
Contributions of D. Gromoll to

Riemannian Geometry

Classical Sphere Theorem

(1951–1961 Rauch, Klingenberg, Berger):

M complete, π1(M
n) = 0, 1

4 < KM ≤ 1 ⇒
M ≈homeo Sn.

For a compact manifold M with KM > 0

δM : = minKM
maxKM

is scale-invariant.

M is said to be δ-pinched if δM > δ.

M is said to be weakly δ-pinched if δM ≥ δ.
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1964 Detlef’s Thesis:

Gromoll filtration

0 = Γnn−2 ⊂ · · · ⊂ Γnk ⊂ · · · ⊂ Γn1 ⊂ Γn .

of the Kervaire–Milnor group Γn of twisted

spheres.

Recursive construction of a sequence δν,

δ1 = 1
4, δν < δν+1 with limν→∞ δν = 1.

Theorem 2.1 If Mn is complete, simply con-

nected and δk-pinched, then M ∈ Γnk.

In particular M is diffeomorphic to Sn when

k = n− 2.

Example: δ5 ≤ 0.819, hence M7 ≈diffeom S7

if δM > 0.819.
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Improvements by H. Karcher, E. Ruh,

K. Shiohama, M. Sugimoto, and Y. Suyama:

Differentiable sphere theorems with a pinch-

ing constant independent of n.

Suyama (1995): If M is 0.654-pinched then

M is diffeomorphic to Sn.

Most recently S. Brendle and R. Schoen solved

the problem completely:

Theorem 3.1 (S. Brendle, R. Schoen 2008)

Manifolds with pointwise 1/4-pinched sectional

curvature are diffeomorphic to space forms.

In a follow up paper they give a full classi-

fication of all pointwise weakly 1/4-pinched

manifolds.

The progress was possible due to results by

Böhm and Wilking (2006). They found

a general set of ”curvature conditions” that

are invariant under the Ricci flow.
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Antonelli, Burghelea and Kahn [1970]

investigated the Γnk further and introduced

the name Gromoll groups.

N. Hitchin (1972): Used Gromoll groups

to construct examples of spin–manifolds Mn

with a spin cobordism invariant α(Mn) 6= 0.

In particular these manifolds do not admit

metrics with positive scalar curvature.

M. Weiss (1993): Used the Gromoll groups

to show that certain exotic spheres cannot

be 1/4-pinched. In particular Milnor’s gener-

ator Σ7 of Γ7 does not admit any 1
4–pinched

metric.

Theorem 4.1 ( K. Grove, F. Wilhelm [1995])

n ≥ 2, 2 ≤ q ≤ n M closed manifold, KM ≥ 1

and packqM > π
4. Then M ∈ Γnq−1. If n ≥ 4

and q = n− 2, M is diffeomorphic to Sn.
packq(M) is the largest number r for which

M contains q disjoint balls of radius r.
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Exotic spheres with nonnegative sectional

curvature

Open question:

Is there any exotic sphere with K > 0?

D. Gromoll, W. M. (1974):

Σ7 is a submersion of Sp(2) via the two–sided

action of Sp(1) given by (q,Q) 7→
(
q 0
0 q

)
Q

(
q̄ 0
0 1

)
.

Hence KΣ7 ≥ 0.

KΣ7 > 0 on an open set of points. But there

is also an open set of points with planes of

zero curvature as pointed out by F. Wilhelm.
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F. Wilhelm [2001] and also J. Eschenburg-

M. Kerin [2008] : The metric of Σ7 can be

deformed to a metric with positive curvature

almost everywhere.

P. Petersen and F. Wilhelm [arXiv 2009]:

Σ7 admits a metric of positive curvature.

(third version, over 90 pages.)

K. Grove, W. Ziller [2000]:

Metrics with K ≥ 0 on all the 3–sphere bun-

dles over S4 with structure group SO(4),

including 14 of the 28 Milnor spheres.
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Diameter Rigidity, metric fibrations of spheres

The Classical Rigidity Theorem:

Theorem 7.1 (M. Berger [1960])

Mn closed, π1(M) = 0, 1
4 ≤ KM ≤ 1.

Then M is homeomorphic to Sn or isometric

to a symmetric space of rank 1.

The proof depends on Klingenberg’s estimate

inj(M) ≥ π for the injectivity radius of M . A

correct proof for this estimate in odd dimen-

sions was given in:

Theorem 7.2 (Cheeger, Gromoll [1980])

M closed, π1(M) = 0, 1
4 ≤ KM ≤ 1.

