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Abstra
t - A presentation of some fundamental results from the Douady-

Hubbard theory of the Mandelbrot set, based on the idea of \orbit portrait":

the pattern of external rays landing on a periodi
 orbit for a quadrati
 poly-

nomial map.

R�esum�e (Orbites p�eriodiques, rayons externes et l'ensemble de Man-

delbrot: un 
ompte-rendu) - Nous expliquons quelques r�esultats fondamen-

taux de Douady-Hubbard sur l'ensemble de Mandelbrot en utilisant l'id�ee de

\portrait orbital" 
'est-�a-dire le mod�ele des rayons externes qui aboutissent

sur une orbite p�eriodique d'une appli
ation polynomiale quadratique.
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1. Introdu
tion

A key point in Douady and Hubbard's study of the Mandelbrot set M is the

theorem that every paraboli
 point 
 6= 1=4 in M is the landing point for exa
tly
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Figure 1. Julia set for z 7! z

2

+ (

1

4

e

2�i=3

� 1) showing the six rays

landing on a period two paraboli
 orbit. The asso
iated orbit portrait has


hara
teristi
 ar
 I = (22=63; 25=63) and valen
e v = 3 rays per orbit

point.

two external rays with angles whi
h are periodi
 under doubling. (See [DH2℄. By

de�nition, a parameter point is paraboli
 if and only if the 
orresponding quadrati


map has a periodi
 orbit with some root of unity as multiplier.) This note will try

to provide a proof of this result and some of its 
onsequen
es whi
h relies as mu
h as

possible on elementary 
ombinatori
s, rather than on more diÆ
ult analysis. It was

inspired by x2 of the re
ent thesis of S
hlei
her [S1℄, whi
h 
ontains very substantial

simpli�
ations of the Douady-Hubbard proofs with a mu
h more 
ompa
t argument,

and is highly re
ommended. (See also [S2℄, [LS℄.) The proofs given here are rather

di�erent from those of S
hlei
her, and are based on a 
ombinatorial study of the

angles of external rays for the Julia set whi
h land on periodi
 orbits. (Compare [A℄,

[GM℄.) As in [DH1℄, the basi
 idea is to �nd properties of M by a 
areful study of

the dynami
s for parameter values outside ofM . The results in this paper are mostly

well known; there is a parti
ularly strong overlap with [DH2℄. The only 
laim to

originality is in emphasis, and the organization of the proofs. (Similar methods 
an

be used for higher degree polynomials with only one 
riti
al point. Compare [S3℄, [E℄,

and see [PR℄ for a di�erent approa
h. For a theory of polynomial maps whi
h may

have many 
riti
al points, see [K℄.)

We will assume some familiarity with the 
lassi
al Fatou-Julia theory, as des
ribed

for example in [Be℄, [CG℄, [St℄, or [M2℄.

Standard De�nitions. (Compare Appendix A.) Let K = K(f




) be the �lled Julia

set, that is the union of all bounded orbits, for the quadrati
 map

f(z) = f




(z) = z

2

+ 
 :

Here both the parameter 
 and the dynami
 variable z range over the 
omplex num-

bers. The Mandelbrot set M 
an be de�ned as the 
ompa
t subset of the parameter

plane (or 
-plane) 
onsisting of all 
omplex numbers 
 for whi
h K(f




) is 
onne
ted.

We 
an also identify the 
omplex number 
 with one parti
ular point in the dynami
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Figure 2. S
hemati
 diagram illustrating the orbit portrait (1).

plane (or z-plane), namely the 
riti
al value f




(0) = 
 for the map f




. The parameter 


belongs toM if and only if the orbit f




: 0 7! 
 7! 


2

+
 7! � � � is bounded, or in other

words if and only if 0; 
 2 K(f




). Asso
iated with ea
h of the 
ompa
t setsK = K(f




)

in the dynami
 plane there is a potential fun
tion or Green's fun
tion G

K

: C! [0;1)

whi
h vanishes pre
isely on K, is harmoni
 o� K, and is asymptoti
 to log jzj near

in�nity. The family of external rays of K 
an be des
ribed as the orthogonal traje
-

tories of the level 
urves G

K

= 
onstant. Ea
h su
h ray whi
h extends to in�nity


an be spe
i�ed by its angle at in�nity t 2 R=Z, and will be denoted by R

K

t

. Here


 may be either in or outside of the Mandelbrot set. Similarly, we 
an 
onsider the

potential fun
tion G

M

and the external rays R

M

t

asso
iated with the Mandelbrot set.

We will use the term dynami
 ray (or brie
y K-ray) for an external ray of the �lled

Julia set, and parameter ray (or brie
y M -ray) for an external ray of the Mandelbrot

set. (Compare [S1℄, [S2℄.)

De�nition. Let O = fz

1

; : : : ; z

p

g be a periodi
 orbit for f . Suppose that there

is some rational angle t 2 Q=Z so that the dynami
 ray R

K(f)

t

lands at a point of

O. Then for ea
h z

i

2 O the 
olle
tion A

i


onsisting of all angles of dynami
 rays

whi
h land at the point z

i

is a �nite and non-va
uous subset of Q=Z. The 
olle
tion

fA

1

; : : : ; A

p

g will be 
alled the orbit portrait P = P(O). As an example, Figure 1

shows a quadrati
 Julia set having a paraboli
 orbit with portrait

P =

�

f22=63 ; 25=63 ; 37=63g ; f11=63 ; 44=63 ; 50=63g

	

: (1)

It is often 
onvenient to represent su
h a portrait by a s
hemati
 diagram, as shown

in Figure 2. (For details, and an abstra
t 
hara
terization of orbit portraits, see x2.)

The number of elements in ea
h A

i

(or in other words the number of K-rays whi
h

land on ea
h orbit point) will be 
alled the valen
e v. Let us assume that v � 2. Then

the v rays landing at z 
ut the dynami
 plane up into v open regions whi
h will be


alled the se
tors based at the orbit point z 2 O. The angular width of a se
tor S will

mean the length of the open ar
 I

S


onsisting of all angles t 2 R=Z with R

K

t

� S.
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Figure 3. The boundary of the Mandelbrot set, showing the wake W

P

and the

root point r

P

=

1

4

e

2�i=3

� 1 asso
iated with the orbit portrait of Figure 1,

with 
hara
teristi
 ar
 I

P

= (22=63; 25=63).

(We use the word `ar
' to emphasize that we will identify R=Z with the `
ir
le at

in�nity' surrounding the plane of 
omplex numbers.) Thus the sum of the angular

widths of the v distin
t se
tors based at an orbit point z is always equal to +1. The

following result will be proved in 2.11.

Theorem 1.1. The Criti
al Value Se
tor S

1

. Let O be an orbit of period p � 1

for f = f




. If there are v � 2 dynami
 rays landing at ea
h point of O, then there

is one and only one se
tor S

1

based at some point z

1

2 O whi
h 
ontains the 
riti
al

value 
 = f(0), and whose 
losure 
ontains no point other than z

1

of the orbit O.

This 
riti
al value se
tor S

1


an be 
hara
terized, among all of the pv se
tors based

at the various points of O, as the unique se
tor of smallest angular width.

It should be emphasized that this des
ription is 
orre
t whether the �lled Julia set

K is 
onne
ted or not.

Our main theorem 
an be stated as follows. Suppose that there exists some poly-

nomial f




0

whi
h admits an orbit O with portrait P , again having valen
e v � 2. Let

0 < t

�

< t

+

< 1 be the angles of the two dynami
 rays R

K

t

�

whi
h bound the 
riti
al

value se
tor S

1

for f




0

.

Theorem 1.2. The Wake W

P

. The two 
orresponding parameter rays R

M

t

�

land at

a single point r

P

of the parameter plane. These rays, together with their landing point,


ut the plane into two open subsets W

P

and CrW

P

with the following property: A

quadrati
 map f




has a repelling orbit with portrait P if and only if 
 2W

P

, and has

a paraboli
 orbit with portrait P if and only if 
 = r

P

.

In fa
t this will follow by 
ombining the assertions 3.1, 4.4, 4.8, and 5.4 below.
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De�nitions. This open set W

P

will be 
alled the P-wake in parameter spa
e

(
ompare Atela [A℄), and r

P

will be 
alled the root point of this wake. The interse
tion

M

P

= M \ W

P

will be 
alled the P-limb of the Mandelbrot set. The open ar


I

S

1

= (t

�

; t

+

) 
onsisting of all angles of dynami
 rays R

K

t

whi
h are 
ontained in the

interior of S

1

, or all angles of parameter rays R

M

t

whi
h are 
ontained in W

P

, will be


alled the 
hara
teristi
 ar
 I = I

P

for the orbit portrait P . (Compare 2.6.)

In general, the orbit portraits with valen
e v = 1 are of little interest to us. These

portraits 
ertainly exist. For example, for the base map f

0

(z) = z

2

whi
h lies outside

of every wake, every orbit portrait has valen
e v = 1. As we follow a path in parameter

spa
e whi
h 
rosses into the wake W

P

through its root point, either one orbit with a

portrait of valen
e one degenerates to form an orbit of lower period with portrait P ,

or else two di�erent orbits with portraits of valen
e one fuse together to form an orbit

with portrait P . (If we 
ross into W

P

through a parameter ray R

M

t

�

, the pi
ture is

similar ex
ept that the landing point of the dynami
 ray R

K

t

�

jumps dis
ontinuously.

If t

+

and t

�

belong to the same 
y
le under angle doubling, then the landing points

of both of these dynami
s rays jump dis
ontinuously.)

However, there is one ex
eptional portrait of valen
e one: The zero portrait P =

ff0gg will play an important role. It is not diÆ
ult to 
he
k that the dynami
 rayR

K

0

of angle 0 for f




lands at a well de�ned �xed point if and only if the parameter value


 lies in the 
omplement of the parameter ray R

M

0

= R

M

1

= (1=4;1). Furthermore,

this �xed point ne
essarily has portrait ff0gg. Thus the wake, 
onsisting of all 
 2 C

for whi
h f




has a repelling �xed point with portrait ff0gg, is just the 
omplementary

region Cr [1=4 ; 1). The 
hara
teristi
 ar
 I

ff0gg

for this portrait, 
onsisting of all

angles t su
h that R

K

t

�W

ff0gg

, is the open interval (0; 1), and the root point r

ff0gg

,

the unique parameter value 
 su
h that f




has a paraboli
 �xed point with portrait

ff0gg, is the landing point 
 = 1=4 for the zero parameter ray.

De�nition. It will be 
onvenient to say that a portrait P is non-trivial if it either

has valen
e v � 2 or is equal to this zero portrait.

Remark. An alternative 
hara
terization would be the following. An orbit por-

trait fA

1

; : : : ; A

p

g is non-trivial if and only if it is maximal , in the sense that there

is no orbit portrait fA

0

1

; : : : ; A

0

q

g with A

0

1

�

6=

A

1

. This statement follows easily from

1.5 and 2.7 below. Still another 
hara
terization would be that P is non-trivial if and

only if it is the portrait of some paraboli
 orbit. (See 5.4.)

Corollary 1.3. Orbit For
ing. If P and Q are two distin
t non-trivial orbit

portraits, then the boundaries �W

P

and �W

Q

of the 
orresponding wakes are disjoint

subsets of C. Hen
e the 
losures W

P

and W

Q

are either disjoint or stri
tly nested.

In parti
ular, if I

P

� I

Q

with P 6= Q, then it follows that W

P

�W

Q

.

Thus whenever I

P

� I

Q

, the existen
e of a repelling or paraboli
 orbit with

portrait P for
es the existen
e of a repelling orbit with portrait Q. We will write

brie
y P ) Q. On the other hand, if I

P

\ I

Q

= ; then no f





an have both an

orbit with portrait P and an orbit with portrait Q.

See Figure 5 for a s
hemati
 des
ription of orbit for
ing relations for orbits with

ray period 4 or less, 
orresponding to the 
olle
tion of wakes illustrated in Figure 4.
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Figure 4. Boundaries of the wakes of ray period four or less.

(Evidently this diagram, as well as analogous diagrams in whi
h higher periods are

in
luded, has a tree stru
ture, with no loops.)

Proof of 1.3, assuming 1.2. First note that W

P

andW

Q


annot have a bound-

ary ray in 
ommon. For the landing point of su
h a 
ommon ray would have to have

one paraboli
 orbit with portrait P and one paraboli
 orbit with portrait Q. But

a quadrati
 map, having only one 
riti
al point, 
annot have two distin
t paraboli


orbits. In fa
t this argument shows that �W

P

\ �W

Q

= ;. Note that the parameter

point 
 = 0 (
orresponding to the map f

0

(z) = z

2

) does not belong to any wake W

P

with P 6= ff0gg. Sin
e rays 
annot 
ross ea
h other, it follows easily that either

W

P

�W

Q

; or W

Q

�W

P

; or W

P

\W

Q

= ; ;

as required. �

For further dis
ussion and a more dire
t proof, see x7.

To �ll out the pi
ture, we also need the following two statements. To any orbit

portrait P = fA

1

; : : : ; A

p

g we asso
iate not only its orbit period p but also its ray

period rp, that is the period of the angles t 2 A

i

under doubling modulo one. In many


ases, rp is a proper multiple of p. (Compare Figure 1.) Suppose in parti
ular that


 2 M is a paraboli
 parameter value, that is suppose that f




has a periodi
 orbit

where the multiplier is an r-th root of unity, r � 1. Then one 
an show that the ray

period for the asso
iated portrait is equal to the produ
t rp. (See for example [GM℄.)

This is also the period of the Fatou 
omponent 
ontaining the 
riti
al point. This

ray period rp is the most important parameter asso
iated with a paraboli
 point 
 or

with a wake W

P

.
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Figure 5. For
ing tree for the non-trivial orbit portraits of ray period n � 4.

Ea
h disk in this �gure 
ontains a s
hemati
 diagram of the 
orresponding orbit

portrait, with the �rst n forward images of the 
riti
al value se
tor labeled.

(Compare Figure 4; and 
ompare the \disked-tree model" for the Mandelbrot

set in Douady [D5℄.)

It follows from 1.2 that every non-trivial portrait whi
h o

urs at all must o

ur

as the portrait of some uniquely determined paraboli
 orbit. The 
onverse statement

will be proved in 4.8:

Theorem 1.4. Paraboli
 Portraits are Non-Trivial. If 
 is any paraboli
 point

in M , then the portrait P = P(O) of its paraboli
 orbit is a non-trivial portrait. That

is, if we ex
lude the spe
ial 
ase 
 = 1=4, then at least two K-rays must land on ea
h

paraboli
 orbit point.

It then follows immediately from 1.2 that the paraboli
 parameter point 
 must be

equal to the root point r

P

of an asso
iated wake. It also follows from 1.2 that the

angles of theM -rays whi
h bound a wakeW

P

are always periodi
 under doubling. In

x5 we use a simple 
ounting argument to prove the 
onverse statement. (This imitates

S
hlei
her, who uses a similar 
ounting argument in a di�erent way.)

Theorem 1.5. Every Periodi
 Angle O

urs. If t 6= 0 in R=Z is periodi
 under

doubling, then R

M

t

is one of the two boundary rays of some (ne
essarily unique) wake.

Further 
onsequen
es of these ideas will be developed in x6 whi
h shows that ea
h

wake 
ontains a uniquely asso
iated hyperboli
 
omponent, x8 whi
h des
ribes how

ea
h wake 
ontains an asso
iated small 
opy of the Mandelbrot set, and x9 whi
h
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shows that ea
h limb is 
onne
ted even if its root point is removed. There are two

appendi
es giving further supporting details.

A
knowledgement. I want to thank M. Lyubi
h and D. S
hlei
her for their

ideas, whi
h play a basi
 role in this presentation. I am parti
ularly grateful to

S
hlei
her and to S. Zakeri for their extremely helpful 
riti
ism of the manus
ript.

Also, I want to thank both the Gabriella and Paul Rosenbaum Foundation and the

National S
ien
e Foundation (Grant DMS-9505833) for their support of mathemati
al

a
tivities at Stony Brook.

2. Orbit Portraits.

This se
tion will begin the proofs by des
ribing the basi
 properties of orbit por-

traits. We will need the following. Let f(z) = z

2

+ 
 with �lled Julia set K.

Lemma 2.1. Mapping of Rays. If a dynami
 ray R

K

t

lands at a point z 2 �K,

then the image ray f(R

K

t

) = R

K

2t

lands at the image point f(z). Furthermore, if

three or more rays R

K

t

1

; R

K

t

2

; : : : ; R

K

t

k

land at z 6= 0, then the 
y
li
 order of the

angles t

i

around the 
ir
le R=Z is the same as the 
y
li
 order of the doubled angles

2t

i

(mod Z) around R=Z.

Proof. Sin
e ea
h R

K

t

j

is assumed to be a smooth ray, it 
annot pass through

any pre
riti
al point. Hen
e R

K

2t

j

also 
annot pass through a pre
riti
al point, and

must be a smooth ray landing at f(z). Now suppose that we are given three or more

rays with angles 0 � t

1

< t

2

< � � � < t

k

< 1, all landing at z. These rays, together

with their landing point, 
ut the plane up into se
tors S

1

; : : : ; S

k

, where ea
h S

i

is

bounded by R

K

t

i

and R

K

t

i+1

(with subs
ripts modulo k). The 
y
li
 ordering of these

various rays 
an be measured within an arbitrarily small neighborhood of the landing

point z, sin
e any transverse ar
 whi
h 
rosses R

K

t

i

in the positive dire
tion must pass

from S

i�1

to S

i

. Sin
e f maps a neighborhood of z to a neighborhood of f(z) by an

orientation preserving di�eomorphism, it follows that the image rays must have the

same 
y
li
 order. �

Now let us impose the following.

Standing Hypothesis 2.2. O = fz

1

; : : : ; z

p

g is a periodi
 orbit for a quadrati


map f




(z) = z

2

+
, with orbit points numbered so that f(z

j

) = z

j+1

, taking subs
ripts

modulo p. Furthermore there is at least one rational angle t 2 Q=Z so that the

dynami
 ray R

K

t

asso
iated with f lands at some point of this orbit O.

If 
 belongs to the Mandelbrot set M , or in other words if the �lled Julia set K

is 
onne
ted, then this 
ondition will be satis�ed if and only if the orbit O is either

repelling or paraboli
. (Compare [Hu℄, [M3℄.) On the other hand, for 
 62 M , all

periodi
 orbit are repelling, but the 
ondition may fail to be satis�ed either be
ause

the rotation number is irrational (
ompare [GM, Figure 16℄), or be
ause the K-rays

whi
h `should' land on O boun
e o� pre
riti
al points en route ([GM, Figure 14℄).

As in x1, let A

j

� R=Z be the set of all angles of K-rays whi
h land on the point

z

j

2 O.
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Figure 6. Julia set for z 7! z

2

� 7=4, showing the six K-rays landing on a

period three paraboli
 orbit. Ea
h number (j) in parentheses is 
lose to the

orbit point z

j

(and also to f

Æj

(0)).

