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Abstract of the Dissertation

Topics in Quantitative Rectifiability:

Traveling Salesmen, Lipschitz Decompositions, Densities, and Big Pieces

by

Jared Krandel

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

We present and prove assorted results in quantitative rectifiability. First, we study the

quantitative rectifiability of Jordan arcs in Hilbert spaces, proving a version of the traveling

salesman beta number estimate for length minus chord length analogous to an estimate

recently attained by Bishop in Euclidean spaces. Second, we prove the existence of Lipschitz

decompositions for domains with quantitatively flat boundaries. That is, we show any such

domain has an “almost” decomposition into nice Lipschitz domains with control on the total

surface area of the decomposition domains in terms of the original domain boundary area.

Third, we study the regularity of Hausdorff measure on uniformly rectifiable metric spaces.

We show that any such space satisfies the weak constant density condition of David and

Semmes. Fourth, we study the iteration of the big pieces operator in Ahlfors regular metric

spaces. We prove that iteration stabilizes after two iterations as a result of a more general

extension theorem.
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Dedication Page

To Mathematics,

An excuse to daydream pretty pictures,

To look beyond myself,

To feel static.

“‘What’s this? Am I falling? My legs are giving way under me,’ he thought, and fell on

his back. He opened his eyes, hoping to see how the struggle of the French soldiers with the

artilleryman was ending, and eager to know whether the red-haired artilleryman was killed

or not, whether the cannons had been taken or saved. But he saw nothing of all that. Above

him there was nothing but the sky–the lofty sky, not clear, but still immeasurably lofty, with

gray clouds creeping quietly over it.” - Lev Tolstoy, War and Peace

“On the last day, she went to see the Watts Towers ... She went around touching things,

rubbing her palms over the bright surfaces. She loved the patterns made by jute doormats

pressed in cement. She loved the crushed green glass and the brown bottle bottoms that

knobbed an archway. And one of the taller towers with its tracery of whirling atoms. And

the south wall candied with pebbles and mussel shells ... She felt a static, a depth of spirit,

a delectation that took the form of near helplessness. Like laughing helplessly as a girl,

collapsing against the shoulder of your best friend. She was weak with sensation, weak with

seeing and feeling.” - Don DeLillo, Underworld
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Chapter 1

Introduction

Rectifiable sets are central objects of interest in geometric measure theory. If X is a metric
space, we say that E ⊆ X is n-rectifiable if there exist countably many subsets Ai ⊆ Rn and
Lipschitz maps fi : Ai → X such that Hn(E \

⋃
i fi(Ai)) = 0. In other words, all of the Hn

measure of E is captured by Lipschitz image of subsets of Rn. In Euclidean space, rectifiable
sets are natural generalizations of smooth n-dimensional submanifolds. Whereas manifolds
are locally smoothly parameterized by Euclidean space via charts, rectifiable sets only admit
this weak form of measure theoretic covering by Lipschitz maps. Just as differential geometry
studies the topological and geometric properties of manifolds, a large part of geometric
measure theory seeks to understand what sort of geometric structure remains when we
generalize to the class of rectifiable sets.

Some of the most satisfying geometric statements about rectifiable sets concern what
happens in the limit as we zoom in on typical points: rectifiable sets have approximate
tangent planes almost everywhere.

Definition 1.0.1 (Approximate tangent n-planes). For a given n-plane P ⊆ Rd, x ∈ Rd,
and s ∈ (0, 1), define the cone of aperture s centered at a around P by

C(a, P, s) = {x ∈ Rd : dist(x− a, P ) < s|x− a|}.

We say that P is an approximate tangent n-plane for E at a if

lim sup
r→0

Hn(E ∩B(a, r))

(2r)n
> 0, (1.1)

and for every s ∈ (0, 1)

lim
r→0

Hn(E ∩B(a, r) \ C(a, P, s))
(2r)n

= 0. (1.2)

Equation(1.1) says that small balls around a contain at least some mass, while (1.2)
says that all of the mass near a concentrates near P in small balls around a. The following
theorem characterizes n-rectifiable subsets of Rd in terms of the existence of approximate
tangent n-planes.
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Theorem 1.0.1 ([Mat95] Theorem 1.59). Let E be an Hn measurable subset of Rd with
Hn(E) <∞. The following are equivalent:

(i) E is n-rectifiable,

(ii) For Hn almost every x ∈ E, there is a unique approximate tangent plane to E at x.

(iii) For Hn almost every x ∈ E, there is an approximate tangent plane to E at x.

While this characterization is insightful and useful in many settings, we sometimes want to
claim that objects we’re working with have stronger geometric regularity than that provided
by rectifiability alone. This is especially true when studying questions which are quantitative
in nature. For example, given E ⊆ Rd we may want to know whether E looks flat in a
“typical” ball which requires some way of actually measuring and controlling the “number”
of scales and locations on which E is close to an n-plane. The existence of approximate
tangent planes only says that there is a good tangent plane (in a measure theoretic sense) on
infinitesimally small scales around Hn almost all points. In order to get this desired stronger
control, we need often need to require stronger, more quantitative conditions on E than mere
rectifiability.

