◦2p
c has two distinct fixed points

close to x; one is repelling and the other has multiplier 1;
both are fixed by P◦pc ;

if u3(c) 6= v2(c), then P◦2p
c has three distinct fixed points

close to x;
if u3(c) > v2(c), they are fixed by P◦p

c ; one is attracting and
the other two are repelling;
if u3(c) < v2(c), one is repelling and fixed by P◦p

c ; the other
two are attracting and form a cycle of period 2 for P◦p

c .
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Local picture near a parabolic cusp
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Splitting of a multiple fixed point

X is a Riemann surface.
(fλ : X → X )λ∈Λ is a holomorphic family of holomorphic
maps.
fλ0 has a multiple fixed point x with multiplicity m + 1.
As λ moves away from λ0, the fixed point splits into m + 1
fixed points x1(λ), . . . , xm+1(λ), counting multiplicities.

A priori, those fixed points do not depend holomorphically on λ.

Question
How can we study the splitting of those fixed points?
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Splitting of a multiple fixed point

ζ : (X , x)→ (C,0) is a local coordinate such that

ζ ◦ f = ζ + ζm+1 + O(ζ2m+1).

β(λ) is the barycenter of the points ζ
(
xi(λ)

)
.

for k ∈ [2,m + 1], σk (λ) are the elementary symmetric
functions of the differences ζ

(
xi(λ)

)
− β(λ).

Definition
The splitting of the fixed points is generic in the family (fλ)λ∈Λ if
the map λ 7→

(
σ2(λ), . . . , σm+1(λ)

)
is a local submersion at λ0.
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Complexification of the tricorn family

X = C1 t C2.
Λ := C2 and for λ := (c1, c2) ∈ Λ, fλ : X → X is defined by

fλ : C1 3 z1 7→ z2
1 +c2 ∈ C2 and fλ : C2 3 z2 7→ z2

2 +c1 ∈ C1.

The tricorn family corresponds to the slice c2 = c̄1.

Proposition

Assume f ◦pλ0
has a multiple fixed point. Then the splitting of the

fixed point is generic in the family (f ◦pλ )λ∈Λ.

The proof relies on the implicit function theorem. We need
to identify the derivatives of the functions σk .
From now on, we assume m = 2. We need to show that
Dλ0σ2 and Dλ0σ3 are linearly independent.
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The tangent space to the family (f ◦pλ )λ∈Λ

f := fλ0 .
t 7→ λt is a complex curve.

ξ :=
dfλt
dt

∣∣∣
t=0

.

η is the meromorphic vector field on X defined by

Df ◦ η = ξ.

ξp :=
df◦pλt

dt

∣∣∣
t=0

.

ηp is the meromorphic vector field on X defined by

Df ◦p ◦ ηp = ξp.

Lemma

ηp = η + f ∗η + . . .+ f ◦(p−1)∗η.
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The derivative Dλ0σk

Proposition

Writing ηp = (h0 + h1ζ + · · · ) d
dζ , we have

Dλ0σ2(ξ) = h1 and Dλ0σ3(ξ) = −h0.

Proof.
Set Qt (ζ) = −σ3(λt ) + σ2(λt ) · ζ + ζ3, so that

ζ ◦ f ◦pλt
− ζ = ut (ζ) ·Qt (ζ − βt ).

Then,

dζ ◦ ξp = Q̇(ζ) + O(ζ2) = −Dλ0σ3(ξ) + Dλ0σ2(ξ) · ζ + O(ζ2).

f is tangent to to the identity to order 2, so that

dζ ◦ ξp = d(ζ ◦ f )(ηp) = dζ(ηp) + O(ζ2) = h0 + h1ζ + O(ζ2).
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Quadratic differentials

Definition
A quadratic differential q on X is a field of symmetric and
bilinear forms.

If η and θ are two vector fields on X , then
q(η,θ) : X → C is a function,
q(η,θ) = q(θ,η) and
q · η := q(η, ·) is a 1-form on X .

In particular, we can consider the residue

res(q · η, x).
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The derivative Dλ0σk

For j ∈ [0,p], set

xj := f ◦j(x) and ζj := ζ ◦ f ◦(p−j).

For k ∈ {1,2}, let qk be the meromorphic quadratic differential
on X :

which is holomorphic outside the cycle,
whose polar part at xj is that of dζ2

j /ζ
k
j and

which has at most triple poles at infinity.

Proposition

Dλ0σ2(ξ) =

p∑
j=1

res(q2 · η, xj).

Dλ0σ3(ξ) = −
p∑

j=1

res(q1 · η, xj).
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Pushing-forward

f : Xr{01,02} → Xr
{

c1, c2
}

is a covering of degree 2.
the push-forward f∗q is defined by

f∗q :=
∑

g

g∗q

where g ranges among the inverse branches of f .

The polar part of q1 and q2 along the cycle are invariant,
so that

∇f q1 := q1 − f∗q1 and ∇f q2 := q2 − f∗q2

belong to

Vect

(
dz2

1
z1 − c1

,
dz2

2
z2 − c2

)
.
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The derivative Dλ0σk

Proposition

Dλ0σ2(ξ) = res
(
∇f q2 · ξ(01), f (01)

)
+ res

(
∇f q2 · ξ(02), f (02)

)
.

and

Dλ0σ2(ξ) = −res
(
∇f q1 · ξ(01), f (01)

)
− res

(
∇f q1 · ξ(02), f (02)

)
.

Proof.

−res
(
∇f q2 · ξ(01), f (01)

)
= −res

(
f∗q2 · ξ(01), f (01)

)
= −res(q2 · η,01)

=

p∑
j=1

res(q2 · η, xj).
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Injectivity of ∇f

To prove that Dλ0σ2 and Dλ0σ3 are linearly independent, it is
enough to prove that ∇f q1 and ∇f q2 are linearly independent.

Lemma (Epstein)

∇f is injective on Vect(q1,q2).

Proof. The proof relies on the Contraction Principle: if V is
compactly contained in Cr 〈x〉, then∫

V
|f∗q| =

∫
V

∣∣∣∣∣∑
g

g∗q

∣∣∣∣∣ ≤
∫

V

∑
g

|g∗q| =
∑

g

∫
V

g∗|q| =

∫
f−1(V )

|q|.
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The bifurcation locus for the family (λz + z2 + 10z3)λ∈C

Happy Birthday Jack
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