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Smooth Metric Measure Spaces

A smooth metric measure space is triple (Mn, g , e−f dvolg ),
where (Mn, g) is a Riemannian manifolds with metric g ,
f is a smooth real valued function on M.

Namely a Riemannian manifold with a conformal change in the
measure
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Motivation

It occurs naturally as collapsed measured Gromov-Hausdorff
limit.

Let (Mn × F m, gε) be equipped with warped product metric
gε = gM + (εe−f )2gF . Then, as ε→ 0,

(Mn × F m, d̃volgε)
mGH−→ (Mn, e−mf dvolgM

).

Here d̃volgε is a renormalized Riemannian measure.

Recall (Xi , µi )
mGH−→ (X∞, µ∞) (compact) if for all sequences of

continuous functions fi : Xi → R converging to f∞ : X∞ → R,
we have ∫

Xi

fidµi →
∫

X∞

f∞dµ∞.
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Motivation

We have, as ε→ 0,

(Mn × F m, d̃volgε)
mGH−→ (Mn, e−f dvolgM

),

where gε = gM + (εe−
f
m )2gF .

By O’Neill’s formula, the Ricci curvature of the warped product
metric gε in the M direction is

RicM + Hessf − 1

m
df ⊗ df .
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m-Bakry-Emery Ricci tensor

Therefore for smooth metric measure spaces (Mn, g , e−f dvolg ),
the corresponding Ricci tensor is

Ricm
f = Ric + Hessf − 1

m
df ⊗ df for m > 0,

— the m-Bakry-Emery Ricci tensor.

When m =∞, denote Ricf = Ric∞f = Ric + Hessf

If m1 ≥ m2, then Ricm1
f ≥ Ricm2

f .

So Ricm
f ≥ λg implies Ricf ≥ λg .
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More Motivations

Ricm
f = Ric when f is constant

The quasi-Einstein equation

Ricm
f = Ric + Hessf − 1

m
df ⊗ df = λg (1)

has very nice geometric interpretations:
when m =∞, (1) is exactly the gradient Ricci soliton
equation.
when m is a positive integer, (1) ⇔ the warped product
metric M ×

e−
f
m

F m is Einstein for some F m.

(Case-Shu-Wei using D.S.Kim-Y.S. Kim’s work)

Corresponding versions for non-smooth metric measure
spaces (Lott-Villani, Sturm)

diffusion processes

Sobolev inequality

conformal geometry
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Question

Question

What geometric and topological results for the Ricci tensor
extend to the Bakry-Emery Ricci tensor?

When 0 < m <∞, many geometry and topology results for
Ricci curvature lower bound extend directly to Ricm

f

(Bakry1994, Qian1997, Lott2003, Bakry-Qian2005,...)

Lott 2003: if M is compact with Ricm
f ≥ λ (m positive

integers), then M ×
εe−

f
m

Sm has Ric ≥ λ when ε is small.

Another way later!

What about m =∞?
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Examples

Example

Hn the hyperbolic space. Fixed any p ∈ Hn, let
f (x) = (n − 1)d2(p, x), then Ricf ≥ (n − 1).

Myers’ theorem and Cheeger-Gromoll’s isometric splitting
theorem do not hold for Ricf .

Example

Rn with Euclidean metric, f (x1, · · · , xn) = x1. Ricf = Ric = 0.
volf (B(0, r)) =

∫
B(0,r) e−f dvol is of exponential growth.

Bishop-Gromov’s volume comparison doesn’t extend.
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Need Conditions

Many results do extend
when f or ∇f are bounded!
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Notations

With respect to the measure e−f dvol :

the Laplacian is ∆f = ∆−∇f · ∇

the mean curvature is mf = m − ∂r f .
As usual mf = ∆f (r), r is the distance function.

volf (B(p, r)) =
∫
B(p,r) e−f dvolg

mk
H be the mean curvature of the geodesic sphere in the

model space Mk
H
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Mean Curvature (Laplacian) Comparison for Ricf

Theorem (Wei-Wylie2007)

Fix p ∈ (Mn, g , e−f dvolg ). Assume Ricf (∂r , ∂r ) ≥ (n − 1)H,
a) if ∂r f ≥ −a along a minimal geodesic segment from p
(when H > 0 assume r ≤ π/2

√
H) then

mf (r)−mH(r) ≤ a

along that minimal geodesic segment from p.

b) if |f | ≤ k along a minimal geodesic segment from p (when
H > 0 assume r ≤ π/4

√
H) then

mf (r) ≤ mn+4k
H (r)

When a = 0 or k = 0 this gives the usual mean curvature
(Laplacian) comparison.
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Volume Comparison for ∞-Bakry-Emery

Theorem (Wei-Wylie2007)

Fix p ∈ (Mn, g , e−f dvolg ). Assume Ricf ≥ (n − 1)H,
a) if ∂r f ≥ −a along all minimal geodesic segments from p
then for R ≥ r > 0 (assume R ≤ π/2

√
H if H > 0) ,

volf (B(p,R))

volf (B(p, r))
≤ eaR volnH(R)

volnH(r)
.

b) if |f (x)| ≤ k then for R ≥ r > 0 (assume R ≤ π/4
√

H if
H > 0),

volf (B(p,R))

volf (B(p, r))
≤

voln+4k
H (R)

voln+4k
H (r)

.

