Institute for Mathematical Sciences

Preprint ims91-10

M. Lyubich
On the Lebesgue Measure of the Julia Set of a Quadratic Polynomial.

Abstract: The goal of this note is to prove the following theorem: Let $p_a(z) = z^2+a$ be a quadratic polynomial which has no irrational indifferent periodic points, and is not infinitely renormalizable. Then the Lebesgue measure of the Julia set $J(p_a)$ is equal to zero. As part of the proof we discuss a property of the critical point to be {\it persistently recurrent}, and relate our results to corresponding ones for real one dimensional maps. In particular, we show that in the persistently recurrent case the restriction $p_a|\omega(0)$ is topologically minimal and has zero topological entropy. The Douady-Hubbard-Yoccoz rigidity theorem follows this result.
View ims91-10 (PDF format)