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Abstract of the Dissertation

From Herman Rings to Herman Curves

by

Willie Rush Lim

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

Given a holomorphic map on a Riemann surface, an invariant set on which the map
is conjugate to irrational rotation is topologically equivalent to either a disk (Siegel disk),
an annulus (Herman ring), or a Jordan curve (Herman curve). The last one is the least
understood. The goal of this dissertation is threefold:

1. We obtain a priori bounds for a family of rational maps with Herman rings that are
independent of the conformal moduli. This is done via careful analysis of near-degenerate
surfaces in the spirit of Kahn, Lyubich, and D. Dudko. As a major application, we
study the limits of degenerating Herman rings and obtain the first examples of Herman
curves with bounded type rotation number which are not equivalent to round circles.

2. We study the rigidity properties of rational maps admitting bounded type Herman
curves that we constructed. We also prove a rigidity theorem for critical quasicircle
maps, i.e. analytic self-homeomorphisms of a quasicircle with a single critical point.
This implies dynamical universality and exponential convergence of renormalizations
towards a horseshoe attractor.

3. We prove the hyperbolicity of renormalization periodic points of critical quasicircle
maps by developing an operator called Corona Renormalization, a doubly connected
version of Pacman Renormalization for Siegel disks. The proof is inspired by rigidity
results on the escaping dynamics of transcendental entire functions.
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Chapter 1

Introduction

The Fatou set F (f) of a rational map f ∶ Ĉ→ Ĉ of degree at least two is defined as the set
of points in the Riemann sphere Ĉ around which the set of iterates of f is equicontinuous,
whereas the Julia set J(f) is the complement Ĉ/F (f). Fatou’s classification states that every
periodic component of the Fatou set of a rational map f must be either a basin of attraction
of a periodic point, or a rotation domain, i.e. a domain in which the first return map is
conjugate to an irrational rotation.

A rational map f is called hyperbolic if every critical point of f is attracted towards an
attracting periodic cycle. Hyperbolic maps are very well understood. For example, it is well
known that the Julia set of a hyperbolic rational map has zero Lebesgue measure; in layman’s
terms, there is 0% probability of picking a random point in Ĉ at which f is locally chaotic.
The following is a central conjecture in rational dynamics, dating back to Fatou.

Density of Hyperbolicity Conjecture. For any integer d ≥ 2, hyperbolic maps are dense
in the space Ratd of all degree d rational maps.

The existence of rotation domains is a clear obstruction to hyperbolicity, which makes it
worth studying. Every rotation domain is either simply connected, in which case it is called
a Siegel disk, or doubly connected, in which case it is called a Herman ring. Rational maps
admitting Siegel disks can be found on the boundary of hyperbolic components of Ratd. In
contrast, the location of rational maps admitting Herman rings is more mysterious.

Siegel disks have been actively studied in the last few decades. In the second half of the
last century, the study of local dynamics near a neutral fixed point has essentially received
a complete treatment by the works of Brjuno, Herman, Yoccoz, and Perez-Marco. At the
same time, the semi-local theory for Siegel disks of quadratic maps e2πiθz + z2 started with
the introduction of Douady-Ghys surgery [Dou87; Ghy84], which was based on the work of
Herman and Świątek [Her86; Świ88]. In contrast, the absence of periodic points associated to
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Herman rings makes them more difficult to study than Siegel disks. The construction of the
first examples of Herman rings was based on the study of linearizability of analytic circle
diffeomorphisms by Arnol’d and Herman. A more general construction was later established
by Shishikura. In [Shi87], Shishikura developed surgery procedures to construct Herman
rings out of two Siegel disks, and to convert Herman rings into Siegel disks.

Given an irrational number θ ∈ (0,1) with continued fraction expansion

θ = [0;a1, a2, a3, . . .] ∶=
1

a1 + 1
a2+

1
a3+...

,

we say that θ is of bounded type if an’s are uniformly bounded above, pre-periodic if there are
positive integers m and p such that an = an+p for all n ≥m, and periodic if additionally m = 1.
We will denote corresponding spaces by Θbdd, Θpre and Θper respectively.

Unlike Siegel disks, every rational map admitting a Herman ring H admits a non-trivial
moduli space arising from the deformation of the complex structure of H. In the first half
of this dissertation, we develop a machinery to obtain geometric bounds on such a moduli
space and control the degeneration near the boundary. We will later discuss how in some
cases (and we expect this to be true in general), the limit of degenerating Herman rings with
bounded type rotation number must be a Herman curve.

Definition 1.0.1. A periodic Jordan curve H of a rational map f is called a Herman curve
if the first return map of f on H is conjugate to irrational rotation, and H is not contained
in the closure of a rotation domain.

A Jordan curve H ⊂ Ĉ is called a (K-)quasicircle if it is the image of the unit circle
under a (K-)quasiconformal homeomorphism of Ĉ. Under the bounded type assumption,
the boundary components of the Herman rings as well as the limiting Herman curves in
consideration will all be K-quasicircles, and the control of the dilatation K is precisely our a
priori bounds. As a major application, we obtain examples of critical quasicircle maps which
are not equivalent to round circles.

Definition 1.0.2. A (uni -)critical quasicircle map is an orientation-preserving self homeo-
morphism f ∶H→H of a quasicircle which extends to a holomorphic map on a neighborhood
of H and has exactly one critical point on H.

For trivial reasons, we are exclusively concerned with the case when the rotation number
θ of f is irrational. There are two special well-studied special cases: the first is critical circle
maps when H = S1), and the second is Siegel maps when H is the boundary of a Siegel
disk. Our method of degeneration of Herman rings yields the existence of many more critical
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quasicircle maps beyond these two special cases. The first work on critical quasicircle maps
in full generality was done by Petersen [Pet96] who proved Denjoy distortion estimates and
showed that f is quasisymmetrically conjugate to irrational rotation if and only if θ is of
bounded type. Though we will primarily be working in the bounded type regime, let us note
that such estimates imply that, for any irrational θ, f is topologically conjugate to irrational
rotation.

Various classes of one-dimensional dynamical systems exhibit remarkable universal proper-
ties. The two main examples of universality include the golden mean universality phenomena
empirically observed in smooth families of critical circle maps by Feigenbaum et al. [FKS82]
and Östlund et al. [Öst+83], as well as the Feigenbaum-Coullet-Tresser universality observed
in unimodal maps [Fei78; Fei79; TC78; CT79]. Both cases have been successfully justified
via renormalization theory. In the second half of this dissertation, we show that our class of
dynamical systems also exhibit universality. We initiate the study of renormalization theory
of critical quasicircle maps, extending the classical renormalization theory of critical circle
maps, via various old and new techniques in complex dynamics.

1.1 Main results

The main results of this dissertation are captured in three separate articles [Lim23a; Lim23b;
Lim24]. Let us summarize them in greater detail. Throughout, we will fix a pair of integers
d0, d∞ ≥ 2 and set d ∶= d0 + d∞ − 1. Any irrational number θ ∈ (0,1) in consideration will
always be assumed to be of bounded type.

1.1.1 A priori bounds of Herman rings

Douady-Ghys surgery procedure can be applied to prove that bounded type Siegel disks of
quadratic maps are quasidisks containing a critical point on the boundary. Such a result
was generalized by Zakeri [Zak99] for cubic polynomials, by Shishikura for polynomials of
arbitrary degree, and ultimately by Zhang [Zha11] for rational maps. Moreover, Zhang proved
a priori bounds for Siegel disks: the dilatation of the boundary of every invariant Siegel disk
with rotation number θ ∈ Θbdd of a rational map f depends only on the degree of f and the
bound

β(θ) ∶=max
i
ai < ∞

of the continued fraction expansion [0;a1, a2, . . .] of θ.
By Shishikura’s surgery, Zhang’s results also translate to Herman rings as follows. Every

boundary component of a bounded type invariant Herman ring H of a rational map f is a
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K-quasicircle containing a critical point, where the dilatation K depends only on the degree
of f , the bound β(θ) associated to its rotation number θ, and the modulus of H. We will
develop the machinery to remove the dependence of the modulus and obtain a priori bounds.

Definition 1.1.1. We define H = Hd0,d∞,θ to be the space of all degree d0 + d∞ − 1 rational
maps f such that

(I) 0 and ∞ are superattracting fixed points of f with local degrees d0 ≥ 2 and d∞ ≥ 2
respectively;

(II) the map f admits an invariant Herman ring H with rotation number θ ∈ Θbdd;

(III) H separates 0 and ∞;

(IV) every critical point of f other than 0 and ∞ lies on the boundary of H.

The space H encapsulates general Herman rings of the simplest configuration that can be
obtained from Shishikura’s surgery: they can be constructed out of two polynomials having
unique invariant Siegel disks satisfying conditions similar to (IV). The existence and rigidity
of maps in H of any prescribed combinatorics are guaranteed by a Thurston-type result by
Wang [Wan12]. The following is our first main theorem.

Theorem A (A priori bounds). The boundary components of the Herman ring of every map
in H are quasicircles with dilatation depending only on d0, d∞, and β(θ).

The proof of this theorem is achieved in the Near-Degenerate Regime. We adapt the
vocabulary developed by D. Dudko and Lyubich [DL22] and reduce the theorem to studying
a family of near-degenerate surfaces. We prove by contradiction, apply tools such as the
Quasi-Additivity Law and the Covering Lemma [KL05], and adapt the strategy in Kahn’s
seminal work [Kah06] on a priori bounds for infinitely renormalizable quadratic maps with
bounded primitive combinatorics. A more comprehensive summary can be found in §1.2.1
and §1.3.

1.1.2 Existence and rigidity of Herman curves

Let us view H as a subspace of the space Ratd of degree d rational maps endowed with the
topology of uniform convergence on compact subsets. Denote the corresponding limit space
by

∂H ∶= H/H ⊂ Ratd.

One consequence of Theorem A is that as maps in H approach ∂H, the corresponding Herman
rings must degenerate to a Herman quasicircle, i.e. a Herman curve that is also a quasicircle.
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Corollary B. ∂H is contained in the space X of degree d rational maps f such that

(i) 0 and ∞ are superattracting fixed points of f with local degrees d0 ≥ 2 and d∞ ≥ 2

respectively;

(ii) the function f admits a Herman quasicircle H of rotation number θ;

(iii) H separates 0 and ∞;

(iv) every critical point of f other than 0 and ∞ lies in H;

(v) the conjugacy between f ∣H and Rθ∣T is quasisymmetric with dilatation depending only
on d0, d∞ and β(θ).

The combinatorics of a map f in X is encoded by the relative position of critical points
along the Herman quasicircle of f and their inner and outer local degrees. All (topologically)
admissible combinatorial data can be identified with points in the space C = Cd0,d∞ , a compact
connected real orbifold of dimension d − 2. (See Definition 3.1.5.)

Let us denote f ∼ g when two rational maps f and g are conjugate by a linear map z ↦ λz.
Denote by [f] the linear conjugacy class of a rational map f . The combinatorics comb(f) ∈ C
of a map in X is invariant under linear conjugacy.

Theorem C (Realization and combinatorial rigidity). The two spaces X and ∂H are equal.
The map

X/∼ → C, [f] ↦ comb(f)

is a homeomorphism. In other words, given any prescribed combinatorics, there exists a
rational map in X having a Herman quasicircle that realizes such combinatorics, and if two
maps in X have the same combinatorics, then they are conformally conjugate.

Part of this theorem states that any combinatorics can be realized, and this is a consequence
of a priori bounds. The rest of the theorem describes the combinatorial rigidity of X , and this
is proven by showing that every map f in X admits no invariant line field on its Julia set.

An invariant line field µ of a rational map f can be defined as a measurable Beltrami
differential µ(z)dz̄dz such that f∗µ = µ almost everywhere, ∣µ∣ = 1 on a positive measure subset
of J(f), and µ = 0 elsewhere. The absence of line fields implies the lack of non-trivial
deformation space supported on the Julia set. A central rigidity conjecture [McM94; MS98]
in rational dynamics states that flexible Lattés maps are the only rational maps that admit
invariant line fields. This conjecture implies the Density of Hyperbolicity Conjecture.
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Remark 1.1.2. Actually, our techniques hold in a much more general setting. In [Lim23b],
we also show that our proof of the absence of invariant line fields is applicable to rational
maps admitting multiple bounded type Siegel disks, Herman rings, and Herman curves. To
maintain coherence, we omit the discussion of such generalizations here.

Theorem C states that the space of rational maps admitting bounded type Herman
quasicircles of the simplest configuration forms the boundary of the moduli space of rational
maps admitting bounded type Herman rings of the simplest configuration.

Prior to this dissertation, it was not known if there exists a Herman curve of a rational
map that is not a round circle (or quasiconformally conjugate to such). Theorem C allows us
to construct Herman curves of arbitrary asymmetric combinatorics.

1.1.3 Rigidity of critical quasicircle maps

Consider a critical quasicircle map f ∶H→H. (Refer to Definition 1.0.2.) The behaviour at
the unique critical point on H can be encoded by two positive integers, namely the inner
criticality d0 and the outer criticality d∞. The total local degree of f at the critical point is
d = d0 + d∞ − 1 and it is at least 2. When the criticalities are specified, we call f ∶H→H a
(d0, d∞)-critical quasicircle map.

By Theorem C, there exists a unique rational map f = fd0,d∞,θ in X admitting a unique
critical point z = 1 on its Herman curve H. By elementary computation, such a map f is of
the form

Fc(z) ∶= −c

d

∑
j=d0

(d
j
) ⋅ (−z)j

d0−1

∑
j=0

(d
j
) ⋅ (−z)j

for some unique c = Fc(1) ∈ C∗. See Figure 1.1 for some explicit examples. The map f ∶H→H

will serve as our prototypical example of a (d0, d∞)-critical quasicircle map.
Beyond the realm of rational maps, it turns out that we still have a strong rigidity property

for critical quasicircle maps. Given a constant α > 0, we say that a map ϕ is uniformly
C1+α-conformal on a set S ⊂ C if there are constants C, ε > 0 such that for every point z in S,
the complex derivative ϕ′(z) at z exists and for ∣t∣ < ε,

∣ϕ(z + t) − ϕ(z)
t

− ϕ′(z)∣ ≤ C ∣t∣α. (1.1.1)

Theorem D (C1+α rigidity). Any two (d0, d∞)-critical quasicircle maps f1 ∶H1 →H1 and
f2 ∶H2 →H2 of the same bounded type rotation number are quasiconformally conjugate on
the neighborhood of H1 and H2. Moreover, there is some α > 0 such that the conjugacy is
uniformly C1+α-conformal on H1.
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Figure 1.1: The Julia sets of

f(z) = bz3
4 − z

1 − 4z + 6z2 and g(z) = cz2
z − 3
1 − 3z.

The critical values b ≈ −1.144208 − 0.964454i and c ≈ −0.755700 − 0.654917i are picked such
that f ∶ H → H is a (3,2)-critical quasicircle map on some quasicircle H, g ∶ T → T is a
(2,2)-critical circle map, and both have the golden mean rotation number. Both H and T
are colored red, and their preimages are colored green.

7



In the proof, we study the renormalizations {Rnf}n≥1 of a critical quasicircle map
f ∶ H → H. They can be described as follows. Let {pn/qn}n≥1 denote the best rational
approxiations of the rotation number of f . For every n ≥ 1, denote by In the shortest interval
in H connecting the critical point c and f qn(c). The nth pre-renormalization of f is the
commuting pair

(f qn ∣In−1 , f qn−1 ∣In),

which is the first return map of f to the interval In−1 ∪ In ⊂H. The nth renormalization Rnf
of f is the normalized commuting pair obtained by rescaling the nth pre-renormalization to
unit size. We can also define the renormalization of commuting pairs in a way such that
Rk(Rlf) = Rk+lf for all k, l ≥ 0.

The proof of Theorem D consists of two main ingredients. The first is complex bounds of
renormalizations, which roughly states that the sequence {Rnf} is precompact. The second
is an adaptation of McMullen’s recipe [McM96], namely uniform twisting and deep points.
McMullen’s recipe was originally applied in the context of Feigenbaum Julia sets, but it has
also been successfully applied in the study of rigidity of critical circle maps [FM99] as well as
multicritical circle maps [GY21]. Let us list a number of important applications.

The presence of critical points generally destroys the smoothness of rotation curves. One
consequence of Theorem D is that the corresponding quasicircle cannot be smooth except
when it admits symmetric combinatorics, or equivalently, when the map is quasiconformally
conjugate to a critical circle map.

Corollary E (Smoothness). Given a (d0, d∞)-critical quasicircle map f ∶H→H of bounded
type rotation number, the following are equivalent.

(1) H is C1+α smooth;

(1’) H is C1 smooth at at least one point;

(2) the Hausdorff dimension of H is one;

(3) d0 = d∞.

See Figure 4.8 for an example of a C1 smooth Herman curve that is not a round circle.
Under combinatorial asymmetry, the dimension is also universal.

Corollary F (Universality of dimension). If two (d0, d∞)-critical quasicircle maps f1 ∶H1 →
H1 and f2 ∶H2 →H2 have the same bounded type rotation number, then H1 and H2 have the
same Hausdorff dimension, lower box dimension, and upper box dimension.
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Consider a critical quasicircle map f ∶ H → H with rotation number θ ∈ Θbdd. The
dynamics of f determines the asymptotic geometry of the quasicircle H as follows. Denote by
c the critical point of f and by {pn/qn}n∈N the best rational approximations of θ. We define
the nth scaling ratio of f by

sn(f) ∶=
f qn+1(c) − c
f qn(c) − c . (1.1.2)

Corollary G (Universality of scaling ratios). If two (d0, d∞)-critical quasicircle maps f1 ∶
H1 →H1 and f2 ∶H2 →H2 have the same bounded type rotation number, then asymptotically
they have the same scaling ratios:

sn(f2)
sn(f1)

Ð→ 1 exponentially fast as n→∞.

Moreover, when θ is pre-periodic, the asymptotic geometry has the following remarkable
property.

Theorem H (Self-similarity). Consider a (d0, d∞)-critical quasicircle map f ∶H→H with
a pre-periodic rotation number θ ∈ Θpre. Then, H is asymptotically self-similar about the
critical point. The self-similarity factor is universal depending only on d0, d∞, and θ.

On the other hand, C1+α also allows us to study the dynamics of the renormalization
operator. Let us fix a positive integer N , and denote by ΘN the set of irrationals in (0,1)
whose terms in the continued fraction expansion are bounded above by N .

Theorem I (Renormalization horseshoe). There is a renormalization-invariant compact set
AN inside the space CPN of normalized commuting pairs of fixed criticality (d0, d∞) and of
rotation number in ΘN with the following properties.

(1) The renormalization operator R ∶ AN → AN is topologically conjugate to the shift
operator on the bi-infinite shift space of N symbols.

(2) For any ζ in CPN , the distance between Rnζ and AN tends to 0 exponentially fast as
n→∞.

A precise version of the two theorems above can be found in Theorems 4.6.6, 4.6.7 and
4.6.8.

1.1.4 Hyperbolicity of renormalization

A Siegel map is a holomorphic map admitting an invariant quasiconformal closed Siegel
disk with a critical point on the boundary. One of the most recent achievements in the
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renormalization theory of Siegel maps is the development of pacman renormalization operator
by Dudko, Lyubich, and Selinger [DLS20]. Such an operator admits a hyperbolic fixed
point whose stable manifold has codimension one and consists of Siegel maps with a fixed
rotation number of periodic type. One remarkable feature of pacmen is that every pacman
on the unstable manifold admits a global transcendental analytic extension. Techniques of
transcendental dynamics were successfully adapted in [DL23] to study the escaping dynamics
on the unstable manifold, which ultimately led to a progress in MLC and in finding new
examples of positive area Julia sets.

For critical quasicircle maps, we develop a renormalization operator acting on the space
of coronas, a doubly-connected version of pacmen. A corona is a holomorphic map f ∶ U → V

between two nested annuli U ⋐ V such that f ∶ U/γ0 → V /γ1 is a unicritical branched covering
map where γ1 is an arc connecting the two boundary components of V . The number of
preimages of γ1 on the boundary components of U determine the inner and outer criticalities
d0 and d∞ of a corona; the total degree of f is equal to d. When the criticalities are specified,
we call f a (d0, d∞)-critical corona. See Figure 5.1 for an illustration.

Similar to pacman renormalization, we define the corona renormalization operator as
follows. First, we remove the quadrilateral bounded by γ1 and f(γ1). The remaining space is
a quadrilateral in which the first return map will be called a pre-corona. Gluing a pair of
opposite sides of this quadrilateral gives us a new corona, which is called the prime corona
renormalization Rprmf of f . A general corona renormalization operator R is an iterate of
the prime corona renormalization.

We say that a (d0, d∞)-critical corona f is rotational with rotation number θ if it admits
a Herman quasicircle H with rotation number θ. If rotational, f ∶H→H defines a (d0, d∞)-
critical quasicircle map. The prime renormalization of a (d0, d∞)-critical rotational corona is
again a (d0, d∞)-critical rotational corona, and the induced action on the rotation number is
governed by

rprm(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ

1 − θ , if 0 ≤ θ ≤
1

2
,

2θ − 1
θ

, if
1

2
≤ θ ≤ 1.

Every periodic type θ ∈ Θper is a periodic point of rprm.

Theorem J (Hyperbolicity). For any θ ∈ Θper, there exists a corona renormalization operator
R ∶ U → B with the following properties.

(1) U is an open subset of a Banach analytic manifold B consisting of (d0, d∞)-critical
coronas.
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(2) R is a compact analytic operator with a unique fixed point f∗ which is hyperbolic.

(3) The local stable manifold Ws
loc of f∗ corresponds to the space of rotational coronas with

rotation number θ in B.

(4) The local unstable manifold Wu
loc is one-dimensional.

Similar to [DLS20], the main step is justifying item (4), which will be accomplished via
transcendental dynamics. Anti-renormalizations of a corona f on the local unstable manifold
can be projected to a single dynamical plane and admit a maximal transcendental extension
F called a cascade associated to f . A cascade can be described as a collection {FP}P ∈T of
σ-proper maps parametrized by a dense semigroup T ⊂ (R≥0,+) such that FP ○FQ = FP+Q.
The second half of this paper is dedicated to the study of the dynamics of F.

Similar to invariant line fields of rational maps, we can define an invariant line field of
a cascade F to be a measurable Beltrami differential µ(z)dz̄dz such that (FP )∗ µ = µ almost
everywhere for all P , ∣µ∣ = 1 on a positive measure set, and µ = 0 elsewhere. The existence
of an invariant line field µ indicates the existence of a non-trivial deformation space for F

associated to the support of µ. To justify (4), we prove a rigidity theorem for cascades F.

Theorem K (Rigidity of escaping dynamics on Wu
loc). Consider a cascade F associated to a

corona f in Wu
loc. The full escaping set

I(F) ∶= {z ∈ C ∶ either z /∈ ⋂
P

Dom (FP ) or FP (z) → ∞ as P →∞}

moves conformally away from the pre-critical points and supports no invariant line field.
Consequently, if F has an attracting cycle, then the Julia set of F supports no invariant line
field.

One may compare this theorem to Rempe’s result [Rem09] on the rigidity of the escaping
set of transcendental entire functions. Our methods allow for an analog of Theorem K in
other settings, such as pacman and period-doubling renormalization fixed points. Ultimately,

Theorem K Ô⇒ dim (Wu
loc) ≤ number of critical orbits ≤ 1 Ô⇒ Theorem J(4).

We would like to note some of the differences between our case and the pacmen case
[DLS20; DL23].

Firstly, the existence of a non-attracting direction for pacman renormalization is straight-
forward. Unlike coronas, every pacman is designed to admit a natural fixed point α associated
to it. For a Siegel pacman, the α-fixed point is the center of its Siegel disk. The multiplier λ
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of α clearly induces a non-attracting eigenvalue at the pacman renormalization fixed point.
In the corona case, this is not obvious, and we show it as an application of Theorem C.

Secondly, the proof of item (4) for pacmen does not require such a rigidity theorem. After
obtaining the transcendental structure, it is immediate that λ induces a natural foliation
{W u(λ)}λ of the unstable manifold of the pacman renormalization fixed point. By applying
the λ-lemma along parabolic leaves, the authors showed that

dim (W u (p/q)) ≤ number of free critical orbits in W u (p/q) = 0

where p/q ∈ Q is sufficiently close to θ ∈ Θper.
Thirdly, the original aim of the study of the finite-time escaping set associated to the

transcendental extension of pre-pacmen was to attain a puzzle structure, which was ultimately
applied to understand the dynamics of maps on the unstable manifold and transfer the results
to the quadratic family {z2 + c}c. In our case, the full escaping set I(F) is of interest because,
together with the postcritical set, it is the measure-theoretic attractor of F on the Julia set.

Let us briefly discuss an immediate application of Theorem J. Given a critical quasicircle
map f ∶H→H, we can define a Banach neighborhood N(f) of f as follows. Pick a skinny
annular neighborhood U of H such that f is holomorphic on a neighborhood of U , and pick
a small ε > 0. Then, N(f) is the space of unicritical holomorphic maps g ∶ U → C such that g
extends continuously to the boundary of U and supz∈U ∣f(z) − g(z)∣ < ε, equipped with the
sup norm.

Corollary L (Structure of conjugacy classes). Consider a small Banach neighborhood N(f)
of a (d0, d∞)-critical quasicircle map f ∶H→H with pre-periodic rotation number θ. The space
S of maps in N(f) which restrict to a (d0, d∞)-critical quasicircle map with rotation number
θ forms an analytic submanifold of N(f) of codimension at most one. The corresponding
invariant quasicircle moves holomorphically over S.

1.2 Historical notes

1.2.1 On the near-degenerate regime

The idea that compactness results are amenable for near-degenerate surfaces goes back to
the work of W. Thurston on the geometry of 3-manifolds. (See, for instance, the Double
Limit Theorem [Thu86].) In complex dynamics, the near-degenerate regime was successfully
implemented in the proof of W. Thurston’s characterization of postcritically finite rational
maps [DH93].
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In mid 2000’s, Kahn [Kah06] introduced the near-degenerate regime to the Renormalization
Theory of quadratic-like maps. Together with Lyubich, they set up fundamental tools, such
as the Quasi-Additivity Law and the Covering Lemma [KL05], and attained substantial
progress in the primitive case of the MLC conjecture [KL08; KL09a]. Other applications
of the Covering Lemma include the extension of Yoccoz’s results and puzzle-parapuzzle
machinery to higher degrees [KL09b; Avi+09; KS09; ALS11]. (See also [Cla+22] for a detailed
exposition.)

Recently, D. Dudko and Lyubich [DL22] transferred the near-degenerate regime to neutral
dynamics of quadratic polynomials e2πiθz+z2: they constructed almost invariant pseudo-Siegel
disks out of bounded type Siegel disks by filling in fjords at all scales, and showed that the
top level pseudo-Siegel disks are quasidisks with uniform dilatation. Even though the above
instances of the near-degenerate regime are unified by the same general principle, they have
little in common on the technical level.

1.2.2 On critical circle maps

A critical circle map is a critical quasicircle map f ∶H→H where H is simply the unit circle
T ⊂ C. By symmetry, it is clear that in this case, the inner criticality d0 must coincide with
the outer criticality d∞.

The renormalization theory of critical circle maps serves to justify the golden mean
universality phenomena empirically observed in smooth families of critical circle maps by
Feigenbaum et al. [FKS82] and Östlund et al. In both works, the golden mean universality
was translated into a conjecture on the hyperbolicity of the renormalization operator on the
space of critical commuting pairs. The conjecture was later generalized by various authors,
in particular Lanford [Lan88] who introduced renormalization horseshoes to account for more
complicated universalities. Below, we provide a brief historical summary of the development
of the theory.

In [Far99], de Faria introduced the notion of holomorphic commuting pairs and proved the
universality of scaling ratios and the existence of renormalization horseshoe for critical circle
maps with bounded type rotation number. C1+α rigidity was later established by de Faria
and de Melo [FM99] for bounded type rotation number, and then by Khmelev and Yampolsky
[KY06] for arbitrary irrational rotation number by studying parabolic bifurcations. Moreover,
Yampolsky extended the horseshoe for all irrational rotation numbers in [Yam01], and brought
Lanford’s program to completion in [Yam02; Yam03] using cylinder renormalization.

Theorem 1.2.1 (Hyperbolicity of renormalization horseshoe [Yam03]). The renormalization
operator R in the space of critical commuting pairs admits a “horseshoe“ attractor A on which
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its action is conjugated to the two-sided shift. Moreover, there exists an R-invariant space of
critical commuting pairs with the structure of an infinite dimensional smooth manifold, with
respect to which A is a hyperbolic set with one-dimensional expanding direction.

1.2.3 On Siegel maps

In this dissertation, we assume that both d0 and d∞ are always at least two. What happens
to a critical quasicircle map f ∶ H → H if either d0 or d∞ is one? In the bounded type
regime, this is equivalent to the statement that H is the boundary of a rotation domain. By
Douady-Ghys surgery, it can be assumed that H is the boundary of a Siegel disk, that is, f
is a Siegel map.

Stirnemann [Sti94] first gave a computer-assisted proof of the existence of a renormalization
fixed point with a golden mean Siegel disk. McMullen [McM98] applied a measurable deep
point argument to prove the existence of renormalization horseshoe for bounded type rotation
number. In [AL22, §4], Avila and Lyubich established quasiconformal rigidity of bounded
type Siegel maps; via McMullen’s method, the regularity can be improved to C1+α.

Using the formalism of almost commuting pairs, Gaidashev and Yampolsky [Yam08;
GY22] gave a computer-assisted proof of the golden mean hyperbolicity of renormalization of
Siegel disks. As previously mentioned, Dudko, Lyubich, and Selinger [DLS20] constructed a
compact analytic operator, called pacman renormalization operator, with a hyperbolic fixed
point whose stable manifold has codimension one and consists of Siegel maps with a fixed
rotation number of periodic type.

1.3 Organization

This dissertation is split into six chapters.

Chapter 2: Preliminaries
This chapter generally provides a range of preliminary background material for the main

results. In Section §2.1, we cover in depth the dynamics of rigid irrational rotation Rθ,
including sector renormalization and the induced cascades of translations. The map Rθ is a
toy model of a general rotation curve of a holomorphic map. In Section §2.2, we discuss the
fundamentals of extremal width and the main tools for the proof of a priori bounds, namely
the Quasi-Additivity Law and the Covering Lemma [KL05]. In Section §2.3, we state and
prove an upgraded version of Lyubich’s Small Orbits Theorem [Lyu99, §2], which is a vital
ingredient in our hyperbolicity theorem. The main addition here is the application of two
invariant cones rather than just one.
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Chapter 3: A priori bounds
Sections §3.1–3.7 are dedicated solely to the proof of Theorem A, which is done via the

near-degenerate regime inspired by [Kah06; DL22]. In §3.1, we adapt the vocabulary of
[DL22] and encode the near-degeneracy near an interval I on the boundary of a Herman
ring as the extremal width Wτ(I) of some curve family, and the main step is to prove the
Amplification Theorem 3.7.1, which roughly states that

Wτ(I) =K ≫ 1 for some interval I ÔÔ⇒ Wτ(J) ≥ 2K for some interval J

with constants independent of the modulus. The proof of the Amplification Theorem is
captured in Sections §3.2–3.7. The heart of the argument resembles Kahn’s a priori bounds
[Kah06], although a few modifications are needed. For example, in Kahn’s setting, little Julia
sets are invariant under the first return map and the associated Hubbard tree has positive
entropy; meanwhile, our intervals I are not precisely invariant, and the action of f on the
Herman ring has zero entropy. A more technical and more detailed outline of the proof can
be found in Section §3.1.5.

In Section §3.8, we show that a priori bounds provide sufficient pre-compactness for
Herman rings of small moduli. This allows us to take limits of degenerating Herman rings
and prove the realization part of Theorem C.

Chapter 4: Rigidity
We then move on to the rigidity problem in Chapter 4. In Section §4.1, we discuss the

property of critical quasicircle maps f ∶ H → H that an iterate of f locally behaves like a
rotation (an approximate rotation) until it lands near the critical point. This property is the
basis of our main analysis in later sections. In Section §4.2, we prove that every rational map
f satisfying (i)–(v) does not admit any invariant line field supported on its Julia set J(f).
The main tool is Theorem 4.2.4, which is an analog of [McM94, Theorem 3.2]. By means of
the standard pullback argument, we then complete the proof of Theorem C in Section §4.3.

The second part of Chapter 4 concerns with the study of renormalizations of a critical
quasicircle map f ∶H→H. In Section §4.4.2, we argue that f is a conformal welding of a pair
of quasicritical circle maps, which are a quasiregular analog of critical circle maps. Based on
[AL22, §3], most results on critical circle maps, such as complex bounds and quasiconformal
rigidity, hold for quasicritical circle maps of bounded type. In Section §4.4.3, we introduce
the concept of butterflies, an analog of holomorphic commuting pairs, and transfer complex
bounds for quasicritical circle maps to complex bounds in our setting (Theorems 4.4.16 and
4.4.18). By a pullback argument, we then show that complex bounds imply quasiconformal
rigidity. To complete the proof of Theorem D, we show that our quasiconformal conjugacy is
C1+α-conformal via McMullen’s Dynamic Inflexibility Theorem [McM96, Theorem 9.15].
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In Section §4.6, we prove a number of applications of C1+α rigidity. Our universality results
are immediate consequences of Theorem D. The proof of Corollary E uses an additional
tool, which is Peter Jones’ beta numbers (see Proposition 4.6.3). The construction of
renormalization horseshoe is a standard tower rigidity argument. Lastly, Theorem H follows
from self-similarity of the invariant quasicircle of each of the renormalization periodic points
in the horseshoe.

Chapter 5: Hyperbolicity of Renormalization

This chapter concerns with the hyperbolicity of renormalization periodic points of critical
quasicircle maps. In Section §5.1, we introduce the definition of coronas and pre-coronas. We
define the corona renormalization operator and show that for any renormalizable corona f ,
we can always find a compact analytic operator R on a small Banach neighborhood of f .
In Section §5.2, we analyze the structure of a rotational corona and prove that any critical
quasicircle map can be renormalized to a rotational corona. By applying Theorem D, we also
show that rotational coronas are quasiconformally rigid.

In Section §5.3, we construct a compact analytic corona renormalization operatorR ∶ U → B
and a corona f∗ ∈ U of periodic rotation number such that Rf∗ = f∗. In Theorem 5.3.9,
we prove that R and f∗ satisfy items (2) and (3) in Theorem J, and that the dimension of
the local unstable manifold Wu

loc is finite and positive. To show that DRf∗ has no neutral
eigenvalues, we require an upgraded version of the Small Orbits Theorem 2.3.1. We then
apply Theorem C to show that a repelling direction exists.

The rest of the chapter, namely §5.4–5.8, is dedicated to proving that DRf∗ has exactly
one repelling eigenvalue. In Section §5.4, we show that for any f on the local unstable
manifold, the maximal extension of the pre-corona associated to f is a commuting pair
of σ-proper maps F = (f± ∶ X± → C). The general dynamical features of F, i.e. escaping
dynamics and Fatou-Julia theory, are described in Section §5.5.

In Section §5.6, we describe in detail the transcendental dynamics of the renormalization
fixed point F∗. We construct external rays and deduce its tree structure using their branch
points, which are called alpha-points. These rays define dynamical wakes which form a puzzle
structure partitioning the whole dynamical plane. Appropriately truncated wakes survive
under perturbation, and we use them in §5.7 to study the motion of points z in the Julia set
whose orbit FP (z) remain close to ∞ for all P . In Section §5.8, we then prove Theorem K
via an argument similar to [Rem09]. Lastly, we show that there exist hyperbolic cascades F

arbitrarily close to F∗. When F is hyperbolic, the Julia set of F is the union of I(F) and a
zero measure set of non-escaping points, which implies that hyperbolic components on the
unstable manifold must be one-dimensional.
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Chapter 6: Questions and conjectures
In the final chapter, we discuss a number of questions and conjectures regarding Herman

rings, Herman curves, critical quasicircle maps, and renormalization in some generality.

17





Chapter 2

Preliminaries

2.1 Rotational dynamics

In this section, we discuss the fundamental properties of the dynamics of irrational rotation.
Subsections §2.1.1 and §2.1.2 set the foundation for the entire dissertation. In §2.1.3, we
describe a general renormalization operator on irrational rotation, whereas in §2.1.4, we
discuss the structure of renormalization cascades arising from irrational rotation.

2.1.1 Rigid rotation

Consider an irrational number θ ∈ (0,1). Let us identify T with the quotient R/Z, in which
the rigid rotation Rθ by θ can be written as Rθ(x) = x + θ. For any pair of distinct points
x, y ∈H, we denote by [x, y] the shortest closed interval in T having endpoints x and y.

Let {pn/qn}n∈N be the sequence of best rational approximations of θ. This sequence is
determined by the recurrence relation

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2

where p0 = q−1 = 0, q0 = p−1 = 1, and [0;a1, a2, . . .] is the continued fraction expansion of θ.
The qn’s are precisely the first return times for Rθ which alternate in the following fashion.
For any x ∈ T,

Rq1
θ (x) < R

q3
θ (x) < R

q5
θ (x) < . . . < x < . . . < R

q6
θ (x) < R

q4
θ (x) < R

q2
θ (x).

Definition 2.1.1. An interval I ⊂H is a level n combinatorial interval if it is of the form
[x,Rqn

θ (x)] for some x ∈ T.

Let us denote the length of a level n interval by

ln ∶= ∣pn − qnθ∣. (2.1.1)

19



Proposition 2.1.2. For any c ∈ T and n ∈ N, the collection of combinatorial intervals

Pn(c) ∶= {[Ri
θ(c),Rqn+i

θ (c)]}qn+1−1
i=0

∪ {[Rqn+1+j
θ (c),Rj

θ(c)]}
qn−1

j=0

forms a tiling of T, that is, they have pairwise disjoint interiors and their union is T. Moreover,
Pn+1(c) is a refinement of Pn(c).

Recall that θ is of bounded type if there is a uniform bound on the terms an in its continued
fraction expansion [0;a1, a2, . . .]. If so, we denote the optimal bound by

β(θ) ∶=max
i≥1

ai.

For any positive integer N , we define the set ΘN to be the set of bounded type irrationals
θ ∈ (0,1) satisfying β(θ) ≤ N . The bounded type assumption controls the rate of decrease of
the lengths in (2.1.1).

Proposition 2.1.3. If θ is in ΘN , there exists a pair of constants C̃,C > 1 depending only
on N such that for every positive integer n,

C̃ln+1 ≤ ln ≤ Cln+1.

We will use the following lemma several times later.

Lemma 2.1.4. Suppose θ is in ΘN and S is a finite subset of T. There is some constant
ε > 0 depending only on N and ∣S∣ such that for all n ∈ N, every combinatorial interval I ⊂ T

of level n contains a subinterval J ⊂ I of length ∣J ∣ ≥ εln that is disjoint from ⋃qn+2−1i=0 Ri
θ(S).

Proof. By Proposition 2.1.2, for every c ∈ S, the finite orbit Oc = {Ri
θ(c)}i=0,...qn+2−1 partitions

T into intervals of lengths between ln+2 and ln. By Proposition 2.1.3, the number of points in

⋃c∈SOc that lie within I is at most some constant K depending only on N and ∣S∣. Therefore,
there is a subinterval of I of length at least ln/K that satisfies the desired property.

2.1.2 Rotation curves

Consider a rotation curve H of a holomorphic map f . By definition, there exists a topological
conjugacy ϕ ∶H → T between f and Rθ where θ is the rotation number. There is a unique
normalized metric on H that is invariant under f , which we call the combinatorial metric.
This can be constructed by pushing forward the Euclidean metric via ϕ−1.

Let us assume that H is embedded in the Riemann sphere Ĉ. Label the two components
of Ĉ/H by Y 0 and Y ∞.
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Definition 2.1.5. We say that a point x ∈H is an inner critical point if for any point y in
Y 0 sufficiently close to f(x), the number d0 of points in f−1(y) ∩ Y 0 near x is at least two.
The quantity d0 is called the inner criticality of x. Similarly, x ∈H is called an outer critical
point with outer criticality d∞ if for any point y in Y ∞ sufficiently close to f(x), the number
d∞ of points in f−1(y) ∩ Y ∞ near x is at least two.

Consider the set H ⊂ R/Q of Herman numbers. The set H has full Lebesgue measure and
is characterized by a rather complicated arithmetic condition that was devised by Herman
and Yoccoz [Her79; Yoc02] as the optimal condition for an analytic circle diffeomorphism
to be analytically linearizable. Here, we only need the property that H contains the set of
bounded type irrationals.

Proposition 2.1.6 (Trichotomy of rotation curves). Suppose θ ∈ H . Exactly one of the
following holds.

A H is an analytic curve contained in a rotation domain of f .

B H is a boundary component of a rotation domain of f and contains a either an inner
critical point or an outer critical point, but not both.

H H is a Herman curve containing an inner critical point and an outer critical point.

Proof. It is clear that if both inner and outer critical points are present, then H must be a
Herman curve. Below, we will assume that H contains no inner critical points.

There is an annulus W ⊂ Y 0 such that H is one of the boundary components of W and f
is univalent on W . Since f ∣H is conjugate to a rotation, the image Z ∶= f(W ) is again an
annulus contained in Y 0 with H being one of its boundary components. Pick a conformal
isomorphism ψ ∶ Y 0 → D and define the univalent map F ∶= ψ ○ f ○ ψ−1 from ψ(W ) to ψ(Z).
By Schwarz reflection, F extends continuously to a univalent map F ∶W ′ → Z ′ where W ′

and Z ′ are the smallest T-symmetric annuli containing ψ(W ) and ψ(Z) respectively.
The map F restricts to an analytic circle diffeomorphism with rotation number θ. Since

θ is a Herman number, F ∣T must be analytically linearizable, so F admits a T-symmetric
Herman ring. By pulling back this Herman ring via ψ, we obtain an invariant annulus A0 ⊂W
such that H is a boundary component of A0 and f ∣A0 is analytically conjugate to Rθ. Denote
by A the rotation domain of f containing A0.

If H contains an outer critical point, then f ∣H cannot be analytically conjugate to Rθ

and H has to be a boundary component of A. Otherwise, by the same argument, there is
an annulus A∞ ⊂ Y ∞ such that H is a boundary component of A∞ and f ∣A∞ is analytically
conjugate to Rθ. Hence, A0 ∪H ∪A∞ lies in A and H is an invariant analytic curve.
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The trichotomy breaks when θ /∈ H . For instance, there exist cubic rational maps
admitting Herman curves of arbitrary non-Herman irrational rotation number containing no
critical points. See [BF14, Proposition 6.6] and [Yan22].

Throughout this dissertation, any rotation curve H in consideration will be assumed to
be a quasicircle. The following is a generalization of the Herman-Świątek theorem.

Theorem 2.1.7 ([Pet04]). Suppose H is a quasicircle containing a critical point of f (hence
either B or H ). The rotation number θ is of bounded type if and only if there exists a
quasiconformal map ϕ ∶ Ĉ→ Ĉ such that ϕ(H) = T and f = ϕ−1 ○Rθ ○ ϕ in H.

When the conjugacy ϕ is quasisymmetric, we can transfer what is known in the combina-
torial metric back to H as a subset of Ĉ, equipped with the spherical metric.

Lemma 2.1.8. Suppose θ is in ΘN and the conjugacy ϕ ∶H→ T is K-quasisymmetric. For
every point c on H,

(1) the tilings Pn(c) have bounded geometry, that is, the diameters of any two adjacent tiles
of the same level, or any two consecutive nested tiles, are comparable with a constant
depending only on N and K;

(2) there are positive constants C, ε1, ε2 depending only on N and K such that ε1 < ε2 < 1 < C
and for every n ≥ 2,

C−1εn1 ≤
∣f qn(c) − c∣
diam(H) ≤ Cε

n
2 .

2.1.3 Sector renormalization

Let us identify T with the standard unit circle in C with the induced intrinsic metric. Given
two points x and y on T, we denote by [x, y] ⊂ T the shortest closed interval with endpoints
x and y. Consider the rotation

Rθ ∶ T→ T, z ↦ e2πiθz

for some fixed θ ∈ R/Z. Let us fix a point x ∈ T and consider

X− ∶= [R−1θ (x), x], Y ∶= [x,Rθ(x)], X+ ∶= T/(Y ∪X−).

The first return map on X− ∪X+ is precisely the commuting pair

(Rθ∣X+ , R2
θ ∣X−),

Let us assume that 1 ≠ Y and denote by ω the length of X− ∪X+. Then, the map z ↦ z1/ω

projects the commuting pair to a new rotation Rrprm(θ) called the prime renormalization of
Rθ. Note that Rrprm(θ) is independent of the initial choice of x.
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Lemma 2.1.9 ([DLS20, Lemma A.1]). We have

rprm(θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ

1 − θ , if 0 ≤ θ ≤ 1

2
,

2θ − 1
θ

, if
1

2
≤ θ ≤ 1.

In general, we define a sector renormalization R(Rθ) of Rθ as follows. First, consider a
pair of intervals X− and X+ on T satisfying X− ∩X+ = {1}. Suppose the first return map on
X ∶=X− ∪X+, which we call a sector pre-renormalization, is a pair of the form

(Ra
θ ∣X− , Rb

θ ∣X+), (2.1.2)

for some positive integers a and b called the renormalization return times of R. The map
z ↦ z1/ω, where ω is the length of X, glues the endpoints of X together and projects the pair
(2.1.2) to a new rotation Rµ = R(Rθ).

Example 2.1.10. Recall that the Gauss map G sends an irrational x = [0;a1, a2, . . .]
to another irrational G(x) = [0;a2, a3, . . .]. Often, we are interested in the nth standard
renormalization operator sending Rθ to RGnθ. This can be constructed as follows. Let
{pn/qn}n≥1 denote the best rational approximations of θ. If we choose X− = [Rqn−1

θ (1),1] and
X+ = [1,Rqn

θ (1)], then the associated sector pre-renormalization (Rqn
θ ∣X− , R

qn−1
θ ∣X+) projects

onto the rotation RGn(θ).

Lemma 2.1.11 ([DLS20, Lemma A.2]). Sector renormalization R is an iteration of the
prime renormalization. In particular, µ = (rprm)m(θ) for some m ≥ 1, and Rθ is a fixed point
of some sector renormalization if and only if θ ∈ Θper.

Under the universal cover R→ T, z ↦ e−2πiz, the rotation Rθ can be lifted to the commuting
pair of translations

T−θ ∶ z ↦ z − θ, T1−θ ∶ z ↦ z + 1 − θ.

The deck transformation χ ∶= T1 is equal to T1−θ ○ T −1−θ , and the original rotation Rθ can be
recovered from the quotient map T−θ/⟨χ⟩.

Consider a general commuting pair of translations (T−u, Tv) where u,v ∈ R≥0. The prime
renormalization Rprm of (T−u, Tv) is the new commuting pair (T−u1 , Tv1) where

(T−u1 , Tv1) ∶=
⎧⎪⎪⎨⎪⎪⎩

(T−u ○ Tv , Tv ) if u ≥ v,
( T−u , T−u ○ Tv ) if u < v.

(2.1.3)

Set χ ∶= Tv ○ T −1−u and χ1 = Tv1 ○ T −1−u1
. The prime renormalization of pairs of translations is

equivalent to that of rotations in the following sense.
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Lemma 2.1.12. If T−u/⟨χ⟩ ≡ Rθ, then

θ = v

u + v and T−u1/⟨χ1⟩ ≡ Rrprm(θ).

2.1.4 Cascade of translations

By writing (−u,v) as a column vector, the transformation in (2.1.3) is represented by either

I− ∶=
⎛
⎝
1 1

0 1

⎞
⎠

if u ≥ v or I+ ∶=
⎛
⎝
1 0

1 1

⎞
⎠

if u < v. Consider the region R≤0 × R≥0, which is split

equally into two sectors by the diagonal line {x + y = 0}. The lower sector is mapped by I−

onto R≤0 × R≥0, whereas the upper sector is mapped by I+ onto R≤0 × R≥0.
From now on, suppose θ is of periodic type. There exists somem > 0 such that (rprm)m(θ) =

θ. Set u = θ and v = 1 − θ. By (2.1.3), there is a unique matrix 2 × 2 matrix M of the
form I1I2 . . . Im, where Ii ∈ {I+, I−} for all i, such that the mth prime renormalization
(T−u1 , Tv1) ∶= (Rprm)m(T−u, Tv) satisfies

⎛
⎝
−u1

v1

⎞
⎠
=M
⎛
⎝
−u
v

⎞
⎠
.

The matrix M is an element of the modular group SL2(Z) mapping a sector in R≤0 ×R≥0 onto

R≤0 ×R≥0. The condition (rprm)m(θ) = θ implies that
⎛
⎝
−u1

v1

⎞
⎠

is a scalar multiple of
⎛
⎝
−u
v

⎞
⎠
. We

conclude that M has two eigenvalues t > 1 and 1/t, and that

⎛
⎝
−u1

v1

⎞
⎠
= 1

t

⎛
⎝
−u
v

⎞
⎠
.

We call M the anti-renormalization matrix associated with θ.
Observe that M has to be a matrix of positive integers and t /∈ Q. For n ∈ N, we write

un ∶= t−nu and vn ∶= t−nv.

We then obtain a full pre-renormalization tower {(T−un , Tvn)}n∈Z where

(Rprm)m(T−un , Tvn) = (T−un+1 , Tvn+1).

Given (n, a, b) ∈ Z ×Z≥0 ×Z≥0, let us write

T (n,a,b) ∶= T a−un
○ T bvn

= Tt−n(bv−au).

Lemma 2.1.13. Given a pair of elements (n, a, b) and (n′, a′, b′) of Z ×Z≥0 ×Z≥0,

T (n,a,b) = T (n′,a′,b′) if and only if (a b)Mn = (c d)Mn′ .
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Definition 2.1.14. We define the space T of power-triples to be the quotient of the semigroup
Z × Z≥0 × Z≥0 under the equivalence relation ∼ where (n, a, b) ∼ (n − 1, a′, b′) if and only if
(a′ b′) = (a b)M.

We will equip T with the binary operation + defined by

(n, a, b) + (n, a′, b′) = (n, a + a′, b + b′).

With respect to +, T has a unique identity element 0 ∶= (n,0,0). Thus, (T,+) still has the
structure of a semigroup. According to Lemma 2.1.13, T acts freely on R as a cascade of
translations (T P )P ∈T.

Lemma 2.1.15 ([DL23, Lemma 2.2]). There is an embedding ι ∶ T→ R such that ι(n−1, a, b) =
t−1ι(n, a, b). Identifying T with ι(T) ⊂ R equips T with

(1) a linear order ≥, which can be described as follows: P ≥ Q if and only if for sufficiently
large n≪ 0, we can write P = (n, a, b) and Q = (n, a′, b′) where a ≥ a′ and b ≥ b′;

(2) subtraction, that is, if P,T ∈ T and P ≥ T , then P − T ∈ T;

(3) scalar multiplication by t: P = (n, a, b) ↦ tP = (n + 1, a, b), which is an automorphism
of T.

Moreover, for P ∈ T, n ∈ Z, and x ∈ R,

T P (x) = tn ⋅ T tnP (t−nx) .

If T P is a translation by l > 0, then T tnP is a translation by t−nl. The following observation
is immediate.

Lemma 2.1.16 (Proper discontinuity). If P ∈ T>0 is small, then ∣T P (0)∣ is large.

For all P ∈ T, let us denote bP ∶= T −P (0). We say that bP is dominant if every bQ on [0, bP ]
satisfies Q ≥ P . By proper discontinuity, we can enumerate all dominant points {bPn}n∈Z such
that Pn < Pn+1 for all n.

Lemma 2.1.17 ([DL23, Lemma 2.4]). For every i ∈ Z, there exist some Qi ∈ T>0 and some
integers m,n such that n <m ≤ i and TQi maps [bPi

, bPi+1
] to [bPn , bPm].

25



2.2 Near-degenerate regime

We summarize the properties of extremal width (also known as conformal modulus, the
reciprocal of extremal length). Extremal width is a conformal invariant and it plays a vital
role in describing near-degenerate Riemann surfaces. The tools in this section will be applied
throughout Chapter 3 in the context of Herman rings.

2.2.1 Extremal width

Given a family G of curves on a Riemann surface S, we denote by W (G) the extremal width
of G. We list without proof a number of fundamental results on extremal width. (See [Ahl06]
and the appendix in [KL05] for details.)

Proposition 2.2.1 (Parallel Law). For any two curve families G1 and G2,

W (G1 ∪ G2) ≤W (G1) +W (G2).

Equality is achieved when G1 and G2 have disjoint support.

We say that a curve family G overflows another curve family H, denoted by H < G, if
every curve in G contains a curve in H (curves in G are longer and fewer). We also say that
H is a restriction of G if G overflows H but not any proper subfamily of H (curves in G are
longer, but not more nor fewer).

Denote by x⊕ y the harmonic sum (x−1 + y−1)−1.

Proposition 2.2.2 (Series Law). Suppose a curve family G overflows two disjoint curve
families G1 and G2. Then,

W (G) ≤W (G1) ⊕W (G2).

The following proposition allows us to convert harmonic sums into friendlier expressions.

Proposition 2.2.3. For any positive numbers a1, . . . , an,

n

⊕
i=1

ai ≤min{a1, . . . , an,
1

n
max
i
ai,

1

n2

n

∑
i=1

ai} .

Extremal width is invariant under conformal maps. More generally, we have the following
transformation rule.

Proposition 2.2.4. Let f ∶ U → V be a holomorphic map between two Riemann surfaces and
G be a family of curves in U . Then,

W (f(G)) ≤W (G).
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If f is at most d to 1, then
W (G) ≤ d ⋅W (f(G)).

A (conformal) rectangle P on a surface S is the image of a continuous map ϕ ∶ [0,m] ×
[0,1] → S that restricts to a conformal embedding in the interior. The vertical sides of
a rectangle P are ϕ({0} × [0,1]) and ϕ({m} × [0,1]), and the horizontal sides of P are
ϕ([0,m] × {0}) and ϕ([0,1] × {m}). A curve in P is called vertical if it connects the two
horizontal sides of P . The vertical foliation of P is defined to be the collection of curves

F(P ) ∶= {ϕ ({t} × (0,1)) ∣ t ∈ (0,m)}.

The width of P is
W (P ) ∶=W (F(P )) =m.

We say that P crosses a curve γ if every vertical curve in P intersects γ.

Proposition 2.2.5 (Non-Crossing Principle). If a pair of rectangles P1 and P2 on S has
width W (P1),W (P2) > 1, then they never cross, i.e., there exist disjoint leaves γ1 ∈ F(P1)
and γ2 ∈ F(P2).

Suppose a rectangle P of width m has width greater than 8. The buffers of P are
subrectangles of P of the form ϕ([0, ε) × (0,1) or ϕ((m − ε,m] × (0,1)) for some ε ≤ 4. A
direct consequence of the non-crossing principle is the following proposition.

Proposition 2.2.6 ([KL05, Lemma 2.14]). Every pair of rectangles P1 and P2 of width
greater than 8 admits subrectangles P new

1 and P new
2 obtained by removing some buffers such

that P new
1 and P new

2 have disjoint vertical sides.

When S has boundary, we say that a curve γ ∶ (0,1) → S is proper if it has well-defined
endpoints γ(0) and γ(1) contained in ∂S. For any disjoint subsets I and J of ∂S, we denote
by FS(I, J) and WS(I, J) the family of proper curves in S that connect I and J , and its
width respectively. When S is a Jordan disk, the width WS(I, J) can be estimated as follows.

Proposition 2.2.7 (Log-Rule, [DL22, Lemma 2.5]). Suppose S is a Jordan disk and suppose
its boundary ∂S is partitioned into four intervals I1, I2, I3, I4, labelled cyclically. Denote by
∣Ii∣ the harmonic measure of Ii in S about a point x ∈ S.

(1) If min(∣I1∣, ∣I3∣) ≥min(∣I2∣, ∣I4∣), then

WS(I1, I3) ≍ log
min{∣I1∣, ∣I3∣}
min{∣I2∣, ∣I4∣}

+ 1;
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(2) Otherwise,

WS(I1, I3) ≍ (log
min{∣I2∣, ∣I4∣}
min{∣I1∣, ∣I3∣}

+ 1)
−1

.

Given a compact subset I of S, we denote by W (S, I) the extremal width of the family
F(S, I) of proper curves in S/I connecting I and ∂S. We will formulate important near-
degenerate tools from [KL05] in a way that is most suitable for our setting in Chapter
3.

Lemma 2.2.8 (Quasi-Additivity Law). Suppose S is a topological disk in C and A1, . . . ,An

be pairwise disjoint non-empty compact connected subsets of S. Let

X ∶=W (S,
n

⋃
i=1

Ai) , Y ∶=
n

∑
i=1

W (S,Ai), Zi ∶=W (S/⋃
j≠i

Aj,Ai) for i = 1, . . . , n.

Then, there exists some K =K(n) > 0 such that

Y ≥K Ô⇒ max{X,Z1, . . . , Zn} ≥
Y√
2n
.

Lemma 2.2.9 (Covering Lemma). Let Λ ⋐ Λ′ ⊂ U and B ⋐ B′ ⊂ V be two nests of simply
connected domains and f ∶ (U,Λ′,Λ) → (V,B′,B) be a branched covering map with degrees
deg(f ∶ Λ′ → B′) = d and deg(f ∶ U → V ) = D. For all κ > 1, there is some K =K(κ,D) > 0
such that if W (U,Λ) =K >K, then either

W (B′,B) > κK, or W (V,B) > (2κd2)−1K.

2.2.2 Canonical lamination

Consider an open hyperbolic Riemann surface S with a finite number of boundary components.
We allow the presence of finitely many punctures, which are separate from the ideal boundary
∂S. We will survey the fundamental properties of the canonical lamination Fcan(S) of S
following Kahn’s work [Kah06]. The canonical lamination captures the near-degeneracy of
S induced by components of ∂S that are very close to one another. Let us first sketch the
construction.

Let π ∶ D → S be the universal cover of S. Since ∂S is non-empty, the limit set Λ ⊂ ∂D

of π1(S) is a Cantor set. For every component Ĩ ⊂ of D/Λ, π extends continuously to a
universal covering Ĩ → I for some component I of ∂S. Two proper curves γ0 and γ1 are
properly homotopic in S if there is a homotopy γt, t ∈ [0,1] between γ0 and γ1 such that each
γt is also a proper curve in S. An arc in S is a proper homotopy class of proper curves in S.
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Consider a non-trivial arc α in S connecting two (not necessarily distinct) components I
and J of ∂S. Let α̃ be a lift of α under π; it connects Ĩ and J̃ , which are some lifts of I and
J respectively. Let us identify D with the structure of a conformal rectangle with horizontal
sides Ĩ and J̃ . Kahn observed that removing buffers of width 1 gives us a subrectangle that
can be pushed forward by π to a new conformal rectangle Rcan(S;α) with horizontal sides
contained in I and J .

The canonical arc diagram Acan(S) is the set of non-trivial arcs α in S such that the
canonical rectangle Rcan(S;α) is non-empty. The removal of buffers in the construction
ensures that these rectangles are pairwise disjoint. The cardinality of Acan(S) is at most a
constant depending only on the Euler characteristic of S.

We define the thick-thin decomposition and the canonical lamination of S by

TTD(S) ∶= ⋃
α∈Acan(S)

Rcan(S;α) and Fcan(S) ∶= ⋃
α∈Acan(S)

Fcan(S;α),

respectively, where Fcan(S;α) is the vertical foliation of the canonical rectangle Rcan(S;α).
Every leaf of Fcan(S;α) is represented by α ∈ Acan(S). If a proper arc α is not in Acan(S),
we set Fcan(S;α) to be the empty lamination.

Below, we list without proof a number of fundamental properties of the canonical lamina-
tion. Firstly, it is maximal in the following sense.

Proposition 2.2.10 ([Kah06, Lemma 3.2]). For any proper family F of curves in S repre-
sented by a single arc α,

W (F) − 2 ≤W (Fcan(S;α)) .

In other words, up to an additive constant, curves in F are vertical curves inside of the
rectangle Rcan(S;α).

Consider two hyperbolic Riemann surfaces U and V with boundary. The fact that the
thick-thin decomposition is defined via the universal cover yields the following property.

Proposition 2.2.11 ([Kah06, Lemma 3.3]). For any holomorphic covering map f ∶ U → V

of finite degree,

TTD(U) = f∗TTD(V ) and Fcan(U) = f∗Fcan(V ).

When U ⊂ V , the restriction of Fcan(V ) onto U results in a proper lamination in U . By
Proposition 2.2.10, the width of this restriction will be bounded above by the canonical
lamination of U after some buffers are removed. This can be formulated more precisely as
follows.
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Proposition 2.2.12 ([Kah06, Lemma 3.10]). When U ⊂ V , there exists a sublamination
L ⊂ Fcan(V ) such that

W (Fcan(V )) −C ≤W (L)

for some constant C > 0 depending only on the Euler characteristic of U with the following
property. For every leaf γ of L, every component of γ ∩U is either

(1) a homotopically trivial proper curve in U , or

(2) a vertical curve in Rcan(U ;α) for some α ∈ Acan(U).

In application, the Riemann surface S we consider in §3.5–3.6 is of the form U/K where
U ⊂ C is a disk and K is a non-empty compact subset of U . We say that a proper curve in
U/K is horizontal if both of its endpoints are on K, and vertical if it connects a point on K
and a point on ∂U . We define the canonical horizontal (resp. vertical) lamination Fhcan(U,K)
(resp. Fvcan(U,K)) on U/K to be the lamination consisting of all horizontal (resp. vertical)
leaves of Fcan(U/K). Similarly, we define the horizontal and vertical thick-thin decomposition
TTDh(U,K) and TTDv(U,K) of U/K respectively.

Let us fix a holomorphic map f ∶ U → V , where U,V ⊂ C are domains in Ĉ and assume
that it admits a rotation curve H ⊂ U . Let ϕ ∶H→ T be a conjugacy between f ∣H and the
irrational rotation Rθ∣T. Note that ϕ is unique up to post-composition with any rotation.

2.3 Small Orbits Theorem

This section will applied in Chapter 5 §5.3 as a vital ingredient in the proof of Theorem J.
Consider a complex Banach space B. Given a linear operator L ∶ B → B, denote the

corresponding set of eigenvalues by spec (L). We say that an eigenvalue λ ∈ spec (L) is
attracting if ∣λ∣ < 1, neutral if ∣λ∣ = 1, and repelling if ∣λ∣ > 1.