Lemma 2.3. Properties of Orbit Portraits. If this Standing Hypothesis 2.2 is

satis�ed, then:

(1) Ea
h A

j

is a �nite subset of Q=Z.

(2) For ea
h j modulo p, the doubling map t 7! 2 t (mod Z) 
arries A

j

bije
tively onto

A

j+1

preserving 
y
li
 order around the 
ir
le,

(3) All of the angles in A

1

[ � � � [ A

p

are periodi
 under doubling, with a 
ommon

period rp, and

(4) the sets A

1

; : : : ; A

p

are pairwise unlinked; that is, for ea
h i 6= j the sets A

i

and

A

j

are 
ontained in disjoint sub-intervals of R=Z.

As in x1, the 
olle
tion P = fA

1

; : : : ; A

p

g is 
alled the orbit portrait for the orbit

O. As examples, Figure 6 shows an orbit of period and ray period three, with portrait

P =

�

f3=7 ; 4=7g ; f6=7 ; 1=7g ; f5=7 ; 2=7g

	

;

Figure 7 shows a period three orbit with ray period six, and with portrait

P =

�

f4=9 ; 5=9g ; f8=9 ; 1=9g ; f7=9 ; 2=9g

	

;

while Figure 8 shows an orbit of period and ray period �ve, with portrait

P =

��

11

31

;

12

31

�

;

�

22

31

;

24

31

�

;

�

13

31

;

17

31

�

;

�

26

31

;

3

31

�

;

�

21

31

;

6

31

��

:

Proof of 2.3. Sin
e some A

i


ontains a rational number modulo Z, it follows

from 2.1 that some A

j


ontains an angle t

0

whi
h is periodi
 under doubling. Let the

period be n � 1, so that 2

n

t

0

� t

0

(mod Z). Applying 2.1 n times, we see that the

mapping �(t) � 2

n

t (mod Z) maps the set A

j

� R=Z inje
tively into itself, preserving


y
li
 order and �xing t

0

. In fa
t we will show that every element of A

j

is �xed by �.

For otherwise, if t 2 A

j

were not �xed, then 
hoosing suitable representatives modulo
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Figure 7. Julia set for z 7! z

2

� 1:77, showing the six K-rays landing on a

period three orbit. In 
ontrast to Figure 6, these six rays are permuted 
y
li
ally

by the map.

Figure 8. Julia set J(f




) for 
 = �1:2564 + :3803 i, showing the ten rays

landing on a period 5 orbit. Here the angles are in units of 1=31.

c c

c

Figure 9. S
hemati
 diagrams asso
iated with the orbit portraits of Figures 6,

7, 8. The angles are in units of 1=7, 1=9 and 1=31 respe
tively.
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Z we would have for example t

0

= �(t

0

) < t < �(t) < t

0

+ 1. Sin
e � preserves 
y
li


order, it would then follow indu
tively that

t

0

< t < �(t) < �

Æ2

(t) < �

Æ3

(t) < � � � < t

0

+ 1 :

Hen
e the su

essive images of t would 
onverge to a �xed point of �. But this is

impossible sin
e every �xed point of � is repelling. Thus � �xes every point of A

j

.

But the �xed points of � are pre
isely the rational numbers of the form i=(2

n

� 1),

so it follows that A

j

is a �nite set of rational numbers. It follows easily that all of

the A

k

are pointwise �xed by �. This proves (1), (2) and (3) of 2.3; and (4) is 
learly

true sin
e rays 
annot 
ross ea
h other. �

It is often 
onvenient to 
ompa
tify the 
omplex numbers by adding a 
ir
le of

points e

2�it

1 at in�nity, 
anoni
ally parametrized by t 2 R=Z. Within the resulting


losed topologi
al disk 

 , we 
an form a diagram D illustrating the orbit portrait P

by drawing all of the K-rays joining the 
ir
le at in�nity to O. These various rays are

disjoint, ex
ept that ea
h z 2 O is a 
ommon endpoint for exa
tly v of these rays.

Note that this diagram D deforms 
ontinuously, preserving its topology, as we

move the parameter point 
, provided that the periodi
 orbit O remains repelling,

and provided that the asso
iated K-rays do not run into pre
riti
al points. (Compare

[GM, Appendix B℄.)

In fa
t, given P , we 
an 
onstru
t a diagram homeomorphi
 to D as follows. Start

with the unit 
ir
le, and mark all of the points e(t) = e

2�it


orresponding to angles

t in the union A

P

= A

1

[ � � � [ A

p

. Now for ea
h A

i

, let ẑ

i

be the 
enter of gravity

of the 
orresponding points e(t), and join ea
h of these points to ẑ

i

by a straight line

segment. It follows easily from Condition (4) that these line segments will not 
ross

ea
h other. (In pra
ti
e, in drawing su
h diagrams, we will not usually use straight

lines and 
enters of gravity, but rather use some topologi
ally equivalent pi
ture,

�xing the boundary 
ir
le, whi
h is easier to see. Compare Figures 2, 5, 9.)

It will be 
onvenient to temporarily introdu
e the term formal orbit portrait for a


olle
tion P = fA

1

; : : : ; A

p

g of subsets of R=Z whi
h satis�es the four 
onditions of

2.3, whether or not it is a
tually asso
iated with some periodi
 orbit. In fa
t we will

prove the following.

Theorem 2.4. Chara
terization of Orbit Portraits. If P is any formal orbit

portrait, then there exists a quadrati
 polynomial f and an orbit O for f whi
h realizes

this portrait P.

This will follow from Lemma 2.9 below. To begin the proof, let us study the way in

whi
h the angle doubling map a
ts on a formal orbit portrait. As in x1, the number

of angles in ea
h A

j

will be 
alled the valen
e v for the formal portrait P . It is easy to

see that any formal portrait of valen
e v = 1 
an be realized by an appropriate orbit

for the map f(z) = z

2

. Hen
e it suÆ
es to study the 
ase v � 2. For ea
h A

j

2 P

the v 
onne
ted 
omponents of the 
omplement R=Z r A

j

are 
onne
ted open ar
s

with total length +1. These will be 
alled the 
omplementary ar
s for A

j

.

Lemma 2.5. The Criti
al Ar
s. For ea
h A

j

in the formal orbit portrait P, all

but one of the 
omplementary ar
s is 
arried di�eomorphi
ally by the angle doubling

map onto a 
omplementary ar
 for A

j+1

. However, the remaining 
omplementary
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ar
 for A

j

has length greater than 1=2. Its image under the doubling map 
overs one

parti
ular 
omplementary ar
 for A

j+1

twi
e, and every other 
omplementary ar
 for

A

j+1

just on
e.

De�nition. This longest 
omplementary ar
 will be 
alled the 
riti
al ar
 for A

j

.

The ar
 whi
h it 
overs twi
e under doubling will be 
alled the 
riti
al value ar
 for

A

j+1

. (This language will be justi�ed in 2.9 below.)

Proof of 2.5. If I � R=Z is a 
omplementary ar
 for A

j

of length less than 1=2,

then 
learly the doubling map 
arries I bije
tively onto an ar
 2I of twi
e the length,

bounded by two points of A

j+1

. This image ar
 
annot 
ontain any other point of

A

j+1

, sin
e the doubling map from A

j

to A

j+1

preserves 
y
li
 order. It follows easily

that these image ar
s 
annot overlap. Sin
e we 
annot �t v ar
s of total length +2

into the 
ir
le without overlap, and sin
e there 
annot be any 
omplementary ar
 of

length exa
tly 1=2, it follows that there must be exa
tly one \
riti
al" 
omplementary

ar
 for A

j

whi
h has length greater than 1=2. Suppose that it has length (1 + �

j

)=2.

Then the v � 1 non-
riti
al ar
s for A

j

have total length (1� �

j

)=2, and their images

under doubling form v�1 
omplementary ar
s for A

j+1

with total length 1��

j

. Sin
e

the doubling map is exa
tly two-to-one, it follows easily that it maps the 
riti
al ar


for A

j

onto the entire 
ir
le, doubly 
overing one \
riti
al value ar
" for A

j+1

whi
h

has length �

j

, and 
overing every other 
omplementary ar
 for A

j+1

just on
e. �

Lemma 2.6. The Chara
teristi
 Ar
 for P. Among the 
omplementary ar
s for

the various A

j

2 P, there exists a unique ar
 I

P

of shortest length. This shortest

ar
 is a 
riti
al value ar
 for its A

j

, and is 
ontained in all of the other 
riti
al value

ar
s.

De�nition. This shortest 
omplementary ar
 I

P

will be 
alled the 
hara
teristi


ar
 for P . (Compare 2.11.)

Proof of 2.6. There 
ertainly exists at least one 
omplementary ar
 I

P

of

minimal length ` among all of the 
omplementary ar
s for all of the A

j

2 P . This

I

P

must be a 
riti
al value ar
, sin
e otherwise it would have the form 2J where

J is some 
omplementary ar
 of length `=2. Suppose then that I

P

is the 
riti
al

value ar
 for A

j+1

, doubly 
overed by the 
riti
al ar
 I




for A

j

. Sin
e I

P

is minimal,

it follows from 2.3(4) that this open ar
 I

P


annot 
ontain any point of the union

A

P

= A

1

[� � �[A

p

. Hen
e its preimage under doubling also 
annot 
ontain any point

of A

P

. This preimage 
onsists of two ar
s I

0

and I

00

= I

0

+ 1=2, ea
h of length `=2.

Note that both of these ar
s are 
ontained in I




. In fa
t the ar
 I




of length (1+ `)=2

is 
overed by these two open ar
s of length `=2 lying at either end, together with the


losed ar
 I




r (I

0

[ I

00

) of length (1� `)=2 in the middle.

Now 
onsider any A

k

2 P with k 6� j. It follows from the unlinking property

2.3(4) that the entire set A

k

must be 
ontained either in the ar
 (R=Z)r I




of length

(1�`)=2, or in I




and hen
e in the ar
 I




r(I

0

[I

00

) whi
h also has length (1�`)=2. In

either 
ase, it follows that the union of all non-
riti
al ar
s for A

k

is 
ontained in this

same ar
 of length (1� `)=2, and hen
e that the image of this union under doubling

is 
ontained in the ar


2((R=Z)r I




) = 2(I




r (I

0

[ I

00

)) = (R=Z)r I

P
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of length 1� `. Therefore, the 
riti
al value ar
 for A

k+1


ontains the 
omplementary

ar
 I

P

, as required. It follows that this minimal ar
 I

P

is unique. For if there were

an I

0

P

of the same length, then this argument would show that ea
h of these two

must 
ontain the other, whi
h is impossible. �

Remark. This 
hara
teristi
 ar
 never 
ontains the angle zero. In fa
t let I




be

the 
riti
al ar
 whose image under doubling 
overs I

P

twi
e. If 0 2 I

P

, then it is not

hard to see that one endpoint of I




must lie in I

P

and the other endpoint must lie

outside, in 1=2 + I

P

. But this is impossible by 2.3(4) and the minimality of I

P

.

Re
all that the union A

P

= A

1

[ � � � [A

p


ontains pv elements, ea
h of whi
h has

period rp under doubling. Hen
e this union splits up into

pv

rp

=

v

r

distin
t 
y
les under doubling. If P is the portrait of a periodi
 orbit O, then the

ratio v=r 
an be des
ribed as the number of 
y
les of K-rays whi
h land on the orbit

O. As examples, we have v = r = 3 for Figure 1 and v = r = 2 for Figure 7 so that

there is only one 
y
le under doubling, but v = 2 and r = 1 for Figures 6 and 8 so

that there are two distin
t 
y
les. In fa
t we next show that there are at most two


y
les in all 
ases.

Lemma 2.7. Primitive versus Satellite. Any formal orbit portrait of valen
e

v > r must have v = 2 and r = 1. It follows that there are just two posibilities:

Primitive Case. If r = 1, so that every ray whi
h lands on the period p orbit is

mapped to itself by f

Æp

, then at most two rays land on ea
h orbit point.

Satellite Case. If r > 1, then v = r so that exa
tly r rays land on ea
h orbit point,

and all of these rays belong to a single 
y
li
 orbit under angle doubling.

This terminology will be justi�ed in x6. (Compare Figure 12.)

Proof of 2.7. Suppose that v > r and v � 3. Let I

P

be the 
hara
teristi


ar
. We suppose that I

P

is the 
riti
al value ar
 in the 
omplement of A

1

. Let

I

�

the 
omplementary ar
 for A

1

whi
h is just to the left of I

P

and let I

+

be the


omplementary ar
 just to the right of I

P

. To �x our ideas, suppose that I

�

has

length `(I

�

) � `(I

+

). Sin
e I

+

is not the 
riti
al value ar
 for A

1

, we see, arguing as

in 2.6, that it must be the image under iterated doubling of the 
riti
al value ar
 I

0

for some A

j

. That is, we have I

+

= 2

m

I

0

for some m � 1. Hen
e `(I

0

) < `(I

+

).

The hypothesis that v > r implies that the two endpoints of I

P

belong to di�erent


y
les under doubling. Thus the left endpoints of I

0

and I

P

belong to distin
t 
y
les,

hen
e I

0

6= I

P

. Therefore, by 2.6, I

0

stri
tly 
ontains I

P

. This ar
 I

0


annot stri
tly


ontain the neighboring ar
 I

+

, sin
e it is shorter than I

+

. Hen
e it must have an

endpoint in I

+

, and therefore, by 2.3(4), it must have both endpoints in I

+

. But this

implies that I

0


ontains I

�

, whi
h is impossible sin
e `(I

0

) < `(I

+

) � `(I

�

). Thus, if

v > r it follows that v � 2, hen
e r = 1 and v = 2, as asserted. �

Lemma 2.8. Two Rays determine P. Let P = fA

1

; : : : ; A

p

g be a formal orbit

portrait of valen
e v � 2, and let I

P

= (t

�

; t

+

) be its 
hara
teristi
 ar
, as des
ribed

above. Then a quadrati
 polynomial f




has an orbit with portrait P if and only if the

two K-rays with angles t

�

and t

+

for the �lled Julia set of f




land at a 
ommon point.



14 J. MILNOR

Proof. If f




has an orbit with portrait P , this is true by de�nition. Conversely, if

these rays land at a 
ommon point z

1

, then the orbit of z

1

is 
ertainly periodi
. Let

P

0

be the portrait for this a
tual orbit. We will denote its period by p

0

, its valen
e

by v

0

, and so on. Note that the ray period rp is equal to r

0

p

0

, the 
ommon period of

the angles t

�

and t

+

under doubling.

Primitive Case. Suppose that r = 1 so that v=r = 2, and so that ea
h of these

angles t

�

has period exa
tly p under doubling. If p

0

< p hen
e r

0

> 1, then it would

follow from 2.7 applied to the portrait P

0

that t

�

and t

+

must belong to the same


y
le under doubling, 
ontradi
ting the hypothesis that v=r = 2.

Satellite Case. If r > 1 hen
e v = r, then t

�

and t

+

do belong to the same 
y
le

under doubling, say 2

k

t

�

� t

+

(mod Z). Clearly it follows that r

0

> 1 hen
e v

0

= r

0

.

Furthermore, it follows easily that multipli
ation by 2

k

a
ts transitively on A

1

, and

hen
e that all of the rays R

K

t

with t 2 A

1

land at the same point z

1

. In other words

A

1

� A

0

1

. This implies that r � r

0

hen
e p � p

0

. If p were stri
tly greater than p

0

,

then it would follow that A

1+p

0

is also 
ontained in A

0

1

. But the two sets A

1

and

A

1+p

0

are unlinked in R=Z. Hen
e there is no way that multipli
ation by 2

p


an a
t

non-trivially on A

1

[ A

1+p

0


arrying ea
h of these two sets into itself and preserving


y
li
 order on their union. This 
ontradi
tion implies that A

1

= A

0

1

and p = p

0

, and

hen
e that P = P

0

, as required. �

Now let 
 be some parameter value outside the Mandelbrot set. Then, following

Douady and Hubbard, the point 
, either in the dynami
 plane or in the parameter

plane, lies on a unique external ray, with the same well de�ned angle t(
) 2 R=Z in

either 
ase. (Compare Appendix A.)

Lemma 2.9. Outside the Mandelbrot Set. Let P = fA

1

; : : : ; A

p

g be a formal

orbit portrait with 
hara
teristi
 ar
 I

P

, and let 
 be a parameter value outside of

the Mandelbrot set. Then the map f




(z) = z

2

+ 
 admits a periodi
 orbit with portrait

P if and only if the external angle t(
) belongs to this open ar
 I

P

.

Proof. The two dynami
 rays R

K

t(
)=2

and R

K

(1+t(
))=2

meet at the 
riti
al point

0, and together 
ut the dynami
 plane into two halves. Furthermore, every point of

the Julia set �K = K is uniquely determined by its symbol sequen
e with respe
t

to this partition. Correspondingly, the two diametri
ally opposite points t(
)=2 and

(1 + t(
))=2 on the 
ir
le R=Z 
ut the 
ir
le into two semi
ir
les, and almost every

point t 2 R=Z has a well de�ned symbol sequen
e with respe
t to this partition under

the doubling map. Two rays R

K

t

and R

K

u

land at a 
ommon point of K if and only

if the external angles t and u have the same symbol sequen
e.

First suppose that the angle t(
) lies in the 
hara
teristi
 ar
 I

P

. Then, with

notation as in the proof of 2.6, the two points t(
)=2 and (1 + t(
))=2 lie in the two


omponents I

0

and I

00

of the preimage of I

P

. For every A

j

2 P , all of the points of

A

j

lie in a single 
omponent of R=Zr (I

0

[ I

00

). Hen
e the rays R

K

t

with t 2 A

j

land

at a 
ommon point z

j

2 K. It follows from 2.8 that these points lie in an orbit with

portrait P , as required.

On the other hand, if t(
) lies outside of I

P

, then it is easy to 
he
k that the two

endpoints of I

P

are separated by the points t(
)=2 and (1+ t(
))=2. Hen
e these two
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endpoints, both belonging to A

1

2 P , land at di�erent points of K. Hen
e f




has no

orbit with portrait P .

Finally, in the limiting 
ase where t(
) is pre
isely equal to one of the two endpoints

t

�

of I

P

, sin
e these angles are periodi
 under doubling, it follows that the ray R

K

t

�

passes through a pre
riti
al point, and hen
e does not have any well de�ned landing

point in K. This 
ompletes the proof of 2.9. �

Evidently the Realization Theorem 2.4 is an immediate 
orollary. Sin
e we have

proved 2.4, we 
an now forget about the distin
tion between \formal" orbit portraits

and portraits whi
h are a
tually realized. We 
an des
ribe further properties of por-

traits and their asso
iated diagrams as follows.

