Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Smooth Metric Measure Spaces

Guofang Wei

UCSB, Santa Barbara

arXiv:0706.1120, joint with Will Wylie arXiv:0805.3132, joint with Jeffrey Case, Yujen Shu

э

Smooth Metric Measure Spaces

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics A smooth metric measure space is triple $(M^n, g, e^{-f} dvol_g)$, where (M^n, g) is a Riemannian manifolds with metric g, f is a smooth real valued function on M.

Smooth Metric Measure Spaces

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics A smooth metric measure space is triple $(M^n, g, e^{-f} dvol_g)$, where (M^n, g) is a Riemannian manifolds with metric g, f is a smooth real valued function on M.

Namely a Riemannian manifold with a conformal change in the measure

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics It occurs naturally as collapsed measured Gromov-Hausdorff limit.

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

It occurs naturally as collapsed measured Gromov-Hausdorff limit.

Let $(M^n \times F^m, g_{\epsilon})$ be equipped with warped product metric $g_{\epsilon} = g_M + (\epsilon e^{-f})^2 g_F$. Then, as $\epsilon \to 0$,

$$(M^n \times F^m, \widetilde{dvol_{g_{\epsilon}}}) \stackrel{\mathrm{mGH}}{\longrightarrow} (M^n, e^{-mf} dvol_{g_M}).$$

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emer Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

It occurs naturally as collapsed measured Gromov-Hausdorff limit.

Let $(M^n \times F^m, g_{\epsilon})$ be equipped with warped product metric $g_{\epsilon} = g_M + (\epsilon e^{-f})^2 g_F$. Then, as $\epsilon \to 0$,

$$(M^n \times F^m, \widetilde{dvol_{g_{\epsilon}}}) \stackrel{\mathrm{mGH}}{\longrightarrow} (M^n, e^{-mf} dvol_{g_M}).$$

Here $dvol_{g_{\epsilon}}$ is a renormalized Riemannian measure.

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

It occurs naturally as collapsed measured Gromov-Hausdorff limit.

Let $(M^n \times F^m, g_{\epsilon})$ be equipped with warped product metric $g_{\epsilon} = g_M + (\epsilon e^{-f})^2 g_F$. Then, as $\epsilon \to 0$,

$$(M^n \times F^m, \widetilde{dvol_{g_{\epsilon}}}) \stackrel{\mathrm{mGH}}{\longrightarrow} (M^n, e^{-mf} dvol_{g_M}).$$

Here $dvol_{g_{\epsilon}}$ is a renormalized Riemannian measure.

Recall $(X_i, \mu_i) \xrightarrow{\text{mGH}} (X_{\infty}, \mu_{\infty})$ (compact) if for all sequences of continuous functions $f_i : X_i \to \mathbb{R}$ converging to $f_{\infty} : X_{\infty} \to \mathbb{R}$, we have

$$\int_{X_i} f_i d\mu_i \to \int_{X_\infty} f_\infty d\mu_\infty.$$

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

We have, as
$$\epsilon \rightarrow 0$$
,

$$(M^n \times F^m, \widetilde{dvol_{g_{\epsilon}}}) \stackrel{\text{mGH}}{\longrightarrow} (M^n, e^{-f} dvol_{g_M})$$

where $g_{\epsilon} = g_M + (\epsilon e^{-\frac{f}{m}})^2 g_F$.

・ロト ・日子・ ・ヨト ・ヨト

æ

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

We have, as
$$\epsilon \rightarrow 0$$
,

$$(M^n \times F^m, \widetilde{dvol_{g_{\epsilon}}}) \stackrel{\text{mGH}}{\longrightarrow} (M^n, e^{-f} dvol_{g_M}),$$

where $g_{\epsilon} = g_M + (\epsilon e^{-\frac{f}{m}})^2 g_F.$

By O'Neill's formula, the Ricci curvature of the warped product metric g_{ϵ} in the *M* direction is

$$\operatorname{Ric}_M + \operatorname{Hess} f - rac{1}{m} df \otimes df.$$

= √Q (~

m-Bakry-Emery Ricci tensor

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics Therefore for smooth metric measure spaces $(M^n, g, e^{-f} dvol_g)$, the corresponding Ricci tensor is

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df$$
 for $m > 0$,

— the *m*-Bakry-Emery Ricci tensor.

m-Bakry-Emery Ricci tensor

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics Therefore for smooth metric measure spaces $(M^n, g, e^{-f} dvol_g)$, the corresponding Ricci tensor is

 $\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df$ for m > 0,

- the *m*-Bakry-Emery Ricci tensor.

When $m = \infty$, denote $\operatorname{Ric}_{f} = \operatorname{Ric}_{f}^{\infty} = \operatorname{Ric} + \operatorname{Hess} f$

m-Bakry-Emery Ricci tensor

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics Therefore for smooth metric measure spaces $(M^n, g, e^{-f} dvol_g)$, the corresponding Ricci tensor is

 $\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df$ for m > 0,

- the *m*-Bakry-Emery Ricci tensor.