Theorem 2.3.1 (Small Orbits Theorem). Let R ∶ (U ,0) → (B,0) be a compact analytic
operator on a neighborhood U of 0 in a complex Banach space (B, ∥ ⋅ ∥). If the differential
DR0 ∶ B → B has a neutral eigenvalue, then R has slow small orbits, that is, for any
neighborhood V of 0, there is a forward orbit {Rng}n∈N in V such that

lim
n→∞

1

n
log ∥Rng∥ = 0.

In the absence of repelling eigenvalues of DR0, the theorem above was proven by Lyubich
in [Lyu99, §2]. The original Small Orbits Theorem was a vital ingredient in the proof of
hyperbolicity of quadratic-like renormalization horseshoe [Lyu99; Lyu02] and more recently
the proof of hyperbolicity of pacman renormalization fixed points [DLS20].
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Below we will generalize Lyubich’s proof. The key addition is the application of two
invariant cones, namely the center-stable cone Ccs and the center-unstable cone Ccu.

Proof. Let R be as in the hypothesis. Denote the unit disk in C by D ∶= {z ∈ C ∶ ∣z∣ < 1}. We
present the Banach space B as a direct sum

B = Es ⊕Ec ⊕Eu,

where subspaces Es,Ec,Eu are invariant under DR0 and

spec (DR0∣Es) ⊂ D, spec (DR0∣Ec) ⊂ ∂D, spec (DR0∣Eu) ⊂ C/D.

Note that the spectrum can only accumulate at 0 because R is a compact operator. In
particular, the subspace Ec⊕Eu must be finite dimensional. We will assume that each of the
three subspaces have positive dimension. (Else, we are reduced to [Lyu99, §2].)

For h ∈ B, we will write h = hs + hc + hu, where for a ∈ {s, c, u}, ha is the projection of h
onto the subspace Ea. We will also denote hcs ∶= hc + hc and hcu ∶= hc + hu. There exist an
adapted norm ∥ ⋅ ∥ on B and some positive constants µs, µcs, µcu, µu such that µs < 1 < µu,
µs < µcu, µcs < µu, and

∥DR0h∥ ≤ µs∥h∥ for all h ∈ Es,

∥DR0h∥ ≤ µcs∥h∥ for all h ∈ Ecs,

∥DR0h∥ ≥ µcu∥h∥ for all h ∈ Ecu,

∥DR0h∥ ≥ µu∥h∥ for all h ∈ Eu.

The proof below will involve two fixed constants α > 1 and δ > 0 where δ is small. We
consider a pair of cone fields Ccu and Ccs given by

Ccu
f = {h ∈ TfU ∶ α∥hs∥ ≤ ∥hcu∥} and Ccs

f = {h ∈ TfU ∶ α∥hu∥ ≤ ∥hcs∥} (2.3.1)

for every f ∈ U . For a ∈ {s, c, u}, we denote by Da =Da(δ) the open ball of radius δ centered
at 0 in Ea. Let

D ∶=Ds ×Dc ×Du

the corresponding open polydisk centered at 0 in B. The boundary of D can be decomposed
as follows:

∂sD ∶= ∂Ds ×Dc ×Du, ∂cD ∶=Ds × ∂Dc ×Du, ∂uD ∶=Ds ×Dc × ∂Du.

Claim 1. For sufficiently small δ > 0, the following properties hold.
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1. If f ∈ D, then Rf /∈ ∂sD;

2. If f ∈ ∂uD, then Rf /∈ D;

3. The cone field Ccu is forward invariant: if f,Rf ∈ D, then

DRf(Ccu
f ) ⊂ Ccs

Rf ;

4. The cone field Ccs is backward invariant: if f,Rf ∈ D, then

(DRf)−1(Ccs
Rf) ⊂ Ccs

f .

Proof. Fix a small constant ε > 0. We can assume that δ is sufficiently small depending on ε
such that the difference

Gf ∶= Rf −DR0f

has C1 norm on D bounded by ε, that is, for all f ∈ D and h ∈ TfU ,

∥Gf∥ ≤ ε∥f∥, and ∥DGfh∥ ≤ ε∥h∥.

When f lies in D,

∥(Rf)s∥ ≤ ∥DR0∣Es(f s)∥ + ∥(Gf)s∥ ≤ µs∥f s∥ + ε∥f∥.

Assuming µs + 3ε < 1, we then have ∥(Rf)s∥ < δ. Additionally, when ∥fu∥ = δ,

∥(Rf)u∥ ≥ ∥DR0∣Eu(fu)∥ − ∥(Gf)u∥ ≥ µuδ − ε∥f∥.

Assuming µu − 3ε > 1, we then have ∥(Rf)u∥ > δ. Hence, (1) and (2) hold.
Suppose both f and Rf are in D. For every h ∈ Ccu

f , we have

∥(DRfh)cu∥ = ∥DR0∣Ec⊕Eu(hcu) + (DGf(h))cu∥
≥ µcu∥hcu∥ − ε∥h∥

≥ (µcu − (1 +
1

α
) ε) ∥hcu∥,

and

α∥(DRfh)s∥ = α∥DR0∣Es(hs) + (DGf(h))s∥
≤ α (µs∥hs∥ + ε∥h∥)
≤ (µs + (α + 1)ε) ∥hcu∥.

We can take ε to be small enough such that α∥(DRfh)s∥ ≤ ∥(DRfh)cu∥ and thus DRfh ∈ Ccu
Rf .

The proof that the cone field Ccs is backward invariant works in a similar way.
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Let us consider the perturbation Rλ ∶= λ ⋅ R for 0 < λ < 1. When λ is sufficiently close to
1, Rλ still satisfies all the properties listed in Claim 1. The following claim is a consequence
of Lemma 2.3.2, which we will elaborate later separately.

Claim 2. There exists some point fλ ∈ ∂cD such that the orbit {Rnλfλ}n∈N lies entirely inside
of D and Rnλfλ → 0.

Since R is compact, there exist an increasing sequence {λn}n∈N of positive numbers and
some g ∈ D such that as n→∞, λn → 1 and Rλnfλn → g. Clearly, for all n ∈ N, the nth iterate
gn ∶= Rng lies in D.

As fλ is in ∂cD, fλ is also inside of the cone Ĉcu
0 = {∥hs∥ ≤ ∥hcu∥}. Similar to the proof of

Claim 1 (3), Ĉcu
0 is forward invariant under Rλ for λ ≤ 1. Hence, for every n ∈ N, ∥gsn∥ ≤ ∥gcun ∥.

This implies that for every n ∈ N,

gcun+1 =DR0∣Ec⊕Eu(gcun ) +O (∥gcun ∥2) . (2.3.2)

At last, we will show that the orbit of g is a slow small orbit. Indeed, suppose for a
contradiction that

lim inf
n→∞

1

n
log ∥gn∥ < −c0 (2.3.3)

for some constant c0 > 0. Note that this property holds for every norm that is equivalent to
∥ ⋅ ∥. Pick some c1 ∈ [0, c0). There exists an adapted norm ∥ ⋅ ∥ equivalent to the original one
such that the operator norm of DR0∣−1Ec⊕Eu is at most ec1 . By (2.3.2), for sufficiently small
δ > 0, there is some c2 ∈ (0, c0) such that

∥gcun+1∥ ≥ e−c2∥gcun ∥ for all n ∈ N.

This contradicts (2.3.3).

It remains to prove Claim 2, which will follow directly from the lemma below. Again, we
suppose B can be decomposed into Es ⊕Ec ⊕Eu and consider the cone fields Ccu and Ccs

defined in (2.3.1). We consider a small neighborhood U ⊂ B of some polydisk D centered at 0.
For any r > 0, we denote the open disk {z ∈ C ∶ ∣z∣ < r} by Dr.

Lemma 2.3.2. Let R ∶ (U ,0) → (B,0) be a compact analytic operator such that the differential
DR0 preserves the decomposition B = Es ⊕Ec ⊕Eu and satisfies the following properties.

(1) Hyperbolicity: There exists some 0 < r < 1 such that

spec (DR0∣Es) ⊂ Dr, spec (DR0∣Ec) ⊂ D/Dr, spec (DR0∣Eu) ⊂ C/D.

(2) Boundary behaviour: If f ∈ D, then Rf /∈ ∂sD. If f ∈ ∂uD, then Rf /∈ D.
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(3) Invariant cone fields: Whenever f,Rf ∈ D,

DRf(Ccu
f ) ⊂ Ccu

Rf , (DRf)−1(Ccs
Rf) ⊂ Ccs

f .

Then, there exists some f ∈ ∂cD such that {Rnf}n∈N ⊂ D and ∥Rnf∥ → 0 as n→∞.

Proof. By the compactness ofR, the subspace Ec⊕Eu is finite dimensional. Let dc ∶= dim (Ec)
and du ∶= dim (Eu). By (1), the stable manifold

A = {f ∈ D ∶ {Rnf}n∈N ⊂ D and ∥Rnf∥ → 0}

exists and is a forward invariant analytic submanifold of codimension du.
Let us assume for a contradiction that A is disjoint from ∂cD.

Claim 1. The set Ao ∶= A ∩D is a forward invariant open submanifold of A.

Proof. The only non-trivial property to prove here is forward invariance. Suppose f ∈ Ao. As
f ∈ A, then Rnf ∈ D for all n ≥ 1. By (2), Rf cannot lie in ∂sD ∪ ∂uD. By the assumption,
Rf cannot lie in ∂cD either. Thus, Rf ∈ D.

Claim 2. The set ∂cA ∶= A/(Ao ∪ ∂sD) is also forward invariant.

Proof. Suppose for a contradiction that there is some f ∈ ∂cA such that Rf ∈ Ao ∪ ∂sD. By
(2), Rf must lie in Ao, which implies that f ∈ A ∩ (∂cD ∪ ∂uD). However, this is impossible
because f does not lie in ∂cD by our main assumption, nor in ∂uD due to (2).

Claim 3. The tangent space TfAo at every point f in Ao is contained in Ccs
f .

Proof. Let f ∈ Ao. As Ao is tangent to the subspace Es ⊕Ec at 0, for all sufficiently high n,
Rnf is sufficiently close to 0 and so the tangent space TRnfAo lies within Ccs

Rnf . By backward
invariance of Ccs in (3), the tangent space of Ao at f also lies within Ccs

f .

Let us consider the family G of all immersed analytic dc-dimensional submanifolds Γ of
Ao containing 0 with the following properties.

(a) The tangent space TfΓ at every point f ∈ Γ lies in the cone Ccu
f ;

(b) The accumulation set Γ/Γ lies in ∂cA.

Note that G is non-empty: it contains Ao ∩ (Ec ⊕Eu) because, by Claim 3, the intersection
between Ao and the subspace Ec ⊕Eu is transversal. Another consequence of Claim 3 is the
following claim.
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Claim 4. For every Γ ∈ G and h ∈ TfΓ, ∥hc∥ ≍ ∥h∥. In particular, the projection P ∶ Γ→Dc

is non-singular.

Proof. Let h ∈ TfΓ. By Property (a) and Claim 3, α∥hs∥ ≤ ∥hcu∥ and α∥hu∥ ≤ ∥hcs∥. By
triangle inequality, these imply that (α − 1)max{∥hs∥, ∥hu∥} ≤ ∥hc∥ and consequently ∥hc∥ ≤
∥h∥ ≤ α+1

α−1∥hc∥.

Recall that the Kobayashi norm of a tangent vector v ∈ TfΓ at a point f on a complex
manifold Γ is defined as

∥h∥Γ ∶= inf {∥w∥D ∶ Dϕf(w) = h for some holomorphic map ϕ ∶ (D,0) → (Γ, f)}

where ∥w∥D denotes the Poincaré metric of w ∈ T0D on the unit disk D. We will supply every
Γ ∈ G with the Kobayashi metric.

Claim 5. There is some K > 0 such that for every Γ ∈ G and h ∈ T0Γ, ∥h∥Γ ≤K∥h∥.

Proof. By Claim 4, there is some δ > 0 such that for every Γ ∈ G, the component Γ(δ) of
Γ ∩Dc(δ) containing 0 is a graph of an analytic map Dc(δ) → Ds ×Du. Therefore, for any
h ∈ T0Γ,

∥h∥Γ ≤ ∥h∥Γ(δ) = ∥hc∥Dc(δ).

Clearly, ∥hc∥Dc(δ) ≍ ∥hc∥ (with bounds depending only on δ). By Claim 4, this yields the
desired inequality ∥h∥Γ ≤K∥h∥ for some K independent of Γ.

By Property (3) and Claim 2, the map R induces a well-defined graph transform

R∗ ∶ G → G, Γ↦RΓ.

Note that R ∶ Γ → RΓ is a proper non-singular map, hence a holomorphic covering map.
Therefore, for every Γ ∈ G, n ∈ N, and non-zero tangent vector h ∈ T0Γ,

∥h∥Γ = ∥(DRn)0(h)∥Rn
∗
Γ.

By Claim 5,

∥h∥Γ ≤K∥(DRn)0(h)∥.

However, by (1), ∥(DRn)0(h)∥ tends to 0 as n→∞. This yields a contradiction.
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2.4 Notation

Throughout this dissertation, we fix a pair of positive integers d0, d∞ ≥ 2 and an irrational
number θ ∈ (0,1) with continued fraction expansion θ. Unless otherwise stated, we will always
assume that θ is of bounded type.

In our analysis, we will often use the following notation:

⊳ x⊕ y ∶= (x−1 + y−1)−1 for any x, y > 0;

⊳ g = O(h) when h > 0 and ∣g∣ ≤ αh for some implicit constant α > 0;

⊳ g ≻ h when g, h > 0 and g ≥ αh for some implicit constant α > 0;

⊳ g ≍ h when g ≻ h and h ≻ g.

Number theory.

⊳ β(θ) = supn≥1 an if θ ∈ (0,1)/Q has continued fraction expansion θ = [0;a1, a2, . . .];

⊳ ΘN ∶= {θ ∈ (0,1)/Q ∶ β(θ) ≤ N}, the set of bounded type irrationals with bound ≤ N ;

⊳ Θbdd ∶= ⋃N≥1ΘN , the set of bounded type irrationals;

⊳ Θpre ∶= the set of pre-periodic irrationals (quadratic irrationals) in (0,1);

⊳ Θper ∶= the set of periodic irrationals in (0,1).

Euclidean geometry. The Euclidean norm on the complex plane C is denoted by ∣ ⋅ ∣.

⊳ D(z, ε) = {w ∈ C ∶ ∣w − z∣ < ε};

⊳ A(r,R) = {z ∈ C ∶ r < ∣z∣ < R};

⊳ dist(A,B) = Euclidean distance between two subsets A and B of C.

Given a pointed topological disk (U,x), we define the following.

⊳ rin(U,x) ∶= dist(x, ∂U), the inner radius of U about x;

⊳ rout(U,x) ∶= inf{ε > 0 ∶ U ⊂ D(x, ε)}, the outer radius of U about x.

For any C ≥ 1, we say that (U,x) has C-bounded shape if rout(U,x) ≤ Crin(U,x). We say
that (U,x) has bounded shape if it has C-bounded shape for some implicit constant C > 1.
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Hyperbolic geometry. Given a hyperbolic Riemann surface Ω, denote by dΩ(⋅, ⋅) the
corresponding hyperbolic metric of Ω.

⊳ DΩ(z, ε) = {w ∈ Ω ∶ dΩ(w, z) < ε};

⊳ distΩ(A,B) = hyperbolic distance between two subsets A and B of Ω.

Given a pointed topological disk (U,x) in Ω,

⊳ rin,Ω(U,x) ∶= distΩ(x, ∂U) the hyperbolic inner radius of U about x;

⊳ rout,Ω(U,x) ∶= inf{ε > 0 ∶ U ⊂ DΩ(x, ε)} the hyperbolic inner radius of U about x.

Conformal geometry. The main conformal invariants in consideration are the following.

⊳ mod(A) = the conformal modulus of an annulus A;

⊳ W (F) = the extremal width of a curve family F .

Given a compact subset K of a Riemann surface U with boundary, we will use the following
notation.

⊳ F(U,K) = the family of proper curves in U/K connecting ∂U and K;

⊳ Fhcan(U,K) = the set of leaves of the canonical lamination of U/K that are horizontal
(both endpoints are on K);

⊳ Fvcan(U,K) = the set of leaves of the canonical lamination of U/K that are vertical
(connects ∂U and K);

⊳ W (U,K) = the extremal width of F(U,K).

For any pair of disjoint sets I and J in Ĉ, we say that I and J are well separated if there
exists an annulus A of modulus mod(A) ≍ 1 separating I and J . For any set I contained in a
domain D, we say that I is well contained in D if I and ∂D are well separated.
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Chapter 3

A Priori Bounds

Let us consider the family H = Hd0,d∞,θ of all degree d rational maps f such that

(I) 0 and ∞ are superattracting fixed points of f with local degrees d0 ≥ 2 and d∞ ≥ 2
respectively;

(II) the map f admits an invariant Herman ring H with a bounded type rotation number θ;

(III) H separates 0 and ∞;

(IV) every critical point of f other than 0 and ∞ lies on the boundary of H.

In this chapter, we will establish a priori bounds for H and apply it to study the “boundary“
X ∶= H/H.

3.1 Setting up the stage

3.1.1 Herman rings

The following procedure allows one to obtain Siegel disks out of invariant curves.

Theorem 3.1.1 (Douady-Ghys surgery). Let f ∶ Ĉ → Ĉ be a rational map, Y ⊂ Ĉ be a
quasidisk such that ∂Y is forward invariant and f ∣∂Y is quasisymmetrically conjugate to an
irrational rotation Rθ of the circle T. There exists a K-quasiconformal map ϕ ∶ Ĉ→ Ĉ and a
rational map F such that

(1) F = ϕ ○ f ○ ϕ−1 on Ĉ/ϕ(Y ), and

(2) F has a Siegel disk of the same rotation number θ containing ϕ(Y ).

Moreover, K depends only on the dilatation of the conjugacy between f ∣∂Y and Rθ.
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The original idea of the surgery procedure was by Ghys in [Ghy84], but the formulation
above follows from [BF14, §7.2]. The essence of the surgery procedure is to replace the
dynamics f ∣Y with a rotation. More precisely, we replace f ∣Y with ψ−1 ○ Rθ ○ ψ, where
ψ ∶ Y → D is a quasiconformal extension of the quasisymmetric conjugacy between f ∣∂Y and
Rθ∣∂D, and straighten the new map via the measurable Riemann mapping theorem.

As explained in the introduction, Douady-Ghys surgery plays an essential role in deducing
the regularity of the boundary of Siegel disks with bounded type rotation number. The most
general version of this result is the following theorem.

Theorem 3.1.2 ([Zha11]). Let f be a rational map of degree d ≥ 2. If f has an invariant Siegel
disk Z with bounded type rotation number θ, then the boundary ∂Z is a K(d, β(θ))-quasicircle
containing at least one critical point.

In [Shi87, §6], Shishikura originally discovered a way to convert Herman rings into Siegel
disks (and vice versa) through quasiconformal surgery. We will formulate this procedure as a
straightforward application of Douady-Ghys surgery and combine it with Zhang’s theorem to
obtain the following corollary.

Corollary 3.1.3. Let f be a rational map of degree d ≥ 3 having an invariant Herman ring
H with bounded type rotation number θ and modulus mod(H) ≥ µ > 0. Then,

(1) every boundary component of H is a K-quasicircle containing at least one critical point;

(2) there is an L-quasiconformal map ϕ ∶ Ĉ→ Ĉ that is conformal in H and conjugates f ∣H
and the rigid rotation Rθ on the annulus A(1, e2πmod(H)).

Moreover, the dilatations K and L depend only on d, β(θ), and µ.

Proof. Along the core curve γ of H, f ∣γ is K ′-quasisymmetrically conjugate to Rθ∣T for some
K ′ = K ′(µ). Pick a boundary component H of H and let D be the component of Ĉ/γ
containing H. Apply Douady-Ghys surgery along γ to obtain a degree ≤ d − 1 rational map
F having an invariant Siegel disk Z and an L′-quasiconformal map ψ ∶ Ĉ→ Ĉ that maps H
to ∂Z and restricts to a conjugacy between f ∣D and F ∣ψ(D), where L′ depends on µ. Then,
the corollary follows from applying Zhang’s theorem to F .

In this chapter, we would like to remove the dependency on the modulus µ for rational
maps in H. Such rational maps can be constructed through Shishikura’s quasiconformal
surgery [Shi87] (see also [BF14, §7.3]) from two polynomials P0 and P∞ of degree d0 and
d∞ respectively where both P0 and P∞ have invariant Siegel disks Z0 and Z∞ of rotation
numbers 1− θ and θ respectively and satisfy a condition similar to (IV). The surgery involves
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removing a proper invariant sub-disk of each Z0 and Z∞, gluing the two remaining Riemann
surfaces along the boundary of the sub-disks and applying the measurable Riemann mapping
theorem to obtain some f ∈ H that mimics the dynamics of both P0 and P∞ outside of the
removed disks.

Denote by Y 0 and Y ∞ the connected components of Ĉ/H containing 0 and ∞ respectively.
The hypothesis assumes that ∂Y 0 contains a unique critical point c0 and ∂Y ∞ contains a
unique critical point c∞. The covering structure of f is well understood.

Proposition 3.1.4. The preimage f−1(H) of H is of the form

H ∪
d0−1

⋃
i=1

A0
i ∪

d∞−1

⋃
j=1

A∞j

where for each ● ∈ {0,∞} and i ∈ {1, . . . , d● − 1},

(1) A●i is a closed topological annulus in Y ●;

(2) A●i ∩H = {c} for some critical point c;

(3) if j ≠ i, A●i ∩A●j is either empty or {c} for some critical point c;

(4) f is univalent in the interior of A●i .

Proof. For each ● ∈ {0,∞}, the boundary ∂Y ● is a quasicircle along which f is conjugate
to the irrational rotation. We can perform Douady-Ghys surgery1 to replace f on the disk
D● ∶= Ĉ/(H ∪ Y ●) with a rotation and obtain a rational map P● that satisfies the following
properties:

⊳ P● admits an invariant Siegel disk Z● ⊂ C, which is a quasidisk;

⊳ there is a quasiconformal map ϕ● ∶ Ĉ→ Ĉ that restricts to a conjugacy between f ∣Ĉ/D●
and P●∣Ĉ/Z● ;

⊳ ϕ●(●) = ∞, and thus P● has a superattracting fixed point at ∞ with local degree d●.

Clearly, for each ●, P● must have degree at least d●. The critical points of P● aside from
∞ must lie on ∂Z●. Moreover, the sum of the numbers of critical points of P0 and P∞ is
equal to the number of critical points of f , which is 2(d0 + d∞ − 2). As such, P0 and P∞ must
be polynomials of degrees d0 and d∞ respectively.

For each ●, the maximum modulus principle implies that the preimage of Z● under P●
must be of the form Z● ∪ E●1 ∪ . . . ,E●d●−1 for some d● − 1 pairwise disjoint open disks E●i ’s

1A combinatorial proof avoiding the surgery procedure is possible, but we will leave it as an exercise to
the keen reader.
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where for each i, P● is univalent in E●i and the closure E●i intersects Z● precisely at one point,
which is a critical point of P●. Therefore, the preimage of H under f is of the form

H ∪ ⋃
●∈{0,∞}

d●−1

⋃
i=1

(ϕ−1● (E●i ) ∩ f−1(H)).

Then, the proposition follows immediately.

Denote by C = {c0, c∞} the set of free critical points of f . For any n ≥ 1, we refer to the
closure of a component of f−n(H)/f−(n−1)(H) as a bubble of generation n. By Proposition
3.1.4, every bubble B of generation n is a closed annulus admitting a unique point on the
outer boundary of B that lies on the pre-critical set f−(n−1)(C). This unique point will be
called the root of B. In particular, every bubble of generation 1 is precisely one of the A●i ’s
above and it is rooted at a unique critical point. (See Figure 3.1.) We say that a bubble
attached to H is an inner bubble if it lies in Y 0 and an outer bubble if it lies in Y ∞.

3.1.2 Combinatorial data

We shall formally define combinatorics of Herman ring H of f ∈ H as follows. For any n ∈ N,
the nth symmetric product SPn(T) of the unit circle T is the quotient of the n-dimensional
torus Tn under the symmetric group Sn acting by permutation. Elements of SPn(T) are
precisely unordered n-tuples of elements of T.

Definition 3.1.5. Define Cm,n to be the quotient space of SPm−1(T) × SPn−1(T) modulo the
action of T by any rigid rotation, endowed with the quotient topology.

Let ϕ ∶H→ A(1,R), where R = e2πmod(H), denote a linearization of f ∣H. Let (c01, . . . , c0d0−1)
and (c∞1 , . . . , c∞d∞−1) denote the tuples of inner and outer critical points of f counting multi-
plicity.

Definition 3.1.6. The combinatorics of f ∈ H is the element comb(f) in C = Cd0,d∞ induced

by the pairs of tuples (ϕ(c01), . . . , ϕ(c0d0−1)) and (ϕ(c
∞

1 )

R , . . . ,
ϕ(c∞d0−1

)

R ).

Note that comb(f) is well-defined because ϕ is unique up to post-composition with rigid
rotation.

Zhang [Zha08] proved that bounded type Siegel disks of any prescribed combinatorics
are realized by a unique rational map as long as outside the closure of the Siegel disk, the
postcritical set is finite and there are no Thurston obstructions. Using methods similar to
Shishikura’s quasiconformal surgery, Wang [Wan12] extended Zhang’s result to rational maps
with an invariant Herman ring where outside the closure of the Herman ring, the postcritical
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set is finite and there are no Thurston obstructions. In particular, every map f in H is
uniquely determined by the conformal modulus of its Herman ring H and the combinatorial
data on ∂H.

Theorem 3.1.7 ([Wan12]). For any µ > 0 and σ ∈ C, there is a rational map f ∈ H such
that its Herman ring has modulus µ and combinatorics σ. Moreover, such f is unique up to
conformal conjugacy.

Towards the end of the chapter, we will also consider the space X of degree d rational
maps f such that

(i) 0 and ∞ are superattracting fixed points of f with local degrees d0 ≥ 2 and d∞ ≥ 2
respectively;

(ii) the function f admits a Herman quasicircle H of rotation number θ;

(iii) H separates 0 and ∞;

(iv) every critical point of f other than 0 and ∞ lies in H;

(v) the conjugacy between f ∣H and Rθ∣T is quasisymmetric with dilatation depending only
on d0, d∞ and β(θ).

Consider a map f ∈ X . Denote by H the Herman quasicircle of f , and by Y 0 and Y ∞ the
connected components of Ĉ/H containing 0 and ∞ respectively.

Topologically, maps in X are dynamically identical to maps in H with the exception
that quasiconformal Herman rings of positive moduli are replaced with quasicircles (zero
modulus). Similar to Proposition 3.1.4, the strict preimage of the Herman quasicircle H

of f is a union of quasicircles (bubbles of generation one) attached to critical points on H.
Bubbles of arbitrary generation are obtained by taking iterated preimages of H.

Proposition 3.1.8. J(f) = ∪∞k=0f−k(H).

Let ϕ ∶ H → T be the quasisymmetric conjugacy between f ∣H and Rθ. By pushing
forward inner and outer critical points of f under ϕ, we again obtain a well-defined element
comb(f) ∈ C.

Definition 3.1.9. The combinatorics of f ∈ X is the element comb(f) in C.
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f

g

Figure 3.1: Bubbles of generation 1 for f ∈ H above and g ∈ X below.

3.1.3 Encoding degeneration

Consider the following general setup. Let f ∶H→H be a homeomorphism on a closed annulus
H ⊂ Ĉ. Suppose f is topologically conjugate via ϕ ∶H→ A to the rigid rotation Rθ(z) = e2πiθz
on a closed round annulus A = {1 ≤ ∣z∣ ≤ R}. Via the projection ψ ∶ A→ T, z ↦ 1

2πarg(z), we
can equip H with the pullback under ψ ○ ϕ of the Euclidean metric on T ∶= R/Z, called the
combinatorial pseudometric of H.

A closed set I ⊂H is called a piece in H if it is of the form (ψ ○ ϕ)−1(I ′) for some closed
interval I ′ ⊂ T. Define the combinatorial length ∣I ∣ of a piece I to be the diameter of I with
respect to the combinatorial pseudometric.

For any two distinct points x, y ∈ H, we denote by [x, y] the unique combinatorially
shortest piece that contains both x and y. Note that if ψ(ϕ(x)) = ψ(ϕ(y)), then [x, y] is a
radial segment in H with zero combinatorial length.

Let {pn/qn} be the sequence of best rational approximations of θ.

Definition 3.1.10. A combinatorial piece of level n is a piece of the form [x, f qn(x)] for
some x ∈H.

Recall from Proposition 2.1.2 that rotational behaviour induces a nest of tilings on H.
For any x ∈H and n ∈ N, consider the nth renormalization tiling induced by x ∈H:

H =
qn+1−1

⋃
i=0

f i ([x, f qn(x)]) ∪
qn−1

⋃
j=0

f j ([f qn+1(x), x]) .

All the pieces in the expression above have pairwise disjoint interiors, and all the level n + 1
combinatorial pieces above are pairwise disjoint. Keeping only the level n pieces from the
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I I

(αI)c
(αI)c

Figure 3.2: On the left, I has small α-width. On the right, I has large α-width.

renormalization tiling gives us an almost tiling whose gaps have length ln+1. We will also
often apply the weaker fact that for any n ≥ 3, the orbit {f i(x)}i=0,...,qn partitions H into
pieces of length between ln and ln−2.

For every α ≥ 3 and piece I ⊂H of length ∣I ∣ < 1
α , we will use the following notation:

⊳ Ic = the closure of H/I;

⊳ αI = the combinatorial rescaling of I by the factor of α, that is, the unique piece in H

of length α∣I ∣ having the same combinatorial mid-segment as I;

⊳ Fα(I) = the set of proper curves in Ĉ/ (I ∪ (αI)c) connecting I and (αI)c;

⊳ Wα(I) = the α-width of I, that is, the extremal width of Fα(I).

When R = 1, H is a Jordan curve, the combinatorial pseudometric is a metric on H, and
every piece in H is a genuine interval. Additionally, when the conjugacy ϕ is quasiconformal,
we have the following. (Compare with [DL22, Lemma 11.3].)

Proposition 3.1.11. Let ϕ ∶ Ĉ→ Ĉ be a quasiconformal map that maps a quasicircle H onto
the unit circle T. Equip H with the combinatorial metric induced by ϕ.

(1) For every α ≥ 3, there is a constant K depending on α and the dilatation of ϕ such that
every interval I ⊂H of combinatorial length ∣I ∣ < (2α)−1 satisfies Wα(I) ≤K.

(2) Conversely, if there are some constants α ≥ 3, ε ∈ (0, 1), and K > 0 such that Wα(I) ≤K
for every interval I ⊂ H of combinatorial length at most ε, then the dilatation of H
depends only on α, ε and K.

Proof. Pick any α ≥ 3 and any interval I ⊂H of length ∣I ∣ < (2α)−1. On the circle, ϕ(I) has
width Wα(ϕ(I)) ≤M for some constant M =M(α) > 1. Therefore, on H, the interval I has
width Wα(I) ≤ kM , where k denotes the dilatation of ϕ, and so (1) holds.
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To show the converse, we first claim that every interval I of length at most ε must satisfy
W3(I) ≤ αK. If otherwise, then we could partition I into ⌊α⌋ pieces I1, . . . , I⌊α⌋ of equal
combinatorial length. Since each (αIi)c contains (3I)c,

⌊α⌋

∑
i=1

Wα(Ii) ≥
⌊α⌋

∑
i=1

W (Ii, (3I)c) ≥W3(I) > αK.

Then, at least one of the pieces Ij satisfies Wα(Ij) >K, which is a contradiction.
Assume without loss of generality that H separates 0 and ∞. For any ● ∈ {0,∞}, we

denote by Y ● the component of Ĉ/H containing ●. For any interval J ⊂H, let m●(J) denote
the harmonic measure of J on Y ● about ● and let W ●

3 (J) denote the width of the family
of proper curves in Y ● connecting J and (3J)c. Since W3(I) ≤ αK, then W ●

3 (I) ≤ αK for
● ∈ {0,∞}.

Denote by L and R the two connected components of 3I/I. For ● ∈ {0,∞}, by Proposition
2.2.7,

m●(I) <M ⋅min{m●(L),m●(R)}

for some M =M(αK) ≥ 1. Thus, any two neighboring combinatorial intervals I and J of
equal combinatorial length satisfy

M−1m●(J) <m●(I) <Mm●(J).

As such, the inner and outer harmonic measures are quasisymmetrically equivalent to the
combinatorial measure, and consequently to each other as well. By conformal welding, this
implies (2).

In application, in order to bound the dilatation of a quasicircle H, it is sufficient to obtain
a bound on the α-width of sufficiently deep intervals in H and for some α ≥ 3. Degeneration
is encoded by the presence of an interval with very large α-width.

3.1.4 Setup and notation

Throughout this chapter, dependence on d0, d∞ and β(θ) will always be implicit. Throughout
Sections §3.3–3.7, we will fix a rational map f in H and denote its Herman ring by H. We
always assume that the modulus µ of H is sufficiently small: µ ≪ 1. (Otherwise, a priori
bounds can be obtained from Corollary 3.1.3.)

Let us define H in two different ways:

H is the closure of the Herman ring H of f ;
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H is the outer boundary component of the Herman ring H of f . (The treatment for
the inner boundary is analogous.)

In Section §3.2, only is considered.
In both cases, we let

Y ● ∶= the connected component of Ĉ/H containing ●, for ● ∈ {0,∞}.

For any piece I ⊂H,

⊳ ∣I ∣ ∶= the combinatorial length of I ⊂H;

⊳ Ic ∶= the closure of H/I.

Moreover, for any α ∈ (1, ∣I ∣−1),

⊳ αI ∶= the piece in H of length α∣I ∣ that shares the same mid-segment as I;

⊳ Fα(I) ∶= F(Ĉ/(αI)c, I);

⊳ Wα(I) ∶=W (Ĉ/(αI)c, I), a conformal invariant measuring the (near-)degeneracy at I.

When Wα(I) ≥K for some K > 1, we say that I is [K,α]-wide.
Fix the constant2 τ ∶= 10. Local degeneration will be represented by two quantities,

namely the τ -degeneration Wτ(I) ≫ 1 and the λ-degeneration Wλ(I) ≫ 1 at a piece I ⊂H
for some large parameter λ≫ τ . We will take λ to be sufficiently large for our analysis to
work, and emphasize whenever other constants depend on λ throughout Sections §3.3–3.6.
One particular parameter that will appear frequently is nλ defined below.

Definition 3.1.12. For any λ > 1, denote by nλ the smallest integer such that for any
combinatorial piece I ⊂ H of level ≥ nλ, the pieces 2λI, 2λf(I), and 2λf 2(I) are pairwise
disjoint.

In Case , we impose the additional assumption that any interval I ⊂H we consider is
always at the Siegel scale, i.e. ∣I ∣ ≤ µ.

Lemma 3.1.13. In Case , for any interval I ⊂H, the width of curves in the Herman ring
H connecting I and the inner boundary component H0 is at most 5.

2The reader may wish to assign a different value for τ as long as it is a sufficiently large integer.
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Proof. For any interval J in the outer boundary component H, let J̃ denote the corresponding
piece in H such that J = J̃ ∩H. It comes with a canonical structure of a conformal rectangle
with horizontal sides J̃ ∩ ∂H.

At the Siegel scale, it is sufficient to prove the lemma for any interval I of length ∣I ∣ = µ.
Let L and R denote the two intervals in H adjacent to I that have the same length µ. Then,
W (L̃) =W (R̃) =W (Ĩ) = 1. The family F0 of curves in H connecting I and H0 is contained
in the union F1 ∪ F2, where F1 consists of vertical curves of 3̃I and F2 ∶= F0/F1. Observe
that W (F1) =W (3̃I) = 3. Since every curve in F2 must cross either of the two rectangles L̃
and R̃, then by Proposition 2.2.5, W (F2) ≤ 2. Therefore, W (F0) ≤ 5.

Intervals at the Siegel scale are conformally far from the inner boundary component H0

of the Herman ring H. As such, this situation is comparable to that of an interval on the
boundary of a Siegel disk, in which the width between I and the inner component, which is
the singleton consisting of the center, is 0.

The arguments we present in Sections §3.2–3.6 will mainly address Case using only the
combinatorial and dynamical properties of H. The modulus µ will not play any major role
until Sections §3.7–3.8. Most of the arguments in Sections §3.3–3.6 apply to Case with a
few adjustments presented as separate remarks.

3.1.5 Outline

Let us provide an outline of the proof of Theorem A. The key to a priori bounds is the
Amplification Theorem 3.7.1 which states that the existence of a [K,τ]-wide piece I ⊂ H
implies the existence of a [2K,τ]-wide piece, where K is sufficiently large (depending only
on d0, d∞, and β(θ)). Our analysis is split into two cases.

Herman scale ∣I ∣ > µ, (the main case, roughly )

Siegel scale ∣I ∣ ≤ µ. (roughly Case )

In the Siegel scale, this theorem is similar to (and was inspired by) [DL22, Theorem 8.1]
in the context of quadratic Siegel disks. In the Herman scale, the techniques in [DL22],
especially [DL22, Snake Lemma 2.12], are not applicable because, unlike in the Siegel scale,
the geometry on both sides of I is unknown. In Sections §3.2–3.6, we develop the fundamental
results needed to prove the Amplification Theorem.

In Section §3.2, we discuss the bubble-wave argument, a mechanism (Proposition 3.2.2)
that generates large τ -width at a shallow level, i.e. when ∣I ∣ ≍ 1. The main idea is to use the
fact that bubbles, i.e. preimages of H, up to a certain generation that are attached to H have
controlled harmonic measure about either 0 or ∞ (Claim 2 in the proof of Lemma 3.2.3).
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Section §3.3 discusses some ways to spread degeneration. Let pn
qn

be the best rational
approximations of θ. A piece I ⊂ H is a combinatorial piece of level n if it has endpoints
x and f qn(x) for some point x ∈H. A level n almost tiling I is a collection of pieces with
disjoint interiors of the form {f i(I)}0≤i≤qn+1−1 for some level n combinatorial piece I. By
applying the Covering Lemma 2.2.9, we show in Proposition 3.3.2 that for any Ξ > 1, λ≫ 10,
and K ≫Ξ,λ 1, the existence of a [K,λ]-wide combinatorial piece implies the existence of
either a [ΞK,10]-wide piece or an almost tiling I consisting of [ξK,λ]-wide pieces for some
ξ = ξ(Ξ) > 0.

The main result in Section §3.4 is Theorem 3.4.1 which states that for K ≫λ 1, the
existence of an almost tiling consisting of [K,λ]-wide pieces implies the existence of a
[ΠλK,10]-wide piece where Πλ →∞ as λ →∞. The proof is split into two cases: the deep
case, where the level of the almost tiling is high, and the shallow case, where the level is low.
The deep case is an application of the Quasi-Additivity Law, whereas the shallow case is
handled using the bubble-wave argument.

In Section §3.5, we prove in Theorem 3.5.1 that for λ≫ 10 and K ≫λ 1, the existence of a
[K, 10]-wide combinatorial piece induces the existence of a piece that is either [2K, 10]-wide
or [χK,λ]-wide, where 0 < χ < 1 is independent of λ. Since the shallow case can again be
handled via the bubble-wave argument, we are left with the deep case. Our main strategy is
to adapt Kahn’s push-forward argument in [Kah06, §7] to our setting. A key ingredient in
the original push-forward argument is the positivity of the core entropy corresponding to
primitive renormalization, which stands in contrast to the lack of entropy of the rotational
action of f on H. Section §3.6 is dedicated to developing a replacement for Kahn’s entropy
argument, namely Proposition 3.6.2. Due to technical considerations, we supply a more
detailed outline in §3.6.1.

Finally, the proof of the Amplification Theorem 3.7.1 is an application of Theorems 3.4.1
and 3.5.1. In short, we will eventually pick λ to be large enough such that the constant Πλ

beats the constant χ. This is captured in Figure 3.13.

3.2 Bubble-wave argument

In Sections §3.4 and §3.5, we will encounter degeneration witnessed by a combinatorial piece
I that is either shallow, i.e. has level bounded above by some constant, or deep, i.e. not
shallow. In the shallow case, we will need to rule out the presence of wide waves. Waves are
defined as follows.

Definition 3.2.1. For ● ∈ {0,∞} and a piece A ⊂H, we say that a curve γ protects A from ●
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if it is a proper curve in Y ● such that A∩ ∂Y ● is contained on the boundary of the connected
component of Y ●/γ that does not contain ●. We say that a lamination Ω is a wave if it is a
proper lamination in Y ● for some ● ∈ {0,∞} such that there exists a piece A that is protected
from ● by every leaf. If ● = 0, it is called an inner wave; if ● = ∞, it is called an outer wave.
The (combinatorial) length ∣Ω∣ of a wave Ω is the maximum combinatorial length ∣A∣ of pieces
A protected by Ω.

In this section, our aim is to convert a wide wave into τ -degeneration which increases with
the length and width of the wave and is witnessed by a combinatorial piece of a controlled
level.

Proposition 3.2.2 (Wide waves Ð→ τ -degeneration). There exists an absolute constant
m ∈ N such that the following holds. For every n ∈ N and α ≥ 1, there exists some K =K(n) > 1
such that if

there exists a wave Ω of length ∣Ω∣ ≥ αln and width W (Ω) ≥K,

then

there exists a level n +m combinatorial piece J with Wτ(J) ≻ αW (Ω).

The main idea of the proof is to use the interaction between waves and bubbles. The key
step is Claim 2 in the proof of Lemma 3.2.3 below, in which we deduce that most of the wave
at the shallow scale should pass through bubbles up to a certain generation. From there, we
use these bubbles to split up the wave into wider ones and achieve a multiplicative factor
depending on α.

3.2.1 Amplifying waves

We first argue that a combinatorially long wide wave induces an even wider wave of smaller
but controlled length. Refer to Figure 3.3.

Lemma 3.2.3. There exists an absolute constant m′ ∈ N such that the following holds. For
every n ∈ N and α ≥ 1, there exists some K =K(n) > 1 such that if

there exists a wave Ω of length ∣Ω∣ ≥ αln and width W (Ω) ≥K,

then

there is another wave Ω′ of length ∣Ω′∣ ≥ ln+m′ and width W (Ω′) ≥ 2αW (Ω).
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Proof. Pick n ∈ N and α ≥ 1. We shall first introduce two absolute constants m′′,m′ ∈ N

satisfying

10 ln+m′′ < ln, and (3.2.1)

2 ln+m′ ≤ ln+m′′+2. (3.2.2)

Set t ∶= qn+m′′+2.
Suppose Ω is an outer wave of length ≥ αln and width ≥K. Denote by A the longest piece

protected by Ω. For every outer critical point c ∈H, denote by Oc ∶= {f ∣−iH(c)}i=0,...,t−1 ∩A the
set of preimages of c up to time t − 1 that lie on A, and by Bc the set of outer bubbles B
such that B is rooted at some point f ∣−iH(c) in Oc where i + 1 is the generation of B.

Claim 1. There exist k ≥ 5α distinct pieces Pn1 , . . . , Pnk
length ≥ ln+m′ .

Proof. Since ∣A∣ ≥ αln, it is sufficient to show that the claim is true for k ≥ 5∣A∣/ln. Suppose
otherwise. Then, the number of pieces Pi of length < ln+m′ is more than N − 5∣A∣/ln and the
rest have length between ln+m′ and ln+m′′ . In particular,

∣A∣ < (N − 5∣A∣
ln
) ln+m′ +

5∣A∣
ln

ln+m′′ .

By (3.2.1), this simplifies to

1 < (2N∣A∣ −
10

ln
) ln+m′ .

By 2.1.2, for every critical point c, adjacent points in Oc have distance at least ln+m′′+2, so Oc
has cardinality at most ∣A∣/ln+m′′+2. Since f has less than d outer critical points, we deduce
that N < d∣A∣/ln+m′′+2. As such,

1 < 2d ln+m′

ln+m′′+2
− 10 ln+m′

ln
.

However, this implies that 2d ln+m′ > ln+m′′+2, which contradicts (3.2.2).

Next, we will remove parts of the wave that skip some bubbles. We claim that such
removal is harmless.

Claim 2. The width of leaves in Ω that are disjoint from a bubble B ∈ B is at most some
constant depending only on n.

Proof. Denote by Y ∞t the connected component of f−t(Y ∞) that contains ∞. The map
f t ∶ Y ∞t → Y ∞ is a degree dt∞ covering map branched only at ∞. For every bubble B ∈ B, the
harmonic measure κ of its outer boundary B ∩ ∂Y ∞t in Y ∞t about ∞ is equal to d−g∞ , where g
is the generation of B. Since g ≤ t = qn+m′′+2, then κ ≥ d−qn+m′′+2∞ . Therefore, the claim follows
from Proposition 2.2.7.
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Ω̂

A

G2 G3 G4
G5

Pn2 Pn3 Pn4 Pn5

Figure 3.3: The outer wave Ω̂ and the laminations Gi’s connecting bubbles attached to the
endpoints of Pni

’s.

By Claim 2, we can take K to be sufficiently high depending on n and assume that the
sublamination Ω̂ consisting of leaves of Ω that consecutively intersect every bubble in B has
width

W (Ω̂) ≥ 2

3
W (Ω). (3.2.3)

There exist pairwise disjoint proper laminations G2,G3, . . . ,Gk−1 in Y ∞t such that each Gi
is a restriction of Ω̂ (refer to §2.2.1) and connects two bubbles in B attached to the two
endpoints of Pni

. See Figure 3.3. Suppose the widest one is Gs for some s. Since G2, . . . ,Gk−1
are pairwise disjoint, by Propositions 2.2.2 and 2.2.3,

W (Ω̂) ≤W (G2) ⊕ . . .⊕W (Gk−1) ≤
1

k − 2W (Gs). (3.2.4)

By (3.2.3), (3.2.4), and the assumption that α ≥ 1,

W (Gs) ≥ (k − 2)W (Ω̂) ≥ (5α − 2) ⋅
2

3
W (Ω) ≥ 2αW (Ω).

Let g ∈ N be the maximum generation of the two bubbles that the endpoints of leaves
of Gs lie on. The image Ω′ ∶= f g(Gs) is the wave we are looking for. Indeed, it has the same
width as Gs, which is at least 2αW (Ω), and Ω′ has length at least ln+m′ because of Claim 1
and the fact that Ω′ protects the piece f g(Pns).

3.2.2 Wide waves yield τ -degeneration

By an inductive argument, we can now obtain a τ -degeneration out of a wide wave.

Proof of Proposition 3.2.2. Pick n ∈ N and α ≥ 1. Let m′ and K be the constants from
Lemma 3.2.3 and set m ∈ N to be the smallest integer such that τ−1

2 ln+m ≤ ln+m′ . Let Ω be a
wave of combinatorial length ≥ αln and width W (Ω) ≥K.
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Claim. Either there exists a level n +m combinatorial piece J satisfying Wτ(J) ≻ αW (Ω),
or for every t ≥ 1, there exists a wave Ωt of length ≥ ln and width

W (Ωt) ≥ (
3

2
)
t

αW (Ω). (3.2.5)

Proof. We will proceed by induction. Suppose there exists a wave Ωt of length ≥ ln satisfying
(3.2.5) for some t ∈ N. We will also include the initial case t = 0, in which Ω0 ∶= Ω has length
≥ αln and width W (Ω). By Lemma 3.2.3, there is a wave Ω′t of width

W (Ω′t) ≥
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2W (Ωt) if t ≥ 1,
2αW (Ω) if t = 0,

(3.2.6)

protecting a piece Jt of length ln+m′ . Note that by (3.2.5) and (3.2.6), we have

W (Ω′t) ≥ 2αW (Ω). (3.2.7)

Let It+1 be the level n combinatorial piece that shares the same combinatorial mid-segment
as Jt. We present Ω′t as Ωt+1 ∪Ω′′t where Ωt+1 is the set of leaves of Ω′t that protect It+1 and
Ω′′t is the set of leaves that land on It+1/Jt.

If W (Ωt+1) ≥ 3
4W (Ω′t), then by combining this with (3.2.5) and (3.2.6), the wave Ωt+1

satisfies (3.2.5) and we are done. Suppose instead that

W (Ω′′t ) >
1

4
W (Ω′t). (3.2.8)

There exists a level n+m combinatorial piece J ⊂ It+1/Jt such that amongst every level n+m
subpiece of It+1/Jt, the width of leaves of Ω′t landing on J is the widest. Our choice of m
guarantees that leaves of Ω′′t that land on J lie in Fτ(J), yielding

Wτ(J) ≥
∣J ∣

∣It+1/Jt∣
W (Ω′′t ) ≻W (Ω′′t ). (3.2.9)

Therefore, by combining (3.2.7), (3.2.8), and (3.2.9), we obtain Wτ(J) ≻ αW (Ω).

The proposition holds because if otherwise, the claim above would give us an infinite
sequence of waves Ωt of uniformly bounded length and exponentially increasing width, which
contradicts the compactness of H.

3.3 Spreading degeneration

Recall from Proposition 2.1.2 that for any level n piece I, the corresponding pieces I, f(I),
f 2(I), . . . , f qn+1−1(I) have pairwise disjoint interior.
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Definition 3.3.1. The level n almost tiling I generated by a level n combinatorial piece
I ⊂H is the collection of iterated pieces {f i(I)}i=0,...,qn+1−1.

In this section, we will spread a given λ-degeneration to an almost tiling consisting of
pieces that are all comparably λ-degenerate relative to the original. Recall the threshold
parameter nλ defined in §3.1.4.

Proposition 3.3.2. For any Ξ > 1 and λ > τ , there are some K =K(Ξ, λ) > 1 and ξ = ξ(Ξ) > 0
such that if there is a [K,λ]-wide level n combinatorial piece I where n ≥ nλ and K ≥ K,
then either

(1) there is a [ΞK,τ]-wide combinatorial piece of level n, or

(2) there is a level n almost tiling consisting of [ξK,λ]-wide pieces.

In the proof, we will apply the Covering Lemma (Lemma 2.2.9) to spread λ-degeneration
around H. We will introduce cuts (Lemma 3.3.6) to bound the degree of the appropriate
branched covering in terms of λ.

3.3.1 Spreading τ -degeneration

We will first discuss what we can do with τ -degeneration. This can be seen as a special case
of Proposition 3.3.2 when λ = τ .

Proposition 3.3.3. There are absolute constants 0 < ε < 1 and K > 1 such that for any
[K,τ]-wide combinatorial piece I ⊂H of level n where n ≥ nτ and K ≥K, every piece in the
almost tiling generated by f 2(I) is [εK, τ]-wide.

We will apply Proposition 2.2.4 as the main tool to compare the τ -widths of a piece I
and its iterate f i(I). This motivates us to first estimate the degree of f i near τI, which we
can deduce in a more general way as follows.

Lemma 3.3.4. Suppose fa ∶ U → U ′ is a branched covering map between two open disks U
and U ′ in C∗ where a ≤ qn+k and U ′ ∩H is a piece of length ρln for some positive integers k
and n, and some constant ρ ≥ 1. Then,

deg(fa ∶ U → U ′) ≤M

for some M =M(k, ρ) > 1.
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Proof. For t = 0, 1, . . . , a, let Ut ∶= f t(U). Observe that each Ut ∩H must be a piece of length
ρln. Let C > 1 be the constant from Proposition 2.1.3, then ln ≤ Ckln+k. Since a ≤ qn+k,
for every critical point c ∈H, there are at most Ckρ values of t ∈ {0,1, . . . , a} such that Ut
contains c. Since f has d − 1 free critical points counting multiplicity, the number of different
pairs (c, t) such that Ut contains a free critical point c is at most Ckρ(d − 1). Therefore, the
degree of fa ∶ U → U ′ is at most 2C

kρ(d−1).

Remark 3.3.5. In Case (as outlined in §3.1.4), in order for the lemma above to work, we
shall assume additionally that U and U ′ are disjoint from the connected component Ŷ 0 of
Ĉ/H containing 0 so that every critical value of the mapping fa ∶ U → U ′ lies on the outer
boundary H.

Next, we have to pick the disk U containing τI carefully. In particular, we would like to
restrain the local degree of an iterate f i on U so that it is independent of i.

Lemma 3.3.6 (Cuts). For any piece I such that I, f(I), and f 2(I) are pairwise disjoint,
there exist some t ∈ {0,1,2} and a pair of closed rays γ0 ⊂ Y 0 and γ∞ ⊂ Y ∞ connecting a
point in (f t(I))c to 0 and ∞ respectively such that the width of curves in Ĉ/(H ∪ γ0 ∪ γ∞)
connecting f t(I) and γ0 ∪ γ∞ is at most 10.

Proof. Since I, f(I), and f 2(I) are pairwise disjoint, there is some t ∈ {0,1,2} such that for
● ∈ {0,∞}, the harmonic measure of f t(I) ∩ ∂Y ● in Y ● about ● is less than 1

2 . Then, [GM05,
Chapter IV Theorem 5.2] guarantees the existence of a pair of such rays γ0 and γ∞ where
the width of curves in Y 0 (resp. Y ∞) connecting f t(I) and γ0 (resp. γ∞) is at most 5.

The rays γ0 and γ∞ satisfying the above will be called cuts for the piece f t(I). These
cuts will help us define the appropriate disks.

Proof of Proposition 3.3.3. Let I ⊂ H be a [K,τ]-wide combinatorial piece of level n ≥ nτ
and let Is ∶= f s(I) for any s ≥ 0. Pick any integer a ∈ [2, qn+1 + 1]. We can assume that there
exist cuts γ0 and γ∞ for τIa. (Otherwise, replace Ia with Ia−i for some i ∈ {1,2} and apply
Proposition 2.2.4.)

Let U ′ denote the open disk Ĉ/ ((τIa)c ∪ γ0 ∪ γ∞), and let U be the connected component
of f−a(U ′) containing I. By Proposition 2.2.4,

K ≤W (U, I) ≤ deg(fa ∶ U → U ′) ⋅W (U ′, Ia).

By Lemma 3.3.4, the inequality implies W (U ′, Ia) ≻ K. Curves in F(U ′, Ia) connect Ia to
either (τIa)c or the cuts γ0 ∪ γ∞. The width of those landing at γ0 ∪ γ∞ is at most 10, so
when K ≥K and K is sufficiently high, we have Wτ(Ia) ≻K.
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Remark 3.3.7. In Case , we shall modify the proof above by replacing the topological disk
U ′ with U ′/Ŷ 0. The removal of Ŷ 0 is necessary in order to apply Lemma 3.3.4 (see Remark
3.3.5), and harmless because the width of curves in F(U ′, Ia) that land on Ŷ 0 is negligible
due to Lemma 3.1.13.

3.3.2 Spreading λ-degeneration

Even though the proof of the previous lemma can also be applied to λ-degeneration, the
corresponding multiplicative factor would depend on λ. We will employ a different spreading
approach by applying the Covering Lemma as follows. (See [DL22, §8.1] in the case of
quadratic Siegel disks.)

Proof of Proposition 3.3.2. Let I ⊂ H be a [K,λ]-wide combinatorial piece of level n ≥ nλ,
where K ≥K, and let Is ∶= f s(I) for any s ≥ 0.

Pick an integer a ∈ [2, qn+1 + 1]. Since n ≥ nλ, by Lemma 3.3.6, there exist cuts γ0 and γ∞
for λIb for some b ∈ {a−2, a−1, a}. Then, consider the iterate f b ∶ (U,Λ, I) → (V,B, Ib) where

⊳ V ∶= Ĉ/ ((λIb)c ∪ γ0 ∪ γ∞);

⊳ B ∶= V /(τIb)c;

⊳ U ∶= the connected component of f−b(V ) containing I;

⊳ Λ ∶= the connected component of f−b(B) containing I.

By Lemma 3.3.4,

deg(f b ∶ Λ→ B) ≤M(τ), and deg(f b ∶ U → V ) ≤M(λ).

Fix the constant Ξ > 1. Since ∂U contains (λI)c, we have W (U, I) ≥K. By Lemma 2.2.9,
for sufficiently high K depending on Ξ and λ, either

W (B, Ib) > (d2Ξ + 1)K or W (V, Ib) > ξ1K,

where ξ1 ∈ (0,1) depends only on Ξ. By Lemma 3.3.6, the width of curves in Fλ(Ib) landing
at the cuts γ0 ∪ γ∞ is at most 10. Therefore, for sufficiently high K, either

Wτ(Ib) ≥ d2ΞK or Wλ(Ib) ≥ ξ2K,

for some ξ2 ∈ (0,1) depending only on Ξ. After pushing forward by fa−b, we conclude that
the piece Ia is either [ΞK,τ]-wide or [ξK,λ]-wide, where ξ = d−2ξ2. Therefore, if there is no
2 ≤ a ≤ qn+1 + 1 such that Ia is [ΞK,τ]-wide, then I2 generates an almost tiling consisting of
[ξK,λ]-wide pieces.
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Remark 3.3.8. In Case , the proof above needs to be modified by replacing the disk V with
V /Ŷ 0, similar to Remark 3.3.7.

3.4 Trading λ-degeneration for a τ -degeneration

Given a λ-degeneration, the previous section tells us how to spread and obtain an almost
tiling of λ-degenerate pieces. Next, we would like to convert such an almost tiling into a
much larger τ -degeneration with a multiplicative factor that grows with λ. The main result
of this section is the following theorem.

Theorem 3.4.1. For all sufficiently large λ, there are parameters mλ,K,Πλ > 1 all depending
on λ where limλ→∞Πλ = +∞ such that if

there is an almost tiling I consisting of [K,λ]-wide pieces of level n ≥ nλ

where K ≥K, then

there is a [ΠλK,τ]-wide combinatorial piece J of level n′ ≥ nλ

where ∣n′ − n∣ ≤mλ.

The proof will be split into two cases:

deep case n ≥ nλ +mλ;

shallow case nλ ≤ n < nλ +mλ.

The threshold level nλ is essential because we will apply the theorem above inductively in
Section §3.7.

Remark 3.4.2. By assuming sufficiently small modulus (depending on λ), we can ensure that
in Case , intervals at the Siegel scale (see §3.1.4) are deep. Therefore, the shallow case can
be ignored in Case .

3.4.1 Deep case

A deep almost tiling can be handled through a straightforward application of the Quasi-
Additivity Law (Lemma 2.2.8).

Proof of Theorem 3.4.1 in the deep case. Assume λ≫ τ 2 and set N ∶= ⌊ λ3τ2 ⌋. Suppose there
is a level n almost tiling I consisting of [K,λ]-wide pieces where K ≥ K. There exists a
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sequence {Ij}j=1,...,N of distinct pieces in the almost tiling I, labelled in consecutive order,
such that for every j ∈ {1,2, . . . ,N − 1}, Ij and Ij+1 have controlled combinatorial distance:

(τ − 1)ln < dist(Ij, Ij+1) ≤ τ ln.

This ensures that τIj and ∪i≠jIi are always disjoint but not too far apart.
Let P be the unique shortest piece containing ⋃Nj=1 Ij. We set mλ to be the largest

integer less than n such that ∣P ∣ ≥ ln−mλ
. Our choice of N ensures that each λIj contains τP .

Consider the disk S ∶= Ĉ/⋃Nj=1(λIj)c. Following [Ahl06], we will use the notation H < G to
denote that G overflows H. (See §2.2.1.) Then, for every j ∈ {1, . . . ,N},

F(S, Ij) < Fλ(Ij), Fτ(Ij) < F (S/⋃
i≠j

Ii, Ij) , Fτ(P ) < F (S,
N

⋃
i=1

Ii) .

We are under the assumption that for each j,

W (S, Ij) ≥Wλ(Ij) ≥K.

For sufficiently large K, we can apply Lemma 2.2.8 and obtain

max{Wτ(P ),Wτ(I1), . . . ,Wτ(IN)} ≥
1√
2N

N

∑
j=1

W (S, Ij) ≥
√

N

2
K.

Since N ≍ λ, we conclude that either

Wτ(P ) ≻
√
λK, or Wτ(Ij) ≻

√
λK

for some j. If the former, there exists a combinatorial subpiece J ⊂ P of level n −mλ and
τ -width Wτ(J) ≻

√
λK.

Notice that, in the proof above, the piece J is longer than the original piece I. This
justifies the need for a different approach when n is shallow.

3.4.2 Shallow case

The main ingredient in the shallow case is the bubble-wave argument. Given a wide lamination,
we are split into two different situations: either it forms combinatorially long wide waves or
it intersects H frequently in a snake-like pattern (see Figure 3.5). Both cases will produce a
large τ -degeneration.

Proof of Theorem 3.4.1 in the shallow case. Fix K, and suppose there is a [K,τ]-wide piece
I of shallow level n (e.g. by picking any piece from the almost tiling I in the hypothesis)
where K ≥K.
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If there is a wave Ω of width ≥K/10 and length ≥ 3
√
λln , then by Proposition 3.2.2, there

is a level n +m a combinatorial piece J such that

Wτ(J) ≻ 3
√
λ ⋅ K

10

and we are done, assuming K is sufficiently high depending on nλ +mλ, and λ is sufficiently
large such that mλ ≥m. As such, we proceed under the following assumption.

No-wide-wave assumption: Every wave of length ≥ 3
√
λln has width ≤K/10.

Let us decompose (λI)c into T + ∪ T ∪ T −, where T + and T − are the left and rightmost
pieces of (λI)c of length 3

√
λln, and T ∶= (λI)c/(T + ∪ T −). Let F be the set of leaves of the

canonical radial foliation of the conformal annulus Ĉ/(I ∪ (λI)c) that never restrict to curves
protecting T † from ● for any ● ∈ {0,∞} and † ∈ {+,−}.

Claim 1. Every leaf of F connects I and T + ∪ T −.

Proof. If a radial leaf lands on T , then it must restrict to a subcurve that protects either T +

or T −.

We can decompose F into F+ ∪ F− according to whether leaves land on T + or T −. From
the no-wide-wave assumption, the width W (F) of F is at least 6K/10. Without loss of
generality, assume that F+ is wider, so then

W (F+) ≥ 3

10
K. (3.4.1)

Recall the notion of conformal rectangles and buffers from §2.2.1. We say that a lamination
L is rectangular if it is a sublamination of the vertical foliation of a conformal rectangle R.
Moreover, a sublamination of a rectangular lamination L is a buffer of L if it is the set of
leaves of L that lie in a buffer of R.