One such influential quantitative rectifiability condition is the notion of uniform n-
rectifiability introduced by David and Semmes. They were motivated by questions related
to the boundedness of certain singular integral operators like the following: Given a nice
enough class of operators, what geometric conditions must one put on E ⊆ Rd for these
operators to be bounded from L2(E) to itself? In [DS91] and [DS93], David and Semmes
tell a long and beautiful story about how the boundedness of singular integral operators re-
lates to quantitative aspects of rectifiability and geometric measure theory through uniform
n-rectifiability.

To define uniformly n-rectifiable sets, we first need the following two conditions.

Definition 1.0.2 (Ahlfors n-regular subsets). We say that a set E ⊆ Rd is n-Ahlfors regular
if there exists a constant c > 0 such that for all x ∈ E, 0 < r < diam(E), we have

c−1rn ≤ Hn(E ∩B(x, r)) ≤ crn.

Definition 1.0.3 (Big pieces of Lipschitz images). We say E has big pieces of Lipschitz
images of Rn if there exist constants L, θ > 0 such that for any x ∈ E, 0 < r < diam(E),
there exists an L-Lipschitz map f : Ax,r ⊆ Bn(0, r) ⊆ Rn → Rd such that

Hn(E ∩B(x, r) ∩ f(Ax,r)) ≥ θrn

Finally, we can define uniform rectifiability.

Definition 1.0.4 (Uniformly n-rectifiable sets). We say that E ⊆ Rd is uniformly n-
rectifiable if and only if E is Ahlfors n-regular and E has big pieces of Lipschitz images
of Rn.

Ahlfors n-regularity says that the measure of E inside any ball is uniformly comparable
to the measure of a ball of equal radius in an n-plane. Assuming Ahlfors n-regularity, the
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big pieces of Lipschitz images of Rn condition says that a uniform fraction of the measure
of each ball in E is covered by Lipschitz images with uniformly bounded Lipschitz constant
of balls of equal size in Rn. Uniformly rectifiable sets have quantitatively large Lipschitz
coverings at all scales and locations, while general rectifiable sets may have balls which are
arbitrarily badly parameterizable by Lipschitz maps.

David and Semmes proved that, assuming E is Ahlfors n-regular, some nice classes of
singular integral operators are bounded from L2(E) to itself if and only if E is uniformly
n-rectifiable. However, they also extensively studied uniformly rectifiable sets as geometric
objects of independent interest, proving many equivalent geometric definitions. Many of
these give quantitative counterparts of qualitative characterizations of n-rectifiable sets. One
of the strongest such characterizations is the bilateral weak geometric lemma (BWGL), which
gives a quantitative analog to the existence of approximate tangent n-planes discussed in
1.0.1. Roughly speaking, the BWGL says that inside “most” balls, E is bilaterally close to
an n-plane. We measure this bilateral closeness using the Hausdorff distance.

Definition 1.0.5 (Hausdorff distance). For any subsets A,B ⊆ Rd, we define the Hausdorff
distance between A and B as

dH(A,B) = max

{
sup
b∈B

dist(b, A), sup
a∈A

dist(a,B)

}
.

In words, dH(A,B) measures the furthest distance any point in one set is from the other
set.

Definition 1.0.6 (Bilateral beta numbers). Let E ⊆ Rd, x ∈ E, r > 0. We define

bβE(x, r) = inf
P n-plane

dH(E ∩B(x, r), P ∩B(x, r))

r
.

We call bβE(x, r) the bilateral beta number for E inside B(x, r).

In words, bβE(x, r) < ϵ if and only if there exists a plane P such that every point of
P ∩ B(x, r) is within distance ϵr of a point of E ∩ B(x, r) and every point of E ∩ B(x, r)
is within distance ϵr of a point of P ∩ B(x, r). Before finally stating the bilateral weak
geometric lemma, we need a precise way of quantifying the “number” of balls satisfying a
certain property. This is given by the notion of a Carleson set

Definition 1.0.7 (Carleson sets). We say that B ⊆ E×R+ is a Carleson set if there exists
a constant C > 0 such that for every x ∈ E and 0 < r < diam(E)

�
B(x,r)

� r

0

χB(x, t)
dxdt

t
≤ Crn.

We think of each pair (x, t) ∈ E × R+ as representing the ball B(x, t) ∩ E. Since
the measure dt

t
assigns constant mass to each interval [2−k, 2−k+1], each “layer” of balls

Lk = {(x, t) ∈ E ×R+ : x ∈ B(y, r), 2−(k+1) ≤ t ≤ 2−k} inside of a given ball B(y, r) for an
Ahlfors n-regular set E has � �

Lk

dxdt

t
≍ rn

3



so that �
B(y,r)

� r

0

χE×R+(x, t)
dxdt

t
≍

∞∑
k=− log(r)

rn = ∞.