When $m = \infty$, denote $\operatorname{Ric}_f = \operatorname{Ric}_f^{\infty} = \operatorname{Ric} + \operatorname{Hess} f$

If $m_1 \ge m_2$, then $\operatorname{Ric}_f^{m_1} \ge \operatorname{Ric}_f^{m_2}$.

So $\operatorname{Ric}_{f}^{m} \geq \lambda g$ implies $\operatorname{Ric}_{f} \geq \lambda g$.

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

• $\operatorname{Ric}_{f}^{m} = \operatorname{Ric}$ when f is constant

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

- $\operatorname{Ric}_{f}^{m} = \operatorname{Ric}$ when f is constant
- The quasi-Einstein equation

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g$$
 (1)

= 900

has very nice geometric interpretations:

Smooth Metric Measure Spaces

Introduction

Comparison Geometry fo Bakry-Emer Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

- $\operatorname{Ric}_{f}^{m} = \operatorname{Ric}$ when f is constant
- The quasi-Einstein equation

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g$$
 (1)

has very nice geometric interpretations: when $m = \infty$, (1) is exactly the gradient Ricci soliton equation.

Smooth Metric Measure Spaces

Introduction

Comparison Geometry fo Bakry-Emer Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

- $\operatorname{Ric}_{f}^{m} = \operatorname{Ric}$ when f is constant
- The quasi-Einstein equation

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g$$
 (1)

has very nice geometric interpretations: when $m = \infty$, (1) is exactly the gradient Ricci soliton equation.

when *m* is a positive integer, (1) \Leftrightarrow the warped product metric $M \times_{e^{-\frac{f}{m}}} F^m$ is Einstein for some F^m . (Case-Shu-Wei using D.S.Kim-Y.S. Kim's work)

Smooth Metric Measure Spaces

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

- $\operatorname{Ric}_{f}^{m} = \operatorname{Ric}$ when f is constant
- The quasi-Einstein equation

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g$$
 (1)

has very nice geometric interpretations: when $m = \infty$, (1) is exactly the gradient Ricci soliton equation.

when *m* is a positive integer, (1) \Leftrightarrow the warped product metric $M \times_{e^{-\frac{f}{m}}} F^m$ is Einstein for some F^m . (Case-Shu-Wei using D.S.Kim-Y.S. Kim's work)

 Corresponding versions for non-smooth metric measure spaces (Lott-Villani, Sturm)

Smooth Metric Measure Spaces

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

- $\operatorname{Ric}_{f}^{m} = \operatorname{Ric}$ when f is constant
- The quasi-Einstein equation

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g$$
 (1)

has very nice geometric interpretations: when $m = \infty$, (1) is exactly the gradient Ricci soliton equation.

when *m* is a positive integer, (1) \Leftrightarrow the warped product metric $M \times_{e^{-\frac{f}{m}}} F^m$ is Einstein for some F^m . (Case-Shu-Wei using D.S.Kim-Y.S. Kim's work)

- Corresponding versions for non-smooth metric measure spaces (Lott-Villani, Sturm)
- diffusion processes
- Sobolev inequality
- conformal geometry

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Question

What geometric and topological results for the Ricci tensor extend to the Bakry-Emery Ricci tensor?

・ロ・ ・ 一・ ・ ヨ・ ・ ヨ・

ъ

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Question

What geometric and topological results for the Ricci tensor extend to the Bakry-Emery Ricci tensor?

When $0 < m < \infty$, many geometry and topology results for Ricci curvature lower bound extend directly to $\operatorname{Ric}_{f}^{m}$ (Bakry1994, Qian1997, Lott2003, Bakry-Qian2005,...)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Question

What geometric and topological results for the Ricci tensor extend to the Bakry-Emery Ricci tensor?

When $0 < m < \infty$, many geometry and topology results for Ricci curvature lower bound extend directly to $\operatorname{Ric}_{f}^{m}$ (Bakry1994, Qian1997, Lott2003, Bakry-Qian2005,...)

Lott 2003: if M is compact with $\operatorname{Ric}_{f}^{m} \geq \lambda$ (m positive integers), then $M \times_{\epsilon e^{-\frac{f}{m}}} \mathbb{S}^{m}$ has $\operatorname{Ric} \geq \lambda$ when ϵ is small.

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Question

What geometric and topological results for the Ricci tensor extend to the Bakry-Emery Ricci tensor?

When $0 < m < \infty$, many geometry and topology results for Ricci curvature lower bound extend directly to $\operatorname{Ric}_{f}^{m}$ (Bakry1994, Qian1997, Lott2003, Bakry-Qian2005,...)

Lott 2003: if M is compact with $\operatorname{Ric}_{f}^{m} \geq \lambda$ (m positive integers), then $M \times_{\epsilon e^{-\frac{f}{m}}} \mathbb{S}^{m}$ has $\operatorname{Ric} \geq \lambda$ when ϵ is small.