Claim 2. F+ is rectangular3.

Proof. By construction, the set F̃+ of leaves in the radial foliation of Ĉ/(I ∪ (λI)c) that land
on T + forms a single conformal rectangle. By Claim 1, F+ is a sublamination of F̃+.

Consider a finite sequence of distinct pieces I0 ∶= I, I1, . . . , IN labelled in consecutive order
such that for each j = 1, . . . ,N ,

(i) Ij is a subpiece of λI located between I and T +;
3In fact, F+ is the vertical foliation of a conformal rectangle. An approach similar to Claim 3 can be

used to prove this.
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Figure 3.4: Domain U defined by the ray σ and the leaf γ.

(ii) ∣Ij ∣ = 3
√
λln;

(iii) Ij is of distance at least τ−1
2 ln away from Ii for all i ≠ j.

We pick N to be the maximum possible integer such that (i)-(iii) holds.

Claim 3. For any ● ∈ {0,∞} and j ∈ {1, . . . ,N}, the set F+j,● of leaves of F+ that contain a
subcurve protecting Ij from ● is a buffer of F+.

Proof. Every leaf of F+ cannot contain a subcurve protecting (λI)c, because otherwise it
would protect T +. As such, for each ● ∈ {0,∞}, there exists a ray σ● in Y ● that is disjoint
from F+ and connects ● and T . Let D ∶= Ĉ/((λI)c ∪ σ0 ∪ σ∞).

Suppose a leaf γ of F+ contains a subcurve protecting Ij from ●; label by γ′ the corre-
sponding subcurve of γ that is furthest from Ij . Pick any simple curve σ in D∩Y ● connecting
● and a point on Ij. Then, σ intersects γ′ and contains a subcurve σ̃ that connects ● and a
point w ∈ γ′ ∩ σ and is disjoint from γ away from w. Clearly, σ̃ splits the disk D/(I ∪ γ) into
two components, one of which, labelled by U , has closure that is disjoint from I. See Figure
3.4.

The leaf γ splits F+ into two rectangular sublaminations on opposite sides of γ. One
of the sublaminations, labelled by F+γ , has support that intersects U . Since every leaf of
F+γ must land on I and avoid γ, then every leaf of F+γ must intersect σ. As σ is arbitrary,
this implies that every leaf of F+γ contains a subcurve protecting Ij from ●. Then, the claim
follows from the fact that F+γ is a buffer of F+.

Let G be the sublamination of F+ consisting of all leaves that intersect all the Ij’s in
consecutive order (Ij−1 before Ij). If a leaf γ of F+ is not in G, then it must contain a
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Figure 3.5: The sublamination G ⊂ F+ intersects all Ii’s in order.

subcurve protecting some Ij. Therefore, by Claim 3, there exist pairs j, k ∈ {1, . . . ,N} and
♯, ♭ ∈ {0,∞} such that F+/G is contained in a union of two maximal buffers F+j,♯ and F+k,♭. In
particular, F+/G overflows a union of two waves of length at least 3

√
λln. By (3.4.1) and the

no-wide-wave wave assumption,

W (G) ≥ K
10
.

There exist pairwise disjoint laminations G1, . . . ,GN such that each Gj is a restriction of G
and connects Ij−1 and Ij. See Figure 3.5 for illustration. Suppose Gs has the largest width
amongst all the Gi’s. By Propositions 2.2.2 and 2.2.3,

W (Gs) ≥
N

10
K.

Since the gaps between the Ij’s are at least τ−1
2 ln in length, there must be a level n combina-

torial subpiece J ⊂ Is such that

Wτ(J) ≥
1

3
√
λ
W (Gs).

For sufficiently high λ, the maximum possible value of N satisfies N ≍ 3
√
λ2. By combining

the two inequalities above, we have

Wτ(J) ≥
N

10
3
√
λ
K ≍ 3
√
λK,

and we are done.

3.5 Amplifying τ -degeneration

In this section, we work our way towards the amplification of a τ -degeneration. More precisely,
we aim to find a way to promote a τ -degeneration in H into either a significantly larger τ -
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degeneration or a comparable λ-degeneration. Unlike the previous section, the multiplicative
factor will be independent of λ.

Theorem 3.5.1. There are absolute constants χ ∈ (0, 1) and m ∈ N such that for sufficiently
large λ, there is some K =K(λ) > 1 such that if

there is a [K,τ]-wide combinatorial piece I of level n ≥ nλ

where K ≥K, then

there is a combinatorial piece J of level n′ ≥ nλ, where ∣n′ − n∣ ≤m,
that is either [χK,λ]-wide or [2K,τ]-wide.

Similar to the previous section, we shall split the proof into two cases:

deep case n ≥ nλ +m;

shallow case nλ ≤ n < nλ +m.

Remark 3.5.2. By assuming sufficiently small modulus, we can again ensure that in Case ,
intervals at the Siegel scale (see §3.1.4) are deep.

3.5.1 Shallow case

The shallow case can again be handled using the bubble-wave argument almost the exact
same way as our treatment in §3.4.2. Any repeated details will be spared.

Proof of Theorem 3.5.1 in the shallow case. Fix K and suppose I is a [K,τ]-wide level n
combinatorial piece where K ≥K and n is shallow. Fix a pair of positive integers m′ and m′′;
both are independent of λ and will be determined later.

Assume that m′′ is high enough such that ln+m′ ≥ τ ln+m′+m′′ . If there is a wave of
width ≥ K/10 and combinatorial length ≥ ln+m′ , then by Proposition 3.2.2, there is a level
n +m +m′ +m′′ combinatorial piece J such that

Wτ(J) ≻
ln+m′

ln+m′+m′′
⋅ K
10
≻ C̃m′′K,

for some absolute constants C̃ > 1 and m ∈ N. By picking a sufficiently high m′′ such that J
is [2K,τ]-wide, and by picking the threshold increment m ∈ N such that m ≥m +m′ +m′′,
we are done. As such, we will proceed under the following assumption.

No-wide-wave assumption: Every wave of length ≥ ln+m′ has width ≤K/10.
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Let T + and T − be the leftmost and rightmost level n +m′ combinatorial subpieces of
(τI)c. Let F be the set of leaves of the canonical radial foliation of the conformal annulus
Ĉ/(I ∪ (τI)c) that never restrict to curves protecting T † from ● for any ● ∈ {0,∞} and
† ∈ {+,−}. Since leaves of F must connect I and T + ∪ T −, we can decompose F into F+ ∪ F−
according to whether leaves land on T + or T −. Without loss of generality, assume that F+ is
wider.

Consider a finite sequence of distinct combinatorial pieces I0 ∶= I, I1, . . . , IN labelled in
consecutive order such that for each j = 1, . . . ,N ,

(i) Ij is a subpiece of τI located between I and T +;

(ii) Ij is of level n +m′;

(iii) Ij is of distance at least τ−1
2 ln+m′ away from Ii for all i ≠ j.

We pick N to be the maximum possible integer such that (i)-(iii) holds.
Similar to the argument in Section §3.4.2, the no-wide-wave assumption implies that there

exists some s ∈ {1, . . . ,N} and a lamination Gs connecting Is−1 and Is such that

W (Gs) ≥
N

10
K.

The Ij ’s are constructed such that (τIs)c contains every Ii for i ≠ s. In particular, Gs overflows
Fτ(Is) and thus the piece Is is [N10K,τ]-wide. Since N ≻ C̃m′ , we can pick m′ to be just high
enough such that N ≥ 20. Hence, Is is a [2K,τ]-wide combinatorial piece of level n +m′.

3.5.2 Deep case

In the deep case, our approach below is inspired by Kahn’s push-forward argument in [Kah06,
§7]. The proof below contains a series of reductive lemmas before we finally adapt the
push-forward argument at the very end.

Proof of Theorem 3.5.1 in the deep case. Suppose there is a [K,τ]-wide combinatorial piece
in H of some deep level n with K ≥K. By Proposition 3.3.3, we have a level n almost tiling
I consisting of [εK, τ]-wide pieces for some absolute constant 0 < ε < 1.

Lemma 3.5.3 (Localization of τ -degeneration). There are absolute constants ρ, m0, m∗ ∈ N>1,
where ρ≫ τ , such that for sufficiently large K and for n ≥m∗, either

(1) there is a [2K,τ]-wide combinatorial piece of level between n −m0 and n, or

(2) there is some L∗ ∈ I such that the width of curves in Fτ(L∗) that land on ρL∗ ∩ (τL∗)c
is greater than εK/2.
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Roughly speaking, if (2) does not hold, then we apply the Quasi-Additivity Law to the
family Fρ(I) (for a fixed ρ) to obtain (1) in a way that is similar to Section §3.4.1.

Proof. Fix m∗. There exists a finite sequence of distinct pieces I1, . . . , IN in I labelled in
consecutive order such that any pair of adjacent pieces Ij and Ij+1 have bounded combinatorial
distance:

(τ − 1)ln ≤ dist(Ij, Ij+1) ≤ τ ln.

This condition ensures that for each j, τIj and ∪i≠jIi are disjoint but not too far apart. The
integer N ≥ 2 will be specified later, but nonetheless it must be bounded above by some
constant depending on m∗.

Let P be the unique shortest piece containing ⋃Nj=1 Ij. We set m0 = m0(N) to be the
largest integer such that ∣P ∣ ≥ ln−m0 . Also, set ρ = ρ(N) to be the smallest integer such that
for every j, ρIj contains τP . Let S ∶= Ĉ/⋃Nj=1(ρIj)c. We will again use the notation H < G to
denote that G overflows H. Then, for every j ∈ {1, . . . ,N},

F(S, Ij) < Fρ(Ij), Fτ(Ij) < F (S/⋃
i≠j

Ii, Ij) , Fτ(P ) < F (S,
N

⋃
i=1

Ii) .

Suppose (2) does not hold. For each j, the width of curves connecting Ij and (ρIj)c
exceeds εK/2 and consequently,

W (S, Ij) ≥Wρ(Ij) ≥
εK

2
.

For sufficiently large K, we can apply Lemma 2.2.8 and obtain

max{Wτ(P ),Wτ(I1), . . . ,Wτ(IN)} ≥
1√
2N

N

∑
j=1

W (S, Ij) ≻
√
NK.

Suppose the maximum τ -width is attained by J ′ ∈ {P, I1, . . . , IN}. Then, there is a combi-
natorial subpiece J ⊂ J ′ of width Wτ(J) ≻

√
NK and level between n −m0 and n. Finally,

pick N (and ultimately m∗) to be just high enough such that J is [2K,τ]-wide. This leads
to (1).

Let λ be sufficiently large such that λ > ρ and nλ ≥m0 +m∗. Then, by the lemma, it is
sufficient to consider case (2). In this case, there is a connected component R∗ of ρL∗∩(τL∗)c
such that the family F(L∗,R∗) of curves connecting L∗ and R∗ has width

W (F(L∗,R∗)) ≥ ε
4
K. (3.5.1)

Lemma 3.5.4. There exist t ∈ {0,1,2} and a closed set G ⊂ Ĉ such that
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(1) U0 ∶= Ĉ/((λf t(L∗))c ∪G) is a topological disk containing U0 ∩H = λf t(L∗);

(2) for all j ∈ N, every critical value of f j in U0 lies inside U0 ∩H;

(3) the width of curves in Ĉ/(H ∪G) connecting λf t(L∗) and G is O(1).

Proof. By Lemma 3.3.6, there exist t ∈ {0, 1, 2} and a pair of closed rays γ0 ⊂ Y 0 and γ∞ ⊂ Y ∞
connecting a point in (λf t(L∗))c to 0 and ∞ respectively such that the family of curves
in Ĉ/(H ∪ γ0 ∪ γ∞) connecting λf t(L∗) and γ0 ∪ γ∞ has width at most 10. In Case , the
desired closed set is G ∶= γ0 ∪ γ∞. In Case , we can set G ∶= γ0 ∪ γ∞ ∪ Ŷ 0, where Ŷ 0 is the
connected component of Ĉ/H containing 0. See Lemma 3.1.13 and Remark 3.3.7.

Set U0 to be the disk in Lemma 3.5.4 and set

L ∶= f t(L∗), R ∶= f t(R∗).

For every j ∈ N, define the corresponding lifts under f j:

(a) Lj ∶= the connected component of f−j(I) intersecting H;

(b) Rj ∶= the connected component of f−j(L) intersecting H;

(c) Υj ∶= Lj ∪Rj;

(d) U j ∶= the connected component of f−j(U0) containing Υj.

(e) F j ∶= the canonical horizontal lamination Fhcan(U j,Υj) of U j/Υj.

Lemma 3.5.5 (Width of F0). There exists an absolute constant ε1 > 0 such that for sufficiently
large K, either

(1) Wλ(I) ≻K, or

(2) W (F0) ≥ ε1K.

Proof. Let S denote the family of curves connecting L and R. Since S contains f t (F(L∗,R∗)),
then by Proposition 2.2.4 and inequality (3.5.1),

W (S) ≥ ε

4d2
K.

Let G be the set of curves in S that lie within U0. If more than half of curves in S are in G,
then

W (G) > 1

2
W (S) ≥ ε

8d2
K.
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By Proposition 2.2.10, this inequality yields (2). Otherwise, at least half of curves in S
intersect either (λL)c or G. Therefore, by Lemma 3.5.4 (3),

Wλ(I) ≥
1

2
W (S) −O(1) ≥ ε

8d2
K −O(1).

For sufficiently high K, this yields (1).

To proceed, it is then sufficient to consider case (2) of the lemma above.
Fix a positive integer r > n that is to be determined later. We would like to show that

since every piece is almost invariant under f qr , a definite amount of canonical horizontal leaves
of F0 should restrict to vertical curves in U qr/Υqr . To do this, some technical adjustments
are required.

Let us define

L̂ ∶= L ∪ f qr(L), R̂ ∶= R ∪ f qr(R), Û0 ∶= U0/f qr ((λL)c) .

The thickened pieces L̂, R̂ and the new domain Û0 are combinatorially very close to L, R,
and U0 respectively. They come with new separation constants 1 < τ̂ ≪ ρ̂ ≪ λ̂ such that
Û0 ∩H = λ̂L̂, R̂ is a component of ρ̂L̂/τ̂ L̂, and τ̂ ≍ τ , ρ̂ ≍ ρ and λ̂ ≍ λ.

Similar to (a)–(e), we denote for every j ∈ N the corresponding lifts:

(â) L̂j ∶= the connected component of f−j (L̂) intersecting H;

(b̂) R̂j ∶= the connected component of f−j (R̂) intersecting H;

(ĉ) Υ̂j ∶= L̂j ∪ R̂j;

(d̂) Û j ∶= the connected component of f−j (Û0) containing Υ̂j;

(ê) F̂ j ∶= Fhcan (Û j, Υ̂j).

Note the following relations:

Υ̂0 ⊃ Υ0, ∂Û0 ⊃ ∂U0, Û0 ⊂ U0, (3.5.2)

Û qr/Υ̂qr ⊂ U0/Υ0. (3.5.3)

The relationship between F̂0 and F0 is not trivial. Nonetheless, the following lemma states
that we can reduce the problem to the case where the widths of F̂0 and F0 are comparable.

Lemma 3.5.6 (Comparability between F̂0 and F0). There is an absolute constant ε2 > 1
such that for sufficiently large λ≫ ρ and K, either

(1) there is a level r combinatorial piece J such that either Wτ(J) ≥ 2K or Wλ(J) ≻K, or
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(2) 1
2W (F0) ≤W (F̂0) ≤ ε2W (F0).

In the proof, we will show that either such a piece J in (1) can be found from the
symmetric difference between ∂U0 ∪Υ0 and ∂Û0 ∪ Υ̂0, or (2) holds.

Proof. Suppose (1) does not hold. Let us present the canonical horizontal lamination F̂0 as
the union S1 ∪ S2 ∪ S3 where:

⊳ S1 = set of leaves in F̂0 that has an endpoint on P1 ∶= L̂/L;

⊳ S2 = set of leaves in F̂0 that has an endpoint on P2 ∶= R̂/R;

⊳ S0 = F̂0/(S1 ∪ S2).

Note that P1 and P2 are combinatorial pieces of level r. See Figure 3.6.
For each i ∈ {1,2}, Si restricts to a sublamination of Fτ(Pi) because the combinatorial

distance between L̂ and R̂ is greater than τ−1
2 lr. We can assume that W (Si) < 2ε−11 W (F0)

because otherwise, by Lemma 3.5.5 (2), we would have

Wτ(Pi) ≥W (Si) ≥ 2ε−11 W (F0) ≥ 2K

and this would yield (1) instead. Meanwhile, since every leaf of S0 is a horizontal curve in
U0/Υ0, then by Proposition 2.2.10,

W (S0) ≤W (F0) +O(1).

Therefore,

W (F̂0) ≤
2

∑
i=0

W (Si) < (4ε−11 + 1)W (F0) +O(1).

For sufficiently large K, the inequality above yields the upper bound in (2).
Next, to obtain the lower bound in (2), we will consider the set S3 of leaves of F0 that

intersect the level r combinatorial interval P3 ∶= ∂Û0/∂U0. By (3.5.2), every horizontal leaf of
F0 either intersects P3 or restricts to a horizontal curve in Û0/Υ̂0. As such,

W (F0) ≤W (F̂0) +W (S3) +O(1) (3.5.4)

Observe that S3 overflows Fλ(P3). We can assume that W (S3) < 1
3W (F0) because otherwise

Wλ(P3) ≥
1

3
W (F0) ≻K.

which would again yield (1). By applying this assumption to (3.5.4),

2

3
W (F0) ≤W (F̂0) +O(1).

Hence, for sufficiently high K, we immediately obtain the lower bound in (2).

67



S3

S2

S1

L R

P1 P2 P3

(λL)c (λL)c

Figure 3.6: S1, S2, and S3.

It is sufficient to proceed under the assumption that Lemma 3.5.6 (2) holds. In this case,
W (F̂0) ≥ ε1

2 K.
Before finishing the proof of the theorem, the following important lemma is needed. It

states that either τ -degeneration doubles or there is significant loss in horizontal width after
a certain number of pullbacks.

Lemma 3.5.7 (Loss of horizontal width). There exist absolute constants m1,m2 ∈ N such
that for sufficiently large λ≫ ρ and K, either

(1) there is a [2K,τ]-wide combinatorial piece of level n +m1, or

(2) W (F̂ qn+m2) < (2ε2)−1W (F̂0).

This lemma is a replacement for Kahn’s entropy argument in [Kah06, §6.3], and it will
directly follow from Proposition 3.6.2 in the next section. See Remark 3.6.3. Let us finally
set r = n +m2 and assume that Lemma 3.5.7 (2) holds. We are now in position to adapt the
push-forward argument.

From the embedding in (3.5.3), horizontal leaves in U0/Υ0 restrict to either horizontal or
vertical curves in Û qr/Υ̂qr . In other words,

W (F0) ≤W ((Fvcan(Û qr , Υ̂qr)) +W (F̂ qr) +O(1).

By Lemma 3.5.6 (2) and Lemma 3.5.7 (2),

W (F0) ≤W ((Fvcan(Û qr , Υ̂qr)) + 1

2
W (F0) +O(1).

For sufficiently high K, the inequality simplifies to

W ((Fvcan(Û qr , Υ̂qr)) ≥ 1

3
W (F0) .

By Lemma 3.5.5 (2), this implies that W (Û qr , Ĵqr) ≻K for some Ĵ ∈ {L̂, R̂}.
Consider the iterate

f qr ∶ (Û qr , Û qr
τ , Ĵ

qr) → (Û0, Û0
τ , Ĵ)
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where Û0
τ ∶= Û0/ (τ Ĵ)c and Û qr

τ is the pullback of Û0
τ under f qr containing Ĵqr . By Lemma

3.3.4, the degree of f qr on Û qr
τ remains independent of λ. By Lemma 2.2.9, for sufficiently

high K, either
W (Û0, Ĵ) ≻K, or W (Û0

τ , Ĵ) ≥ (2C + 1)K,

where C is the constant from Proposition 2.1.3. In either case, Lemma 3.5.4 asserts that the
width of curves that land on G is negligible. Hence, for sufficiently large K, there exists a
combinatorial subpiece J ⊂ Ĵ such that either

Wλ(J) ≻K, or Wτ(J) ≥ 2K.

At last, pick the threshold increment m ∈ N such that m ≥ max{m0,m1,m2} and that
n −m is less than the level of R̂. This concludes the proof of Theorem 3.5.1.

3.6 Loss of horizontal width

Let us fix λ≫ τ and let n ∈ N be such that 2λln < 1. The key players of this section are as
follows.

⊳ L and R are pieces in H of combinatorial distance dist(I,L) ≍ ln and length at least ln
satisfying ∣L∣ ≍ ∣R∣ ≍ ln;

⊳ U0 ⊂ C∗ is a topological disk containing L ∪R such that H/U0 = (λL)c.

Remark 3.6.1. In Case (see §3.1.4), we will also impose the additional assumption that U0

is disjoint from the connected component of Ĉ/H containing 0, so that for all j, every critical
value of f j in U0 must lie in U0 ∩H.

Similar to (a)–(e) in §6.2, we define the corresponding lifts under f j for j ∈ N:

(a.) Lj ∶= the connected component of f−j(L) intersecting H;

(b.) Rj ∶= the connected component of f−j(R) intersecting H;

(c.) Υj ∶= Lj ∪Rj;

(d.) U j ∶= the connected component of f−j(U0) containing Υj.

(e.) F j ∶= the canonical horizontal lamination Fhcan(U j,Υj) of U j/Υj.

We are restricting our map f to a sequence of branched coverings

. . .
fÐÐ→ (U3,Υ3) fÐÐ→ (U2,Υ2) fÐÐ→ (U1,Υ1) fÐÐ→ (U0,Υ0)
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and we will study how the width of F j behaves as j increases. The goal of this section is to
prove the following proposition.

Proposition 3.6.2. For any ∆ > 1, δ ∈ (0,1), and sufficiently large λ, there are some
constants m1 = m1(∆, δ) ∈ N, m2 = m2(∆, δ) ∈ N and K = K(λ,∆, δ) > 1 such that if
W (F0) =K ≥K, then either

(1) there is a level n +m1 combinatorial piece J of width Wτ(J) ≥∆K, or

(2) there is significant loss in horizontal width: W (F qn+m2) < δK.

Remark 3.6.3. Recall that the final missing ingredient of the proof of Theorem 3.5.1 is Lemma
3.5.7. Indeed, we can apply Proposition 3.6.2 in the context of Lemma 3.5.7 (e.g. setting
∆ = 4ε−11 and δ = (2ε2)−1), thereby proving the lemma immediately.

3.6.1 Outline

For every j ∈ N, since U j/Υj is a disk with two connected compact sets removed, the leaves of
F j belong to only at most two proper homotopy classes in U j/Υj . We say that a homotopically
non-trivial proper curve in U j/Υj is of type

A if it connects Lj and Rj, and

B if it starts and ends at the same component of Υj.

Naturally, we split F j into a disjoint union of type A and B sublaminations Aj ∪ Bj. See
Figure 3.7.

To illustrate the main idea, let us consider the unbranched covering map f r ∶ U r/f−r(CV) →
U0/CV of large degree (depending on λ, δ, and ∆) where r = r(δ,∆) ≥ 1 is a fixed integer
and CV is the set of critical values of f r. To compare the widths of F r and F0, we apply the
property that, up to an additive constant, curves in F r must travel through the canonical
rectangles in T ′ = (f r)∗T (Lemma 3.6.5), where T is the horizontal thick-thin decomposition
of U0/(Υ0 ∪CV). (Refer to §2.2.2.)

However, T does not just contain type A and B rectangles. It may have some peripheral
ones, i.e. those which are homotopically trivial if we forget the punctures CV. We ignore the
peripheral rectangles that are combinatorially close to Υ0 by thickening Υ0 = L0 ∪R0 into
Υ = L ∪R. Rectangles that are combinatorially distinct (type D) can be assumed to have
width at most κW (F0) for some fixed κ = κ(δ,∆) > 1 (Lemma 3.6.7).

There is a unique (up to homotopy) proper curve b in U0/Υ0 separating L0 and R0, and
it is crossed by A0 once and B0 twice. See Figure 3.7. There is a lift β of b under f r which
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separates Lr and Rr, and automatically the set T ′[β] of rectangles in T ′ that intersect β
has total width about Z0 ∶=W (A0) + 2W (B0). Since F r overflows T ′[β], we arrive at the
conclusion that the asymmetric width

Zj ∶=W (Aj) + 2W (Bj)

is non-increasing (Corollary 3.6.9).
In order to upgrade monotonicity to a strict loss, we will construct several proper curves

like b that are distinct rel CV. Hence, we construct a separating strip made of proper curves
βL and βR that are as close as possible to L′ and R′ respectively and we can assume that
the set T ′[βL] (resp. T ′[βR]) of rectangles in T ′ intersecting βL (resp. βR) has width at
most (2κ + 1)Z0. (See Figure 3.9 for the construction.) This leads us to an estimate for Zr

(Proposition 3.6.11), which implies that either

(i) persistent rectangles, i.e. the ones in T ′per ∶= T ′[βL]∩T ′[βR], have total width ≍ Z0 (the
left side of Figure 3.10), or

(ii) we can apply the series law (the middle and right parts of Figure 3.10) and conclude
that Zr is strictly less than Z0 with a factor depending on κ.

The treatment for Case (i) hinges on the key property that vertical leaves of persistent
rectangles are all homotopic rel critical points of f r (Lemma 3.6.12). This property forces
their image to frequently submerge in and out through H (Figures 3.11 and 3.12) at a rate
controlled by r. For sufficiently large r, this enables us to construct a large τ -degeneration
(Lemma 3.6.13) and ultimately achieve (1).

In Case (ii), we run an inductive process to get the desired shrinking factor δ, which yields
(2). This completes the proof of the proposition.

3.6.2 Decomposition of canonical laminations

Let us fix

K ∶=W (F0) and r ∶= qn+m

for some sufficiently large integer m ∈ N. From now on until the end of §3.6.5, we consider
the unbranched covering map

f r ∶ U r/f−r(CV) → U0/CV

where CV = CV(f r) denotes the set of critical values of f r in U0.
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Lj Rj

U j

Bj

Aj

b

Figure 3.7: The decomposition of F j . The intersection number between b and Aj is one, and
that between b and Bj is two.

Lemma 3.6.4. There is an absolute constant C > 1 such that ∣CV∣ = O(λCm). In particular,
the degree of f r depends only on m and λ.

Proof. Consider the piece J = U0∩H. It suffices to fix a critical value v ∈H of f and estimate
the size of Ov ∶= {(f ∣H)−i(v) ∈ J ∶ 0 ≤ i ≤ qn+m − 1}. By Proposition 2.1.2, Ov divides J
into ∣Ov ∣ + 1 pieces J1, . . . , J∣Ov ∣+1 of length at least ln+m. Let C > 1 be the constant from
Proposition 2.1.3. Then,

λln ≍ ∣J ∣ = ∑
i

∣Ji∣ ≥ ∣Ov ∣ ⋅ ln+m ≥ ∣Ov ∣ ⋅C−mln

which implies that ∣Ov ∣ = O(λCm).

Let T ∶= TTDh(U0,Υ0 ∪CV) denote the horizontal thick-thin decomposition of U0/(Υ0 ∪
CV). (Refer to §2.2.2 for details.) According to Proposition 2.2.11, the horizontal thick-thin
decomposition T ′ of U r/f−r(Υ0 ∪CV) is the full lift (f r)∗T of T .

As we apply Lemma 2.2.12 to the inclusion U r/f−r(Υ0 ∪ CV) ⊂ U r/Υr, we obtain the
following fundamental property relating the widths of F r and T ′.

Lemma 3.6.5. There exist some sublamination F rsub ⊂ F r and some constant C = C(m,λ) > 0
such that

W (F r) −C ≤W (F rsub)

and for every leaf γ of F rsub, every component of γ/f−r(Υ0) is either

(1) a homotopically trivial proper curve in U r/f−r(Υ0 ∪CV), or

(2) a proper curve in a canonical rectangle in T ′.
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aL

aRB

A
A

DL

DR

Figure 3.8: An example of the decomposition of T . Note that E is inside of Υ = L ∪R.

By taking into account the critical values of f r, we enrich the canonical lamination with
the presence of peripheral arcs. We say that a proper curve in U0/ (Υ0 ∪CV) is peripheral if
it has a trivial proper homotopy class in U0/Υ0. We will decompose T into a disjoint union

T ∶= A ∪ B ∪ P

where A consists of canonical rectangles of type A (leaves of F(A) are of type A) in U0/Υ0,
B consists of canonical rectangles of type B, and P consists of peripheral rectangles. Denote
by A and B the total widths of A and B respectively.

Observe that the width of F0 should be close to A + B. The following lemma is an
immediate consequence of Proposition 2.2.10 and Lemma 3.6.4.

Lemma 3.6.6. There is some C = C(m,λ) > 0 such that

∣A −W (A0)∣ ≤ C and ∣B −W (B0)∣ ≤ C

Let us pick a definite constant η > 1 such that the combinatorial distance between ηI and
ηL is still ≍ ln. Let us split P into a disjoint union

P = D ∪ E , D = DL ∪DR, E = EL ∪ ER,

where for J ∈ {L,R},

⊳ rectangles in DJ ∪ EJ are attached to J0,

⊳ every leaf of F(DJ) intersects (ηJ0)c, and

⊳ every leaf of F(EJ) is disjoint from (ηJ0)c.
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See Figure 3.8.
By design, peripheral rectangles in E are combinatorially close to Υ0. We will remove E

from consideration by absorbing it into Υ0 as follows. Let us define L to be the hull of the
union of L0 and EL, i.e. the smallest compact full subset of U0 containing L0 ∪ EL. Similarly,
we define R to be the hull of R0 ∪ ER. Denote by L′ and R′ the connected components of
f−r (L) and f−r (R) that contain L0 and R0 respectively. Let

Υ ∶= L ∪R and Υ′ ∶= L′ ∪R′.

Meanwhile, peripheral rectangles in D are a source of τ -degeneration. Let us denote the
widths of D, DL, and DR by D, DL, and DR respectively.

Lemma 3.6.7. There is an absolute constant m0 ∈ N such that if

m ≥m0 and D ≥ κK

for some κ > 1, then there is a combinatorial piece J of level n +m and width Wτ(J) ≥ εκK
for some constant ε = ε(m) > 0.

Proof. Suppose without loss of generality that DL ≥ κ
2K. There exists a constant m0 ∈ N

depending on η such that for any level n +m0 combinatorial subpiece J of L0, the thickened
piece τJ is contained in ηL0. Let us assume m ≥m0. The piece L0 can be covered by N level
n +m combinatorial pieces J1, . . . , JN for some integer N = N(m) ∈ N. Let us split F(DL)
into sublaminations L1, . . . ,LN where leaves of Li start at points on Ji. For each I, since
DL crosses (ηL0)c which is contained in (τJi)c, then Li overflows the curve family Fτ(Ji).
Therefore,

κ

2
K ≤DL =

N

∑
i=1

W (Li) ≤
N

∑
i=1

Wτ(Ji) ≤ N max
i
Wτ(Ji).

Consequently, there is some i ∈ {1, . . . ,N} such that Wτ(Ji) ≥ κ
2NK.

3.6.3 Separating curves

From now on, let us assume without loss of generality that B starts from and ends at R0.
Given a proper curve α in U r/Υr, we will denote by T ′[α] the union of rectangles in T ′ that
intersect α.

Let us fix vertical rays aL and aR in U0/ (Υ0 ∪CV) where

⊳ aL connects ∂U0 to L0 and aR connects ∂U0 to R0;

⊳ aL is crossed by B exactly once and is disjoint from T /B;
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⊳ aR is disjoint from T .

The first assumption states that aL and aR are vertical cuts of U0/ (Υ0 ∪CV), whereas the
other two assumptions state that the minimal intersection number relative to T is achieved.
See Figure 3.8.

For J ∈ {L,R}, let αJ,+ and αJ,− be the unique pair of lifts of aJ under f r that are attached
to J′ and are closest to Υ′/J′. Such lifts exist because f r ∶ Jr → J0 is a branched covering of
degree at least 2.

To estimate the width of F r, we will identify rectangles in T ′ that cross a number of
proper curves in U r separating L′ and R′. These curves are constructed with the aid of aL
and aR as follows. Refer to Figure 3.9 for a schematic picture.

Lemma 3.6.8 (Middle curve). There exist a proper curve b in U0 and a proper curve β in
U r with the following properties.

(1) b disjoint from Υ ∪CV ∪ aL ∪ aR and separates L from R.

(2) B crosses b twice, A crosses b once, and P is disjoint from b.

(3) β is a lift of b under f r that separates L′ from R′.

(4) Every rectangle in T ′ crosses β at most once, and W (T ′[β]) = A + 2B.

Proof. The existence of b satisfying (1) and (2) is clear. (See Figures 3.7 and 3.8.) Let Q
denote the connected component of U0/b containing L. The unique lift Q′ of Q under f r

which contains L′ must be disjoint from R′. Since f r is a proper map on U r, there exists a
unique connected component β of ∂Q′/∂U r that is a lift of b and separates L′ and R′.

To prove (4), it suffices to show that every rectangle R in B admits exactly two distinct
lifts in T ′[β], and each of them crosses β exactly once. If otherwise, then there would exist a
unique lift R′ of R in T ′[β] which crosses β exactly twice. In this case, R′ would be crossing
both αL,− and αL,+, hence R would be crossing aL twice, which is impossible.

For j ∈ N, let us consider the asymmetric width

Zj ∶=W (Aj) + 2W (Bj)

on U j/Υj. (One may compare with the notion of asymmetric modulus in [Lyu97].)

Corollary 3.6.9 (Monotonicity). There exists a constant C = C(m,λ) > 0 such that

Zr −C ≤ Z0.
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bL
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bR

aR

αL,+

αL,−

βL

β

βR

αR,+

αR,−

f rL′ R′

U r U0

Figure 3.9: A schematic diagram of the construction of separating proper curves β, βL, and
βR.

Proof. Consider F rsub from Lemma 3.6.5 and split them into Arsub ∪ Brsub according to the
topological type. Observe that Arsub crosses β once, whereas Brsub crosses β twice. By Lemma
3.6.8 (4), Arsub admits a restriction Arres properly contained in T ′[β], whereas Brsub admits two
disjoint restrictions Brres,1 and Brres,2 that are properly contained in T ′[β]. Then,

Zr −C ≤W (Arres) + 2 [W (Brres,1) ⊕W (Brres,2)]

≤W (Arres) +
1

2
[W (Brres,1) +W (Brres,2)] ≤W (T ′[β]) ≤ A + 2B.

At last, apply Lemma 3.6.6 and we are done.

Our next goal is to upgrade monotonicity to a strict loss. To do so, let us introduce two
other separating curves bL and bR.

Lemma 3.6.10 (Left and right curves). There exist proper curves bL and bR in U0 and
proper curves βL and βR in U r with the following properties. For each J ∈ {L,R},

(1) bJ is disjoint from Υ ∪CV ∪ aL ∪ aR ∪ b and separates J and b;

(2) B ∪DJ crosses bJ twice, A crosses bJ once, and P/DJ is disjoint from bJ ;

(3) βJ is a lift of bJ that separates L′ and β and is close to J′ ∪ αJ,+ ∪ αJ,−;

(4) W (T ′[βJ]) = A + 2B + 2DJ .

Moreover, the strip Π ⊂ U r cut out by βL and βR contains a piece I of length ≍ ln.

Proof. For J ∈ {L,R}, pick an extremely small ε > 0 such that the ε-neighborhood OJ of
J ∪ aJ is disjoint from CV/J. Let us set bJ ∶= ∂OJ ∩U0, then (1)–(3) is immediate. Item (4)
follows in a similar manner as the proof of Lemma 3.6.8. Moreover, the existence of I ⊂ Π
follows from the property that L and R have combinatorial distance ≍ ln.
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3.6.4 Non-persistence induces width loss

We say that a rectangle in T ′ is persistent if it crosses both βL and βR, i.e. it belongs in

T ′per ∶= T ′[βL] ∩ T ′[βR].

Denote the total widths of persistent and non-persistent rectangles in T ′[β] by

Zper ∶=W (T ′per) and Znon ∶= A + 2B −Zper

respectively. In this subsection, we prove the following non-dynamical result.

Proposition 3.6.11 (Key estimate). There exists some constant C = C(m,λ) > 0 such that

Zr −C ≤ Zper +Znon ⊕ 2(Znon +D).

The idea is captured in Figure 3.10. Most leaves of F r travel through either T ′per (the left
part of the figure) or T ′[β]/T ′per (the middle and the right parts). The former case gives the
term Zper. In the latter case, they must also travel through (T ′[βL] ∪ T ′[βR])/T ′per, which
has total width 2(Znon +D), and thus the series law can be applied to generate the harmonic
sum. In Section 3.6.6, we will show from this inequality that Zr shrinks provided that Zper

and D are small relative to K.

Proof. Consider the sublaminations Arsub ⊂ Ar and Brsub ⊂ Br from Lemma 3.6.5. For some
C = C(m,λ) > 0,

W (Ar) −C ≤W (Arsub) and W (Br) −C ≤W (Brsub) ,

and every leaf of Arsub ∪ Brsub travels through rectangles in T ′.
Let us assume that Br is attached to Rr; if otherwise, Brsub would be empty because no

rectangles in T ′ can cross αR,+∪αR,−. Let us define two disjoint restrictions Br1 and Br2 of Brsub

as follows. Denote by Q the connected component of U r/(αL,+ ∪ αL,−) containing Lr. For
γ ∈ Brsub, let us fix a parametrization γ ∶ (0,1) → U r travelling around Lr in an anticlockwise
manner. Consider the set Tγ of times t ∈ (0,1) such that γ(t) is in f−r(Υ0) ∩Q. Note that
Tγ is non-empty because no rectangle in T ′ crosses both αL,+ and αL,− simultaneously. Let
tγ,1 ∶=minTγ and tγ,2 ∶=maxTγ. Then, we define restrictions

Br1 ∶= {γ∣(0,tγ,1) ∶ γ ∈ Brsub} and Br2 ∶= {γ∣(tγ,2,1) ∶ γ ∈ Brsub} .

Let us consider the lamination

G ∶= Arsub ∪ Br1 ∪ Br2
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Gper G−,0 G−,R G+,0
G+,L

βL β βR βL β βR βL β βR

Figure 3.10: The lamination G = Gper ∪ G− ∪ G+ has width at least Zr. Gper crosses both βL
and βR. In contrast, G− overflows G−,0 and G−,R, whereas G+ overflows G+,0 and G+,L .

Every leaf of G crosses βL, ends at Rr (thus crosses βR too), and travels through rectangles
in T ′. Moreover, there is some C = C(m,λ) > 0 such that

Zr −C ≤W (Arsub) + 2 [W (Br1) ⊕W (Br2)] ≤W (G). (3.6.1)

For γ ∈ G, let γ0, γL, and γR be the connected components of γ/f−r (Υ0) that are crossing
β, βL, and βR respectively. Let us split G into a disjoint union of three sublaminations
Gper ∪ G− ∪ G+ defined as follows. For γ ∈ G,

⊳ γ ∈ Gper if γ0 crosses both βL and βR;

⊳ γ ∈ G− if γ0 crosses βL but not βR;

⊳ γ ∈ G+ if γ0 does not cross βL.

For ● ∈ {+,−} and x ∈ {0, L,R}, let us denote G●,x ∶= {γx ∶ γ ∈ G●}. By design, G−,0 and G−,R
are disjoint, and G+,0 and G+,L are disjoint. See Figure 3.10. Then,

W (G) ≤W (Gper) +W (G−,0) ⊕W (G−,R) +W (G+,0) ⊕W (G+,L)
≤W (Gper) +W (G−,0 ∪ G+,0) ⊕ [W (G−,R) +W (G+,L)] . (3.6.2)

Since Gper travels through T ′per and G−,0 ∪ G+,0 travels through T ′[β]/T ′per, then

W (Gper) ≤ Zper and W (G−,0 ∪ G+,0) ≤ Znon. (3.6.3)

Since G−,R travels through T ′[βR]/T ′per and G+,L travels through T ′[βL]/T ′per, then by Lemma
3.6.10,

W (G−,R) ≤ Znon + 2DR and W (G+,L) ≤ Znon + 2DL. (3.6.4)

Hence, combining (3.6.1), (3.6.2), (3.6.3), and (3.6.4) gives us the desired inequality.
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3.6.5 Persistence amplifies degeneration

Let us consider the strip Π ⊂ U r from Lemma 3.6.10, and a proper lamination Lper in Π that
is a restriction of the canonical lamination of T ′per. Clearly, Lper connects βL and βR, and its
width satisfies

W (Lper) ≥ Zper.

Let us denote by CP = CP(f r) the set of critical points of f r.

Lemma 3.6.12. All leaves of Lper are properly homotopic to each other in Π/CP.

Proof. Pick any two distinct leaves γ1 and γ2 of Lper. Then, γ1 ∪ γ2 ∪ βL ∪ βR must enclose a
disk O′ contained in Π. Denote by O the disk enclosed by f r(γ1) ∪ f r(γ2) ∪ bL ∪ bR. By the
maximum principle, f r ∶ O′ → O is a proper holomorphic map, and by the argument principle,
f r∣O′ must be univalent. In particular, O′ contains no critical points of f r.

Lemma 3.6.13 (Persistence Ð→ τ -degeneration). For any M > 1, there exist constants
m0 =m0(M) ∈ N and K2 =K2(M,λ) > 0 such that if

m ≥m0, K ≥K2, and Zper ≥ 0.1K, (3.6.5)

then there is a level n +m combinatorial piece J of width Wτ(J) ≥MK.

Proof. Let us set t ∶= qn+m−2 and s ∶= r − t. Assume that (3.6.5) holds, and so

W (Lper) ≥ 0.1K. (3.6.6)

For every critical point c of f , the backward orbit {(f ∣H)−i(c)}i=0,...,t−1 partitions H into
pieces of length between ln+m−2 and ln+m−4. By lifting this tiling by f s, observe that CP
partitions f−s(H) into preimages of pieces of length at most ln+m−4.

Before we proceed, we will first sketch the idea behind our construction. The horizontal
lift Lper of the persistent lamination must cross through a large number of fences, which are
connected subsets of f−s(H) separating βL and βR in Π, as shown in Figure 3.11. These fences
can be chosen such that their images under f s have alternating configuration shown in Figure
3.12. As these fences are tiled by CP, then by Lemma 3.6.12, Lper must intersect a common
tile Gi from each fence #i. We then apply the series law to obtain a large τ -degeneration.

Now, let us delve into the details. By Lemma 3.6.10, there exists a piece I in Π of length
≍ ln. Recall the two distinct cases and outlined in §3.1.4.

Case : Assuming m is large enough (depending on N), there is a sequence

x∞1 , x
0
1, x

∞
2 , x

0
2, . . . , x

∞
2N , x

0
2N

of critical points of f s, written in consecutive order, with the following properties.
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Π

Lper

βL βR
P1 P2 P3 P4

γ∞1 γ∞2 γ∞3 γ∞4

γ0
1 γ0

2 γ0
3 γ0

4

G1

G2

G3

G4

Figure 3.11: The lamination Lper crosses fences #j = γ∞j ∪ Pj ∪ γ0j through gates Gj in
consecutive order.

(i) All the x∞i ’s and x0i ’s are located on I, with x∞1 being the closest to βL and x02N being
the closest to βR combinatorially.

(ii) Every x∞i (resp. x0i ) is the root of an outer (resp. inner) bubble B∞i (resp. B0
i ) of

generation at most s.

(iii) The pieces Pi ∶= [x∞i , x0i ] have length at least ln+m−4 and are of distance at least τ−1
2 ln+m−4

away from each other.

For every odd (resp. even) i and ● ∈ {0,∞}, the critical value f s(x●i ) partitions4 U t ∩H
into two pieces, one of which, which we will denote by J●i , intersects Lt (resp. Rt). Denote
by γ●i the lift of J●i under f s that lies within the bubble B●i . By (ii), each γ●i intersects H

precisely at the critical point x●i . Define our fences as

#i ∶= γ∞i ∪ Pi ∪ γ0i .

By (i) and (iii), they satisfy the following properties. (See Figures 3.11 and 3.12.)

(iv) The #i’s are pairwise disjoint connected subsets of Π ∩ f−s(H) which separate βL and
βR.

(v) For each l ∈ {1, . . . ,N}, the images f s(#2l−1) and f s(#2l) are disjoint pieces in H that
are at least τ−1

2 ln+m−4 apart from each other.

4In Case , we partition using the radial segment in H containing fs
(x●i ).
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f s

#2j−1

#2j

J2j−1

J2j

G2j−1

G2j

Lj

Figure 3.12: The fences #2j−1 and #2j are constructed such that their images under f s have
τ -separation.

By property (iv), Lper crosses each fence in consecutive order, namely #i first before #i+1.
As CP induces tiling on fences, Lemma 3.6.12 implies the existence of connected compact
subsets Gi ⊂ #i (the gates of the fence) where the images Ji ∶= f s(Gi) are level n +m − 4
combinatorial pieces and Lper crosses the Gi’s in consecutive order.

Therefore, there exist pairwise disjoint laminations L1, . . . ,LN such that each Lj is a
restriction of Lper that connects G2j−1 and G2j. Let k be such that Lk is the widest among
all the Lj ’s. By property (v), since each Ji lies within f s(#i), then f s(Lk) overflows Fτ(J2k).
By Propositions 2.2.2 and 2.2.3, and by (3.6.6),

Wτ(J2k) ≥W (f s(Lk)) ≥ N ⋅W (f s (Lper)) = N ⋅W (Lper) ≥ 0.1NK.

Consider the constant C > 1 from Proposition 2.1.3. There exists a level n +m combinatorial
subpiece J of J2k with width Wτ(J) ≥ 0.1C−4NK. Finally, set N = ⌈10C4M⌉ and we are
done.

Case : The proof is similar to the previous case, but the construction of fences needs a
small adjustment. Following Remark 3.6.1, we assume that the U j’s are disjoint from the
connected component of the complement of the Herman ring H containing 0. In particular, U r

does not contain any inner bubbles. We will instead take the bubbles B∞i and B0
i described in

(ii) to both be outer bubbles. Although the corresponding fences #i will no longer separate
βL and βR, we claim that most of Lper still cross every fence in consecutive order.

Indeed, the set of leaves in Lper that are disjoint from some fence #i overflows the family
L′i of curves in H∩U r that skip Pi, i.e. they all connect two disjoint intervals in H are adjacent
to Pi and are at most λln in length. By uniformizing H and applying Proposition 2.2.7, the
width of L′i is at most some constant depending on λ and N . Therefore, for sufficiently large
K2 = K2(λ,N) > 0, we can assume that the width of the sublamination L′′ consisting of
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leaves in Lper that cross the fences in consecutive order is at least half of Lper. The same
remaining argument holds for L′′, and at the last moment we take N = ⌈20C4M⌉ instead.

3.6.6 Proof of Proposition 3.6.2

The results in the preceding subsections can be summarized as follows.

Lemma 3.6.14 (Degeneration vs. loss of Zj). Given any M ≥ 1, there exist constants
m =m(M) ∈ N, ν = ν(M) ∈ (0, 1), and K1 =K1(M,λ) > 0 such that if W (F j) ≥K1 for some
j ∈ N, then either

(1) there is a level n +m combinatorial piece J of width Wτ(J) ≥M ⋅W (F j), or

(2) Zj+qn+m ≤ νZj.

Proof. Let K =W (F0) and r = qn+m. Following Sections §3.6.2–3.6.5, assume j = 0 without
loss of generality and denote by C = C(m,λ) any positive constant depending only on m

and λ. By Lemmas 3.6.7 and 3.6.13, for sufficiently high integers m and κ depending on M ,
either item (1) holds, or

D ≤ κK and Zper ≤ 0.1K. (3.6.7)

We will show that the latter assertion implies (2). By Proposition 3.6.11,

Zr −C ≤ Zper + (Z0 −Zper) ⊕ (2 + 2κ)Z0.

Set ν′ ∶= 0.1 + 0.9⊕ (2 + 2κ); clearly, 0 < ν′ < 1. By (3.6.7), the inequality simplifies to

Zr −C ≤ ν′Z0.

Set ν = (1 + ν′)/2 and assume K1 ≥ 2C/(1 − ν′). Then, Zr ≤ νZ0.

At last, we are ready to prove the main result of this section. We will apply Lemma 3.6.14
many times until the shrinking factor is as low as we want.

Proof of Proposition 3.6.2. Fix ∆ > 1 and δ ∈ (0, 1). We will be applying Lemma 3.6.14 using
the constant M = δ−1∆. Consider the constants m, ν, and K1 from the lemma. Set r ∶= qn+m
and K ∶= δ−1K1, and let us assume that W (F0) =K ≥K. Let us pick t ∈ N such that νt ≤ δ/2.
Our goal is to prove that either

(a.) there is a level n +m combinatorial piece J of τ -width at least ∆K,

or there is some t between 1 and t such that
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(b.t) W (F rt) ≤ δK.

The proof below involves another related assertion, which is

(c.t) Zrt ≤ νtZ0.

Claim. If (c.t) holds, then either (a.), or (b.t), or (c.t + 1) holds.

Proof. Suppose (c.t) holds and (b.t) fails. By the lemma, either there is a level n + m
combinatorial piece J of τ -width at least δ−1∆ ⋅W (F rt), or Zr(t+1) ≤ νZrt. If the former
assertion holds, since (b.t) does not hold, then

Wτ(J) ≥ δ−1∆ ⋅W (F rt) ≥∆K.

If the latter assertion holds instead, then by (c.t), Zr(t+1) ≤ νt+1Z0.

Trivially, (c.0) holds. As we apply the claim above for t = 0, 1, . . . , t − 1, we conclude that
either (a.) holds, or (b.t) holds for some t between 1 and t− 1, or (c.t) holds. The latter case
implies (b.t) because

W (F rt) ≤ Zrt ≤ νtZ0 ≤ δ
2
Z0 ≤ δK.

Therefore, either (a.) holds or (b.t) holds for some t ≤ t.

3.7 A priori bounds for Herman rings of the simplest

configuration

We are now prepared to prove the first main theorem of the chapter. The results in Sections
§3.2–3.6 are compiled together to obtain the following theorem.

Theorem 3.7.1 (Amplification Theorem). There is an absolute constant τ > 1 and some
constants K > 1, m ∈ N, and N ∈ N depending only on d0, d∞, and β(θ) such that if

there is a [K,τ]-wide combinatorial piece I ⊂H of level n ≥ N

where K ≥K then

there is a [2K,τ]-wide combinatorial piece J ⊂H of level n′ ≥ N

where ∣n′ − n∣ ≤m.
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Wτ(I) ≥ K
for some I

Thm
3.5.1

Wλ(I ′) ≥ χK
for some I ′

Prop
3.3.2

Wλ(I ′′) ≥ ξχK for
all I ′′ in some I ′′

Thm
3.4.1

Wτ(J) ≥ 2K
for some J

Figure 3.13: Implication diagram illustrating the amplification process.

The motivation behind the Amplification Theorem comes from D. Dudko and Lyubich’s
motto in [DL22]:

“If life is bad now, it will be worse tomorrow.“

This is in the same spirit as Kahn’s general strategy in his proof of a priori bounds for infinitely
renormalizable quadratic polynomials of bounded primitive combinatorics in [Kah06].

Proof. Set τ ∶= 10. Fix a large constant λ ≫ τ , and set N ∶= nλ and m ∶= mλ +m, where
mλ and m are constants from Theorems 3.4.1 and 3.5.1 respectively. We will take K to be
sufficiently high so that all the arguments below hold.

Suppose I is a [K,τ]-wide level ≥ N combinatorial piece in H, where K ≥ K. By
Theorem 3.5.1, either there is a [2K,τ]-wide combinatorial piece J or there is a [χK,λ]-wide
combinatorial piece L. In the latter case, apply Proposition 3.3.2 for the value Ξ = 2/χ
such that either there is a [2K,τ]-wide combinatorial piece J or there is an almost tiling I ′′
consisting of [ξχK, τ]-wide pieces. If the latter holds, apply Theorem 3.4.1 to I ′′ to obtain a
[ΠλξχK, τ]-wide combinatorial piece J ⊂H. Refer to Figure 3.13 for an illustration. Finally,
we choose the constant λ such that Πλξχ ≥ 2. Then, J is the piece we are looking for.

Proposition 3.1.11 (1) is not directly applicable to H in Case . In particular, τ -
degeneration can always be found amongst pieces of level ≫ log(mod(H)−1). To prove a priori

84



bounds for f , we will switch between pieces of H and intervals of a boundary component of
H of sufficiently deep level depending on mod(H).

Proof of Theorem A. Let H the Herman ring of f and denote by µ > 0 the conformal modulus
of H. By Corollary 3.1.3, it is sufficient to prove the theorem when µ < µ0 for some fixed
0 < µ0 < 1.

Let Y 0 and Y ∞ be the connected components of Ĉ/H containing 0 and ∞ respectively.
Denote the boundary components of H by

H0 ∶= ∂Y 0, and H∞ ∶= ∂Y ∞.

Let τ , m, K, and N be constants from Theorem 3.7.1, and let C be the constant from
Proposition 2.1.3. It is sufficient to show that every interval I in H0 ∪H∞ of length ≤ lN
must have width Wτ(I) ≤ CK.

Let M ∈ N be such that
lM+1 ≤ µ < lM . (3.7.1)

Pick the threshold µ0 to be small enough such that M > N + 2m. All the combinatorial
intervals and pieces considered below will be of level ≥ N , and similar to the shallow-deep
treatment in Sections §3.4–3.5, they will be distinguished into two:

Herman scale N ≤ n <M ,

Siegel scale n ≥M .

Note that these scales coincide with the ones introduced in §1.3 and §3.1.4.

Lemma 3.7.2. If there is a [K,τ]-wide combinatorial interval I● ⊂H● at the Siegel scale for
some ● ∈ {0,∞} and K ≥K, then there is a [2K,τ]-wide combinatorial interval J● ⊂H● of
level at least N .

Proof. By applying Theorem 3.7.1 in Case , we can obtain from I● a [2K,τ]-wide combi-
natorial interval J● ⊂H● of level ≥ N1 −m > N .

To amplify degeneration about intervals at the Herman scale, we will thicken them to
pieces of H, amplify via Theorem 3.7.1 in Case , and convert pieces to intervals to obtain
more degenerate intervals.

Lemma 3.7.3. If there is a [K,τ]-wide combinatorial interval I● ⊂H● at the Herman scale
for some ● ∈ {0,∞} and K ≥K, then there is a [2K,τ]-wide combinatorial interval J† ⊂H†

at the Siegel scale for some † ∈ {0,∞}.

85



Proof. Let I ⊂ H be the combinatorial piece such that I ∩H● = I●. The piece I is also at the
Herman scale and [K,τ]-wide in H. By inductively applying the Amplification Theorem, we
obtain an infinite sequence of combinatorial pieces J1, J2, . . . where each Ji is [2iK,τ]-wide.

Let t ≥ 2 be a fixed integer that is to be determined later. By compactness, it is impossible
for every piece in {Jit}i≥1 to be at the Herman scale. Let j ≥ 1 be the smallest integer such
that Jjt is at the Siegel scale. The piece J ∶= Jjt has τ -width Wτ(J) ≥ 2jtK ≥ 2tK. Note that
the level n1 of J must satisfy

M ≤ n1 <M + tm. (3.7.2)

Denote the horizontal sides of J by P 0 ∶= J ∩H0 and P∞ ∶= J ∩H∞. For each † ∈ {0,∞},
we denote by Q† the union of P † and both of its neighboring combinatorial intervals of level
n1 + 1, and by R† the union of (τP †)c and both of its neighboring combinatorial intervals of
level n1 + 1.

Claim 1. The width of curves in Fτ(J) that cross through (intersect both horizontal sides
of) any component of τJ/J is at most some absolute constant C1 > 0.

Proof. Indeed, suppose A is one of the two components of τJ/J . As a conformal rectangle,
the width of A is equal to ∣A∣/µ. Note that

∣A∣
µ
= τ − 1

2
⋅ ln1

µ
≤ τ − 1

2
⋅ ln1

lM+1
≤ C

2
(τ − 1),

where the first inequality follows from (3.7.1) and the second follows from (3.7.2). As there
are two possible A’s to consider, the claim follows by taking C1 = C ⋅ (τ − 1).

Claim 2. The width of curves in Fτ(J) that do not restrict to curves joining Q♯ and R♭ for
some ♯, ♭ ∈ {0,∞} is at most some constant C2(t) > 0.

Proof. If a curve in Fτ(J) does not have a subcurve joining some Q♯ and R♭, then it must
have a subcurve that is proper in A and connects the vertical sides of A, where A is one of
the four level n1 + 1 combinatorial pieces of H next to J or (τJ)c. The width wA of proper
curves in A connecting the vertical sides of A satisfies

wA =
µ

ln1+1

≤ lM
ln1+1

≤ Ctm+1,

where the first inequality follows from (3.7.1) and the second is from (3.7.2). As there are
four possible A’s to consider, our claim follows from taking C2 = 4Ctm+1.

From both claims above, there is some † ∈ {0,∞} such that the width W (Q†,R†) of
curves joining Q† and R† satisfies

W (Q†,R†) ≥ Wτ(J) −C1 −C2(t)
2

≥ 2t−1K − C1 +C2(t)
2

.
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By replacing K with a higher constant depending on t if necessary, we have

W (Q†,R†) ≥ 2t−2K.

There is an absolute constant s ∈ N such that for any combinatorial subinterval J† of Q† of
level n1 + s, the piece (τJ†)c contains R†. Therefore, there is a level n1 + s combinatorial
subinterval J† ⊂ Q† such that

Wτ(J†) ≥ ∣J
†∣
∣Q†∣ ⋅W (Q

†,R†) ≻ 2tK.

Finally, we can pick t to be sufficiently high such that J† is [2K,τ]-wide.

Suppose for a contradiction that on one of the boundary components, say H∞, there
exists an interval I∞ of length ≤ lN and τ -width at least CK where K ≥ K. Then, I∞

admits a [K,τ]-wide combinatorial subinterval I∞0 ⊂ I∞ of level ≥ N . The two lemmas above
imply that there is an increasing sequence of positive integers {ij}j∈N and [2ijK,τ]-wide
combinatorial intervals I●ij ⊂ H● for all j ∈ N for some common ● ∈ {0,∞}. This would
contradict Proposition 3.1.11 (1) and thus conclude the proof of Theorem A.

3.8 Construction of Herman curves

In this section, for every f ∈ H, we denote by Hf the Herman ring of f . We will apply
Theorem A to study the limit space ∂H in Ratd.

Throughout this section, we will denote by A(r,R) the round annulus {r < ∣z∣ < R} of
inner and outer radii r and R. For brevity, we will also encode the data (d0, d∞, β(θ)) with
the symbol ♣.

3.8.1 Precompactness

Given rational maps f and g, we write f ∼ g to denote that f and g are conformally conjugate.
Note that a Möbius transformation preserves the space H by conjugation if and only if it is a
linear map z ↦ λz. While our a priori bounds is geometric in flavour, it implies a compactness
property that is algebraic in flavour.

Theorem 3.8.1. For any µ > 0 and N ∈ N, the quotient space

{f ∈ H ∣mod(Hf) < µ} /∼

is precompact.
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The following lemma will serve as a key ingredient in the proof.

Lemma 3.8.2 (Bounded shape about 0 and ∞). Let f ∈ H. The union of the inner (resp.
outer) boundary component of Hf and all the inner (resp. outer) bubbles of generation 1 is
contained in some round annulus A(εr, r) where 0 < ε < 1 depends only on ♣.

Proof. We will prove the lemma for the inner boundary and inner bubbles. The treatment for
the outer case is analogous. Denote by Y 0 the connected component of the complement of Hf

containing 0, and by Y 0
1 the component of f−1(Y 0) that is contained in Y 0. Let H0 ∶= ∂Y 0

and H0
1 ∶= ∂Y 0

1 . By conjugating with a linear map, we can assume that the maximum
Euclidean distance between 0 and a point on H0

1 is 1. It is sufficient to find a lower bound ε
on dist(0,H0

1).
Denote by ζ a point on H0 that is closest to 0, by Iζ the level 2 combinatorial interval on

H0 centered at ζ, and by I ′ζ ∶= (f ∣H0)−1(Iζ) the lift of Iζ inside H0. Let κ be the harmonic
measure of Iζ in Y 0 about 0. As f ∶ Y 0

1 → Y 0 is a degree d0 covering map that is branched only
at 0, the harmonic measure of I ′ζ on Y 0

1 about 0 is κ/d0. Since Y 0
1 ⊂ Y 0 and H0 ⊂ H0

1 , then
the harmonic measure of I ′ζ in Y 0 about 0 is at least κ/d0. Note that since l2 <max{θ, 1 − θ},
the intervals I ′ζ and Iζ must be disjoint. As such, κ must be bounded above by

κ < (1 + 1

d0
)
−1

< 1. (3.8.1)

By assumption, the Euclidean diameter of H0 is greater than 1. Since the conjugacy
ϕ ∶H0 → T between f ∣H0 and Rθ∣T is a K(♣)-quasisymmetry, every connected component of
Iζ/{ζ} has diameter greater than some L1 = L1(♣) > 0. As H0 is a quasicircle, there is also
some small L2 = L2(♣) > 0 such that H0/Iζ is disjoint from the disk D(ζ,L2). Together with
(3.8.1), this implies that ζ cannot be arbitrarily close to 0, that is, dist(0,H0) > ε′ for some
ε′ = ε′(♣) > 0.

The outer boundary of every inner bubble of generation 1 is contained in H0
1 , and its

harmonic measure in Y 0
1 about 0 is simply the constant 1/d0. Using a similar argument, we

conclude that every inner bubble of generation 1 is of distance at least some constant ε(♣) > 0
away from 0.

Lemma 3.8.3. Let f ∈ H. There is a K-quasiconformal map ϕ ∶ Ĉ → Ĉ with the following
properties.

(1) ϕ maps the Herman ring H = Hf onto some annulus A = A(r, re2πmod(H));

(2) ϕ is conformal in H;

(3) ϕ∣H is a conjugacy between f ∣H and rigid rotation Rθ∣A;
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(4) ϕ fixes 0 and ∞;

(5) K depends only on ♣.