Then inj(M) = conj(M) ≥ π.

Brendle and Schoen (2008):

homeomorphic can be replaced by

diffeomorphic in Berger’s rigidity Theorem.
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The Diameter Rigidity Theorem:

By rescaling the metric in Berger’s rigidity

theorem, the curvature assumptions can be

transformed to 1 ≤ KM ≤ 4. These condi-

tions imply via the injectivity radius estimate

that diamM ≥ π/2.

Theorem 8.1 (D. Gromoll, K. Grove [1987])

Mn connected, complete, n ≥ 2, and KM ≥ 1,

diamMn ≥ π
2. Then

(i) Mn is homeomorphic to Sn, or

(ii) the universal covering M̃n of Mn is

isometric to a rank one symmetric space,

except possibly when H∗(m) ∼= H∗(CaP2).

This generalizes the Grove-Shiohama Diam-

eter Sphere Theorem (1977).

Due to B. Wilking [2001] the exception in

(ii) can be can be deleted.
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Basic idea: construct a ”dual” pair of con-

vex sets A and A′ in M at maximal distance
π
2 and analyze its properties:

A′ and A are simply connected manifolds with-

out boundary if M is not a sphere. Let p ∈ A,

Sp fiber of the normal sphere bundle of A.

Then there is a submersion Sp → A′. This

essentially reduces the proof to the

Classification of metric fibrations of spheres

by Gromoll–Grove (1985) and (1987),

Wilking (2001):

Fibers are spheres of dimension 1, 3, or 7.

The fibration is metrically equivalent to a

Hopf fibration. The case when the fiber di-

mension is 7 and n = 15 was solved by Wilk-

ing.

For example if M = CPm, then:

A = CPk, A′ = CPm−k−1, and A is the cut

locus of A′ and vice versa. If A = {pt}, M is

the Thom space of the normal bundle of A′.
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The Soul Theorem of Cheeger and

Gromoll

1966–1968 D. Gromoll:

Miller Fellow at Berkeley

1966-1967 W. Meyer: Visiting Berkeley.

Joined work of Gromoll-M. on periodic geodesics

and also on complete non compact manifolds

with positive sectional curvature.

1967-1968 J. Cheeger: Visiting Berkeley.

Joined work of Gromoll-Cheeger on the struc-

ture of complete manifolds with nonnegative

curvature.

Theorem 10.1 (D. Gromoll, W. M. [1969])

Let Mn be a complete non compact Rieman-

nian manifold with positive sectional curva-

ture. Then Mn is diffeomorphic to Rn.
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Theorem 11.1 (J. Cheeger, D. Gromoll

[1972]) Let Mn be a complete non compact

manifold of nonnegative curvature K. Then

there is a compact totally geodesic subman-

ifold S in M such that M is diffeomorphic to

the normal bundle ν(S) of S.

Cheeger-Gromoll called S a soul of M . The

theorem is known as the Soul Theorem.

Question at the end of the paper:

Suppose M is complete and non-compact with

K ≥ 0 but K > 0 at some point. Is then the

soul of M always a point, or equivalently, is

M diffeomorphic to euclidian space?

Perelman (1994) gave a positive answer to

this Question in a paper ”Proof of the soul

conjecture of Cheeger and Gromoll”.
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Main ideas for the proof of the
Soul Theorem

1. The basic construction of an expanding
family of totally convex sets.

Definition: A nonempty subset C of M is
called totally convex if for arbitrary points
p, q ∈ C any geodesic with endpoints p and q

is contained in C.

Definition: A ray in M is a normal geodesic
c : [0,∞) →M for which any finite segment is
minimal. For a ray c : [0,∞) → M we define
the open half-space Bc by

Bc =
⋃
t>0

B(c(t), t)

where B(c(t), t) is the open metric ball of ra-
dius t around c(t).

Remark: For any p ∈ M there exists a ray
c : [0,∞) →M with initial point c(0) = p.
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Lemma 13.1 If M is complete, noncompact

of nonnegative sectional curvature, then the

closed half-space M −Bc is totally convex for

any ray in M .

Proof: Suppose M−Bc is not totally convex,

i.e. there is a geodesic c0 : [0,1] → M with

endpoints c0(0), c0(1) ∈ M − Bc but c0(s0) ∈
Bc for some s0 ∈ (0,1). Then q := c0(s0) ∈
B(c(t0), t0) for some t0 > 0.