Another way later!

What about $m = \infty$?

Examples

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Example

₽ f

$$\mathbb{H}^n$$
 the hyperbolic space. Fixed any $p \in \mathbb{H}^n$, let $f(x) = (n-1)d^2(p,x)$, then $\operatorname{Ric}_f \geq (n-1)$.

Myers' theorem and Cheeger-Gromoll's isometric splitting theorem do not hold for Ric_f .

Examples

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Example

⊪ f

$$\mathbb{H}^n$$
 the hyperbolic space. Fixed any $p \in \mathbb{H}^n$, let $f(x) = (n-1)d^2(p,x)$, then $\operatorname{Ric}_f \geq (n-1)$.

Myers' theorem and Cheeger-Gromoll's isometric splitting theorem do not hold for Ric_f .

Example

 \mathbb{R}^n with Euclidean metric, $f(x_1, \dots, x_n) = x_1$. Ric_f = Ric = 0. vol_f $(B(0, r)) = \int_{B(0,r)} e^{-f} dvol \text{ is of exponential growth.}$

Bishop-Gromov's volume comparison doesn't extend.

Need Conditions

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Many results do extend when f or ∇f are bounded!

・ロ・ ・ 一・ ・ ヨ・ ・ ヨ・

ъ

Smooth Metric Measure Spaces

Guofang We

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics With respect to the measure $e^{-f} dvol$:

• the Laplacian is $\Delta_f = \Delta - \nabla f \cdot \nabla$

ъ

Smooth Metric Measure Spaces

Guofang We

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics With respect to the measure $e^{-f} dvol$:

- the Laplacian is $\Delta_f = \Delta \nabla f \cdot \nabla$
- the mean curvature is $m_f = m \partial_r f$. As usual $m_f = \Delta_f(r)$, r is the distance function.

Smooth Metric Measure Spaces

Guofang We

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics With respect to the measure $e^{-f} dvol$:

- the Laplacian is $\Delta_f = \Delta \nabla f \cdot \nabla$
- the mean curvature is $m_f = m \partial_r f$. As usual $m_f = \Delta_f(r)$, r is the distance function.

•
$$\operatorname{vol}_f(B(p,r)) = \int_{B(p,r)} e^{-f} dvol_g$$

Smooth Metric Measure Spaces

Guofang We

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics With respect to the measure $e^{-f} dvol$:

- the Laplacian is $\Delta_f = \Delta \nabla f \cdot \nabla$
- the mean curvature is $m_f = m \partial_r f$.
 - As usual $m_f = \Delta_f(r)$, r is the distance function.
- $\operatorname{vol}_f(B(p,r)) = \int_{B(p,r)} e^{-f} dvol_g$
- m^k_H be the mean curvature of the geodesic sphere in the model space M^k_H

Mean Curvature (Laplacian) Comparison for Ric_f

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Theorem (Wei-Wylie2007)

Fix $p \in (M^n, g, e^{-f} dvol_g)$. Assume $Ric_f(\partial_r, \partial_r) \ge (n-1)H$, a) if $\partial_r f \ge -a$ along a minimal geodesic segment from p (when H > 0 assume $r \le \pi/2\sqrt{H}$) then

 $m_f(r) - m_H(r) \leq a$

along that minimal geodesic segment from p.

Mean Curvature (Laplacian) Comparison for Ric_f

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Fix $p \in (M^n, g, e^{-f} dvol_g)$. Assume $Ric_f(\partial_r, \partial_r) \ge (n-1)H$, a) if $\partial_r f \ge -a$ along a minimal geodesic segment from p (when H > 0 assume $r \le \pi/2\sqrt{H}$) then

Theorem (Wei-Wylie2007)

 $m_f(r) - m_H(r) \leq a$

along that minimal geodesic segment from p. b) if $|f| \le k$ along a minimal geodesic segment from p (when H > 0 assume $r \le \pi/4\sqrt{H}$) then

 $m_f(r) \leq m_H^{n+4k}(r)$

Mean Curvature (Laplacian) Comparison for Ric_f

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Fix $p \in (M^n, g, e^{-f} dvol_g)$. Assume $Ric_f(\partial_r, \partial_r) \ge (n-1)H$, a) if $\partial_r f \ge -a$ along a minimal geodesic segment from p (when H > 0 assume $r \le \pi/2\sqrt{H}$) then

Theorem (Wei-Wylie2007)

 $m_f(r) - m_H(r) \leq a$

along that minimal geodesic segment from p. b) if $|f| \le k$ along a minimal geodesic segment from p (when H > 0 assume $r \le \pi/4\sqrt{H}$) then

 $m_f(r) \leq m_H^{n+4k}(r)$

When a = 0 or k = 0 this gives the usual mean curvature (Laplacian) comparison.