Proof. By Theorem A, it is immediate that there is a map ϕ ∶ H→ A satisfying (1)-(3) that
restricts to a K ′(♣)-quasisymmetric map from H to ∂A. By Lemma 3.8.2, the control of ∂H

relative to 0 and ∞ allows us to extend ϕ to a global quasiconformal map satisfying (4) and
(5).

Proof of Theorem 3.8.1. Let f ∈ H be a rational map such that mod(Hf) < µ. Denote by H0

and H∞ the inner and outer boundary components of Hf . By conjugating f with a linear
map, assume that the maximum Euclidean distance between 0 and a point in H0 is 1.

The rational map f must be of the form

f(z) = λzd0 (z − z1) . . . (z − zd∞−1)(z − p1) . . . (z − pd0−1)
,

where Z ∶= {z1, . . . , zd∞−1} and P ∶= {p1, . . . , pd0−1} are the sets of zeros and poles of f
respectively. To prove precompactness, it is sufficient to show that there exists some ε =
ε(♣, µ) > 0 such that

(i) Z ∪P ⊂ A(ε, ε−1),

(ii) dist(Z,P) > ε, and

(iii) ε < ∣λ∣ < ε−1.

From our choice of normalization, the outer boundary H∞ must contain some point w
such that ∣w∣ ≤ e2πµ. Indeed, if otherwise, Hf would contain the annulus A(1, e2πµ) which
would contradict the assumption that mod(Hf) < µ. As a consequence of Lemma 3.8.2, there
is some ε1 = ε1(♣, µ) > 0 such that

f−1(Hf) ⊂ A(ε1, ε−11 ). (3.8.2)

Since the zeros and poles are enclosed by bubbles of generation 1, we obtain (i).
Next, (ii) follows directly from the claim below.

Claim. There is some ε2 = ε2(♣, µ) > 0 such that dist (Hf ,Z ∪P) > ε2.

Proof. Let us pick a pole p ∈ P. The treatment for zeros is analogous. Recall the notation
H0

1 , Y 0 and Y 0
1 used in the proof of Lemma 3.8.2. Let c ∈H0 be the critical point that is the

root of the inner bubble B of generation 1 that encloses p. Let ϕ be the K(♣)-quasiconformal
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Figure 3.14: Construction of the annulus A surrounding D.

map from Lemma 3.8.3. We can normalize ϕ such that it maps the inner boundary H0 to
the unit circle and the critical value f(c) to 1.

Let γ be the straight segment [0, 1] and let D′ be the closure of the left half plane minus D.
By construction, the annulus A′ ∶= Ĉ/(D′ ∪ γ) has modulus equal to some universal constant
κ > 0. Let A (resp. D) be the unique lift of A′ (resp. D′) under ϕ ○ f that intersects the
bubble B. See Figure 3.14.

Since ϕ maps (Y 0,0) to (D,0), the harmonic measure of f(D) ∩H0 in Y 0 about 0 is at
least some δ(♣) > 0. Therefore, the harmonic measure of D∩H0

1 in Y 0
1 about 0 is at least δ/d0.

Combined with (3.8.2), the diameter of D must be bounded above by some δ′(♣, µ) > 0. Since
mod(A) ≥ κ/K, we can apply Teichmüller estimates (cf. [Ahl06, §3]) and conclude that the
distance between the two boundary components of A is at least some constant ε2(♣, µ) > 0.
Finally, as A separates the pole p from Hf , then dist (Hf , p) > ε2.

The claim and (3.8.2) imply that every w ∈ Z ∪ P satisfies ε2 ≤ ∣1 −w∣ ≤ 1 + ε−11 . Moreover,
as f(1) lies on the inner boundary H0, then ε1 ≤ ∣f(1)∣ ≤ ε−11 . These two observations imply
(iii), and we are done.

3.8.2 Degeneration of Herman rings

Theorem 3.8.1 implies that ∂H/∼ is compact. By a priori bounds, we are finally able to
establish a formal relation between the two spaces H and X .

Corollary 3.8.4. ∂H is contained in X .

Proof. Suppose fn → f for some sequence of rational maps fn ∈ H. We will show that the
limit f must lie in H ∪X .

Due to uniform convergence, both 0 and ∞ remain superattracting fixed points for f of
local degrees d0 and d∞ respectively. In particular, the Julia sets J(fn) must all be contained
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in A(ε, ε−1) for some 0 < ε < 1 independent of n, and that the moduli µn of the Herman rings
Hn of fn are bounded above by 1

π log
1
ε . Moreover, for sufficiently high n, fn has a free critical

point cn of the same local degree independent of n located on the inner boundary of Hn, and
cn → c where ε ≤ ∣c∣ ≤ ε−1.

By Lemma 3.8.3, every fn admits a K(♣)-quasiconformal map ϕn ∶ Ĉ→ Ĉ that is conformal
in Hn, fixes 0 and ∞, maps cn to 1, and restricts to a conjugacy between fn∣Hn

and the
rigid rotation Rθ on the closed annulus An ∶= A(1, e2πµn). By the compactness of normalized
K-quasiconformal maps, ϕn has a subsequence converging to a K-quasiconformal map ϕ

which fixes 0 and ∞ and maps c to 1.
By passing to a further subsequence, suppose µn → µ for some limit µ ≥ 0. As n→∞, An

converges in the Hausdorff topology to A ∶= A(1, e2πµ) on which we have the conjugacy:

Rθ = lim
n→∞

ϕnfnϕ
−1
n = ϕfϕ−1.

Moreover, Hn converges to H ∶= ϕ−1(A). Since all free critical points of fn lie on ∂Hn, then
all free critical points of f also lie on ∂H. If µ = 0, then H must be a Herman quasicircle and
f is in X . Else, f is in H and H is the closure of a Herman ring of f .

Corollary B then follows from the corollary above. In the proof, notice that H is indepen-
dent of any choice of convergent subsequence taken. In particular, we have simultaneously
shown:

Corollary 3.8.5. For f ∈ H, let Hf denote either the closure of the Herman ring of f or the
Herman quasicircle of f . Then, f ↦Hf is continuous in the Hausdorff topology.

Recall that the combinatorics of Hf can be encoded by elements of the space C = Cd0,d∞ .
(See Definition 3.1.6.)

Corollary 3.8.6. The map ∂H → C, f ↦ comb(f) is a continuous surjection.

Proof. Continuity of comb(⋅) follows directly from Corollary 3.8.5.
Pick any arbitrary combinatorial data σ ∈ C. By Theorem 3.1.7, there is a rational map

f1 ∈ H with a Herman ring H1 of modulus 1 with comb(f) = σ. By deforming the complex
structure of H1 (see [BF14, §6.1]), we obtain a real analytic family of rational maps {ft}0<t≤1
in H where each ft has a Herman ring Ht of modulus t with the same combinatorics C.

From Theorem 3.8.1, by appropriately normalizing ft, there is a sequence {tn}n∈N in (0, 1)
such that as n→∞, the modulus tn converges to 0 and ftn converges to a degree d rational
map f . Clearly, f cannot lie in H because otherwise it would contradict the continuity of the
moduli of Herman rings guaranteed in Corollary 3.8.5. Therefore, by Corollary 3.8.4, f must
lie on ∂H and it has the same combinatorics σ.
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Chapter 4

Rigidity

This chapter begins with a general discussion of the local dynamics of holomorphic maps
near Herman quasicircles. We then give a proof of rigidity of rational maps in X , and discuss
some of the immediate applications. In the second half of this chapter, we initiate the study
of renormalization theory of critical quasicircle maps.

4.1 Approximate rotation

Let us fix a holomorphic map f ∶ U → Ĉ on an open subset U of Ĉ and assume that f admits
a Herman quasicircle H ⊂ U with bounded type rotation number θ. By Proposition 2.1.6, H
necessarily contains an inner critical point and an outer critical point of f .

By Theorem 2.1.7, there exists a quasiconformal map ϕ ∶ Ĉ → Ĉ sending H to the unit
circle T ⊂ C and conjugating fH and the irrational rotation Rθ. We will fix such a map ϕ.

Consider the function
L(z) ∶= log (dist(ϕ(z),T)) . (4.1.1)

Given a point z near H, we will measure the rate of escape of iterates of z using the function
L. For any κ > 0, denote the open annulus

Aκ ∶= {−∞ ≤ L(z) < −κ}.

Suppose f extends to a holomorphic map on an annular neighborhood A = Aκ of H. We
select κ to be high enough such that the only critical points of f inside of A lie on H. Without
loss of generality, we will also assume that A avoids 0 and ∞. Let us split A into two annuli

A0 ∶= A ∩ Y 0 and A∞ = A ∩ Y ∞,

where Y 0 and Y ∞ are the connected components of Ĉ/H containing 0 and ∞ respectively.
We call A, A0, and A∞ a collar, inner collar, and outer collar of f ∣H.
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Let us define the quasi-rotation

F (z) ∶= ϕ−1(e2πiθϕ(z)).

Clearly, F coincides with f on H. Let us equip Y ∶= Ĉ/H with the hyperbolic metric. The
following definition is inspired by [McM98, §3].

Definition 4.1.1. Suppose an iterate f i ∶ U → V is well defined for some i ≥ 0 and some pair
of topological disks U,V ⊂ A. We say that f i ∶ U → V is an approximate rotation if it is a
univalent function of bounded distortion such that for all x ∈ U/H,

dY (f i(x), F i(x)) = O(1).

Given a Jordan domain U and a pair of disjoint arcs I and J on the boundary of U , we
denote by LU(I, J) the extremal length of the family of proper curves in U connecting I
and J . The domain U is conformally equivalent to a Euclidean rectangle where I and J

correspond to the vertical sides of unit length and LU(I, J) is equal to the length of the
horizontal side.

Lemma 4.1.2 (One-sided approximate rotation). For any ● ∈ {0,∞}, any point z ∈H, and
sufficiently small scale r > 0, there exists an approximate rotation

f i ∶ (U, y) → (V, c)

such that

(1) both U and V are contained in A●,

(2) the point y lies on ∂U ∩H and the interval [y, z] is contained on ∂U ∩H,

(3) c is an outer critical point of f if ● = ∞, an inner critical point of f if ● = 0, and

(4) we have
LU([y, z], ∂U/H) ≻ 1 and dist(z, ∂U/H) ≍ r.

For any 0 < a < π and any small interval I ⊂ T, we define Ha(I) ⊂ D to be the Jordan
disk enclosed by the interval I together with the unique circular arc in D that has the same
endpoints as I and meets the circular arc T/I at an angle of a. To prove Lemma 4.1.2, we
will use the following tool.

Lemma 4.1.3 ([McM98, Lemma 3.3]). Consider a K-quasiconformal map g ∶ Hα(I) → D

which extends continuously to the identity on some interval I ⊂ T. For any β ∈ (0, α), there is
some constant C = C(α,β,K) > 0 such that

dD(g(x), x) ≤ C for all x ∈Hβ(I).
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Proof of Lemma 4.1.2. Assume without loss of generality that ● = ∞. Since ϕ is uniformly
continuous with respect to the hyperbolic metric of Y , it is sufficient to prove the lemma
in the w-coordinate, where w = ϕ(z). (Compare with [McM98, Theorem 3.4].) In the
w-coordinate, f is an irrational rotation along H, which is the unit circle, and all iterates of
f are quasiregular with uniform dilatation. Let us pick a small scale r > 0 and a point w ∈H.

Denote by {pk/qk}k∈N the rational approximations of θ and consider the combinatorial
lengths lk ∶= ∣pk − qkθ∣. Let us pick n ∈ N such that r ≍ ln. Apply Lemma 2.1.4 by taking S to
be the set of critical values of f on H in order to obtain a pair of intervals Jqn+2 ⊂ Iqn+2 in H

such that

(i) Jqn+2 contains the level n combinatorial interval centered at f qn+2(w);

(ii) the endpoints of Jqn+2 split Iqn+2 into three connected components each having combina-
torial length ≍ ln;

(iii) Iqn+2/Jqn+2 does not contain any critical value of f qn+2 .

For j = 0,1, . . . qn+2, let

Jj ∶= (f ∣H)−qn+2+j(Jqn+2) and Ij ∶= (f ∣H)−qn+2+j(Iqn+2).

By Proposition 2.1.2, there is some minimal i < qn+qn+1 such that Ji contains an outer critical
point c. Let y ∶= (f ∣H)−i(c).

Let ψ∞ ∶ D → Y ∞ be a biholomorphism sending 0 to a point outside of A∞. By
Carathéodory’s theorem, ψ∞ extends to a homeomorphism on the boundary T→H. For any
a ∈ (0, π), we define the domain

H∞a (Ii) ∶= ψ∞ (Ha(ψ−1∞ (Ii))) ⊂ Y ∞.

Let us pick some ε ∈ (0, π2 ). There is some constant κ′ > κ such that the annular
neighborhood Aκ′ of H is contained within A∞ ∩ f−1(A∞) and there is a well-defined inverse
branch of f−1 mapping any domain of the form H∞ε (I) that is contained in Aκ′ to a domain
touching H on its boundary. Now let V ∶=H∞π

2
(Iqn+2).

Claim. For sufficiently small n, there is a well-defined inverse branch of f−i mapping V to a
domain U touching H along the interval I0. Moreover,

dY (f i(x), F i(x)) = O(1) for all x ∈ U. (4.1.2)

Proof. Let us pick a positive constant δ. By taking n to be sufficiently small, we assume
that V is contained in Aκ′+δ. Denote by V−1 a univalent lift of V under f that is touching
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H. Since Ii does not contain any outer critical value of f i, V−1 touches H precisely along
Ii−1 and so F ○ f−1 is the identity map on Ii. By Lemma 4.1.3, there is some constant C > 0
depending on the dilatation of ϕ such that

dY ((f ∣V−1)−1(x), F −1(x)) ≤ C for all x ∈ V.

Consequently, we take ε to be small enough and δ to be high enough to beat the constant C
so that ultimately, V−1 ⊂H∞ε (I−1) ⊂ Aκ′ . The way κ′ and i are chosen ensures that V−1 can
again be lifted to a domain V−2 touching H along Ii−2. By the same argument, we have

dY ((f ∣V−2)−2(x), F −2(x)) ≤ C for all x ∈ V

and V−2 is again contained in Aκ′ . Inductively, we can define the domains V−2, V−3, . . ., V−i
by pulling back and set U = V−i.

We can ensure that f i ∶ U → V has bounded distortion by shrinking Ii (and thus V and
U) by a little bit. By (4.1.2), we conclude that f i ∶ U → V is an approximate rotation. It
remains to prove (4). Properties (i) and (ii) imply that

dist(∂V /H, f i(w)) ≍ r and LV (Jn, ∂V /H) ≻ 1

in the w-coordinate. Since f−i is uniformly quasiconformal on V and acts as an isometry
along H, we obtain the desired estimates in (4).

Instead of an approximate rotation on one side of H, we can also consider a two-sided
approximate rotation, yielding the following lemma.

Lemma 4.1.4 (Two-sided approximate rotation). Given any point z ∈ H and sufficiently
small scale r > 0, there is an approximate rotation

f i ∶ (U, y) → (V, c)

such that y lies on H, c is a critical point of f , and (U, y) is a pointed disk that well contains
the interval [y, z] ⊂H and has bounded shape and diameter ≍ r.

This lemma is a generalization of [McM98, Theorem 3.4] which was originally formulated
for bounded type quadratic Siegel disks.

Proof. We can adapt the same proof as the previous lemma by defining the Jordan domain
V by gluing H∞π

2
(Ii) and H0

π
2
(Ii). The rest of the proof resumes as before. Replace U with a

smaller disk (e.g. a hyperbolic ball DU(y,R) for some definite radius R > 1) so that (U, y)
has bounded shape.
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For each ● ∈ {0,∞}, the round annulus ϕ−1(A●) admits a canonical radial foliation
connecting its two boundary components. For every point z on H, we denote by γ●z the
unique proper curve in A● such that ϕ(γ●z) is the radial leaf with endpoint ϕ(z).

For every inner (resp. outer) critical point c ∈H, let us denote by d0(c) (resp. d∞(c)) the
inner (resp. outer) criticality of c. See Definition 4.3.7 for details.

Lemma 4.1.5 (Local preimages of H). For ● ∈ {0,∞}, there are 2d●(c) − 2 pairwise disjoint
open quasiarcs Γ∞1 , . . . ,Γ

∞
2d●(c)−2

in A● which are all mapped into H by f and attached to c at
one of its endpoints. Every point z on Γ●1 ∪ . . . ∪ Γ●2d∞(c)−2 satisfies

distY (z, γ●c) = O(1).

Proof. Let d(c) ∶= d0(c) + d∞(c) − 1 be the local degree of f at c. There exists an open disk
neighborhood Q ⊂ A of c on which f is a degree d(c) covering map branched only at c. When
Q is sufficiently small, the map f on Q is of the form h(z)d(c) + f(c) for some univalent map
h ∶ Q→ Ĉ with bounded distortion sending c to 0.

The disk Q can be picked such that ϕ(f(Q)) is a round disk orthogonal to T. Then, the
preimage of the interval H ∩ f(Q) will consist of H ∩Q as well as pairwise disjoint open
quasiarcs

Γ0
1, . . . ,Γ

0
2d0−2

, Γ∞1 , . . . ,Γ
∞
2d∞−2

where each Γ●i is contained in A● ∩Q and connects the critical point c to a point in A● ∩ ∂Q.
Let us pick a point z on Γ∞i for some i. Let w be a point on H closest to z, i.e.

∣z −w∣ = dist(z,H). Note that the hyperbolic metric of Y at z is comparable to dist(z,H)−1.
As such, in order to prove the lemma, it is sufficient to show that

∣z −w∣ ≻ ∣z − c∣. (4.1.3)

Before we do so, we will introduce another disk neighborhood Q̃ of c in a similar way as
Q, except that Q̃ is larger than Q and mod (Q̃/Q) ≍ 1. If Q̃ does not contain w, then by
Teichmüller estimates [Ahl06, §3],

∣z − c∣ ≤ diam (Q) ≺ dist (∂Q̃, ∂Q) ≤ ∣z −w∣

and we are done.
Suppose instead that w lies inside of Q̃. Since H is a quasicircle, the ratio of the

distance between f(z) and f(w) to the diameter of the interval [f(z), f(w)] ⊂H must be
bounded above by some definite constant. In particular, since the critical value f(c) lies on
[f(z), f(w)], then

∣f(z) − f(w)∣ ≻ ∣f(z) − f(c)∣.
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Consider the univalent map h ∶ Q̃ → Ĉ described previously. The estimate above can be
rewritten as

∣h(z)d − h(w)d∣ ≻ ∣h(z)∣d,

which implies that
∣h(z) − h(w)∣ ≻ ∣h(z)∣.

Since h has bounded distortion on Q̃, this estimate implies (4.1.3).

Corollary 4.1.6. Given any point z in A● for some ● ∈ {0,∞}, if z is sufficiently close to
H, there exists an approximate rotation f i ∶ U → V such that U contains z, V contains a
hyperbolic ball D ⊂ Y of radius ≍ 1 centered at some point on f−1(H)/H, and

distY (f i(z),D) = O(1).

Proof. Again, assume ● = ∞. Let w ∈H be the unique point such that z lies on the radial
segment γ∞w . By Lemma 4.1.2, there is an approximate rotation f i ∶ U → V such that

(i) U and V are disks in A∞ and z ∈ U ,

(ii) there is some interval [w, y] ⊂ ∂U ∩H such that c ∶= f i(y) is an outer critical point and
LU([w, y], ∂U/H) ≻ 1,

(iii) ∣w − y∣ = O(∣w − z∣).

Refer to Figure 4.1. Clearly, (iii) implies that

distY (z, γ∞y ) = O(1).

Since f i is an approximate isometry on U , then

distY (f i(z), γ∞c ) = O(1).

Because of Lemma 4.1.5 and the fact that c is an outer critical point, we have

distY (f i(z), f−1(H)) = O(1). (4.1.4)

From (ii), we have LV ([f i(w), c], ∂V /H) ≻ 1. Together with (4.1.4), we conclude that V
contains a hyperbolic ball D with the desired properties.

4.2 No invariant line fields on the Julia set

Consider a rational map f in X . In this section, we will prove the following theorem.

Theorem 4.2.1. The Julia set J(f) of f does not support any invariant line field.
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Figure 4.1: The construction in the proof of Corollary 4.1.6.

4.2.1 Hyperbolic geometry off the postcritical set

The postcritical set P (f) is the union of the Herman curve H of f and the superattractors
{0,∞}. Denote the complement by

Ω ∶= Ĉ/P (f).

We shall equip Ω with the hyperbolic metric ρΩ(z)∣dz∣. The set Ω is the maximal open subset
such that fn ∶ f−n(Ω) → Ω is an unbranched covering map for all n ≥ 1.

For any point z in Ω, denote by ∥f ′(z)∥ the norm of the derivative of f at z with respect
to the hyperbolic metric of Ω.

Lemma 4.2.2 ([McM94, Theorems 3.5–3.6]). Consider a point z in Ω.

(1) If f(z) is also contained in Ω, then ∥f ′(z)∥ ≥ 1.

(2) If z ∈ J(f) and fn(z) /∈H for all n ≥ 0, then

∥(fn)′(z)∥ → ∞ as n→∞.

By Theorem 2.1.7, there exists a quasiconformal map ϕ ∶ Ĉ→ Ĉ that fixes 0 and ∞ and
conjugates f ∣H and the rigid rotation Rθ on the unit circle T. Recall the function L(z) ∶=
log (dist(ϕ(z),T)) from (4.1.1) as well as the annular neighborhood Aκ ∶= {−∞ ≤ L(z) < −κ}
of H for any real number κ.

Let us select a large negative number κ0 such that the Julia set J(f) of f is compactly
contained in the annulus Aκ0 . Let us define the thick part of Ω by

Ωthick ∶= Ω ∩Aκ0 . (4.2.1)

In other words, Ωthick is the sphere Ĉ with H and some small neighborhoods of 0 and ∞
removed.
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Lemma 4.2.3. For every point z in Ωthick,

ρΩ(z) ≍
1

dist(z,H) .

Proof. Consider a point z in Ωthick and denote by E the connected component of Ĉ/H
containing z. Let us equip E the hyperbolic metric. A standard application of Koebe quarter
theorem to any Riemann mapping (D, 0) → (E, z) yields the estimate ρE(z) ≻ 1

dist(z,H) . Then,
we apply Schwarz Lemma to the inclusion map on the connected component of Ω containing
z into E in order to obtain ρΩ(z) ≥ ρE(z), which gives us the estimate ρΩ(z) ≻ 1

dist(z,H) .
As we apply Schwarz lemma to the inclusion map D (z,dist(z,P (f))) ↪ Ω, we also

obtain the estimate ρΩ(z) ≺ 1
dist(z,P (f)) . We conclude the proof with the observation that

dist(z,P (f)) ≍ dist(z,H) because z is contained in Ωthick.

4.2.2 Visiting the critical point from J(f)
The key ingredient towards proving Theorem 4.2.1 is the following theorem.

Theorem 4.2.4 (Nearby critical visits). For every point z ∈ J(f) and scale r > 0, there exist
an integer i ≥ 0, a critical point c ∈H of f , and a pair of pointed disks (U, y) and (V, c) such
that

(1) f i ∶ (U, y) → (V, c) is a univalent map with bounded distortion,

(2) (U, y) has bounded shape with diameter ≍ r,

(3) ∣y − z∣ = O(r).

Theorem 4.2.4 is an analog of [McM98, Theorem 3.2], which was originally stated in the
context of bounded type quadratic Siegel disks. The proof relies on the approximate rotation
mechanism introduced in §4.1, which is made compatible with the hyperbolic metric of Ω
thanks to Lemma 4.2.3.

Lemma 4.2.5. For every point z in J(f)/H, there is a univalent map

f i ∶ (B,x) → (V, c)

such that i ≥ 0, c ∈H is a critical point of f , and B is a hyperbolic ball in Ω of radius r ≍ 1
centered at a point x in Ω satisfying dΩ(x, z) = O(1).

Proof. For every critical point c on H, consider two nested disk neighborhoods Qc ⊂ Q̃c of c
with the following properties.
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(i) Qc is well contained in Q̃c, and Q̃c is well contained in Aj.

(ii) The map f is a covering map from Qc and Q̃c onto their respective images, branched
only at c.

(iii) The map f ∣Q̃c
can be written as f(z) = h(z)d(c) + f(c), where h is a univalent map of

bounded distortion and d(c) is the local degree of f at c.

By taking Q̃c to be sufficiently small, we can further assume that the disks Q̃c are pairwise
disjoint. For brevity, let us also denote the strict preimage of H by H−1 ∶= f−1(H)/H.

Pick a point z in J(f)/H. We will split into four cases.

Case 1: z ∈H−1 ∩Qc for some critical point c.
Let z′ be the unique point in the intersection Qc ∩H such that f(z) = f(z′). By Lemmas

4.1.4 and 4.1.5, there is an approximate rotation

f i ∶ (U ′, x′) → (V, c)

such that i ≥ 1 and (U ′, x′) is a pointed disk in Q̃c that avoids H−1, well contains the interval
[x′, z′], and

rin(U ′, x′) ≍ ∣x′ − c∣. (4.2.2)

Let (U,x) be the pointed disk containing z such that f(U) = f(U ′) and f(x) = f(x′). See
Figure 4.2. Since both U and U ′ are contained in Q̃c, there is a univalent map g ∶ (U,x, z) →
(U ′, x′, z′) of bounded distortion such that f ○ g = f on U . Therefore, U avoids H, well
contains the interval [x, z], and by (4.2.2),

rin(U,x) ≍ ∣x − c∣ ≥ dist(x,X).

By Lemma 4.2.3, this implies that U contains a hyperbolic ball B ⊂ Ω of definite radius
centered at x. Therefore, f i ∶ (B,x) → (V, c) is the desired univalent map.

Case 2: z ∈H−1/ ∪c Qc.
Since every component of Ω contains a connected component of H−1, there exist a critical

point c and a point z′ in H−1 ∩Qc such that both z and z′ are in the same component of Ω
and distΩ(z, z′) = O(1). This reduces us to Case 1.

Case 3: z ∈ J(f)/f−1(H).
By Corollary 4.1.6, there exists an approximate rotation

f i ∶ (U,w) → (U ′,w′)
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Figure 4.2: Case 1 in the proof of Lemma 4.2.5.

such that w′ is in H−1 and that w satisfies dΩ(w, z) = O(1) and distΩ(w,∂U) ≻ 1. By Cases 1
and 2, there also exists a univalent map

f j ∶ (B′, x′) → (V, c)

such that B′ ⊂ Ω is a hyperbolic ball of radius ≍ 1 centered at x′, c is a critical point of f
in X, and dΩ(w′, x′) = O(1). We can assume that B′ is inside of U ′ by shrinking B′ by a
little bit. As such, the lift (f i∣U)−1(B′) contains a hyperbolic ball B of radius ≍ 1 centered
at x = (f i∣U)−1(x′) with distance dΩ(x, z) ∶= O(1). Therefore, f i+j ∶ (B,x) → (V, c) is the
desired univalent map.

To prove Theorem 4.2.4, we will apply Lemmas 4.1.4 and 4.2.5 in a similar manner as the
Siegel case in [McM98, §3]. (Compare with [McM96, Theorem 8.10].)

Proof of Theorem 4.2.4. For any tangent vector v at a point z, we denote by ∣v∣ the Euclidean
length of v and ∥v∥ the hyperbolic length of v with respect to the hyperbolic metric of Ω if
z ∈ Ω. If z is outside of Ω, we set ∥v∥ = ∞. By Lemma 4.2.3,

∥v∥ ≍ ∣v∣
dist(z,H) for all z ∈ Ωthick and v ∈ TzĈ. (4.2.3)

Let us fix a point z0 ∈ Jthick and a scale r > 0. Let v0 be a tangent vector at z0 of length
∣v0∣ = r. For every i ∈ N, let vi ∶= df iz0(v0) be the pushforward of v0 by f i at zi ∶= f i(z0).

Let us fix a small constant ε ∈ (0, 1) independent of z, which will be determined later. By
Lemma 4.2.2, the proof can be split into the following three distinct cases.

Case 1: 1 ≤ ∥v0∥ ≤ ∞.
Let w be a point in X closest to z0. By (4.2.3), ∣z0 −w∣ = dist(z0,H) = O(r). By Lemma

4.1.4, there is an approximate rotation f i ∶ (U, y) → (V, c) such that c is a critical point of f
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on H, ∣y −w∣ = O(r), and (U, y) has bounded shape with diameter ≍ r. This is the univalent
map we are looking for.

Case 2: There is some j ≥ 1 such that ∥vj∥ ≥ 1 but ∥vj−1∥ ≤ ε.
By (4.2.3), the distance between zj−1 and H satisfies dist(zj−1,H) ≻ ∣vj−1∣ε . Then, Ω

contains a round disk Dj−1 centered at zj−1 of radius ≍ ∣vj−1∣ε on which f is univalent. By
Koebe quarter theorem, the image f(Dj−1) contains another round disk Dj ⊂ Ω centered at
zj of radius ≍ ∣vj ∣ε . Denote by D0 the connected component of f−j(Dj) containing z0. We
have a univalent map f j ∶ (D0, z0) → (Dj, zj).

From Case 1, there is a univalent map f i ∶ (U ′, y′) → (V, c) of bounded distortion such
that c is a critical point of f , ∣y′ − zj ∣ = O(∣vj ∣), and (U ′, y′) has bounded shape with diameter
≍ ∣vj ∣. Select ε to be just small enough such that U ′ is well contained in Dj . Let (U, y) be the
lift of (U ′, y′) under the map f j ∣D0 . Since the inverse branch (f j ∣D0)−1 has bounded distortion
on U ′, then ∣y − z0∣ = O(r) and (U, y) has bounded shape with diameter ≍ r. Therefore,
f i+j ∶ (U, y) → (V, c) is the desired univalent map.

Case 3: There is some j ∈ N such that ε < ∥vj∥ < 1.
By Lemma 4.2.5, there is a univalent map f i ∶ (B,x) → (V, c) where c is a critical point

of f and B ⊂ Ω is a hyperbolic ball of radius ≍ 1 centered at a point x which satisfies
dΩ(x, zj) = O(1). If zj is in B, then set K ′ = B; otherwise, set K ′ = B ∪ γ where γ ⊂ Ω be the
shortest hyperbolic geodesic segment in Ω connecting zj and a point on ∂B. Let K be the
unique lift of K ′ under f j containing z0, and let (U, y) be the lift of (B,x) under f j ∣K . The
map f j ∶ (U, y) → (B,x) is univalent.

By the hyperbolic Koebe distortion theorem [McM94, Theorem 2.29], sinceK ′ has bounded
hyperbolic diameter in Ω, the map f j is approximately an expansion by ∥(f j)′(z0)∥ on K.
Moreover, since ∥vj∥ ≍ 1,

∥(f j)′(z0)∥ =
∥vj∥
∥v0∥

≍ 1

∥v0∥
.

As the hyperbolic inner radius of B about x satisfies rin,Ω(B,x) ≍ 1, the hyperbolic inner
radius of U about y satisfies

rin,Ω(U, y) ≍ ∥v0∥.

Also, since dΩ(x, zj) = O(1), we have

dΩ(y, z0) = O(∥v0∥).

From (4.2.3) and the two estimates above, we have rin(U, y) ≍ r and ∣y − z0∣ = O(r). Thus,
the map f i+j ∶ (U, y) → (V, c) is our desired univalent map.
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4.2.3 No invariant line fields

Recall the collar neighborhood Aκ defined in §4.2.1. For every κ > κ0, define the local
non-escaping set of f to be

Definition 4.2.6. For every κ > κ0, define the local non-escaping set of f of level κ to be

K loc
κ ∶= {z ∈ Ĉ ∶ fn(z) ∈ Aκ for all n ≥ 0}.

Clearly, K loc
κ is contained in J(f), and it is equal to J(f) when κ is sufficiently close to

κ0. Let us prove a slightly stronger version of Theorem 4.2.1. (The local non-escaping set
will make an appearance again in §4.5.)

Theorem 4.2.7. For every κ > κ0, the local non-escaping set K loc
κ of f does not carry any

invariant line field of f .

In the proof, we will apply the following proposition by Shen.

Proposition 4.2.8 ([She03, Proposition 3.2]). Consider a rational function g of degree ≥ 2
and a forward invariant subset J of J(g). Suppose that for almost every point x in J , there
is a constant C > 1, a positive integer N ≥ 2, and a sequence hn ∶ Un → Vn of holomorphic
maps such that:

(S1) gi ○ hn = gj for some i, j ∈ N;

(S2) Un and Vn are topological disks such that as n→∞,

diam(Un) → 0 and diam(Vn) → 0;

(S3) hn is a branched covering map of degree between 2 and N ;

(S4) there are some critical point un ∈ Un of hn and critical value wn = hn(un) such that both
(Un, un) and (Vn,wn) have C-bounded shape;

(S5) Un and Vn are relatively close to x, i.e.

dist(x,Un) ≤ Cdiam(Un) and dist(x,Vn) ≤ Cdiam(Vn).

Then, g admits no invariant line field on J .

The idea behind this criterion comes from the fact that at almost every point x in J , any
invariant line field on a small neighborhood around x is almost parallel, but the presence of
critical points at small scales would carry non-linearity throughout J and contradict such
parallel structure. Shen’s criterion was inspired by McMullen’s treatment of Feigenbaum
maps in [McM94; McM96].
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Proof of Theorem 4.2.7. It is sufficient to show that the hypothesis of Proposition 4.2.8 holds
for every point x in K loc

κ . (In fact, we will show that the constants C and N can be made
uniform in x.) There are two cases.

Case 1: x is a critical point of f .

In this case, we will take the sequence {hn} to be the first return maps near x.

Let {pk/qk}k∈N denote the best rational approximations of the rotation number θ, and let
lk ∶= ∣pk − qkθ∣. Recall the quasiconformal map ϕ from §4.2.1. Pick a sufficiently large n ∈ N

and let wn ∶= f qn(x). By Lemma 2.1.4, there exists a pair of intervals I ′ ⊂ I ′′ in H such that

(i) I ′ contains the level n combinatorial interval centered at wn,

(ii) the endpoints of I ′ split I ′′ into three components each of combinatorial length ≍ ln,
and

(iii) I ′′/I ′ contains no critical values of f qn+2 .

Let V ′ and V ′′ be the unique pair of disks such that their closures intersect Xj along
intervals I ′ and I ′′ respectively, and that both ϕ(∂V ′) and ϕ(∂V ′′) are round circles orthogonal
to T. Let us pick n to be large enough such that V ′′ is contained in the collar Aκ.

Let Vn be the Jordan disk that contains V ′ and is enclosed by the core curve of the annulus
V ′′/V ′. Denote by U ′, U ′′, and Un the connected component containing x of the preimage
under f qn of V ′, V ′′ and Vn respectively. By (iii), f qn ∶ U ′′/U ′ → V ′′/V ′ is an unbranched
covering map between two annuli.

We claim that f qn ∶ Un → Vn satisfies (S1)-(S5) in Proposition 4.2.8. Indeed, (S1) is
immediate from the construction. (S3) follows from the fact that, by (ii) and Proposition
2.1.3, the number of critical points of f qn on U ′′ is at most some constant N independent of
x and n.

Take un = x. By construction, V ′ is well contained in V ′′ and U ′ is well contained in U ′′.
Since ∂Un and ∂Vn are core curves of annuli of definite moduli, both Un and Vn are quasidisks
of uniformly bounded dilatation; in particular, they have bounded shape about x and wn

respectively. Thus, (S4) holds.

By construction, (S4) ensures that diam(Un) ≍ diam(Vn). As such, (S2) follows from
the fact that diam(ϕ(Vn)) ≍ ln → 0 as n → ∞, and (S5) follows from dist(x,Un) = 0 and
dist(x,Vn) ≤ diam(Un). This concludes the proof.

Case 2: x ∈K loc
κ is not a critical point of f .
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Figure 4.3: The construction of the branched covering map hn in Case 2.

Fix a sequence {rn}n∈N of small positive real numbers decreasing to 0. Pick n ∈ N. By
Theorem 4.2.4, there is a univalent map

f jn ∶ (An, un) → (Ãn, c)

between pointed disks with bounded distortion such that c is a critical point of f , (An, un)
has bounded shape with diameter ≍ rn and

∣un − x∣ = O(rn). (4.2.4)

Let sn ∶= diam (Ãn, c); this depends on rn. From Case 1, by appropriately selecting rn,
there is some kn ∈ N and some branched covering map

fkn ∶ (Ũn, c) → (Ṽn, vn)

of degree at most some constant N independent of x and n such that (Ũn, c) and (Ṽn, vn)
are pointed disks compactly contained in Ãn with bounded shape and diameter ≍ sn, and
dist (c, Ṽn) = O(sn).

Let (Un, un) and (Vn,wn) be the pointed disks obtained by pulling back (Ũn, c) and
(Ṽn, vn) under f jn ∣An respectively. Then, there is a branched covering map

hn ∶ (Un, un) → (Vn,wn)

of degree at most N such that f jn ○ hn = fkn+jn on Un. See Figure 4.3.
We claim that hn satisfies (S1)-(S5) in Proposition 4.2.8. Indeed, (S1) and (S3) are

immediate from the construction. Since f jn has bounded distortion, (Un, un) and (Vn,wn)
have bounded shape with diameter ≍ rn, and dist(un, Vn) = O(rn). Therefore, (S2) and (S4)
are satisfied. Together with (4.2.4), we also have (S5).
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4.3 Combinatorial rigidity of Herman quasicircles

In this section, we will apply Theorem 4.2.1 to complete the proof of Theorem C. We will also
provide a few applications on trivial Herman curves and antipode-preserving cubic rational
maps.

4.3.1 Combinatorial rigidity

For every rational map f in X , we denote by comb(f) ∈ C = Cd0,d∞ the combinatorics of f
along its Herman quasicircle, as defined in Definition 3.1.9.

Theorem 4.3.1. Any two combinatorially equivalent rational maps in X are conformally
conjugate.

In the proof, we will apply the standard pullback argument to promote combinatorial
equivalence to quasiconformal conjugacy. The absence of invariant line fields will allow us to
further promote the quasiconformal conjugacy to a conformal one.

Proof. Suppose f1 and f2 are two combinatorially equivalent rational maps in X . For each
i ∈ {1,2}, let Hi be the Herman quasicircle of fi and ϕi ∶ Hi → T be a quasisymmetric
conjugacy between fi and Rθ. By combinatorial equivalence, the conjugacies can be picked
such that ϕ−12 ○ ϕ1 preserves the critical points of f1 and f2 along their Herman curves.

For each i ∈ {1,2} and ● ∈ {0,∞}, denote by b●i ∶ (B●i , ●) → (D,0) a Böttcher coordinate
for fi on the immediate basin of attraction B●i of ●, that is, a conformal isomorphism
such that b●i ○ fi(z) = b●i (z)d● for all z ∈ B●i . Let us also consider the neighborhood E●i ∶=
{z ∈ B●i ∶ ∣b●i (z)∣ < 1

2
} of ● cut out by an equipotential.

Let h0 ∶ Ĉ→ Ĉ be a quasiconformal map such that

h0(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(b●2)−1 ○ b●1(z), if z ∈ E●1 , ● ∈ {0,∞},
ϕ−12 ○ ϕ1(z), if z ∈H1,

quasiconformal interpolation, if otherwise.

Then, h0 is conformal on E1 ∶= E0
1 ∪ E∞1 and provides a conjugacy between f1 and f2 on

H1 ∪E1.
Our choice of ϕ1 and ϕ2 ensures that h0 preserves the covering structure of f1 and f2. In

particular, we can lift h0 to a quasiconformal map h1 ∶ Ĉ→ Ĉ such that f2 ○ h1 = h0 ○ f1. This
new map h1 coincides with h0 on H1 ∪E1, restricts to a conformal conjugacy between f1 and
f2 on f−11 (E1), and is homotopic to h0 rel P (f1). Moreover, h1 has the same quasiconformal
dilatation as h0 because both f1 and f2 are holomorphic. Repeat this lifting process to obtain
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an infinite sequence of uniformly quasiconformal homeomorphisms {hn}n∈N of Ĉ such that for
all n ∈ N,

(i) f2 ○ hn+1 = hn ○ f1;

(ii) hn+1 = hn on f−n1 (H1 ∪E1);

(iii) hn restricts to a conformal conjugacy between f1 and f2 on f−n1 (E1).

By the compactness of the space of normalised quasiconformal maps, hn converges in
subsequence to a quasiconformal map h∞ ∶ Ĉ → Ĉ. The limit h∞ is a conformal conjugacy
between f1 and f2 on the Fatou sets because ⋃n≥0 f−n(Ei) coincides with the Fatou set of
fi for i ∈ {1,2}. By continuity, since the Julia sets of f1 and f2 are nowhere dense, h∞ is a
global quasiconformal conjugacy between f1 and f2.

The absence of invariant line fields on the Julia set implies that ∂h∞ = 0 almost everywhere
on J(f1). By Weyl’s lemma, h∞ is indeed a conformal conjugacy between f1 and f2 in Ĉ.

Let us complete the proof of Theorem C.

Proof of Theorem C. By Corollaries 3.8.4 and 3.8.6 and Theorem 4.3.1, we now know that
the map

comb ∶ X /∼ → C

is a continuous bijection and ∂H is equal to X . By Theorem 3.8.1, the space X/ ∼ is Hausdorff
and compact, so comb(⋅) is indeed a homeomorphism.

4.3.2 Trivial Herman curves

Consider an integer d ≥ 2. Let us denote by Bd,θ the space of rational maps in Xd,d,θ which
are Blaschke products, i.e. those that commute with the reflection τ(z) = 1/z̄ along the unit
circle T, or equivalently, those whose Herman quasicircles are T.

For any T 0 ∈ SPd0−1(T) and T∞ ∈ SPd∞−1(T), we denote the corresponding element in C
by σ = [(T 0, T∞)] and say that σ is symmetric if d0 = d∞ and T 0 = T∞. If a Herman curve H

has symmetric combinatorics, then every critical point on H is both an outer and an inner
critical point, and its outer and inner criticalities coincide.

Proposition 4.3.2 (Blaschke ↔ combinatorial symmetry). Every f ∈ Bd,θ has symmetric
combinatorics. Conversely, given a symmetric combinatorial data σ ∈ Cd,d, the map f ∈ Xd,d,θ

realizing σ is conformally conjugate to a Blaschke product, unique up to conjugacy by a rigid
rotation.
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Proof. The first statement follows from the observation that for any general rational map
f ∈ Xd0,d∞,θ, if f has combinatorics [(T 0, T∞)], then τ ○f ○τ lies in Xd∞,d0,θ with combinatorics
[(T∞, T 0)].

Suppose f ∈ Xd,d,θ has a Herman quasicircle H with symmetric combinatorics [(T,T )].
Mark one of the critical points of f and assume it is z = 1 after conjugation with a linear map.
The rational map g(z) ∶= τ ○ f ○ τ has a Herman quasicircle τ(H) with the same rotation
number and the same combinatorics [(T,T )] due to combinatorial symmetry. By Theorem
4.3.1, there is a linear map L(z) = λz, λ ∈ C∗ such that g = L ○ f ○L−1. Moreover, L can be
chosen to preserve the marked critical points of f and g, which are 1 and τ(1) = 1. Thus,
λ = 1 and g = f , which implies that f is a Blaschke product. Uniqueness also follows from
rigidity.

By Theorem C and Proposition 4.3.2, the map comb(⋅) induces a homeomorphism between
the quotient space Bd,θ/∼ and the space

{[(T,T )] ∈ Cd,d ∶ T ∈ SPd−1(T)} .

Observe that the latter is homeomorphic to the quotient Sd of SPd−1(T) modulo rigid rotations.

Corollary 4.3.3. comb(⋅) induces a homeomorphism comb′ ∶ Bd,θ/∼ → Sd.

Let Zd,θ denote the space of degree d polynomials f that admit a single Siegel disk Z

such that Z is centered at 0, has rotation number θ, and contains every free critical point of
f on its boundary. We denote by comb(f) ∈ Sd the combinatorics of f ∣∂Z , which encodes the
combinatorial position of the critical points of f along ∂Z.

The dynamical relation between Bd,θ and Zd,θ can be formulated via the Douady-Ghys
surgery. See Theorem 3.1.1.

Corollary 4.3.4. The Douady-Ghys surgery induces a homeomorphism

DG ∶ Bd,θ/∼ → Zd,θ/∼

satisfying comb ○DG = comb′.

For d = 3, a variation of this corollary was previously studied in [Zak99].

Proof. Combinatorial rigidity of Siegel polynomials in Zd,θ (cf. [Zha08]) ensures that DG
is well-defined. The equation comb ○DG = comb′ holds because the surgery preserves the
combinatorics. Note that the moduli space Zd,θ/∼ is also compact (for example, one can adapt
the proof in §3.8.1) and comb ∶ Zd,θ/∼ → Sb is a homeomorphism. Together with Corollary
4.3.3, we conclude that the map DG is a homeomorphism.
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4.3.3 Antipode-preserving cubic rational maps

We end this section with an application of rigidity to the following family of cubic rational
maps

fq(z) = z2
q − z
1 + q̄z , q ∈ C∗.

This family was first studied in [BBM18] and is characterized by a simple critical fixed point
at 0 and the property that fq is antipode-preserving, that is, fq commutes with the antipodal
map z ↦ −1/z.

Note that fq and fq′ are linearly conjugate if and only if q′ = −q, so it is natural to consider
the q2-plane as the appropriate parameter space. According to [BBM18], this parameter
space has the remarkable property of admitting Herman rings of arbitrary Brjuno rotation
number and modulus. Below, we quote a more precise formulation from a sequel [BBM] in
progress.

Theorem 4.3.5 (Hair Theorem). For any Brjuno number θ ∈ (0,1), there exists a unique
“hair“ Hθ in the q2-plane consisting of all maps fq with a Herman ring of rotation number θ.
They satisfy the following properties.

(1) For any m ∈ (0,∞), there is a unique parameter q(m)2 in Hθ such that fq(m) admits a
unique invariant Herman ring of modulus m.

(2) The map (0,∞) →Hθ, m↦ q(m)2 is an analytic and regular parametrization of Hθ.

(3) As m→∞, ∣q(m)∣ → ∞.

Moreover, the Herman ring locus H ∶= ⋃θ Hθ in the q2-plane has positive measure. The
Hausdorff 1-measure of the intersection H ∩ {∣q2∣ = r} tends to 1 as r →∞.

Assuming the theorem above, we can apply our rigidity result and deduce that when θ is
of bounded type, the corresponding hair Hθ lands at a unique point. See Figure 4.4.

Corollary 4.3.6 (Landing of hairs). When θ is of bounded type, the hair Hθ has a unique
endpoint q2θ ∶= lim

m→0
q(m)2. The map fqθ lies in X2,2,θ.

Proof. Herman rings in Hθ automatically lie in the space H2,2,θ. By Theorem 3.8.1, the set
of maps in Hθ admitting Herman rings of modulus bounded above by some positive constant
is precompact. Therefore, the accumulation set ∂Hθ ∶=Hθ/Hθ is non-empty and contained
in X2,2,θ.

Pick any parameter q2 in ∂Hθ. Let ϕ ∶H→ T be a quasiconformal conjugacy between fq
on its Herman quasicircle and the irrational rotation Rθ. Since fq commutes with τ(z) = −1/z
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fqθfq(m)

q(m)2

q2θ

Figure 4.4: Above: The q2-parameter plane for {fq} containing the golden mean hair Hθ,
colored in purple. Below: The dynamical planes of fq(m) and fqθ where q(m)2 ≈ −12.06−12.30i
lies on Hθ and q2θ ≈ −7.05 − 7.41i is the endpoint of Hθ. The Herman ring of fq(m) and the
Herman quasicircle of fqθ are colored in red.
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and since ϕ is unique up to post-composition with rigid rotation, then ϕ ○ τ = −ϕ. In
particular, fq ∣H must have combinatorics [{1},{−1}]. By Theorem 4.3.1, maps in ∂Hθ are
linearly conjugate to each other, so ∂Hθ must be a singleton.

4.3.4 Realization of critical quasicircle maps

Recall the definition of inner and outer criticality from Definition 2.1.5. In the coming
sections, we will go beyond the realm of rational maps and work with critical quasicircle
maps.

Definition 4.3.7. We say that a critical quasicircle map f ∶H→H is (d0, d∞)-critical if the
unique critical point of f on H has inner criticality d0 and outer criticality d∞.

Theorem C implies the existence of a (d0, d∞)-critical quasicircle map with bounded type
rotation number θ. Indeed, by selecting unicritical combinatorics, the theorem states that
there exists a unique rational map f = fd0,d∞,θ in X admitting a unique free critical point at
z = 1 of maximal local degree on its Herman quasicircle. By elementary computation, we
know that f is of the form Fc given below for some unique c ∈ C∗.

Proposition 4.3.8. Suppose that Fc ∈ Ratd has critical points at 0, ∞, and 1 with local degrees
d0, d∞, and d = d0 + d∞ − 1 respectively, and that Fc(0) = 0, Fc(∞) = ∞, and Fc(1) = c ∈ C∗.
Then,

Fc(z) ∶= −c

d

∑
j=d0

(d
j
) ⋅ (−z)j

d0−1

∑
j=0

(d
j
) ⋅ (−z)j

.

Proof. The rational map F1(z) ∶= c−1Fc(z) has superattracting fixed points at 0, ∞, and 1

with local degrees d0, d∞, and d respectively. From the behaviour at 0 and ∞, the map F1 is
of the form zd0 p(z)q(z) where p is a degree d∞ − 1 polynomial and q is a degree d0 − 1 polynomial.
Let us present F1 as

F1(z) = −
(−z)d +∑d−1j=d0 aj(−z)j

∑d0−1j=0 aj(−z)j

for some coefficients a0, a1, . . . , ad−1. The map g(z) ∶= 1 − F1(−z) is of the form

g(z) =
zd +∑d−1j=0 ajz

j

∑d0−1j=0 ajzj
.

From the behaviour of F1 at 1, z = −1 must be a zero of g of order d. Thus, the numerator of
g must be divisible by (z + 1)d = ∑dj=0 (dj)zj . This implies that aj = (dj) for every j, and we are
done.
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4.4 Renormalization of critical quasicircle maps

In this section, we begin our study of renormalizations of critical quasicircle maps. Renor-
malizations are described as commuting pairs, and they admit complex beau bounds, which
we will apply to prove quasiconformal rigidity.

Unless otherwise stated, any quasicircle H ⊂ Ĉ considered will be assumed to separate
0 and ∞. Denote by Y 0

H and Y ∞H the connected components of Ĉ/H containing 0 and ∞
respectively.

4.4.1 Commuting pairs

Before we delve into a discussion on renormalization, let us define the abstract notion of
commuting pairs relevant in our context.

Let us denote by H and −H the standard upper and lower half planes in C respectively.

Definition 4.4.1. Let I ⋐ C be a closed quasiarc containing 0 on its interior. A commuting
pair ζ based on I is a pair of orientation preserving analytic homeomorphisms

ζ = (f− ∶ I− → f−(I−), f+ ∶ I+ → f+(I+))

with the following properties.

(P1) I− and I+ are closed subintervals of I of the form [f+(0),0] and [0, f−(0)] respectively
such that I = I− ∪ I+ = f−(I−) ∪ f+(I+) and I− ∩ I+ = {0}.

(P2) For all x ∈ I±/{0}, f ′±(x) ≠ 0.

(P3) Both f− and f+ admit holomorphic extensions to a neighborhood B of 0 on which f−
commutes with f+ and f− ○ f+(I ∩B) ⊂ I−.

Additionally, a commuting pair ζ is a critical commuting pair if

(P4) 0 is a critical point of both f− and f+.

The quasiarc I is called the base of ζ. We say that ζ is normalized if f+(0) = −1. A critical
commuting pair ζ is called a (d0, d∞)-critical commuting pair if for any quasiconformal map
ϕ mapping I− and I+ to real intervals [−1,0] and [0,1] respectively and for any sufficiently
small round disk D centered at ϕ(f+(f−(0))), the number of connected components of
ϕ(f+ ○ f−)−1ϕ−1(D ∩ −H) in −H is d∞, whereas the number of connected components of
ϕ(f+ ○f−)−1ϕ−1(D∩H) in H is d0. Refer to Figure 4.5 for an illustration when (d0, d∞) = (3, 2).
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Figure 4.5: A cartoon of a (3,2)-critical commuting pair.

Definition 4.4.2. We say that a (d0, d∞)-critical commuting pair ζ = (f−, f+) is renormalizable
if there exists a positive integer χ = χ(ζ) that corresponds to the first time fχ+1− ○ f+(0) lies
in the interior of I+. If renormalizable, we call the (d∞, d0)-critical commuting pair

pRζ ∶= (fχ− ○ f+∣[0,f−(0)], f−∣[fχ− f+(0),0])

the pre-renormalization of ζ, and we call the normalized (d0, d∞)-critical commuting pair
obtained by conjugating pRζ with the antilinear map z ↦ −f−(0)z̄ the renormalization Rζ
of ζ.

If Rζ is again renormalizable, we call ζ twice renormalizable, and so on. If ζ is infinitely
renormalizable, we define the rotation number of ζ to be the irrational number

rot(ζ) ∶= [0;χ(ζ), χ(Rζ), χ(R2ζ), . . .].

In what follows, we only consider commuting pairs that are infinitely renormalizable.
Our renormalization operator transforms the rotation number according to the Gauss map
G(x) ∶= { 1x}.

Lemma 4.4.3. For any critical commuting pair ζ and n ≥ 1, rot(Rnζ) = Gn(rot(ζ)).

For any a ∈ C, let us denote by Ta(z) ∶= z + a the translation by a. For any irrational
θ ∈ (0,1), the (non-critical) commuting pair

Tθ = (Tθ∣[−1,0], T−1∣[0,θ]) (4.4.1)

on intervals along the real line is infinitely renormalizable with rotation number θ. The pair
of translations (4.4.1) gives a combinatorial model for normalized critical commuting pairs of
the same rotation number.
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Gluing the two ends of the real interval [θ − 1, θ] by T1 projects the modified pair of
translations (Tθ∣[θ−1,0], Tθ−1∣[0,θ]) into the standard irrational rotation Rθ on the unit circle T.
In general, one can convert a commuting pair to a quasicircle map as follows.

Proposition 4.4.4. Let ζ = (f−∣I− , f+∣I+) be a commuting pair. Let Gζ be the gluing map
which corresponds to identifying z with f+(z) for every point z in a neighborhood of f−(0).
Then, Gζ projects the pair (f−∣[f+f−(0),0], f+f−∣[0,f−(0)]) into a quasicircle map fζ ∶ Hζ → Hζ

having the same rotation number as ζ. If ζ is (d0, d∞)-critical, then fζ ∶ Hζ → Hζ is a
(d0, d∞)-critical quasicircle map.

Conversely, we can obtain a commuting pair out of a (d0, d∞)-critical quasicircle map
f ∶ H → H as follows. By conjugation with a linear map, let us assume that the critical
point of f is normalized at 1. Replace H with its lift under the universal covering z ↦ e2πiz.
In these logarithmic coordinates, H is a Z-periodic quasicircle passing through 0 and ∞.
Replace f with its corresponding lift F admitting a critical point at c0 ∶= 0 and a critical
value c1 ∶= F (0) located in the interval [0,1] ⊂H. Then,

ζf ∶= (F ∣[−1,0], T−1∣[0,c1])

is a commuting pair with the same rotation number as f . Applying the gluing operation from
Proposition 4.4.4 to ζf results in a (d0, d∞)-critical quasicircle map conformally conjugate to
f ∶H→H.

We define renormalizations Rnf of f to be the renormalizations of the commuting pair
ζf . This can be more explicitly described as follows. Denote by {pn/qn}n∈N the best rational
approximations of the rotation number θ of f . For every n, let cqn ∶= T−pnF qn(0). The nth

pre-renormalization of f is the critical commuting pair

pRnf ∶= pRnζf = (T−pnF qn ∣
[cqn−1 ,0]

, T−pn−1F
qn−1 ∣

[0,cqn ]
) ,

and the nth renormalization Rnf of f is the normalized (d0, d∞)-critical commuting pair
obtained by conjugating pRnf with either the antilinear map z ↦ −cqn−1 z̄ if n is odd, or the
linear map z ↦ −cqn−1z if n is even.

4.4.2 Quasicritical circle maps

For any annular neighborhood A of a quasicircle H and for ● ∈ {0,∞}, we denote by A● the
annulus A ∩ Y ●H. Given any µ > 0, we say that an open neighborhood A of H is a µ-collar
neighborhood of H if mod(A0) ≥ µ and mod(A∞) ≥ µ.

Let f ∶ H → H be a (d0, d∞)-critical quasicircle map and let c ∈ H be its critical point.
We call an annular neighborhood A of H f -relevant if it satisfies the following properties.
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(R1) The map f admits a holomorphic extension to an annular neighborhood A of H on
which c is the only critical point.

(R2) The annulus A can be decomposed into a disjoint union of an open disk neighborhood
B of c and a topological rectangle R intersecting H along H/B.

(R3) On B, f is a degree d = d0 + d∞ − 1 covering map branched only at c.

(R4) The preimage of f(B) ∩H under f is the union of the interval B ∩H, 2d∞ − 2 pairwise
disjoint open quasiarcs in Y ∞H connecting c and ∂B ∩ Y ∞H , and 2d0 − 2 pairwise disjoint
open quasiarcs in Y 0

H connecting c and ∂B ∩ Y 0
H.

(R5) On the interior of R, f is a conformal isomorphism onto the interior of f(R), and the
preimage of f(R) under f ∣A is precisely R.

Let us denote by HQ(d0, d∞,N,K,µ) the space of (d0, d∞)-critical K-quasicircle maps
f ∶H→H with rotation number in ΘN that admits an f -relevant 2µ-collar neighborhood A
of H whose image f(A) contains a µ-collar neighborhood of H.

Example 4.4.5. The prototypical example of a (d0, d∞)-critical quasicircle map comes from
the rational map f = fd0,d∞,θ discussed in §4.3.4. Denote by H its Herman curve H. Assuming
θ is in ΘN , then f ∶H→H is in HQ(d0, d∞,N,K,µ) where K and µ depend only on d0, d∞,
and N . By Corollary 4.3.2, when d0 = d∞ = d, we know that H is the unit circle and there
exists a unique α ∈ [0,1) such that f coincides with the Blaschke product

Bd,α(z) ∶= e2πiαzd ⋅

d−1

∑
j=0

(2d − 1
j
)(−1)jzd−1−j

d−1

∑
j=0

(2d − 1
j
)(−1)jzj

.

To study critical quasicircle maps, we will make use of Avila-Lyubich’s theory of quasicrit-
ical circle maps in [AL22, §3].

Definition 4.4.6. For any integer d ≥ 2, a d-quasicritical circle map is an orientation-
preserving homeomorphism g ∶ T→ T of the circle with the following properties.

(Q1) The map g admits a T-symmetric quasiregular extension of the form Bd,α ○ h on some
T-symmetric annular neighborhood A of T where α ∈ [0,1) and h is some T-symmetric
quasiconformal map on C.

(Q2) The annulus A can be decomposed into a disjoint union of a T-symmetric open disk
neighborhood B of 1 and a T-symmetric topological rectangle R intersecting T along
T/B.
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(Q3) On B, g is a degree 2d − 1 quasiregular covering map branched only at 1, and it is
holomorphic at the set of points z in B such that T does not separate z and f(z).

(Q4) The preimage of g(B) ∩ T under g is the union of the interval B ∩ T, 2d − 2 pairwise
disjoint open quasiarcs in Y ∞T connecting 1 and ∂B ∩ Y ∞T , and 2d − 2 pairwise disjoint
open quasiarcs in Y 0

T connecting 1 and ∂B ∩ Y 0
T .

(Q5) On the interior of R, g is a conformal isomorphism onto the interior of g(R), and the
preimage of g(R) under f ∣A is precisely R.

Denote by Cir(d,N,K, δ) the space of all d-quasicritical circle maps g ∶ T→ T such that
the rotation number θ of g is in ΘN , the map h in (Q1) is K-quasiconformal, and that there
exists a 2δ-collar annular neighborhood A of T satisfying (Q1)–(Q5) whose image g(A) is
also a δ-collar neighborhood of T. Note that our parameters differ slightly from those used
by Avila and Lyubich, but it is not difficult to show that they encode equivalent amount of
information.

Even though only 2-quasicritical circle maps are discussed in [AL22, §3], the results and
proofs still hold for general d-quasicritical circle maps. Such maps admit the usual cross ratio
distortion bounds and, as a result, they are quasisymmetrically rigid.

Theorem 4.4.7 ([AL22, Theorem 3.9]). Every quasicritical circle map g ∶ T → T in
Cir(d,N,K, δ) is quasisymmetrically conjugate to the irrational rotation with dilatation
depending only on (d,N,K, δ).

Similar to critical circle maps, quasicritical circle maps also admit complex bounds, since
the main ingredients of the proof, namely real bounds and Schwarz lemma, are available. We
will apply complex bounds later in the proof of Theorem 4.4.16.

The primary motivation behind introducing quasicritical circle maps is that critical
quasicircle maps can be identified as a gluing of two quasicritical circle maps.

Proposition 4.4.8. Every map f ∶ H → H in HQ(d0, d∞,N,K,µ) is a welding of two
quasicritical circle maps. There is an annular neighborhood A of H on which f is holomorphic,
and a pair of quasicritical circle maps g0 and g∞ such that for each ● ∈ {0,∞},

(1) g● is in Cir(d●,N,L, δ) for some L = L(K) > 1 and δ = δ(d0, d∞,K,µ) > 0;

(2) there is an L-quasiconformal map ϕ● ∶ Ĉ→ Ĉ that maps H to T and conjugates f ∣A∩Y ●H
and g●∣ϕ●(A)∩Y ●T .

Proof. Let A be an f -relevant neighborhood of H. For ● ∈ {0,∞}, let ϕ● ∶ Y ●H → Y ●T denote the
Riemann mapping fixing ● whose continuous extension to the boundary sends the critical point
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of f to 1. Since H is a K-quasicircle, the map ϕ● extends to a global L(K)-quasiconformal
map sending H to T. Let g● ∶= ϕ●○f ○ϕ−1● on ϕ●(A●) and apply the Schwarz reflection principle
to extend g● to a T-symmetric quasiregular map that restricts to a self homeomorphism of
T. Properties (R1)–(R5) for f immediately transfer to (Q1)–(Q5) for g●, so g● is the desired
quasicritical circle map.