De�nition 2.10. Suppose that we start with any periodi
 orbit O with valen
e

v � 2 and period p � 1, and �x some point z

i

2 O. As in x1, the v rays landing at

z

i


ut the dynami
 plane C up into v open subsets whi
h we 
all the se
tors based at

z

i

. Evidently there is a one-to-one 
orresponden
e between se
tors based at z

i

and


omplementary ar
s for the 
orresponding set of angles A

i

� R=Z, 
hara
terized by

the property that R

K

t

is 
ontained in the open se
tor S if and only if t is 
ontained

in the 
orresponding 
omplementary ar
. By de�nition, the angular size �(S) > 0 of

a se
tor is the length of the 
orresponding 
omplementary ar
, whi
h we 
an think of

as its \boundary at in�nity". It follows that

P

S

�(S) = 1, where the sum extends

over the v se
tors based at some �xed z

i

2 O.

Remark. The angular size of a se
tor has nothing to do with the angle between

the rays at their 
ommon landing point, whi
h is often not even de�ned.

Altogether there are pv rays landing at the various points of the orbit O. Together

these rays 
ut the plane up into pv � p + 1 
onne
ted 
omponents. The 
losures of

these 
omponents will be 
alled the pie
es of the preliminary puzzle asso
iated with

the diagram D or the asso
iated portrait P . Note that every 
losed se
tor S 
an be

expressed as a union of preliminary puzzle pie
es, and that every preliminary puzzle

pie
e is equal to the interse
tion of the 
losed se
tors 
ontaining it. This 
onstru
tion

will be modi�ed and developed further in Se
tions 7 and 8.

For every point z

i

of the orbit, note that just one of the v se
tors based at z

i


ontains the 
riti
al point 0. We will 
all this the 
riti
al se
tor at z

i

, while the others

will be 
alled the non-
riti
al se
tors at z

i

. Another noteworthy se
tor at z

i

(not

ne
essarily distin
t from the 
riti
al se
tor) is the 
riti
al value se
tor , whi
h 
ontains

f(0) = 
.

Lemma 2.11. Properties of Se
tors. The diagram D � 

 asso
iated with any

orbit O of valen
e v � 2 has the following properties:

(a) For ea
h z

i

2 O, the 
riti
al se
tor at z

i

has angular size stri
tly greater than 1=2.

It follows that the v�1 non-
riti
al se
tors at z

i

have total angular size less than 1=2.

(b) The map f 
arries a small neighborhood of z

i

di�eomorphi
ally onto a small

neighborhood of z

i+1

= f(z

i

), 
arrying ea
h se
tor based at z

i

lo
ally onto a se
tor

based at z

i+1

, and preserving the 
y
li
 order of these se
tors around their base point.

The 
riti
al se
tor at z

i

always maps lo
ally, near z

i

, onto the 
riti
al value se
tor

based at z

i+1

.
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(
) Globally, ea
h non-
riti
al se
tor S at z

i

is mapped homeomorphi
ally by f onto

a se
tor f(S) based at z

i+1

, with angular size given by �(f(S)) = 2�(S). However,

the 
riti
al se
tor at z

i

maps so as to 
over the entire plane, 
overing the 
riti
al

value se
tor at z

i+1

twi
e with a rami�
ation point at 0 7! 
, and 
overing every other

se
tor just on
e.

(d) Among all of the pv se
tors based at the various points of O, there is a unique

se
tor of smallest angular size, 
orresponding to the 
hara
teristi
 ar
 I

P

. This

smallest se
tor 
ontains the 
riti
al value, and does not 
ontain any other se
tor.

(As usual, the index i is to be 
onstrued as an integer modulo p.) The proof,

based on 2.6 and the fa
t that f is exa
tly two-to-one ex
ept at its 
riti
al point, is

straightforward and will be left to the reader. Evidently Theorem 1.1 follows. �

Now let us take a 
loser look at the dynami
s of the diagram D or of the asso
iated

portrait P . The iterated map f

Æp

�xes ea
h point z

i

2 O, permuting the various rays

whi
h land on z

i

but preserving their 
y
li
 order. Equivalently, the p-fold iterate of

the doubling map 
arries ea
h �nite set A

i

� Q=Z onto itself by a bije
tion whi
h

preserves the 
y
li
 order. For any �xed i mod p, we 
an number the angles in A

i

as

0 � t

(1)

< t

(2)

< � � � < t

(v)

< 1. It then follows that

2

p

t

(j)

� t

(j+k)

(mod Z) ;

taking supers
ripts modulo v, where k is some �xed residue 
lass modulo v.

De�nition 2.12. The ratio k=v (mod Z) is 
alled the 
ombinatorial rotation number

of our orbit portrait. It is easy to 
he
k that this rotation number does not depend

on the 
hoi
e of orbit point z

i

. Let d be the greatest 
ommon divisor of v and k. The

we 
an express the rotation number as a fra
tion q=r in lowest terms, where k = qd

and v = rd. (In the spe
ial 
ase of rotation number zero, we take q = 0 and r = 1.)

In all 
ases, note that the denominator r � 1 is equal to the period of the angles

t

(j)

2 A

i

under the mapping t 7! 2

p

t (mod Z) from A

i

to itself. It follows easily that

the period of t

(j)

under angle doubling is equal to the produ
t rp. Thus this de�nition

of r as the denominator of the rotation number is 
ompatible with our earlier notation

rp for the ray period.

Notation Summary. Sin
e we have been a

umulating quite a bit of notation,

here is a brief summary:

Orbit period p: the number of distin
t element in our orbit O,

Ray period rp: the period of ea
h angle t 2 A

1

[ � � � [A

p

under doubling.

Rotation number q=r: des
ribes the a
tion of multipli
ation by 2

p

on ea
h set A

i

.

Valen
e v: number of angles in ea
h A

i

, for a total of pv angles altogether.

Cy
le number v=r: the number of disjoint 
y
les of size rp in the union A

1

[� � �[A

p

.

A

ording to 2.7, this 
y
le number is always equal to 1 for a satellite portrait,

and is at most 2 in all 
ases. Thus, in the 
ase v � 2 there are just two possibilities

as follows:

Primitive Case. The rotation number is zero. There are v = 2 rays landing at ea
h

orbit point, for a total of 2p rays. These split up into two 
y
les of p rays ea
h under

doubling.
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Satellite Case. The rotation number is q=r 6� 0. There are v = r rays landing at

ea
h orbit point, for a total of pv = rp rays altogether. These rp rays are permuted


y
li
ally under angle doubling, so that the number of 
y
les is v=r = 1.

As examples, Figures 6, 8 illustrate primitive portraits with rotation number zero,

while Figures 1, 7 show satellite portraits with rotation number 1=3 and 1=2. We will

see in x6 that primitive portraits 
orrespond to primitive hyperboli
 
omponents in

the Mandelbrot set, that is, to those with a 
usp point.

3. Parameter Rays.

This se
tion will prove the following preliminary version of Theorem 1.2.

Let P be any orbit portrait of valen
e v � 2, and let I

P

= (t

�

; t

+

) be its


hara
teristi
 ar
, where 0 < t

�

< t

+

< 1. If the quadrati
 polynomial f




= z

2

+ 


has an orbit O with portrait P , re
all that the two dynami
 rays R

K

t

�

and R

K

t

+

for

f




land at a 
ommon orbit point, and together bound a se
tor S

1

whi
h has minimal

angular size among all of the se
tors based at points of the orbit O. This S

1


an also

be 
hara
terized as the smallest of these se
tors whi
h 
ontains the 
riti
al value 
.

(Compare Lemmas 2.6, 2.9, 2.11.)

Theorem 3.1. Parameter Rays and the Wake. The two parameter rays R

M

t

�

and R

M

t

+

with these same angles land at a 
ommon paraboli
 point in the Mandelbrot

set. Furthermore, these two rays, together with their 
ommon landing point, 
ut the

parameter plane into two open subsets W

P

and CrW

P

with the following property:

The quadrati
 map f




has a repelling orbit with portrait P if and only if 
 2W

P

.

Proof. Let A

P

= A

1

[ � � � [ A

p

be the set of all angles for the orbit portrait

P , and let n = rp be the 
ommon period of these angles under doubling. The set

F

n

� M of possibly ex
eptional parameter values will 
onsist of those 
 for whi
h

f

Æn




has a �xed point of multiplier +1. Sin
e F

n

� C is an algebrai
 variety and

is not the entire 
omplex plane, it is ne
essarily a �nite set. As noted in [GM℄, if


 belongs to the Mandelbrot set but 
 62 F

n

, then the various dynami
 rays R

K(f




)

t

with t 2 A

P

all land on repelling periodi
 points, and the pattern of whi
h of these

rays land at a 
ommon point remains stable under perturbation of 
 throughout some

open neighborhood within parameter spa
e.

Now suppose that 
 lies outside of the Mandelbrot set. Then 
, 
onsidered as a

point in parameter spa
e, belongs to some uniquely de�ned parameter ray R

M

t(
)

, and


onsidered as a point in the dynami
 plane for f




, belongs to the dynami
 ray R

K

t(
)

with this same angle. In this 
ase, a dynami
 ray R

K

t

for f




has a well de�ned landing

point in K = K(f




) if and only if the forward orbit f2t ; 4t ; 8t ; : : : g under doubling

does not 
ontain this angle t(
). Sin
e the angles in A

P

are periodi
, it follows that

the dynami
 rays R

K

t

with t 2 A

P

all have well de�ned landing points in K if and

only if the 
riti
al value angle t(
) does not belong to A

P

.

Let t 2 A

P

and let 


0

2 M be any a

umulation point for the parameter ray

R

M

t

. Sin
e every neighborhood of 


0


ontains parameter values 
 2 R

M

t

for whi
h the

dynami
 ray R

K(f




)

t

does not land, it follows that 


0

must belong to F

n

. Thus every
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a

umulation point for R

M

t

belongs to the �nite set F

n

, whi
h proves that R

M

t

must

a
tually land at a single point of F

n

.

These parameter rays R

M

t

with t 2 A

P

, together with the points of F

n

, 
ut the


omplex parameter plane up into �nitely many open sets U

i

, and the pattern of whi
h

of the 
orresponding dynami
 rays R

K

t

for t 2 A

P

land at a 
ommon periodi
 point

remains �xed as 
 varies through any U

i

. Sin
e every U

i

is unbounded, it follows from

Lemma 2.9 that for 
 2 U

i

the map f




has an orbit with portrait P if and only if

U

i

is that open set whi
h 
ontains the points in C rM with external angle t(
) in

(t

�

; t

+

). Sin
e this open set 
annot 
ontain any other points of C rM , it follows

that the two rays R

M

t

�

and R

M

t

+

must land at a 
ommon point of F

n

, so as to separate

the parameter plane.

De�ne the root point r

P

2 M to be this 
ommon landing point, and de�ne the

wake W

P

to be that 
onne
ted 
omponent of Cr (R

M

t

�

[ R

M

t

+

[ r

P

) whi
h does not


ontain 0. For 
 2W

P

r F

n

, it follows from the dis
ussion above that f




does have a

repelling orbit with portrait P , while for 
 2 C r (W

P

[ F

n

) it follows that f




does

not have any repelling orbit with portrait P . Thus, to 
omplete the proof of 3.1, we

need only 
onsider those f




with 
 in the �nite set F

n

.

First suppose that some point 


0

2 F

n

rW

P

had a repelling orbit with portrait

P . Then any nearby parameter value would have a nearby repelling orbit with the

same landing pattern for rays with angles in A

P

. A priori it might seem possible that

some extra ray, perhaps one landing on a paraboli
 orbit for f




0

, might land on this

same repelling orbit after perturbation. (Compare [GM, Fig. 12℄.) However, this is

ruled out by 2.8. Hen
e all nearby parameter values must belong to W

P

, whi
h is

impossible.

Now 
onsider a parameter point 


0

2 F

n

\W

P

. Then for every 
 in a pun
tured

neighborhood of 


0

the two raysR

K(f




)

t

�

land at a well de�ned repelling point of period

p. The multiplier � = �(
) of this periodi
 point is well de�ned, and is 
learly bounded

and holomorphi
 as a fun
tion of 
. Evidently the singularity of this holomorphi


fun
tion at 


0

is removable. Sin
e the fun
tion j�(
)j � 1 
annot have an isolated

minimum, it follows that j�(
)j > 1, not only for 
 6= 


0

, but also for 
 = 


0

. It then

follows easily that the repelling periodi
 orbit for 
 6= 


0


ontinues analyti
ally to a

repelling periodi
 orbit for 
 = 


0

also. �

We will deal with paraboli
 orbits with portrait P in the next two se
tions.

4. Near Paraboli
 Maps.

Let 
̂ be a paraboli
 point in parameter spa
e. This se
tion will study the dynami


behavior of the quadrati
 map f




for 
 in a neighborhood of 
̂. (Compare [DH2,

x14(CH)℄, [Sh2℄.)

Let O be the paraboli
 orbit for f


̂

with period p � 1 and with representative point

ẑ. Then the multiplier

^

� = (f

Æp


̂

)

0

(ẑ) is a primitive r-th root of unity for some r � 1.

Let P be the asso
iated orbit portrait, with ray period rp � p. We will �rst prove

the following.
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or

Figure 10 (
ourtesy of S. Zakeri). The left sket
h shows a paraboli
 �xed

point with r = 3, the middle shows the modi�ed version with an attra
ting

orbit of period 3, and the right shows a modi�ed version with an attra
ting

�xed point. Here the arrows indi
ate the a
tion of f

Æ3

.

Theorem 4.1. Deformation Preserving the Orbit Portrait. There exists a

smooth path in parameter spa
e ending at the paraboli
 point 
̂ and 
onsisting of

parameter values 
 with the following property: The asso
iated map f




has both a

repelling orbit of period p and an attra
ting orbit of period rp. Furthermore, this

repelling orbit has portrait P, and lies on the boundary of the immediate basin for the

attra
ting orbit. As 
 tends to 
̂, these two orbits both 
onverge towards the original

paraboli
 orbit O.

(Compare Figure 10, middle.) The proof will depend on the following.

Lemma 4.2. Convenient Coordinates. For any 
omplex number � 
lose to

^

�

there exists at least one parameter value 
 
lose to 
̂ and point z

�


lose to ẑ so that z

�

is a periodi
 point for the map f




with period p and with multiplier �. Furthermore

there is a lo
al holomorphi
 
hange of 
oordinate z = �

�

(w) with z

�

= �

�

(0) so that

the map F = F

�

= �

�1

�

Æ f

Æp




Æ �

�

takes the form

F (w) = �w + R(�;w)

for w near zero, and so that its r-th iterate takes the form

F

Ær

(w) = �

�1

�

Æ f

Ærp




Æ �

�

= �

r

w

�

1 + w

r

+R

0

(�;w)

�

; (2)

where the remainder terms R and R

0

satisfy jRj ; jR

0

j � 
onstant jwj

r+1

uniformly

for � in some neighborhood of

^

� and for w in some neighborhood of zero.

(In 4.5, we will sharpen this statement by showing that the phrase \at least one"

in 4.2 
an be repla
ed by \exa
tly one".)

Proof of 4.2 in the Primitive Case. First suppose that P is a primitive

portrait, so that the multiplier

�

f

Æp


̂

�

0

(ẑ) is equal to +1 for ẑ 2 O, with r = 1. In

this 
ase, ẑ is a �xed point of multipli
ity two for the iterate f

Æp


̂

, and splits into

two nearby �xed points under perturbation. (It 
annot have a higher multipli
ity,

sin
e a �xed point of multipli
ity � > 2 would have � � 1 � 2 attra
ting Leau-

Fatou petals, ea
h with at least one 
riti
al point in its basin, whi
h is impossible

for a quadrati
 map.) As 
 traverses a small loop around 
̂, these two �xed points

a priori may be (and in pra
ti
e always will be) inter
hanged. However, if we loop

twi
e around 
̂, then ea
h of these �xed points must return to its original position.
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Thus, if we introdu
e a new parameter u by the equation 
 = 
̂ + u

2

, then we 
an


hoose these �xed points as holomorphi
 fun
tions, z

�

= z

�

(u) for � = 1; 2, with

z

1

(0) = z

2

(0) = ẑ. Evidently the u-plane is a two-fold bran
hed 
over of the 
-

parameter plane. Let �

�

(u) =

�

f

Æp




�

0

�

z

�

(u)

�

be the multiplier for the orbit of z

�

, and

note that �

1

(0) = �

2

(0) = 1. Sin
e the holomorphi
 fun
tion u 7! �

1

(u) 
annot be


onstant, it takes on all values 
lose to +1 as u varies through a neighborhood of 0.

Expanding the fun
tion f

Æp




as a power series about its �xed point z

1

, we obtain

f

Æp




(z

1

(u) + h) � z

1

(u) = �

1

(u)h + a(u)h

2

+ (higher terms in h) (3)

for h and u 
lose to zero, where 
 = 
̂ + u

2

. Here the 
oeÆ
ient a(u) is also a

holomorphi
 fun
tion of u, with a(0) 6= 0 sin
e the �xed point multipli
ity is two. It

follows that a(u) 6= 0 for u suÆ
iently small. Denoting the expression (3) by g

u

(h),

and repla
ing the variable h = z � z

1

by w = �

u

h where �

u

= a(u)=�

1

(u), we see

easily that the fun
tion

F

u

(w) = �

u

g

u

�

w=�

u

�

has the required form (2). �

Proof of 4.2 in the Satellite Case. We now suppose that

^

� is a primitive r-th

root of unity, with r > 1. Then we 
an solve for the period p point z = z(
) as a

holomorphi
 fun
tion of 
 for 
 in some neighborhood of 
̂, with z(
̂) = ẑ. Hen
e

the multiplier �(
) = (f

Æp




)

0

(z(
)) will also be a holomorphi
 fun
tion of 
, taking the

value

^

� 2

r

p

1 when 
 = 
̂. Similarly �(
)

r

is a holomorphi
 fun
tion, taking the value

�(
̂)

r

= 1 when 
 = 
̂. This fun
tion �(
)

r


learly 
annot be 
onstant, so it takes all

values 
lose to +1 as 
 varies through a neighborhood of 
̂.

We will 
onstru
t a sequen
e of holomorphi
 
hanges of variable whi
h 
onjugate

the map z 7! f

Æp




(z) in a neighborhood of z = z(
) to maps h 7! g


;k

(h) in a neigh-

borhood of h = 0, where 1 � k � r, so that

g


;k

(h) = �(
)h

�

1 + a

k

(
)h

k

+ (higher terms in h)

�

for some 
onstant a

k

(
). Here 
 
an be any point in some neighborhood of 
̂. To

begin the 
onstru
tion, let

g


;1

(h) = f

Æp

(z(
) + h) � z(
) :

This 
ertainly has the required properties. Now indu
tively set

g


;k+1

(h) = �

�1

Æ g


;k

Æ �(h) where �(h) = h+ bh

k+1

for 1 � k < r. We 
laim that the 
onstant b = b(
) 
an be uniquely 
hosen so that

g


;k+1

will have the required form. In fa
t a brief 
omputation shows that

g


;k+1

(h) = �h

�

1 + (a+ b� �

k

b)h

k

+ (higher terms) :

But �

k

6= 1 sin
e � is 
lose to

^

�, whi
h is a primitive r-th root of unity with 1 � k < r.

Hen
e there is a unique 
hoi
e of b so that a+ b� �

k

b = 0, as required.