Volume Comparison for ∞ -Bakry-Emery

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics

Theorem (Wei-Wylie2007)

Fix $p \in (M^n, g, e^{-f} dvol_g)$. Assume $Ric_f \ge (n-1)H$, a) if $\partial_r f \ge -a$ along all minimal geodesic segments from p then for $R \ge r > 0$ (assume $R \le \pi/2\sqrt{H}$ if H > 0),

 $\frac{\operatorname{vol}_f(B(p,R))}{\operatorname{vol}_f(B(p,r))} \leq e^{aR} \frac{\operatorname{vol}_H^n(R)}{\operatorname{vol}_H^n(r)}.$

Volume Comparison for ∞ -Bakry-Emery

Theorem (Wei-Wylie2007)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proc

Rigidity of Quasi-Einstein Metrics

Fix $p \in (M^n, g, e^{-f} dvol_g)$. Assume $Ric_f \ge (n-1)H$, a) if $\partial_r f \ge -a$ along all minimal geodesic segments from p then for $R \ge r > 0$ (assume $R \le \pi/2\sqrt{H}$ if H > 0),

$$rac{\operatorname{vol}_f(B(p,R))}{\operatorname{vol}_f(B(p,r))} \leq e^{aR} rac{\operatorname{vol}_H^n(R)}{\operatorname{vol}_H^n(r)}$$

b) if $|f(x)| \le k$ then for $R \ge r > 0$ (assume $R \le \pi/4\sqrt{H}$ if H > 0),

$$\frac{\operatorname{vol}_f(B(p,R))}{\operatorname{vol}_f(B(p,r))} \le \frac{\operatorname{vol}_H^{n+4k}(R)}{\operatorname{vol}_H^{n+4k}(r)}$$

Volume Comparison for ∞ -Bakry-Emery

Theorem (Wei-Wylie2007)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics

Fix $p \in (M^n, g, e^{-f} dvol_g)$. Assume $Ric_f \ge (n-1)H$, a) if $\partial_r f \ge -a$ along all minimal geodesic segments from p then for $R \ge r > 0$ (assume $R \le \pi/2\sqrt{H}$ if H > 0),

$$rac{\operatorname{vol}_f(B(p,R))}{\operatorname{vol}_f(B(p,r))} \leq e^{\operatorname{aR}} rac{\operatorname{vol}_H^n(R)}{\operatorname{vol}_H^n(r)}$$

b) if $|f(x)| \le k$ then for $R \ge r > 0$ (assume $R \le \pi/4\sqrt{H}$ if H > 0),

$$\frac{\operatorname{vol}_f(B(p,R))}{\operatorname{vol}_f(B(p,r))} \le \frac{\operatorname{vol}_H^{n+4k}(R)}{\operatorname{vol}_H^{n+4k}(r)}$$

Э

In particular, if f is bounded and $Ric_f \ge 0$ then M has polynomial f-volume growth.

Some Applications of Laplacian Comparison

Smooth Metric Measure Spaces

Theorem (Myers' Theorem)

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics If $(M^n, g, e^{-f} dvol_g)$ has $Ric_f \ge (n-1)H > 0$ and $|f| \le k$, then M is compact and $diam_M \le \frac{\pi}{\sqrt{H}} + \frac{4k}{(n-1)\sqrt{H}}$.
Some Applications of Laplacian Comparison

Smooth Metric Measure Spaces

Theorem (Myers' Theorem)

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

If $(M^n, g, e^{-f} dvol_g)$ has $Ric_f \ge (n-1)H > 0$ and $|f| \le k$, then M is compact and $diam_M \le \frac{\pi}{\sqrt{H}} + \frac{4k}{(n-1)\sqrt{H}}$.

Theorem (Cheeger-Gromoll's SplittingTheorem)

If $(M^n, g, e^{-f} dvol_g)$ has $Ric_f \ge 0$, |f| is bounded, and M contains a line, then $M = N^{n-1} \times \mathbb{R}$ and f is constant.

Some Applications of Laplacian Comparison

Smooth Metric Measure Spaces

Theorem (Myers' Theorem)

Introduction

Comparison Geometry foi Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics If $(M^n, g, e^{-f} dvol_g)$ has $Ric_f \ge (n-1)H > 0$ and $|f| \le k$, then M is compact and $diam_M \le \frac{\pi}{\sqrt{H}} + \frac{4k}{(n-1)\sqrt{H}}$.

Theorem (Cheeger-Gromoll's SplittingTheorem)

If $(M^n, g, e^{-t} dvol_g)$ has $Ric_f \ge 0$, |f| is bounded, and M contains a line, then $M = N^{n-1} \times \mathbb{R}$ and f is constant.

Remark 1 Actually Lichneorwicz proved this in 1970.

Some Applications of Laplacian Comparison

Smooth Metric Measure Spaces

Theorem (Myers' Theorem)

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics If $(M^n, g, e^{-f} dvol_g)$ has $Ric_f \ge (n-1)H > 0$ and $|f| \le k$, then M is compact and $diam_M \le \frac{\pi}{\sqrt{H}} + \frac{4k}{(n-1)\sqrt{H}}$.