In particular, if f is bounded and Ricf ≥ 0 then M has
polynomial f -volume growth.
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Some Applications of Laplacian Comparison

Theorem (Myers’ Theorem)

If (Mn, g , e−f dvolg ) has Ricf ≥ (n − 1)H > 0 and |f | ≤ k,
then M is compact and diamM ≤ π√

H
+ 4k

(n−1)
√

H
.

Theorem (Cheeger-Gromoll’s SplittingTheorem)

If (Mn, g , e−f dvolg ) has Ricf ≥ 0, |f | is bounded, and M
contains a line, then M = Nn−1 × R and f is constant.

Remark 1 Actually Lichneorwicz proved this in 1970.
Remark 2 It’s enough to assume f is bounded from above
(then f is linear along the line) (Fang-Li-Zhang) .
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Theorem (Abresch-Gromoll’s Excess Estimate)

Let Ricf ≥ 0, |f | ≤ k and h(x) < min{d(p, x), d(q, x)} then

ep,q(x) ≤ 2

(
n + 4k − 1

n + 4k − 2

)(
1

2
Chn+4k

) 1
n+4k−1

where

C = 2

(
n + 4k − 1

n + 4k

)(
1

d(p, x)− h(x)
+

1

d(q, x)− h(x)

)
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Idea of Proof for Mean Curvature Comparison

A main tool for Ricci curvature is the Bochner formula:
For smooth function u on (Mn, g),

1

2
∆|∇u|2 = |Hess u|2 + 〈∇u,∇(∆u)〉+ Ric(∇u,∇u).

Using the Cauchy-Schwarz inequality, if Ric ≥ (n − 1)H,

1

2
∆|∇u|2 ≥ (∆u)2

n
+ 〈∇u,∇(∆u)〉+ (n − 1)H|∇u|2.

This characterizes Ricci curvature lower bound.
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Bochner formulas for the m-Bakry-Emery Ricci
tensor

With respect to the measure e−f dvol , ∆f = ∆−∇f · ∇:

1

2
∆f |∇u|2 = |Hess u|2 + 〈∇u,∇(∆f u)〉+ Ricm

f (∇u,∇u)

+ 1
m |〈∇f ,∇u〉|2.

When m is finite

1

2
∆f |∇u|2 ≥ (∆f (u))2

m + n
+ 〈∇u,∇(∆f u)〉+ Ricm

f (∇u,∇u).

Therefore, (Bakry-Qian2005) if Ricm
f ≥ (n + m − 1)H, then

mf (r) ≤ mn+m
H (r).
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When m =∞, we have

1

2
∆f |∇u|2 = |Hess u|2 + 〈∇u,∇(∆f u)〉+ Ricf (∇u,∇u).

We start from the usual Riccati inequality

m′ ≤ − m2

n − 1
− Ric(∂r , ∂r).

Let snH(r) be the solution to

sn′′H + HsnH = 0

such that snH(0) = 0 and sn′H(0) = 1.
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We compute that(
sn2

Hm − sn2
HmH

)′ ≤ sn2
H∂t∂t f ,

which gives

sn2
H(r) (m(r)−mH(r)) ≤

∫ r

0
sn2

H(t)∂t∂t f (t)dt.

When f is constant (the classical case) this gives the usual
mean curvature comparison.
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Quasi-Einstein Metrics

Question

What about equality case?

A metric is quasi-Einstein if

Ricm
f =Ric + Hessf − 1

m
df ⊗ df = λg .

Recall

when f is constant, it’s the Einstein equation (trivial case).

when m =∞, this is exactly the gradient Ricci soliton
equation (λ > 0, shrinking soliton)

when m is positive integer, it corresponds to some warped
product Einstein metrics.
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Question

What are the properties of quasi-Einstein metrics?
When is it rigid (trivial)?
What are nontrivial examples?
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Previous Work

When n = 2, 3 compact Ricci solitons are trivial.
(Hamilton, Ivey)
More generally when Weyl tensor is zero
(Eminenti-Nave-Mantegazza,Petersen-Wylie, Ni-Wallach,
Cao-Wang-Zhang, Z.H. Zhang)

Quasi-Einstein metrics with λ ≤ 0 on compact manifolds
are trivial. (Lichnerowicz, Ivey for m infinite, Kim-Kim for
m finite)

Rigidity results for Ricci solitons with symmetry and
curvature bound (Petersen-Wylie)

Compact shrinking soliton with positive curvature
operators are trivial. (Böhm-Wilking)
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Special Examples

Gaussian soliton: (Rn, g0), f (r) = r2. Then
Ric + Hess f = 2g0, a shrinking soliton which is also
Einstein.