By the triangle inequality q ∈ B(c(t), t) for

any t ≥ t0. In fact, setting

t0 − ε = dist(q, c(t0)), ε > 0

we have

dist(q, c(t)) ≤ dist(q, c(t0)) + dist(c(to), c(t))

= (t0 − ε) + (t− t0) = t− ε

for t ≥ t0.
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Let t ≥ t0.

Choose c0(st) on c0(0,1) closest to c(t),

ct1 a minimal geodesic from p = c0(st) to c(t).

• Then |ct1| ≤ t− ε and

• <) (ċ0(st), ċt1(0)) = π
2

Let ct0(τ): = c0(st − τ) for τ ∈ [0, st].

• Then |ct0| < |c0|

Since ct0(st) = c0(0) 6∈B(c(t), t), we have

• t ≤ dist(ct0(st), c(t))

Apply Toponogov’s comparison theorem to

the hinge (ct1, π/2, c
t
0):

dist(ct0(st), c(t))
2 ≤ |ct0|

2+|ct1|
2 ≤ |c|2+(t−ε)2

Therfore t2 ≤ |c|2 + (t− ε)2, a contradiction.
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Fix a point p ∈ M . For a ray c : [0,∞[→ M

we also consider the restricted ray ct(s) :=

c(t+ s), s ∈ [0,∞). Let

Ct :=
⋂
c
(M −Bct)

where the intersection is taken over all the

rays c emanating from p.

Lemma 15.1 Ct is a compact totally convex

set for all t ≥ 0, moreover

a) Ct2 ⊃ Ct1 for t2 ≥ t1 and

Ct1 = {q ∈ Ct2 | dist(q, ∂Ct2 ≥ t2 − t1},
in particular

∂Ct1 = {q ∈ Ct2 | dist(q, ∂Ct2) = t2 − t1}

b)
⋃
t≥0Ct = M

c) p ∈ ∂C0
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Clearly Ct is closed, totally convex and p ∈ Ct.
If Ct were not compact, one can construct a

ray contained in Ct emanating from p, con-

tradicting the definition.

2. The basic construction of minimal

totally convex sets.

Local convexity.

Definition A subset A of M is called strongly

convex if for any q, q′ ∈ A there is a unique

minimal geodesic from q to q′ which is con-

tained in A.

Recall that there is a continuous function

r : M →]0,∞], the convexity radius such that

for any p ∈M , any open metric ball B which

is contained in B(p, r(p)) is strongly convex.

Definition We say that a subset C of M is

convex if for any p ∈ C there is a number

0 < ε(p) < r(p) such that C ∩ B(p, ε(p)) is

strongly convex.
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Notice that a totally convex set is convex and

connected. Also the closure of a convex set

is again convex.

Structure theorem for convex sets:

Theorem 17.1 (J. Cheeger, D.Gromoll) Let

C be a connected nonempty convex subset of

an arbitrary Riemannian manifold M . Then

C carries the structure of an imbedded k-

dimensional submanifold of M with smooth

totally geodesic interior N = intC and

(possibly nonsmooth) boundary ∂C = N−N .

Definition Let C be a convex subset of M .

The tangent cone to C at a point p ∈ C is by

definition the set TpC = {v ∈ TpM | exp(t v‖v‖) ∈
intC for some 0 < t < r(p)} ∪ {0} .

Clearly if p ∈ int (C), then TpC = TpN .
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The following lemma contains all the techni-

cal information about TpC we need.

Lemma 18.1 (tangent cone lemma)

Let C ⊂M be convex and p ∈ ∂C.

a) Then TpC \ {0} is contained in an open

half-space of TpM .

b) Suppose that there exists q ∈ intC and

a minimal normal geodesic c : [0, d] → C

from q to p such that |c| = dist(q, ∂C).

Then

TpC \ {0} = {v ∈ T̂pC | <) (v,−ċ(d)) < π
2},

where T̂pC is the subspace of TpM spanned

by TpC.
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Lemma 19.1 (contraction lemma) Suppose

M has nonnegative sectional curvature and

C ⊂M is a closed totally convex subset with

∂C 6= ∅. We set

Ca = {p ∈ C | dist(p, ∂C) ≥ a} , Cmax =
⋂

Ca 6=∅
Ca .

Then

a) Ca is closed and totally convex.

b) dimCmax < dimC.

c) If K > 0 then Cmax is a point.