This proposition is the key towards transferring known results on quasicritical circle maps
to critical quasicircle maps. For instance, we have a quantitative version of Theorem 2.1.7.

Lemma 4.4.9. Given a map f ∶H→H in HQ(d0, d∞,N,K,µ), there is a quasiconformal
map h on Ĉ that restricts to a conjugacy between f ∣H and the rigid rotation Rθ∣T, and has
dilatation depending only on (d0, d∞,N,K,µ).

Proof. This follows directly from Theorems 4.4.7 and 4.4.8.

Remark 4.4.10. In general, if f is a multicritical quasicircle map with arbitrary irrational
rotation number, then f is still conjugate to irrational rotation. Indeed, similar to Proposition
4.4.8, f is a conformal welding of two multi-quasicritical circle maps g0 and g∞. In [Pet04,
Theorem 1.5], Petersen showed that such maps satisfy cross ratio distortion bounds, which in
turn implies that they do not admit any wandering interval. (Compare with [Pet00, §3].)

In the world of commuting pairs, let us denote by CP(d0, d∞,N,K,µ) the space of all
normalized (d0, d∞)-critical commuting pairs ζ = (f−, f+) ∶ I→ I with rotation number in ΘN

such that the gluing procedure described in Proposition 4.4.4 produces a critical quasicircle
map in HQ(d0, d∞,N,K,µ).

The following is a direct consequence of Lemma 4.4.9.

Corollary 4.4.11. Every critical commuting pair ζ ∶ I → I in CP(d0, d∞,N,K,µ) admits
a unique quasisymmetric map hζ ∶ [−1, θ] → I conjugating the pair Tθ of translations in
(4.4.1) with ζ, where θ is the rotation number of ζ. The dilatation of hζ depends only on
(d0, d∞,N,K,µ).

4.4.3 Butterflies

Consider a critical quasicircle map f ∶H→H. From now on, it will be more convenient to
use logarithmic coordinates by identifying H as a Z-periodic quasicircle passing through 0

and ∞ and f as a map on a neighborhood of H in C with a critical point at c0 ∶= 0 which
commutes with the translation T1. We will not notationally distinguish the sets H, Y 0

H, Y ∞H
from their respective quotients in C/Z.
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Definition 4.4.12. A bowtie is a quadruplet of Jordan domains (V,U−, U+, U×) in C together
with a quasicircle H containing 0 and ∞ satisfying the following properties.

(B1) U−, U+, and U× are compactly contained in V .

(B2) U− ∩U+ = ∅ and U− ∩U+ = {0} ⊂ U×.

(B3) U−/U×, U×/U−, U+/U×, and U×/U+ are all non-empty and connected.

(B4) J− ∶=H∩U−, J+ ∶=H∩U+, and J× ∶=H∩U× are closed intervals in H, and their interiors
are precisely J̊− ∶=H ∩U−, J̊+ ∶=H ∩U+ and J̊0 ∶=H ∩U× respectively.

We call H the axis of the bowtie.

Definition 4.4.13. A (d0, d∞)-critical butterfly BB is a pair of holomorphic maps (f−, f+)
together with a bowtie (V,U−, U+, U×) with some axis H satisfying the following properties.

(B5) f± is a univalent map from U± onto V /H ∪ f±(J̊±).

(B6) Both f− and f+ extend holomorphically to U× on which they commute. On U×, the map
f− ○f+ is a degree d = d0 +d∞ − 1 covering map onto V /H∪f−f+(J̊×) branched only at 0.

(B7) H is f±-invariant, that is, whenever f± extends holomorphically to a neighborhood E
of a point x ∈H, then f± sends E ∩H to a subset of H.

(B8) I− ∶= [f+(0),0] is a subset of J−, I+ ∶= [0, f−(0)] is a subset of J+, and (f−∣I− , f+∣I+) is a
(d0, d∞)-critical commuting pair.

(B9) There is some integer m ≥ 1 such that f−(0) = fm+ (b+) and f+(0) = f−(b−) where
J− = [b−,0] and J+ = [0, b+].

The axis of BB is the quasicircle H, the height of BB is the integer m, and the rotation number
rot( BB) of BB is the rotation number of the commuting pair (f−∣I− , f+∣I+). The interval

I ∶= [f+(0), f−(0)] = I− ∪ I+ ⊂H

is called the base of BB, whereas

J ∶= [b−, b+] = J− ∪ J+ ⊂H

is called the extended base of BB. We say that BB is normalized if f−(0) = −1. The domain of
BB is the Jordan domain

U ∶= U− ∪U× ∪U+.
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H

U− U+

U×

V

●
0

●●
b+

b−

f− f+

f− ○ f+

Figure 4.6: A (3,2)-critical butterfly.

The shadow of a butterfly BB is the piecewise holomorphic map F ∶ U → V where

F =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f− on U−,

f+ on U+,

f− ○ f+ on U×/(U− ∪U+).

The limit set of BB is the non-escaping set of F , namely

Λ BB ∶= ⋂
n≥0

F −n(U).

Following de Faria and de Melo [FM99], we will impose geometric assumptions on our
butterflies.

Definition 4.4.14. For K > 1, a normalized butterfly BB with axis H is called a K-butterfly
if the following conditions are satisfied.

(G1) mod (V /U) ≥K−1.

(G2) The components of C/H, C/(∂V ∪H), and V / (U ∪H) are K-quasidisks.

(G3) Any two points in the set {b−, f+(0),0, f−(0) = 1, b+} are at least K−1 away from each
other.

(G4) The annulus V /U× is contained in {K−1 < ∣z∣ <K}.
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In general, a butterfly is a K-butterfly if it is linearly conjugate to a normalized K-butterfly.

We endow the space of butterflies with the topology where a sequence of butterflies BBn =
{(f−,n, f+,n), (Vn, U−,n, U+,n, U×,n)} converges to the butterfly BB = {(f−, f+), (V,U−, U+, U×)}
if

(i) in the Carathéodory topology (refer to [McM94, §5]),

(U−,n, f+,n(0)) → (U−, f+(0)) , (U×,n,0) → (U×,0),
(U+,n, f−,n(0)) → (U+, f−(0)) , (Vn, f−,nf+,n(0)) → (V, f−f+(0)) ;

(ii) BBn has an axis converging to an axis of BB in Hausdorff metric;

(iii) f−,n converges uniformly to f− on compact subsets of U− ∪ U×, and f+,n converges
uniformly to f+ on compact subsets of U+ ∪U×.

Proposition 4.4.15. The space of normalized (d0, d∞)-critical K-butterflies with rotation
number in ΘN is compact.

Similar to critical circle maps, critical quasicircle maps also admit complex a priori bounds.

Theorem 4.4.16 (Complex bounds). Given f ∶H→H in HQ(d0, d∞,N,K,µ), there exist
constants n0 ∈ N and K ′ > 1 depending only on (d0, d∞,N,K,µ) such that for all n ≥ n0, the
nth pre-renormalization of f extends to a K ′-butterfly BBn ∶ Un → Vn.

Recall from Proposition 4.4.8 that f is a welding of two quasicritical circle maps g0 and
g∞. By [AL22, §3.5], the pre-renormalizations of g0 and g∞ have holomorphic extensions
admitting a butterfly structure with complex a priori bounds. In the proof below, we will glue
the half-butterflies of the two maps in order to obtain a butterfly for the pre-renormalization
of f .

Proof. Let U , ϕ0, ϕ∞, g0 ∈ Cir(d0,N,L, δ), and g∞ ∈ Cir(d∞,N,L, δ) be from Proposition
4.4.8. We will outline the construction of butterflies for g0 and g∞ and then glue them to
the desired butterfly for f . Let us work in logarithmic coordinates, in which H ⊂ C/Z is
a quasicircle passing through 0 and the critical point of f is at 0. For all j ∈ Z, we write
cj ∶= f j(0). For ● ∈ {0,∞} and j ∈ Z, let c●0 = 0 denote the critical point of g● and let
c●j ∶= g

j
●(0).

Let {pn/qn}n∈N denote the best rational approximations of the rotation number θ of f .
For ● ∈ {0,∞} and n ≥ 2, observe that the two critical points of gqn● that are next to c●qn−1 are
c●0 and c●qn−1−qn . From now on, we will fix n ∈ N larger than some constant m ∈ N that is to be
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determined. Let us recall the construction of butterflies extending the nth pre-renormalization
of g●.

For any k ≥ 1, let D●k be the open round disk such that ∂D●k intersects T orthogonally and
D●k∩T is the open interval (c●qk+1 , c●qk−qk+1) ⊂ T. For n≫m, there exists a T-symmetric univalent
lift A●n,m of (D●n−m/T) ∪ (c●qn−1 , c●qn) under gqn● intersecting T on the interval (c●qn−1−qn , c●0).
Similarly, there also exists a T-symmetric univalent lift B●n,m of (D●n−m/T)∪(c●qn−1 , c●qn−2) under
gqn−1● intersecting T on the interval (c●0, c●qn−2−qn−1).

Claim. For any ε > 0, there are some constants n0,m ∈ N depending only on ε and (d●,N,L, δ)
such that n0 ≥m and for all n ≥ n0,

max{diam(A●n,m),diam(B●n,m)} ≤ ε ⋅ diam(D●n−m). (4.4.2)

Proof. Let I●n denote the closed interval in T between c●0 and c●qn . Based on the key estimates
in [AL22, (3.9)] and [FM99, Proposition 3.2], there are constants b1, b2 > 0 such that for all
z ∈ A●n,m,

dist (g●(z), g●(I●n−1))
∣g●(I●n−1)∣

≤ b1 ⋅
dist (gqn● (z), I●n−1)

∣I●n−1∣
+ b2. (4.4.3)

[AL22, Lemma 3.6] guarantees that near the critical point, the inverse branch of g● is highly
contracting in big scales relative to I●n−1, which yields

C ⋅ (
diam(A●n,m)
∣I●n−1∣

)
σ

≤ b1 ⋅
diam(D●n−m)
∣I●n−1∣

+ b2 (4.4.4)

for some constants C > 0 and σ > 1. Applying Theorem 4.4.7 to g●, there are also constants
K2 >K1 > 1 such that for all sufficiently large n,

Km
1 ≤

diam(D●n−m)
∣I●n−1∣

≤Km
2 . (4.4.5)

Note that all the intermediate constants above depend only on (d●,N,L, δ). Let us pick ε > 0.
By combining (4.4.4) and (4.4.5), for sufficiently large m, we have

diam(A●n,m) ≤ ε ⋅ diam(D●n−m).

We can repeat the same analysis for B●n,m.

Let Dn−m, An,m and Bn,m be the interior of the closure of ⋃● ϕ−1● (D●n−m∩Y ●T ), ⋃● ϕ−1● (A●n,m∩
Y ●T ), and ⋃● ϕ−1● (B●n,m ∩ Y ●T ) respectively. Since ϕ0 and ϕ∞ are L-quasiconformal, the claim
implies that there are some constants n0,m ∈ N depending only on (ε, d0, d∞,N,K,µ) such
that n0 ≥m and for n ≥ n0,

max{diam(An,m),diam(Bn,m)} ≤ ε ⋅ diam(Dn−m). (4.4.6)
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Let Cn,m denote the connected component of f−qn−1(An,m) containing the critical point
0. Since Cn,m ∩H = (c−qn , c−qn−1), the map f qn−1 ∶ Cn,m → An,m is a degree d covering map
branched exactly at 0, and f qn−1 maps An,m ∩Cn,m univalently onto (An,m/H) ∪ (cqn−1−qn ,0).
By making n0 higher if necessary, An,m ∪Bn,m is contained in a neighborhood of the critical
point 0 in which f ≡ ψ(zd) for some univalent map ψ with universally bounded distortion,
which implies that diam(Cn,m) ≍ diam(An,m ∩Cn,m). Therefore, (4.4.6) can be upgraded to

max{diam(An,m),diam(Bn,m),diam(Cn,m)} ≤ ε ⋅ diam(Dn−m). (4.4.7)

By construction, the pointed disk (Dn−m,0) has bounded shape. We can select an
appropriate ε such that (4.4.7) implies that the union Un ∶= An,m ∪Bn,m ∪Cn,m is compactly
contained in Vn ∶=Dn−m and Vn/Un is an annulus with modulus greater than some universal
constant. Therefore, the pair (f qn , f qn−1) and the bowtie (Vn,An,m,Bn,m,Cn,m) form a
butterfly BBn with axis H that extends the nth pre-renormalization of f and clearly satisfies
(G1).

It is also clear from the construction that the components of Ĉ/H and Ĉ/(Vn ∪H) are
K ′-quasidisks. Every component of Vn/ (Un ∪H) is also a K ′-quasidisk since its boundary is
a union of quasiarcs meeting at definite angles. Hence, (G2) holds. Condition (G3) follows
from Lemmas 2.1.8 (2) and 4.4.9, and (G4) follows from the construction of Vn and Koebe
distortion theorem.

In the proof above, the butterfly extending the nth pre-renormalization has height equal to
an+1, where an is the nth term of the continued fraction expansion of the rotation number. If
we apply the construction in the proof to the prototypical Example 4.4.5, the corresponding
limit set is contained in the Julia set of the rational map, which is nowhere dense.

Corollary 4.4.17. For any m ≥ 2 and any θ ∈ ΘN , there exists a (d0, d∞)-critical K-butterfly
having rotation number θ, height m, and a nowhere dense limit set, where K depends only on
(d0, d∞,m,N).

By Proposition 4.4.4, commuting pairs also admit complex bounds.

Theorem 4.4.18. Given ζ in CP(d0, d∞,N,K,µ), there exist some n0 ∈ N and K ′ > 1

depending only on (d0, d∞,N,K,µ) such that for all n ≥ n0, the nth pre-renormalization of ζ
extends to a K ′-butterfly BBn ∶ Un → Vn.
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4.4.4 Quasiconformal rigidity

Let us fix a bounded type irrational number θ ∈ ΘN for some N ≥ 1. Recall from Corollary
4.4.11 that two butterflies of the same criticality and bounded type rotation number must be
quasisymmetrically conjugate on their bases.

Lemma 4.4.19. Suppose two (d0, d∞)-critical K-butterflies BB1 ∶ U1 → V1 and BB2 ∶ U2 → V2

have the same height and rotation number θ. The unique quasisymmetric conjugacy between
BB1 and BB2 on their bases extend to a quasiconformal conjugacy h ∶ V1 → V2 between BB1 and
BB2 with dilatation depending only on (d0, d∞,N,K).

The proof is an application of the pullback argument similar to [Far99, Theorem 3.1].

Proof. By Corollary 4.4.11, there exists a unique quasisymmetric conjugacy h ∶ I1 → I2 between
BB1 and BB2 on their bases. Since BB1 and BB2 have the same height, we can extend h to a

quasisymmetric conjugacy on the extended bases J1 and J2 by setting h(z) ∶= f−1−,2 ○h ○f−,1(z)
for z ∈ J−,1/I1 and h(z) ∶= f−k+,2 ○ h ○ fk+,1(z) for z ∈ J+,1/I1 where k ∈ N is the first time fk+,1(z)
lies on I1.

By (G1) and (G2), we can perform quasiconformal interpolation and extend h to a global
L-quasiconformal map h0 that is equivariant on the boundaries of the butterflies of BB1 and

BB2. Note that the dilatation L depends only on (d0, d∞,N,K).
Next, we apply the pullback argument to obtain a sequence of L-quasiconformal maps

hn as follows. Outside of U1, we take hn ≡ hn−1; within U1, we set hn to be the lift of
hn−1 ∶ V1 → V2 via BB1 and BB2. By equivariance, hn is well-defined, and it gives a conjugacy
between BB1∣V1/F−n1 (U1) and BB2∣V2/F−n2 (U2).

By the compactness of the space of normalized L-quasiconformal maps, hn converges to a
subsequential limit h∞ ∶ Ĉ → Ĉ. Note that hn stabilizes pointwise outside of Λ BB1 . We will
claim that Λ BB1 is nowhere dense, which ultimately implies that the limit h∞ is unique in the
sense that hn → h∞ as n→∞, and h∞ conjugates BB1 and BB2.

Corollary 4.4.17 guarantees the existence of a (d0, d∞)-critical butterfly BB ∶ U → V that
has the same rotation number θ and height m and that its limit set Λ BB is nowhere dense. By
applying the same pullback argument above, we obtain a quasiconformal map g ∶ V → V1 that
restricts to a conjugacy between BB and BB1 on V /Λ BB. Since Λ BB is nowhere dense, then
g extends to a full conjugacy between BB and BB1, which then implies that Λ BB1 is indeed
nowhere dense.

Next, we can spread around the quasiconformal conjugacy between butterflies of sufficiently
deep renormalizations throughout the entire Herman curves. Compare with [AL22, Theorem
3.19].
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Theorem 4.4.20 (Quasiconformal rigidity). Given any two critical quasicircle maps f1 and
f2 in HQ(d0, d∞,N,K,µ) of the same rotation number, there is an L-quasiconformal map h
on Ĉ that restricts to a conjugacy between f1 and f2 in some δ-collar neighborhoods of their
Herman quasicircles. The constants L and δ depend only on (d0, d∞,N,K,µ).

Proof. Let f1 ∶ H1 → H1 and f2 ∶ H2 → H2 be two (d0, d∞)-critical quasicircle maps of
rotation number θ. Without loss of generality, assume that f1 is the prototypical Example
4.4.5 f1 = fd0,d∞,θ.

By Lemma 4.4.9, there is a global quasiconformal map h that sends H1 to H2 and
restricts to a conjugacy between f1∣H1 and f2∣H2 . For i ∈ {1,2} and sufficiently large m ∈ N,
Theorem 4.4.16 states that the mth pre-renormalization of fi extends to a K ′-butterfly

BBi = (f−,i, f+,i) ∶ Ui → Vi. Clearly, h induces a quasisymmetric conjugacy between BB1 and
BB2 on their bases. By Lemma 4.4.19, h can be modified to a quasiconformal map h∞ ∶ V1 → V2

that conjugates BB1 ∶ U1 → V1 and BB2 ∶ U1 → V1.

It remains to spread the conjugacy around the Herman curve. By [Wan+21] and Douady-
Ghys surgery, the immediate basins of attraction of both 0 and∞ for f1 have locally connected
boundaries. As such, given any point x ∈H that is not an iterated preimage of the critical
point c of f1, there is a unique pair of external rays from 0 and ∞ landing at x; we label the
union of these rays as γx. The rays γf+,1(c) and γf−,1(c) are mapped to γf−,1f+,1(c) under f−,1
and f+,1 respectively. As these rays are disjoint (away from 0 and ∞), the union of γf−,1f+,1(c),
γf∓,1(c0), and ∂V1 bounds a unique topological rectangle Π± containing I±,1, the base of BB1.
We pull back both rectangles Π+ and Π− by iterates of f1 until the first return to V1 and
obtain a tiling of a neighborhood of H1 by topological rectangles.

Next, consider the rectangles h∞ (Π±) and construct a similar dynamical tiling for f2
around H2. Then, the quasiconformal conjugacy h∞ ∶ V1 → V2 can be lifted via these
dynamical tilings to get the desired quasiconformal conjugacy between f1 and f2 on the
neighborhood of their Herman quasicircles.

4.5 C1+α rigidity

In this section, we will show that the quasiconformal conjugacy between two (d0, d∞)-critical
quasicircle maps with the same rotation number θ must be C1+α-conformal along the Herman
curves. The proof below is an application of McMullen’s deep point argument.
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4.5.1 Deep points

Definition 4.5.1. We say that a subset S of a compact set J ⊂ C is uniformly deep if there
are positive constants C, δ, r > 0 such that for every point z inside the r-neighborhood of S,

dist(z, J) ≤ C dist(z, S)1+δ.

In other words, if S is uniformly deep, the magnification of J at any point in S converges
exponentially fast to the whole plane at a uniform rate.

Let us again consider any rational map f in X , and denote by H its Herman curve.
Following §4.2.1, let us consider a quasiconformal map ϕ ∶ Ĉ → Ĉ that fixes 0 and ∞ and
conjugates f ∣H and the rigid rotation Rθ∣T. Recall the function L(z) ∶= log (dist(ϕ(z),T))
as well as the annular neighborhood Aκ ∶= {−∞ ≤ L(z) < −κ} of H for any κ. Recall from
Definition 4.2.6 the local non-escaping set K loc

κ .

Theorem 4.5.2. For any κ ∈ R, the Herman curve H of f is uniformly deep in the local
non-escaping set K loc

κ .

Proof. It suffices to prove the theorem for A = Aκ where κ is sufficiently high. By the Hölder
continuity of ϕ, for every z ∈ A,

L(z) ≍ log(dist(z,H)). (4.5.1)

Given an approximate rotation f i ∶ U → V (rel A), we have L(f i(z)) ≤ L(z) +O(1) for every
z ∈ U . In general, we have the following property.

Claim. For every z ∈ A, L(f(z)) ≤ L(z) +O(1).

Proof. If z is sufficiently far from any critical point c, i.e. ∣z − c∣ ≻ dist(z,H), then f is an
approximate rotation on a neighborhood of z. Else, suppose z is close to a critical point c.
Let z′ ∶= ϕ(z), c′ ∶= ϕ(c), and F ∶= ϕ ○ f ○ ϕ−1. Since F is a quasiregular map that restricts to
an isometry of the unit circle T, we have ∣F (z′) − F (c′)∣ ≍ ∣z′ − c′∣. Therefore,

dist(F (z′),T) ≤ ∣F (z′) − F (c′)∣ ≍ ∣z′ − c′∣ ≍ dist(z′,T).

By taking the logarithm, this inequality implies the claim.

Let us equip Ω ∶= Ĉ/P (f) with the hyperbolic metric. For z ∈ A, let rz ∶= distΩ (z, f−1(H)).
The norm of f ′(z) with respect to the hyperbolic metric of Ω satisfies

∥f ′(z)∥ ≥ C(rz) > 1 (4.5.2)
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Figure 4.7: The plot of the Julia set of f = f2,3,θ (Example 4.4.5) in logarithmic coordinates,
magnified about its free critical point. The Herman quasicircle is shown in red and its rotation
number θ is picked to be the golden mean.
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for some function C(r) where C(r) → ∞ as r → 0.
Let us pick any point z in A with L(z) ≪ −κ, and denote zi ∶= f i(z) for every i ∈ N.

By Corollary 4.1.6, there is an approximate rotation fn1 ∶ (U, z) → (V, zn1) such that
distΩ (zn1 , f

−1(H)) = O(1). By (4.5.2), we have ∥f ′(zn1)∥ ≥M > 1 for some M independent
of z. On the other hand, L(zn1+1) ≤ L(z) +O(1) due to the claim above. We repeat this
argument inductively to obtain an increasing sequence of positive integers {nj}j such that

distΩ (znj
, f−1(H)) = O(1), (4.5.3)

∥f ′(znj
)∥ ≥M, and (4.5.4)

L(znj
) ≤ L(z) +O(j). (4.5.5)

By (4.5.1) and (4.5.5), there exists some m ∈ N such that zni
∈ A for all i ∈ {1,2, . . .m}

and that
m ≍ −L(z) ≍ − log (dist(z,H)) . (4.5.6)

Then, by (4.5.4) and (4.5.6),

∥(fnm)′(z)∥ ≥Mm−1 ≻ dist(z,H)−α, (4.5.7)

where α ≍ logM .
By (4.5.3), we can pick an arc γm ⊂ Ω of hyperbolic length O(1) joining znm and some

point y′ in A ∩ f−1(H). By (4.5.7), γm lifts under fnm to an arc γ ⊂ Ω joining z and some
point y ∈ f−nm−1(H) of hyperbolic length O(dist(z,H)α). Therefore, by Lemma 4.2.3,

∣z − y∣ = O (dist(z,H)α+1) .

We can make sure that the forward orbit of y stays within A and is thus contained in K loc
κ .

As such, the estimate above implies that H is uniformly deep in K loc
κ .

4.5.2 McMullen’s Dynamic Inflexibility Theorem

Consider a pair of (d0, d∞)-critical quasicircle maps f1 ∶ H1 → H1 and f2 ∶ H2 → H2 with
rotation number θ ∈ ΘN . By Theorem 4.4.20, there exist collars A1 and A2 for f1∣H1 and
f2∣H2 respectively, and a global quasiconformal map ϕ ∶ Ĉ → Ĉ conjugating f1∣A1 and f2∣A2 .
Our goal is to improve the regularity of the quasiconformal conjugacy h and prove Theorem
D. We will do so via McMullen’s Dynamic Inflexibility Theorem.

Let Hol denote the set of all holomorphic maps g ∶ U → Ĉ where U is any open subset
of Ĉ. Endow Hol with the topology where gn ∶Wn → Ĉ converges to g ∶W → Ĉ if for every
compact subset X ⊂W , Wn contains X for all sufficiently large n and gn → g uniformly in X.
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For each i ∈ {1,2}, define

F(fi) ∶= {[g ∶ U → Ĉ] ∈ Hol ∶ f ii = g ○ f ji for some i, j ∈ N on some open U ⊂ Ai} .

Let us pick a skinnier collar A′1 ⋐ A1 for H1 and let A′2 = ϕ(A′1). For i ∈ {1,2}, let us define
the local non-escaping set of fi rel A′i to be

K loc(fi) = {z ∈ Ai ∶ fni (z) ∈ A′i for all n ≥ 0};

this is a forward invariant compact subset of Ai. The pair (F(fi),K loc(fi)) forms a holomor-
phic dynamical system in the sense of McMullen [McM96, §9].

Theorem 4.5.3 ([McM96, Theorem 9.15]). Suppose there is a K-quasiconformal conjugacy
ϕ between two holomorphic dynamical systems (F1, J1) and (F2, J2). If (F1, J1) is uniformly
twisting and J1 has a uniformly deep subset S, then ϕ is uniformly C1+α-conformal on S.

Roughly speaking, a holomorphic dynamical system (F , J) is uniformly twisting if F has
robust nonlinearity at every point in J at every scale. A more precise definition of nonlinearity
and uniform twisting can be found in [McM96, §9.3]. In our discussion, we will only require
the following criterion for uniform twisting.

Proposition 4.5.4 ([McM98, Proposition 4.7]). Consider a subset F of Hol and a compact
subset J of Ĉ. Suppose for any sequence of affine maps afn(z) = αn(z − βn) with αn →∞ and
βn ∈ J , there is a sequence of maps gn in F such that the rescaling afn ○ gn ○ af−1n converges
in subsequence to a non-constant holomorphic map in Hol with a critical point. Then, the
dynamical system (F , J) is uniformly twisting.

In our context, we will consider the pair of dynamical systems

(F(f1),K loc(f1)) and (F(f2),K loc(f2))

which are quasiconformally equivalent via h. Let us assume without loss of generality that f1
is a rational map in X , e.g. the prototypical Example 4.4.5. In the proof of Theorem 4.2.7, we
have shown that the map f1 and the set K loc(f1) satisfy properties (S1)–(S5) in the hypothesis
of Proposition 4.2.8. These properties immediately imply the hypothesis of Proposition 4.5.4,
and so (F(f1),K loc(f1)) is indeed uniformly twisting. Let us choose A′1 to be of the form Aκ.
Recall from Theorem 4.5.2 that H1 is a a uniformly deep subset of K loc(f1) with constants
depending only on (d0, d∞,N). By Theorem 4.5.3, the quasiconformal conjugacy h between
f1 and f2 must be uniformly C1+α-conformal on H1. This completes the proof of Theorem D.
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4.6 Consequences of C1+α rigidity

We end this chapter with a discussion on a number of applications of C1+α rigidity of critical
quasicircle maps. Throughout, we will fix N ≥ 1 and θ ∈ ΘN .

4.6.1 Smoothness

Consider a (d0, d∞)-critical quasicircle map f ∶H→H of rotation number θ.

Corollary 4.6.1. The quasicircle H is C1+α smooth if and only if d0 = d∞.

See Figure 4.8 for an example of a C1 smooth Herman curve that is not a Euclidean circle.

Proof. Suppose d0 ≠ d∞. If H were C1 smooth near the critical value, then the angle of H at
the critical point is equal to π(2d0−1)

d , which is not equal to π, and so it cannot have a tangent.
Now, suppose d0 = d∞. Example 4.4.5 gives us a (d0, d∞)-critical circle map g ∶ T → T

with rotation number θ. By C1+α rigidity, there exists a uniformly C1+α-conformal conjugacy
ϕ ∶ T → H between g and f . Lemma 4.6.2 below implies that ϕ has a complex derivative
along H with α-Hölder regularity.

Lemma 4.6.2. The complex derivative of a uniformly C1+α-conformal map is Hölder contin-
uous with exponent α.

Proof. Suppose ϕ ∶ U → V is uniformly C1+α-conformal, that is, for all z ∈ U , the complex
derivative ϕ′(z) exists and the function

ηz(t) ∶=
ϕ(z + t) − ϕ(z)

t
− ϕ′(z),

satisfies ∣ηz(t)∣ ≤ C ∣t∣α for some uniform constant C > 0 when ∣t∣ is sufficiently small. Whenever
two points z,w on U are sufficiently close,

∣ϕ′(z) − ϕ′(w)∣ = ∣ηw(z −w) − ηz(w − z)∣ ≤ 2C ∣z −w∣α.

This proves the lemma.

Let us complete the proof of Corollary E with the following proposition.

Proposition 4.6.3. If d0 ≠ d∞, H is not C1 smooth at every point, and the Hausdorff
dimension of H is greater than some constant D > 1 which depends only on d0, d∞, N , and
the dilatation of H.
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Figure 4.8: A C1 smooth (2,2)-critical Herman curve H within the Julia set of the cubic
rational map

f(z) = cz
z2 − 3z + λ

c

1 + (λc − 3) z
,

which is a perturbation of a Blaschke product of the form cz2 z−3
1−3z . It is characterized by fixed

points at 0 and ∞ with multipliers λ = 0.9e2πiθ and 0 respectively, as well as a critical point
at 1 with local degree 3. The critical value c = f(1) ≈ −0.507844 − 0.457336i is picked such
that H exists with golden mean rotation number θ.

Proof. Suppose d0 ≠ d∞. Given a point x ∈H and a small scale r > 0, we define

βH(x, r) ∶=
1

r
inf

L∈L(x,r)
sup

z∈D(x,r)
dist(z,L),

where L(x, r) denotes the set of lines in C intersecting the disk D(x, r), as well as

βH(x) ∶= lim inf
r→0

βH(x, r).

The quantity βH(x, r) measures how far H is from being a line segment near x at scale r. Due
to a result by Bishop and Jones [BJ97], it is sufficient for us to show that βH(x) is uniformly
bounded above by some positive constant depending on d0, d∞, N , and the dilatation K of
H.
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H

●
c
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Dn

Sn

rn

rnsn .

Figure 4.9: H ∩Dn is contained in the strip Sn.

In the proof below, we will first show that the beta number at the critical point c is
positive. We then transfer this property around c to every non-critical point via Koebe
distortion. To do this, we will use the bounded turning characterization of quasicircles, that
is, for any two distinct points a and b on H, the ratio of ∣a− b∣ to the diameter of the interval
[a, b] ⊂ H connecting a and b of the smallest diameter is bounded below by some positive
constant depending on K.

Claim. There is some β0 = β0(d0, d∞,K) > 0 such that βH(c) ≥ β0.

Proof. Suppose instead that βH(c) < β0 where β0 is a small constant that is to be determined.
Then, there exist sequences of positive real numbers {rn} and {sn} such that rn → 0 and
sn → β0 as n→∞, and the intersection of H and the disk Dn ∶= D(c, rn) is contained in the
rnsn-neighborhood Sn of a straight line passing through c. See Figure 4.9.

Let us label the two connected components of ∂Dn ∩ Sn by X1 and X2. Let Γ = [z1, z2]
denote the closed interval that is the connected component of Dn ∩H containing c. We claim
that z1 ∈X1 and z2 ∈X2. Indeed, if otherwise,

∣z1 − z2∣
diam(Γ) ≤

maxi diam(Xi)
diam([c, z1])

= O (sn) ,

and as n→∞, the right hand side becomes small depending on β0. When β0 is sufficiently
small depending on K, this estimate would contradict the bounded turning property.

Suppose for a contradiction that the local degree d = d0 + d∞ − 1 is even. Near c, the map
f is close to the power map

g(z) ∶= f(c) + f
(d)(c)
d!
(z − c)d,
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that is, ∣f(z) − g(z)∣ = O(∣z − c∣d+1). Since d is even, g will send both z1 and z2 to points that
are very close to one another and

∣f(z1) − f(z2)∣ ≤ ∣g(z1) − g(z2)∣ +O(∣z1 − c∣d+1) +O(∣z2 − c∣d+1)
= O (rdn(sdn + rn)) .

However, since the interval f(Γ) = [f(z1), f(z2)] ⊂H has diameter at least ≍ rdn,

∣f(z1) − f(z2)∣
diam(f(Γ)) = O(s

d
n + rn).

Again, as n→∞, this estimate would contradict the bounded turning property provided that
β0 is sufficiently small depending on d0, d∞, and K. Therefore, d must be odd.

Since d is odd, the image S′n ∶= f(Sn∩Dn) is close to being a straight strip of width ≍ rdnsn
inside of f(Dn), which is close to a round disk of radius ≍ rdn. Denote by Y 0 and Y ∞ the
inner and outer components of Ĉ/H.

We claim that the two connected components of f(Dn)/S′n belong to different components
of Ĉ/H, which we will denote by B0 ⊂ Y 0 and B∞ ⊂ Y ∞. Indeed, suppose instead that both
are contained in Y ∞ without loss of generality. There is some i ∈ {1, 2} such that f(Xi) ∪Y ∞
contains a Jordan curve enclosing f(Xj) where j ∈ {1, 2}/{i}. However, this would imply the
existence of a closed interval in H having endpoints in f(Xi) and diameter ≻ rdn, which would
again contradict the bounded turning property.

For ● ∈ {0,∞}, the number of components of f−1(B●) contained in Y ● is d●. Since f is
close to the dth power map g and S′n is close to being a thin straight strip, then d0 = d∞. This
yields a contradiction.

Let us pick any point x on H and any sufficiently small scale r > 0. By Lemma 4.1.4,
there is an approximate rotation f i ∶ (U, y) → (V, c) such that y lies on H, c is a critical point
of f , and (U, y) is a pointed disk that well contains the interval [x, y] ⊂H and has bounded
shape and inner radius rin(U, y) ≍ r. (Note that, from this moment on, implicit constants
may depend on N .)

Let us denote by δ the inner radius of (V, c). Consider a small disk Bε = D(y, εr) where
0 < ε < 1. Since f i has bounded distortion on U , the image f i(Bε) will have bounded shape
and diameter ≍ εδ.

The claim implies that there is some constant C = C(d0, d∞,K) > 0 such that for sufficiently
small r (and thus δ), we can find an interval [a′, b′] ⊂H contained in f i(Bε) and a point w′

on H such that the distance between w′ and the unique straight line La′,b′ passing through a′

and b′ is at least Cεδ. Denote by a, b, and w the lift of a′, b′, and w′ under f i∣U .
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Since f i has bounded distortion on U , the Euclidean triangle with vertices a′, b′,w′ should
be almost similar to that with vertices a, b,w. More precisely, there is some constant Mε > 0
which shrinks to 0 as ε→ 0 such that

RRRRRRRRRRR

a −w
b −w/

a′ −w′
b′ −w′ − 1

RRRRRRRRRRR
≤Mε.

Therefore, we can pick ε depending on C such that the distance between w and the unique
straight line La,b passing through a and b satisfies dist(w,La,b) ≻ Cεr. Together with the
bounded turning property, this implies that βH(x, r) ≥ β for some β = β(d0, d∞,K,N) > 0.

4.6.2 Universality

Let f1 ∶ H1 → H1 and f2 ∶ H2 → H2 be two (d0, d∞)-critical quasicircle maps of the same
rotation number θ. By C1+α rigidity, there exists a uniformly C1+α-conformal conjugacy
ϕ ∶H1 →H2 between f1 and f2. Corollaries F and G will follow from below.

Corollary 4.6.4. Quasicircles H1 and H2 have the same Hausdorff dimension, lower box
dimension, and upper box dimension.

Proof. By Lemma 4.6.2, the complex derivative ϕ′ is continuous. Since quasicircles are
compact, the map ϕ must be bi-Lipschitz. Since dimension is bi-Lipschitz invariant, the claim
follows.

We say that a sequence {an}n∈N of complex numbers converges exponentially fast to a
if there are constants C > 0, n0 ∈ N, and λ ∈ (0,1) such that for all n ≥ n0, ∣an − a∣ ≤ Cλn.
Given some data ♡, we also say that {an} converges ♡-exponentially fast to a if the constants
C,n0, λ depend only on ♡.

Recall the notion of scaling ratios in (1.1.2).

Corollary 4.6.5. Asymptotically, f1 and f2 have the same scaling ratios:

sn(f2)
sn(f1)

Ð→ 1 exponentially fast as n→∞.

Proof. Assume without loss of generality that 0 is the critical point of both f1 and f2, and
let cn ∶= fn1 (0). By Lemma 2.1.8 (2), the bounded type assumption implies that ∣cqn ∣ ≍ δn for
some δ ∈ (0,1).

Near 0, we can write ϕ(z) = z (λ + η(z)) where λ ∈ C∗ and η(z) = O(∣z∣α). Then,

sn(f2)
sn(f1)

− 1 = ϕ(cqn+1)
cqn+1

⋅ cqn
ϕ(cqn)

− 1 =
η(cqn+1) − η(cqn)

λ + η(cqn)
= O(δαn).

Therefore, the ratio sn(f2)/sn(f1) tends to 1 exponentially fast.
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4.6.3 Exponential convergence of renormalizations

Let us fix K > 1 and µ > 0. For brevity, we will denote by ♣ the data (d0, d∞,N,K,µ).

Theorem 4.6.6 (Exponential convergence). Given any two commuting pairs ζ and ζ̂ in
CP(♣) with the same rotation number, their renormalizations converge together exponentially
fast in the following sense. Let us denote the nth renormalization of ζ and ζ̂ by Rnζ =
(fn,−∣In,− , fn,+∣In,+) and Rnζ̂ = (f̂n,−∣În,−

, f̂n,+∣În,+
) respectively. Then,

(1) the Hausdorff distance between In,± and În,± tends to 0 ♣-exponentially fast;

(2) for sufficiently large n depending on ♣, both fn,± and f̂n,± extend holomorphically to
the ε(♣)-neighborhood of In,± ∪ În,± on which the sup norm of fn,± − f̂n,± converges
♣-exponentially fast to 0.

Proof. Let ψ be a quasiconformal conjugacy between ζ and ζ̂. Recall that the renormalization
Rnζ is obtained by conjugating pRnζ with the map

τn(z) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−cnz, if n is odd,

−cnz̄, if n is even,

sending −1 to an endpoint cn of the base of pRnζ. Similarly, denote by τ̂n(z) the corresponding
rescaling map for pRnζ̂ with scaling factor −ĉn where ĉn ∶= ψ(cn).

By Theorem 4.4.18, there are constants n1 = n1(♣) ∈ N and L = L(♣) > 1 such that for all
n ≥ n1, the pre-renormalization pRnζ extends to an L-butterfly with range Vn. Denote the
range of the corresponding butterfly for Rnζ by Vn = τ−1n (Vn). By (G4),

diam(Vn) ≤ L and diam(Vn) ≤ ∣cn∣L. (4.6.1)

Since ψ is C1+α-conformal at the critical point 0, there exist positive constants α,C,λ, r
depending only on ♣ such that for ∣z∣ < r,

ψ(z) = λz + η(z), where ∣η(z)∣ ≤ C ∣z∣1+α. (4.6.2)

The sequence {cn}n∈N converges ♣-exponentially fast to 0 due to Lemma 2.1.8 (1). By (4.6.1),
there is some n2 = n2(♣) ∈ N such that for n ≥ n2, the disk Vn has diameter at most r. By
(4.6.2), for n ≥ n2,

sup
z∈Vn

∣η(−cnz)
ĉn

∣ ≤ C ∣cn∣
1+α

∣ĉn∣
sup
z∈Vn

∣z∣1+α ≤ CL1+α ∣cn
ĉn
∣ ∣cn∣α. (4.6.3)
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Since ψ(cn) = ĉn, then by (4.6.2) again, the sequence of ratios {ĉn/cn}n∈N converges ♣-
exponentially fast to the derivative λ of ψ at 0. Therefore, the sequence

sup
z∈Vn

∣η(−cnz)
ĉn

∣

also converges ♣-exponentially fast to 0.
The map ψn ∶= τ̂−1n ○ ψ ○ τn conjugates Rnζ1 and Rnζ2. For all even n ≥ n2 and z ∈ Vn,

∣ψn(z) − z∣ ≤ ∣λ
cn
ĉn
− 1∣ ∣z∣ + ∣η(−cnz)

ĉn
∣ ,

and a similar estimate holds for odd n. This implies that the sup norm of ψn − Id on Vn
converges ♣-exponentially fast to 0, and items (1) and (2) follow immediately.

4.6.4 A horseshoe attractor

Let CP(d0, d∞,N) be the space of all normalized (d0, d∞)-critical commuting pairs ζ with
rotation number in ΘN . Denote by σ the shift map acting on the bi-infinite shift space
ΣN = {1, . . . ,N}Z of N symbols, equipped with the infinite product topology. Consider the
continuous surjection

ξ ∶ ΣN → ΘN , (. . . , a−2, a−1, a0;a1, a2, . . .) ↦ [0;a1, a2, . . .].

We now prove a more precise formulation of Theorem I.

Theorem 4.6.7 (Renormalization horseshoe). There is a unique renormalization-invariant
compact subset A = A(d0, d∞,N) of CP(d0, d∞,N) satisfying the following properties.

(1) There is a topological conjugacy Φ ∶ ΣN → A between the renormalization operator
R ∶ A → A and the shift map σ ∶ ΣN → ΣN such that rot ○Φ = ξ.

(2) For any ζ ∈ A and ζ ′ ∈ CP(d0, d∞,N), renormalizations Rnζ and Rnζ ′ converge together
exponentially fast if and only if Rmζ has the same rotation number as Rmζ ′ for some
m ∈ N.

In the proof below, we obtain the horseshoe by constructing limits of renormalization
towers, and we deduce the rigidity of towers by applying the exponential convergence of
renormalizations.

Proof. Consider a bi-infinite sequence a = (. . . , a−2, a−1, a0;a1, a2, . . .) in ΣN . For any k ∈ Z,
set θk ∶= [0;ak+1, ak+2, ak+3, . . .] and let fk be the rational map fd0,d∞,θk . By Lemma 4.4.3,
whenever k + l ≥ 1, the (k + l)th renormalization ζk,l ∶= Rk+lf−k has rotation number θl.
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According to Theorem 4.4.18, if k + l is sufficiently high, then ζk,l always extends to a
K-butterfly for some K = K(d0, d∞,N) > 1. By Proposition 4.4.15, for any l ∈ Z, there is
a subsequence {ζk(i),l}i∈N such that as i → ∞, then k(i) → ∞ and ζk(i),l converges to some
(d0, d∞)-critical commuting pair ζl of rotation number θl. By a diagonal procedure, we can
ensure that Rζl = ζl+1, giving us a bi-infinite renormalization tower

Ta ∶= (. . . , ζ−2, ζ−1, ζ0; ζ1, ζ2, . . .)

of commuting pairs in CP(d0, d∞,N) where each entry ζn extends to a K-butterfly.
Suppose this procedure yields another renormalization tower

T ′a ∶= (. . . , ζ ′−2, ζ ′−1, ζ ′0; ζ ′1, ζ ′2, . . .).

By Theorem 4.6.6, as n→∞, renormalizationsRkζn andRkζ ′n converge together exponentially
fast at a uniform rate independent of k. Since Rkζn = ζn+k and Rkζ ′n = ζ ′n+k, this implies that
ζ ′n = ζn for all n ∈ Z. Therefore, the tower Ta is uniquely defined.

Set Φ(a) to be the zeroth entry ζ0 of Ta and set

A ∶= {Φ(a) ∈ CP(d0, d∞,N) ∶ a ∈ ΣN}.

We have a surjective mapping Φ ∶ ΣN → A satisfying rot ○Φ = ξ. Since ΣN is compact and
Hausdorff, in order to prove (1), it remains to show that Φ is injective and continuous.

Suppose Φ(a1) = Φ(a2) for some a1,a2 ∈ ΣN . By the identity theorem, the associated
towers are equal, namely Ta1 = Ta2 . For each i ∈ {1,2}, we can recover back the bi-infinite
sequence ai by evaluating the rotation number of each entry of Tai

, so then a1 = a2. Therefore,
Φ is injective.

Let us show that Φ is continuous. Suppose a sequence of elements a(n) in ΣN converges
to a. For each n ∈ N, denote the associated tower by

Ta(n) = (. . . , ζ
(n)
−2 , ζ

(n)
−1 , ζ

(n)
0 ; ζ

(n)
1 , ζ

(n)
2 , . . .).

By passing to a subsequence, each ζ
(n)
k converges to some commuting pair ζk as n → ∞,

forming a limiting renormalization tower

T = (. . . , ζ−2, ζ−1, ζ0; ζ1, ζ2, . . .).

For every k ∈ Z and n ∈ N, Corollary 4.4.11 states that there is a unique quasisymmetric
conjugacy h

(n)
k between the pair of translations T

θ
(n)
k

and ζ
(n)
k . Clearly, as a(n) → a, the

pair T
θ
(n)
k

converges to Tθk . Since the dilatation of h(n)k is uniform, the sequence h
(n)
k

subsequently converges to a quasisymmetric map hk, which conjugates Tθk with ζk. In
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particular, rot(ζk) = θk. By the uniqueness of renormalization towers, T coincides with Ta.
Therefore, Φ (a(n)) → Φ(a).

Let us now prove property (2). Pick ζ ∈ A and ζ ′ ∈ CP(d0, d∞,N). If Rmζ and Rmζ ′
have the same rotation number for some m ∈ N, then again by Theorem 4.6.6, Rnζ and
Rnζ ′ converge together exponentially fast. Otherwise, there is an infinite sequence {nk}k∈N
such that the continued fraction expansions of the rotation numbers of Rnkζ and Rnkζ ′ have
different first term, which clearly implies that Rnkζ and Rnkζ ′ cannot converge together.

4.6.5 Self-similarity

Consider a bi-infinite sequence

a = (. . . , a−2, a−1, a0;a1, a2, . . . . . .) ∈ ΣN

such that a is s-periodic for some s ≥ 1, i.e. a = σsa. To lighten our notation, we assume that
s is even. (Else, replace s by 2s.) Let

θ0 ∶= [0;a1, a2, a3, . . .].

Then, θ0 is also s-periodic under the Gauss map G(x) = { 1x}.
We say that two subsets P and Q of C are linearly equivalent if there is a linear map g

such that g(P ) = Q. Below is a more precise version of Theorem H.

Theorem 4.6.8 (Self-similarity). There exists a complex number µa ∈ D∗ such that the
following holds. Let Aa(z) ∶= µaz.

(1) Consider the conjugacy Φ ∶ ΣN → A described in Theorem 4.6.7. The base of Φ(a)
extends to a unique Aa-invariant quasicircle Ha.

(2) µσ2a = µa, and Hσ2a is linearly equivalent to Ha.

(3) Suppose f ∶ H → H is a (d0, d∞)-critical quasicircle map of rotation number θ where
Gk(θ) = θ0 for some even integer k ≥ 0. Assume 0 is the critical point of f .

(a) A−na (H) converges in the Hausdorff metric to an Aa-invariant quasicircle linearly
equivalent to Ha.

(b) Let cl ∶= f l(0) for all l ∈ N. Then,

cqn+s
cqn
=

s

∏
i=1

sn+i(f) Ð→ µa exponentially fast as n→∞.
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Proof. Since ζ ∶= Φ(a) satisfies the equation Rsζ = ζ, there is a linear map Aa(z) ∶= µaz

such that 0 < ∣µa∣ < 1 and pRsζ = Aa ○ ζ ○ A−1a . This immediately implies (1). Also, we
have pRs+2ζ = Aa ○ pR2ζ ○A−1a , which after normalization yields the equation pRs(R2ζ) =
Aa ○ R2ζ ○A−1a . This implies (2).

Suppose f ∶H→H satisfies the hypothesis in (3). By Theorem D, the quasisymmetric
conjugacy ψ between Rkf and ζ extends to a quasiconformal conjugacy that is C1+α near
the critical point. Let ϕ(z) ∶= ψ(z)/ψ′(0), which conjugates Rkf with a rescaling of ζ, and
satisfies

ϕ(z) = z (1 + η(z)) where η(z) = O(∣z∣α).

Denote by Ĥa the rescaling of Ha by ψ′(0)−1.
For any sufficiently large n ∈ N, there is some l ≥ k such that the base I ⊂H of pRlf has

diameter ≍ ∣µa∣n. Denote by dH(⋅, ⋅) the Hausdorff distance. Then,

dH (A−na (I),A−na ϕ(I)) ≤ ∣µa∣−ndH (I, ϕ(I)) ≺ ∣µa∣−ndiam(I)1+α ≺ ∣µa∣αn.

As n → ∞, the Hausdorff distance between A−na (I) and A−na ϕ(I), which is a subinterval of
Ĥa, shrinks exponentially fast.

The proof of (b) is similar to Corollary 4.6.5. Let us write ϕ(z) = z (1 + η(z)) where
η(z) = O(∣z∣α). By Lemma 2.1.8 (2), there is some δ ∈ (0,1) such that ∣cqn ∣ ≍ δn. For n ≥ k,
we have the equation ϕ(cqn+s) = Aaϕ(cqn), which implies that as n→∞,

µa −
cqn+s
cqn
= ϕ(cqn+s)
ϕ(cqn)

− cqn+s
cqn
= cqn+s
cqn
⋅
η(cqn+s) − η(cqn)

1 + η(cqn)
= O(δαn).

Therefore, the ratio cqn+s/cqn tends to µa exponentially fast.

139





Chapter 5

Hyperbolicity of Renormalization

5.1 Corona renormalization operator

5.1.1 (d0, d∞)-critical coronas

For any open annulus A compactly contained in C, we label the boundary components of
A by ∂0A and ∂∞A, and make the convention that ∂∞A is the outer boundary, i.e. the one
that is closer to ∞. We also say that another annulus A′ is essentially contained in A if A′ is
a deformation retract of A.

Definition 5.1.1. A (d0, d∞)-critical corona1 is a map f ∶ U → V between two bounded open
annuli in C with the following properties.

1. The boundary components of both U and V are Jordan curves, and U is compactly
and essentially contained in V .

2. There is a proper arc γ1 ⊂ V connecting ∂0V and ∂∞V such that the preimage f−1(γ1)
is disjoint from γ1 and is a union of 2d − 1 pairwise disjoint arcs

γ0 ⊂ U, γ01 , . . . , γ
0
2(d0−1)

⊂ ∂0U, γ∞1 , . . . , γ
∞
2(d∞−1)

⊂ ∂∞U.

3. f ∶ U → V is holomorphic and f ∶ U/γ0 → V /γ1 is a degree d covering map branched at
a unique critical point c0.

The arc γ1 is called the critical arc of f . See Figure 5.1 for an illustration.

1The shape of the domain U in Figure 5.1 resembles a crown or a wreath, which is what corona means in
Latin.
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U

V

γ02

γ01

γ∞1

γ∞2

γ∞3

γ∞4

γ0

γ1

●
c0

f

Figure 5.1: A (2,3)-critical corona.

Let f ∶ U → V be a (d0, d∞)-critical corona. For any ● ∈ {0,∞}, we divide the boundary
component ∂●U into

∂●LU ∶= ∂●U ∩ f−1(∂●V ) and ∂●FU ∶= ∂●U/f−1(∂●V )

according to whether or not it is mapped to the same side the annulus. Each of the above
consists of d● − 1 components. Set

∂LU ∶= ∂0LU ∪ ∂∞L U and ∂FU ∶= ∂0FU ∪ ∂∞F U.

We call ∂LU the legitimate boundary of U and ∂FU the forbidden boundary of U .
For each ● ∈ {0,∞}, we properly embed a collection R● of d●−1 pairwise disjoint rectangles

within V /U such that the union B● of their bottom horizontal sides is precisely the legitimate
boundary ∂●LU and the union T ● of their top horizontal sides is a subset of ∂●V . Let us lift
R● under f such that their top sides are within the legitimate boundary of U . As we repeat
this lifting procedure, we obtain a lamination out of the iterated lifts, and its leaves will be
called external ray segments.

An infinite chain of external ray segments is called an external ray of the corona f . We
say that γ is an inner external ray if γ intersects B0, and an outer external ray if instead γ
intersects B∞.

For each ● ∈ {0,∞}, define the map π● ∶ B● → T ● sending the bottom endpoint of each leaf
of R● to the corresponding top endpoint. Consider the partially defined d● to one self map
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ϕ● ∶= π−1● ○f on B●. Denote by A● the set of points of B● which are invariant under ϕ●. Let us
identify T with the quotient R/Z. There is a semiconjugacy θ● ∶ A● → T between ϕ● ∶ A● → A●
and the multiplication map T→ T, x↦ d●x (mod 1), which is unique up to conjugation with
addition by multiples of 1

d●−1
.

Given an external ray γ of f , we denote the image by

f(γ) ∶= f(γ ∩U)

which is also an external ray of f by definition. The external angle of γ is the angle θ●(x)
where x is the unique point of intersection of γ and B● for some ● ∈ {0,∞}.

5.1.2 Corona renormalization

Definition 5.1.2. A (d0, d∞)-critical pre-corona is a pair of holomorphic maps

F = (f− ∶ U− → S, f+ ∶ U+ → S)

satisfying the following properties.

1. S is a topological rectangle with vertical sides β− and β+.

2. β0 is a vertical arc in S dividing S into subrectangles T− and T+, where β± ⊂ ∂T± and
U± is a subrectangle of T± with vertical sides contained in β± and β0.

3. There is a gluing map ψ ∶ S → V such that ψ(β−) = ψ(β+), ψ is conformal on a
neighborhood of S and injective on S/(β− ∪ β+), and ψ projects F into a (d0, d∞)-
critical corona with critical arc ψ(β±).

The gluing map ψ will also be called the renormalization change of variables of F . It glues
together f+(x) ∈ β− and f−(x) ∈ β+ for every x in β0 ∩ ∂U±. See Figure 5.2.

Definition 5.1.3. A corona f ∶ U → V is renormalizable if there exists a pre-corona

F = (fk− ∶ U− → S, fk+ ∶ U+ → S)

on a rectangle S ⊂ V such that fk− and fk+ are the first return maps back to S and

∆F =
k−−1

⋃
i=0

f i(U−) ∪
k+−1

⋃
j=0

f j(U+)

is a closed annulus essentially contained in U . We call F the pre-renormalization of f , k−
and k+ the return times of F , and ∆F the renormalization tiling of F . The corona obtained
by projecting F under its gluing map is called the renormalization of f .
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T− T+

U− U+

S

β0 β+β−

f−f+

Figure 5.2: A (2,3)-critical pre-corona. It projects to the corona in Figure 5.1 after gluing β+
and β−

Example 5.1.4 (Prime renormalization). We say that the renormalization of a corona
f ∶ U → V is prime if k− + k+ = 3. Below is an example of a prime corona renormalization.

Assume that the arcs γ0, γ1, and γ2 ∶= f(γ1) are pairwise disjoint. Denote by S1 the open
quadrilateral obtained by cutting V along γ1 ∪ γ2 which does not contain γ0. Let us assume
further that S1 does not contain the critical value nor the forbidden boundary of U .

Let us remove S1 from the dynamical plane. We define V̂ to be the Riemann surface
with boundary obtained from V /S1 by gluing γ′1 ∶= f−1(γ2) ∩ γ1 and its image γ2 along f . In
other words, there is a quotient map ψ ∶ V /S1 → V̂ that is conformal on the interior and
ψ(z) = ψ(f(z)) for all z ∈ γ′1. We embed the abstract Riemann surface V̂ into the plane.

The prime renormalization of f is defined by the induced first return map of f on V̂ .
More precisely, consider the lift S0 of S1 under f attached to γ1. The piecewise holomorphic
map

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(z), if z ∈ U/(S1 ∪ f−1(S1)),
f 2(z), if z ∈ S0 ∩ f−1(U).

descends via ψ into a corona f̂ ∶ Û → V̂ with critical ray γ̂1 = ψ(γ′1).

5.1.3 Banach neighborhood

In what follows, every unicritical holomorphic map f ∶ U → V under consideration will be
assumed to admit a slightly larger domain Ũ with piecewise smooth boundary such that
Ũ compactly contains U and f extends to a unicritical holomorphic map on Ũ extending
continuously to ∂Ũ . We define a Banach neighborhood of f to be a neighborhood of f of the
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form NŨ(f, ε), which we define to be the space of holomorphic maps g ∶ Ũ → C that extend
continuously to ∂Ũ , admit a single critical point in c0(g), and

sup
z∈Ũ

∣f(z) − g(z)∣ < ε.

We equip NŨ(f, ε) with the sup norm over Ũ .

Lemma 5.1.5. Let f ∶ U → V be a (d0, d∞)-critical corona. For sufficiently small ε > 0,
there is a holomorphic motion ∂Ug of ∂U over g ∈ NŨ(f, ε) such that g ∶ Ug → V is a
(d0, d∞)-critical corona with the same codomain V and critical arc γ1.

Proof. Let Aδ be the δ-neighborhood of ∂U , where δ > 0 is picked small enough such that
Aδ contains no critical points of f . For sufficiently small ε, the derivative of g ∈ NŨ(f, ε) is
uniformly bounded and non-vanishing on Aδ, and so g has no critical points in Aδ. Thus, we
have a well-defined map τg ∶ ∂U → Aδ such that τf = Id and f = g ○ τg on ∂U . Since f has no
critical value along ∂U , τg(z) is injective in z and holomorphic in g. Therefore, we have a
holomorphic motion of ∂U , and τg(∂U) bounds an open annulus Ug on which g ∶ Ug → V is a
well-defined (d0, d∞)-critical corona with the same critical arc.

The following theorem is inspired by Yampolsky’s holomorphic motions argument [Yam03,
§7]. See also [Yam08, Proposition 2.11] and [DL23, §2].

Theorem 5.1.6. Suppose a unicritical holomorphic map f ∶ U → V admits a pre-corona
which projects to a corona f̂ ∶ Û → V̂ via a quotient map ψf ∶ Sf → V̂ . For sufficiently small
ε > 0, there is a compact analytic renormalization operator R on a Banach neighborhood
NŨ(f, ε) such that Rf = f̂ and for each g ∈ NŨ(f, ε),

(1) g admits a pre-corona which projects to the corona Rg ∶ Ûg → V̂ , and

(2) the domain ∂Ûg and the associated gluing map ψg depend holomorphically on g.

Proof. There exists a pre-corona F = (fk± ∶ U± → S) and a quotient map ψf projecting F

to f̂ . Recall the arcs β± and β0 corresponding to F . For g ∈ NŨ(f, ε), consider the map
τg ∶ β0 ∪ β± → C defined by setting τg to be the identity map on β0 and the composition
gk∓ ○f−k∓ on β±; this is an equivariant holomorphic motion of β0∪β± for sufficiently small ε > 0.
By λ-lemma [BR86; ST86], τg extends to a holomorphic motion of S over a neighborhood of
f .

Let µg be the Beltrami differential of τg. Define a global Beltrami differential νg by setting
νg = (ψf)∗µg on V̂ and νg ≡ 0 outside of V̂ . Integrate νg to obtain a unique quasiconformal
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map ϕg fixing ∞, the critical point of f , and the critical value of f . Then, ψg ∶= ϕg ○ ψf ○ τ−1g
is a conformal map on Sg ∶= τg(Sf) depending holomorphically on g.

The gluing map ψg projects the pair (gk− , gk+) on Sg to a map ĝ close to f̂ . By Lemma
5.1.5, ĝ restricts to a corona that has the same range as f̂ and depends analytically on g.
This yields an analytic operator g ↦ ĝ. To make this operator compact, we modify it as
follows. Pick another annulus U ′ where U ⋐ U ′ ⋐ Ũ . We define R on NŨ(f, ε) to be the
renormalization of the restriction of g to U ′.

5.2 Rotational coronas

Throughout this section, we fix a bounded type irrational θ ∈ Θbdd.

Definition 5.2.1 (Inner and outer criticalities). Consider a quasicircle H ⊂ C and denote
the bounded and unbounded components of Ĉ/H by Y 0 and Y ∞ respectively. We say that
f ∶H→H is a (d0, d∞)-critical quasicircle map if it is a critical quasicircle map where for any
● ∈ {0,∞} and any point z ∈ Y ● close to the critical value of f , there are exactly d● preimages
of z in Y ● that are close to the critical point of f .

When a holomorphic map f is given, we also say that an invariant quasicircle H ⊂ C is a
(d0, d∞)-critical Herman quasicircle if f ∶H→H is a (d0, d∞)-critical quasicircle map.

Definition 5.2.2. A corona f ∶ U → V is a rotational corona if

1. U essentially contains a Herman quasicircle H that passes through the unique critical
point of f ;

2. the critical arc γ1 intersects H precisely at one point m(f), which we call the marked
point of f , which splits γ1 into an inner external ray R0 and an outer external ray R∞.

A pre-corona is called rotational if it projects to a rotational corona under its renormalization
change of variables.

By design, if a (d0, d∞)-critical corona is rotational, then it admits a (d0, d∞)-critical
Herman quasicircle. In this section, we will construct rotational coronas out of critical
quasicircle maps and discuss a rigidity property for rotational coronas.

5.2.1 Realization of rotational coronas

Consider our favorite rational map f = fd0,d∞,θ ∈ X from Example 4.4.5. Denote its Herman
quasicircle by H. Using external rays, we will show in this subsection that f is corona
renormalizable.
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For any n ≥ 1, we refer to the closure of a component of f−n(H)/f−(n−1)(H) as a bubble
of generation n. Every bubble B of generation n is a quasicircle admitting a unique point,
which we will call the root of B, that lies on the pre-critical set f−(n−1)(1). We call a bubble
B of generation n an outer bubble (resp. inner bubble) if the bubbles B, f(B), . . ., fn−1(B)
all lie in the connected component of Ĉ/H containing ∞ (resp. 0).