Theorem (Cheeger-Gromoll's SplittingTheorem)

If $(M^n, g, e^{-t} dvol_g)$ has $Ric_f \ge 0$, |f| is bounded, and M contains a line, then $M = N^{n-1} \times \mathbb{R}$ and f is constant.

Remark 1 Actually Lichneorwicz proved this in 1970. Remark 2 It's enough to assume f is bounded from above (then f is linear along the line) (Fang-Li-Zhang).

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emer Ricci Tensor Comparison Theorems Applications

Idea of Proo

Rigidity of Quasi-Einstei Metrics

Theorem (Abresch-Gromoll's Excess Estimate)

Let $Ric_f \ge 0$, $|f| \le k$ and $h(x) < \min\{d(p, x), d(q, x)\}$ then

$$e_{p,q}(x) \leq 2\left(\frac{n+4k-1}{n+4k-2}\right)\left(\frac{1}{2}Ch^{n+4k}\right)^{\frac{1}{n+4k-1}}$$

where

$$C = 2\left(\frac{n+4k-1}{n+4k}\right)\left(\frac{1}{d(p,x)-h(x)} + \frac{1}{d(q,x)-h(x)}\right)$$

Idea of Proof for Mean Curvature Comparison

Smooth Metric Measure Spaces

Guofang We

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics A main tool for Ricci curvature is the Bochner formula: For smooth function u on (M^n, g) ,

$$\frac{1}{2}\Delta|\nabla u|^2 = |\mathsf{Hess}\,u|^2 + \langle \nabla u, \nabla(\Delta u) \rangle + \mathsf{Ric}(\nabla u, \nabla u).$$

Idea of Proof for Mean Curvature Comparison

Smooth Metric Measure Spaces

Guofang We

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics A main tool for Ricci curvature is the Bochner formula: For smooth function u on (M^n, g) ,

$$\frac{1}{2}\Delta|\nabla u|^2 = |\text{Hess } u|^2 + \langle \nabla u, \nabla(\Delta u) \rangle + \text{Ric}(\nabla u, \nabla u).$$

Using the Cauchy-Schwarz inequality, if $\text{Ric} \ge (n-1)H$,

$$\frac{1}{2}\Delta |\nabla u|^2 \geq \frac{(\Delta u)^2}{n} + \langle \nabla u, \nabla (\Delta u) \rangle + (n-1)H|\nabla u|^2.$$

Idea of Proof for Mean Curvature Comparison

Smooth Metric Measure Spaces

Guofang We

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics A main tool for Ricci curvature is the Bochner formula: For smooth function u on (M^n, g) ,

$$\frac{1}{2}\Delta|\nabla u|^2 = |\mathsf{Hess}\,u|^2 + \langle \nabla u, \nabla(\Delta u) \rangle + \mathsf{Ric}(\nabla u, \nabla u).$$

Using the Cauchy-Schwarz inequality, if $\text{Ric} \ge (n-1)H$,

$$\frac{1}{2}\Delta |\nabla u|^2 \geq \frac{(\Delta u)^2}{n} + \langle \nabla u, \nabla (\Delta u) \rangle + (n-1)H|\nabla u|^2.$$

This characterizes Ricci curvature lower bound.

Bochner formulas for the *m*-Bakry-Emery Ricci tensor

Smooth Metric Measure Spaces

Guofang We

1

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

With respect to the measure
$$e^{-f} dvol$$
, $\Delta_f = \Delta - \nabla f \cdot \nabla s$

$$\frac{1}{2} \Delta_f |\nabla u|^2 = |\text{Hess } u|^2 + \langle \nabla u, \nabla (\Delta_f u) \rangle + \text{Ric}_f^m (\nabla u, \nabla u) + \frac{1}{m} |\langle \nabla f, \nabla u \rangle|^2.$$

ъ

Bochner formulas for the *m*-Bakry-Emery Ricci tensor

Smooth Metric Measure Spaces

Idea of Proof

With respect to the measure
$$e^{-f} dvol$$
, $\Delta_f = \Delta - \nabla f \cdot \nabla$:

$$\frac{1}{2}\Delta_{f}|\nabla u|^{2} = |\text{Hess } u|^{2} + \langle \nabla u, \nabla(\Delta_{f} u) \rangle + \text{Ric}_{f}^{m}(\nabla u, \nabla u) + \frac{1}{m}|\langle \nabla f, \nabla u \rangle|^{2}.$$

۸

э

When m is finite

With weap of to the

$$\frac{1}{2}\Delta_f |\nabla u|^2 \geq \frac{(\Delta_f(u))^2}{m+n} + \langle \nabla u, \nabla(\Delta_f u) \rangle + \operatorname{Ric}_f^m(\nabla u, \nabla u).$$

Bochner formulas for the *m*-Bakry-Emery Ricci tensor

With respect to the measure $e^{-f} dvol$, $\Delta_f = \Delta - \nabla f \cdot \nabla$:

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

$$\frac{1}{2}\Delta_{f}|\nabla u|^{2} = |\text{Hess } u|^{2} + \langle \nabla u, \nabla(\Delta_{f} u) \rangle + \text{Ric}_{f}^{m}(\nabla u, \nabla u) + \frac{1}{m}|\langle \nabla f, \nabla u \rangle|^{2}.$$

When *m* is finite

$$\frac{1}{2}\Delta_f |\nabla u|^2 \geq \frac{(\Delta_f(u))^2}{m+n} + \langle \nabla u, \nabla(\Delta_f u) \rangle + \operatorname{Ric}_f^m(\nabla u, \nabla u).$$

Therefore, (Bakry-Qian2005) if $\operatorname{Ric}_f^m \ge (n+m-1)H$, then $m_f(r) \le m_H^{n+m}(r).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

When $m = \infty$, we have

-1

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

$$\frac{1}{2}\Delta_f |\nabla u|^2 = |\text{Hess } u|^2 + \langle \nabla u, \nabla (\Delta_f u) \rangle + \text{Ric}_f (\nabla u, \nabla u).$$

æ

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

When $m = \infty$, we have

1

$$\frac{1}{2}\Delta_f |\nabla u|^2 = |\text{Hess } u|^2 + \langle \nabla u, \nabla (\Delta_f u) \rangle + \text{Ric}_f (\nabla u, \nabla u).$$

We start from the usual Riccati inequality

$$m' \leq -\frac{m^2}{n-1} - \operatorname{Ric}(\partial r, \partial r).$$

Let $sn_H(r)$ be the solution to

$$\operatorname{sn}''_H + H \operatorname{sn}_H = 0$$

ъ

such that $\operatorname{sn}_H(0) = 0$ and $\operatorname{sn}'_H(0) = 1$.

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

We compute that

$$\left(\operatorname{sn}_{H}^{2}m-\operatorname{sn}_{H}^{2}m_{H}\right)^{\prime}\leq\operatorname{sn}_{H}^{2}\partial_{t}\partial_{t}f_{t}$$

which gives

$$\operatorname{sn}_{H}^{2}(r)(m(r)-m_{H}(r)) \leq \int_{0}^{r} \operatorname{sn}_{H}^{2}(t) \partial_{t} \partial_{t} f(t) dt.$$

・ロト ・日本 ・モート ・モート

ŧ

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

We compute that

$$\left(\operatorname{sn}_{H}^{2}m-\operatorname{sn}_{H}^{2}m_{H}\right)^{\prime}\leq\operatorname{sn}_{H}^{2}\partial_{t}\partial_{t}f_{t}$$

which gives

$$\operatorname{sn}_{H}^{2}(r)(m(r)-m_{H}(r)) \leq \int_{0}^{r} \operatorname{sn}_{H}^{2}(t) \partial_{t} \partial_{t} f(t) dt.$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

э

When f is constant (the classical case) this gives the usual mean curvature comparison.

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems

Rigidity of Quasi-Einstein Metrics

Question

What about equality case?

ъ

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor

Theorems Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics

Question

What about equality case?

A metric is quasi-Einstein if

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g.$$

・ロ・ ・ 一・ ・ ヨ・ ・ ヨ・

= 900

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emer Ricci Tensor Comparison Theorems Applications

Rigidity of Quasi-Einstein Metrics

Question

What about equality case?

A metric is quasi-Einstein if

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g.$$

Recall

when f is constant, it's the Einstein equation (trivial case).

・ロ・ ・ 一・ ・ ヨ・ ・ ヨ・

ъ

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emer Ricci Tenson Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Question

What about equality case?

A metric is quasi-Einstein if

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g.$$

Recall

when f is constant, it's the Einstein equation (trivial case).
when m = ∞, this is exactly the gradient Ricci soliton equation (λ > 0, shrinking soliton)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emer Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Question

What about equality case?

A metric is quasi-Einstein if

$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric} + \operatorname{Hess} f - \frac{1}{m} df \otimes df = \lambda g.$$

Recall

- when f is constant, it's the Einstein equation (trivial case).
 - when $m = \infty$, this is exactly the gradient Ricci soliton equation ($\lambda > 0$, shrinking soliton)
 - when m is positive integer, it corresponds to some warped product Einstein metrics.

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications

Rigidity of Quasi-Einstein Metrics

Question

What are the properties of quasi-Einstein metrics? When is it rigid (trivial)? What are nontrivial examples?