In parti
ular, pushing this argument as far as possible, we 
an take k = r and

repla
e f

Æp




near z = z(
) by g


;r

(h) = �h

�

1 + ah

r

+ � � �

�

near h = 0. Hen
e we 
an

repla
e f

Ærp




near z(
) by

g

Ær


;r

(h) = �

r

h

�

1 + a

0

h

r

+ (higher terms)

�

;
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VεVε

Figure 11. A repelling petal V

�

and attra
ting petal V

0

�

for the map

F (w) � w + w

2

(illustrating the primitive 
ase, before perturbation).

where 
omputation shows that a

0

=

�

1+�

r

+�

2r

+ � � �+�

(r�1)r

�

a. Here the 
oeÆ
ient

a

0

of h

r

must be non-zero when � =

^

�, and hen
e for � 
lose to

^

�. For otherwise, the

Leau-Fatou 
owers around the points of the paraboli
 orbit would give rise to more

than one periodi
 
y
le of attra
ting petals for f




. This is impossible, sin
e ea
h su
h


y
le must 
ontain a 
riti
al point, and a quadrati
 polynomial has only one 
riti
al

point. Finally, after a s
ale 
hange, repla
ing g


;r+1

(h) by F




(w) = �




g

Ær


;r+1

(w=�




)

for suitably 
hosen �




, we obtain simply

F

Ær




(w) = �

r

w

�

1 + w

r

+ (higher terms in w)

�

;

as required. �

Proof of 4.1. First note that we 
an 
hoose a smooth path in parameter spa
e so

that the multiplier �

r

of Lemma 4.2 is real and belongs to some interval (1 ; 1 + �).

This follows easily from the fa
t that � is a non-
onstant holomorphi
 fun
tion of 


in the 
ase r > 1, or of u =

p


� 
̂ in the 
ase r = 1. Note that the map F

Ær

of 4.2

satis�es

jF

Ær

(w)j = �

r

� jwj �

�

1 + Re(w

r

) + (higher terms)

�

(4)

and

arg(F

Ær

(w)) = arg(w) + Im(w

r

) + (higher terms) (5)

whenever �

r

is real and positive; and note also that F

Ær

has a lo
ally de�ned holo-

morphi
 inverse of the form

F

�r

(w) = w

�

1 � w

r

=�

2r

+ (higher terms)

�

=�

r

;

whi
h satis�es

jF

�r

(w)j = jwj

�

1�Re(w

r

)=�

2r

+ (higher terms)

�

=�

r

(4

0

)

and

arg(F

�r

(w)) = arg(w) � Im(w

r

)=�

2r

+ (higher terms) : (5

0

)

As a representative repelling petal for F

Ær

let us 
hoose a small wedge shaped

region V

�

des
ribed in polar 
oordinates by setting w = � e

2�it

with 0 � � � � and
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jtj < 1=(8r). (Compare Figure 11 for the 
ase r = 1.) If �

r

� 1 with �

r

suÆ
iently


lose to 1, it follows easily from (4

0

) and (5

0

) that V

�

maps into itself under F

�r

, with

all orbits 
onverging towards the boundary �xed point at w = 0. If a dynami
 ray

for f


̂

lands at ẑ, then it must land through one of the r repelling petals, for example

through the image of V

�

in the z-plane. For 
 suÆ
iently 
lose to 
̂, this image must

still 
ontain a full segment, from some point z to f

Ærp




(z), of the perturbed ray, hen
e

this perturbed ray must still land at the repelling point whi
h 
orresponds to w = 0.

Note that no new rays land at this point, after perturbation. There are only �nitely

many rays whi
h have period p. But every dynami
 ray of period p for f


̂

with angle

not in the set A

P

of angles for P must land on some disjoint repelling point, and this


ondition will be preserved under perturbation. Thus the perturbed orbit, for �

r

> 1,

still has portrait P .

As an attra
ting petal for F

Ær

we 
an 
hoose the set V

0

�

= e

�i=r

V

�


onsisting of

all w = �e

2�it

with 0 � � � � and

3

8r

� t �

5

8r

. If �

r

> 1 with �

r


lose to 1, then

using (4) and (5) we 
an 
he
k that F

Ær

maps V

0

�

into itself. However, the origin is

a repelling point, so orbits 
annot 
onverge to it. In fa
t, if K is the 
ompa
t set

obtained from V

0

�

by removing a very small neighborhood of the origin, then F

Ær

maps

K into its own interior. It follows easily that all orbits in V

0

�

r f0g 
onverge to an

interior �xed point. This must be a stri
tly attra
ting point, and must 
orrespond to

an attra
ting orbit of period rp for the map f




. �

Corollary 4.3. Paraboli
 Points as Root Points. If f


̂

has a paraboli
 orbit

whose portrait P is non-trivial, then 
̂ must be equal to the root point r

P

of the P-wake.

Note: The hypothesis that P is non-trivial is a
tually redundant. (See 4.8.) It

will be shown in 5.4 that every paraboli
 point is the root point of only one wake, so

that the root point of the P-wake always has portrait equal to P .

Proof of 4.3. Sin
e f


̂

has a paraboli
 orbit with portrait P , it 
ertainly 
annot

have a repelling orbit with portrait P . Hen
e it 
annot be inside the P-wake by

3.1. On the other hand, by 4.1 it must belong to the boundary of the P-wake. By


onstru
tion, the root point r

P

is the only boundary point of W

P

whi
h belongs to

the Mandelbrot set. �

Here is a 
omplementary statement to 4.1, in the 
ase r > 1.

Lemma 4.4. A Deformation Breaking the Portrait. Under the hypothesis of

4.1, there also exists a smooth path of parameter values 
, 
onverging to 
̂, so that

ea
h f




has an attra
ting orbit of period p, and a repelling orbit of period rp whi
h lies

on the boundary of its immediate basin. Furthermore, the dynami
 rays with angles

in A

P

= A

1

[ � � � [ A

p

all land on this repelling orbit.

(Compare Figure 10, right.) For su
h values of 
 (still assuming that r > 1), it

follows that there is no periodi
 orbit with portrait P . Together with 4.1, this gives

an alternative proof that 
̂ is on the boundary of the P-wake.

The proof of 4.4 is 
ompletely analogous to the proof of 4.1, and will be left to the

reader: One simply deforms so that �

r

< 1, instead of �

r

> 1. �

The following assertion helps to make the statement of 4.2 more pre
ise.
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Lemma 4.5. Lo
al Uniqueness. Under the hypothesis of 4.2, there exist unique

single valued fun
tions 
 = 
(�) and z = z(�) ; de�ned and holomorphi
 for � in a

neighborhood of

^

�, so that z(�) is a periodi
 point of period p and multiplier � for the

map f


(�)

, with 
̂ = 
(

^

�) and ẑ = z(

^

�). This fun
tion 
(�) is univalent in the satellite


ase, but has a simple 
riti
al point at

^

� in the primitive 
ase.

The impli
ations of this lemma for the geometry of the Mandelbrot set will be

des
ribed in 6.1 and 6.2.

Proof of 4.5. First 
onsider the satellite 
ase, with

^

� 6= 1. Then 
learly the period

p orbit and its multiplier �(
) depend smoothly on 
 throughout some neighborhood

of 
̂. We will show that the derivative d�=d
 is non-zero at 
̂. For otherwise, we 
ould

write

�

r

(
) = 1 + a(
� 
̂)

k

+ (higher terms)

with k � 2. Hen
e we 
ould vary 
 from 
̂ in two or more di�erent dire
tions so

that �

r

> 1 and in two or more intermediate dire
tions so that �

r

< 1. The former

points would be within the P-wake and the later points would be outside it; but

this 
on�guration is impossible by 3.1. Thus d�=d
 6= 0, and it follows by the Inverse

Fun
tion Theorem that the inverse mapping � 7! 
(�) is well de�ned and holomorphi


throughout a neighborhood of

^

�, as required.

In the primitive 
ase, the situation is di�erent, but the proof is similar. In this


ase, setting 
 = 
̂+ u

2

, we must express the multiplier �

1

for one of the two nearby

period p points as a holomorphi
 fun
tion of u, and show that the derivative d�

1

=du

is non-zero at u = 0. Otherwise, if the derivative d�

1

(u)=du were equal to zero for

u = 0, then we 
ould write

�

1

(u) = 1 + a u

k

+ (higher terms)

for some k � 2. It would follow that we 
ould vary u from 0 in two or more di�erent

dire
tions so that �

1

> 1 and in two or more separating dire
tions so that �

2

> 1.

All of these points would be within the P-wake, but the rays landing on the periodi


point z

1

would have to jump dis
ontinuously so as to land on z

2

as we pass from

�

1

> 1 to �

2

> 1, and su
h points of dis
ontinuity must be outside the P-wake.

Even allowing for the fa
t that the u-plane is a two-fold 
overing of the 
-plane, su
h

a 
on�guration is in
ompatible with 3.1. Therefore, �

1

and u must determine ea
h

other holomorphi
ally in a neighborhood of

^

� $ 0. In parti
ular, it follows that the

parameter value 
 = 
̂+ u

2


an be expressed as a holomorphi
 fun
tion of �

1

, with a

simple 
riti
al point at �

1

=

^

�. �

To 
on
lude this se
tion, we will prove that the portrait of a paraboli
 periodi


point is always non-trivial. We will use a somewhat simpli�ed form of the Hubbard

tree 
onstru
tion to show that every paraboli
 orbit with ray period rp � 2 must

have portrait with valen
e v � 2. First some general remarks about lo
ally 
onne
ted

subsets of the plane.

Lemma 4.6. A Canoni
al Retra
tion. Let K � C be 
ompa
t, 
onne
ted,

lo
ally 
onne
ted, and full, and let U be a 
onne
ted 
omponent of the interior of K.

Then the 
losure U is homeomorphi
 to the 
losed unit disk, and there is a unique
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retra
tion �

U

from C onto U whi
h 
arries ea
h external ray, and also ea
h 
onne
ted


omponent of the 
omplement K rU , to a single point of the 
ir
le �U . There are at

least two distin
t external rays landing at a point z

0

2 �U if and only if K r fz

0

g is

dis
onne
ted, or if and only if there is some 
onne
ted 
omponent X of K r U with

�

U

(X) = fz

0

g.

Proof. (Compare [D5℄.) The statement that U is a disk follows easily from well

known results of Carath�eodory. Furthermore, a

ording to Carath�eodory, there is a

unique retra
tion from C onto K whi
h maps ea
h external ray to its landing point.

Composing this with the retra
tion K ! U whi
h maps ea
h 
omponent X of KrU

to the unique interse
tion point z

0

2 X \ U , we obtain the required retra
tion �

U

.

For any su
h X , note that there must be at least one maximal open interval of

angles t su
h that the ray R

K

t

lands in X . The endpoints of su
h a maximal interval

are the angles for the required pair of rays landing on z

0

. Conversely, if there were

two rays landing on z

0

but no 
omponent X atta
hed in between, then there would

be an entire open interval of angles t so that R

K

t

lands at z

0

. But this is impossible

by a 
lassi
al theorem of F. and M. Riesz. (See for example [M2, App. A℄.) �

In parti
ular, let K = K(f) be the �lled Julia set for a hyperboli
 quadrati


polynomial. (We are a
tually interested in the paraboli
 
ase, but will work �rst with

the hyperboli
 
ase, sin
e that will suÆ
e for our purposes, and sin
e it is mu
h easier

to prove lo
al 
onne
tivity in the hyperboli
 
ase.)

Lemma 4.7. The Dynami
 Root Point. Suppose that f = f




has an attra
ting

orbit of period n � 2. Let K be its �lled Julia set, and let U

0

and U

1

� K be the

Fatou 
omponents 
ontaining the 
riti
al point 0 and the 
riti
al value 
 respe
tively.

Then the 
anoni
al retra
tion �

U

1

: C ! U

1


arries the 
omponent U

0

to the unique

point r




2 �U

1

whi
h is �xed by f

Æn

. Hen
e at least two dynami
 rays land at this

point.

(See for example Figures 1, 6.) Following S
hlei
her, I will 
all r




the dynami
 root

point for the Fatou 
omponent U

1

.

Proof. Let U

0

! U

1

�

!U

2

�

!� � �

�

!U

n

= U

0

be the Fatou 
omponents 
ontaining

the 
riti
al orbit. Then f

Æn

maps ea
h 
ir
le �U

j

onto itself by an expanding map

of degree two. Hen
e there is a 
anoni
al homeomorphism a

j

: �U

j

! R=Z whi
h


onjugates f

Æn

to the angle doubling map on the standard 
ir
le. For ea
h z 2 CrU

j

,

the image a

j

(�

U

j

(z)) will be 
alled the internal angle of the point z with respe
t to

U

j

. The map f from �U

j

to �U

j+1

preserves the internal angles of boundary points

for 0 < j < n, but doubles them for the 
ase j = 0 of the 
riti
al 
omponent.

De�ne the t-wake L

t

(U

j

) to be the set of all z 2 CrU

j

with a

j

(�

U

j

(z)) = t 2 R=Z.

These wakes are pairwise disjoint sets with union equal to CrU

j

. In general f maps

to t-wake of U

j

homeomorphi
ally onto the t-wake of U

j+1

for 0 < j < n, and onto

the 2t-wake of U

j+1

when j = 0. However, there is one ex
eptional value of t for ea
h

U

j

with 0 < j < n. Namely, if the wake L

t

(U

j

) 
ontains the 
riti
al 
omponent U

0

then it 
ertainly 
annot map homeomorphi
ally, and its image may be mu
h larger

than L

t

(U

j+1

).
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Let A

j

� R=Z be the �nite set 
onsisting of all angles t 2 R=Z su
h that the wake

L

t

(U

j

) 
ontains one of the 
omponents U

k

(where ne
essarily j 6= k). Then it follows

that A

1

� A

2

� � � � � A

n

and 2A

n

= A

0

. On the other hand, sin
e K is full, the

various U

j

must be 
onne
ted together in a tree-like arrangement (the Hubbard tree).

There 
annot be any 
y
les. Hen
e at least one of the A

i

must 
onsist of a single

angle. It follows easily that A

1

= f0g, and the 
on
lusion follows. �

Corollary 4.8. Paraboli
 Orbit Portraits are Non-Trivial. If 
 is any paraboli


point of the Mandelbrot set other than 
 = 1=4, and if O is the paraboli
 orbit for f




,

then at least two dynami
 rays land on ea
h point of O.

(This is just a restatement of Theorem 1.4 of x1.)

Proof. In the satellite 
ase this is trivially true, while in the primitive 
ase it

follows from 4.7, using 4.1 to pass from the paraboli
 to the hyperboli
 
ase. This


ompletes the proof of Theorem 1.4. �

5. The Period n Curve in (Parameter�Dynami
) Spa
e.

It is 
onvenient to de�ne a sequen
e of numbers �

2

(n) indu
tively by the formula

2

k

=

X

njk

�

2

(n) ; or �

2

(k) =

X

njk

�(k=n)2

n

;

to be summed over all divisors n � 1 of k, where �(k=n) 2 f�1; 0g is the M�obius

fun
tion. In fa
t we will be mainly interested in the quotients �

2

(n)=2 and �

2

(n)=n.

The �rst few values are

n 1 2 3 4 5 6 7 8 9 10

�

2

(n)=2 1 1 3 6 15 27 63 120 252 495

�

2

(n)=n 2 1 2 3 6 9 18 30 56 99 .

De�ne the period n 
urve Per

n

� C

2

to be the lo
us of zeros of the polynomial

Q

n

(
; z) whi
h is de�ned by the formula

f

Æk




(z)� z =

Y

njk

Q

n

(
; z) ; or Q

k

(
; z) =

Y

njk

�

f

Æk




(z)� z

�

�(k=n)

;

taking the produ
t over all divisors n of k. For example,

Q

1

(
; z) = z

2

+ 
� z ; Q

2

(
; z) =

(z

2

+ 
)

2

+ 
� z

z

2

+ 
� z

= z

2

+ z + 
+ 1 :

Note that ea
h point (
; z) 2 Per

n

determines a periodi
 orbit

z = z

0

7! z

1

7! � � � 7! z

n

= z

0

for the map f




. Let �

n

= �

n

(
; z) = �f

Æn




(z)=�z = 2

n

z

1

� � � z

n

. For a generi
 
hoi
e

of 
, this orbit has period exa
tly n, and �

n

is the multiplier. However, if z is a

paraboli
 periodi
 point for f




with ray period n = rp > p, then (
; z) belongs both

to Per

n

with �

n

= 1, and to Per

p

with �

p

2

r

p

1. (In fa
t, the two 
urves Per

n

and

Per

p

interse
t transversally at (
; z).)

Remarks. Compare [M4℄ for a somewhat analogous dis
ussion for 
ubi
 polyno-

mials. The fa
t that Q

n

is really a polynomial 
an be veri�ed by expressing f

Æk




(z)�z
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as a produ
t of irredu
ible polynomials, and 
he
king that ea
h of these irredu
ible

fa
tors has a well de�ned period n dividing k. The fa
tors are all distin
t sin
e

�(f

Æj




(z) � z)=�z 6= 0 at every zero of this polynomial when j
j is large. It is shown

in [Bou℄, and also in [S1℄, [LS℄, that the algebrai
 
urve Per

n

(or the polynomial Q

n

)

is a
tually irredu
ible; however, we will not make any use of that fa
t.

Lemma 5.1. Properties of the Period n Curve. This algebrai
 
urve Per

n

� C

2

is non-singular. The proje
tion (
; z) 7! 
 is a proper map of degree �

2

(n) from Per

n

to the parameter plane, while the proje
tion (
; z) 7! z is a proper map of degree

�

2

(n)=2 to the dynami
 plane. Finally, the fun
tion (
; z) 7! �

n

(
; z) is a proper map

of degree n�

2

(n)=2 to the �

n

-plane.

Note that the 
y
li
 group of order n, whi
h we will denote by Z

n

, a
ts on Per

n

, a

generator 
arrying (
; z) to (
 ; f




(z)).

Lemma 5.2. Properties of Per

n

=Z

n

. The quotient Per

n

=Z

n

is a smooth algebrai



urve 
onsisting of all pairs (
;O) where O is a periodi
 orbit for f




whi
h is either

non-paraboli
 of period n, or paraboli
 with attra
ting petals of period n. At any point

where �

n

6= 1, the 
oordinate 
 
an be used as lo
al uniformizing parameter, while

in a neighborhood of a point with �

n

= 1, the multiplier �

n

= �

n

(
; z) serves as a

lo
al uniformizing parameter for this 
urve. The proje
tion maps (
;O) 7! 
 and

(
;O) 7! �

n

are proper, with degrees �

2

(n)=n and �

2

(n)=2 respe
tively.

The proof that Per

n

and Per

n

=Z

n

are non-singular will be divided into three 
ases,

as follows.

Generi
 Case. First 
onsider a point (
̂; ẑ) 2 Per

n

with �

n

(
̂; ẑ) 6= 1. Then, by

the Impli
it Fun
tion Theorem, we 
an solve the equation f

Æn




(z) = z lo
ally for z

as a smooth fun
tion of 
. It follows that both of the 
urves Per

n

and Per

n

=Z

n

are

lo
ally smooth, with 
 as lo
al uniformizing parameter.