A limb of generation one is the closure of a connected component of J(f)/{1} that is
disjoint from H. In general, a limb L of generation n ≥ 1 is the connected component of the
preimage under fn−1 of a limb of generation one. A filled limb L̂ of generation n is the hull
of a limb L of generation n, that is, Ĉ/L̂ is the unbounded connected component of Ĉ/L.

Every limb L of generation n contains a unique bubble BL of generation n. The root of L
is the root of BL. We call L an outer/inner limb if BL is an outer/inner bubble.

Let us denote by A0 and A∞ the immediate attracting basins of 0 and ∞.

Lemma 5.2.3. The boundary of A0 is the closure of the union of H and all outer bubbles
of f , whereas the boundary of A0 is the closure of the union of H and all inner bubbles of
f . Both ∂A0 and ∂A∞ are locally connected. For any ε > 0, all but finitely many inner and
outer limbs of f have diameter at most ε.

Proof. Denote by Y 0 and Y ∞ the connected components of Ĉ/H containing 0 and ∞ re-
spectively. Perform Douady-Ghys surgery [Ghy84; Dou87] (see also [BF14, §7.2]) along H

to replace the dynamics of f in Y 0 with a rotation disk and obtain a degree d∞ unicritical
polynomial P∞ whose critical point lies in the boundary of an invariant Siegel disk Z∞ of
P∞. The maps f ∣Y∞ and P∞∣Ĉ/Z∞ are quasiconformally conjugate, and this conjugacy sends
A∞ onto the immediate basin of ∞ of P∞. In particular, the external boundary of the filled
outer limbs of f are quasiconformally equivalent to the limbs of P∞. The work of [Pet96] (or
more generally [Wan+21]) guarantees that the Julia set of P∞ is locally connected, and so
any infinite sequence of limbs of P∞ must shrink to a point. Therefore, for any ε > 0, all but
finitely many outer limbs of f have diameter at most ε. By swapping the roles of 0 and ∞,
we obtain the same result for inner limbs.

Remark 5.2.4. The lemma above states that both ∂A0 and ∂A∞ are locally connected. In
fact, the whole Julia set of f is locally connected. In case (d0, d∞) = (2, 2), this was proven by
Petersen [Pet96, §4]. For arbitrary criticalities (d0, d∞), the availability of complex bounds
(Theorem 4.4.16) facilitates a direct generalization of Petersen’s proof.

For ● ∈ {0,∞}, consider the Böttcher conjugacy b● ∶ (A●, ●) → (D, ●) between f and the
power map zd● . An external ray in A● of angle t ∈ R/Z is defined by

{b−1● (re2πit) ∶ 0 < r < 1} ,
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and an equipotential in A● of level λ is the analytic Jordan curve defined by

{b−1● (z) ∶ ∣z∣ = e−λ} .

External rays and equipotentials form a pair of f -invariant transverse foliations of A●.
According to Lemma 5.2.3, every external ray in A● lands at a point on ∂A●. Every point
x in ∂A● is the landing point of exactly one external ray in A●, except when x is a critical
point or its iterated preimage in which case it is the landing point of d● external rays in A●.

Consider the map rprm from §2.1.3, which encodes how rotation number is transformed
under sector renormalization.

Lemma 5.2.5. For any point x ∈H that is not a pre-critical point of f , any ε > 0, and any
sufficiently high n ∈ N, there is a rotational pre-corona

P = (f− ∶= fk− ∶ U− → S, f+ ∶= fk+ ∶ U+ → S)

around x such that

(1) P has rotation number (rprm)n(θ);

(2) every external ray segment of P is within an external ray of P ;

(3) the union ⋃◇∈{−,+}⋃k◇−1i=0 f i(U◇) lies in the ε-neighborhood of H.

Proof. For every integer i ∈ Z, let xi ∶= (f ∣H)i(x). By Lemma 2.1.11, for all n ≥ 1, there exist
return times an, bn such that the commuting pair

(fan ∣[xbn ,x0]
, fbn ∣[x0,xan ])

is a sector pre-renormalization of f ∣H with rotation number (rprm)n(θ). (In short, the pair
above is the first return map of f on the interval [xbn , xan] ⊂H, and gluing the two ends of
the interval via f ∣bn−an∣ projects the pair to a critical quasicircle map with rotation number
rnprm(θ). Refer to §2.1.3 for more details.)

Let k− ∶= an and k+ ∶= bn, and let us pick a small constant λ > 0. For ● ∈ {0,∞}, denote
by E● the equipotential in A● of level λ, and by R●−, R●, and R●+ the external rays in A● that
land at xk+ , xk−+k+ , and xk− respectively. Then, the union ⋃●∈{0,∞}R●∓ ∪R● ∪E● encloses a
rectangle S± containing the interval [xk± , xk−+k+] ⊂H.

Let I− ∶= [xk+ , x0] and I+ ∶= [x0, xk−]. Precisely one of the two intervals, say I− without
loss of generality, contains a critical point of fk− . The rectangle S± lifts under fk± to a
topological disk Υ± containing I±, where fk− ∶ Υ− → S− is a degree d branched covering map
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and fk+ ∶ Υ+ → S+ is univalent. There are precisely d− 1 disjoint disks D1, . . . ,Dd−1 which are
the lifts of S+ under fk− that are touching Υ− on the boundary and are disjoint from H. Set

U+ ∶= Υ+, U− ∶= Υ− ∪
d−1

⋃
j=1

Dj, S ∶= S− ∪ S+.

See Figure 5.3 for an illustration. Then,

(fk− ∶ U− → S, fk+ ∶ U+ → S)

is a (d0, d∞)-critical pre-corona with rotation number rnprm(θ).
Let us embed the restriction of external rays of f in S/U where U ∶= U− ∪ U+. Notice

that the boundaries of U− and U+ contain equipotential segments of different levels. Assume
without loss of generality that the equipotential segments in U− have smaller level. In order
to satisfy (2), let us truncate a pair of small topological triangles near two vertices of the
rectangle S+, one where R0

+ meets E0 and the other where R∞+ meets E∞. Refer to Figure
5.3. We will also truncate preimages of these triangles under fk− in U−. Replace U and S

with the new truncated domains. Then, every point in the legitimate boundary of U is now a
landing point of an external ray segment, and (2) follows.

We claim that (3) follows from taking n to be sufficiently large and λ to be sufficiently
small. Indeed, if z ∈ U± intersects an external ray landing at a point w ∈ J(f) ∩ U±, then
the orbits of z and w remain close under iteration f i for i = 1, . . . , k±. Suppose z ∈ U± is
outside of A0 ∪A∞. Then, it must lie within some filled limb L̂ rooted at some pre-critical
point c−j ∶= (f ∣H)−j (1) for some j ≥ 0. If c−j is not the unique critical point of fk− , then the
forward images L̂, f(L̂), . . . , fk±(L̂) must remain small due to Lemma 5.2.3. If c−j is the
critical point of fk− in U−, then we must have 0 < j < k−. In the latter case, the image f j(U−)
must remain in a small neighborhood of the critical point c0 = 1 of f as we take λ to be small
and n to be large. Therefore, the forward orbit z, f(z), . . . , f j(z) must be close to H.

Corollary 5.2.6. Any (d0, d∞)-critical quasicircle map g ∶ Hg → Hg with bounded type
rotation number is corona renormalizable, that is, there is a (d0, d∞)-critical rotational
pre-corona which is an iterate of g near H.

Proof. Given any (d0, d∞)-critical quasicircle map g of bounded type rotation number, Theo-
rem D asserts that there is a global quasiconformal map ϕ conjugating g on some neighborhood
W of its Herman curve with f ∶= Fc. By Lemma 5.2.5, f admits a pre-corona P with range con-
tained within ϕ(W ). Then, g admits a (d0, d∞)-critical pre-corona of the form ϕ−1 ○P ○ϕ.
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Figure 5.3: The construction of the pre-corona in the proof of Lemma 5.2.5 when (d0, d∞) =
(3,2). The triangle defined by the dotted line on the top left corner of S+ and its preimages
are to be removed.

5.2.2 Quasiconformal rigidity

Given a critical quasicircle map f ∶ H → H with critical point c ∈ H, there is a unique
conjugacy hf ∶ (H, c) → (T,1) between f and the rigid rotation Rθ sending c to 1. We can
endow H with the combinatorial metric, which is the pullback of the normalized Euclidean
metric of T under hf and thus the unique normalized f -invariant metric of H. For any point
z ∈H, the combinatorial position of z is the point hf(z) on the unit circle.

We say that two (d0, d∞)-critical rotational coronas f1 and f2 are combinatorially equivalent
if

1. they have the same rotation number,

2. their marked points m(f1) and m(f2) have the same combinatorial position, and

3. for ● ∈ {0,∞}, the external rays R●(f1) and R●(f2) have the same external angles.
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In this subsection, we will prove quasiconformal rigidity of rotational coronas.

Theorem 5.2.7. Two combinatorially equivalent (d0, d∞)-critical rotational coronas with
bounded type rotation number are quasiconformally conjugate.

The proof below is an application of the pullback argument. Let us make a couple of
technical preparations. Let us first consider the model rational map f discussed in the
previous subsection.

Definition 5.2.8. A bubble chain of f of generation l ≥ 1 is an infinite sequence of bubbles
{Bj}j≥1 of f where B1 has generation l and for all j ≥ 1, Bj contains the root of Bj+1 and
the generation of Bj is strictly increasing in j. We say that a bubble chain {Bj}j≥1

⊳ is an outer/inner bubble chain if each Bj is an outer/inner bubble,

⊳ is periodic of period p if there exists some k ≥ 1 such that fp(Bj+k) = Bj for all j ≥ k,
and

⊳ lands if the accumulation set ⋂j≥1 ∪k≥jBk is a single point, which we call the landing
point of the bubble chain.

We say that a periodic point z of f is an outer (resp. inner) periodic point if its orbit is
contained in the connected component of Ĉ/H containing ∞ (resp. 0).

Let us fix a rotational pre-corona P = (f± ∶ U± → S) of f (which exists thanks to Lemma
5.2.5).

Definition 5.2.9. We define the non-escaping set K(P ) of P to be the set of points whose
orbit under f± that never escapes U±. By spreading around K(P ), we define the local
non-escaping set of f relative to P by

K loc(f) ∶= ⋃
n≥0

fn(K(P )).

The set K loc(f) is precisely the set of points which does not escape from the tiling ∆P

associated to P .

Lemma 5.2.10. The set K loc(f) is a connected compact set, and it is equal to

⊳ the closure of the set of periodic points of f in K loc(f);

⊳ the closure of the set of points of K loc(f) that are contained in ⋃n≥1 f−n(H).
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For every outer (resp. inner) periodic point z in K loc(f), there is a unique maximal bubble
chain in K loc(f) landing at z.

Proof. The first statement follows from the basic fact that as a rational map, the Julia set
J(f) can be characterized as either the set of points in Ĉ that do not escape to 0 nor ∞
(which are the only non-repelling periodic points of f) or the closure of the set of repelling
periodic points of f , or the closure of the iterated preimages of H. The compactness of
K loc(f) is clear, and the connectedness follows from the fact that, if we denote by HP the
invariant quasiarc of P , then for all n ≥ 1, P −n(HP ) is connected (in fact, it admits a tree
structure).

Let g ∶ U → V be a rotational corona that is combinatorially equivalent to f , and let
us denote the Herman quasicircle of g by H′. By Theorem D, there is a quasiconformal
conjugacy ϕ between g and f on some neighborhood W ′ of H′ onto a neighborhood W of H.

By Lemma 5.2.5, the pre-corona P = (f± ∶ U± → S) of f can be assumed such that S
is contained in W . The corona g also admits a pre-corona P ′ = (g± ∶ U ′± → S′) contained
in W ′ and it can be selected such that it is conjugate to P via ϕ. As such, we can define
the non-escaping set K(P ′) of P ′ in a similar way and spread it around to obtain the local
non-escaping set K loc(g) of g relative to P ′. The quasiconformal map ϕ induces a conjugacy
between g∣Kloc(g) and f ∣Kloc(f).

Let us define a bubble of g in K loc(g) to be the image under ϕ−1 of the intersection of a
bubble of f with K loc(f). A bubble chain of g in K loc(g) is an infinite sequence of (non-empty)
bubbles in K loc(g) defined in a similar way.

Let x be the marked point of g, and let R∞ and R0 be the outer and inner external rays
of g landing at x. These rays make up the arc γ1(g).

Lemma 5.2.11. Every outer (resp. inner) periodic point y of g in K loc(g) is the landing
point of a unique maximal periodic outer (resp. inner) bubble chain {Bj}j≥1 in K loc(g) and a
unique periodic outer (resp. inner) external ray Ry, which has the same period as y.

Proof. Suppose y is an outer periodic point of g in K loc(g). As a periodic point, y does not
lie on any bubble in K loc(g). By Lemmas 5.2.3 and 5.2.10, y must be the landing point of a
unique maximal outer bubble chain {Bj}j≥1 in K loc(g). By maximality, the bubble B1 of the
lowest generation is rooted at a point on H′.

Let p denote the period of y and let k ∈ N be the minimal number such that Bk has
generation greater than p. By periodicity, the image of {Bj}j≥k under gp is also an outer
bubble chain that is rooted at a point on H′ and lands at y. By Lemma 5.2.10, the bubble
chain {Bj}j≥1 is equal to its image {gp(Bj)}j≥k, and thus it is p-periodic.
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Let us pick iterated preimages Rl and Rr of the external ray R∞ = R∞(g) landing at points
xl,0 and xr,0 on B1 respectively such that the union B1 ∪Rl ∪Rr ∪ ∂V bounds a topological
rectangle D0 that contains y and is disjoint from H′. Then, D0 lifts under gp to a rectangle
D−1 containing y. Since the vertical sides of D−1 are external ray segments with a much
smaller external angle difference compared to D0, then D−1 is compactly contained in D0.
By Schwarz Lemma, gp ∶ D−1 → D0 is uniformly expanding with respect to the hyperbolic
metric of D0 and y is its unique repelling fixed point.

For every n ∈ N, let D−n be the lift of D0 under gpn containing y. Consider the lifts Rl,n

and Rr,n of Rl and Rr under gpn which touch the boundary of D−n; these are external rays
landing at points xl,n and xr,n respectively, which are vertices of D−n. By uniform expansion,
xl,n and xr,n converge to y and the external rays Rl,n and Rr,n converge to a limiting external
ray Ry, which is a p-periodic outer external ray. By Lemma 5.2.3, Ry must land at y.

Let c0 denote the critical point of g and for n ∈ Z, let cn ∶= (g∣H′)n(c0).

Lemma 5.2.12. For any pre-critical point c−t ∈H′ of g, there exist an outer periodic point
y∞t and an inner periodic point y0t in K loc(g) such that for ● ∈ {0,∞}, the unique maximal
bubble chain Bt landing at y●t is rooted at c−t.

Proof. We say that a bubble chain of f is in K loc(f) if its intersection with K loc(f) induces
via ϕ a bubble chain in K loc(g). It is sufficient to prove the lemma in the case g = f .

Let us denote by Iε ⊂H the interval of combinatorial length ε centered at c1. We will pick
ε > 0 to be small enough such that the full preimage under f of Iε is contained in the tiling
∆P . Let us pick the first s ∈ N such that c−t−s is contained in Iε. Below, we will construct
the desired outer periodic point y∞t , which will have period p ∶= s + t + 1. The construction of
y0t can be done analogously.

First, let us pick a small closed interval neighborhood J0 ⊂H of c−t. Let us arrange that
the endpoints of J0 are not in the grand orbit of the critical point of f , so there exists a
unique pair of external rays Rl and Rr in the basin A∞ that land on the pair of endpoints of
J0 respectively. Consider the open rectangle D0 cut out by the union of J0 ∪Rl ∪Rr and an
arc connecting Rl and Rr which is contained in the equipotential in A∞ of some small level
λ > 0.

Consider the intervals J−j ∶= (f ∣H)−j(J0) for j ≥ 1. We assume that the combinatorial
length of J0 is small enough such that J−j does not contain c1 for all j ∈ {0,1, . . . , s}, and
in particular J−s is contained in Iε/{c1}. Let us pick an outer bubble B of generation one.
(There are d∞ − 1 of such bubbles.) Let D′0 be the unique lift of D0 under f s+1 such that
∂D′0 ∩ f−1(Iε) = B ∩ f−1(Iε). For sufficiently small ε > 0 and λ > 0, we can guarantee that D′0
is contained in ∆P .
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Figure 5.4: The construction of the map fp ∶D−1 →D0 in the proof of Lemma 5.2.12.

Next, consider the outer bubble B1 rooted at c−t such that f t(B1) = B. Let D−1 be the
lift of D′0 under f t that is attached to B1. See Figure 5.4 for a reference. Since D′0 ⊂∆P ,
then D−1 ⊂ ∆P too. Also, since D−1 is compactly contained in D0, then fp ∶ D−1 → D0 is
uniformly expanding with respect to the hyperbolic metric of D−1, and thus admits a unique
repelling fixed point y∞t .

Let us construct the corresponding outer bubble chain landing at y∞t . For j ≥ 1, we define
the outer bubble Bj+1 inductively to be the unique lift of Bj under fp that is rooted at a
point on Bj ∩D−1. By uniform expansion, the roots of Bj converge to y∞t . Thus, {Bj}j≥1 is
the unique outer bubble chain in K loc(f) that lands at y∞t and is rooted at c−t.

For each pre-critical point c−t of g, consider the outer and inner periodic bubble chains
B∞t and B0t in K loc(g) given by Lemma 5.2.12. For each ● ∈ {0,∞}, the landing point of B●t is
also the landing point of a unique external ray R●t of g. Consider

Tt ∶= Bt ∪Rt where Bt ∶= B∞t ∪ B0t and Rt ∶= R∞t ∪R0
t . (5.2.1)

Lemma 5.2.13 (Rational approximation of γ1(g)). For every ε > 0, there exists a pair of
pre-critical points c−tl , c−tr ∈H′ located on the left and right of x respectively such that Ttl and
Ttr are both in the ε-neighborhood of γ1(g).

Proof. Since pre-critical points are dense on H′, there exists a pair of pre-critical points c−tl
and c−tr on the left and right of x, where the moments tl and tr grow as we require them to
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be arbitrarily close to x. Due to Lemma 5.2.3, the bubble chains within Ttl and Ttr shrink as
we get close to x. The outer (resp. inner) external rays within Ttl and Ttr are also close to
R∞ (resp. R0) because their external angles are close to that of R∞.

We are now ready to run the pullback argument.

proof of Theorem 5.2.7. Let g1 ∶ U1 → V1 and g2 ∶ U2 → V2 be two combinatorially equivalent
(d0, d∞)-critical rotational coronas with rotation number θ ∈ Θbdd. Let f = fd0,d∞,θ ∈ X be the
prototypical Example 4.4.5, and denote its Herman curve by H. From the previous discussion,
for i ∈ {1, 2}, there is a quasiconformal conjugacy ϕi between gi and f on some neighborhood
Wi of the Herman quasicircle Hi of gi onto a neighborhood W of H.

We fix a pre-corona P = (f± ∶ U± → S) of f where S is contained in W , and for i ∈ {1,2},
let Pi = (g± ∶ Ui,± → Si) be the corresponding pre-corona of gi conjugate to P via ϕi. We
consider the local non-escaping set K loc(gi) of gi relative to Pi. The quasiconformal map
ϕ2 ○ ϕ−11 ∶W1 →W2 restricts to a conjugacy h ∶K loc(g1) →K loc(g2) between g1 and g2.

For i ∈ {1,2} and t ∈ {tl, tr}, consider the sets Tt(gi) = Bt(gi) ∪Rt(gi) from Lemma 5.2.13
which approximate the critical arc γ1(g). By design, we can arrange such that for each
t ∈ {tl, tr}, ϕ2 ○ ϕ−11 sends Bt(g1) to Bt(g2), and the outer/inner rays in Rt(g1) and Rt(g2)
have the same external angles. For i ∈ {1,2}, consider the union

Zi =K loc(gi) ∪ ⋃
n≥0

gni (Rtl ∪Rtr).

Clearly, Zi is forward invariant and Vi/Zi consists of finitely many connected components.
Since Rt(g1) and Rt(g2) have the same external angles, h extends to a quasiconformal map
h ∶ V1 → V2 that is equivariant on Zi ∪ ∂LU1.

Let us define a new domain Û1 out of U1 by replacing the forbidden boundary ∂FU1

with some set ∂FÛ1 of curves slightly outside of ∂FU1 such that the image g1(∂FÛ1) is now
contained inside of H1 ∪ Ttl(g1) ∪ Ttr(g1). In the same manner, we replace U2 with a slightly
larger disk Û2 such that h∣Z1 lifts to a conjugacy between g1∣∂Û1

and g2∣∂Û2
.

We can now run the pullback argument. Set h0 ∶= h and we inductively construct
quasiconformal maps hn ∶ V1 → V2 such that

hn(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

hn−1(z), if z /∈ Û1,

g−12 ○ hn−1 ○ g1(z), if z ∈ Û1.

Each hn has the same dilatation as h. Since K loc(g1) is nowhere dense, hn stabilizes and
converges to a quasiconformal conjugacy between g1 and g2.
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5.3 Hyperbolic renormalization fixed point

From now on, let us fix a periodic type irrational θ ∈ Θper. In this section, we will construct the
desired corona renormalization fixed point f∗ and prove most of Theorem J. The remaining
sections §5.4-5.8 are dedicated to proving that the local unstable manifold is one-dimensional.

5.3.1 Corona renormalization fixed point

We say that a rotational corona is standard if the arc γ0 passes through the critical value.
Similarly, we say that a rotational pre-corona is standard if it is a pre-corona around the
critical value.

Theorem 5.3.1. There exists a standard (d0, d∞)-critical rotational corona f∗ ∶ U∗ → V∗ with
rotation number θ which admits a standard rotational pre-corona

F∗ = (fa
∗ ∶ U− → S∗, f

b
∗ ∶ U+ → S∗)

together with a gluing map ψ∗ ∶ S∗ → V∗ projecting F∗ back to f∗ ∶ U∗ → V∗. Moreover, we
have an improvement of domain: ∆F∗ ⋐ U∗.

Proof. Consider the unique normalized (d0, d∞)-critical commuting pair

ζ = (f− ∶ I− → I, f+ ∶ I+ → I)

with rotation number θ in the renormalization horseshoe from Theorem 4.6.7. Let us
break down the quasiarc I into I− ∪ I+ = [f+(0),0] ∪ [0, f−(0)]. Fix a positive integer
n ∈ N. There exists some µ ∈ D independent of n such that there is a pre-renormalization
ζn = (fn,− ∶ J− → J, fn,+ ∶ J+ → J) of ζ on a subinterval J ⊂ I that is conjugate to ζ via the
linear map Ln(z) = µnz. We will convert this renormalization fixed point in the category of
commuting pairs to that in the category of critical quasicircle maps, and then project it to
that in the category of rotational coronas.

Consider the gluing map ϕ1 ∶= Gζ described in Proposition 4.4.4. Then, ϕ1 projects the
modified commuting pair ζ ′ ∶= (f−∣[f+f−(0),0], f+f−∣[0,f−(0)], ) into a (d0, d∞)-critical quasicircle
map g ∶H→H having the same rotation number θ.

Denote by c0 ∶= ϕ1(0) the critical point of g, and let ck ∶= gk(c0) for all k ∈ N. Consider
the modification of ζn, which is ζ ′ rescaled by Ln, and project it to the dynamical plane of g
via ϕ1 to obtain a commuting pair gn = (gan ∣[cbn ,c0], gbn ∣[c0,ca]) for some return times an and
bn. Then, ψ1 ∶= ϕ1Lnϕ−11 is the gluing map projecting gn back to g.

To make it standard, we will push gn forward under one iterate of g. More precisely, we
will consider ψ2 ∶= g ○ ψ1 ○ g−1. It is well-defined because for every point z close to c1, the
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preimage g−1(z) is a set of d = d0 + d∞ − 1 points close to c0 whose images under ψ1 remain
close to c0 and get mapped to the same point ψ2(z) under g. The new gluing map ψ2 sends
a small neighborhood of c1 to a neighborhood of H. Moreover, ψ2 fixes the critical value c1
and projects (gan ∣[cbn+1,c1], gbn ∣[c1,can+1]) back to g.

By Corollary 5.2.6, g admits a standard pre-corona P defined in a small neighborhood of
c1. The corresponding gluing map ϕ2 projects P onto a (d0, d∞)-critical rotational corona
f∗ ∶ U∗ → V∗. Since θ is periodic, we can prescribe f∗ to have rotation number θ. The
corresponding Herman quasicircle H∗ of f∗ is the image of (an interval in) H under ϕ2.

Let us rescale the pre-corona P by ψ−12 to obtain yet another pre-corona P ′ in the
dynamical plane of g with a much smaller domain compared to P . Project P ′ via ϕ2 to obtain
a pre-corona F∗ of f∗. The map ψ∗ ∶= ϕ2 ○ ψ2 ○ ϕ−12 will project the pre-corona F∗ back to f∗.
The improvement of domain property is satisfied once we take n to be sufficiently high.

Corollary 5.3.2. Let f∗ and F∗ be from the previous theorem. There exist a pair of small
Banach neighborhoods U and B of f∗ and a compact analytic corona renormalization operator
R ∶ U → B such that Rf∗ = f∗ and the pre-renormalization of Rf∗ is F∗. Moreover, for any
rotational corona f in U with the same rotation number θ, f is infinitely renormalizable and
Rnf converges exponentially fast to f∗.

Proof. The existence of R ∶ U → B follows from Theorems 5.1.6 and 5.3.1. Exponential
convergence is guaranteed by Theorem 4.6.6 (2) provided that U is a sufficiently small
neighborhood of f∗.

Let us again denote by G the Gauss map acting on on (0,1)/Q.

Lemma 5.3.3. Consider any irrational θ′ ∈ Θpre where Gk(τ) = θ for some k ∈ N. For any
Banach neighborhood U of f∗ and any (d0, d∞)-critical quasicircle map f of rotation number
θ′, there is a compact analytic corona renormalization operator R1 ∶ N(f) → U on a Banach
neighborhood N(f) of f .

Proof. By Theorem 4.6.7 (2), there is a high m ∈ N such that Rmf is a critical commuting
pair of rotation number θ that is arbitrarily close to the critical commuting pair ζ∗. By
quasiconformal rigidity, f admits a rotational pre-corona F which projects to a rotational
corona g of rotation number θ close to f∗. By Theorem 5.1.6, there is a compact analytic
renormalization operator R1 on a small neighborhood of f such that R1(f) = g.

5.3.2 Renormalization tiling

Recall from Theorem 5.1.6 that every corona f in U has the same codomain V and critical
arc γ1 as the renormalization fixed point f∗.
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Let us pick a positive integer n and a corona f = f0 in the neighborhood

Un ∶= ⋂
0≤k≤n

R−k(U)

of f∗. In particular, f is n times renormalizable. For k ≤ n, denote by

⊳ fk ∶= Rkf = [fk ∶ Uk → V ] the kth renormalization of f ,

⊳ ψk ∶ Sk → V the renormalization change of variables for fk−1, and

⊳ ϕk ∶= ψ−1k .

For k ∈ {0,1, . . . , n}, let us cut the dynamical plane of fk along the critical arc γ1 and
obtain a pre-corona

Fk = (fk,± ∶ Uk,± → V /γ1).

The map
Φn ∶= ϕ1 ○ ϕ2 ○ . . . ϕn

is well defined on V /γ1 and projects Fn to the dynamical plane of f as the pre-corona

F
(0)
n = (f (0)n,± ∶ U (0)n,± → S

(0)
n ) where f

(0)
n,− = fan

0 and f (0)n,+ = fbn
0

for some return times an and bn. Let us also set Φ0 ∶= Id.
Let us divide U0 along the arcs γ0 and γ1 to obtain a tiling ∆0 of U0 consisting of two tiles

∆0(0) and ∆0(1). We make the convention that ∆0(0), γ0, and ∆0(1) are in counterclockwise
order. The tiling ∆0 is called the zeroth tiling associated to f0.

Next, define the nth tiling ∆n associated to f by spreading around U (0)n,± via f . It consists
of f i (U (0)n,−) for i ∈ {0,1 . . . ,an − 1} and f j (U (0)n,+) for j ∈ {0,1 . . . ,bn − 1}. Let us denote by
∆n(0) the image of the zeroth tile ∆0(0, fn) of fn under Φn, label the rest of the tiles in ∆n

in counterclockwise order by ∆n(i) for i ∈ {0,1, . . . ,an + bn − 1}. See Figure 5.5.
If f is rotational, then ∆n always forms an annular neighborhood of the Herman quasicircle

of f . In general, the map f always acts almost like a rotation on the tiling ∆n. There exists
pn ∈ N≥1 such that f maps ∆n(i) univalently onto ∆n(i + pn) whenever i /∈ {−pn,−pn + 1}.
Moreover, f maps ∆n(−pn) ∪∆n(−pn + 1) back to S(0)n almost as a degree d covering map
branched at its critical point c0(f).

Lemma 5.3.4. The operator R ∶ U → B can be arranged such that the following holds. For
f ∈ Un,

(1) there is a holomorphic motion of ∂∆0, . . . , ∂∆n over f ∈ Un that is equivariant with
respect to f ∶ ∂∆n(i) → ∂∆n(i + pn) for i /∈ {−pn,−pn + 1};
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Figure 5.5: The construction of the first tiling ∆1 when (an,bn) = (3,2).

(2) for every f ∈ Un and 1 ≤ k ≤ n, ∆m ∪ f(∆m) ⋐∆m−1;

(3) the tiling ∆n(f) is close to the Herman curve of f∗ in Hausdorff topology.

Proof. Let us first consider the case where f = f∗. By the improvement of domain property
in Theorem 5.3.1, the diameters of the tiles in ∆n(f∗) must shrink to 0 as n→∞. Consider
a tile ∆1(i, f∗). There is some t ≥ 0 and j ∈ {0, 1} such that f t∗ sends ∆1(j, f∗) onto ∆1(i, f∗).
By replacing R with some high iterate Rk if necessary, the map

ψ∗ ○ f−t∗ ∶∆1(i, f∗) →∆0(j, f∗)

expands the Euclidean metric by some high factor C > 1. Inductively, (2) and (3) hold for f∗.
By design, it is clear that ∂∆0 moves holomorphically over f ∈ U . For 1 ≤ k ≤ n, we push

forward the holomorphic motion ∂∆0(fk) via Φk and spread it around dynamically to obtain
a holomorphic motion of ∂∆k(f) over f ∈ Un.

By continuity, every f ∈ Un also satisfies the following property. For any tile ∆n(i, f)
in ∆n(f), there is some t ≥ 0 and j ∈ {0,1} such that f t sends ∆n(j, f) onto ∆n(i, f). We
obtain a holomorphic motion of ∂∆n(f) by pulling back the holomorphic motion of ∂∆0(fn)
via maps of the form

Ψn,i ∶= Φ−1n ○ f−t ∶∆n(i, f) →∆0(j, fn) (5.3.1)

for each tile. This implies (1). Moreover, (2) follows from the observation that each Ψn,i

expands the Euclidean metric by a factor close to Cn. Moreover, (3) follows from (1) as well
as the special case of (3) for f = f∗.
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Let us extend the tiling ∆n of a subset of U0 to a full tiling of U0 as follows. Consider

γ̂0 ∶= γ0/f−1(U0) and Γ ∶= ∂U0 ∪ γ̂0.

Observe that γ̂0 is a disjoint union of two subarcs γ̂00 and γ̂∞0 of γ0 where each γ̂●0 connects
the boundary component ∂●U0 to f−1(U0). Consider the maps Ψn,i from (5.3.1).

Lemma 5.3.5. When U is sufficiently small, the following holds for all f ∈ U .

(1) Γ(f1) contains Ψ1,i (∂∆1(f) ∩ ∂∆1(i, f)) for every i ∈ {0,1, . . . ,an + bn − 1}. There is
some i such that γ̂0(f1) is contained in Ψ1,i (∂∆1(f) ∩ ∂∆1(i, f)).

(2) Γ(f) is disjoint from ∂∆1(f).

(3) For ● ∈ {0,∞}, there is an arc ξ●0 such that both ξ●0 ∪ γ̂●0 and ξ●1 ∶= f(ξ●0) connect ∂●U0

and ∂∆1(f).

Moreover, ξ0 ∶= ξ00 ∪ ξ∞0 and ξ1 ∶= ξ01 ∪ ξ∞1 can be chosen such that there is a holomorphic
motion of

Γ ∪ ξ0 ∪ ξ1 ∪∆1

over f ∈ U that is equivariant with respect to

⊳ f ∶ ξ0(f) → ξ1(f),

⊳ f ∶∆1(i, f) →∆1(i + p1, f) for i ≠ {−p1,−p1 + 1}, and

⊳ Ψ1,i ∶ ∂∆1(f) ∩∆1(i, f) → Γ(f1) for all i.

Proof. Every tile ∆1(i, f) is a rectangle. Clearly, each Ψ1,i maps the horizontal sides of
∆1(i, f) into ∂U1. Let us label the vertical sides of ∆1(i, f) by l(i) and r(i) such that each
l(i) intersects the side r(i + 1) of the next tile. Then, the intersection ∂∆1(f) ∩ ∂∆1(i, f)
is the union of the horizontal sides of ∆1(i, f) and the symmetric difference l(i) △ r(i + 1)
between touching vertical sides across all i’s.

It is clear that l(i) ≠ r(i + 1) for at least one i. For such i, either l(i) is the preimage of
γ0(f1) under Ψ1,i and r(i + 1) is the preimage of the arc γ1(f1) under Ψ1,i+1, or vice versa.
In this case, l(i) △ r(i + 1) will be mapped by Φ1,i or Φ1,i+1 onto γ̂0(f1). This implies (1).

Item (2) follows directly from Lemma 5.3.4. Moreover, (2) allows us to find for each
● ∈ {0,∞} a proper arc ξ●0 in U0/(γ̂0 ∪∆1) in a small neighborhood of γ0 that connects the
tip of γ̂●0 to a point on ∂∆1(i, f) for some i ≠ {−p1,−p1 + 1}. This yields (3).

In Lemma 5.3.4, we already established the equivariant holomorphic motion of ∂∆0∪∂∆1.
By lifting via Φ1,i, this motion immediately extends to an equivariant motion of Γ. We then
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Figure 5.6: The first full renormalization tiling of U0.

lift the motion of ∆0(f1) via Ψ1,i to obtain an equivariant motion of ∂∆1 ∪ Γ. Finally, by
applying the λ-lemma, we extend this motion to Γ ∪ ξ0 ∪ ξ1 ∪∆1.

For n ∈ N, we define the nth full renormalization tiling of U0 to be the union of the tilings
∆n and Ak for k = 0,1, . . . , n − 1 where the latter is constructed as follows. Each Ak is a
disjoint union of two tilings A0

k and A∞k where the former is closer to ∂0U0 and the latter is
closer to ∂∞U0. For each ● ∈ {0,∞},

⊳ A●0 is the connected component of ∆0/∆1 that touches ∂●U0 on the boundary, and it is
split by γ̂●0 ∪ ξ●0 ∪ ξ●1 into two tiles A●0(0), A●0(1). Again, we make the convention that
A●0(0), γ̂●0 ∪ ξ●0, A●0(1) are in counterclockwise order.

⊳ A●k is the connected component of ∆k/∆k+1 that touches ∂●∆k on the boundary, and it
has tiles {A●k(i)}i=0,1,...,ak+bk−1 obtained by spreading via forward iterates of f the tiles
A●k(j, f) ∶= Φk(A●0(j, fk)) for j ∈ {0,1} and labeled in counterclockwise order.

The first full renormalization tiling is illustrated in Figure 5.6.

Definition 5.3.6. A quasiconformal combinatorial pseudo-conjugacy of level n between
f and f∗ is a quasiconformal map h ∶ Ĉ → Ĉ that sends U0 to U⋆ and preserves the nth

renormalization tiling as follows.
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(1) The map h sends ∆n(i, f) to ∆n(i, f∗) for all i, and is equivariant on ∆n(i, f) for all
i /∈ {−pn,−pn + 1};

(2) For all ● ∈ {0,∞} and k ∈ {0,1, . . . n − 1}, h sends A●k(i, f) to A●k(i, f∗) for all i, and is
equivariant on A●k(i, f) for all i /∈ {−pk,−pk + 1}.

Theorem 5.3.7 (Combinatorial pseudo-conjugacy). Consider f ∈ Un and let

D ∶= max
0≤k≤n

dist(fk, f∗).

There is a KD-quasiconformal combinatorial pseudo-conjugacy h of level n between f and f∗
such that

sup
z∈∆n(f)

∣h(z) − z∣ ≤MD.

Moreover, KD → 1 and MD → 0 as D → 0.

Proof. Recall that each tile A●k(i, f) admits some t ∈ N and j ∈ {0, 1} such that Ψk,i ∶= Φ−1k ○f−t
univalently maps A●k(i, f) onto A●0(j, fk). By Lemma 5.3.5, we have a holomorphic motion of
the first full renormalization tiling over U. Let us pull back this motion via maps of the form
Ψn,i to obtain a holomorphic motion of the full nth renormalization tiling. By equivariance
and λ-lemma, this holomorphic motion induces the desired quasiconformal map h. The
dilatation KD of h is bounded by the dilatation of the motion at f0, f1, . . . fn, which depends
only on D, where KD → 1 as D →∞. The upper bound MD follows from the continuity of
the holomorphic motion and the compactness of quasiconformal maps.

Corollary 5.3.8. There is some ε > 0 such that the following holds. Suppose f ∈ U is
infinitely renormalizable and Rnf is in the ε-neighborhood of f∗ for all n ∈ N. Then, f is a
rotational corona with rotation number θ.

Proof. By Theorem 5.3.7, we have a K(ε)-quasiconformal combinatorial pseudo-conjugacy hn
of level n between f and f∗ for all n ∈ N. By the compactness of K-quasiconformal maps, hn
converges in subsequence to a quasiconformal map h ∶ Ĉ→ Ĉ, and h−1 must be a conjugacy on
the Herman quasicircle H∗ of f∗. The image h−1(H∗) is a Herman quasicircle of f containing
the critical point c0(f) and separating the boundaries of the domain of f . It follows that f
must be a rotational corona with rotation number θ.

5.3.3 Towards hyperbolicity

Theorem 5.3.9. The renormalization operator R ∶ U → B is hyperbolic at the fixed point f∗
with a finite positive dimensional local unstable manifold Wu

loc. If U is sufficiently small, the
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local stable manifold Ws
loc of f∗ consists of the set of (d0, d∞)-critical rotational coronas in U

with rotation number θ.

Proof. Consider a corona f near f∗ lying on the local stable manifold Ws
loc. For sufficiently

small U , Rnf is in the ε-neighborhood of f∗ for all n ∈ N. By Corollary 5.3.8, f must be a
rotational corona with rotation number θ.

Let us consider the derivative DRf∗ of the renormalization operator at the fixed point f∗.
By the compactness of R, the number of neutral and repelling eigenvalues is finite. We claim
that neutral eigenvalues do not exist and repelling eigenvalues must exist.

Suppose for a contradiction that there are neutral eigenvalues. By Small Orbits Theorem
2.3.1, there exists an infinitely renormalizable corona f such that its forward orbit lies entirely
in the ε-neighborhood of f∗ and it satisfies

lim
n→∞

1

n
logdist(Rnf, f∗) = 0. (5.3.2)

By Corollary 5.3.8, f must be a rotational corona with the same rotation number θ as f∗. By
Corollary 5.3.2, renormalizations Rnf converge to f∗ exponentially fast, which contradicts
(5.3.2). Hence, neutral eigenvalues do not exist.

Consider the family of rational maps Fc from Proposition 4.3.8. By combinatorial rigidity,
there is a unique parameter c∗ such that Fc∗ admits a Herman quasicircle with the same
rotation number as f∗. By Lemma 5.3.3, there is an analytic renormalization operator R1

on a neighborhood of Fc∗ such that R1Fc∗ is a rotational corona with rotation number θ
that is sufficiently close to f∗. For any parameter c ≠ c∗ sufficiently close to c∗, R1Fc is also
sufficiently close to f∗. By the uniqueness of c∗, the parameter c can be picked such that Fc
is postcritically finite, and so R1Fc is not a rotational corona.

Suppose for a contradiction that DRf∗ has no repelling eigenvalues. Then, Ws
loc is an

open neighborhood of f∗ and contains R1Fc. However, the non-rotationality of R1Fc would
contradict Corollary 5.3.8.

5.4 Transcendental extension

From now on, we will consider the corona renormalization operator R ∶ U → B together with
its hyperbolic fixed point f∗ ∶ U∗ → V∗ constructed in Section 5.3.

Definition 5.4.1. A map g ∶ A→ B is said to be σ-proper if there exist exhaustions An, Bn

of A, B respectively such that for all n, g ∶ An → Bn is a proper map; equivalently, every
connected component of the preimage of a compact set under g is compact.
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In [McM98], McMullen proved the existence of maximal σ-proper extensions of holomorphic
commuting pairs associated to renormalizations of quadratic Siegel disks. This is generalized
in [DLS20, Theorem 5.5] where pre-pacmen on the local unstable manifold are shown to
admit maximal σ-proper extension. In this section, we will show that our case is no different.
We will study coronas in the local unstable manifold Wu

loc of f∗, which we will identify as a
parameter space (of unknown dimension) of transcendental holomorphic maps onto C.

5.4.1 Maximal σ-proper extension

Consider a corona f ∶ U → V lying in the local unstable manifold Wu
loc of f∗. Since f is

infinitely anti-renormalizable, it comes with a backward tower of corona renormalizations
{fk ∶ Uk → V }k≤0, where each fk embeds into Uk−1 as a pre-corona Fk = (fk,± ∶ Uk,± → Sk)
consisting of iterates of fk−1. Let ψk ∶ Sk → V be the renormalization change of variables
realizing the renormalization of fk−1 and let ϕk ∶= ψ−1k ∶ V → Sk.

Let us normalize our coronas such that they have a critical value at 0. For each k ≤ 0,
consider the translation Tk(z) = z − c1(fk) and denote

U ♮k = Tk(Uk), V ♮k = Tk(V ), U ♮k,± = Tk−1(Uk,±), S♮k = Tk−1(Sk).

The translations Tk’s normalize our maps fk, Fk, and ϕk into

f ♮k ∶ U ♮k → V ♮k , F ♮k ∶= (f ♮k,± ∶ U ♮k,± → S♮k), ϕ♮k ∶ V ♮k → S♮k

respectively. Consider the linear map

A∗(z) ∶= µ∗z

where µ∗ ∶= (ϕ♮∗)′(0) ∈ D is the self-similarity factor of f∗.

Lemma 5.4.2. The limit

h♮f(z) ∶= lim
k→−∞

Ak∗ ○ ϕ♮k+1 ○ . . . ○ ϕ♮1 ○ ϕ♮0(z)

defines a univalent map on a neighborhood D of 0 where D is independent of f .

Proof. As ϕ♮k → ϕ♮∗ exponentially fast, so is the derivative µk ∶= (ϕ♮k)′(0) towards µ∗. There
are positive constants ε and δ such that ε < 1 − ∣µ∗∣ and for all ∣z∣ < δ and k ≤ 0, we have
∣ϕ♮k(z)∣ ≤ (∣µ∗∣ + ε)∣z∣. Therefore, for all ∣z∣ < δ and k ≤ 0,

∣ϕ♮k+1 ○ . . . ○ ϕ♮0(z)∣ ≤ (∣µ∗∣ + ε)−k∣z∣.
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The sequence h(k)(z) ∶= Ak∗ ○ ϕ♮k+1 ○ . . . ○ ϕ♮0 ○ ϕ♮0(z) indeed converges to a univalent map on
{∣z∣ < δ} since

h(k−1)(z)
h(k)(z) =

ϕ♮k (ϕ♮k+1 ○ . . . ○ ϕ♮0(z))
µ∗ϕ♮k+1 ○ . . . ○ ϕ♮0(z)

= µk
µ∗
+O(∣ϕ♮k+1 ○ . . . ○ ϕ♮0(z)∣) → 1

exponentially fast as k → −∞.

For k ≤ 0, let h♮k ∶= h♮fk and denote its rescaling by h#k ∶= Ak∗ ○ h♮k. The following properties
are easy to verify.

Proposition 5.4.3. For k ≤ 0,

h♮k−1 ○ ϕ♮i = A∗ ○ h♮k and h♮0 = h#k ○ ϕ♮k+1 ○ . . . ○ ϕ♮0.

Moreover, h♮0 extends to a univalent map on the interior of V ♮0 /γ♮1.

The maps h♮k act as linear coordinates under which renormalization change of variables
are simply linear maps. Objects in linear coordinates will be written in bold:

Uk,± ∶= h♮k(U ♮k,±), Sk ∶= h♮k(S♮k), Fk ∶= (fk,± ∶Uk,± → Sk).

Often, we will also work with the rescaled linear coordinates h#k in which we add the symbol
“#“ as follows:

U#
k,± ∶= h

#
k (U ♮k,±), S#

k ∶= h
#
k (S♮k), F#

k ∶= (f
#
k,± ∶U

#
k,± → S#

k ) .

By design, it is clear that for all k ≤ 0,

f#k,± = Ak∗ ○ fk,± ○A−k∗ . (5.4.1)

Lemma 5.4.4. There is a matrix of positive integers M =
⎛
⎝
m11 m12

m21 m22

⎞
⎠

such that for every

negative integer k,

f#k+1,− = (f
#
k,−)

m11 ○ (f#k,+)
m12 and f#k+1,+ = (f

#
k,−)

m21 ○ (f#k,+)
m22

.

Proof. The action of renormalization restricted to the Herman quasicircle of f∗ is a sector
renormalization, and in particular an iterate of prime renormalization. See §2.1.3. The
existence of such a matrix M follows from §2.1.4.

Theorem 5.4.5 (Maximal extension). Assume U is a sufficiently small Banach neighborhood
of f∗. For every f ∈ Wu

loc and every k ≤ 0, the maps f#k,± described above extend to σ-proper
branched coverings X#

k,± → C, where X#
k,± are simply connected domains in C.
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Remark 5.4.6. Actually, X#
k,± are dense subsets of C. For the renormalization fixed point f∗,

this will follow from Corollary 5.6.32 (2). For general f ∈ Wu
loc, this property will be apparent

after we establish Theorem 5.7.5 on the holomorphic motion of ∂X#
k,±.

Proof. For every k ≤ 0, the composition ϕk+1 ○ . . . ○ ϕ0 embeds the pre-corona F0 = (f0,± ∶
U0,± → V /γ1) to the dynamical plane of fk as a pair of iterates

(fak

k ∶ U
(k)
0,− → V

(k)
0 , fbk

k ∶ U
(k)
0,+ → V

(k)
0 ) . (5.4.2)

Since ϕk is contracting at the critical value, the diameter of U (k)0,± → V
(k)
0 shrinks to 0 as

k → −∞.
To proceed, we need the following technical lemma.

Lemma 5.4.7. Assume U is a sufficiently small Banach neighborhood of f∗. There is an
open disk D around the critical value c1(f∗) of f∗ such that for all sufficiently large n ∈ N,
t ∈ {an,bn}, and f ∈ R−n(U), then f t(c1(f)) is contained in D and D can be pulled back by
f t to a disk D0 ⊂ Uf/γ1 containing c1(f) on which f t ∶D0 →D is a branched covering.

This lemma initially appears in [DLS20, Key Lemma 4.8] in the context of quadratic
Siegel pacmen. Due to its length, the proof will be supplied later in §5.4.2. The lemma tells
us that for sufficiently large k ≪ 0, the disk D contains the set {c1+ak

(fk), c1+bk
(fk)} and the

pair in (5.4.2) extends to a commuting pair of branched coverings

(fak

k ∶W
(k)
− →D, fbk

k ∶W
(k)
+ →D) , (5.4.3)

where W (k)
± ∪D are disks in V /γ1 containing c1(fk). By conjugating with h#k ○Tk, we transform

this pair into the commuting pair of branched coverings

f0,± ∶W(k)
± →D(k)

where
W
(k)
± ∶= h#k ○ Tk(W

(k)
± ) and D(k) ∶= h#k ○ Tk(D).

For all sufficiently large t and m ≤ 0, D(tm) is compactly contained in D(tm−t), and

mod (D(tm−t)/D(tm)) ≻ 1.

As such,
∞

⋃
k<0

D(k) = C.

The maps f0,± extend to σ-proper branched coverings from X0,± ∶= ⋃k<0W(k)
± onto C. It is

clear from the construction that X0,± is a simply connected domain.

166



The proof of the theorem above actually gives us something stronger, which we will use
later in Section §5.7.2.

Lemma 5.4.8 (Stability of σ-branched structure). Assume U is a sufficiently small Banach
neighborhood of f∗. For every f ∈ Wu

loc, there are sequences of nested disks

W
(−1)
± ⊂W(−2)

± ⊂W(−3)
± ⊂ . . . and D(−1) ⊂D(−2) ⊂D(−3) ⊂ . . .

where

⋃
k<0

W
(k)
± =X0,± and ⋃

k<0

D(k) = C,

such that for every k < 0,

(1) each of W(k)
± and D(k) depends continuously on f ;

(2) the maps f0,± ∶W(k)
± →D(k) are proper branched coverings of fixed finite degree;

(3) critical points of f0,± ∶W(k)
± →D(k) move holomorphically over f ∈ U .

Proof. The construction of such disks is similar to the proof of the previous theorem. We
add the following modification. By Theorem 5.3.7, we can replace the disk D with a slightly
smaller disk D(f0, k) depending continuously on f0 such that for all i ≤max{ak,bk},

ci(f∗) ∈D(f∗, k) if and only if ci(fk) ∈D(f0, k).

Under this replacement, the domains of branched coverings (fak

k , fbk

k ) from (5.4.3) become

f0,± ∶W±(f0, k) →D(f0, k),

which depend continuously on f0. By conjugating with h#k ○ Tk, we obtain the commuting
pair f0,± ∶W(k)

± →D(k) with the desired property.

5.4.2 Key lemma for transcendental extension

Let us now discuss the proof of Lemma 5.4.7.
Fix a small neighborhood D of the critical value c1(f∗) of the renormalization fixed point

f∗. Fix n ∈ N and a large constant s ∈ N. We will denote by an and bn the nth renormalization
return times. Consider a corona f that is m ∶= n + s times renormalizable such that fi ∶= Rif
is close to f∗ for all i ∈ {1, . . . ,m}. We will denote the critical orbit by cj(f) ∶= f j(c0(f)).
Our goal is to show that for t ∈ {an,bn}, c1+t(f) is contained in D and there is a branched
covering map f t ∶ (D0, c1(f)) → (D, c1+t(f)). The proof we present below is similar to the
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Key Lemma in [DLS20], which is to ensure that pullbacks of D must avoid the forbidden
boundary.

Let h be a level m combinatorial pseudo-conjugacy between f and f∗, and consider
the renormalization tiling ∆m(f) ∶= h−1(∆m(f∗)) defined in §5.3.2. Recall that f maps
∆m(f, i) univalently onto ∆m(f, i + pn) whenever i /∈ {−pm,−pm + 1}, and on ∆m(f,−pm) ∪
∆m(f,−pm + 1), f is almost a degree d covering map branched at its critical point c0(f) onto
its image, which contains ∆m(f,0) ∪∆m(f,1). By Theorem 5.3.7, h is close to the identity
map and ∆m(f) approximates the Herman quasicircle H∗ of f∗.

In the dynamical plane of f∗, for sufficiently large n≫ 0, both c1+an(f∗) and c1+bn(f∗)
are contained in D because it is sufficiently close to c1(f∗). Let us fix t ∈ {an,bn}. Since s is
picked to be large,

t ≤max{an,bn} <min{am,bm} − 1.

Therefore, the orbit {cj(f∗)}j=1,2,...t+1 avoids both ∆m(−pm, f∗) and ∆m(−pm + 1, f∗). Since
h is close to the identity, it follows that c1+t(f) is also contained in D.

Let
D1, D2, . . . , Dt+1 ∶=D

denote the lift of D along the orbit c1(f), c2(f), . . . , c1+t(f). We would like to show that
for i ∈ {1,2, . . . , t}, the disk Di does not intersect ∂FUf so that f ∶ Di → Di+1 is a branched
covering.

5.4.2.1 A new tiling Λm

We say that a subset I of Z/qmZ is an interval if it is a sequence of consecutive elements of
Z/qmZ of cardinality less than pm. For any interval I in Z/qmZ, we will use the notation

∆m(I) ∶= ⋃
i∈I

∆m(i)

and

f−1I ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I − pm if I ∩ {pm,pm + 1,0,1} = ∅,
(I − pm) ∪ {−pm,−pm + 1} if I ∩ {0,1} ≠ ∅,
(I − pm) ∪ {0,1} if I ∩ {pm,pm + 1} ≠ ∅.

The following property holds.

Claim 1. For any interval I in Z/qmZ, the lift of ∆m(I) under f ∣∆m is contained in ∆m(f−1I).

First, consider the dynamical plane of fm ∶= Rmf ∶ Um → V . Let us define the tiling
Λ0(fm) ∶= {Λ0(i, fm)}i∈{0,1}, which is a skinnier version of ∆0(fm), as follows. For i ∈ {0,1},
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we define Λ0(i, fm) to be the closure of the connected component of f−1m (Um)/ (γ0(fm) ∪ γ1)
contained in ∆0(i, fm). Let us embed it via Φm to the dynamical plane of f and spread it
around via iterates of f to obtain the tiling Λm = Λm(f).

Similar to Claim 1, we have:

Claim 2. For any interval I in Z/qmZ, we have

Λm(I) = Λm ∩∆m(I)

and the lift of Λm(I) under f ∣Λm is contained in Λm(f−1I).

The problem with the tiling ∆m is that for j ∈ {1, . . . , t}, even when Dj+1∩∆m is contained
in ∆m(I) for some interval I, it is possible that Dj ∩∆m is not contained in ∆m(f−1I).
However, this issue does not occur for the tiling Λm.

Claim 3. For any interval I in Z/qmZ, any j ∈ {0,1, . . . ,min{am,bm} − 1}, and any subset
T ⊂ V ,

T ∩∆m ⊂∆m(I) Ô⇒ f−j(T ) ∩Λm ⊂ Λm(f−jI).

Proof. By construction, the tiling Λ has the property that f j(Λm) ⊂ ∆m for all j <
min{am,bm}. Let I, j, and T be as in the hypothesis and suppose T ∩∆m is contained
in ∆m(I). Consider a point z in Λm such that f j(z) is contained in T . Clearly, f j(z) is
in ∆m(I), and by Claim 1, z is contained in ∆m(f−jI). By Claim 2, the point z is indeed
contained in Λm(f−jI).

Consider the smallest interval It+1 in Z/qmZ such that

{0,1} ⊂ It+1 and Dt+1 ∩∆m(f) ⊂∆m(It+1).

For j ∈ {1, . . . t}, let Ij ∶= f−(t+1−j)It. It is assumed that D ∩H∗ is roughly a level less than n
combinatorial interval, so, since m ≻ n, ∣Ij ∣ is large for all j.

Let us fix some positive integer η where η ≪ t. This will be taken to be the maximum of
the periods η●k introduced in the next subsection.

Claim 4. For j ∈ {1,2, . . . t + 1},

(1) ∣Ij ∣/qm is small and ∆m(Ij, f∗) ∩H∗ has a small combinatorial length;

(2) if j ≤ t − 2 − η, the intervals Ij, Ij+1, . . . , Ij+η+3 are pairwise disjoint;

(3) if 1 ≤ j ≤ η + 2, then Ij is disjoint from {−pm,−pm + 1}.
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Figure 5.7: The spines of f∗ of generation one when (d0, d∞) = (2,3).

Proof. Since the rotation number is of bounded type, the combinatorial length of the inter-
section of H∗ with every tile of ∆m(f∗) is comparable. Since D is assumed to be small and s
is taken to be sufficiently large, (1) follows.

Since (2) is combinatorial in nature, it suffices to prove (2) in the dynamical plane of f∗,
which is obvious from the irrational rotational action of f∗ on H∗. If (3) does not hold, then
for some integer j ∈ [2, η + 3], the interval Ij intersects {0, 1}, but this contradicts (2) and the
fact that I1 must intersect {0,1}.

5.4.2.2 Spines and pseudo-spines

Let us first consider the dynamical plane of f∗. Recall that the preimage of f−1∗ (γ1)/γ0
consists of arcs

γ01 , . . . , γ
0
2(d0−1)

⊂ ∂0U∗, γ∞1 , . . . , γ
∞
2(d∞−1)

⊂ ∂∞U∗.

The strict preimage f−1(H∗)/H∗ is a bouquet of pairwise disjoint arcs

σ0
1, . . . , σ

0
2(d0−1)

, σ∞1 , . . . , σ
∞
2(d∞−1)

where each σ●i connects c0(f∗) to a point on γ●i . We call each of σ●i a spine of f∗ of generation
one. In general, a spine of generation g ≥ 1 is a lift of under f g−1∗ of a spine of generation one,
and its root is the endpoint that is a critical point of f g∗ .

A spine chain of generation g is an infinite sequence of spines

Σ = (S1, S2, S3, . . .)
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of increasing generation such that S1 has generation g and for all i ≥ 1, the root of Si+1
is contained in Si. We say that a spine chain S is periodic with period p if for all i ≥ 1,
fp∗(Si+1) = Si.

The following is a direct consequence of Lemma 5.2.3 and Theorem 5.2.7.

Proposition 5.4.9. Every spine chain of f∗ lands at a unique point. Different spine chains
admits different landing points. The landing point of a periodic spine chain of period p is a
repelling periodic point of period p, and it is also the landing point of exactly one periodic
external ray of period p.

When f is rotational with bounded type rotation number, the notion of spines of f can
be formulated analogously and the proposition above holds. Below, we will formulate an
analog of bubbles for arbitrary coronas f which are sufficiently close to f∗. This is achieved
by replacing H∗ with Λm(f).

For f , ● ∈ {0,1}, and i ∈ {1, . . . ,2(d● − 1)}, we define the pseudo-spine S●i of generation
one to be the closure of the connected component of f−1(Λm)/Λm that intersects with the
spine σ●i of f∗. Each S●i is connected and

S●i ∩Λm ⊂ Λm({−pm,−pm + 1}), f(S●i ) ⊂ Λm.

We say that every pseudo-spine of generation one is attached to Λ({−pm,−pm + 1}). In
general, a pseudo-spine of generation g ≥ 1 is a lift under f g−1 of a pseudo-spine of generation
one.

Let us fix a large integer M ≫ 1. We will assume that f is sufficiently close to f∗ depending
on M .

Claim 5. Every spine S of f∗ of generation up to M is approximated by a pseudo-spine S of
f such that

1. S is close to S and f ∣S is close to f∗∣S,

2. if S is attached to another spine S′, then S is attached to the pseudo-spine corresponding
to S′;

3. if S is attached to H∗, then S is attached to Λm(I) for some interval I disjoint from
{0,1}.

Proof. This is because Λm compactly contains and well approximates H∗.

Let us fix ● ∈ {0,1} and k ∈ {1, . . . ,2(d● − 1)}. Let us construct a periodic spine chain

Σ●k = (S1, S2, S3, . . .)
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for f∗ that is very close to γ●k. First, we set S1 ∶= σ●k. Let us pick η●k ≥ 1 such that the
pre-critical point c−η●

k
+1(f) is close to the critical arc γ1. Let c●k be the preimage of c−η●

k
+1(f)

located on σ●k close to γ●k. Then, we set S2 to be the unique spine rooted at c●k that is the lift
of S1 under f η●k . The other spines are then defined by induction, forming a periodic spine
chain of period η●k.

Let x●k(f∗) be the landing point of Σ●k. It is a repelling periodic point of period η●k and it
is also the landing point of a periodic external ray R●k(f∗). Since f is close to f∗, periodic
rays R●k(f) and repelling periodic points x●k(f) exist in the dynamical plane of f .

Let us define a periodic pseudo-spine chain

Σ●k = (S1,S2,S3, . . .) (5.4.4)

for f landing at x●k(f) as follows. Assume M ≫ η●k and let M ′ ∈ N satisfy η●kM
′ ≤ M . For

2 ≤ j ≤ M ′, we set Sj to be the pseudo-spine approximating Sj. This can be arranged so
that SM ′ is within the linearization domain of the repelling periodic point x●k(f), and so
inductively we define SM ′+j+1 to be the unique lift of SM ′+j under f η●k that is even closer to
x●k(f).

5.4.2.3 Enlargements of Dj

Let us inductively define enlargements Dj and D′j of Dj as follows. First, we set Dt+1 = D′t+1 ∶=
D. For j ≤ t, we set

⊳ D′j = the connected component of f−1(Dj+1) containing Dj;

⊳ Dj = the smallest topological disk containing D′j and the interior of Λm(Ij).

For all j, we have Dj ⊂ D′j ⊂ Dj.

Claim 6. For j ∈ {1,2, . . . , t + 1}, Dj ∩Λm is connected and its closure is Λm(Ij).

Proof. This follows from the observation that, due to Claim 3, Dj ∩Λm ⊂ Λm(Ij) for all j.

We will assume D to be small enough such that it is disjoint from the periodic rays f i(R●k)
for all i ∈ {0, . . . , t}, ● ∈ {0,∞}, and k ∈ {1,2, . . . ,2(d● − 1)}.

Claim 7. For j ∈ {1,2, . . . , t}, the disk Dj is disjoint from all the periodic rays of the form
f i(R●k) for all i ∈ {0, . . . , j − 1}.

Proof. This claim follows from induction. If Dj intersects f i(R●k), then D′j intersects f i(R●k)
and so Dj+1 intersects f i+1(R●k).

172



5.4.2.4 Proof of Lemma 5.4.7

Let Λ′m denote the union of all pseudo-spines of f of generation one. Recall that the constant
η is set to be the maximum of the periods η●k of the pseudo-spine chains Σ●k. To finally show
that f t ∶D1 →D is a branched covering, we will prove by induction the following statements
for j = 1, . . . , t + 1.

