
Is Entropy E�e
tively Computable?

Given an expli
it dynami
al system and given � > 0 , is it possible in prin
iple to 
om-

pute the asso
iated entropy, either topologi
al or measure-theoreti
, with a maximum error

of � ? In pra
ti
e, is there an e�e
tive pro
edure to 
arry out this 
omputation in a rea-

sonable length of time? In the most general 
ase, the answer to both questions is 
ertainly

no: Cellular automaton mappings from a Cantor set (namely a full shift) to itself have an

expli
it �nite des
ription, yet Hurd, Kari and Culik have shown that the asso
iated topolog-

i
al entropy is not algorithmi
ally 
omputable in general. For iterated smooth mappings in

dimension � 2 , or for smooth di�eomorphisms in dimension � 3 , Misiurewi
z has pointed

out that topologi
al entropy does not always depend 
ontinuously on parameters.
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This

suggests that 
omputation may be very diÆ
ult. On the other hand, for pie
ewise monotone

interval mappings, perhaps the simplest interesting dynami
al systems, there is an e�e
tive


omputation whi
h depends only on being able to order �nitely many forward images of the


riti
al points. A proof is sket
hed in [19, x5.10℄, based on [1℄. (Compare [14℄. For unimodal

or bimodal maps, the most eÆ
ient pro
edure is based on 
omparison with 
onstant slope

maps. Compare [4℄, [5℄, as well as [18℄.)

One quite general 
omputational method, based on the exponential growth of length

or volume, has been studied by Newhouse and Pignataro [22℄ (see also [21℄, [25℄). As an

example, they tabulate some entropy estimates for the H�enon family, but without any pre
ise

error bounds.

Di�eomorphisms of dimension two provide a ri
h family of reasonably stable examples

with a great deal of available theory. (Compare [3℄, [6℄-[13℄, [15℄, [17℄, [24℄.) Thus it seems

natural to ask whether topologi
al entropy 
an be e�e
tively 
omputed in this 
ase. For

orientation preserving di�eomorphisms F of the 2-sphere, every �nite invariant set S =

F (S) with n elements determines a 
lass �

S

of elements in the n-stranded braid group.

There is a minimum possible topologi
al entropy h

top

(�) asso
iated with any su
h braid-


lass; and an e�e
tive 
omputation for this asso
iated entropy has been given by Bestvina

and Handel. The topologi
al entropy h

top

(F ) 
an be des
ribed as the supremum, over all

�nite F -invariant sets, of these braid-entropies.
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Thus one way of looking for good lower

bounds for h

top

(F ) would be to sear
h for periodi
 orbits and then 
ompute the asso
iated

h

top

(�

S

) . It seems likely that one 
ould �nd upper bounds whi
h are good enough to prove

that h

top

(F ) is Turing 
omputable; although it is not at all 
ertain that one 
ould �nd an

algorithm whi
h is fast enough to be useful. For other related ideas towards 
omputation,

see [10℄.

There are two well known families of 2-dimensional di�eomorphisms, namely the H�enon

family on R

2

, and the \standard family" of torus di�eomorphisms. Either of these would

provide ex
ellent test 
ases.

For di�eomorphisms whi
h preserve some standard area form, one 
an ask the same

question about measure-theoreti
 entropy. Again H�enon maps and standard family maps
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Compare [20℄ (but see also [25℄, [21℄). One simple example is the family of maps f

t

(z) =

tz

2

from the 
losed unit disk to itself, with h

top

(f

1

) > 0 , but h

top

(f

t

) = 0 for jtj < 1 .
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This is proved in [6, Theorem 9.3℄, using [17℄. However, in the 
ase of homeomorphisms,

Mary Rees has given an example on T

2

with h

top

> 0 , but with no periodi
 orbits.

1



seem like ideal obje
ts to study.
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The area preserving H�enon 
ase (
ompare [12℄) is harder

to deal with, sin
e to de�ne h(F ) it is ne
essary to restri
t F to the union K(F ) of

all bounded orbits, and to require that K(F ) have positive area. Again, the question is

whether entropy 
an be 
omputed (in theory, and if possible in pra
ti
e) up to an error

whi
h 
an be made arbitrarily small. A

ording to Pesin, the measure-entropy of F 
an be


omputed as the limit as n!1 of 1=n times the average of log kDF

Æn

k . (Compare [2℄.)

For torus di�eomorphisms, and probably also for area preserving H�enon maps, this gives a

sequen
e of e�e
tively 
omputable upper bounds. However, I am not aware of any e�e
tive

lower bound.
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Both area preserving H�enon maps and standard maps 
an be put in the form

F (x

n�1

; x

n

) = (x

n

; x

n+1
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n�1

+ x

n+1

= f(x

n
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n

ranges over R and f(x) is a non-linear polynomial fun
tion su
h

as x

2
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