Primitive Paraboli
 Case. Now 
onsider a point (
̂; ẑ) 2 Per

n

with �

n

(
̂; ẑ) = 1,

where ẑ has period exa
tly n under f


̂

. A

ording to the proof of 4.5, if we set


 = 
̂+u

2

, then both z and �

n

= �

n

(
; z) 
an be expressed lo
ally as smooth fun
tions

of u with d�

n

=du 6= 0. It follows that both Per

n

and Per

n

=Z

n

are lo
ally smooth

at this point, and that we 
an use either u or �

n

as lo
al uniformizing parameter.

(Similarly dz=du 6= 0, so we 
ould use z as lo
al uniformizing parameter for Per

n

.

However d
=du is zero when u = 0, so 
 
annot be used as lo
al parameter.)

Satellite Paraboli
 Case. Again suppose that �

n

(
̂; ẑ) = 1, but now assume

that the period p of ẑ is stri
tly less than the ray period n = rp. For 
 near 
̂, let

z = z(
) be the equation of the unique period p point near ẑ. Using the 
hange of

variable w = �(z � z(
)) + (higher terms) of 4.2, the map f

Æn





orresponds to

w 7! F

Ær

(w) = �

r

w

�

1 + w

r

+ (higher terms)

�

; (6)

where � = �(w) is the multiplier of this period p orbit. The equation for a �xed point is

w = �

r

w (1 + w

r

+ (higher terms)). Dividing by w (sin
e we want the �xed point

with w 6= 0 or with z 6= z(
)), this be
omes

1 = �

r

(1 + w

r

+ (higher terms)) or �

r

= 1� w

r

+ (higher terms) :
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Thus we 
an express � as a holomorphi
 fun
tion of w, with a 
riti
al point at w = 0.

Therefore, by 4.5, we 
an also express 
 as a holomorphi
 fun
tion of w. Sin
e w is

de�ned as a holomorphi
 fun
tion of z and 
 with �w=�z 6= 0, it follows that Per

n

is

lo
ally smooth with lo
al uniformizing parameter z or w.

Now note that there is a unique lo
al 
hange of 
oordinate w 7! �(w) with �

0

(0) = 1

so that �

r

= 1��(w)

r

. Sin
e the expression �(w)

r

is invariant under the Z

n

a
tion of

Per

n

, it follows easily that this a
tion 
an be des
ribed by the formula �(w) 7!

^

��(w).

It follows that �(w)

r

= 1��

r

is a lo
al uniformizing parameter for the quotient 
urve

Per

n

=Z

n

. Therefore, either � or 
 
an also be taken as lo
al uniformizing parameter.

In parti
ular, it follows that the multiplier �

n

of the period n = rp orbit 
an be

expressed as a smooth fun
tion of the multiplier � = �

p

of the period p orbit. Note

that

d�

n

=d(�

r

) = �r (7)

at the paraboli
 point. (Compare [CM (4.3)℄.) This 
an be veri�ed by dire
t 
ompu-

tation from (6), or by using the holomorphi
 �xed point formula [M2℄ for the fun
tion

f

Æn




to show that the expression

r

1� �

n

+

1

1� �

r

depends smoothly on the parameter 
 throughout some neighborhood of the paraboli


point. Therefore �

n


an also be used as lo
al uniformizing parameter for Per

n

=Z

n

.

The degrees of the various proje
tion maps 
an easily be 
omputed algebrai
ally, by


ounting solutions to the appropriate polynomial equations. Here is a more geometri


argument, whi
h also provides a quite expli
it des
ription of the ends of the 
urve

Per

n

, and hen
e proves that these mappings are proper. Let us 
onsider the limiting


ase as j
j ! 1. Setting 
 = �v

2

with jvj > 2, let �� be the open disk of radius 1


entered at �v. It is not diÆ
ult to 
he
k that both � and �� map holomorphi
ally

onto a disk f(�) whi
h 
ontains � [ (��). The (�lled) Julia set K 
an then be

des
ribed expli
itly as follows. Given an arbitrary sequen
e of signs �

0

; �

1

; : : : , there

is one an only one orbit z

0

7! z

1

7! � � � in K with z

j

2 �

j

� for every j � 0. This

is proved using the Poin
ar�e metri
 for the inverse maps f(�) ! �� � f(�). In

parti
ular, the number of solutions of period n is equal to the number of sign sequen
es

of period n, whi
h is easily seen to be �

2

(n). Thus the degree of the proje
tion to the 
-

plane is �

2

(n). It follows also that the produ
t z

1

� � � z

n

= �=2

n

is given asymptoti
ally

by

�=2

n

� �z

n

� �v

n

= �(�
)

n=2

as jvj ! 1 :

Thus the degree of the proje
tion to the �-plane is n times the degree of the proje
tion

to the z-plane, and is n=2 times the degree of the proje
tion to the 
-plane. �

Thus we have a diagram of smooth algebrai
 
urves and proper holomorphi
 maps

with degrees as indi
ated:

Per

n

n

�! Per

n

=Z

n

�

2

(n)=2

���! �

n

-plane

# �

2

(n)=2 # �

2

(n)=n

z-plane 
-plane
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For a generi
 
hoi
e of 
, it follows that the map f




has exa
tly �

2

(n)=n periodi


orbits of period n, while for generi
 
hoi
e of �

n

there are exa
tly �

2

(n)=2 pairs

(
;O) 
onsisting of a parameter value 
 and a period n orbit of multiplier �

n

for

the map f




. The dis
ussion shows that the 
orresponden
e (
;O) 7! (
; �

n

) yields

a smooth immersion of Per

n

=Z

n

into C

2

. (Caution: Presumably some f




may have

two di�erent period n orbits with the same multiplier, so this immersion may have

self-interse
tions.)

Corollary 5.3. Counting Paraboli
 Points. The number of paraboli
 points in

the Mandelbrot set with ray period rp = n is equal to �

2

(n)=2.

Proof. This is the same as the number of points in the pre-image of +1 under

the proje
tion (
;O) 7! �

n

(
;O) from Per

n

=Z

n

to the �

n

-plane. A

ording to 5.2,

the degree of this proje
tion is �

2

(n)=2, and +1 is a regular value. The 
on
lusion

follows. �

We are now ready to prove the main results, as stated in x1.

Corollary 5.4. There are exa
tly two parameter rays whi
h angles whi
h are periodi


under doubling landing at ea
h paraboli
 point 
̂ 6= 1=4. Hen
e distin
t wakes have

distin
t root points; and for ea
h non-trivial portrait P, the root point of the P-wake

has a paraboli
 orbit with portrait P.

(For angles whi
h are not periodi
, 
ompare 9.4.)

Corollary 5.5. Every parameter ray R

M

t

whose angle has period n � 2 under

doubling forms one of the two boundary rays for one and only one wake W

P

, where

P is some portrait with ray period n.

Proof of 5.4 and 5.5. A

ording to 5.3, the number of paraboli
 points 
̂ with

ray period n � 2 is equal to �

2

(n)=2, and a

ording to Theorem 1.4 ea
h su
h point

is the landing point of at least two rays, whi
h ne
essarily have ray period n. Thus

altogether there are at least �

2

(n) distin
t rays of period n. On the other hand, sin
e

the map t 7! 2

n

t (mod Z) has 2

n

� 1 �xed points, it follows indu
tively that the

number of angles with period exa
tly n � 2 is pre
isely equal to �

2

(n). Thus there


annot be more than two rays landing at any su
h point 
̂. It follows that 
̂ is the

root point of at most one wake. For if 
̂ were the root point of two di�erent wakes,

then (even if they shared a boundary ray) it would be the landing point for at least

three di�erent parameter rays. Using 4.3, it now follows that ea
h su
h 
̂ is the root

point r

P

for exa
tly one wake W

P

, and furthermore that ea
h f

r

P

has a paraboli


orbit with portrait P .

Here we have assumed that n � 2. However, for n = 1 there is 
learly just one

parameter ray R

M

0

= (1=4;1) whi
h is �xed under doubling, and its landing point


̂ = 1=4 is the unique paraboli
 point with ray period n = 1. This 
ompletes the proof

of 5.4 and 5.5. Clearly Theorems 1.2 and 1.5, as stated in x1, follow immediately. �

To 
on
lude this se
tion, here is a more expli
it des
ription of the �rst few period

n 
urves:

Period 1. The 
urve Per

1

= Per

1

=Z

1

�

=

C 
an be identi�ed with the �

1

-plane.

It is a 2-fold bran
hed 
over of the 
-plane, rami�ed at the root point r

ff0gg

= 1=4,

and 
an be des
ribed by the equations z = �

1

=2 ; 
 = z � z

2

. Note that the unit
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disk j�

1

j < 1 in the �

1

-plane maps homeomorphi
ally onto the region bounded by the


ardioid in the 
-plane.

Period 2. The quotient Per

2

=Z

2

�

=

C 
an be identi�ed either with the �

2

-plane or

with the 
-plane, where �

2

= 4 (1+ 
). The 
urve Per

2

�

=

C is a 2-fold bran
hed 
over

with 
oordinate z, bran
hed at the point �

2

= 1 whi
h 
orresponds to the period 2

root point 
 = r

P

= �3=4 with portrait P = ff1=3; 2=3gg. It is des
ribed by the

equation z

2

+ z + (
+ 1) = 0, with Z

2

-a
tion z $ f




(z) = �z � 1.

Period 3. (See [Giarrusso and Fisher℄.) The quotient Per

3

=Z

3

�

=

C 
an be identi-

�ed with a 2-fold bran
hed 
over of the 
-plane, bran
hed at the root point r

P

= �7=4

of the real period 3 
omponent, where P = ff3=7; 4=7g; f6=7; 1=7g; f5=7; 2=7gg. If we


hoose a parameter u on this quotient by setting 
 = �(u

2

+ 7)=4, then 
omputation

shows that the multiplier is given by the 
ubi
 expression �

3

= u

3

�u

2

+7u+1. The


urve Per

3

itself is 
onformally isomorphi
 to a thri
e pun
tured Riemann sphere.

It 
an be des
ribed as a 3-fold 
y
li
 bran
hed 
over of this u-plane, bran
hed with

rami�
ation index 3 at the two points u = (1�

p

�27)=2 where �

3

= 1.

6. Hyperboli
 Components.

By de�nition, a hyperboli
 
omponent H of period n in the Mandelbrot set is a


onne
ted 
omponent of the open set 
onsisting of all parameter values 
 su
h that

f




has a (ne
essarily unique) attra
ting orbit of period n. We will �rst study the

geometry of a hyperboli
 
omponent near a paraboli
 boundary point.

Lemma 6.1. Geometry near a Satellite Boundary Point. Let 
̂ be a paraboli


point with orbit portrait P having ray period rp > p. Then 
̂ lies on the boundary of

exa
tly two hyperboli
 
omponents. One of these has period rp and lies inside the P-

wake, while the other has period p and lies outside the P-wake. Lo
ally the boundaries

of these 
omponents are smooth 
urves whi
h meet tangentially at 
̂.

Proof. A

ording to 4.1, 
̂ lies on the boundary of a hyperboli
 
omponent H

rp

of

period rp whi
h lies inside the P-wake, while a

ording to 4.4 it lies on the boundary

of a 
omponent H

p

of period p whi
h lies outside the P-wake. Let O

rp

and O

p

be

the asso
iated periodi
 orbits, with multipliers �

rp

and �

p

. A

ording to 4.5, the

multiplier �

p


an be used as a lo
al uniformizing parameter for the 
-plane near 
̂.

Therefore the boundary �H

p

, with equation j�

p

j = 1, is lo
ally smooth. Similarly, it

follows from equation (7) of x5, that we 
an take �

rp

as lo
al uniformizing parameter,

so the lo
us j�

rp

j = 1 is also lo
ally smooth. These two boundary 
urves are ne
es-

sarily tangent to ea
h other sin
e the two hyperboli
 
omponents 
annot overlap, or

by dire
t 
omputation from (7).

To see that there are no other 
omponents with 
̂ as boundary point, �rst note

that all periodi
 orbits for the map f


̂

, other than its designated paraboli
 orbit, must

be stri
tly repelling. For any orbit with multiplier j�j � 1 must either attra
t the


riti
al orbit (in the attra
ting or paraboli
 
ase) or at least be in the !-limit set of

the 
riti
al orbit (in the Cremer 
ase), or have Fatou 
omponent boundary in this

!-limit set (in the Siegel disk 
ase). Sin
e the unique 
riti
al orbit 
onverges to the

paraboli
 orbit, all other periodi
 orbits must be repelling.
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Figure 12. Detail of the Mandelbrot boundary, showing the rays landing at

the root points of a primitive period 4 
omponent and a satellite period 12


omponent.

Now 
hoose some large integer N . If we 
hoose 
 suÆ
iently 
lose to 
̂, then all

repelling periodi
 orbits of period � N for f


̂

will deform to repelling periodi
 orbits

of the same period for f




. Thus any non-repelling orbit of period � N for f




must

be one of the two orbits O

p

and O

rp

whi
h arise from perturbation of the paraboli


orbit. In other words, any hyperboli
 
omponent H

0

of period � N whi
h interse
ts

some small neighborhood of 
̂ must be either H

p

or H

rp

. In parti
ular, any hyperboli



omponent whi
h has 
̂ as boundary point must 
oin
ide with either H

p

or H

rp

. �

By de�nition, the 
omponent H

rp

is a satellite of H

p

, atta
hed at the paraboli


point 
̂. (It follows from (7) that jd�

rp

=d�

p

j = r

2

at 
̂, so to a �rst approximation the


omponent H

p

is r

2

times as big as its satellite H

rp

. Compare [CM℄.)

Lemma 6.2. Geometry near a Primitive Boundary Point. If the portrait P

of the paraboli
 point 
̂ has ray period rp = p, then 
̂ lies on the boundary of just

one hyperboli
 
omponent H, whi
h has period p and lies inside the P-wake. The

boundary of H near 
̂ is a smooth 
urve, ex
ept for a 
usp at the point 
̂ itself.

Proof. As in the proof of 4.2, we set 
 = 
̂ + u

2

and �nd a period p point z(u)

with multiplier �(u) whi
h depends smoothly on u, with d�=du 6= 0. Hen
e the lo
us

j�(u)j = 1 is a smooth 
urve in the u-plane, while its image in the 
-plane has a 
usp

at 
 = 
̂. The rest of the argument is 
ompletely analogous to the proof of 6.1. �

Lemma 6.3. The Root Point of a Hyperboli
 Component. Every paraboli


point of ray period n = rp is on the boundary of one and only one hyperboli
 
ompo-

nent of period n. Conversely, every hyperboli
 
omponent of period n has one and only
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one paraboli
 point of ray period n on its boundary. In this way, we obtain a 
anoni-


al one-to-one 
orresponden
e between paraboli
 points and hyperboli
 
omponents in

parameter spa
e.

Proof. The �rst statement follows immediately from 6.1 and 6.2. Conversely, if

H is a hyperboli
 
omponent of period n, then we 
an map H holomorphi
ally into

the open unit disk D by sending ea
h 
 2 H to the multiplier of the unique attra
ting

orbit for f




. In order to extend to the 
losure H , it is 
onvenient to lift to the 
urve

Per

n

=Z

n

, using the proper holomorphi
 map (
 ; O) 7! 
 of x5. Evidently H lifts

biholomorphi
ally to an open set H

\

� Per

n

=Z

n

, whi
h then maps holomorphi
ally

to the �

n

-plane under the proje
tion (
;O) 7! �

n

(
;O). (Here H

\

is a 
onne
ted


omponent of the set of (
;O) su
h that O is an attra
ting period n orbit for f




.)

Sin
e the proje
tion to the �

n

-plane is open and proper, it follows easily that the


losure H

\

maps onto the 
losed disk D. In parti
ular, there exists a point (
̂ ;

^

O)

of H

\

with �

n

(
̂;

^

O) = +1. Evidently this 
̂ is a paraboli
 boundary point of H with

ray period dividing n, and it follows from 6.1 and 6.2 that it must have ray period

pre
isely n.

A

ording to 4.7, for ea
h 
 2 H there is a unique repelling orbit of lowest period

on the boundary of the immediate basin for the attra
ting orbit of f




. Furthermore,

a

ording to 4.1, the portrait P = P

H

for this orbit is the same as the portrait for the

paraboli
 orbit of f


̂

. Sin
e there is only one paraboli
 point with spe
i�ed portrait

by Theorem 1.2, this proves that there 
an only one su
h point 
̂ 2 �H . �

De�nition. This distinguished paraboli
 point on the boundary �H of a hyper-

boli
 
omponent is 
alled the root point of the hyperboli
 
omponent H . We know

from 1.2 and 1.4 that the paraboli
 points of ray period n 
an be indexed by the

non-trivial orbit portraits of ray period n. Hen
e the hyperboli
 
omponents of period

n 
an also be indexed by non-trivial portraits of ray period n. We will write H = H

P

(or P = P

H

) if H is the hyperboli
 
omponent with root point r

P

. We will say that

H is a primitive 
omponent or a satellite 
omponent a

ording as the asso
iated portrait

is primitive or satellite.

Remark 6.4. Of 
ourse there are many other paraboli
 points in �H . For ea
h root

of unity � = e

2�iq=s

6= 1 a similar argument shows that there is at least one point

(
̂

�

;O

�

) 2 �H

\

with �

n

(
̂

�

; O

�

) = �. In fa
t the following theorem implies that 
̂

�

is unique. This 
̂

�

is the root point for a hyperboli
 
omponent H

0

of period sn > n,

with asso
iated orbit portrait P

0

of period n and rotation number q=s. By de�nition,

P

0

is the (q=s)-satellite of P , and H

0

is the (q=s)-satellite of H .

We next prove the following basi
 result of Douady and Hubbard. Again let H be

a hyperboli
 
omponent of period n and let H

\

� Per

n

=Z

n

be the set of pairs (
;O)

with 
 2 H , where O is the attra
ting orbit for f




.

Theorem 6.5. Uniformization of Hyperboli
 Components. The 
losure H is

homeomorphi
 to the 
losed unit disk D. In fa
t there is a 
anoni
al homeomorphism

D

�

=

H

\

! H
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whi
h 
arries ea
h point � 6= 1 in D to the unique point 
 2 H su
h that f




has a

period n orbit of multiplier �. This homeomorphism extends holomorphi
ally over a

neighborhood of D, with just one 
riti
al point 1 2 D mapping to the root point 
̂ 2 H

in the primitive 
ase, and with no 
riti
al points in the satellite 
ase. The 
losures

of the various hyperboli
 
omponents are pairwise disjoint, ex
ept for the tangential


onta
t between a 
omponent and its satellite as des
ribed in 6:1.