(a) Dj intersects Λ′m if and only if Ij contains {−pm,−pm+1};

(b) If Dj intersects Λ′m, then the intersection is in a small neighborhood of c0;

(c) If Dj intersects Λ′m for j < t, then j < t− η and Dj+1, . . .Dj+η+1 are all disjoint from Λ′m;

(d) If Dj intersects a pseudo-spine chain Σ●k from (5.4.4), then the intersection is within
Λ′m;

(e) Dj is an open disk disjoint from the forbidden boundary ∂FUf .

Suppose (a)–(e) hold for j + 1, j + 2, . . . t + 1. Let us show that they hold for j.
Suppose Ij contains {−pm,−pm+1}. Then, Dj+1 contains either Λm({−1, 0, 1}) or Λm({0, 1, 2}),

and so the lift D′j of Dj+1 contains the critical point c0(f) and intersects Λ′m.
Suppose Ij is disjoint from {−pm,−pm+1}. Then, Dj+1 does not contain the critical value

c1(f) and every point in Dj+1 has at most one preimage under f in D′j. By Claim 6, the
preimage of Dj+1 ∩Λm under f ∣D′j must be contained in Λm. It follows that D′j is disjoint
from Λ′m. Since D′j ∪Λm(Ij) does not surround Λ′m, then Dj is also disjoint from Λ′m.

We just proved (a). Item (b) follows from Claim 6 and the fact that Λm(Ij+1) is a small
neighborhood of c1(f) as a result of Claim 4 (i). Item (c) then follows from Claim 4 (2).

Item (e) follows from (b) and (d). Indeed, if Dj were to intersect ∂FUf , then by Claim 7,
it must intersect some pseudo-spine chain Σ●k from (5.4.4) and because of (d), its intersection
is contained in Λ′m. In particular, Dk can only intersect Λ′m in a small neighborhood of c0,
which implies that Dk cannot intersect ∂FUf .

It remains to prove (d). By continuity, we can assume that (d) holds whenever j ≥ t − η.
Let us assume that j < t − η and suppose for a contradiction that (d) fails, that is, there is a
pseudo-spine chain Σ●k = (S1,S2, . . .) such that Dj intersects Si where i ≥ 2.

We claim that Dj intersects S2. Indeed, suppose otherwise that the smallest possible
i ≥ 2 such that Dj intersects Si satisfies i > 2. Since D′j ∩Λm(Ij) is disjoint from the ray R●k,
then the subchain Σ(i) = (Si,Si+1, . . .) intersects D′j and its image f(Σ(i)) intersects Dj+1. By
periodicity of Σ●k, the chain Σ(i−1) intersects Dj+η●

k
, which is a contradiction to (d) for index

j + η●k.

173



The argument from the previous paragraph results in the intersection of Dj+η●
k

and S1

being non-empty. By (a), the interval Ij+η●
k

contains {−pm,−pm+1}, so for l ∈ {1,2, . . . , η●k},
f l(S2) is attached to Λm(Ij+l). Moreover, since the critical value c1(f) is not contained in
Dj+l ∩Λm, every point in Dj+l has at most one preimage in D′j+l−1.

Consider the lift S′2 of f(S2) under f that is attached to Λm(Ij). Since c1(f) is not
contained nor surrounded by Dj+1 ∩ f(S2), the lift E of f(Dj ∩ S2) under f ∣D′j agrees with
the lift under f ∣S′2 . Therefore, E would be contained in S′2, not S2, which is impossible. This
concludes the proof of (d).

5.5 Dynamics of cascades

In §5.4.1, we have established that every corona f in the local unstable manifold Wu
loc of

the fixed point f∗ of the corona renormalization operator R ∶ U → B induces the sequence
{F#

n = (f#n,± ∶ X#
k,± → C)}n≤0 of pairs of σ-proper branched coverings. We will reinterpret

such a sequence as a global transcendental cascade and formulate a Fatou-Julia theory for
cascades.

5.5.1 Cascades

Consider the anti-renormalization matrix M from Lemma 5.4.4. Let us denote by t > 1 and
1/t the eigenvalues of M.

For every positive integer n, let us define F#
n = (f#n,±) inductively by the relation

(f#n,−)a ○ (f#n,+)b = (f#n−1,−)a
′ ○ (f#n−1,+)b

′

(5.5.1)

for any a, b, a′, b′ ∈ Z≥0 satisfying (a′ b′) = (a b)M. Then, {F#
n }n∈Z forms a sequence of

commuting σ-proper holomorphic maps acting on the same dynamical plane.
Let us identify the local unstable manifold Wu

loc with the spaceWu
loc of pairs of σ-proper

maps F = (f0,±) associated to each f ∈ Wu
loc. We extend our renormalization operator beyond

Wu
loc by setting

RnF0 = Fn ∶= A−n∗ F#
nA

n
∗,

(compare with (5.4.1)) and extendWu
loc to a global unstable manifoldWu by adding Fn for

all n ≥ 0 and F ∈Wu
loc. The complex manifold structure of Wu

loc naturally extends to Wu

and the renormalization operator R now acts on Wu as a biholomorphism with a unique
fixed point F∗, which is repelling.

In the rest of this dissertation, we will show that R ∶ Wu → Wu is holomorphically
conjugate to an expanding linear map on C. To do so, we will study each map onWu as a
cascade of global transcendental maps.
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Definition 5.5.1. We define the space T of power-triples to be the quotient of the semigroup
Z ×Z2

≥0 under the equivalence relation ∼ where (n, a, b) ∼ (n − 1, a′, b′) if and only if (a′ b′) =
(a b)M.

We will equip T with the binary operation + defined by

(n, a, b) + (n, a′, b′) = (n, a + a′, b + b′).

With respect to +, T has a unique identity element 0 ∶= (n,0,0). For P,Q ∈ T, let us denote
by P ≥ Q if for all sufficiently large n ≪ 0, there exist a, b, a′, b′ ∈ N such that P = (n, a, b),
Q = (n, a′, b′), a ≥ a′, and b ≥ b′.

By Lemma 2.1.15, (T,+,≥) can be identified with a sub-semigroup of (R≥0,+,≥). Moreover,
T inherits a well-defined scalar multiplication by powers of t as follows. For every (n, a, b) ∈ T
and integer k,

tk(n, a, b) = (n + k, a, b).

For every F ∈Wu and every power-triple P = (n, a, b), we will use the notation

FP ∶= (f#n,−)
a ○ (f#n,+)

b
.

Each FP is a σ-proper map from its domain Dom (FP ) onto C. We denote by F≥0 the cascade
(FP )P ∈T associated to F.

Lemma 5.5.2. For every F ∈Wu, P ∈ T, and n ∈ Z,

FP
0 = (F#

−n)
tnP

.

In particular, when F = F∗,
FP
∗ = A−n∗ ○FtnP

∗ ○An∗. (5.5.2)

5.5.2 Critical points and periodic points

Let us pick
F = [f± ∶U± → S] ∶= [f0,± ∶U0,± → S0] ∈Wu

loc

and let Fn ∶= RnF for all n ∈ Z. Within the cascade F≥0, f± is the first return map of points
in U± back to S. In particular, U− ∪U+ is disjoint from FP (U−) for all P < (0,1,0) and
FP (U+) for all P < (0,0,1).

Definition 5.5.3. We define the zeroth renormalization tiling ∆0 =∆0(F) associated to
F≥0 to be the tiling consisting of ∆0(0) ∶=U+ and ∆0(1) ∶=U−, as well as FP (∆0(0)) for all
P < (0,0,1) and FP (∆0(1)) for all P < (0,1,0). We label the tiles in left-to-right order as
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∆0(i) for i ∈ Z. For all n ∈ Z<0, we define the nth renormalization tiling to be the rescaling of
the zeroth tiling for Fn, namely

∆n(F) ∶= An∗ (∆0(Fn)) .

In Wu
loc, F is sufficiently close to F∗ and the tiling ∆0(F) moves holomorphically in

F ∈Wu
loc. In general, for F ∈Wu, the nth tiling ∆n(F) is well-defined for all sufficiently large

n≪ 0. Each tile ∆n(i) is a compact disk in C.

Definition 5.5.4. Consider [f ∶ Uf → V ] ∈ Wu
loc and the associated pre-corona F = [f± ∶U± →

S] ∈Wu
loc. Given a subset Z of Uf , the full lift Z of Z to the dynamical plane of F is defined

as

Z ∶= ⋃
0≤P<(0,0,1)

FP (Z0) ∪ ⋃
0≤P<(0,1,0)

FP (Z1),

where Z0 and Z1 are the embedding of Z ∩∆0(0, f) and Z ∩∆0(1, f) to the dynamical plane
of F respectively.

In particular, we will define the Herman curve H of F∗ to be the full lift of the Herman
quasicircle of f∗. Observe that H is an A∗-invariant quasiarc.

Let us fix F inWu. For every x ∈ C and T ∈ T, we denote the finite orbit of x up to time
T by

orbTx (F) ∶= {FP (x) ∶ 0 ≤ P ≤ T} .

Definition 5.5.5. For P ∈ T>0, let us denote by CP (FP ) the set of critical points of FP and
by CV (FP ) the set of critical values of FP . We say that a point x is

⊳ a critical point of F≥0 if it is in CP (FP ) for some P ∈ T>0,

⊳ a critical value of F≥0 if it is in CV (FP ) for some P ∈ T>0, and

⊳ a periodic point of F≥0 if there is some P ∈ T>0 such that FP (x) = x.

Lemma 5.5.6. For F ∈Wu, critical points of F≥0 satisfy the following properties.

(1) A point x is a critical point of F≥0 if and only if FP (x) = 0 for some P ∈ T>0.

(2) For P ∈ T>0,

CP (FP ) = ⋃
0<S≤P

F−S{0} and CV (FP ) = {FS(0) ∶ 0 ≤ S < P}.
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(3) There is some KF ∈ T>0 such that for every power-triple P <KF, every critical point of
FP has local degree d. If 0 is not periodic, this is still true for P ≥KF. In general, for
every P ∈ T, there is some k ∈ N such that the local degree of every critical point of FP

is at most k.

Let T ∶=min{(0,1,0), (0,0,1)}. If F ∈Wu
loc, then for every P < T ,

(4) CV (FP ) is a subset of ∆0(F)/S ∪ {0} which moves holomorphically with F, and

(5) every critical point of FP has local degree d.

Proof. Pick a bounded domain D ⋐ C and select a connected component D′ of F−P (D).
Suppose F represents f ∈ Wu

loc, and recall that the anti-renormalizations of f when the critical
value is normalized to be at 0 are denoted by f ♮n, n ≤ 0. Recall that for sufficiently large
n≪ 0, the map FP ∶D′ →D can be identified via h#n with (f ♮n)sn ∶D′ →D for some domains
D′,D ⋐ C and some sn ≥ 0. Therefore, x is a critical point of FP if and only if (h#n )−1(x) is a
critical point of (f ♮n)sn , which happens precisely when FS(x) = 0 for some S ≤ P . This leads
to (1) and (2).

Suppose [F ∶U± → S] is inWu
loc and fix P ≤ T . For all S < P , FS(0) is contained in some

tile ∆0(i,F) that is disjoint from S. This implies (4). Also, (5) follows from the fact that for
every critical point x of FP , orbPx (F) passes through the critical value 0 exactly once.

If F is not close to F∗, then we can take some n≪ 0 such that RnF is inWu
loc. Then, (3)

follows from (4) and (5) by taking KF to be tnT and k to be such that P < (k − 1)KF.

Lemma 5.5.7 (Discreteness). For any F ∈Wu and any bounded open subset D of C, there
is some Q ∈ T>0 such that for all G ∈Wu close to F and whenever P ′ < P < Q,

(1) GP is well-defined and univalent on D, and

(2) GP (D) is disjoint from GP ′(D).

For every x ∈ C and T ∈ T, orbTx (F) is discrete in C.

Proof. There exist some integers m ≤ 0 and j ∈ {0,1} such that D is compactly con-
tained in some level m tile ∆m(j,G) associated to G for all G close to F. Set Q ∶=
tmmin{(0,1,0), (0,0,1)}. For P < Q, the tile ∆m(j,G) is mapped by GP univalently onto
to some other tile ∆m(i,G) of level m disjoint from ∆m(0,G) ∪∆m(1,G). This implies (1)
and (2).

Let us fix x ∈ C and T ∈ T. Let us pick any point y in the closure of orbTx (F), and
pick a small open neighborhood D of y. From the first part, FP (D) is disjoint from D for
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all sufficiently small P ∈ T>0. This implies that only finitely many points in orbTx (F) are
contained in D.

By a straightforward compactness argument, the lemma above has the following conse-
quence.

Corollary 5.5.8 (Proper discontinuity). For any P ∈ T, any compact subset Y of Dom (FP ),
and any bounded subset X of C, there are at most finitely many power-triples T ≤ P such that
FT (Y) intersects X.

Corollary 5.5.9. Every critical point x of F≥0 admits a minimal P ∈ T>0, called the generation
of x, such that FP (x) = 0.

Proof. By definition, there is some P ∈ T>0 such that FP (x) = 0. By Lemma 5.5.7, orbPx (F) is
discrete, so there are at most finitely many power-triples S such that S < P and FS(x) = 0.

Corollary 5.5.10. Every periodic point of F≥0 has a minimal period.

Proof. Suppose x is a periodic point of F≥0. The set Tx ∶= {P ∈ T ∶ FP (x) = x} of periods
of x is a sub-semigroup of T. Pick a small neighborhood D of x. By Lemma 5.5.7, there is
some Q ∈ T>0 such that for all 0 < P < Q, FP (D) is disjoint from D and thus P /∈ Tx. This
implies that Tx is finitely generated, and in particular, of the form {nS}n∈N, where S ∈ T>0
is the minimal period.

5.5.3 The escaping sets

Consider F ∈Wu.

Definition 5.5.11. Given P ∈ T, the P th escaping set of F is

I≤P (F) ∶= C/Dom (FP ) .

The finite-time escaping set of F is the union

I<∞(F) ∶= ⋃
P ∈T

I≤P (F),

the infinite-time escaping set of F is

I∞(F) ∶= {z ∈ C/I<∞(F) ∶ FP (z) → ∞ as P →∞},

and the full escaping set of F is

I(F) ∶= I<∞(F) ∪ I∞(F).
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Lemma 5.5.12. For any P ∈ T, every connected component of I≤P (F) is unbounded.

Proof. There exists some n ≤ 0 such that Fn ∶= RnF is inWu
loc. Since the domains of fn,± are

simply connected, then Dom (FP
n ) is simply connected for all P ∈ T and so the claim is true

for Fn. Since F is just a rescaling of Fn, the claim is also true for F.

In Section 5.6, we will thoroughly study the structure of the finite-time escaping set of
the fixed point F∗. In Section 5.7, we will show that when F is hyperbolic, the finite and
infinite-time escaping sets do not carry any invariant line field.

It is clear from the definition that the boundary of I≤P (F) coincides with the boundary of
Dom (FP ). Points on ∂I≤P (F) can be regarded as essential singularities of FP . The following
lemma is an analog of Picard’s theorem.

Lemma 5.5.13. For every P ∈ T>0 and any sufficiently small Euclidean disk D centered at
a point in ∂I≤P (F), the image FP (D′) of any connected component D′ of D ∩Dom (FP ) is
dense in C.

This lemma is a direct consequence of σ-properness of FP . The keen reader may refer to
[DL23, Lemma 6.5] for a detailed proof.

Corollary 5.5.14. For every F ∈Wu, P ∈ T>0, and x ∈ C, the boundary of I≤P (F) is the set
of accumulation points of F−P (x).

We will later show that I<∞(F) has no interior and its closure coincides with the “Julia
set“ of F, which we will define in the next subsection. This corollary is an analog of the basic
result in holomorphic dynamics which states that iterated preimages are dense in the Julia
set. The proof below is similar to [DL23, Corollary 6.7].

Proof. By Lemma 5.5.7, there exists a disk neighborhood B of x such that B/{x} is disjoint
from CV (FP ). Then, every connected component B′ of F−P (B) contains at most one critical
point and the degree of FP ∶ B′ → B is at most some uniform constant. Let Ω ⊂ B be an even
smaller disk neighborhood of x such that mod (B/Ω) ≍ 1. Any lift Ω′ ⊂ B′ of Ω under FP is
also a disk with mod(B′/Ω′) ≍ 1.

Let us pick a connected component D of Dom (FP ), a point y ∈ ∂D, and a small ε > 0.
By Lemma 5.5.13, there is a connected component Ω′ ⊂D of F−P (Ω) that is of distance at
most ε away from y. Since mod (B′/Ω′) ≍ 1, then Ω′ has a small diameter depending on ε.
Since Ω′ contains point in F−P (x), the assertion follows.
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5.5.4 Fatou-Julia theory

Let us formulate a Fatou-Julia theory for our dynamical systems F inWu and state a few
analogues of basic results in classical holomorphic dynamics.

Definition 5.5.15. The Fatou set F(F) of F is the set of points z which admit a small
neighborhood D ⊂ C/I<∞(F) such that {FP ∣D}P ∈T forms a normal family. The Julia set J(F)
of F is the complement C/F(F).

Clearly, J(F) contains the closure of I<∞(F).
We say that a connected component D of F(F) is periodic if there is some P ∈ T>0 such

that FP (D) =D. The smallest such P is called the period of D. Moreover, we say that D is
pre-periodic if there is some Q ∈ T such that FQ(D) is periodic. The smallest such Q is called
the pre-period of D. (These quantities exist due to Lemma 5.5.7. Compare with Corollary
5.5.10.)

Proposition 5.5.16. For all F ∈Wu, every connected component of the Fatou set F(F) is
simply connected.

In particular, F does not admit any Herman rings.

Proof. This is a standard application of the maximum modulus principle. Pick any Jordan
domain D such that ∂D is contained in F(F). For all P ∈ T, FP ∣D attains maximum on Γ,
thus {FP ∣D}P forms a normal family.

Definition 5.5.17. The postcritical set of F is

P(F) ∶= {FP (0) ∶ P ∈ T}.

The postcritical set is the smallest forward invariant closed set such that

FP ∶ Dom (FP ) /F−P (P(F)) → C/P(F)

is an unbranched covering map which is a local isometry with respect to the hyperbolic
metrics.

In the case of F = F∗, equation (5.5.2) implies self-similarity of the corresponding dynamical
sets.

Lemma 5.5.18. The linear map A∗ preserves F(F∗), J(F∗), I<∞(F∗), I∞(F∗), and P(F∗).
For all P ∈ T>0, A∗(I≤P (F∗)) = I≤tP (F∗).

180



Given a periodic point x of (minimal) period P of some F ∈ Wu, we say that x is
superattracting / attracting / parabolic / Siegel / Cremer / repelling if x is a superattracting
/ attracting / parabolic / Siegel / Cremer / repelling fixed point of FP .

Proposition 5.5.19. Suppose F admits a periodic point x of some period P .

(1) If x is attracting or parabolic, then the critical orbit {FT (0)}T ∈T converges to the periodic
orbit orbP0 (F).

(2) If x is Cremer, then x ∈P(F).

(3) If x is Siegel, then the boundary of the Siegel disk of FP about x is contained in P(F).

Proof. (1) follows from a standard analytic continuation argument: if the forward orbit of a
periodic Fatou component containing an attracting (resp. superattracting or parabolic) cycle
does not containing 0, then the local linearizing (resp. Böttcher or Fatou) coordinates can be
extended to a conformal map onto the whole plane, which is impossible. See [Mil06, Lemma
8.5] for details.

Suppose x is not in P(F) and is not repelling. From (1), x is either Cremer or Siegel.
Let us first prove (2) by showing that x must be Siegel. For all T ∈ T, let us denote by DT

the connected component of Dom (FT ) /F−T (P(F)) containing x. Suppose first that DP is
properly contained in D0. Then, FP ∶ DP → D0 is strictly expanding with respect to the
hyperbolic metric of D0, which implies that x must be repelling. Suppose instead DP =D0.
Then, {FnP ∣D0}n∈N is a normal family of automorphisms of a hyperbolic Riemann surface.
By Denjoy-Wolff, the fixed point x must be Siegel.

Denote by Z the Siegel disk centered at x. If there exists some minimal T ∈ T where FT (0)
intersects Z, then the intersection P(F) ∩Z is a single FP -invariant curve on Z. Suppose
for a contradiction that C/P(F) intersects the boundary ∂Z. Then, a component E0 of
C/P(F) contains some neighborhood of ∂Z. For n ∈ N, let EnP be the connected component
of Dom (FnP ) /F−nP (P(F)) containing E0 ∩Z0. There are again two cases. If EP = E0, then
{FnP ∣E0}n∈N forms a normal family and E0 must be contained in the Fatou set, which is a
contradiction. If EP is a proper subset of E0, then FP ∶ EP → E0 is strictly expanding with
respect to the hyperbolic metric of E0, which would contradict the fact that FP restricts to a
self diffeomorphism of any invariant curve in Z ∩E0.

5.6 The external structure of F∗

Consider the dynamics of F = F∗ corresponding to the fixed point f∗ of the renormalization
operator. We denote by H the Herman curve of F, which is defined to be the full lift of the
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Herman curve of f∗. The action of F along H can be described as follows. For a ∈ C, we
denote the translation map by a by Ta(z) ∶= z + a.

Lemma 5.6.1. There is a quasisymmetric map h ∶ (H, 0) → (R, 0) that conjugates the cascade
(FP ∣H)P ∈T with the cascade of translations (T P )P ∈T defined by T (n,a,b) ∶= Tt−n(bv−au), where
u,v > 0 and θ = u

u+v .

Proof. The pre-corona F∗ associated to f∗ admits an invariant quasiarc which projects to the
Herman curve of f∗. In linear coordinates, this corresponds to an invariant quasiarc H0 of
(f0,± ∶ U± → S) which passes through 0 and connects f0,+(0) and f0,−(0). The dynamics of
f0,± along H0 is quasisymetrically conjugate to a pair of translations (T−θ∣[0,1−θ], T1−θ∣[−θ,0])
on the real interval [−θ,1 − θ]. Set u = −θ and v = 1 − θ. As we extend f0,± to its maximal
σ-proper extension via A∗, the quasisymmetric conjugacy h between (f0,−, f0,+) and (T−u, T−v)
extends to the whole lift H of H0. The claim holds because the pairs (f0,−, f0,+) and (T−u, T−v)
generate the cascades F≥0∣H and T (n,a,b) ∶= Tt−n(bv−au) via iteration and rescaling according to
(5.5.2) and §2.1.4.

In this section, we will comprehensively describe the dynamics of F beyond H. We study
the structure of preimages of H in §5.6.1–5.6.2, then the structure of the finite-time escaping
set I<∞ ∶= I<∞(F) in §5.6.3–5.6.4, and lastly the dynamical puzzles cut out by subsets of I<∞
in §5.6.5.

5.6.1 Lakes

Let us label the components of C/H by O0 and O∞, which we will refer to as the oceans of
F. The two oceans will be distinguished as follows. For ● ∈ {0,∞} and for any point x in
S ∩O● close to 0, we assume that there are d● preimages of x under f0,± ∶U± → S that are
located near the critical point and inside of O●.

Definition 5.6.2. A lake O of generation P ∈ T is a connected component of F−P (O●) for
some ● ∈ {0,∞}. Its coast is defined by ∂cO ∶= ∂O ∩Dom (FP ).

Lemma 5.6.3 (Chessboard rule). For every P ∈ T>0 and ● ∈ {0,∞}, the preimage F−P (H) is
a tree in Dom (FP ) and F−P (O●) is disjoint union of lakes ⋃i∈N Oi of generation P such that

(1) each lake Oi is an unbounded non-separating disk in Dom (FP );

(2) for j ≠ i, the intersection ∂cOi ∩ ∂cOj is either empty or a singleton consisting of a
critical point of FP .
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Proof. The whole lemma follows immediately from σ-properness of the cascade, e.g. [DL23,
Lemma 5.1], and the fact that CV(F) is contained in H.

Given any lake O of some generation P ∈ T>0, the map FP sends O univalently onto
an ocean, and its coast homeomorphically onto H. In general, when 0 < P < Q, a lake of
generation Q is contained in a lake of generation P , and FQ−P conformally sends any lake of
generation Q onto a lake of generation P .

Lemma 5.6.4. For every P ∈ T>0, there is a unique critical point CP ∈H of F≥0 of generation
P and a pairwise disjoint collection of lakes

1O
0
P , . . . , 2d0−3O

0
P , 1O

∞
P , . . . , 2d∞−3O

∞
P , (5.6.1)

of generation P together with a bouquet of pairwise-disjoint open quasiarcs

1H
0
P , . . . , 2d0−2H

0
P , 1H

∞
P , . . . , 2d∞−2H

∞
P , (5.6.2)

rooted at CP such that for each ● ∈ {0,∞} and j ∈ {1, . . . ,2d● − 3},

(1) the coast of jO●P is jH
●
P ∪ {CP} ∪ j+1H●P ;

(2) jO
●
P is contained in O●;

(3) jO
●
P is mapped conformally by FP onto O● if j is is even, and onto C/O● if j is odd.

Proof. The existence and uniqueness of CP is due to the fact that FP restricts to a home-
omorphism on H. From the previous lemma, F−P (H) is a tree. The quasiarcs jH

●
P ’s are

precisely the components of F−P (H)/{CP}, and the lakes jO
●
P ’s in (5.6.2) are precisely the

connected components of Dom (FP ) /F−P (H) which touch H at exactly one point, which is
CP . For all S < P , the image of each quasiarc jH

●
P under FS is disjoint from 0. Therefore, FP

maps each of jH●P onto a component of H/{0} homeomorphically. They can be enumerated
such that the three claims above hold because CP has inner and outer criticalities d0 and d∞
respectively.

Each quasiarc in (5.6.2) is called a spine of CP . The spines in (5.6.2) are labelled in
counterclockwise order about CP .

Let us pick a pair of power-triples P,Q ∈ T>0. For any ● ∈ {0,∞} and any j ∈ {1, . . . , d●−1},
the union of two consecutive spines 2j−1H

●
P ∪ 2jH

●
P are mapped homeomorphically by FP onto

H/{0} and so it contains a unique critical point jC
●
P,Q of generation P +Q. Attached to this

critical point is a bouquet of lakes

j,1O
●,0
P,Q, . . . , j,2d0−3O

●,0
P,Q, j,1O

●,∞
P,Q, . . . , j,2d∞−3O

●,∞
P,Q,
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∞
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Figure 5.8: The structure of lakes attached to critical points CP , CQ, and 1C
0
P,Q when

(d0, d∞) = (3,2).

of generation P +Q together with spines

j,1H
●,0
P,Q, . . . , j,2d0−2H

●,0
P,Q, j,1H

●,∞
P,Q, . . . , j,2d∞−2H

●,∞
P,Q,

meeting at jC
●
P,Q such that j,kO

●,○
P,Q has coast

∂c j,kO
●,○
P,Q = j,kH

●,○
P,Q ∪ {jC●P,Q} ∪ j,k+1H

●,○
P,Q

and is mapped univalently by FP onto kO
○
Q.

Consider a tuple S = (P1, . . . , Pm+1) ∈ Tm+1
>0 of m + 1 power-triples for some m ∈ N. We

denote the sum by

∣S∣ ∶=
m+1

∑
i=1

Pi.

Given ∎ = (●1, . . . , ●m) ∈ {0,∞}m and J = (j1, . . . jm) where ji ∈ {1, . . . , d●i − 1} for all i, we
inductively define a critical point JC

∎
S of generation ∣S∣. Attached to this critical point are

lakes J,iO
∎,●
S for ● ∈ {0,∞} and i ∈ {1, . . . ,2d● − 3}, and spines J,jH

∎,●
S for ● ∈ {0,∞} and

j ∈ {1, . . . ,2d● − 2}.

Definition 5.6.5. We say that a lake O is a middle lake if it is of the form J,jO
∎,●
S described

above. The finite tuple S is called the itinerary of O.

Consider a lake O of generation P ∈ T>0. Let Q ∈ T be the smallest power-triple such
that the coast of O touches F−Q(H).
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Lemma 5.6.6 (Left and right coasts). The intersection between ∂cO and F−Q(H) is either
a singleton or a closed quasiarc, and the complement ∂cO/F−Q(H) consists of two non-empty
open quasiarcs ∂clO and ∂crO.

Proof. It is sufficient to consider the case when Q = 0. The intersection between ∂cO and
F−Q(H) is connected because of the tree structure of F−P (H). For any point z in ∂cO ∩H,
every component of H/{z} contains infinitely many critical points of generation at most
P , and each of these points is a branch point of the tree F−P (H). Since ∂cO ∩H does not
contain such branch points, the claim follows.

We call ∂clO and ∂crO the left and right coasts of O respectively, and we always assume
that ∂clO, ∂cO ∩F−Q(H), and ∂crO are oriented counterclockwise relative to O.

The closure of the left coast of O admits a maximal sequence of critical points cl,1, cl,2,
cl,3, . . . of FP , labelled in increasing order of generation. We define the left itinerary of O
to be the sequence Il ∶= (Pl,1, Pl,2, . . .) where each Pl,i is the generation of cl,i. Similarly, we
define the right itinerary Ir of O.

Lemma 5.6.7. Consider a lake O of generation P ∈ T>0 with left and right itineraries
Il = (Pl,1, Pl,2, . . .) and Ir = (Pr,1, Pr,2, . . .) respectively.

(1) supiPl,i = supj Pr,j = P .

(2) If Il (resp. Ir) is finite, the left (resp. right) coast of O contains a spine attached a
critical point JC

∎
S of generation ∣S∣ = P .

(3) If both Il and Ir are finite, then O is a middle lake attached to the critical point JC
∎
S.

(4) Either Il or Ir is a finite sequence.

Proof. Suppose for a contradiction that supiPl,i < P , so then there is some P ′ ∈ T such that
supiPl,i < P ′ < P . Then, FP ′(O) is a lake of positive generation with an empty left coast,
which is impossible due to Lemma 5.6.6. Therefore, (1) holds.

Suppose Il is finite. By (1), there exists a critical point cl of generation P on ∂clO.
Removing cl splits the coast into two open quasiarcs, one of which contains no critical points
of FP and is thus a spine attached to cl. This implies (2). Suppose Ir is also finite, so
there also exists a critical point cr of generation P on ∂crO. The complement of the interval
[cl, cr] ⊂ ∂cO is now a pair of spines of generation P attached to cl and cr respectively. Recall
that FP sends each of these spines to a component of H/{0}. However, since FP ∶ ∂cO→H

is a homeomorphism, we see that cl = cr and O is a middle lake. Hence, (3) holds.
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Let us now prove (4). We will again assume without loss of generality that the coast
of O touches H. Let us pick a point y in ∂cO ∩H. If the open interval (y,CP ) ⊂ H does
not contain any critical point of generation ≤ P , then either ∂clO or ∂crO is rooted at CP
and contains no other critical points of generation ≤ P . Otherwise, by Lemma 5.5.6, there
are only finitely many critical points of generation ≤ P within (y,CP ), and they have some
maximum generation R < P . We then apply the previous argument to the lake FR(O) and
the interval (FR(y),CP−R) ⊂H.

Consider a critical point JC
∎
S of F≥0. There exist lakes

J,lO
∎,0
S , J,rO

∎,0
S , J,lO

∎,∞
S , J,rO

∎,∞
S (5.6.3)

of generation ∣S∣ such that

(i) they are disjoint from all the middle lakes rooted at JC
∎
S;

(ii) for ● ∈ {0,∞}, the right coast of J,lO
∎,●
S contains the spine J,2d●−2H

∎,●
S and the left coast

of J,rO
∎,●
S contains the spine J,1H

∎,●
S ;

(iii) if j, j′ ∈ {l, r} and j ≠ j′, the coasts of J,jO
∎,0
S and J,j′O

∎,∞
S intersect on a non-degenerate

closed interval in F−∣S∣(H) with endpoint JC
∎
S.

We will call the lakes in (5.6.3) the left/right side lakes of JC∎S.
Observe that by (ii),

J,rO
∎,0
S , J,1O

∎,0
S , . . . , J,2d0−3O

∎,0
S , J,lO

∎,0
S , J,rO

∎,∞
S , J,1O

∎,∞
S , . . . , J,2d∞−3O

∎,∞
S , J,lO

∎,∞
S

are in counterclockwise order about ∎JCS and the closure of their union is a neighborhood of
∎
JCS. By Lemma 5.6.7 (4), the left itinerary of J,lO

∎,●
S and the right itinerary of J,rO

∎,●
S are

infinite. The following is a consequence of Lemma 5.6.7 (2)–(4).

Corollary 5.6.8. Every lake O is either a middle lake or a side lake of a critical point JC
∎
S.

In other words, O is of the form J,jO
∎,●
S where j ∈ {l,1, . . . ,2d● − 3, r}.

Given some tuple S = (P1, . . . , Pk) ∈ Tk
>0, we can perform scalar multiplication by t and

denote tS ∶= (tP1, . . . , tPk). The following is a direct consequence of (5.5.2).

Lemma 5.6.9. For any middle or side lake J,jO
∎,●
S rooted at a critical point JC

∎
S,

A∗ (JC∎S) = JC∎tS and A∗ (J,jO∎,●S ) = J,jO
∎,●
tS .
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Proof. Recall from (5.5.2) that A∗ conjugates FP and FtP for any P ∈ T>0. Since A∗ preserves
H, then A∗(CP ) = CtP and thus A∗ (jO●P ) = jO●tP for all ● ∈ {0,∞} and j ∈ {l, 1, . . . , 2d●−3, r}.

Suppose a spine jH
●
P attached to CP contains some critical point iC

●
P,Q where i = ⌈ j2⌉.

Since A∗(iC●P,Q) is contained in jH
●
tP and is a critical point of generation t(P +Q), then it is

equal to iC
●
tP,tQ. The rest follows by induction.

5.6.2 Limbs

Definition 5.6.10. A limb JL
∎
S is the union of the spine JH

∎
S together with all spines of the

form J,j1,...,jk
H∎,●1,...,●kS,P1,...,Pk

. The generation of JL∎S is ∣S∣.

By Lemma 5.6.9, the linear map A∗ sends each limb JL
∎
S onto another limb JL

∎
tS.

Lemma 5.6.11. Every limb is bounded in C.

The proof we present below is identical to [DL23, Lemma 5.10].

Proof. Recall the rescaled pre-corona F#
n = (f#n,± ∶U#

n,± → S#
n ) where S#

n ∶= An∗(S) for all n ∈ Z.
Since S is compactly contained in A−1∗ (S), then ⋃n∈Z S#

n = C. For every integer n ∈ Z, there is
a gluing map ρn ∶ S#

n → V projecting F#
n to the corona f ∶ U → V .

Let us fix a large n≪ 0. Consider open rectangles

X0 ∶= ρn (S#
0 ) and X1 ∶= ρn (S#

−1)

living in the dynamical plane of f . Denote by H∗ the Herman curve of f , and consider the
interval I ∶=X0 ∩H∗ and pick a slightly smaller interval J ⊂ I.

Claim 1. There is some M ∈ N such that the following holds. For any connected component
W of X1/H∗, any m ≥M , and any point x ∈ J with fm(x) ∈ ∂W , the univalent lift W−m of
W under fm along the orbit x, . . . , fm(x) is contained in X0.

Proof. Let Y 0 and Y ∞ denote the inner and outer components of C/H∗. Assume without
loss of generality that W is contained in Y ∞. Since f i(x) ∈H∗ for all i ≥ 0, then the lift W−m
is also contained in Y ∞. We will first claim that W−m is well-defined and fm ∶W−m →W is
univalent by ensuring that W−k is disjoint from ∂FU for all k ≥ 0.

Let us pick two outer external rays Rl and Rr landing at a pair of points on H∗ such
that Rl is slightly on the left of W and Rr is slightly on the right of W . Since n ≪ 0, the
difference δ between the external angles of Rl and Rr is small. For k = 1, . . . ,m, let Rl,−k and
Rr,−k be the preimages of Rl and Rr under fk such that they are slightly on the left and right
of W−k respectively.
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By definition, for every arc γ∞j on the forbidden boundary ∂FU of U , the part that gets
mapped to γ1 ∩ Y ∞ is an external ray of some definite distance from H∗. The difference
between the external angles of Rl,−k and Rr,−k is δ/dk∞, which is much smaller than δ. Therefore,
W−k is disjoint from ∂FU for all k and so fm ∶W−m →W is univalent.

For sufficiently large m, W−m is within a small neigborhood of H∗ and it is sandwiched
between the rays Rl,−m and Rr,−m, whose external angles differ by a small constant. By local
connectivity (Lemma 5.2.3), W−m must be contained in a small neighborhood of J , and thus
W−m ⊂X0.

The composition ρn ○A−n∗ identifies S#
n with X0. Let Jn ∶= An∗ ○ ρ−1n (J).

Claim 2. There is a power-triple R ∈ T>0 such that FR(J0) ⊂ J−1 and for every point x
on J0, if FP (x) ∈ S#

−1 for some P ≥ R, then there is an open subset ΩP of S#
0 /H such that

x ∈ ∂ΩP and FP maps ΩP conformally to S#
−1/H.

Proof. Since the action of F≥0 on H is combinatorially modelled by the cascade of translations
(T P )P ∈T on R, there is an arbitrarily large R ∈ T such that FR(J0) ⊂ J−1. Suppose x ∈ J0

and FP (x) ∈ S#
−1 for some P ≥ R. Since f−1,± is the first return map of the cascade F≥0 back

to S#
−1, then FP is the mth iterate of the pair f−1,± for some m ∈ N. If R is chosen to be large

enough, then m ≥M and the claim now follows from Claim 1.

By self-similarity, Claim 2 also holds if we replace J0, J−1, P , and R with Jn, Jn−1, tnP ,
and tnR respectively.

Claim 3. There is a power-triple Q ∈ T>0 such that for every n≪ 0 and every point x ∈ J0,
if FP (x) ∈ S#

n for some P ≥ Q, then there is an open subset Ω0 of S#
0 /H such that x ∈ ∂Ω0

and FP maps Ω0 conformally to S#
n /H.

Proof. Let us fix a large negative integer n and choose Q ∈ T>0 such that

Q > R +R/t +R/t2 +R/t3 + . . . .

Consider a point x0 ∶= x ∈ J0 such that FP (x) ∈ S#
n for some P ≥ Q. For j ∈ {0,−1,−2, . . . , n+2},

set Pj ∶= tjR and xj−1 ∶= FPj(xj) inductively. Then, we set

Pn+1 ∶= P − P0 − P−1 − . . . − Pn+2 and xn ∶= FPn+1(xn+1).

Clearly, Pn+1 ≥ tn+1R. By Claim 2, there exists an open set Ωn+1 ⊂ S#
n+1/H such that

xn+1 ∈ ∂Ωn+1 and FPn+1 maps Ωn+1 conformally to S#
n /H. Inductively, for j ∈ {0,−1, . . . , n+2},

we construct open sets Ωj ⊂ S#
j /H such that xj ∈ ∂Ωj and FPj maps Ωj conformally to Ωj−1.

Therefore, FP maps Ω0 conformally to S#
n /H.
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Figure 5.9: The configuration of middle and side lakes rooted at CP when (d0, d∞) = (3,2).
Their coasts land at α0

P and α∞P .

To prove the lemma, it is sufficient to consider a limb L of some generation K ∈ T>0
rooted at the critical point CK on H. Choose a large T ∈ T such that T ≥ Q+K and that the
critical point CT is on J0. There exists some limb L′ rooted at CT such that FT−K(L′) = L.
Then, the connected component of S#

n ∩L containing CK can be lifted by FT−K into S#
0 . As

n≪ 0 is arbitrary, the lifts of S#
n ∩L exhaust L′ and so L′ is contained in S#

0 . Hence, L is
bounded.

5.6.3 Alpha-points

For P ∈ T>0, let I≤P ∶= I≤P (F) be the P th escaping set of F.

Lemma 5.6.12. Every critical point JC
∎
S admits a pair of points Jα

∎,0
S and Jα

∎,∞
S with the

following properties. For any ● ∈ {0,∞} and j ∈ {l, 1, . . . , 2d●−3, r}, both the left and the right
coasts of J,jO

∎,●
S land at Jα

∎,●
S and

∂ J,jO
∎,●
S /∂c J,jO

∎,●
S = {Jα

∎,●
S } .

In particular, every lake is a disk and each of the spines J,jH
∎,●
S attached to JC

∎
S is a

quasiarc connecting its common root JC
∎
S to a common landing point Jα

∎,●
S . See Figure 5.9

for an illustration. We call Jα
∎,0
S and Jα

∎,∞
S the inner and outer alpha-points corresponding

to JC
∎
S. Moreover, we say that Jα

∎,●
S is the alpha-point of any lake of the form J,jO

∎,●
S .
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Proof. By Corollary 5.6.8, for every lake O, there is some Q ∈ T such that FQ(O) is either a
side lake or a middle lake attached to some critical point on H. Therefore, it is sufficient to
prove the lemma for lakes of the form jO

●
P where ● ∈ {0,∞} and j ∈ {l,1, . . . ,2d● − 3, r}.

Suppose jO
●
P is a middle lake. Then, it is contained in some side lake kO

●
P−P /t

of generation
P − P /t where k ∈ {l, r}. Consider the conformal map

G ∶= FtP−P ○A∗ ∶ kO●P−P /t →O●.

Observe that G expands the hyperbolic metric of the ocean O●, and G sends jO
●
P onto itself.

Since jO
●
P ∩ I≤P is a G-invariant compact subset of O●, then it must be a singleton {α●P}

consisting of the unique repelling fixed point of G.
It remains to show that for j ∈ {l, r}, the intersection ∂cj jO●P ∩I≤P is also a compact subset

of O●. By invariance under G, this will again imply that ∂cj jO●P ∩ I≤P is the same singleton
{α●P}, and we are done.

Let us assume without loss of generality that j = l. Denote the left itinerary of lO●P by
(Q1,Q2,Q3, . . .). The left coast of lO●P starts with a segment of the spine 1H

●
Q1

connecting
CQ1 and 1C

●
Q1,Q2

. Let us pick a pair of power-triples R−,R+ ∈ T>0 such that the critical points

1C
●
Q1,R−

and 1C
●
Q1,R+

form a small open interval neighborhood J ⊂ 1H
●
Q1

of 1C
●
Q1,Q2

. Let B±
be the spines of generation Q1 +R± attached to 1C

●
Q1,R±

that are combinatorially closest to

1,1H
●,●
Q1,Q2

. Let R ∶= Q1 +max{R+,R−}. By Lemma 5.5.12, every connected component of I≤R
is unbounded and thus the union J ∪B+ ∪B− ∪ I≤R separates ∂cl lO

●
P / iH●Q1

from H. This
observation implies that ∂cl lO

●
P ∩ I≤P is indeed compactly contained in O●.

The alpha-points Jα
∎,●
S can be viewed as preimages of infinity under the map F∣S∣. They

are unique in the following sense.

Lemma 5.6.13. Two alpha-points Jα
∎,●
S and

J ′
α◻,○S′ coincide if and only if J = J ′, ∎ = ◻,

● = ○, and S = S′.

Proof. Suppose Jα
∎,●
S =

J ′
α◻,○S′ . Clearly, ∣S∣ = ∣S′∣. Let us write S = (P1, . . . , Pm) and S′ =

(Q1, . . . ,Qk), and pick a power-triple R ∈ T such that

max{P1 + . . . + Pm−1,Q1 + . . . +Qk−1} < R < ∣S∣.

Pushing forward by FR yields a pair of alpha-points α●
∣S∣−R

and α○
∣S′∣−R

where, since they are
equal, ● = ○. If (J,∎, S) ≠ (J ′,◻, S′), then this would imply that α●

∣S∣−R
is a critical point of

FR, which is not the case.

Consequently, if two disjoint spines touch at a common alpha-point, then they are rooted
at a common critical point. This guarantees a more precise tree structure of F−P (H) in terms
of spines. For convenience, we will call H the unique spine of generation 0.
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Corollary 5.6.14. Consider two distinct spines J,jH
∎,●
S and J ′,j′H

◻,○
S′ with ∣S∣ ≥ ∣S′∣.

(1) If the intersection J,jH
∎,●
S ∩ J ′,j′H

◻,○
S′ is non-empty, then it is either the singleton {JC∎S}

or the set {JC∎S, Jα
∎,●
S }. The former case happens if and only if J ′,j′H

◻,○
S′ contains JC

∎
S,

and the latter case happens if and only if (J,∎, ●, S) = (J ′,◻, ○, S′).

(2) There is a unique sequence of pairwise different spines

B1 = J,jH∎,●S , B2, . . . , Bn−1, Bn = J ′,j′H◻,○S′

such that Bi intersects Bi′ if and only if ∣i − i′∣ ≤ 1.

Given an alpha-point α = Jα
∎,●
S , we define

⊳ a finite skeleton landing at α to be the union of a spine J,jH
∎,●
S together with the unique

closed quasiarc in F−∣S∣(H) connecting JC
∎
S to 0;

⊳ an infinite skeleton landing at α to be the union of ∂ck J,kO
∎,●
S for some k ∈ {l, r} together

with the unique closed quasiarc in F−∣S∣(H) connecting the root of ∂ck J,kO
∎,●
S to 0.

In short, skeletons landing at α are the shortest paths from 0 to α within the tree of preimages
of H. There are exactly d● skeletons landing at α, and precisely two of them are finite.

The set of skeletons admit a total order “<“ defined as follows. Let us fix a ray γ in H

connecting 0 to ∞. Given two distinct skeletons S and S′,

⊳ we write S <S′ if γ, S, and S′ have a counterclockwise orientation around the quasiarc
S ∩S′, and

⊳ we say that S and S′ are <-separated if there is another skeleton S′′ such that either
S <S′′ <S′ or S′ <S′′ <S.

We say that two alpha-points α and α′ in the same ocean O● are <-separated if

⊳ there exists an alpha point α′′ ∈O● with generation lower than that of α and α′, and

⊳ there exist skeletons S, S′ , S′′ landing at α, α′, α′′ respectively such that S and S′

are <-separated by S′′.

Let us introduce another partial order on the set of alpha-points. Given two alpha-points
α and α′ in the same ocean,

⊳ we write α ≺ α′ if α′ is contained in the closure of a lake attached to α, and
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⊳ we say that α and α′ are ≺-separated if α and α′ are contained in two distinct lakes
with a common alpha-point.

The following proposition describes the relation between “≺“ and “<“.

Proposition 5.6.15. Consider two distinct alpha-points α and α′ of generations P and P ′

inside of the ocean O● for some ● ∈ {0,∞}. Assume P ≤ P ′. The following are equivalent.

(1) α ≺ α′;

(2) α and α′ are not <-separated by another alpha-point α′′ of generation < P ;

(3) α and α′ are not ≺-separated.

Proof. Suppose (1) holds. Then, α is the alpha-point of a lake O containing α′, which implies
(3). Meanwhile, (2) follows from the observation that any alpha-point α′′ <-separating α and
α′ must be contained in a proper sub-lake of O, which necessarily has generation higher than
P .

Suppose (1) does not hold, so α′ is located outside of every lake with alpha-point α. Let
us pick any skeleton S′ landing at α′, and let Sl and Sr denote the left and right infinite
skeletons landing at α respectively. The assumption implies that either Sl <-separates Sr

and S′, or Sr <-separates Sl and S′. Without loss of generality, let us assume the latter.
Denote by (cr,1, cr,2, . . .) the infinite sequence of critical points of FP of increasing gener-

ation that is found along Sr. Let αr,i denote the alpha-point that is the landing point of
the unique spine attached to cr,i that intersects Sk. It has generation Pr,i where Pr,i < P and
Pr,i → P as i→∞. Since the intersection Sr ∩S′ is a compact subset of Dom (FP ), then for
any sufficiently large i≫ 0 and any skeleton Sr,i landing at αr,i, Sr ∩S′ is a proper subset
of Sr ∩Sr,i. Therefore, Sr,i <-separates Sr and S′, and so α and α′ are <-separated by αr,i.

We have just shown that (1) and (2) are equivalent. Suppose (1) and (2) do not hold. We
will now prove that (3) also does not hold.

Let us consider the unique spine B such that α and α′ are contained in the closure of
different components of (S ∪S′)/B. We claim that the generation Q of B is less than P .
Indeed, if Q = P , then α is the landing point of B and so there exists a lake with alpha-point
α which contains both S′/S and α′. However, this would instead imply (1).

Let Ô and Ô′ denote the pair of lakes of generation Q such that their coast contains B
and S/S′ ⊂ Ô and S′/S ⊂ Ô′. If Ô and Ô′ are distinct, they lie on different sides of B and
so α and α′ are ≺-separated by the landing point of B.

Now, suppose instead that Ô = Ô′. Consider the roots c and c′ of S/B and S′/B
respectively. Within the closed interval [c, c′] ⊂ B (possibly degenerate if c = c′), we can find a
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unique critical point c′′ of the smallest generation P ′′ such that Q < P ′′ ≤ P . In fact, P ′′ /= P
because if otherwise, S′/S would have been contained in a lake attached to c, and so α ≺ α′
instead. Since [c, c′] does not contain any critical point of generation lower than P ′′, then
S/S′ and S′/S are contained in distinct lakes of generation P ′′ attached to c′′. Thus, the
alpha-point α′′ ∈ Ô corresponding to c′′ must ≺-separate α and α′.

5.6.4 External chains

Let us pick a power-triple P ∈ T>0 and ● ∈ {0,∞}. Let O●(P ) denote the unique lake of
generation P inside of the ocean O● that contains 0 on its boundary. Then, the coast of O●(P )
intersects H on some interval J ⊂H containing 0 on its interior. (In fact, J is independent of
●.) Let us denote by α●(P ) the unique alpha-point in ∂O●(P ). By self-similarity,

O●(tnP ) = An∗(O●(P )) for all n ∈ Z

and

⋃
n<0

O●(tnP ) =O●. (5.6.4)

Let us denote by I●≤P the intersection I≤P ∩O● for ● ∈ {0,∞}.

Lemma 5.6.16. For every ● ∈ {0,∞} and P,Q ∈ T>0 with P < Q,

(1) I●≤P is connected;

(2) I●≤Q/I●≤P is bounded;

(3) every connected component of I●≤Q/I●≤P is a lift of a component of I≤Q−P under FP ; it is
contained in a unique lake O of generation P and its boundary contains the alpha-point
of O.

Proof. Consider a component I of I●≤P . It intersects O●(tkP ) for some maximal k ∈ Z. By
Lemma 5.5.12, since I intersects O●(tnP ) for all n ≤ k, then it contains the alpha-point
α●(tnP ) which is the alpha-point of O●(tnP ) for all n ≤ k. Therefore, I●≤P is connected.

Let us consider a connected component X of I●≤Q/I●≤P . Since X avoids α●(tnP ) for all
n≪ 0, it must be contained inside of the lake O●(tkP ) for all n≪ 0, and so X is bounded.
Since X avoids F−P (H) and alpha-points of generation P , L is contained in a unique lake O

of generation P . The map FP sends O conformally onto an ocean O○ for some ○ ∈ {0,∞},
hence FP (X) = I○≤Q−P . By unboundedness, X must be attached to the alpha-point of O.

Definition 5.6.17. Consider two alpha-points α and α′ in the same ocean O● with generation
P and P ′ respectively, and suppose P < P ′ and α ≺ α′. We define the external chain [α,α′] to
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be the set of points in I●≤P ′ that are inside the closure of the lakes attached to α and outside
of any lake that does not contain α′.

Lemma 5.6.18. For any triplet of alpha-points α,α′, α′′ with α ≺ α′ ≺ α′′,

[α,α′] ∩ [α′, α′′] = {α′} and [α,α′] ∪ [α′, α′′] = [α,α′′].

Proof. The first equation follows from the fact that α′ is a cut point with respect to the
“≺“ ordering. The inclusion [α,α′] ∪ [α′, α′′] ⊂ [α,α′′] is obvious. Consider a point x in
[α,α′′]/[α,α′]. We know that x is within a lake attached to α. If x is inside of a lake that
does not contain α′, then this lake avoids all lakes attached to α′ and in particular does not
contain α′′ as well, which is a contradiction. Therefore, x ∈ [α′, α′′].

For P ∈ T>0, we say that the critical point CP on H is dominant if the interval [0,CP ] ⊂H
does not contain any critical point of generation less than P . We will enumerate dominant
critical points by {CPn}n∈Z where {Pn}n∈Z is monotonically increasing in n.

Lemma 5.6.19. For ● ∈ {0,∞}, . . . ≺ α●P−2 ≺ α
●
P−1
≺ α●P0

≺ α●P1
≺ α●P2

≺ . . ..

Proof. Suppose for a contradiction that α●Pn
/≺ α●Pn+1

for some ● ∈ {0,∞} and n ∈ Z. By
Propositon 5.6.15, there is an alpha-point α ∈O● of some generation P less than Pn which
<-separates α●Pn

and α●Pn+1
. Then, α is contained in the closure of a lake attached to a critical

point CQ ∈ H of some generation Q ≤ P . By <-separation, CQ is contained in the interval
(CPn ,CPn+1) ⊂ H. However, this would contradict the assumption that CPn and CPn+1 are
dominant.

Consider the concatenations

R0 = ⋃
n∈Z
[α0

Pn
, α0

Pn+1
] and R∞ = ⋃

n∈Z
[α∞Pn

, α∞Pn+1
] ,

which we will refer to as the inner and outer zero chains respectively.

Proposition 5.6.20. For ● ∈ {0,∞},

(1) R● is A∗-invariant;

(2) R● is an arc landing at 0;

(3) alpha-points are dense on R●;

(4) points on R● are continuously parametrized by their escaping time ranging from 0 (near
∞) to +∞ (near 0).
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Let us clarify the last statement. For P ∈ R>0/T, we can define the P th escaping set to be

I≤P ∶= ⋂
Q∈T,Q>P

I≤Q.

The escaping time of a point x in I<∞ is the minimum time P ∈ R>0 such that x ∈ I≤P .

Proof. To lighten the notation, we will denote α●n ∶= α●Pn
and J●n ∶= [α●n, α●n+1] for all ● ∈ {0,∞}

and n ∈ Z.
By definition, CP is dominant if and only if CtP = A∗(CP ) is dominant, so there is some

integer k ≥ 1 such that tPn = Pn+k for all n ∈ Z. Therefore, A∗ maps each of [α●
(n−1)k

, α●nk]
onto [α●nk, α●(n+1)k]. This immediately implies items (1) and (2).

Due to self-similarity, it remains for us to show that the external chain J● ∶= [α●0, α●k] is
an arc that can be continuously parametrized by their escaping time, and that alpha-points
are dense on J●. We will do so by constructing nested Markov tilings Pr for r ≥ 0 on J●.

Firstly, we set the tiling P0 of level 0 to be {J●i }0≤i≤k−1. The tiling P1 of level 1 is
constructed as follows. By Lemma 2.1.17, for every chain Ji ∈ P0, there exist some Qi ∈ T>0
and a pair of integers li and ri such that 0 < li < ri ≤ i and FQi maps J●i homeomorphically
onto the chain [α●li , α●ri]. A tile of level 1 in P1 is the lift of a chain J●j ⊂ [α●li , α●ri] under the
map FQi ∶ J●i → [α●li , α●ri].

For each tile I ∈ P1 in J●i , there exists some mI ∈ N such that AmI
∗ sends FQi(I) back

to a tile of level 0. Let Oi denote the lake of generation Qi which contains [α●li , α●ri]. The
composition

χI ∶= AmI
∗ ○FQi ∶Oi →O● (5.6.5)

expands the hyperbolic metric of O●.
Inductively, we define tiles in Pn+1 of level n + 1 to be the preimages of tiles of level n

under maps of the form (5.6.5). Since each map χI is expanding, the diameter of every tile of
level n uniformly exponentially shrinks to zero. Since each tile in Pn is an external chain
containing alpha-points, alpha-points are dense on J .

By Lemma 5.6.18, we can enumerate our level n tiles by In1 , In2 , . . . , Insn ∈ Pn in increasing
order of generation such that Ini and Inl touch if and only if ∣l − i∣ ≤ 1. As tiles shrink, we
can extend the “≺“ order to a total order on J● by defining x ≺ y when x ∈ Ini and y ∈ Inj for
sufficiently high n and some indices i, j with i < j.

Consider a tile Ini in Pn of some high level n, and a composition χ ∶= χ1 ○ χ2 ○ . . . ○ χn
of n maps of the form (5.6.5) sending Ini onto a tile in Pn. By (5.5.2), we can write χ as
A
m(n,i)
∗ ○ FQ(n,i) for some m(n, i) ∈ N and Q(n, i) ∈ T>0. Therefore, the difference in the

escaping time between the endpoints of Ini is at most

t−m(r,i)(Pk − P0). (5.6.6)
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Since Qi > 0 for all i ∈ {0, . . . , k − 1}, there exists some integer M ≥ 1 independent of n such
that every sequence of M consecutive integers between 1 and n contains an element j∗ such
that χj∗ has the scaling factor A∗ in (5.6.5). Consequently, as n → ∞, min

1≤i≤sn
m(n, i) → ∞

and thus the quantity in (5.6.6) tends to zero. Therefore, the escaping time continuously
parametrizes points on J .

In general, for every alpha-point α, there is an infinite sequence of alpha-points α0 = α,
α−1, α−2, . . . of generation decreasing to 0 such that . . . ≺ α−2 ≺ α−1 ≺ α0. This allows us to
generate the chain

(∞, α] ∶= ⋃
n≤0

[αn−1, αn].

Corollary 5.6.21. Consider any alpha-point α of some generation P > 0. The chain (∞, α]
is an infinite arc continuously parametrized by the escape time from ∣P ∣ to 0. Moreover,
alpha-points are dense in (∞, α].

Proof. Suppose first that α is of the form α●P for some P ∈ T>0 and ● ∈ {0,∞}. Let us pick
a dominant α●Pn

for some n ∈ Z such that Pn ≥ P . There is a unique point x ∈ (∞, α●Pn
] of

generation Pn −P . Then, FPn−P maps the arc (x,α●Pn
] onto (∞, α●P ], which implies the claim.

In general, let α = Jα
∎,●
S where S = (P1, P2, . . . , Pk) is the corresponding itinerary. There

exist alpha-points α1, α2, . . ., αk = α such that α1 ≺ α2 ≺ . . . ≺ αk and for every i, αi has
itinerary Si ∶= (P1, . . . , Pi). Therefore, we can split (∞, α] into

J1 = (∞, α1], J2 = (α1, α2], . . . Jk = (αk−1, αk].

When 2 ≤ i ≤ k, the map FP1+...+Pi−1 sends Ji homeomorphically onto the chain (∞, α○Pi
] for

some ○ ∈ {0,∞}. By the previous paragraph, each Ji is an arc continuously parametrized by
the landing time.

As a consequence, whenever α ≺ α′, the chain [α,α′] is a simple arc.

Definition 5.6.22. An external ray is an infinite arc of the form R = ⋃n∈Z[αn, αn+1] for
some sequence of alpha-points {αn}n∈Z where

⊳ αn ≺ αn+1 for all n;

⊳ the generation of αn decreases to 0 as n→ −∞;

⊳ there is no alpha-point α such that αn ≺ α for all n ∈ Z.
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The generation of R is the limit of the generation of αn as n → +∞. For any P ∈ T>0, we
define the image of an external ray R under FP by

FP (R) ∶= FP (R ∩Dom (FP )) .

We say that R is periodic if FP (R) =R for some P ∈ T>0.

The zero chains R0 and R∞ are indeed external rays, which from now on will be referred
to as zero rays.

The following corollary is an immediate consequence of Proposition 5.6.15.

Corollary 5.6.23. The intersection of any two external rays in the same ocean is non-empty
and of the form (∞, α] for some alpha-point α.

5.6.5 Wakes

Consider a critical point JC
∎
S. For every lake of the form J,jO

∎,●
S where j is either in {l, r} or

an even number, the map F∣S∣ sends such a lake conformally onto O●. The zero ray R● lifts
under F∣S∣ ∶ J,jO∎,●S →O● to a ray segment, which we will label as J,kR

∎,●
S where

k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if j = r,
j
2 + 1 if j is even,

d● if j = l.

Therefore, we obtain d● ray segments

J,1R
∎,●
S , J,2R

∎,●
S , . . . , J,d●R

∎,●
S (5.6.7)

starting from the alpha-point Jα
∎,●
S and landing at the critical point JR

∎
S, labelled in an

anticlockwise order about JC
∎
S. See Figure 5.10. For k ∈ {1, . . . , d● − 1}, the closure of

J,kR
∎,●
S ∪ J,k+1R

∎,●
S bounds a Jordan domain which we denote by J,kW

∎,●
S .

Definition 5.6.24. A wake W is a Jordan domain of the form J,kW
∎,●
S . We call JC∎S the

root of W and Jα
∎,●
S the alpha-point of W. The generation of W is ∣S∣. If S is a tuple of

length m, we say that m is the level of W. If m = 1, we call W a primary wake. If m = 2, we
call W a secondary wake.

Due to the tree structure of I<∞, primary wakes are always pairwise disjoint.

Lemma 5.6.25. Consider a wake J,jW
∎,●
S rooted at a critical point JC

∎
S.
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Figure 5.10: The construction of wakes rooted at CP when (d0, d∞) = (3,2).

(1) If FQ sends JC
∎
S to another critical point J ′C

◻
S′, then FQ ∶ J,jW∎,●

S → J ′,jW
◻,●
S′ is a

homeomorphism.

(2) The map F∣S∣ conformally sends J,jW
∎,●
S onto C/R●.

Proof. (1) follows from the fact that FQ maps J,jR
∎,●
S ∪ J,j+1R

∎,●
S homeomorphically onto

J ′,jR
◻,●
S′ ∪ J ′,j+1R

◻,●
S′ , whereas (2) follows from the fact that F∣S∣ maps J,jR

∎,●
S for each j ∈

{1, . . . , d●} homeomorphically onto the zero ray R●.

To reduce notation, let us consider the full wake

JW
∎,●
S ∶=

d●−1

⋃
j=1

J,jW
∎,●
S (j)

which is the union of wakes attached to the critical point JC
∎,●
S on the same side.

Lemma 5.6.26 (Primary wakes shrink). For every n ∈ Z and every ε > 0, there are at most
finitely many primary wakes of diameter at most ε rooted at a point on H ∩ S#

n .

Proof. The proof we present below is similar to [DL23, Lemma 5.29]. By self-similarity, it is
sufficient to prove the lemma for n = 0. Let

J− ∶=U− ∩H, J+ ∶=U+ ∩H, and J ∶= J− ∪ J+.

The maps f− = F(0,1,0) ∶ J− → J and f+ = F(0,0,1) ∶ J− → J are precisely the first return maps of
F back to J.