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison

Theorems Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics When n = 2,3 compact Ricci solitons are trivial. (Hamilton, Ivey)
More generally when Weyl tensor is zero (Eminenti-Nave-Mantegazza,Petersen-Wylie, Ni-Wallach, Cao-Wang-Zhang, Z.H. Zhang)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

- When n = 2,3 compact Ricci solitons are trivial. (Hamilton, Ivey)
 More generally when Weyl tensor is zero (Eminenti-Nave-Mantegazza,Petersen-Wylie, Ni-Wallach, Cao-Wang-Zhang, Z.H. Zhang)
- Quasi-Einstein metrics with λ ≤ 0 on compact manifolds are trivial. (Lichnerowicz, Ivey for *m* infinite, Kim-Kim for *m* finite)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

- When n = 2,3 compact Ricci solitons are trivial. (Hamilton, Ivey)
 More generally when Weyl tensor is zero (Eminenti-Nave-Mantegazza,Petersen-Wylie, Ni-Wallach, Cao-Wang-Zhang, Z.H. Zhang)
- Quasi-Einstein metrics with λ ≤ 0 on compact manifolds are trivial. (Lichnerowicz, Ivey for *m* infinite, Kim-Kim for *m* finite)

 Rigidity results for Ricci solitons with symmetry and curvature bound (Petersen-Wylie)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

- When n = 2,3 compact Ricci solitons are trivial. (Hamilton, Ivey)
 More generally when Weyl tensor is zero (Eminenti-Nave-Mantegazza,Petersen-Wylie, Ni-Wallach, Cao-Wang-Zhang, Z.H. Zhang)
- Quasi-Einstein metrics with λ ≤ 0 on compact manifolds are trivial. (Lichnerowicz, Ivey for *m* infinite, Kim-Kim for *m* finite)
- Rigidity results for Ricci solitons with symmetry and curvature bound (Petersen-Wylie)
- Compact shrinking soliton with positive curvature operators are trivial. (Böhm-Wilking)

Special Examples

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics Gaussian soliton: (ℝⁿ, g₀), f(r) = r². Then Ric + Hess f = 2g₀, a shrinking soliton which is also Einstein.

The only nontrivial gradient soliton which is Einstein (Petersen-Wylie)

Special Examples

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison

Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics Gaussian soliton: (ℝⁿ, g₀), f(r) = r². Then Ric + Hess f = 2g₀, a shrinking soliton which is also Einstein.

The only nontrivial gradient soliton which is Einstein (Petersen-Wylie)

• \mathbb{H}^n with the warped product metric $g = dt^2 + e^{2t}g_0$. f(t) = -mt. Then $\operatorname{Ric}_f^m = -(n+m-1)g$.

We will see this is essentially the only nontrivial finite m quasi-Einstein metric which is Einstein.

Smooth Metric Measure Spaces

Guofang Wei

Introductior

Comparison Geometry fo Bakry-Emer Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics $m = \infty$, first nontrivial example of shrinking Ricci soliton is $\mathbb{C}P^2 \# (-\mathbb{C}P^2)$ (Koiso, Cao)

Smooth Metric Measure Spaces

Guofang Wei

Introductior

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics $m = \infty$, first nontrivial example of shrinking Ricci soliton is $\mathbb{C}P^2 \# (-\mathbb{C}P^2)$ (Koiso, Cao)

 $2 \le m < \infty$ integers, S^2 bundles over Kähler-Einstein bases (Lu-Page-Pope2004)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics $m = \infty$, first nontrivial example of shrinking Ricci soliton is $\mathbb{C}P^2 \# (-\mathbb{C}P^2)$ (Koiso, Cao)

 $2 \le m < \infty$ integers, S^2 bundles over Kähler-Einstein bases (Lu-Page-Pope2004)

m = 1, no nontrivial compact ones.

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics $m = \infty$, first nontrivial example of shrinking Ricci soliton is $\mathbb{C}P^2 \# (-\mathbb{C}P^2)$ (Koiso, Cao)

Dancer-Wang(2008), constructed a large class of compact shrinking Ricci solitons. All known examples are Kälher.

 $2 \le m < \infty$ integers, S^2 bundles over Kähler-Einstein bases (Lu-Page-Pope2004) These are non-Kälher.

m = 1, no nontrivial compact ones.

Our work (joint with J. Case and Y. Shu)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems

Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics ■ Extend several properties for Ricci solitons (m = ∞) to quasi-Einstein metrics (general m), showing similarity between finite m and infinite m.

Our work (joint with J. Case and Y. Shu)

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems

Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics

- Extend several properties for Ricci solitons (m = ∞) to quasi-Einstein metrics (general m), showing similarity between finite m and infinite m.
- show Kähler quasi-Einstein metrics behave very differently when m is finite and m is infinite.

Results

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Proposition

For a quasi-Einstein metric with $m \ge 1$ a) if $\lambda > 0$ and compact, then the scalar curvature

$$R\geq \frac{n(n-1)}{m+n-1}\lambda.$$

Equality if and only if m = 1.

Results

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics

Proposition

For a quasi-Einstein metric with $m \ge 1$ a) if $\lambda > 0$ and compact, then the scalar curvature

$$R\geq \frac{n(n-1)}{m+n-1}\lambda.$$

Equality if and only if m = 1. b) if $\lambda = 0$, R is constant and m > 1, then it is Ricci flat.