Proof. Re
all that �

n

: Per

n

=Z

n

! C is a proper holomorphi
 map of degree

�

2

(n)=2. We will �rst show that there are no 
riti
al values of �

n

within the 
losed

unit disk D. This will imply that the inverse image �

�1

n

(D) is the disjoint union of

�

2

(n)=2 disjoint sets H

\

, ea
h of whi
h maps di�eomorphi
ally onto D. First note

that there are no 
riti
al values of �

n

on the boundary 
ir
le �D. In the 
ase of a root

of unity � 2 �D, every (
;O) with �

n

(
;O) = � must be paraboli
, and it follows

from 6.1 and 6.2 that the derivative of �

n

at (
;O) is non-zero. Consider then a point

(
̂;O) 2 �H

\

su
h that �

n

(
̂;O) is not a root of unity. A

ording to 5.2, we 
an

use 
 as lo
al uniformizing parameter throughout a neighborhood of (
̂;O). If this

were a 
riti
al point of �

n

, then it would follow that we 
ould �nd two di�erent line

segments emerging from 
̂ whi
h map into D, separated by two line segments whi
h

map outside of D. In other words, one of the following two possibilities would have

to o

ur.

Case 1. There are two di�erent hyperboli
 
omponents with 
̂ as non-root bound-

ary point. Ea
h of these 
omponents must have a root point, and be 
ontained in

its asso
iated wake. But these two 
omponents 
annot be separated by any rational

parameter ray, hen
e ea
h one must be 
ontained in the wake of the other, whi
h is

impossible.

Case 2. The single hyperboli
 
omponent H must approa
h 
̂ from two di�erent

dire
tions, separated by two dire
tions whi
h lie outside of H . In other words. There

must be a simple 
losed loop L � H whi
h en
loses points lying outside of H . Now

the 
olle
tion of iterates f

Æk




(0) must be uniformly bounded for 
 2 L, and hen
e

also for all 
 in the region bounded by L. Thus this entire region must lie within the

interior of the Mandelbrot set, whi
h is impossible sin
e this region 
ontains paraboli


points.

Thus both 
ases are impossible, and �

n

must be lo
ally inje
tive near the boundary

of H

\

. It follows easily that H

\

maps onto D by a proper map of some degree d � 1,

and similarly that the boundary �H

\

wraps around the boundary 
ir
le �D exa
tly d

times. Now a 
ounting argument shows that this degree is +1. In fa
t the number of

H or H

\

of period n is equal to �

2

(n)=2 by 6.3 and 5.3. Sin
e the degree of the map

�

n

on Per

n

=Z

n

is also �

2

(n)=2 by 5.2, it follows that ea
h H

\

must map with degree

d = 1. Therefore �

n

maps ea
h H

\

biholomorphi
ally onto D.

Next 
onsider the proje
tion (
;O) 7! 
 from the 
ompa
t set H

\

onto H . This

is one-to-one, and hen
e a homeomorphism, by a theorem of Douady and Hubbard

whi
h asserts that a polynomial of degree d 
an have at most d � 1 non-repelling


y
les. (Compare [Sh1℄. Alternatively, it follows from the 
lassi
al Fatou-Julia theory

that a polynomial with one 
riti
al point 
an have at most one attra
ting 
y
le. If
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two distin
t points of �H

\

mapped to a single point of �H , then, as in Case 2 above,

a path between these points in H

\

would map to a loop in H whi
h 
ould en
lose no

boundary points of H , leading to a 
ontradi
tion.)

A

ording to 5.2, the parameter 
 
an be used as lo
al uniformizing parameter

for Per

n

=Z

n

unless �

n

= 1. Hen
e the only possible 
riti
al value for the proje
tion

H

\

! H is the root point. In fa
t, by 6.1 and 6.2, the root point is a
tually a 
riti
al

value if and only if H is a primitive 
omponent.

Finally suppose that two di�erent hyperboli
 
omponents have a 
ommon boundary

point. If this boundary point is paraboli
, then one of these 
omponents must be a

satellite of the other by 6.1 and 6.2. If the point were non-paraboli
, then the argument

of Case 1 above would yield a 
ontradi
tion. This 
ompletes the proof of 6.5. �

7. Orbit For
ing.

Re
all that an orbit portrait is non-trivial if either it has valen
e v � 2, or it is

the zero portrait ff0gg. The following statement follows easily from 1.3. However, it

seems of interest to give a dire
t and more 
onstru
tive proof; and the methods used

will be useful in the next se
tion.

Lemma 7.1. Orbit For
ing. Let P and Q be distin
t non-trivial orbit portraits.

If their 
hara
teristi
 ar
s satisfy I(P) � I(Q), then every f




with a (repelling or

paraboli
) orbit of portrait P must also have a repelling orbit of portrait Q.

Compare Figure 5, and see 1.3 and for further dis
ussion. The proof of 7.1 begins

as follows.

Puzzle Pie
es. Re
all from 2.10 that the pv rays landing on a periodi
 orbit

for f = f




separate the dynami
 plane into pv � p + 1 
onne
ted 
omponents, the


losures of whi
h are 
alled the (unbounded) preliminary puzzle pie
es asso
iated with

the given orbit portrait. (As in [K℄, we work with puzzle pie
es whi
h are 
losed

but not 
ompa
t. The asso
iated bounded pie
es 
an be obtained by interse
ting ea
h

unbounded puzzle pie
e with the 
ompa
t region en
losed by some �xed equipotential


urve.)

Most of these preliminary puzzle pie
es � have the Markov property that f maps �

homeomorphi
ally onto some union of preliminary puzzle pie
es. However, the puzzle

pie
e 
ontaining the 
riti
al point is ex
eptional: Its image under f 
overs the 
riti
al

value puzzle pie
e twi
e, and also 
overs some further puzzle pie
es on
e. To obtain

a modi�ed puzzle with more 
onvenient properties, we will subdivide this ex
eptional

pie
e into two 
onne
ted sub-pie
es.

Let �

1

be the preliminary puzzle pie
e 
ontaining the 
riti
al value. Then ��

1


onsists of the two rays whose angles bound the 
hara
teristi
 ar
 for P , together

with their 
ommon landing point, say z

1

. The pre-image �

0

= f

�1

(�

1

) is bounded

by two rays landing at the point z

0

= f

�1

(z

1

) \ O, together with two rays landing

at the symmetri
 point �z

0

. Note that �

0

is a 
onne
ted set 
ontaining the 
riti
al

point, and that the map f from �

0

onto �

1

is exa
tly two-to-one, ex
ept at the 
riti
al

point 0, whi
h maps to 
.
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The pv rays landing on O, together with these two additional rays landing on

�z

0

, 
ut the 
omplex plane up into pv � p + 2 
losed subsets whi
h we will 
all

the pie
es of the 
orre
ted puzzle asso
iated with P . These will be numbered as

�

0

; �

1

; : : : ; �

pv�p+1

, with �

0

and �

1

as above. The 
entral pie
e �

0

will be 
alled

the 
riti
al puzzle pie
e, and �

1

will be 
alled the 
riti
al value puzzle pie
e. This


orre
ted puzzle satis�es the following.

Modi�ed Markov Property. The puzzle pie
e �

0

maps onto �

1

by a 2-fold

bran
hed 
overing, while every other puzzle pie
e maps homeomorphi
ally onto a �nite

union of puzzle pie
es.

We 
an represent the allowed transitions by a Markov matrix M

ij

, where

M

ij

=

(

1 if �

i

maps homeomorphi
ally, with f(�

i

) � �

j

0 if f(�

i

) and �

j

have no interior points in 
ommon,

and where M

01

= 2 sin
e �

0

double 
overs �

1

. Sin
e f is quadrati
, note that

the sum of entries in any 
olumn is equal to 2. Equivalently, this same data 
an be

represented by a Markov graph, with one vertex for ea
h puzzle pie
e, and with M

ij

arrows from the i-th vertex to the j-th.

As an example, for the puzzle shown in Figure 13, we obtain the Markov graph of

Figure 14, or the following Markov matrix

�

M

ij

�

=

2

6

6

6

6

6

6

4

0 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 1 0 1

1 0 0 0 1 1

0 0 1 0 1 0

3

7

7

7

7

7

7

5

: (8)

To illustrate the idea of the proof of 7.1, let us show that any f having an orbit with

this portrait P must also have a repelling orbit with portrait Q = ff1=7; 2=7; 4=7gg.

(Compare the top impli
ation in Figure 5.) Inspe
ting the next to last row of the

matrix (8), we see that f(�

4

) = �

0

[ �

4

[ �

5

. Therefore, there is a bran
h g of

f

�1

whi
h maps the interior of �

4

holomorphi
ally onto some proper subset of itself.

This mapping g must stri
tly de
rease the Poin
ar�e metri
 for the interior of �

4

. On

the other hand, it is easy to 
he
k that the 1=7 ; 2=7 and 4=7 rays are all 
ontained

in the interior of �

4

. Hen
e their landing points, 
all them w

1

; w

2

and w

3

, are also


ontained in �

4

, ne
essarily in the interior, sin
e the points of K \ ��

4

have period

four. Now

g : w

1

7! w

3

7! w

2

7! w

1

;

and all positive distan
es are stri
tly de
reased. Thus if the distan
e from w

i

to w

j

were greater than zero, then applying g three times we would obtain a 
ontradi
tion.

This proves that w

1

= w

2

= w

3

, as required. This �xed point must be repelling, sin
e

g 
learly 
annot be an isometry.

A similar argument proves the following statement. Suppose that f = f




has an

orbit O with some given portrait P . By a Markov 
y
le for P we will mean an in�nite

sequen
e of non-
riti
al puzzle pie
es �

i

1

; �

i

2

: : : whi
h is periodi
, i

j

= i

j+m

with
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z1

z2
z3

z0

Π1

Π2

Π3
Π5

Π4

Π0

Figure 13. Julia set with a paraboli
 orbit of period four with 
hara
teristi


ar
 I(P) = (3=15 ; 4=15), showing the six 
orre
ted puzzle pie
es; and a 
or-

responding s
hemati
 diagram. (For the 
orresponding preliminary puzzle, see

the top of Figure 5.)

1 5

40

32

Figure 14. Markov graph asso
iated with the matrix (8), with one vertex for

ea
h puzzle pie
e. Sin
e f is quadrati
, there are two arrows pointing to ea
h

vertex.

period m � 1, and whi
h satis�es f(�

i

�

) � �

i

�+1

, so that M

i

�

i

�+1

= 1, for every �

modulo m.

Lemma 7.2. Realizing Markov Cy
les. Given su
h a Markov 
y
le, there is

one and only one periodi
 orbit z

1

7! � � � 7! z

m

for f




with period dividing m so that

ea
h z

�

belongs to �

i

�

, and this orbit is ne
essarily repelling unless it 
oin
ides with

the given orbit O (whi
h may be paraboli
). In parti
ular, for any angle t whi
h is
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periodi
 under doubling, if the dynami
 ray with angle 2

�

t lies in �

i

�

for all integers

�, then this ray must land at the point z

�

.

(Note that the period of t may well be some multiple of m, as in the example just

dis
ussed.)

Proof. There is a unique bran
h of f

�1




whi
h 
arries the interior of �

i

�+1

holo-

morphi
ally onto a subset of �

i

�

. Let g

i

�

be the 
omposition of these m maps, in the

appropriate reversed order so as to 
arry the interior of �

i

�

into itself.

A similar 
onstru
tion applies to the asso
iated external angles. Let J

i

� R=Z

be the set of all angles of dynami
 rays whi
h are 
ontained in �

i

. Thus ea
h J

i

is

a �nite union of 
losed ar
s, and together the J

i


over R=Z without overlap. Now

there is a unique bran
h of the 2-valued map t 7! t=2 whi
h 
arries J

i

�+1

into J

i

�

with derivative 1=2 everywhere. Taking an m-fold 
omposition, we map ea
h J

i

�

into

itself with derivative 1=2

m

. This 
omposition may well permute the various 
onne
ted


omponents of J

i

�

. However, some iterate must 
arry some 
omponent of J

i

�

into

itself, and hen
e have a unique �xed point t in that 
omponent. The landing point of

the 
orresponding dynami
 ray will be a periodi
 point z

�

2 �

i

�

.

Case 1. If this landing point belongs to the interior of �

i

�

, then it is �xed by some

iterate of our map g

i

�

. This map g

i

�


annot be an isometry, hen
e it must 
ontra
t

the Poin
ar�e metri
. Therefore every orbit under g

i

�

must 
onverge towards z

�

. Thus

z

�

is an attra
ting �xed point for g

i

�

, and hen
e is a repelling periodi
 point for f .

Case 2. If the landing point belongs to the boundary of �

i

�

then it must belong

to O [ f�z

0

g, and hen
e to the original orbit O sin
e �z

0

is not periodi
. Evidently

this 
ase will o

ur only when the angle t belongs to the union A

1

[ � � � [A

p

of angles

in the given portrait P . �

Note. It is essential for this argument that our given Markov 
y
le f�

i

�

g does

not involve the 
riti
al puzzle pie
e �

0

. In fa
t, as an immediate 
orollary we get the

following statement:

Corollary 7.3. Non-Repelling Cy
les. Any non-repelling periodi
 orbit for f

must interse
t the 
riti
al puzzle pie
e �

0

as well as the 
riti
al value puzzle pie
e �

1

.

Proof of 7.1. If I(P) � I(Q), then it follows from Lemma 2.9 that there exists a

map

^

f having both an orbit with portrait P and an orbit with portrait Q. The latter

orbit determines a Markov 
y
le in the puzzle asso
iated with P . (The 
ondition

I(P) � I(Q) guarantees that this 
y
le avoids the 
riti
al puzzle pie
e.) Now for any

map f with an orbit of portrait P , we 
an use this Markov 
y
le, together with 7.2, to


onstru
t the required periodi
 orbit and to guarantee that the rays asso
iated with

the portrait Q land on it, as required. �

In fa
t an argument similar to the proof of 7.2 proves a mu
h sharper statement.

Let O be a repelling periodi
 orbit with non-trivial portrait P .

Lemma 7.4. Orbits Bounded Away From Zero. Given an in�nite sequen
e

of non-
riti
al puzzle pie
es f�

i

k

g for k � 0 with f(�

i

k

) � �

i

k+1

, there is one and

only one point w

0

2 K(f) so that the orbit w

0

7! w

1

7! � � � satis�es w

k

2 �

i

k

for every k � 0. It follows that the a
tion of f on the 
ompa
t set K

P


onsisting

of all w

0

2 K(f) su
h that the forward orbit fw

k

g never hits the interior of �

0

is
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topologi
ally 
onjugate to the one-sided subshift of �nite type, asso
iated to the matrix

[M

ij

℄ with 0-th row and 
olumn deleted. In parti
ular, the topology of K

P

depends

only on P, and not on the parti
ular 
hoi
e of f within the P-wake.

Proof Outline. First repla
e ea
h puzzle pie
e �

i

by a slightly thi
kened puzzle

pie
e, as des
ribed in [M3℄. (Compare x8, Figure 18.) The interior of this thi
kened

pie
e is an open neighborhood N

i

� �

i

, with the property that f(N

i

) � N

j

whenever

f(�

i

) � �

j

. It then follows that there is a bran
h of f

�1

whi
h maps N

j

into N

i

,


arryingK\�

j

into K\�

i

, and redu
ing distan
es by at least some �xed ratio r < 1

throughout the 
ompa
t set K \ �

j

. Further details are straightforward. �

Presumably this statement remains true for a paraboli
 orbit, although the present

proof does not work in the paraboli
 
ase. (Compare [Ha℄.)

8. Renormalization.

One remarkable property of the Mandelbrot boundary is that it is densely �lled

with small 
opies of itself. (See Figures 11, 14 for a magni�ed pi
ture of one su
h

small 
opy.) This se
tion will provide a rough outline, without proofs, of the Douady-

Hubbard theory of renormalization, or the inverse operation of tuning, whi
h provides

a dynami
al explanation for these small 
opies. It is based on [D4℄ as well as [DH3℄,

[D3℄. (Compare [D1℄, [M1℄. For the Yo

oz interpretation of this 
onstru
tion, see

[Hu℄, [M3℄, [M
℄, [Ly℄. For a more general form of renormalization, see [M
℄, [RS℄.)

To begin the 
onstru
tion, 
onsider any orbit portrait P of ray period n � 2 and

valen
e v � 2. Let 
 be a parameter value inW

P

[fr

P

g, so that f = f




has a periodi


orbit O with portrait P , and let S = S(f) be the 
riti
al value se
tor for this orbit

(so that S is the 
riti
al value puzzle pie
e). To a �rst approximation, we 
ould try to

say that f is \P-renormalizable" if the orbit of 
 under f

Æn

is 
ompletely 
ontained

in S. In fa
t this is a ne
essary and suÆ
ient 
ondition whenever the map f

Æn�1

j

S

is univalent. However, in examples su
h as that of Figures 1, 2 one needs a slightly

sharper 
ondition.

Let I

P

= (t

�

; t

+

) be the 
hara
teristi
 ar
 for this portrait, so that �S 
onsists

of the dynami
 rays of angle t

�

and t

+

together with their 
ommon landing point z

1

,

and let ` = t

+

� t

�

be the length of this ar
.

Lemma 8.1. A (Nearly) Quadrati
-Like Map. The dynami
 rays of angle

t

0

1

= t

�

+`=2

n

and t

0

2

= t

+

�`=2

n

land at a 
ommon point z

0

6= z

1

in S\f

�n

(z

1

). Let

S

0

� S be the region bounded by �S together with these two rays and their 
ommon

landing point. Then the map f

Æn


arries S

0

onto S by a proper map of degree two,

with 
riti
al value equal to the 
riti
al value f(0) = 
.

This region S

0


an be des
ribed as the n-fold \pull-ba
k" of S along the orbit O.

(Compare Figure 16, whi
h also shows the �rst three forward images of S

0

.)

Proof of 8.1. First suppose that 
 2 W

P

is outside the Mandelbrot set. Then,

following Appendix A, we 
an bise
t the 
omplex plane by the two rays leading from

in�nity to the 
riti
al point. (Compare the proof of 2.9.) In order to 
he
k that the

two rays of angle t

0

1

and t

0

2

have a 
ommon landing point, we need only show that

they have the same symbol sequen
e with respe
t to the resulting partition. In other
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Figure 15. Detail near the period 4 hyperboli
 
omponent H

P

of Figure 12,

where P = P(1=5; 4=15), showing the �rst eight of the parameter se
tors whi
h

must be pruned away from M to leave the small Mandelbrot set 
onsisting of

P-renormalizable parameter values.

words, we must show, for every k � 0, that the 2

k

t

0

1

and 2

k

t

0

2

rays lie on the same

side of the bise
ting 
riti
al ray pair. For k � n this is 
lear sin
e 2

n

t

0

1

� t

+

and

2

n

t

0

2

� t

�

modulo Z.