In order for B to be a Carleson set, B must be much smaller than E×R+. It must become
very sparse on small scales.

Finally, we can define what it means for E to satisfy the bilateral weak geometric lemma.

Definition 1.0.8 (Bilateral weak geometric lemma (BWGL)). We say that E ⊆ Rd satisfies
the BWGL if and only if for every ϵ > 0, the set

B(ϵ) = {(x, t) ∈ E × R+ : bβE(x, t) > ϵ}

is a Carleson set.

David and Semmes proved the following equivalent characterization of uniform rectifia-
bility (among many, many more).

Theorem 1.0.2 ([DS93] Theorem I.2.8). Let E ⊆ Rd be Ahlfors n-regular. Then E is
uniformly n-rectifiable if and only if E satisfies the BWGL.

Although the topics of the chapters in this thesis vary, they all lie in the general area
of quantitative rectifiability, studying ways of quantifying flatness over all scales and all
locations. In what follows, we introduce each of the four topics presented. In the final
paragraph of each of the following sections, we give a summary of the results we obtain
within that topic.

1.1 The analyst’s traveling salesman theorem for

Jordan arcs

Given an arclength parameterized Jordan arc γ : [0, 1] → Rd, we define the length of γ
relative to a partition P = {x0, x1, . . . , xN} for xi < xi+1, xi ∈ [0, 1] by

ℓ(γ, P ) =
N−1∑
i=0

|γ(xi+1)− γ(xi)|.

Then, the length of γ is given by

ℓ(γ) = sup
P
ℓ(γ, P ).

This definition of length involves only what happens on infinitesimal scales (partitions with
many points are all that matter because refining partitions increases length), reminiscent of
how approximate tangent planes only describe the flatness of rectifiable sets on infinitesimal
scales. Analyst’s traveling salesman theorems for curves attempt to provide a quantification
of the length in terms of the local geometry of curves inside balls over all scales and locations
inside the curve. The primary tool for this analysis is the Jones beta number introduced
by Peter Jones in his proof of the analyst’s traveling salesman theorem in R2. (See the
introduction of Chapter 2 for a more detailed exposition of traveling salesman theorems.)

4



Definition 1.1.1 (Jones beta number). Let E ⊆ Rd and Q ∈ D(Rd), the set of dyadic cubes
in Rd. Define

βE(Q) = inf
L line

sup
x∈3Q

dist(x, L)

diam(Q)

where 3Q is the cube with the same center as Q but with 3 times the side length.

Assume diam(γ([0, 1])) = 1 and define P0 = {0, 1} where γ(0) and γ(1) are the endpoints
of γ. Consider a sequence P1, P2, . . . of partitions of [0, 1] where Pi+1 is a refinement of Pi,

γ(Pi) is approximately a 2−i-net for Γ = γ([0, 1]), and ℓ(γ, Pi)
i→∞−−−→ ℓ(γ). Then we can write

ℓ(γ)− crd(γ) =
∞∑
i=0

ℓ(γ, Pi+1)− ℓ(γ, Pi). (1.3)

where crd(γ) = |γ(0) − γ(1)| is defined to be the distance between γ’s endpoints. Each
term in the sum on the right-hand side of (1.3) is the difference between the length of
the polygonal approximations of γ given by Pi+1 and Pi. Morally speaking, the picture in
Figure 2.1 happens everywhere on the scale of the distance between points in Pi, and the
Pythagorean theorem as applied there implies we can expect

ℓ(γ)− crd(γ) =
∑
i=0

ℓ(γ, Pi+1)− ℓ(γ, Pi) ≲
∞∑
i=0

∑
Q∈Di(Rd)

βΓ(Q)
2 diam(Q) (1.4)

where Di(Rd) is the collection of dyadic cubes of side length 2−i. This intuitive argument
can be made rigorous with some additional caveats. In fact, the significantly more difficult
reverse inequality of (1.4) also holds.

For an idea of the reasons for this difficulty, notice that we might try to prove the reverse
inequality by running the construction given previously in reverse. That is, we construct a
sequence of polygonal approximations of our curve Γ and attempt to bound the beta number
sum in terms of the successive differences in their lengths. This argument can be made to
work on certain regions of the curve in which “non-flat arcs” are present, but in general there
are balls which have large beta number for which polygonal approximations will always have
similar length. One such example is a ball consisting of two line segments forming a “cross”
(See the ∆1 example in Figure 2.3.). In this case, βΓ(Q) ≈ 1, but polygonal approximations
on scales smaller than the scale of the ball will just reproduce the line segments. Controlling
these beta numbers requires totally different arguments involving geometric martingales and
other specially designed tools.

Equation (1.4) and its reverse were first proved by Bishop in Rd.