Results

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics

Proposition

For a quasi-Einstein metric with $m \ge 1$ a) if $\lambda > 0$ and compact, then the scalar curvature

$$R\geq \frac{n(n-1)}{m+n-1}\lambda.$$

Equality if and only if m = 1. b) if $\lambda = 0$, R is constant and m > 1, then it is Ricci flat. c) if $\lambda < 0$, R is constant, then

$$n\lambda \leq R \leq \frac{n(n-1)}{m+n-1}\lambda,$$

and when m > 1, R equals either of the extreme values iff it is Einstein.

э

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems

Applications Idea of Proc

Rigidity of Quasi-Einstein Metrics

When $m = \infty$ this is done in Petersen-Wylie.

When m = 1, then R is constant and equals $(n - 1)\lambda$.

・ロ・ ・ 一・ ・ ヨ・ ・ ヨ・

= 900
Rigidity

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Proposition

A complete finite *m* quasi-Einstein metric (M^n, g, f) is Einstein if and only if *f* is constant or *M* is diffeomorphic to \mathbb{R}^n with the warped product structure $\mathbb{R} \times_{a^{-1}e^{ar}} N^{n-1}$, where N^{n-1} is Ricci flat, *a* is a constant.

Rigidity

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Comparison Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Proposition

A complete finite *m* quasi-Einstein metric (M^n, g, f) is Einstein if and only if *f* is constant or *M* is diffeomorphic to \mathbb{R}^n with the warped product structure $\mathbb{R} \times_{a^{-1}e^{ar}} N^{n-1}$, where N^{n-1} is Ricci flat, *a* is a constant.

Theorem

All 2-dimensional (finite m) quasi-Einstein metrics on compact manifolds are trivial.

Kähler quasi-Einstein metrics

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Theorem

Let (M^n, g) be an n-dimensional complete simply-connected Riemannian manifold with a Kähler quasi-Einstein metric for finite m. Then $M = M_1^{n-2} \times M_2^2$ is a Riemannian product, and f can be considered as a function of M_2 , where M_1 is an Einstein manifold with Einstein constant λ , and M_2 is a 2-dimensional quasi-Einstein manifold.

Kähler quasi-Einstein metrics

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Theorems Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Theorem

Let (M^n, g) be an n-dimensional complete simply-connected Riemannian manifold with a Kähler quasi-Einstein metric for finite m. Then $M = M_1^{n-2} \times M_2^2$ is a Riemannian product, and f can be considered as a function of M_2 , where M_1 is an Einstein manifold with Einstein constant λ , and M_2 is a 2-dimensional quasi-Einstein manifold.

Corollary

There are no nontrivial m finite Kähler quasi-Einstein metrics on compact manifolds.

Idea of Proof

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor

Theorems Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics When $0 < m < \infty$, consider $u = e^{-\frac{f}{m}}$. Then the quasi-Einstein equation $\operatorname{Ric}_{f}^{m} = \lambda g$ becomes

$$\operatorname{Ric} - \frac{m}{u} \operatorname{Hess} u = \lambda g.$$

Using this and the Kähler structure, show Hess u(JU, V) = 0 for all $U, V \perp \nabla u$.

Idea of Proof

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison

Applications Idea of Proo

Rigidity of Quasi-Einstein Metrics When $0 < m < \infty$, consider $u = e^{-\frac{t}{m}}$. Then the quasi-Einstein equation $\operatorname{Ric}_{f}^{m} = \lambda g$ becomes

$$\operatorname{Ric} - \frac{m}{u} \operatorname{Hess} u = \lambda g.$$

Using this and the Kähler structure, show Hess u(JU, V) = 0 for all $U, V \perp \nabla u$.

Then show Span{ $\nabla u, J \nabla u$ } is invariant under parallel transport.

Questions

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry fo Bakry-Emery Ricci Tensor Comparison Theorems Applications

Rigidity of Quasi-Einstein Metrics

Question

If M^n is a compact Riemannian manifold with a measure such that $Ric_f \ge (>)0$, does M^n have a metric on it with $Ric \ge (>)0$?

Questions

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems

Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Question

If M^n is a compact Riemannian manifold with a measure such that $Ric_f \ge (>)0$, does M^n have a metric on it with $Ric \ge (>)0$?

Question

Is 3-dimensional (or more generally zero Weyl tensor) quasi-Einstein metrics with finite m trivial?

Questions

Smooth Metric Measure Spaces

Guofang Wei

Introduction

Comparison Geometry for Bakry-Emery Ricci Tensor Comparison Theorems

Applications Idea of Proof

Rigidity of Quasi-Einstein Metrics

Question

If M^n is a compact Riemannian manifold with a measure such that $Ric_f \ge (>)0$, does M^n have a metric on it with $Ric \ge (>)0$?

Question

Is 3-dimensional (or more generally zero Weyl tensor) quasi-Einstein metrics with finite m trivial?

Question

Are there examples of non-Kähler compact shrinking solitons?