Now 
onsider the 
riti
al puzzle pie
e �

0

of x7. Evidently �

0

is a neighborhood,

of angular radius `=4, of the bise
ting 
riti
al ray pair. For k < n � 1 the dynami


rays with angle 2

k

t

�

and 2

k

t

+

both lie in the same 
omponent of Cr�

0

. Sin
e 2

k

t

0

j

di�ers from 2

k

t

j

by at most `=4, it follows that the 2

k

t

0

1

and 2

k

t

0

2

rays have the same

symbol. Finally, for k = n� 1, it is not diÆ
ult to 
he
k that the 2

k

t

0

1

and 2

k

t

0

2

rays

both land at the same point �z

0

6= z

0

. This proves that the t

0

1

and t

0

2

rays land at the

same point, di�erent from z

1

, when 
 62 M . A straightforward 
ontinuity argument

now proves the same statement for all 
 2 W

P

.

Thus we obtain the required region S

0

� S. As in x2, it will be 
onvenient to


omplete the 
omplex plane by adjoining a 
ir
le of points at in�nity. Note that the

boundary of S

0

within this 
ir
led plane 

 
onsists of two ar
s of length `=2

n

at

in�nity, together with two ray pairs and their 
ommon landing points. As we traverse

this boundary on
e in the positive dire
tion, the image under f

Æn

evidently traverses

the boundary of S twi
e in the positive dire
tion. Using the Argument Prin
iple, it
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S
z1

z2
z3

z4

S

Figure 16. The n-fold pull-ba
k of the 
riti
al se
tor S along the orbit O,

illustrated s
hemati
ally for the orbit diagram of period n = 4 whi
h has 
har-

a
teristi
 ar
 (1=5; 4=15). Compare Figures 5 (top), 12, 16.

follows that the image of S

0

is 
ontained in S, and 
overs every point of S twi
e, as

required. Thus f

Æn

j

S

0

must have exa
tly one 
riti
al point, whi
h 
an only be 
. �

Thus we have an obje
t somewhat like a quadrati
-like map, as studied in [DH3℄.

Note however that S

0

is not 
ompa
tly 
ontained in S.

De�nition. We will say that f is P-renormalizable if f(0) = 
 is 
ontained in

the 
losure S

0

, and furthermore the entire forward orbit of 
 under the map f

Æn

is


ontained in S

0

. If this 
ondition is satis�ed, and the orbit of 
 is also bounded so that


 2M , then we will say that 
 belongs to the \small 
opy" P �M of the Mandelbrot

set whi
h is asso
iated with P . (This terminology will be justi�ed in 8.2. If the orbit

is unbounded, then we may say that 
 belongs to a P-renormalizable external ray.)

Closely asso
iated is the \small �lled Julia set" K

0

= K(f

Æn

jS

0

) 
onsisting of all

z 2 S

0

su
h that the entire forward orbit of z under f

Æn

is bounded and 
ontained in S

0

.

(Compare Figure 17.) Thus the 
riti
al value f(0) = 
 belongs to K

0

if and only if f is

P-renormalizable, with 
 2 M . As in the 
lassi
al Fatou-Julia theory, 
 belongs to

K

0

if and only if K

0

is 
onne
ted.

In order to tie this 
onstru
tion up with Douady and Hubbard's theory of polynomial-

like mappings, we need to thi
ken the se
tor S, and then 
ut it down to a bounded set.

(Compare [M3℄.) We ex
lude the ex
eptional spe
ial 
ase where 
 is the root point

r

P

. Thus we will suppose that the periodi
 point z

1

2 �S is repelling. Choose a small

disk D

�

about z

1

whi
h is mapped univalently by f

Æn




and is 
ompa
tly 
ontained in

f

Æn




(D

�

). Choose also a very small � > 0, and 
onsider the dynami
 rays with angle

t

�

� � and t

+

+ �. Following these rays until they �rst meet D

�

, they delineate an

open region T � S [ D

�

in C. (Compare Figure 18.) Now let T

0

be the 
onne
ted
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Figure 17. Julia set for the 
enter point of the period 12 satellite 
omponent

of Figure 12 (the point 
 of Figure 15), and a detail near the 
riti
al value 
,

showing the �rst eight of the se
tors of the dynami
 plane whi
h must be pruned

away to leave the small Julia set asso
iated with P-renormalization, with P as

in Figures 12, 15. (Here the right hand �gure has been magni�ed by a fa
tor

of 75.) This 
an be des
ribed as the Julia set of Figure 13 (left) tuned by a

\Douady rabbit" Julia set.

T

S

Figure 18. The se
tor S and the thi
kened se
tor T .


omponent of f

�n




(T ) whi
h 
ontains S

0

. It is not diÆ
ult to 
he
k that T

0

� T , and

that f

Æn





arries T

0

onto T by a proper map of degree two.

To obtain a bounded region, we let U be the interse
tion of T with the set

fz 2 C ; G

K

(z) < 1g, where G

K

is the Green's fun
tion for K = K(f




). Simi-

larly, let U

0

be the interse
tion T

0

with fz ; G

K

(z) < 1=2

n

g. Then U

0

is 
ompa
tly


ontained in U , and f

Æn





arries U

0

onto U by a proper map of degree two. In other

words, f

Æn




jU

0

is a quadrati
-like map.

Evidently the forward orbit of a point z 2 U

0

under f

Æn




is 
ontained in U

0

if and

only if z belongs to the small �lled Julia set K

0

. In parti
ular, for 
 2M , the map f




is P-renormalizable if and only if 
 2 K

0

, or if and only if K

0

is 
onne
ted.
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If these 
onditions are satis�ed, then a

ording to [DH3℄ the map f

Æn




restri
ted to

a neighborhood of K

0

is \hybrid equivalent" to some uniquely de�ned quadrati
 map

f




0

, with 


0

2M . Brie
y, we will write 
 = P � 


0

, or say that 
 equals P tuned by 


0

.

Douady and Hubbard show also that this 
orresponden
e




0

7! P � 


0

is a well de�ned 
ontinuous embedding of M r f1=4g onto a proper subset of itself.

As an example, as 


0

varies over the hyperboli
 
omponent H

ff0gg

whi
h is bounded

by the 
ardioid, they show that P � 


0

varies over the hyperboli
 
omponent H

P

.

It is 
onvenient to supplement this 
onstru
tion, by de�ning the operation

P ; 


0

7! P � 


0

in two further spe
ial 
ases. If 


0

is the root point 1=4 = r

ff0gg

of M , then we de�ne

P � (1=4) = r

P

to be the root point of the P-wake. Furthermore, if P = ff0gg is the zero orbit

portrait, then we de�ne ff0gg� to be the identity map,

ff0gg � 


0

= 


0

for all 


0

2 M . With these de�nitions, we have the following basi
 result of Douady

and Hubbard.

Theorem 8.2. Tuning. For ea
h non-trivial orbit portrait P, the 
orresponden
e


 7! P � 
 de�nes a 
ontinuous embedding of the Mandelbrot set M into itself. The

image of this embedding is just the \small Mandelbrot set" P �M � M des
ribed

earlier. Furthermore, there is a unique 
omposition operation P ; Q 7! P �Q between

non-trivial orbit portraits so that the asso
iative law is valid,

(P � Q) � 
 = P � (Q � 
)

for all P ; Q and 


0

. Under this � 
omposition operation, the 
olle
tion of all non-

trivial orbit portraits forms a free (asso
iative but non
ommutative) monoid, with the

zero orbit portrait as identity element.

The proof is beyond the s
ope of this note.

We 
an better understand this 
onstru
tion by introdu
ing a nested sequen
e of

open sets

S = S

(0)

� S

0

= S

(1)

� S

(2)

� � � �

in the dynami
 plane for f , where S

(k+1)

is de�ned indu
tively as S

(k)

\f

�n

(S

(k)

) for

k � 1. Thus S = S

(0)

is bounded by the dynami
 rays of angle t

�

and t

+

, together

with their 
ommon landing point z

1

. Similarly, S

(1)

is bounded by �S

(0)

together

with the rays of angle t

�

+ `=2

n

and t

+

� `=2

n

, together with their 
ommon landing

point, whi
h is an n-fold pre-image of z

1

. If 
 2 S

(1)

, so that S

(2)

is a 2-fold bran
hed


overing of S

(1)

, then S

(2)

has two further boundary 
omponents, namely the rays of

angle t

�

+ `=2

2n

and t

�

+ `=2

n

� `=2

2n

and their 
ommon landing point, together

with the rays of angle t

+

� `=2

n

+ `=2

2n

and t

+

� `=2

2n

and their 
ommon landing

point, for a total of 4 boundary 
omponents. Similarly, if 
 2 S

(2)

, then S

(3)

has 8

boundary 
omponents, as illustrated in Figure 17.
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The angles whi
h are left, after we have 
ut away the angles in all of these (open)

se
tors, form a standard middle fra
tion Cantor set K, whi
h 
an be des
ribed as

follows. Let � be the fra
tion 1� 2=2

n

. Start with the 
losure [t

�

; t

+

℄ of the 
hara
-

teristi
 ar
 for P , with length `. First remove the open middle segment of length � `,

leaving two ar
s of length `=2

n

. Then, from ea
h of these two remaining 
losed ar
s,

remove the middle segment of length � `=2

n

, leaving four segments of length `=2

2n

,

and 
ontinue indu
tively. The interse
tion of all of the sets obtained in this way is

the required Cantor set K � [t

�

; t

+

℄ of angles. These are pre
isely the angles of the

dynami
 rays whi
h land on the small Julia set �K

0

(at least if we assume that these

Julia sets are lo
ally 
onne
ted).

There is a 
ompletely analogous 
onstru
tion in parameter spa
e, as illustrated in

Figure 15. As noted earlier, parameter rays of angle t

�

and t

+

land on a 
ommon

point r

P

, and together form the boundary of the P-wake. Similarly, the parameter

rays of angle t

�

+ `=2

n

and t

+

� `=2

n

must land at a 
ommon point. These rays,

together with their landing point, 
utW

P

into two halves. For 
 in the inner half, with

boundary point r

P

, the 
riti
al value of f




lies in S

0

= S

(1)

, while for 
 in the outer

half, this is not true. Similarly, for ea
h pair of dynami
 rays with a 
ommon landing

point in �K, forming part of the boundary of S

(k)

, there is a pair of parameter rays

with the same angles whi
h have a 
ommon landing point in �M and form part of the

boundary of a 
orresponding region W

(k)

P

in parameter spa
e. The basi
 property is

that 
 2 W

(k)

p

if and only if 
 belongs to the 
orresponding region S

(k)

in the dynami


plane for f




.

Dynami
ally, the Cantor set K � R=Z 
an be des
ribed as the set of angles in

[t

�

; t

�

+ `=2

n

℄ [ [t

+

� `=2

n

; t

+

℄

su
h that the entire forward orbit under multipli
ation by 2

n

is 
ontained in this set.

Evidently the resulting dynami
al system is topologi
ally isomorphi
 to the one-sided

two-shift. Thus ea
h element t 2 K 
an be 
oded by an in�nite sequen
e (b

0

; b

1

; : : : )

of bits, where ea
h b

k

is zero or one a

ording as 2

nk

t belongs to the left or right

subar
. We will write t = P � (b

0

b

1

b

2

� � � ). Intuitively, we 
an identify this sequen
e

of bits b

i

with the angle :b

0

b

1

b

2

� � � =

P

b

k

=2

k+1

. However, some 
are is needed

sin
e the 
orresponden
e :b

0

b

1

b

2

� � � 7! P � (b

0

b

1

� � � )has a jump dis
ontinuity at every

dyadi
 rational angle, i.e., at those angles 
orresponding to gaps in the Cantor set K.

Thus we must distinguish between the left hand limit P ��� and the right hand limit

P � �+ when � is a dyadi
 rational.

With this notation, the angles of the bounding rays for the various open sets S

(k)

,

or for the 
orresponding sets W

(k)

P

in parameter spa
e, are just these left and right

hand limits P � ��, where � varies over the dyadi
 rationals; and the 
omposition

operation between non-trivial orbit portraits 
an be des
ribed as follows: If Q has


hara
teristi
 ar
 (t

�

; t

+

), then P � Q has 
hara
teristi
 ar
 (P � t

�

; P � t

+

). For

further details, see [D3℄.
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9. Limbs and the Satellite Orbit.

Let P be a non-trivial orbit portrait with period p � 1 and ray period rp � p.

(Thus P may be either a primitive or a satellite portrait.) Re
all that the limb M

P


onsists of all points whi
h belong both to the Mandelbrot set M and to the 
losure

W

P

of the P-wake. By de�nition, a limb M

Q

with Q 6= P is a satellite of M

P

if its

root point r

Q

belongs to the boundary of the asso
iated hyperboli
 
omponent H

P

.

(See 6.4.) We will prove the following two statements. (Compare [Hu℄, [S�℄, [S3℄.)

Theorem 9.1. Limb Stru
ture. Every point in the limb M

P

either belongs to the


losure H

P

of the asso
iated hyperboli
 
omponent, or else belongs to some satellite

limb M

Q

.

(For a typi
al example, see Figure 12.) For any parameter value 
 in the wakeW

P

,

let O(
) = O

P

(
) be the repelling orbit for f




whi
h has period p and portrait P .

Clearly this orbit O(
) varies holomorphi
ally with the parameter value 
.

Corollary 9.2. The Satellite Orbit. To any 
 2 W

P

there is asso
iated another

orbit O

?

(
) = O

?

P

(
), distin
t from O(
), whi
h has period n = rp and whi
h also

varies holomorphi
ally with the parameter value 
. As 
 tends to the root point r

P

, the

two orbits O(
) and O

?

(
) 
onverge towards a 
ommon paraboli
 orbit of portrait P.

(Compare 4.1.) This asso
iated orbit O

?

(
) is attra
ting if 
 belongs to the hyperboli



omponent H

P

� W

P

, indi�erent for 
 2 �H

P

, and is repelling for 
 2 W

P

rH

P

,

with portrait equal to Q if 
 belongs to the satellite wake W

Q

.

As an example, both statements apply to the zero portrait, with M

ff0gg

equal to

the entire Mandelbrot set, with W

ff0gg

= Cr (1=4;+1), and with H

ff0gg

bounded

by the 
ardioid. In this 
ase, for any 
 2 W

ff0gg

, the orbit O(
) 
onsists of the beta

�xed point (1+

p

1� 4
)=2 while O

?

(
) 
onsists of the alpha �xed point (1�

p

1� 4
)=2,

taking that bran
h of the square root fun
tion with

p

1 = 1.

Proof of 9.1. For ea
h 
 2 H

P

let O

?

(
) be the unique attra
ting periodi


orbit. By the dis
ussion in x6, this orbit extends analyti
ally as we vary 
 over

some neighborhood of the 
losure H

P

, provided that we stay within the wake W

P

.

Furthermore, this orbit be
omes stri
tly repelling as we 
ross out of H

P

. Therefore

we 
an 
hoose a neighborhoodN ofH

P

whi
h is small enough so that this analyti
ally


ontinued orbit O

?

(
) will be stri
tly repelling for all 
 2 N \W

P

r H

P

. If 
 also

belongs to the Mandelbrot set, so that 
 2 N \M

P

r H

P

, it follows that at least

one rational dynami
 ray lands on the orbit O

?

(
); hen
e there is an orbit portrait

Q = Q(
) of period n asso
iated with O

?

(
). Choosing the neighborhood N even

smaller if ne
essary, we will show that the rotation number of Q(
) is non-zero, and

hen
e that this portrait Q(
) is non-trivial. In other words, we will prove that 


belongs to a limb M

Q

whi
h is asso
iated to the orbit O

?

(
).

First 
onsider a point 
̂ whi
h belongs to the boundary �H

P

. Then O

?

(
̂) is an

indi�erent periodi
 orbit, with multiplier on the unit 
ir
le. Consider some dynami


ray R

K

t

whi
h has period n, but does not parti
ipate in the portrait P , and hen
e

does not land on the original orbit O(
̂). Su
h a ray 
ertainly 
annot land on O

?

(
̂),

for that would imply that O

?

(
̂) was a repelling or paraboli
 orbit of rotation number

zero. However, for 
̂ in the boundary of H

P

the orbit O

?

(
̂) is never repelling, and
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is paraboli
 of rotation number zero only when 
̂ is the root point of H

P

, so that

O

?

(
̂) = O(
̂). Sin
e we have assumed that the ray R

K

t

does not land on O(
̂),

it must land on some repelling or paraboli
 periodi
 point whi
h is disjoint from

O

?

(
̂). In fa
t it must land on a repelling orbit, sin
e a quadrati
 map 
annot have a

paraboli
 orbit and also a disjoint indi�erent orbit. (Compare x6.) Now as we perturb


 throughout some neighborhood of 
̂ it follows that the 
orresponding ray still lands

on a repelling periodi
 point disjoint from O

?

(
). Sin
e O

?

(
) has period n, but no

ray of period n 
an land on it, this proves that the rotation number of the asso
iated

portrait Q(
) is non-zero, as asserted.

Let X be any 
onne
ted 
omponent of M

P

r H

P

. Sin
e the Mandelbrot set is


onne
ted, X must have some limit point in �H

P

. Therefore, by the argument above,

some point 
 2 X must belong to a wake W

Q

asso
iated with the orbit O

?

(
). Sin
e

the portrait Q has period n, the root point r

Q

of its wake must lie on the boundary

of some hyperboli
 
omponent H

0

whi
h has period n and is 
ontained in W

P

. In

fa
t, for suitable 
hoi
e of 
, we 
laim that H

0


an only be H

P

itself. There are

�nitely many other 
omponents of period n, but these others are all bounded away

from H

P

, while the point 
 2 X 
an be 
hosen arbitrarily 
lose to H

P

. Thus we may

assume that W

Q

is rooted at a point of �H

P

, and hen
e is a satellite wake. Sin
e the


onne
ted set X 
annot 
ross the boundary of W

Q

, it follows that X is 
ompletely


ontained within W

Q

, whi
h 
ompletes the proof of 9.1 �

Proof of 9.2. As in the argument above, the orbit O

?

(
) is well de�ned for 
 in

some neighborhood of W

P

\ H

P

, and we 
an try to extend analyti
ally throughout

the simply 
onne
ted region W

P

. There is a potential obstru
tion if we ever rea
h

a point in W

P

where the multiplier �

n

of this analyti
ally extended orbit is equal

to +1. However, this 
an never happen. In fa
t su
h a point would have to belong

to the Mandelbrot set, and hen
e to some satellite limb M

Q

. But we 
an extend

analyti
ally throughout the asso
iated wake W

Q

, taking O

?

(
) to be the repelling

orbit O

Q

(
) for every 
 2W

Q

. Thus there is no obstru
tion. It follows similarly that

the analyti
ally extended orbit must be repelling everywhere in W

P

rH

P

. For if it

be
ame non-repelling at some point 
, then again 
 would have to belong to some

satellite limb M

Q

, but O

?

(
) is repelling throughout the wake W

Q

. �

Corollary 9.3. Limb Conne
tedness. Ea
h limb M

P

= M \W

P

is 
onne
ted,

even if we remove its root point r

P

.

Proof. The entire Mandelbrot set is 
onne
ted by [DH1℄. It follows that ea
hM

P

is 
onne
ted. For if some limbM

P


ould be expressed as the union of two disjoint non-

va
uous 
ompa
t subsets, then only one of these two 
ould 
ontain the root point r

P

.