Theorem 1.1.1 ([Bis22] Theorem 1.2). Let γ : [0, 1] → Rd be a Jordan arc. Then∑
Q∈D(Rd)

βΓ(Q)
2 diam(Q) ≍d ℓ(γ)− crd(γ)

In the first part of this thesis, we present the following analog of Bishop’s result for curves
in Hilbert spaces.

5



Theorem (See Chapter 2 Theorems A and B). Let H be a Hilbert space and let Γ ⊆ H be a
Jordan arc. For any multiresolution family H associated to Γ with inflation factor A > 200,
we have ∑

Q∈H

βΓ(Q)
2 diam(Q) ≍A ℓ(Γ)− crd(Γ). (1.5)

For the easier direction, we provide a Hilbert space adaptation of Bishop’s argument
which philosophically follows the above outline. For the harder direction, we refine and
adapt Schul’s arguments for the general Hilbert space traveling salesman theorem using
filtrations and geometric martingales. The most interesting new idea is the introduction of a
sort of “reduced length” measure µ which measures the local contribution of subsets of the
curve to the overall value of ℓ(Γ)− crd(Γ).

1.2 Lipschitz decompositions of domains with

bilaterally flat boundaries

Let Ω ⊆ Rd+1 be an open set. One would often like to break Ω into smaller pieces satisfying
some regularity property and work with the pieces of the domain individually. One such
decomposition of Ω is the Whitney decomposition

Definition 1.2.1 (Whitney decomposition). We say that W is a Whitney decomposition of
a domain Ω if W is a collection of closed cubes W = {Qj}j∈N with disjoint interiors such
that for all Q ∈ W ,

(i) Ω =
⋃
Q∈W Q,

(ii) Q ⊆ Ω,

(iii) dist(Q,Ωc) ≍n diam(Q).

The Whitney decomposition always exists, and it is a decomposition into very nice pieces:
cubes. However, the Whitney decomposition lacks some desirable properties. For instance,
we have no quantitative control over the sum of the surface areas of the boundaries of the
constituent cubes. Indeed, no cube in the Whitney decomposition actually intersects ∂Ω,
implying there are infinitely many “layers” of cubes extending towards the boundary so that

∑
Q∈W

Hd(∂Q) ≳
∞∑
i=1

1 = ∞.

If we are interested in decompositions into nice pieces with quantitative control on the
surface area, then we can do better than the Whitney decomposition in many cases. We will
now make our focus more concrete and declare that we are looking for decompositions into
Lipschitz domains.
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Definition 1.2.2 (Lipschitz domains). We say that an open, connected set Ω ⊆ C is an
M-Lipschitz domain if the following holds: After a translation and dilation, we can assume
0 ∈ Ω and

∂Ω =
{
r(θ)eiθ : 0 ≤ θ ≤ 2π

}
,

and for any θ1, θ2 ∈ [0, 2π],

|r(θ1)− r(θ2)| ≤M |θ1 − θ2|

and for all θ ∈ [0, 2π],
1

1 +M
≤ r(θ) ≤ 1.

If we only require decompositions into Lipschitz domains, then we can immediately find
less wasteful decompositions in simple cases. If Ω is a polygon in the plane, then triangula-
tions and dissections provide nice decompositions into finitely many Lipschitz domains. A
key difference between these examples and the Whitney decomposition is that elements of
the decompositions intersect the boundary in large pieces. This is possible only when the
boundary has sufficient geometric regularity. That is, it looks flat enough at most scales and
locations. In the planar case, Peter Jones proved a very general decomposition result which
was a key step in his proof of the analyst’s traveling salesman theorem in the plane.

Theorem 1.2.1 ([Jon90] Theorem 2). There exists a constantM > 0 such that the following
holds: For any simply connected domain Ω ⊆ C with H1(∂Ω) <∞, there is a rectifiable curve
Γ such that

Ω \ Γ =
⋃
j

Ωj

where Ωj is an M-Lipschitz domain for each j, and∑
j

H1(∂Ωj) ≤MH1(∂Ω).

Jones’s theorem provides a Lipschitz decomposition of any simply connected domain with
finite boundary length with quantitative control on the sum of the boundary lengths in terms
of the length of the original boundary.

In the second part of this thesis, we provide some analogs of Jones’s result for higher
dimensional domains including the following.

Theorem (See Chapter 3 Theorem D). Let Ω ⊆ Rd+1 be a domain with 0 ∈ ∂Ω. There
exist constants A(d), L(d), ϵ(d) > 0 such that if ∂Ω is (ϵ, d)-Reifenberg flat, then there exists
a collection of L-Lipschitz graph domains {Ωj}j∈L such that

(i) Ωj ⊆ Ω,

(ii) Ω ∩B(0, 1) ⊆
⋃∞
j=1Ωj,

(iii) ∃C(d) > 0 such that ∀x ∈ Ω, x ∈ Ωj for at most C values of j,
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(iv) For any y ∈ ∂Ω ∩B(0, 1) and 0 < r ≤ 1, we have

∞∑
j=1

Hd(∂Ωj ∩B(y, r)) ≲ϵ,d,L Hd(∂Ω ∩B(y, Ar)).