Consider the semigroup generated by (0, 1, 0) and (0, 0, 1) and let us label its elements by
0, Q0, Q1, Q2, . . . written in increasing order. Then, every critical point on J is of the form
CQn for some n ≥ 0. Let us fix ● ∈ {0,∞} and consider the full primary wake Wn ∶=W●

Qn
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attached to CQn . For all n > 0, Wn is a preimage under FQn−Q0 of the full wake W0 with the
smallest generation.

Let us pick a curve Γ0 in W0 connecting a point in W0 to the critical point CQ0 . Consider
the lift Γ−n of Γ0 under FQn−Q0 ∶Wn →W0, which connects a point in Wn to the critical
point CQn .

Claim. There is a sequence ε0, ε−1, ε−2, . . . of positive numbers decreasing to 0 such that
the following holds. If the (Euclidean) diameter of Γ0 is less than ε0, then the diameter of
Γ−n is less than εn for all n ≥ 0.

Proof. It is sufficient to prove the claim in the dynamical plane of the corona f∗. Let
g = fd0,d∞,θ be the prototypical Example 4.4.5. It admits a (d0, d∞)-critical Herman curve Hg

with rotation number equal to that of f∗. By Theorem D, g is quasiconformally conjugate to
f∗ on a neighborhood of Hg, so it suffices to prove the claim in the dynamical plane of g.
We shall do so by applying the local connectivity of the boundary of the immediate basin of
attraction of ● of g.

Recall that the critical point of g is normalized at 1 ∈ Hg. For k ≥ 0, we denote
ck ∶= (g∣Hg)k(1). Within the immediate basin of ●, let us pick two external rays Rl and Rr

landing at points on Hg that are slightly on the left and right of c0 respectively. Let us pick a
disk D0 of small diameter bounded by Hg, Rl, Rr, and an equipotential within the immediate
basin of ●. Let D−k be the unique lift of D0 under gk whose boundary contains c−k. The disk
D−k is bounded by g−k(H), a pair of external rays which are preimages of Rl and Rr, and an
equipotential of an even smaller level. By local connectivity, the Euclidean diameter of D−k
shrinks to zero as k →∞.

Let O− ⊂O● be the union of all lakes of generation (0,1,0) whose closure intersects J−,
and let O+ ⊂ O● be the union of all lakes of generation (0,0,1) whose closure intersects
J+. The maps f± ∶ O± → O● expand the hyperbolic metric of O●. Note that for all n ≥ 0,
FQn+1−Qn ∶Wn+1 →Wn is a restriction of f± ∶O± →O●. Then, due to the claim, we conclude
that the Euclidean diameter of Wn shrinks as n→∞.

The outer boundary of each of the full wakes attached to JC
∎
S consists of two ray segments,

which we will relabel as

+
JR
∎,0
S ∶= J,1R

∎,0
S , −

JR
∎,0
S ∶= J,d●R

∎,0
S , −

JR
∎,∞
S ∶= J,1R∎,∞S , +

JR
∎,∞
S ∶= J,d●R

∎,∞
S .

For every P ∈ T>0, let P − (resp. P +) be the first entry of the left (resp. right) itinerary
of the side lake lO

0
P (resp. rO

0
P ). Both P − and P + are characterized by the property that

(CP− ,CP+) ⊂H is the maximal open interval in which the only critical point of generation
≤ P is CP .
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Lemma 5.6.27 (Combinatorics of primary wakes). Given P ∈ T>0 and ● ∈ {0,∞},

(1) both +R●P− and −R●P+ contain α●P ;

(2) the closure of W●
P ∪W●

P− ∪W●
P+ is a neighborhood of α●P ;

(3) the ray segments +R●P and −R●P can be presented as infinite concatenations of ray
segments

±R●P = [α●P , α●Q±1] ∪ [α
●
Q±1
, α●Q±2

] ∪ [α●Q±2 , α
●
Q±3
] ∪ . . . ,

where

±R●P ∩ ∓R●P± = [α●P , α●Q±1] , and for i ≥ 1, ±R●P ∩ ∓R●Q±i = [α
●
Q±i
, α●Q±i+1

] ;

(4) the sequences of alpha-points {α●
Q+i
}
i≥1

and {α●
Q−i
}
i≥1

tend to CP as i→∞.

See Figures 5.11 and 5.12.

Proof. The left coast of lO0
P is contained in 1W

0
P− because it starts with a segment of the

spine 1H
0
P− rooted at CP− and is disjoint from the external rays landing at CP− . Since the

left coast of lO0
P lands at the alpha-point α0

P , the boundary of the wake 1W
0
P− must contain

α0
P . The treatment for the other side lakes of CP is analogous, and this implies (1).

We have established that α●P is in the boundary of each of W●
P , W●

P− , and W●
P+ . By

Corollary 5.6.23, there exist alpha-points α′, α−, and α+ such that

α′ ≺ α●P , α●P ≺ α−, α●P ≺ α+

and

+R●P− ∩ −R●P+ = [α′, α●P ], +R●P− ∩ −R●P = [α●P , α−], +R●P ∩ −R●P+ = [α●P , α+].

Therefore, the union of W●
P− , W

●
P , and W●

P+ form a neighborhood of α●P , thus proving (2).
More generally, we have just shown that every primary alpha-point is the meeting point of
exactly three distinct primary full wakes.

Let us prove (3) and (4) for −R●P . The treatment for +R●P is analogous. Let us define
Q−1 ∈ T to be the unique smallest moment greater than P such that CQ−1 is contained on
the interval (CP− ,CP ) ⊂ H. Then, based on the previous paragraph, the alpha-point α−
must be equal to α●

Q−1
because it is the meeting point of −R●P , +R●P− , and the boundary of

a primary full wake, which is W●
Q−1

. Similarly, +R●
Q−1

and −R●P meet along a ray segment

[α●
Q−1
, α●

Q−2
] for some Q−2 > Q−1 . Inductively, we obtain the desired increasing sequence {Q−i }i∈N
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Figure 5.11: A cartoon picture of the structure of wakes when (d0, d∞) = (3,2). See Figure
5.12 for a more realistic picture.

of power-triples. It remains to show that the corresponding sequence of alpha-points α●
Q−i

indeed converges to CP .
By Proposition 5.6.20, there exists an alpha-point α on −R●P close to CP , which is the

alpha-point of some primary full wake W●
Q where Q > P . Since there are at most finitely

many critical points on H of generation less than Q between CQ and CQ−1 , the ray segment
[α●

Q−1
, α●Q] intersects the boundaries of at most finitely many primary wakes. Therefore,

Q = Q−i for some i ∈ N. Since α can be picked to be arbitrarily close to CP , then α●
Q−i

indeed
converges to CP .

Corollary 5.6.28 (Tiling of wakes).

(1) Primary wakes fill up the ocean: for ● ∈ {0,∞},

O● ⊂ ⋃
P ∈T>0

W●
P .
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Figure 5.12: An approximate picture of the dynamical plane of F∗ when (d0, d∞) = (3, 2) and
θ is the golden mean irrational. This figure is obtained from the magnification of the Julia
set of the rational map f3,2 in Figure 1.1 around a point on its Herman curve. The Herman
curve H of F∗ is colored red and some external ray segments are displayed in blue. These
external rays are the boundaries of the primary wakes attached to four critical points on H.
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(2) The closure of a wake J,jW
∎,●
S is the union of spines J,2j−1H

∎,●
S and J,2jH

∎,●
S and the

closure of all full wakes rooted at critical points on any of these two spines.

(3) For every z ∈ I<∞ and m ∈ N≥1, there are at most three disjoint full wakes of level ≥m
containing z on their boundaries. The union of these full wakes forms a neighborhood
of z.

Proof. To prove (1), let us assume for a contradiction that there is a non-empty connected
component X of O●/⋃P W●

P . By Lemma 5.6.27, X intersects some point x on H. There
exists two sequences of power-triples {Qn} and {Tn} such that for all n ∈ N, the primary
wakes W●

Qn
and W●

Tn
touch, the union H∪W●

Qn
∪W●

Tn
encloses a unique disk Dn containing

X, and the corresponding roots CQn and CTn converge to x as n → ∞. By Lemma 5.6.26,
the diameter of Dn tends to 0 as n→∞, which implies that such X cannot exist.

Item (2) follows from pulling back the tiling of wakes in (1) by the map F∣S∣ on J,jW
∎,●
S .

We have thus shown that wakes of a fixed level tile each of the two oceans, and every point in
the ocean is contained in the closure of at most three wakes of the same level. This implies
(3).

Lemma 5.6.29. Let us equip C/H with the hyperbolic metric ρ0. For every P ∈ T>0,

(1) the map FP ∶W●
P /F−P (H) → C/H is uniformly expanding (with respect to ρ0) with a

factor independent of P ;

(2) the hyperbolic diameter of every wake of level two is at most some uniform constant
independent of P .

Proof. For all P ∈ T, let ρP be the hyperbolic metric of C/F−P (H). To prove (1), it suffices
to show that the inclusion map

ι ∶ (C/F−P (H), ρP ) → (C/H, ρ0)

is uniformly contracting on W●
P /F−P (H).

Clearly, ι is uniformly contracting on W●
P minus a small neigborhood of CP because this

region is a compact subset of O●. The uniform contraction of ι on a neighborhood of CP
follows from the asymptotic self-similarity of H and ∂W●

P near CP induced by pulling back
A∗-invariance near 0 by FP ∶ CP ↦ 0. One may refer to [DL23, Lemma 5.33] for further
details.

Item (2) follows from essentially the same argument. By compactness, every secondary
subwake of W●

P has uniformly bounded diameter away from a neighborhood of CP . Near CP ,
the claim again follows from the asymptotic self-similarity at CP .
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Lastly, the bounds in both claims are independent of P because every full wake can be
mapped to a full wake W●

Q for some ● ∈ {0,∞} for all sufficiently small Q ∈ T>0.

Lemma 5.6.30. Any infinite sequence of nested wakes shrinks to a point.

Proof. Let us define a holomorphic map χ sending level two wakes to level one wakes as
follows. Given a critical point c of F≥0, let W (c) be the union of all wakes rooted at c.
Consider a secondary critical point jC

●
P,Q, which is contained in W (CP ). The map FP

sends W (jC●P,Q) univalently onto W (CQ). Let T ∈ T be the smallest power-triple such that
Q − T = tnP for some n ∈ Z. Then, χ ∶= A−n ○FP+T sends W (jC●P,Q) univalently back onto
W (CP ). By Lemma 5.6.29 (1), χ must be uniformly expanding on W (jC●P,Q) with expansion
factor independent of P .

Now, consider an infinite sequence of nested wakes W1 ⊃W2 ⊃W3 ⊃ . . . where each Wn is
of level n. By Lemma 5.6.29 (2), there is a uniform constant C > 0 such that for all n ≥ 3,

diamρ0 (χn−2(Wn)) ≤ C.

Since χ is uniformly expanding, the hyperbolic diameter of Wn tends to 0 exponentially fast
as n→∞.

5.6.6 The structure of I<∞ and X

Using wakes, we will show in this final subsection that the finite-time escaping set consists of
topologically tame external rays.

Corollary 5.6.31. Every external ray lands at a unique point.

Proof. Let X be the accumulation set of an external ray. Since the boundary of every wake
is made of ray segments, then for every wake W , either X ⊂W or X ⊂ C/W .

If X intersects H, then by Corollary 5.6.28, X must be contained in H. In general, if X
intersects F−P (H) for some P ∈ T, then X ⊂ F−P (H). Since the roots of wakes are dense in
F−P (H), X must be a singleton.

Suppose X is disjoint from F−P (H) for all P . Then, X is contained in an infinite sequence
of nested wakes which, by Lemma 5.6.30, implies that X is a singleton.

We say that two points x and y in I≤P are combinatorially equivalent if there is no alpha-
point α such that x and y belong in distinct connected components of I≤P /{α}. Combinatorial
equivalence is an equivalence relation in I<∞.

Corollary 5.6.32.

204



(1) Every combinatorial equivalence class in I<∞ is a singleton.

(2) I<∞ is dense in C and has empty interior.

(3) For every P ∈ R>0,

I≤P = ⋃
Q<P

I≤Q.

Proof. Consider a point x in I≤P . There are two cases. If x is contained in some chain (∞, α]
for some alpha-point α, then the triviality of the combinatorial class follows from Corollary
5.6.21. Now, suppose x is not contained in any external chain. By Corollary 5.6.28, x is
contained in an infinite sequence of nested wakes. Then, the triviality of combinatorial class
of x follows from Lemma 5.6.30.

Suppose for a contradiction that the interior of I<∞ is non-empty. Any connected
component of the interior would be contained in a single combinatorial equivalence class, and
this would contradict item (1). By Corollary 5.6.28 and Lemma 5.6.30, wakes of any fixed
level tile the plane and any nested wakes shrink to points. Since I<∞ intersects the closure
of every wake of every level, then I<∞ is dense in C. This proves item (2). Lastly, item (3)
follows directly from item (1).

Since the finite-time escaping set is a subset of the Julia set, the corollary above immediately
implies the following.

Corollary 5.6.33. The Julia set of F is the whole plane: J(F) = C.

Remark 5.6.34. Let us present an alternative proof of Corollary 5.6.33 that is independent of
the entirety of this section. By Theorems 4.5.2 and 5.2.7, the critical value c1(f∗) of f∗ is a
deep point of the non-escaping set of the corona f∗. Magnifications of the iterated preimages
of the Herman quasicircle of f∗ about c1(f∗) converge to the whole plane exponentially fast in
the Hausdorff metric. As we pass to the corresponding dynamical plane of the transcendental
extension, 0 is a deep point of the iterated preimages of H under F = (f±). By self-similarity,
the iterated preimages of H must be dense in C, so its closure J(F) is equal to C.

Let us end this section with a discussion on the dynamics of F outside of I<∞ and the
grand orbit of H. Consider the set

X ∶= C/ (I<∞ ∪ ⋃
P ∈T

F−P (H)) .

Note that X contains the infinite-time escaping set I∞ = I∞(F∗) of F∗.
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Every point x in X is characterized by the property that for all P ∈ T, FP (x) is contained
in a unique primary wake. Consider the holomorphic map

F̂ ∶ X→ X, F̂(z) = FP (z) if z ∈W0
P ∪W∞

P . (5.6.8)

Thus, every point in X is subject to infinite iteration of the map F̂.

Definition 5.6.35. For every point z in X, the complete address of z is an infinite tuple
(W0,W1,W2, . . .) where for every n ≥ 0, Wn is the primary wake containing the unique
point F̂n(z). The (incomplete) address of z is the infinite tuple (P0, P1, P2, . . .) ∈ TN

>0 where
Pn is the generation of Wn.

We say that an element (P0, P1, . . .) of TN
>0 is admissible if

∞

∑
n=0

Pn = ∞.

Moreover, we say that an infinite tuple of primary wakes is admissible if the corresponding
tuple of generations is admissible.

Proposition 5.6.36.

(1) An infinite tuple of primary wakes is admissible if and only if it is the complete address
of a point in X.

(2) Two different points in X always have distinct complete addresses.

Proof. Given a point z ∈ X, if the sum of its incomplete address were finite, say Q ∈ R>0, then z
would have escape time Q instead. Conversely, consider any admissible tuple of primary wakes
(W0,W1,W2, . . .). Consider the sequence of nested wakes W′

0 ∶=W0 ⊃W′
1 ⊃W′

2 ⊃ . . . where
for n ≥ 0, W′

n+1 is defined inductively by the lift of Wn under F̂n+1∣W′
n
. The intersection of such

nested wakes is precisely the set of points admitting the complete address (W0,W1,W2, . . .),
and according to Lemma 5.6.30, it is a singleton.

Corollary 5.6.37. X is a dense, totally disconnected subset of C.

Proof. X is dense because its complement has no interior. By Proposition 5.6.36 (2), two
distinct points in C/I<∞ have different complete itineraries and thus belong in disjoint wakes
of sufficiently high generation. This implies the total disconnectivity of C/I<∞.

For R > 0, define the large radius “non-escaping“ set of F by

KR ∶= {z ∈ C/I<∞ ∶ ∣FP (z)∣ ≥ R for all P ∈ T} .
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Whenever R′ > R > 0, we have
KR′ ⊂ KR ⊂ X.

We say that (P0, P1, P2, . . .) ∈ TN
>0 is bounded by T ∈ T if Pn ≤ T for all n.

Lemma 5.6.38.

(1) For any high R > 0, there exists some QR ∈ T>0 such that QR → 0 as R →∞ and that
every point z in KR has address bounded by QR.

(2) For any Q ∈ T>0, there is some RQ > 0 such that every point in X with address bounded
by Q is contained in KRQ

.

Proof. Let us fix R > 0, and let QR ∈ T>0 be the smallest power-triple such that all primary
wakes of generation QR are contained in the disk DR ∶= {∣z∣ < R}. (This quantity exists due
to Lemma 5.5.7.) Consider a point z in X and let (P0, P1, P2, . . .) be its address. If Pn ≥ QR

for some n ∈ N, then z is eventually mapped into a wake of generation QR, which is contained
inside of DR. This implies (1).

Next, let us fix Q ∈ T>0, and let RQ > 0 be such that all primary wakes of generation
≤ Q are disjoint from DRQ

. Suppose that FP (z) is in DRQ
for some P ∈ T. Then, FP (z) is

contained in a wake of generation greater than Q. This implies (2).

In the next section, we are interested in the infinite-time escaping set as well. For F = F∗,
this set can be described as follows.

Corollary 5.6.39. The infinite-time escaping set I∞ of F is the set of points in X whose
address (P0, P1, P2, . . .) satisfies Pn → 0 as n→∞.

Proof. Consider a point z in X with some address (P0, P1, P2, . . .). If z ∈ I∞, then given any
R > 0, F̂n(z) must be in KR for all sufficiently high n. By the previous lemma, (Pn, Pn+1, . . .)
is bounded by QR where QR → 0 as R → ∞. Conversely, if Pn → 0 as n → ∞, then for all
n, (Pn, Pn+1, . . .) is bounded by some Qn ∈ T>0 where Qn → 0 as n → ∞. By the previous
lemma, F̂n(z) is contained in KRQn

where RQn →∞ as n→∞, thus z is contained in I∞.

5.7 The escaping set I(F)
In this section, we will discuss the topology and rigidity of both the finite-time and the
infinite-time escaping sets of a cascade inWu. Our eventual goal is to prove the first half of
Theorem K. In the proof, we will apply the external structure of the renormalization fixed
point F∗ addressed in Section 5.6, and adapt an argument by Rempe [Rem09] to show that
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the set of points in the full escaping set that remain sufficiently close to ∞ under iteration
must move holomorphically with dilatation arbitrarily close to zero.

5.7.1 Invariant line field

We say that a corona f ∶ U → V admits an invariant line field supported on a completely
invariant set E ⊂ C if there is a measurable Beltrami differential µ(z)dz̄dz such that f∗µ = µ
almost everywhere on U , ∣µ∣ = 1 on a positive measure subset of E, and µ = 0 elsewhere.

Similarly, we say that F ∈Wu admits an invariant line field supported on a completely
invariant set E ⊂ C if there is a measurable Beltrami differential µ(z)dz̄dz such that (FP )∗µ = µ
almost everywhere on Dom (FP ) for all P ∈ T, ∣µ∣ = 1 on a positive measure subset of E, and
µ = 0 elsewhere.

We would like to emphasize that the latter is stronger than the former. Given a corona f
in Wu

loc and its associated cascade F, an invariant line field µ of F induces a sequence of line
fields µ−n invariant under R−nf for all n ≥ 0.

In classical holomorphic dynamics, the absence of invariant line fields is equivalent to
the triviality of deformation space associated to a single holomorphic map. This principle
remains valid for cascades in the unstable manifold.

Proposition 5.7.1. Suppose F ∈Wu admits an invariant line field µ.

(1) There exist a holomorphic family {Gt}t∈D inWu and a holomorphic family of normalized
quasiconformal maps {ϕt ∶ C → C}t∈D such that G0 = F and F≥0 is quasiconformally
conjugate to G≥0t via ϕt.

(2) The support of µ is equal to the set of points at which the conjugacy ϕt is not conformal.

(3) Suppose F is in Wu
loc, let f ∈ Wu

loc be the associated corona, and let f−n ∶= R−n(f) for
n ≥ 0. For each n ≥ 0,

(a) there exist a holomorphic family {g−n,t}t∈D in Wu
loc and a holomorphic family

of quasiconformal maps {ϕ−n,t ∶ V → V }t∈D such that g−n,0 = f−n and f−n is
quasiconformally conjugate to g−n,t via ϕ−n,t;

(b) Rg−n−1,t = g−n,t for all t ∈ D,

(c) Gt ≡ F for all t if and only if g−n,t ≡ f−n for all t.

Proof. A standard application of the measurable Riemann mapping theorem gives us the
desired holomorphic family {Gt}t∈D, but a priori we do not know whether this family lives in
Wu. To fix this issue, we shall descend to the realm of coronas.
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By anti-renormalizing, let us assume without loss of generality that F is inWu
loc. Pick a

pair of integers m,n ≥ 0. Let us project µ to the dynamical plane of f−m−n and obtain an
invariant line field µ−m−n of f−m−n. Then, we integrate tµ−m−n for every t ∈ D to obtain a
Beltrami path {f−m−n,t}t∈D of coronas in a neighborhood of f∗. Let us renormalize m times to
obtain a new path f (m)−n,t ∶= Rmf−m−n,t about f (m)−n,0 ≡ f−n. When ∣t∣ < 1

2 , f
(m)
−n,t is quasiconformally

conjugate to f−n with uniformly bounded dilatation. Therefore, we can take a limit as m→∞
and obtain a holomorphic path g−n,t of infinitely anti-renormalizable coronas.

For sufficiently small ε > 0, the limiting path {g−n,t}∣t∣<ε lies in the local unstable manifold
Wu

loc, and it satisfies the relation Rg−n−1,t = g−n,t for all n ≥ 0 and t. In particular, {g0,t}
corresponds to the desired holomorphic path {Gt} in Wu

loc. Let us elaborate on the last
property (3) (c). Recall from Section 5.4.1 that Gt is constructed as the “union“ of analytic
extensions of rescalings of g−n,t across all n ≤ 0. Thus, Gt is a trivial family if and only if g−n,t
is trivial for all n, but by (3) (b), this occurs if and only if g−n,t is trivial for some n.

Lemma 5.7.2. The renormalization fixed point F∗ admits no invariant line field.

Proof. Suppose for a contradiction that F∗ admits an invariant line field µ. By Proposition
5.7.1, the invariant line field induces a family {Gt}t∈D inWu where G0 ≡ F∗, together with
quasiconformal maps ht ∶ C→ C conjugating F∗ with Gt for all t ∈ D. Each of Gt induces a
rotational corona gt with rotation number θ, which, by Theorem 5.3.9, implies that gt must
also be on the local stable manifold. Therefore, gt ≡ f∗ and the family Gt is trivial. For every
t, ht commutes with F∗ along the Herman curve H of F∗. As such, ht is the identity on H,
and so on the iterated preimages ⋃P F−P (H) of H as well. By Corollary 5.6.33, the closure of
iterated preimages of H is C, so ht is the identity map on the whole plane. This contradicts
the assumption that the support of µ has positive measure.

5.7.2 The finite-time escaping set

Let us fix

T ∶=min{(0,1,0), (0,0,1)}.

Lemma 5.7.3. There is a unique equivariant holomorphic motion of I≤T (F) over some
neighborhood U of F∗.

Proof. By Lemma 5.5.6, the set of critical values CV (FT ) of FT moves holomorphically
within a small neighborhood of F∗. By Lemma 5.4.8, there is a small neighborhood U of F∗
and some point x ∈ C such that x belongs in the interior of U−(F) and does not collide with
CV (FT ) for all F ∈ U . Moreover, F−S(x) moves holomorphically with F ∈ U for all S ≤ T .
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Given Q,S ∈ T>0, if Q < S ≤ T , then F−S(x) is disjoint from F−Q(x) because every point
is mapped by FS and FQ to different tiles of the zeroth renormalization tiling of F. Hence,

⋃S≤T F−S(x) moves holomorphically and equivariantly with F ∈ U . By the λ-lemma, this
holomorphic motion extends to the closure. Then, by Corollaries 5.6.32 (2) and 5.5.14, I≤T (F)
has no interior and moves holomorphically and equivariantly over U .

Let us show that the motion τ of I≤T (F) obtained above is independent of x. Let us pick
another point y = y(F) ∈ C/CV(F) which depends holomorphically on F ∈ U . By shrinking
U , we can connect x and y by a simple arc l = l(F) which is surrounded by an annulus
A = A(F) ⊂ C/CV(F). Every preimage of l under FT is separated from I≤T (F) by a conformal
preimage of A. Therefore, any sequence of preimages of l under FT which accumulates at
a point in I≤T (F) necessarily shrinks in diameter. As a result, the holomorphic motion τ

coincides with the motion of F−T (y(F)).
Finally, let us show that the equivariant holomorphic motion τ of I≤T (F) over U is

unique. Suppose there is another equivariant holomorphic motion τ ′ of I≤T (F). Pick any
S ∈ T>0 where S < T and consider the motion y(F) of a point in I≤S(F) induced by τ ′.
By equivariance, F−(T−S)(y(F)) moves holomorphically by τ ′. However, since I≤T−S(F) is
contained in the closure of F−(T−S)(y(F)), then τ and τ ′ coincide on I≤T−S(F) for all S ∈ T>0.
By Corollary 5.6.32 (3), τ ≡ τ ′.

Definition 5.7.4. We say that a holomorphic motion of a set E ⊂ C is a conformal motion if
its dilatation on E is zero.

Theorem 5.7.5. For every F ∈Wu, I<∞(F) has empty interior and supports no invariant line
field. For every P ∈ T>0, on every connected component of the open set {F ∈Wu ∶ 0 /∈ I≤P (F)},
there is a unique equivariant holomorphic motion of I≤P , and this motion is conformal.

Proof. Let us fix P ∈ T>0 and consider the set ΩP ∶= {F ∈Wu ∶ 0 /∈ I≤P (F)}. If P < T , then
clearly the neighborhood U of F∗ from Lemma 5.7.3 is contained in ΩP . Else, if P ≥ T , then
F ∈ΩP ∩U if and only if FP−T (0) /∈ I≤T (F), which is an open condition because I≤T moves
holomorphically over U . Therefore, ΩP ∩U is open for all P .

If F ∈ΩP ∩U , we can obtain the unique equivariant holomorphic motion of I≤P by pulling
back the holomorphic motion of I≤T via FP−T . Otherwise, we can pick a sufficiently large
n ∈ N such that F−n is in U . Clearly, F ∈ ΩP if and only if F−n ∈ ΩtnP , so ΩP is always an
open subset ofWu on which I≤P (F) moves holomorphically and equivariantly. The dilatation
of the motion of I≤T (F) over U goes to zero as F→ F∗. Therefore, for every F ∈ΩP , we can
take an arbitrarily high n to ensure that the dilatation of the motion of I≤T at F−n, and hence
that of the motion of I≤t−nT at F as well, are arbitrarily small. Pulling back via FP−t

−nT does
not affect the dilatation, so the motion of I≤P is indeed conformal over ΩP .
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By Corollary 5.6.32 (2) and Lemma 5.7.2, I≤tnP (F−n) has empty interior and supports
no invariant line field of F−n. Therefore, I≤P (F) also has empty interior and supports no
invariant line field of F.

In the study of dynamics of transcendental entire functions g ∶ C → C, a fundamental
yet highly non-trivial result is the fact that the escaping set I(g) of g is non-empty [Ere89;
Dom98], and as a consequence, the Julia set of g is the closure of the boundary of I(g).
Similarly, we have the following.

Corollary 5.7.6. For all F ∈Wu, the finite-time escaping set I<∞(F) is non-empty and
J(F) = I<∞(F).

Proof. Pick any F ∈Wu. From the previous theorem, there exist some small P ∈ T>0 and
some open neighborhood U ⊂Wu of F∗ containing F in which the P th escaping set moves
holomorphically. Therefore, I≤P (F) is clearly non-empty.

Consider any open disk D ⊂ C disjoint from I<∞(F). By Montel’s theorem, since I<∞(F)
contains more than two points, then {FP ∶ D → C/I<∞(F)}P forms a normal family. Thus,
such a disk D is necessarily contained in F(F). In particular, any open disk centered at a
point in J(F) must intersect I<∞(F).

5.7.3 The infinite-time escaping set

For R > 0 and F ∈Wu, define

JR(F) ∶= {z ∈ C/I<∞(F) ∶ ∣FP (z)∣ ≥ R for all P ∈ T} .

The forward orbit of every point in J(F) ∩ I∞(F) is eventually contained in JR(F). The
following lemma is inspired by [Rem09].

Lemma 5.7.7. For every F on a neighborhood U ⊂ Wu
loc of F∗, there exists a totally

disconnected subset Λ(F) of C/I<∞(F) with the following properties.

(1) Λ(F) is forward invariant under F≥0.

(2) There is a unique equivariant holomorphic motion of Λ over U .

(3) There exists some R > 1 such that Λ(F) contains JR(F).

Proof. In the dynamical plane of F∗, every point in the forward orbit of a point in JR(F∗)must
be contained in a wake of sufficiently low generation in order to avoid the disk DR ∶= {∣z∣ < R}.
We consider all such points and define Λ(F∗). In the proof below, we apply the motion of
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the finite-time escaping set from the previous subsection to show that Λ(F) can be defined
naturally via a unique holomorphic motion. The proof will be broken down into four steps.

Step 1: Construct truncated wakes which move holomorphically.
Let us pick r > 0 such that all primary wakes of F∗ of generation at most T ∶=

min{(0,1,0), (0,0,1)} are compactly contained in the domain V ∶= C/Dr. Let us enumerate
primary wakes of F∗ of generation at most T by {Wi}i∈I for some countable index set I.
Denote the generation of each wake Wi by Pi. For every i ∈ I, consider the truncated wake

Ŵi ∶=Wi ∩F−Pi
∗ (V)

obtained by removing from Wi a small neighborhood of the critical point CPi
that gets

mapped to Dr.
For each ● ∈ {0,∞}, there exists a unique point z● on the intersection of ∂V and the zero

ray R● such that the external ray segment

R̂● ∶= (∞, z●) ⊂R●

is contained in V. The ray segments R̂0 and R̂∞ are contained in I≤Q(F∗) where Q is the
maximum of the escaping times of z0 and z∞. By Lemma 5.7.7, the Qth escaping set I≤Q
moves holomorphically and equivariantly on a small neighborhood U of F∗. By the λ-lemma,
such a motion induces a holomorphic motion of R̂0(F)∪R̂∞(F)∪∂V(F), which, by shrinking
U if necessary, can be assumed to not collide with CV (FT ). This allows us to pull back via
FP for all P ≤ T and further extend this motion to a holomorphic motion of

R̂0(F) ∪ R̂∞(F) ∪ ∂V(F) ∪⋃
i∈I

∂Ŵi(F)

that is equivariant on ∂Ŵi(F) with respect to FPi for every i ∈ I. By λ-lemma, this motion
can again be extended to a holomorphic motion Φ0 on the whole plane that is equivariant
with respect to FPi on ∂Ŵi(F) for every i ∈ I.

Step 2: Construct Λ which moves holomorphically and equivariantly.
Consider V0(F) ∶= ⋃i∈I Ŵi(F) and define the holomorphic map

F̂ ∶V0(F) →V(F), F̂(z) = FPi(z) for z ∈ Ŵi(F).

This map satisfies a Markov-like property that V0(F) ⊂V(F) and F̂ sends every connected
component of V0(F) univalently onto a dense subset of V(F). Note that F̂∗ coincides with
the map defined in (5.6.8).

Consider the non-escaping set Λ(F) of F̂ which is defined by

Λ(F) ∶= ⋂
n≥0

V−n(F) where V−n(F) ∶= F̂−n(V0(F)).
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Clearly, Λ(F) is non-empty and forward invariant under F≥0. For F = F∗, the set Λ(F∗) is a
subset of the set X defined in Section §5.6.6 and is totally disconnected.

Let us treat the holomorphic motion Φ0 = Φ0(F) discussed in Step 1 as a map from the
dynamical plane of F∗ to the dynamical plane of F. We will apply the pullback argument to
Φ0 as follows. For n ≥ 0, let us inductively define the lift of Φn to be

Φn+1 ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φn on C/V−n(F∗),
(F̂∣Ŵi(F)

)
−1
○Φn ○ F̂∗ on V−n(F∗) ∩ Ŵi(F∗) for each i ∈ I.

By equivariance, for all n, Φn is quasiconformal on C with uniformly bounded dilatation
and it eventually stabilizes at every point outside of Λ(F∗). Since Λ(F∗) has no interior, Φn
converges in subsequence to a limiting holomorphic motion Φ which is equivariant on Λ(F).

Step 3: Show that the equivariant holomorphic motion of Λ is unique.
Suppose Ψ is another holomorphic motion of Λ(F) on some small neighborhood U ⊂Wu

loc

of F∗. We will use the notation ΨF(x) to highlight the dependence of F. Let us pick any
point x ∈ Λ(F∗). By Proposition 5.6.36, there is some (i0, i1, . . .) ∈ IN such that x is the
unique point with address (i0, i1, . . .), that is, F̂n

∗(x) lies in the truncated wake Ŵin(F∗) for
all n.

Suppose for a contradiction that ΨF(x) and ΦF(x) are distinct. Then, the address
of ΨF(x) is not equal to (i0, i1, . . .) and, in particular, there is some n ∈ N such that
F̂n(ΨF(x)) lies in a truncated wake other than Ŵin(F). Since the boundary of Ŵin(F)
moves holomorphically and equivariantly, there exists some G ∈Wu

loc sufficiently close to F∗

such that x′n ∶= Ĝn (ΨG(x)) is on the boundary of Ŵin(G). Then, the image y′n ∶=GPin(x′n)
would lie on R̂0(G)∪R̂∞(G)∪∂V(G), which is disjoint from Λ(G). However, due to forward
invariance, y′n must be contained in Λ(G), hence a contradiction.

Step 4: Show that Λ(F) contains JR(F) for some R > 0 independent of F ∈ U .
It suffices to find R such that for all F ∈ U , every point outside of I<∞(F) ∪Λ(F) will be

sent into the disk DR by FP for some P ∈ T.
Let us recall the renormalization tiling ∆n(F) defined in §5.5.2. In the dynamical plane

of F∗, there exists some sufficiently large N ∈ N such that all primary wakes rooted at
critical points located in ∆0(0,F∗) ∪∆0(1,F∗) are contained in the tile ∆−N(i,F∗) for some
i ∈ {0, 1}. Then, every wake of generation greater than T is contained in the tiling ∆−N(F∗).
In particular, V0(F∗) is disjoint from ∆−N(F∗).

By shrinking U if needed, the tiling ∆−N(F) moves holomorphically and equivariantly
over U and always contains C/V0(F). Therefore, for all F ∈ U , every point outside of
I<∞(F) ∪Λ(F) is eventually mapped to a point in C/V0(F), which is eventually mapped to
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another point in F(−N,0,1)(∆−N(0,F)) ∪F(−N,1,0)(∆−N(1,F)), which is contained in the disk
DR for some large R > 0 independent of F.

Theorem 5.7.8. For every F ∈Wu, I∞(F) is a totally disconnected subset of J(F) and
supports no invariant line field. Moreover, on every connected component of the interior of
{F ∈Wu ∶ 0 /∈ I∞(F)}, there is a unique equivariant holomorphic motion of I∞(F), and this
motion is conformal.

Proof. Let U , Λ, and R be from the previous lemma. For every F ∈ Wu, there is some
sufficiently large n ∈ N such that the nth anti-renormalization F−n lies in U . Since FP =
A−n∗ ○F

P /t−n

−n ○An∗ for all P ∈ T, the set

Λ−n(F) ∶= A−n∗ (Λ(F−n))

is forward invariant, contains J∣µ∗∣−nR(F), and admits a unique equivariant holomorphic
motion Φ−n over Rn(U). The dilatation of Φ−n near F can be made arbitrarily small by
choosing F−n arbitrarily close to F∗, or equivalently, n to be an arbitraily large. In particular,
there is a unique equivariant holomorphic motion of I∞(F) ∩Λ−n(F) and its dilatation near
F shrinks to zero as n→∞.

Every point in I∞(F) is eventually mapped to I∞(F) ∩Λ−n(F). Since Λ−n(F) is totally
disconnected, then so is I∞(F). To show that I∞(F) is in the Julia set, suppose for a
contradiction that I∞(F) contains a point x in the Fatou set. By normality, points sufficiently
close to x are also attracted to ∞, which contradicts the total disconnectivity of I∞(F).

On a component Ω of the interior of {F ∈Wu ∶ 0 /∈ I∞(F)}, for F ∈Ω, we can extend the
motion Φ−n by iteratively pulling back the holomorphic motion of I∞(F) ∩Λ−n(F), yielding
a unique equivariant holomorphic motion Φ̃−n of I∞(F). Since we are pulling back by a
holomorphic map, the dilatation of Φ̃−n is equal to that of Φ−n. By the uniqueness of the
motion, Φ̃ = Φ̃−n is independent of n. Moreover, since the dilatation shrinks to zero as n→∞,
then Φ̃ is a conformal motion of I∞.

Lastly, suppose for a contradiction that I∞(G) supports an invariant line field µ of some
G ∈Wu. Since I∞(F) ∩Λ−n(F) moves holomorphically over a neighborhood of F∗ containing
G for some sufficiently high n, then there is a quasiconformal map ϕ ∶ C→ C which has zero
dilatation on I∞(F∗) ∩Λ−n(F) and conjugates F∗∣I∞(F∗)∩Λ−n(F∗) to G∣I∞(G)∩Λ−n(G). Consider
µ′ = ϕ∗µ on I∞(F∗) ∩ Λ−n(F) and pull it back via F∗ to obtain a F∗-invariant Beltrami
differential µ′ supported on I∞(F∗). Then, µ′ would be an invariant line field of F∗ supported
on I∞(F∗), which is impossible due to Lemma 5.7.2.
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5.8 Hyperbolic cascades

Definition 5.8.1. We say that a cascade F ∈Wu is hyperbolic if F admits an attracting
cycle of periodic points.

If F is hyperbolic, the critical orbit FP (0) automatically converges to an attracting
periodic cycle (Proposition 5.5.19) and so F has a unique attracting periodic cycle.

In this section, we will provide a proof the second half of Theorem K as well as a proof of
Theorem J (4). Roughly speaking, we will show that hyperbolic cascades exist and that any
hyperbolic component inWu is one-dimensional.

5.8.1 Expansion

Before we discuss the properties of hyperbolic cascades, let us state a number of classical
properties of the Julia set which we can now deduce from the equation J(F) = I<∞(F) that
we have established in Corollary 5.7.6.

Proposition 5.8.2. Either J(F) = C or J(F) has no interior.

Proof. Suppose J(F) contains an open disk B. Corollary 5.7.6 tells us that I<∞(F) ∩B is
dense in B. By Lemma 5.5.13, there is some P ∈ T>0 such that FP (B/I≤P (F)) is dense in C.
Thus, J(F) is the whole plane.

For any tangent vector v at a point z in C/P(F), denote by ∥v∥ the norm of v with
respect to the hyperbolic metric of C/P(F). If z ∈P, we set ∥v∥ = ∞.

Lemma 5.8.3 (Julia expansion). For every point z in J(F)/I<∞(F),

∥(FP )′ (z)∥ → ∞ as P →∞.

Proof. Let us fix a point z ∈ J(F)/I<∞(F). Without loss of generality, assume that z does
not eventually land on P(F).

For any P ∈ T>0, let
PP ∶= I≤P (F) ∪F−P (P(F)).

The map FP ∶ C/PP → C/P is a local isometry with respect to their hyperbolic metrics. Since
the closure of the union ⋃P ∈TPP contains the Julia set (thanks to Corollaries 5.5.14 and
5.7.6), the distance between PP and z shrinks to 0 as P →∞. Consequently, the distance rP
between z and PP with respect to the hyperbolic metric of C/P tends to 0 as P →∞. The
inclusion map ι ∶ C/PP → C/P is contracting by some factor C(rP ) where C(r) → 0 as r → 0.
Therefore, as P →∞, ∥(FP )′ (z)∥ ≥ C(rP )−1 →∞.
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Denote by distĈ(⋅, ⋅) the spherical distance between two subsets of Ĉ.

Theorem 5.8.4 (Measure-theoretic attractor). If J(F) has no interior, then for almost every
point z in J(F)/I<∞(F),

distĈ (FP (z),P(F) ∪ {∞}) → 0 as P →∞.

In other words, almost every non-escaping point in the Julia set is attracted to the
postcritical set.

Proof. Suppose for a contradiction that there exist a positive number ε > 0 and a positive
area subset E of J(F)/I<∞(F) such that for all z ∈ E,

lim sup
P→∞

distĈ (FP (z),P(F) ∪ {∞}) ≥ ε.

Let z be a Lebesgue density point of E. There is a sequence of power-triples Pn such that
Pn →∞ and yn ∶= FPn(z) lies in the compact subset

K ∶= {z ∈ C ∶ distĈ(z,P(F) ∪ {∞}) ≥ ε}.

For each n ∈ N, consider the spherical ball Bn of radius ε/2 centered at yn, and let B′n be the
lift of Bn under FPn containing z.

By Lemma 5.8.3, ∥(FPn)′ (z)∥ → ∞. Since K is compact and FPn ∣B′n has bounded
distortion, the disks B′n must shrink to a point. Since z is a density point of E,

lim
n→∞

area(B′n ∩E)
area(B′n)

= 1.

Therefore, we also have

lim
n→∞

area(Bn ∩ J(F)/I<∞(F))
area(Bn)

= 1.

Since K is compact, yn converges in subsequence to some point y ∈K. Then, the ball B of
radius ε/2 centered at y must have the same area as B ∩ J(F)/I<∞(F). Since J(F) is closed,
then the ball B has to be contained in J(F). This contradicts the assumption that J(F) has
no interior.

Corollary 5.8.5. If F ∈Wu is hyperbolic, then J(F)/I(F) has zero Lebesgue measure.

Proof. Suppose F is hyperbolic. By Proposition 5.5.19, the postcritical set P(F) is contained
in the Fatou set. The assertion immediately follows from Proposition 5.8.2 and Theorem
5.8.4.
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Hyperbolicity is clearly an open condition. An open subset Ω ofWu is called a hyperbolic
component if it is a connected component of the set of hyperbolic cascades inWu.

Corollary 5.8.6. Consider a hyperbolic component Ω of Wu. There is a unique equivariant
holomorphic motion of J(F) over F ∈ Ω, and such a motion is a conformal motion. For
F ∈Ω, J(F) supports no invariant line field of F.

Proof. For F ∈Ω, the critical value 0 is not contained in I(F), and so the assertion follows
from Theorems 5.7.5 and 5.7.8, Corollary 5.8.5, and the λ-lemma.

This completes the proof of Theorem K. To prove Theorem J, we first need to unravel
further properties of hyperbolic cascades.

One feature of transcendental dynamics that distinguishes itself from polynomial dynamics
is the emergence of wandering domains and Baker domains. If F is hyperbolic, such domains
do not exist.

Proposition 5.8.7. If F ∈Wu is hyperbolic, the Fatou set of F is equal to the basin of the
unique attracting periodic cycle of F.

Proof. Let A denote the basin of attraction of the unique attracting cycle of F, and suppose
for a contradiction that F(F)/A is non-empty. Let us pick a connected component Ω of
F(F)/A.

Let us pick any point x in Ω. By Theorem 5.7.8, I∞(F) is contained in the Julia set and
so it is disjoint from Ω. Hence, there exist some R > 1 and some increasing sequence of times
P0 ∶= 0, P1, P2, . . . in T such that Pn →∞ and that each of xn ∶= FPn(x) is contained in

K ∶= {z ∈ C ∶ ∣z∣ ≤ R and z /∈ A}.

Let P denote the period of the attracting cycle of F. Since K is a compact subset of
C/P(F), the hyperbolic metric ρ(z)dz of C/P(F) satisfies

ρ(z) ≍ 1 for all z ∈K, (5.8.1)

and the hyperbolic distance between any point in K and F−P (P(F)) ∪ I≤P (F) is uniformly
bounded from above. As such, since each of xn is in K, then there is some constant C > 1
such that for all n ≥ 1, ∥(FP )′ (xn)∥ ≥ C. Let us pass to a subsequence and assume that
Pn+1 − Pn ≥ P for all n ≥ 1. By chain rule,

∥(FPn)′ (x)∥ ≥
n−1

∏
k=0

∥(FPk+1−Pk)′ (xk)∥ ≥ Cn →∞ as n→∞. (5.8.2)
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Since Ω is simply connected (Proposition 5.5.16) and does not contain any critical point of
F≥0, then FPn is univalent on Ω for all n. Suppose Ω contains the Euclidean disk D ∶= D(x, ε)
for some ε > 0. By Koebe quarter, FPn(D) contains the Euclidean disk D(xn, rn) where

rn ∶=
ε

4
∣(FPn)′ (x)∣ .

By (5.8.1) and (5.8.2), we have

rn ≍ ∣(FPn)′ (x)∣ = ρ(x)
ρ(xn)

∥(FPn)′ (x)∥ ≍ ∥(FPn)′ (x)∥ → ∞.

We have just established that FPn(Ω) contains the disk D(xn, rn) where ∣xn∣ ≤ R and
rn →∞ as n→∞. Therefore, FPn(Ω) converges to the whole plane in the Hausdorff metric,
which is impossible because the Fatou set F(F) is not the whole plane.

5.8.2 Superattracting cascades

We say that F ∈Wu is superattracting if 0 is a periodic point of F≥0. Superattracting cascades
are clearly hyperbolic.

Lemma 5.8.8 (Density of hyperbolicity at F∗). Every neighborhood U ⊂ Wu
loc of the

renormalization fixed point F∗ contains a superattracting cascade.

Proof. Suppose for a contradiction that there is a small neighborhood U of F∗ in which
for all F ∈ U , we have FP+Q(0) ≠ FQ(0) for all P ∈ T>0, Q ∈ T. By λ-lemma, this implies
that the postcritical set of F moves holomorphically over U . In the realm of coronas, the
corresponding neighborhood V ⊂ Wu

loc of f∗ consists of rotational coronas. By Theorem 5.3.9,
V must lie in the stable manifold, which is impossible.

Therefore, every neighborhood U of F∗ contains some G such that GP+Q(0) =GQ(0) for
some P ∈ T>0 and Q ∈ T. If Q = 0, then G is superattracting and we are done. Hence, let us
assume that Q > 0. In this case, GQ(0) is a periodic point of period P , and by Proposition
5.5.19, it must be repelling in nature.

Consider any sufficiently small one-dimensional disk U ′ about G embedded in U . By
implicit function theorem, every F ∈ U ′ admits a repelling periodic point xF of period P such
that xG =GQ(0) and xF depends holomorphically on F. By Corollaries 5.5.14 and 5.7.6, there
exists a sequence of critical points xF,n of some generation Pn depending holomorphically
on F ∈ U ′ such that Pn →∞ and xF,n → xF as n→∞. By Rouché’s theorem, for sufficiently
large n, the number of zeros of FQ+Pn(xF,n) − xF,n as a function of F ∈ U ′ is equal to that of
FQ+Pn(xF,n) − xF, which is at least one (e.g. G). Therefore, there exist some large n ∈ N and
some F ∈ U ′ such that FQ+Pn(xF,n) = xF,n and so FQ+Pn(0) = 0.
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Lemma 5.8.9. For P ∈ T, the set {F ∈Wu ∶ FP (0) = 0} of superattracting cascades of
period P is a zero-dimensional analytic variety.

Proof. The equation “FP (0) = 0“ surely cuts out an analytic variety in Wu. Suppose for
a contradiction that it has a component of dimension at least one. Then, there exists an
embedded holomorphic curve D→Wu, t↦ Ft such that each Ft is superattracting of period
P . Below, we will run the pullback argument to obtain a contradiction.

Let Dt be the immediate basin of attraction of 0 for the cascade Ft. The only critical
point of FP

t in Dt is 0 itself, so by Riemann-Hurwitz formula, Dt is simply connected. Let
bt ∶ (Dt,0) → (D,0) be a Böttcher conjugacy, i.e. a Riemann mapping which conjugates FP

t

with the power map z ↦ zd where d = d0 + d∞ − 1. Observe that

Bt ∶= b−1t ○ b0 ∶ (D0,0) → (Dt,0)

conjugates FP
0 with FP

t . The Böttcher conjugacy is unique up to multiplication by some
roots of unity. We can select them such that bt depends holomorphically on t and so B0 is
the identity map on D0.

By Corollary 5.8.6, the Julia set J(Ft) moves conformally and equivariantly in t. More
precisely, there exists a holomorphic family of quasiconformal maps ϕt ∶ C→ C that have zero
dilatation on J(F0) and conjugates F0∣J(F0) and Ft∣J(Ft).

We shall modify the map ϕt on the attracting basin as follows. For r ∈ (0,1), let
Et(r) ∶= b−1t (Dr) be a disk neighborhood of 0 cut out by an equipotential. Let ε = 1

2 and
ε′ = εd. Define the global quasiconformal map

ψt,0(z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕt(z) if z ∈ C/⋃0≤T<P F
T
0 (Et(ε))

FT
t ○Bt ○ (FT

0 ∣E0(ε′))
−1

if z ∈ FT
0 (E0(ε′)) for some T < P

quasiconformal interpolation if otherwise.

On J(F0) and a neighborhood of the periodic cycle {FT
0 (0)}T , ψt,0 conjugates FP

0 and FP
t .

Inductively, we define for all n ≥ 1 the quasiconformal map ψt,n ∶ C→ C by lifting ψt,n−1 such
that

FP
t ○ ψt,n = ψt,n−1 ○FP

0 .

The map ψt,n has dilatation equal to that of ψt,0 and it agrees with ψt,n−1 on a neighborhood
of J(F0) and on increasingly large part of the Fatou set F(F0). Moreover ψt,n is a conformal
conjugacy between FP

0 and FP
t on F−nP (FT (E0(ε))) for all 0 ≤ T < P .

As n→∞, ψt,n stabilizes and converges to a quasiconformal map ψt conjugating FP
0 to

FP
t everywhere. By Proposition 5.8.7, ψt is conformal on the whole Fatou set and has zero
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dilatation almost everywhere on the Julia set. By Weyl’s lemma, ψt is a linear conjugacy
between F0 and Ft.

Without loss of generality, we can reparametrize Ft and assume that ψt(z) = (1 + t)z
where ∣t∣ is sufficiently small. Then, within the global parameter space Wu, we have a
one-dimensional slice Ft = {ψt ○F0 ○ ψ−1t }t. For all n ≥ 1, denote the nth anti-renormalization
of Ft by Ft,−n. As n→∞, we have

F∗ = lim
n→∞

Ft,−n = lim
n→∞

ψt ○F0,−n ○ ψ−1t = ψt ○F∗ ○ ψ−1t .

However, the only holomorphic map which commutes with the linear map ψt for all t is a
linear map, and clearly FP

∗ is not a linear map for every P ∈ T>0.

5.8.3 Dimension of Wu

We are now ready to prove Theorem J (4).

Theorem 5.8.10. The global unstable manifold Wu is biholomorphic to C.

Proof. By Lemma 5.8.8, there exists a superattracting cascade inWu of some period P > 0.
The equation “FP (0) = 0“ defines a non-empty analytic hypersurface inWu. By Lemma 5.8.9,
the dimension ofWu must be equal to one. Since R is an automorphism ofWu admitting a
unique repelling fixed point F∗, then the claim will imply that R ∶Wu →Wu is conformally
conjugate to the linear map C→ C, z ↦ λz where λ is the repelling eigenvalue of R.

Let us conclude with a proof of Corollary L.

Corollary 5.8.11. Consider a small Banach neighborhood N(f) of a (d0, d∞)-critical qua-
sicircle map f of preperiodic type rotation number τ . The space S(f) of maps in N(f)
that admit a (d0, d∞)-critical Herman quasicircle of rotation number τ forms an analytic
submanifold of N(f) of codimension at most one. The Herman quasicircles of maps in S(f)
move holomorphically.

Proof. Let G be the Gauss map. There exists some k ∈ N such that θ ∶= Gk(τ) is a periodic
type irrational. Consider the corona renormalization operator R ∶ (U , f∗) → (B, f∗) from
Corollary 5.3.2 associated to the data (d0, d∞, θ).

By Lemma 5.3.3, there is a compact analytic corona renormalization operator R1 on a
neighborhood of f such that R1f is sufficiently close to the fixed point f∗ of R, and thus it lies
in the stable manifold of f∗. Then, the preimage S ∶= R−11 (Ws

loc) is an analytic submanifold of
the Banach neighborhood of f consisting of perturbations of f which admit a (d0, d∞)-critical
Herman quasicircle of rotation number τ . By Theorem J, the codimension of Ws

loc is one,
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so there is an analytic function ϕ ∶ U ′ → C on a Banach neighborhood U ′ of f∗ such that
Ws

loc = ϕ−1(0). Therefore, S is the zero set of ϕ ○ R1 and so the codimension of S is at most
one.

The Herman quasicircle of a corona in Ws
loc moves holomorphically over Ws

loc due to λ-
lemma. Since R1 is analytic, the Herman quasicircles of maps in S also move holomorphically
over S.
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Chapter 6

Questions and Conjectures

We conclude this dissertation with a couple of questions and conjectures.
In Chapter 3, we construct Herman curves as a limit of degenerating Herman rings. It is

natural to ask the following questions:

Question I. When is a limit of degenerating Herman rings a Herman curve?

Question II. When is a Herman curve a limit of degenerating Herman rings?

Given a degree d ≥ 2 rational map f containing an invariant bounded type Herman
quasicircle H, one can perform Douady-Ghys surgery [Ghy84; Dou87] to both sides of H
and obtain a pair of rational maps g+ and g− having invariant Siegel disks Z+ and Z− of
complementary rotation numbers. Applying Shishikura’s surgery [Shi87] to g+ and g−, we
obtain a family of degree d rational maps Ft admitting an invariant Herman ring Ht of
modulus t > 0 and of the same rotation number and combinatorics as f ∣H. The dynamics
of Ft on each component of Ĉ/Ht is quasiconformally conjugate to the dynamics of f on a
component of Ĉ/H. We believe in the following conjecture.

Conjecture III. Every Herman quasicircle with bounded type rotation number arises as
a limit of degenerating Herman rings. More precisely, given f and Ft above, [Ft] → [f] as
t→ 0 in the moduli space Ratd/PSL2(C).

Note that the bounded type assumption is essential in the realization and rigidity of maps
in Xd0,d∞,θ. Recently, Yang [Yan22] proved the existence of a cubic rational map whose Julia
set has positive Lebesgue measure and contains a smooth Herman curve of high type Brjuno
rotation number. Such a rational map is also constructed as a limit of degenerating Herman
rings, but the problem of realization and rigidity for general irrational rotation number θ and
degrees d0, d∞ remains open.
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To the best of our knowledge, all examples of Herman curves that are known have
quasiconformal regularity. It would be interesting to know of any examples of Herman curves
that have cusps.

Question IV. Does there exist a holomorphic map with a Herman curve that is a not a
quasicircle? If so, what are the possible rotation numbers?

Consider the unicritical family {Fc}c∈C from Proposition 4.3.8. Numerical experiments
(or simply lack of counterexamples) suggest the following.

Conjecture V (Uniform a priori bounds + full combinatorial rigidity). For every irrational
θ ∈ R/Z, there exists a unique parameter cθ ∈ C such that Fcθ admits a Herman curve Hθ

with rotation number θ passing through its free critical point 1. Moreover, Hθ is a uniform
quasicircle.

In proving Theorem C, we show that the Julia set of any rational map in X supports no
invariant line field. It is also reasonable to ask the following related question.

Question VI. Given f ∈ X , does J(f) have zero Lebesgue measure? Is the Hausdorff
dimension of J(f) less than 2?

We believe that Question VI is a much more difficult problem. Points along the Herman
quasicircle of f are deep points of its Julia set (cf. Theorem 4.5.2). This hints at the similarity
in complexity to Feigenbaum Julia sets (see [McM96]). One possible direction towards this
problem is an adaptation of the methods developed by Avila and Lyubich [AL08] in studying
the Lebesgue measure of Feigenbaum Julia sets. In particular, it may be possible to formulate
a criterion for zero or positive area in terms of escape probabilities and, similar to [DS20;
AL22; DL23], apply either rigorous computer estimates or various renormalization schemes
to obtain a conclusive answer.

In Theorem C, we constructed rational maps admitting multicritical Herman curves of
arbitrary combinatorics and proved a rigidity property for such maps. It is natural to expect
for Theorem D to hold in the multicritical setting too.

Conjecture VII. C1+α rigidity holds for multicritical quasicircle maps with bounded type
rotation number.

We have all the ingredients available to prove this conjecture except for complex bounds
for multi-quasicritical circle maps, which can be applied to show quasiconformal rigidity.
One may ask whether or not it is possible to obtain complex bounds directly on the level of
holomorphic maps, i.e. multicritical quasicircle maps.
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Many of the tools in the proof of Theorem J, in particular the proof of dimWu
loc ≤ 1, are

fairly soft. We conjecture that the philosophy that we apply here should hold in a more
general setting.

Conjecture VIII. Consider a compact analytic renormalization operator with a hyperbolic
fixed point such that every map on the unstable manifold Wu

loc admits a global transcendental
extension. Then,

dim (Wu
loc) ≤ number of critical orbits.

In Corollary L, we deduce that within its natural Banach neighborhood, the conjugacy
class of a critical quasicircle map with pre-periodic type rotation number forms an analytic
submanifold of codimension at most one. We firmly believe that the codimension should be
equal to one, and more generally:

Conjecture IX. Consider a Banach neighborhood N(f) of a (d0, d∞)-critical quasicircle
map f with irrational rotation number θ. The space S of maps in N(f) which restrict to a
(d0, d∞)-critical quasicircle map with rotation number θ forms a codimension one analytic
submanifold of N(f). In particular, critical quasicircle maps are structurrally unstable.

So far, this conjecture is known to be true for

⊳ periodic type critical quasicircle maps that are close to the associated renormalization
fixed point f∗ (due to Theorem J), and

⊳ critical circle maps with arbitrary irrational rotation number (due to standard mono-
tonicity properties of the rotation number).

We suspect that it can be solved via an infinitesimal argument similar to unimodal maps
[ALM03], although the lack of real symmetry and nice external structure presents a great
challenge.

In [Yam03], the hyperbolicity of renormalization explains the golden mean parameter
universality of critical circle maps. This should be the case for critical quasicircle maps too.

Consider a one-dimensional holomorphic family of unicritical holomorphic maps {fλ}λ∈Λ,
and suppose there is a unique parameter λ∗ ∈ Λ such that fλ∗ has a unicritical Herman
quasicircle of periodic type rotation number θ. By Lemma 5.3.3, if Λ is a small disk around
λ∗, the family {fλ}λ∈Λ can be corona renormalized to a one-parameter family {gλ}λ∈Λ near
the renormalization fixed point f∗ described in Theorem J. This family intersects Ws

loc at
a single point gλ∗ with some intersection multiplicity r. If r = 1, then the intersection is
transversal.

225



Conjecture X (Parameter self-similarity). Consider {fλ}λ∈Λ discussed above. The union
of hyperbolic components within Λ is asymptotically self-similar at λ∗ with a universal self-
similarity factor depending only on θ, the criticality, and the intersection multiplicity r.

For example, based on numerical experiments (Figure 6.1), the unicritical family of rational
maps {Fc}c∈C∗ in Proposition 4.3.8 supports this conjecture with r = 1. Our hyperbolicity
result provides a step forward towards this conjecture. However, we suspect that attaining a
complete solution would require hyperbolicity of the renormalization horseshoe for bounded
type rotation numbers, as well as a thorough study of parameter rays and hyperbolic
components of the unstable manifold as a parameter space of transcendental σ-proper maps.

We also propose the following conjecture on the global structure of the bifurcation locus
of {Fc}c∈C∗ .

Conjecture XI (Necklace structure). There exists a set Q ⊂ C∗ and a continuous surjection
ρ ∶ Q→ R/Z with the following properties.

(1) Q is a quasicircle separating 0 and ∞.

(2) For every c ∈ Q, Fc contains an invariant quasicircle Hc on which it is a (d0, d∞)-critical
quasicircle map with rotation number ρ(c).

(3) If θ is irrational, the fiber ρ−1(θ) is the singleton {cθ} from Conjecture V.

(4) If θ = p/q is rational,

(a) the fiber ρ−1(p/q) is a non-degenerate closed interval which is a proper arc in a
hyperbolic component, and

(b) for every c ∈ ρ−1(p/q), the free critical orbit converges to a periodic cycle of period
q and the corresponding multiplier is real and in [0,1].

When d0 = d∞, there exists a unique curve Q satisfying the conjecture above, and it is
precisely the unit circle T. Indeed, under combinatorial symmetry, when ∣c∣ = 1, each Fc is
a Blaschke product and Fc ∶ T→ T forms a real analytic family of critical circle maps. The
conjecture easily follows from standard monotonicity properties of the rotation number.

When d0 ≠ d∞, we have candidates of parameters in ρ−1(θ) when θ is rational or bounded
type irrational. The closure of all such parameters should give the set Q, but during the time
this dissertation is written, we do not even know whether Q is connected. This conjecture is
related to the conjectural non-existence of irrational ghost limbs, as well as the conjectural
local connectivity of the bifurcation locus. We believe the answer should be reachable once
the hyperbolicity of the full renormalization horseshoe is established.

226



0

c∗

Figure 6.1: The parameter space of the family

{Fc(z) = cz3
4 − z

1 − 4z + 6z2}c∈C∗

characterized by critical points 0, ∞, and 1 of local degrees 2, 3, and 4 respectively, where
both 0 and ∞ are fixed and Fc(1) = c. There are two types of escape loci: in white the critical
orbit escapes to ∞, and in blue the critical orbit escapes to 0. The non-escaping locusM
is colored black, and the figure above indicates thatM contains a necklace of Mandelbrot
copies separating 0 and ∞. There is a unique parameter c∗ ≈ −1.144208− 0.964454i such that
Fc∗ has a golden mean Herman quasicircle. (The Julia set of Fc∗ is shown in Figure 1.1.) The
bottom figure shows magnifications by different scales about c∗ marked in red.
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