This is a corollary of the following more

general lemma:
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Lemma 20.1 With the hypothesis of lemma

19.1, let ψ(x): = dist(x, ∂C). Then for any

normal geodesic segment c which is contained

in C the function ψ ◦ c is (weakly) concave,

i.e. for λ ∈ [0,1]

ψ(c(λt1+(1−λ)t2)) ≥ λψ(c(t1))+(1−λ)ψ(c(t2))

If the sectional curvature satisfies K > 0 then

the strict inequality holds.

Proof. It is sufficient to show:

For s0 ∈ (0,1) and some δ > 0 there is a lin-

ear function h(s) on (s0− δ, s0 + δ) satisfying

h(s0) = ψ(c(s0)) =: d and h(s) ≥ ψ(c(s))

Let cs0 be a distance minimizing normal geodesic

of length d from c(s0) to ∂C and α := <) (ċs0(0), ċ(s0)).

Then we can take

h(s) = d− (s− s0) cosα .

To show h(s) ≥ ψ(c(s)) we consider the three

cases α = π
2, α >

π
2, α <

π
2. Note that we only

have to consider points s ≥ s0.
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Case α = π
2 :

E parallel along cs0 with E(0) = ċ(s0).
cs(t): = exp(s− s0)E(t), 0 ≤ t ≤ d

Rauch II: |cs| ≤ d = |cs0| for 0 ≤ s− s0 small.
Let c̄(τ): = exp(τE(d)), 0 ≤ τ ≤ (s − s0),
then
q := c̄(0) = cs0(d) ∈ ∂C and ˙̄c(0) ⊥ ċs0(d).

By the tanget cone lemma ˙̄c(0) 6∈TqC so that
cs(d) = c̄(s− s0) 6∈ intC for s− s0 small.

Therefore ψ(c(s)) ≤ |cs| ≤ d = d−(s−s0) cos π2.
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Case α > π
2: Let E(0)⊥ċs0(0) be the unique

unit vector in the convex cone spanned by

ċ(s0) and ċs0(0) and extend it to the parallel

vector field E along cs0. Define cs as in the

first case to obtain
|cs| ≤ d . (1)

Applying Rauch I to the hinge with geodesics

t 7→ exp tE(0), 0 ≤ t ≤ (s− s0) cos(α− π
2) and

t 7→ c(s0+t), 0 ≤ t ≤ (s−s0) with angle α− π
2,

one obtains
dist

(
c(s), exp((s− s0) cos(α− π

2)E(0)
)

≤ −(s− s0) cosα . (2)

Combining (1) and (2), the inequality

ψ(c(s)) ≤ d− (s− s0) cosα follows.
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Case α < π
2 : Choose cs0(ts) on cs0 with

dist(c(s), cs0([0, d])) = dist(c(s), cs0(ts)).
as normal minimal geodesic from cs0(ts) to
c(s). Then <) (ȧs(0), ċs0(ts)) = π

2. Let E
be parallel along cs0|[ts,d] with E(ts) = ȧs(0).
cs(t) := exp(|as|E(t)), ts ≤ t ≤ d, is of length
|cs| ≤ (d− ts) by Rauch II.
As before dist(c(s), ∂C) ≤ |cs|, thus

dist(c(s), ∂C) ≤ (d− ts) (3)

Applying Rauch I to the hinges
(c|[s0,s], cs0|[0,ts], α) and (c−1

s0
|[0,ts], as,

π
2),

we obtain

|as|2 ≤ (s− s0)
2 + t2s − 2ts(s− s0) cosα and

(s− s0)
2 ≤ |as|2 + t2s , hence

−ts ≤ −(s− s0) cosα. (4)

(3) and (4) imply ψ(c(s)) ≤ h(s).
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Proof of the soul theorem: Let p ∈M and

consider the compact totally convex sets Ct
If ∂C0 = ∅ let S = C0.

If ∂C0 6= ∅, consider Cmax0 , dimCmax0 < dimC0.

If ∂Cmax0 = ∅ let S = Cmax0 .

If ∂Cmax0 6= ∅, consider(Cmax0 )max etc.

Repeating this procedure leads us in a finite

number (≤ n) of steps to a compact totally

convex set S ⊂ C0 with dimS < n and ∂S = ∅.
In particular S is a compact totally geodesic

submanifold of M .