Theorem (See Chapter 3 Theorem E). Let Ω ⊆ Rd+1 be a domain with 0 ∈ ∂Ω. If ∂Ω is
d-uniformly rectifiable, then there exists L(d), A(d) > 0 such that there exists a collection
of L-Lipschitz graph domains {Ωj}j∈JL

such that conclusions (i), (ii), (iii), and (iv) (with
additional dependence on uniform rectifiability constants) of Theorem D hold.

We achieve Lipschitz “almost” decompositions with bounded overlap for domains whose
boundaries satisfy one of two quantitative rectifiability conditions: uniform d-rectifiability or
(ϵ, d)-Reifenberg flatness. In either case, the key idea is to decompose scales and locations in
∂Ω into a coronization associated to a corona decomposition and use this decomposition to
sort a Whitney-type decomposition of scales and locations in the complement into parallel
stopping time regions. We then economically decompose these regions further into Lipschitz
domains while retaining desired quantitative control over the boundaries in terms of the
original domain’s boundary.

1.3 Uniformly rectifiable metric spaces satisfy the

weak constant density condition

In addition to the existence of approximate tangent n-planes, n-rectifiability in Euclidean
spaces is also characterized by regularity of the Hausdorff density.

Theorem 1.3.1. Let E ⊆ Rd be Hn measurable with Hn(E) < ∞. Then E is n-rectifiable
if and only if

lim
r→0

Hn(E ∩B(x, r))

(2r)n
= 1 (1.6)

at Hn-a.e. x ∈ E.

A proof of the forward direction is given in [Mat95] Theorem 16.2. The reverse direction
was proven by Marstrand for n = 2, d = 3 [Mar61] and by Mattila for general n, d [Mat75].
One one hand, the fact that rectifiable sets have approximate tangent n-planes implies (1.6)
exactly because (2r)n = Hn(B(x, r) ∩ P ) where P is an n-plane and x ∈ P . The converse
requires a more careful geometric argument using the fact that (1.6) implies a form of local
n-dimensional symmetry for E.

David, Semmes, and Tolsa were able to show that a more quantitative version of (1.6)
called the weak constant density condition (WCD) characterizes uniformly n-rectifiable sub-
sets of Euclidean space.
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Definition 1.3.1 (WCD). Let E ⊆ Rd be Ahlfors n-regular, let C0, ϵ0 > 0, and define

Gcd(C0, ϵ0) =

 (x, r) ∈ E × R+

∣∣∣∣∣∣
∃Ahlfors (C0, n)-regular µ, spt(µ) = E,
∀y ∈ B(x, r), 0 < t ≤ r,
|µ(E ∩B(y, t))− tn| ≤ ϵ0r

n

 , (1.7)

Bcd(C0, ϵ0) = E × R+ \ Gcd(C0, ϵ0). (1.8)

We say that E satisfies the WCD if there exists C0 > 0 such that for all ϵ0 > 0, Bcd(C0, ϵ0)
is a Carleson set.

Roughly speaking, an Ahlfors regular set E satisfies the WCD if in most balls, it supports
a measure with nearly constant density in a sufficiently large “neighborhood” of scales and
locations.

Theorem 1.3.2. Let E ⊆ Rd be Ahlfors n-regular. Then E is uniformly n-rectifiable if and
only if E satisfies the WCD.

David and Semmes proved the forward direction ([DS91] Chapter 6) and the reverse
direction in the special cases n = 1, 2, d − 1 ([DS93] Corollary III.5.4) while Tolsa showed
the reverse direction for general n [Tol15].

Recall that the definition of rectifiability was given for subsets of metric spaces, and
observe that the definition of uniformly rectifiable subsets given using big pieces of Lipschitz
images makes perfect sense for metric spaces as well. So, we can justifiably make the following
definition.

Definition 1.3.2 (Uniformly n-recitifable metric spaces). We say that a metric space X
is uniformly n-rectifiable if it is Ahlfors n-regular and has big pieces of Lipschitz images of
subsets of Rn.

Recently, Bate, Hyde, and Schul proved that uniformly n-rectifiable metric spaces have a
number of equivalent geometric definitions analogous to those proven by David and Semmes
[BHS23]. These include the existence of metric corona decompositions and the satisfaction
of a metric version of the BWGL. Naturally, we would like to know how many equivalent
definitions in the Euclidean case have analogs in the metric case.

In the third part of this thesis, we continue the work begun by Bate, Hyde, and Schul by
extending a piece of the Euclidean WCD characterization to metric spaces by proving that
any uniformly n-rectifiable metric space satisfies the WCD.

Theorem (See Chapter 4 Theorem F). Uniformly n-rectifiable metric spaces satisfy the
WCD.