The other would be a non-trivial open-and-
losed subset of M , whi
h is impossible.

Now 
onsider the open subset M

P

r fr

P

g. This is a union of the 
onne
ted set

H

P

r fr

P

g, together with the various satellite limbs M

Q

, where ea
h M

Q

has root

point r

Q

belonging to H

P

r fr

P

g. Sin
e ea
h M

Q

is 
onne
ted, the 
on
lusion

follows. �

Remark 9.4. It follows easily that every satellite root point separates the Mandelbrot

set into exa
tly two 
onne
ted 
omponents, and hen
e that exa
tly two parameter rays
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Figure 19. Pi
ture in the dynami
 plane for a polynomial f




with 
 62 M , and

a 
orresponding pi
ture in the parameter plane .

land at every su
h point. For a proof of the 
orresponding statement for a primitive

root (other than 1=4) see [Ta℄ or [S3℄.

Appendix A. Totally Dis
onne
ted Julia Sets and the Mandelbrot set.

This appendix will be a brief review of well known material. For any parameter

value 
, let K = K(f




) be the �lled Julia set for the map f




(z) = z

2

+ 
, and let

G(z) = G

K

(z) = lim

n!1

1

2

n

log

�

�

f

Æn

(z)

�

�

be the 
anoni
al potential fun
tion or Green's fun
tion, whi
h vanishes only on K, and

satis�es G(f(z)) = 2G(z). The level sets fz ; G(z) = G

0

g are 
alled equipotential


urves for K, and the orthogonal traje
tories whi
h extend to in�nity are 
alled the

dynami
 rays R

K

t

, where t 2 R=Z is the angle at in�nity.

Now suppose that K is totally dis
onne
ted (and hen
e 
oin
ides with the Julia

set J = �K). Then the value G(0) = G(
)=2 > 0 plays a spe
ial role. In fa
t there

is a 
anoni
al 
onformal isomorphism  




from the open set fz ; G(z) > G(0)g to

the region fw ; log jwj > G(0)g. The map z 7! f(z) on this region is 
onjugate

under  




to the map w 7! w

2

, and the equipotentials and dynami
 rays in the z-plane


orrespond to 
on
entri
 
ir
les and straight half-lines through the origin respe
tively

in the w-plane. In parti
ular, if we 
hoose a 
onstant G

0

> G(0), then the lo
us

fz ; G(z) = G

0

g is a simple 
losed 
urve, 
anoni
ally parametrized by the angle of

the 
orresponding dynami
 ray. In parti
ular, the 
riti
al value 
 2 CrK has a well

de�ned external angle, whi
h we denote by t(
) 2 R=Z. Thus  




(
)=j 




(
)j = e

2�it(
)

,

and 
 belongs to the dynami
 ray R

t(
)

= R

K

t(
)

.
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However, for G

0

= G(0) this lo
us fz ; G(z) = G(0)g is a �gure eight 
urve. The

open set fz ; G(z) < G(0)g splits as a disjoint union U

0

[ U

1

, where the U

b

are the

regions en
losed by the two lobes of this �gure eight. (We 
an express this splitting in

terms of dynami
 rays as follows. The rayR

K

t(
)

� CrK has two preimage rays under

f




, with angles t(
)=2 and (1 + t(
))=2 respe
tively. Ea
h of these joins the 
riti
al

point 0 to the 
ir
le at in�nity, and together they 
ut C into two open subsets, say

V

0

� U

0

and V

1

� U

1

. If 
 does not belong to the positive real axis, then we 
an 
hoose

the labels for these open sets so that the zero ray is 
ontained in V

0

, and 
 2 V

1

.)

We then 
ut the �lled Julia set K into two disjoint 
ompa
t subsets K

b

= K \ U

b

.

These 
onstitute a Bernoulli partition. That is, for any one-sided-in�nite sequen
e of

bits b

0

; b

1

; : : : 2 f0; 1g, there is one and only one point z 2 K with f

Æk




(z) 2 K

b

k

for

every k � 0. To prove this statement, let U be the region fz ; G(z) < G(
)g and let

�

b

: U ! U

b

be the bran
h of f

�1

whi
h maps U di�eomorphi
ally onto U

b

. Using

the Poin
ar�e metri
 for U , we see that ea
h �

b

shrinks distan
es by a fa
tor bounded

away from one, and it follows easily that the diameter of the image

�

b

0

Æ �

b

1

Æ � � � Æ �

b

n

(U)

shrinks to zero, so that this interse
tion shrinks to a single point z 2 K, as n ! 1.

Thus ea
h point of J = K 
an be uniquely 
hara
terized by an in�nite sequen
e of

symbols (b

0

; b

1

; : : : ) with b

j

2 f0; 1g. In parti
ular, K is homeomorphi
 to the

in�nite 
artesian produ
t f0; 1g

N

, where the symbol N stands for the set f0; 1; 2; : : :g

of natural numbers. We say that the dynami
al system (K; f




j

K

) is a one sided shift

on two symbols.

Similarly, given any angle t 2 R=Z, if none of the su

essive images 2

k

t (mod Z)

under doubling is pre
isely equal to t(
)=2 or (1 + t(
))=2, then t has an asso
iated

symbol sequen
e, 
alled its t(
)-itinerary, and the ray R

K

t

lands pre
isely at that

point of K whi
h has this symbol sequen
e. For the spe
ial 
ase t = t(
), this symbol

sequen
e 
hara
terizes the point 
 2 K, and is 
alled the kneading sequen
e for 


or for t(
). (However, if t(
) is periodi
, there is some ambiguity sin
e the symbols

b

n�1

; b

2n�1

; : : : of the kneading sequen
e are not uniquely de�ned in the period n


ase.)

If t is periodi
 under doubling, then the itinerary is periodi
 (if uniquely de�ned),

and the ray R

K

t

lands at a periodi
 point of K. For further dis
ussion, see [LS℄, as

well as Appendix B.

Here we have been thinking of 
 = f(0) as a point in the dynami
 plane (the z-

plane), but we 
an also think of 
 2 C rM as a point in the parameter plane (the


-plane). In fa
t Douady and Hubbard 
onstru
t a 
onformal isomorphism from the


omplement ofM onto the 
omplement of the 
losed unit disk by mapping 
 2 CrM

to the point  




(
) = exp(G

K

(
) + 2�it(
)) 2 C rD. Thus they show that the value

of the Green's fun
tion on 
 and the external angle t(
) of 
 are the same whether 
 is


onsidered as a point of CrK(f




) or as a point of CrM . In parti
ular, the point


 2 CrM lies on the external ray R

M

t(
)

for the Mandelbrot set.
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Appendix B. Computing Rotation Numbers.

This appendix will outline how to a
tually 
ompute the rotation number q=r of a

periodi
 point for a map f




with 
 62 M . Let � = t(
) 2 R=Z be the angle of the

external ray whi
h passes through 
. We may identify this 
riti
al value angle with a

number in the interval 0 < � � 1. The two preimages of � under the angle doubling

map m

2

: R=Z! R=Z separate the 
ir
le R=Z into the two open ar
s

I(0) = I

�

(0) =

�

� � 1

2

;

�

2

�

and I(1) = I

�

(1) =

�

�

2

;

� + 1

2

�

:

(We will write I

�

instead of I whenever we want to emphasize dependen
e on the


riti
al value angle � .) For any �nite sequen
e b

0

; b

1

; : : : ; b

k

of zeros and ones, let

I(b

0

; b

1

; : : : ; b

k

) be the 
losure of the open set

I(b

0

; b

1

; : : : ; b

k

) = I(b

0

) \m

�1

2

I(b

1

) \ � � � \m

�k

2

I(b

k

)


onsisting of all t 2 R=Z with m

Æi

2

(t) 2 I(b

i

) for 0 � i � k. (Caution: This is not the

same as the interse
tion of the 
orresponding 
losures m

�i

2

I(b

i

), whi
h may 
ontain

additional isolated points.) An easy indu
tion shows that I(b

0

; b

1

; : : : ; b

k

) is a �nite

union of 
losed ar
s with total length 1=2

k+1

. If � = (b

0

; b

1

; : : : ) is any in�nite

sequen
e of zeros and ones, it follows that the interse
tion

I(�) =

\

k

I(b

0

; b

1

; : : : ; b

k

)

is a 
ompa
t non-va
uous set of measure zero. For ea
h angle t 2 R=Z there are two

possibilities:

Pre
riti
al Case. If t satis�es m

Æi

2

(t) � � for some i > 0, then there will be two

distin
t in�nite symbol sequen
es with t 2 I(b

0

; b

1

; b

2

� � � ). In this 
ase, the asso
iated

dynami
 ray R

K

t

does not land, but rather boun
es o� some pre
riti
al point for the

map f




. (Compare [GM℄.)

Generi
 Case. Otherwise there will be a unique in�nite symbol sequen
e with

t 2 I(b

0

; b

1

; � � � ). The 
orresponding ray R

K

t

will land at the unique point of the

Julia set for f




whi
h has this same symbol sequen
e, as des
ribed in Appendix A. In

parti
ular, if t is periodi
 under doubling, then R

K

t

must land at a periodi
 point of

the Julia set, possibly with smaller period.

Lemma B.1. Symbol Sequen
es and Rotation Numbers. For any symbol

sequen
e � = (b

0

; b

1

; : : : ) 2 f0; 1g

N

whi
h is periodi
 of period p, the map m

Æp

2

on the


ompa
t set I

�

(�) � R=Z has a well de�ned rotation number rot(b

0

; : : : ; b

p�1

; �) 2

R=Z whi
h is invariant under 
y
li
 permutation of the bits b

i

. This number in
reases

monotoni
ally with � , and winds b

0

+ � � �+ b

p�1

times around the 
ir
le as � in
reases

from 0 to 1.

To see this, we introdu
e an auxiliary monotone degree one map whi
h is de�ned

on the entire 
ir
le and agrees with m

Æp

2

on I

�

(�). (Compare [GM℄.) By de�nition, a

monotone degree one 
ir
le map  : R=Z! R=Z is the redu
tion modulo Z of a map

	 : R! R whi
h is monotone in
reasing and satis�es the identity 	(u+1) = 	(u)+1.
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τ

1

2

τ/2 τ/2(1+τ)/2 (1+τ)/2

1+τ

Figure 20. Graphs of �

0;�

and �

1;�

(with � = 0:6.)

Su
h a 	, 
alled a lift of  , is unique up to addition of an integer 
onstant. The

translation number of su
h a map 	 is de�ned to be the real number

Trans(	) = lim

k!1

�

	

Æk

(u)� u

�

=k :

This always exists, and is independent of u. The rotation number rot( ) of the asso-


iated 
ir
le map is now de�ned to be the image of this real number Trans(	) under

the proje
tion R ! R=Z. This is well de�ned, sin
e Trans(	 + 1) = Trans(	) + 1.

One important property is the identity

Trans(	

1

Æ	

2

) = Trans(	

2

Æ	

1

) ; (9)

where 	

1

and 	

2

are the lifts of two di�erent monotone degree one 
ir
le maps. If 	

1

is a homeomorphism, this is just invarian
e under a suitable 
hange of 
oordinates,

and the general 
ase follows by 
ontinuity.

Given any b 2 f0; 1g, and given a 
riti
al value angle � , de�ne an auxiliary mono-

tone map �

b;�

by the formula

�

b;�

(u) =

(

min(2u ; �) if b = 0;

max(2u ; �) if b = 1;

for u between (� � 1)=2 and (� +1)=2, extending by the identity �(u+1) = �(u)+ 1

for u outside this interval. (See Figure 20.) Note that I(b) is just the set of points

on the 
ir
le where the asso
iated 
ir
le map �

b;�

is not lo
ally 
onstant, and that

�

b;�

(u) � 2u (mod Z) whenever u 2 I(b).

For any symbol sequen
e � whi
h is periodi
 of period p, we set �

�;�

equal to the

p-fold 
omposition �

b

p�1

;�

Æ � � � Æ �

b

0

;�

. (Note that I

�

(�) is just the set of all points

t 2 R=Z su
h that the orbit of t under the asso
iated 
ir
le map �

�;�


oin
ides with

the orbit of t underm

Æp

2

.) This 
omposition is also monotone, with �(t+1) = �(t)+1,
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1

2

τ
1/7 6/7

Rot

Figure 21. The translation number as a fun
tion of the 
riti
al value exterior

angle � for the period 3 point with symbol sequen
e 110 = (1; 1; 0; 1; 1; 0; : : : ).

and therefore has a well de�ned translation number, whi
h we denote by

Trans(b

0

; � � � ; b

p�1

; �) = Trans(�

�;�

) 2 R :

It follows from property (9) that this translation number is invariant under 
y
li


permutation of the bits b

0

; : : : ; b

p�1

. Sin
e ea
h �

b;�

(u) in
reases monotoni
ally

with � , with �

b;0

(0) = 0 and �

b;1

(0) = b, it follows easily that Trans(�

�;�

) depends

monotoni
ally on � , in
reasing from 0 to b

0

+ � � � + b

p�1

as � in
reases from 0 to 1.

In other words its image in R=Z wraps b

0

+ � � � + b

p�1

times around the 
ir
le as �

varies from 0 to 1. By de�nition, the rotation number rot(b

0

; : : : ; b

p�1

; �) of m

Æp

2

on

the 
ompa
t set I

�

(�) is equal to the image of the real number Trans(�

�;�

) in the


ir
le R=Z. �

If a map f




has 
riti
al value angle t(
) = � , then it is not hard to see that

rot(b

0

; : : : ; b

p�1

; �) 
oin
ides with the rotation number as de�ned in 2.12 for the

orbit with periodi
 symbol sequen
e b

0

; : : : ; b

p�1

= (b

0

; : : : ; b

p�1

; b

0

; : : : ; b

p�1

; : : : ),

so long as at least one rational ray lands on this orbit. (Compare [GM, Appendix

C℄.)

We will use the notation S(q=r) for the orbit portrait with orbit period p = 1 and

rotation number q=r, asso
iated with the q=r-satellite of the main 
ardioid. (Compare

[G℄.) If P is an arbitrary orbit portrait, then P �S(q=r) 
an be des
ribed as its (q=r)-

satellite portrait. (See 6.4, 8.2.)

To any orbit portrait P with period p � 1 and ray period n = rp � p we 
an

asso
iate a symbol sequen
e � = �(P) of period p as follows. Choose any 
 62 M in

the wakeW

P

, and number the points of the f




-orbit with portrait P as z

0

7! z

1

7! � � � ,

where z

0

is on the boundary of the 
riti
al puzzle pie
e and z

1

is on the boundary

of the 
riti
al value puzzle pie
e. Now let �(P) be the symbol sequen
e for z

0

, as

des
ribed in Appendix A. This is independent of the 
hoi
e of 
 2W

P

rM

P

.

There is an asso
iated satellite symbol sequen
e �

?

= �

?

(P) of period n = rp,


onstru
ted as follows. (Compare 9.2.) By de�nition, the k-th bit of �

?

is identi
al to

the k-th bit of � for k 6� 0 (mod n), but is reversed, so that 0$ 1, when k � 0 (mod n).
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Lemma B.2. Satellite Symbol Sequen
es. For every satellite P � S(q

0

=r

0

) of

P, the symbol sequen
e �(P � S(q

0

=r

0

)) 
oin
ides with the satellite sequen
e �

?

(P).

The translation number Trans(�(P); �) is 
onstant for � in the 
hara
teristi
 ar
 I

P

,

while Trans(�

?

(P); �) in
reases by +1 as � in
reases through I

P

, taking the value

q

0

=r

0

(mod Z) on the 
hara
teristi
 ar
 of P � S(q

0

=r

0

).

Intuitively, if we tune a map in H

P

by a map in H

S(q

0

=r

0

)

then we must repla
e the

Fatou 
omponent 
ontaining the 
riti
al point for the �rst map by a small 
opy of

the �lled Julia set for a (q

0

=r

0

)-rabbit. Here the period p point z

0

for P 
orresponds

to the �-�xed point of this small rabbit, while the period n point z

0

for P � S(q

0

=r

0

)


orresponds to the � �xed point for this rabbit. Perturbing out of the 
onne
tedness

lo
usM , these two points will be separated by the ray pair terminating at the 
riti
al

point. Further details will be omitted. �

For example, starting with �

�

ff0gg

�

= 0, where the overline indi
ates in�nite

repetition, we �nd that

�(S(q=r)) = �

?

�

ff0gg

�

= 1 ;

while

�

?

(S(1=2)) = 01 ; �

?

(S(q=3)) = 011 ; �

?

(S(q=4)) = 0111 ; : : : :

We 
an use this dis
ussion to provide a di�erent insight on the 
ounting argument

of x5. Sin
e Trans(�

?

(P) ; �) in
reases by +1 on the 
hara
teristi
 ar
 I

P

, we see

that the total number of portraits (or the total number of 
hara
teristi
 ar
s) with ray

period rp = n is equal to the sum of b

0

+ � � �+ b

n�1

taken over all 
y
li
 equivalen
e


lasses of symbol sequen
es of period exa
tly n. But the number of su
h symbol

sequen
es, up to 
y
li
 permutation, is �

2

(n)=n, and the average value of b

0

+� � �+b

n�1

is equal to n=2, sin
e ea
h symbol sequen
e with sum di�erent from n=2 has an

opposite with zero and one inter
hanged. Therefore, this sum is equal to �

2

(n)=2, as

in x5.

Examples (Compare Figure 4). Here is a list for all 
y
li
 equivalen
e 
lasses of

symbol sequen
es of period at most four:

Trans(0 ; �) is identi
ally zero.

Trans(1 ; �) in
reases from 0 to 1 for 0 � � � 1, taking the value q=r in the


hara
teristi
 ar
 for S(q=r).

Trans(1; 0 ; �) in
reases from 0 to 1 as � passes through (1=3 ; 2=3), the 
hara
teristi


ar
 for S(1=2).

Trans(1; 0; 0 ; �) in
reases from 0 to 1 as � passes through the 
hara
teristi
 ar


(3=7 ; 4=7) for the period 3 portrait with root point 
 = �1:75.

Trans(1; 1; 0 ; �) in
reases by one in the ar
 (1=7 ; 2=7) for S(1=3), and by one more

in the ar
 (5=7 ; 6=7) for S(2=3). (Compare Figure 21.)

Trans(1; 0; 0; 0 ; �) in
reases by one in the ar
 (7=15 ; 8=15), 
orresponding to the

leftmost period 4 
omponent on the real axis.

Trans(1; 1; 0; 0 ; �) in
reases by one in the ar
s (1=5 ; 4=15) and (11=15 ; 4=5) asso
i-

ated with the period 4 
omponents on the 1=3

rd

and 2=3

rd

limbs. (Figure 12.)
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Trans(1; 1; 1; 0 ; �) in
reases by one in the ar
s (1=15 ; 2=15) and (13=15 ; 14=15) for

S(1=4) and S(3=4), and also in the ar
 (2=5 ; 3=5) for the portrait S(1=2) � S(1=2)

with root point �1:25.
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