A diffeomorphism from the normal bundle to

M can be constructed by means of the flow

of a gradient like vector field of the function

f(x) = dist(x, S) A gradientlike vector field

can be constructed using the tangent cone

lemma. This was pointed out by Gromoll

and Grove (1978) in their rigidity theorem

paper.
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The splitting theorem for manifolds with

nonnegative Ricci curvature

Theorem 25.1 (J. Cheeger, D. Gromoll [1971])

Let M be a complete manifold of nonnega-

tive Ricci curvature. Then M is the isometric

product M × Rk where M contains no lines

and Rk has the standard flat metric.

Recall that a line in M is a normal geodesic

γ : (−∞,∞) →)M each segment of which is

minimal.

Basic idea for the proof: It suffices to show

that if M contains a line, them M splits iso-

metrically as M ′ × R.

Consider a ray γ : [0,∞) →)M .

For t ≥ 0 let gt be given by

gt(x) = dist(x, γ(t))− t .

Fact: for t → ∞, gt converges uniformly on

compact sets to a continuous function gγ.
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Basic observation of Cheeger and Gromoll:

gγ is superharmonic.

It is actually simpler to show: gγ is super-

harmonic in the sense of support functions:

At x ∈ M an upper support function is con-

structed by means of an asymptotic ray: Choose

ti, 0 < ti < ti+1, with limi→∞ ti = ∞ and min-

imal normal geodesics σi from x to γ(ti) so

that σ̇i(0) converges to the tangent vector

σ̇(0) of a ray σ. The ray σ is called asymp-

totic to γ.
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A support function for gγ at x is defined by

gx,t(y) = dist(σ(t), y)− t+ gγ(x) .

Notice that gx,t is differentiable in a neighbor-

hood of x since σ(t) is not on the cut locus

of x and hence x can’t be on the cut locus of

σ(t). Obviously gx,t(x) = gγ(x) and it is easy

to show

• gx,t(y) ≥ gγ(y).

Furthermore, a standard calculation gives

∆gx,t(x) ≤ n−1
dist(σ(t),x) = n−1

t , for ε > 0 we

have

• ∆gx,t(x) ≤ ε for t sufficiently large.

Hence ∆gγ ≤ 0 in the support sense.
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Proof of the splitting theorem:

If γ is a line, we consider the two rays

γ+ = γ|[0,∞]

and γ− with

γ−(t) = γ+(−t) .

Let g+ = gγ+ and g− = gγ−. By the triangle

inequality it follows that

dist(x, γ(t))− t+ dist(x, γ(−s))− s ≥ 0

with equality for x ∈ γ([−s, t]). Hence

g+ + g− ≥ 0

and (g+ + g−)(x) = 0 for x ∈ γ(R).

∆g+ ≤ 0, ∆g− ≤ 0 ⇒ ∆(g+ + g−) ≤ 0.

It folows that g+ + g− ≡ 0 by the Hopf-

Calabi maximum principle. Now g+ = −g−
and therefore ∆g+ = 0 in the barrier sense.

It follows that g+ is smooth harmonic. Now

it is straight forward to show that M splits

isometrically as M ′ × R by the level-surfaces

and gradient lines of g+.

28



Examples of manifolds with positive

Ricci curvature

Students of D. Gromoll, who have been work-

ing on this: H. Hernandez–Andrade,

P. Ingram, J. Nash, W.A. Poor.

They obtained metrics with Ric > 0 on cer-

tain bundles and also on submanifolds of Rn

that are defined via equations, notably on

Brieskorn varieties.

Does any manifold with Ric > 0 admit a

metric with KM ≥ 0?

1983 Humboldt Prize for D. Gromoll, visit

to Münster.

D. Gromoll, — (1985): Examples of non–

compact manifolds with Ric > 0, which can-

not carry any metric with KM ≥ 0.
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Sha and Yang [1989],[1991]

(1) Metrics with Ric > 0 on connected sums

k
#
i=1

Sn × Sm

with k arbitrary large.

Gromov: For k large, there is no metric with

K ≥ 0 on these manifolds.

(2) Metrics with Ric > 0 on the manifiold M

arising from R4 × S3 by attaching infinitely

many copies of S3 × CP2 to it by surgery.

certainly M is not of finite topological type.
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Diameter growth and topological

finiteness

By the Soul Theorem a complete noncom-

pact manifold with KM ≥ 0 is of finite topo-

logical type.

A similar result for manifolds of nonnegative

Ricci curvature does not hold.

However, Abresch and Gromoll have obtained

a finiteness result with some reasonable as-

sumptions.