The proof uses the fact proven by Bate, Hyde, and Schul that uniformly rectifiable metric
spaces have very big pieces of bi-Lipschitz images and an abstract John-Nirenberg Stromberg
lemma to reduce to the case of a bi-Lipschitz image of [0, 1]n. We then use the area formula
to write Hausdorff measure in terms of the metric Jacobian of f and control the variation of
the density in terms of a wavelet-like L2 decomposition of the Jacobian.
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1.4 Iterating the big pieces operator

Recall that uniformly n-rectifiable metric spaces are defined as Ahlfors n-regular metric
spaces that of big pieces of Lipschitz images of Rn. However, the idea of big pieces is general
enough that one can imagine replacing big pieces of Lipschitz images with big pieces of other
types of spaces.

Definition 1.4.1 (Big pieces of Ahlfors n-regular metric spaces). Let F be a class of Ahlfors
n-regular subsets of an Ahlfors n-regular metric space X. We say that X ∈ BP(F ), i.e. X
has big pieces of sets in F , if there exists a constant θ > 0 such that for all x ∈ X and
0 < r < diam(X), there exists Fx,r ∈ F such that

Hn(B(x, r) ∩ Fx,r) ≥ θrn.

In fact, David and Semmes prove the following result.

Theorem 1.4.1. Let E ⊆ Rd be Ahlfors n-regular. Then the following are equivalent

1. E is uniformly n-rectifiable,

2. E has big pieces of bi-Lipschitz images (E ∈ BP(BI)),

3. E has big pieces of sets which have big pieces of Lipschitz graphs (E ∈ BP2(LG)),

4. E ∈ BPj(BI) for j ≥ 1,

5. E ∈ BPj(LG) for j ≥ 2.

The final two items are interesting because, a priori, the conditions BPj(F ) for j ≥ 1
get progressively weaker as j increases. David and Semmes show that the big pieces of bi-
Lipschitz images condition stabilizes after the first iteration, while the big pieces of Lipschitz
graphs condition stabilizes after the second iteration. Bate, Hyde, and Schul also obtain a
similar result for BPj(BI) in uniformly n-rectifiable metric spaces [BHS23]

In the fourth and final part of this thesis, we show that any Ahlfors n-regular metric
space X which has BP(BP(F )) admits an Ahlfors n-regular extension X̃ ⊇ X such that
X̃ ∈ BP(F ).

Theorem (See Chapter 5 Theorem G). Let F be a class of (closed) Ahlfors-David k-regular
sets in a metric space X. Let E ⊆ X be a Ahlfors-David k-regular set with E ∈ BP(BP(F )).
Then there exists a set F ⊂ X such that

(i) E ⊆ F ,

(ii) F is Ahlfors-David k-regular.

(iii) F ∈ BP(F ).

The constants in the conclusion are quantitative with dependence on the constants in the
assumptions.
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The proof constructs the set F ⊃ E iteratively as the union Fn of a sequence of “big
pieces” chosen carefully using Whitney decompositions to retain upper regularity. As a
consequence of the theorem, we show that the conditions BPj(F ) for j ≥ 2 are all equivalent
for any Ahlfors n-regular class of subsets F . This gives a short, direct proof of David and
Semmes’s above Euclidean result for BPj(LG).
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Chapter 2

A traveling salesman theorem for
Jordan curves in Hilbert space

2.1 Introduction

Given a metric space X and a set E ⊆ X, how can one tell if there is a curve γ of finite
length containing E? If one does exist, how can one estimate its length in terms of the
geometry of E, and how can one construct such a curve with length as short as possible?
The problem of answering these questions in X is commonly referred to as the Analyst’s
Traveling Salesman Problem for X. The study of these problems began when Peter Jones
introduced and solved the problem in the standard Euclidean plane R2 [Jo90]. Okikiolu
later extended the result to curves in Rn [Oki92], and Schul managed to give an analogue of
Okikiolu’s and Jones’s results in Hilbert space H [Sch07a]. Full solutions have been given for
sets in Carnot groups [Li22] and graph inverse limit spaces [DS16], and for Radon measures
in Rn [BS17] and Carnot groups [BLZ23]. Partial results are also available in Banach spaces
[BM23a], [BM23b] and general metric spaces [Hah05], [DS21].

Many authors have also studied traveling salesman-type problems for higher-dimensional
sets. This includes Hölder curves [BNV19],[BZ20], C1,α surfaces [Ghi20], lower content d-
regular sets in Rn [AS18] and Hilbert space [Hyd22a], analogues of Jordan curves in higher
dimensions [Vil20], and even general sets in Rn [Hyd22b]. Many of these approaches are
closely tied to results on parameterization of Reifenberg flat-type sets in Rn [DT12] and
Banach spaces [ENV19].