The only nontrivial gradient soliton which is Einstein
(Petersen-Wylie)

Hn with the warped product metric g = dt2 + e2tg0.
f (t) = −mt. Then Ricm

f = −(n + m − 1)g .

We will see this is essentially the only nontrivial finite m
quasi-Einstein metric which is Einstein.
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Compact Examples

m =∞, first nontrivial example of shrinking Ricci soliton is
CP2#(−CP2) (Koiso, Cao)

2 ≤ m <∞ integers, S2 bundles over Kähler-Einstein bases
(Lu-Page-Pope2004)

m = 1, no nontrivial compact ones.
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Compact Examples

m =∞, first nontrivial example of shrinking Ricci soliton is
CP2#(−CP2) (Koiso, Cao)

Dancer-Wang(2008), constructed a large class of compact
shrinking Ricci solitons.
All known examples are Kälher.

2 ≤ m <∞ integers, S2 bundles over Kähler-Einstein bases
(Lu-Page-Pope2004)
These are non-Kälher.

m = 1, no nontrivial compact ones.
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Our work (joint with J. Case and Y. Shu)

Extend several properties for Ricci solitons (m =∞) to
quasi-Einstein metrics (general m), showing similarity
between finite m and infinite m.

show Kähler quasi-Einstein metrics behave very differently
when m is finite and m is infinite.
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Results

Proposition

For a quasi-Einstein metric with m ≥ 1
a) if λ > 0 and compact, then the scalar curvature

R ≥ n(n − 1)

m + n − 1
λ.

Equality if and only if m = 1.

b) if λ = 0, R is constant and m > 1, then it is Ricci flat.
c) if λ < 0, R is constant, then

nλ ≤ R ≤ n(n − 1)

m + n − 1
λ,

and when m > 1, R equals either of the extreme values iff it is
Einstein.
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When m =∞ this is done in Petersen-Wylie.

When m = 1, then R is constant and equals (n − 1)λ.
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Rigidity

Proposition

A complete finite m quasi-Einstein metric (Mn, g , f ) is Einstein
if and only if f is constant or M is diffeomorphic to Rn with
the warped product structure R×a−1ear Nn−1, where Nn−1 is
Ricci flat, a is a constant.

Theorem

All 2-dimensional (finite m) quasi-Einstein metrics on compact
manifolds are trivial.
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Kähler quasi-Einstein metrics

Theorem

Let (Mn, g) be an n-dimensional complete simply-connected
Riemannian manifold with a Kähler quasi-Einstein metric for
finite m. Then M = Mn−2

1 ×M2
2 is a Riemannian product, and

f can be considered as a function of M2, where M1 is an
Einstein manifold with Einstein constant λ, and M2 is a
2-dimensional quasi-Einstein manifold.

Corollary

There are no nontrivial m finite Kähler quasi-Einstein metrics
on compact manifolds.
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Idea of Proof

When 0 < m <∞, consider u = e−
f
m . Then the quasi-Einstein

equation Ricm
f = λg becomes

Ric− m

u
Hess u = λg .

Using this and the Kähler structure, show Hess u(JU,V ) = 0
for all U,V ⊥ ∇u.

Then show Span{∇u, J∇u} is invariant under parallel
transport.
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Questions

Question

If Mn is a compact Riemannian manifold with a measure such
that Ricf ≥ (>)0, does Mn have a metric on it with
Ric ≥ (>)0?

Question

Is 3-dimensional (or more generally zero Weyl tensor)
quasi-Einstein metrics with finite m trivial?

Question

Are there examples of non-Kähler compact shrinking solitons?



Smooth
Metric

Measure
Spaces

Guofang Wei

Introduction

Comparison
Geometry for
Bakry-Emery
Ricci Tensor

Comparison
Theorems

Applications

Idea of Proof

Rigidity of
Quasi-Einstein
Metrics

Questions

Question

If Mn is a compact Riemannian manifold with a measure such
that Ricf ≥ (>)0, does Mn have a metric on it with
Ric ≥ (>)0?

Question

Is 3-dimensional (or more generally zero Weyl tensor)
quasi-Einstein metrics with finite m trivial?

Question

Are there examples of non-Kähler compact shrinking solitons?



Smooth
Metric

Measure
Spaces

Guofang Wei

Introduction

Comparison
Geometry for
Bakry-Emery
Ricci Tensor

Comparison
Theorems

Applications

Idea of Proof

Rigidity of
Quasi-Einstein
Metrics

Questions

Question

If Mn is a compact Riemannian manifold with a measure such
that Ricf ≥ (>)0, does Mn have a metric on it with
Ric ≥ (>)0?

Question

Is 3-dimensional (or more generally zero Weyl tensor)
quasi-Einstein metrics with finite m trivial?

Question

Are there examples of non-Kähler compact shrinking solitons?


	Introduction
	Comparison Geometry for Bakry-Emery Ricci Tensor
	Comparison Theorems
	Applications
	Idea of Proof

	Rigidity of Quasi-Einstein Metrics