Definition of diameter growth. Given r >

0, and p ∈ M , let Cr(p) be the union of the

unbounded connected components of M −
B(p, r). Let ∂Cr(p) =

⋃
Σr,k where Σr,k are

the components of ∂Cr(p). The diameter

growth function with respect to p is defined

as diamp(r) = supk diamΣk. Let f : R+ →
R+ be a monotonic function. M is said to

have diameter growth of order o(f(r)), if

diamp(r)/f(r) converges to zero as r →∞.
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Theorem 32.1 (Abresch, Gromoll [1990])

Let Mn be a complete open manifold with

nonnegative Ricci curvature. Suppose that

Mn has diameter growth of order o(r1/n) and

suppose the sectional curvature is bounded

away from −∞. Then Mn is homotopy equiv-

alent to the interior of a compact manifold

with boundary.
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Main Ideas for the proof:

Show that for p ∈M the distance function dp,

dp(x) = d(p, x), has no critical points outside

a compact ball B(p, r) of large radius r.

For this purpose Abresch and Gromoll in-

troduce the excess function e for two given

points p, q ∈M by

e(x) = d(p, x) + d(x, q)− d(p, x) ,

and for a minimal Geodesic γ from p to q the

height h given by

h(x) = d(x, γ)

.
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Properties of the excess function:

(1) 0 ≤ e(x) ≤ 2h(x)

(2) e|γ = 0

(3) If Ric ≥ 0,

then on {x |h(x) < min{d(p, x), d(q, x)}}

∆e(x) ≤ (n−1)
(

1

d(x, p)− h(x)
+

1

d(x, q)− h(x)

)
in the barrier sense.

Excess estimate for long thin triangles:

Let s(x) = min(d(p, x), d(q, x)).

If Ric ≥ 0 and h(x) ≤ s(x)/2, then for n ≥ 3

e(x) ≤ 2 ·
n− 1

n− 2
·
(
n− 1

n
·
h(x)n

s(x)

)1/(n−1)
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The lower bound for the sectional curvature

gives a lower bound for the excess function

if x is a critical point of dp and q is far away

from x: If K ≥ −1 and ε > 0 then there is an

δ > 0 such that for d(q, x) ≥ 1/δ

e(x) ≥ ln
(

2

1 + exp(−2d(p, x)

)
− ε .

The proof for this inequality is based on

Toponogov’s triangle comparison theorem.

Since diamp(r) grows of order o(r1/r), the

upper estimate for e(x) with x ∈ Σr,k ap-

proaches 0 as r → ∞. This contradicts the

fact that the lower bound given above for

e(x) is bounded away from 0 if x ∈ Σr,k is a

critical point of dp.
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Periodic Geodesics

Theorem 36.1 (D. Gromoll, — [1969]) Let

M be closed, π1(M) = 0, and Ω be the free

loop space of M . Suppose the sequence of

Betti numbers bν(Ω) is unbounded.

Then there are infinitely many geometrically

distinct periodic geodesics on M .

Main tools:

1. Generalized Morse Lemma:

H Hilbert space, f : H → R differentiable,

0 ∈ H a critical point of f , Hess f|0 = id+k,

k compact operator. Then H = E+⊕E−⊕N
and after a coordinate change Φ,

f ◦Φ(x, y, z) = ‖x‖2 − ‖y‖2 + h(z) ,

where N is the null space of f and h : N → R
is differentiable.

2. Results of Bott on index and nullity of the

iterates of a closed geodesic.
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Manifolds all of whose geodesics are
closed

The metric g of a Riemannian manifold (M, g)
is called a C-metric if all geodesics are closed
and have the same minimal period. If in
addition all the geodesics are without self-
intersections g is called an SC-metric. If g is
an SC-metric, then the integral cohomology
ring is that of a rank one symmetric space.

Theorem 37.1 (D. Gromoll, K. Grove [1981])
Any Riemannian metric on S2 all of whose
geodesics are closed is an SC-metric, i.e. all
the geodesics are simple and have the same
minimal period.

Conjecture: If (Mn, g) is simply connected
and all geodesics are closed, then g is a C-
metric, i.e. all the geodesics have the same
minimal period.
B. Wilking [2009] has shown that the con-
jecture holds when M is homeomorphic to
Sn, n ≥ 4.The case n = 3 remains unsettled.
Methods: Index parity, S1- equivariant Morse
theory and Cohomology of the free loop space.
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