One of the central matters in traveling salesman problems is finding a specific quanti-
tative relationship between the Hausdorff measure of the set in question and some measure
of its local geometry. The traditional traveling salesman theorems in Rn and ℓ2 provide a
relationship which holds for general subsets of the ambient space. Therefore, it seems plau-
sible that one could find a tighter relationship when one restricts their attention to a more
geometrically regular class of subsets. A result in this direction was recently achieved by
Bishop [Bis22] as part of his study of Weil-Petersson curves [Bis20]. His result is a sharp-
ening of this quantitative relationship for the class of Jordan arcs in Rn. Bishop posed a
natural question: Does a similar relationship exist for Jordan arcs in Hilbert space?

This paper has two primary goals: First, provide a full proof of Schul’s necessary con-
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dition in the Hilbert space traveling salesman theorem, filling in gaps and correcting errors
present in the original presentation in [Sch07a]. Second, we answer Bishop’s question in the
affirmative by providing an analogous sharpening of the Hilbert space traveling salesman
theorem when restricted to Jordan arcs.

The proof of our analogue of Bishop’s result differs significantly from Bishop’s proof
because the latter relies heavily on dimension-dependent estimates. We use dimension-
independent pieces of Bishop’s argument where possible, but largely focus on implementing
an extension of the Hilbert space methods introduced in [Sch07a]. The first goal is moti-
vated by the discovery of several technical errors in Schul’s original proof as presented in
[Sch07a]. The proof presented here has largely the same outline and general structure as
Schul’s proof while implementing several new ideas to correct the identified errors. We also
mention that the work on the traveling salesman problem in Banach spaces by Badger and
McCurdy [BM23a], [BM23b] provides another proof of the Hilbert space necessary condition
via methods which diverge more significantly from ours and those of Schul’s original proof.

2.1.1 Overview

Jones’ solution to the traveling salesman problem in R2 is based on measuring how close a
subset E ⊆ R2 is to being linear locally. In order to do this, he defined what is now called
Jones’ beta number.

Definition 2.1.1 (Jones’ beta number). Fix a Hilbert space H and let E,Q ⊆ H where Q
has finite diameter. We define the β-number for E in the “window” Q by

βE(Q) := inf
L

sup
x∈Q∩E

dist(x, L)

diam(Q)
,

where L ranges over all affine lines in H.

One can interpret the number βE(Q) diam(Q) as the radius of the minimal width cylinder
in H which contains the set E ∩ Q. The factor of diam(Q) on the right-hand side in the
definition ensures that βE(Q) is scale-invariant. We always have 0 ≤ βE(Q) ≤ 1 where
βE(Q) = 0 implies E ∩ Q ⊆ L for some line L while βE(Q) ≥ ϵ for some constant ϵ > 0
implies that for every choice of L, there exists a point in E ∩Q of distance ϵ diam(Q) from
L. Jones and Okikiolu used these numbers to characterize subsets of rectifiable curves in R2

and Rn respectively in the following theorem:

Theorem 2.1.1. (Jones for n = 2 [Jo90], Okikiolu for n ≥ 2 [Oki92]) Let E ⊆ Rn. E is
contained in a rectifiable curve if and only if

β2
E(Rn) := diam(E) +

∑
Q∈∆(Rn)

βE(3Q)
2 diam(Q) <∞

where ∆(Rn) is the set of all dyadic cubes in Rn and 3Q is the cube with the same center
as Q but three times the side length. If Σ is a connected set of shortest length containing E,
then

β2
Σ(Rn) ≲n H1(Σ) (2.1)
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and
β2
E(Rn) ≳n H1(Σ). (2.2)

It is important to take 3Q rather than Q so that the family {3Q}Q∈∆(Rn) “covers” Rn

sufficiently well. More precisely, any subset B ⊆ Rn is contained in a cube 3Q of comparable
diameter, while there may not exist such a standard dyadic cube Q with this property.
The exponent 2 appears in Theorem 2.1.1 because the Pythagorean theorem allows one to
estimate the difference in length between a line segment and a slight perturbation of the
segment by a small distance d in a perpendicular direction by a factor proportional to d2

(See Remark 2.1.2). We recommend the reader sees the introduction of [BM23a] for further
intuition on the behavior of β-numbers for subsets of rectifiable curves in H (and in Banach
spaces).

Figure 2.1: Polygonal approximations of Σ

Remark 2.1.2 (The Pythagorean theorem and triangle inequality excess). Let x, y, z ∈ Σ.
Applying the Pythagorean theorem in Figure 2.1 gives d2 = c2i − a2i = (ci − ai)(ci + ai) for
i = 1, 2. If we assume that R > 0 is such that ci ≃ ai ≃ R, then

2d2 = (c1 − a1)(c1 + a1) + (c2 − a2)(c2 + a2) ≃ 2R(c1 + c2 − a1 − a1).

If we further assume that there exists a dyadic cube Q such that x, y, z ∈ 3Q, diam(Q) ≃ R,
and d ≃ βΣ(Q) diam(Q), then

βΣ(Q)
2 diam(Q) ≃ c1 + c2 − a1 − a2 = |x− y|+ |y − z| − |x− z|.

