Institute for Mathematical Sciences

Preprint ims92-18

M. Lyubich
Combinatorics, Geometry and Attractors of Quasi-Quadratic Maps.

Abstract: The Milnor problem on one-dimensional attractors is solved for S-unimodal maps with a non-degenerate critical point c. It provides us with a complete understanding of the possible limit behavior for Lebesgue almost every point. This theorem follows from a geometric study of the critical set $\omega(c)$ of a "non-renormalizable" map. It is proven that the scaling factors characterizing the geometry of this set go down to 0 at least exponentially. This resolves the problem of the non-linearity control in small scales. The proofs strongly involve ideas from renormalization theory and holomorphic dynamics.
View ims92-18 (PDF format)