This final equality demonstrates why beta numbers are often said to measure the triangle
inequality excess inside a cube 3Q.

Bishop’s results say that if we restrict our attention to Jordan arcs then (2.1) and (2.2)
can be improved.

Definition 2.1.2 (Jordan arcs and curves). For a metric space X, we say that Γ ⊆ X is a
rectifiable arc if H1(Γ) <∞ and there exists a surjective continuous map γ : I → Γ for some
closed interval I := [a, b] ⊆ R. We also refer to the map γ as a rectifiable arc. Whenever
we refer to such Γ, we implicitly have a particular parameterizing map γ in mind and really
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mean the pair (Γ, γ). We refer to the points γ(a), and γ(b) as the endpoints of γ (or Γ) and
we define

crd(Γ) := crd(γ) := dist(γ(a), γ(b)).

We refer to crd(Γ) as the chord length of Γ and refer to the line (segment) which passes
through the two endpoints of Γ as its chord or its chord line (segment). We additionally
define

ℓ(Γ) := ℓ(γ)

as the length of Γ (also see 2.14). We call Γ a Jordan arc if we can take γ to be bijective. We
call Γ a Jordan curve if there exists a map γ : [a, b] → Γ which is injective on [a, b), but has
γ(a) = γ(b). In general, any rectifiable arc γ with γ(a) = γ(b) is called closed. For Jordan
arcs and curves ℓ(Γ) = H1(Γ), but this does not hold for general rectifiable arcs (for more
on this, see Remark 2.1.9).

The chord length is an integral part of Bishop’s following improvement:

Theorem 2.1.3 ([Bis22] Theorem 1.2). Let Γ ⊆ Rn be a Jordan arc. Then∑
Q∈∆(Rn)

βΓ(3Q)
2 diam(Q) ≃n ℓ(Γ)− crd(Γ). (2.3)

This result has the following corollary for Jordan curves:

Corollary 2.1.4 ([Bis22] Corollary 1.3). If Γ ⊆ Rn is a Jordan curve, then∑
Q∈∆(Rn)

βΓ(3Q)
2 diam(Q) ≃n ℓ(Γ).

One can think of deriving this by applying Theorem 2.1.3 while taking crd(Γ) → 0. The
significance of the inequalities in (2.3) is easier to see if we compare each directly with its
corresponding inequality in Theorem 2.1.1.

Remark 2.1.5 (The ≲ improvement in (2.3)). The inequality (2.1) and the ≲ direction of
(2.3) applied to a Jordan arc Γ are respectively equivalent to∑

Q∈∆(Rn)

βΓ(3Q)
2 diam(Q) ≤ C1(n)ℓ(Γ), (2.4)

∑
Q∈∆(Rn)

βΓ(3Q)
2 diam(Q) ≤ C2(n)(ℓ(Γ)− crd(Γ)) (2.5)

for some constants C1(n), C2(n) > 0 depending on n where we used the fact that diam(Γ) ≤
ℓ(Γ). This means (2.3) improves the inequality by replacing ℓ(Γ) with ℓ(Γ) − crd(Γ) on
the right-hand side. One can see how this improvement manifests by considering the case
when Γ is a line segment. In this case, βΓ(3Q) = 0 for all Q ∈ ∆(Rn) while crd(Γ) = ℓ(Γ).
This means (2.4) becomes 0 ≤ C1(n)ℓ(Γ) while (2.5) becomes 0 ≤ 0. Bishop’s improvement
pulls the slack out of Jones and Okikiolu’s inequality by recognizing that crd(Γ) is a global
measure that accounts for how much Γ looks like its chord segment: the beta numbers do
not see the “component” of Γ along its chord.
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Remark 2.1.6 (The ≳ improvement in 2.3). The inequality (2.2) and the ≳ direction of (2.3)
applied to a Jordan arc Γ and E ⊆ Γ are respectively equivalent to

(1 + δ) diam(E) + C(δ, n)
∑

Q∈∆(Rn)

βE(3Q)
2 diam(Q) ≥ ℓ(Γ), (2.6)

crd(Γ) + C2(n)
∑

Q∈∆(Rn)

βΓ(3Q)
2 diam(Q) ≥ ℓ(Γ). (2.7)

where in (2.6), δ > 0 is arbitrary but C(δ, n) → ∞ as δ → 0. This is not exactly as was
stated in (2.2), but Jones shows that one can arrange the inequality this way. This means
(2.7) changes (2.6) by replacing the C1(n) diam(E) term on the left-hand side with crd(Γ)
and exchanges the βE numbers for the (larger) βΓ numbers.

Bishop [Bis22] shows how this change manifests by considering the example set E =
{0, 1, iβ} ⊆ C with 0 < β ≪ 1. One can calculate that

∑
Q∈∆(R2) βE(3Q)

2 diam(Q) ≤ Cβ2

while diam(E) =
√

1 + β2 ≤ 1 + cβ2 and the shortest curve Γ = [iβ, 0] ∪ [0, 1] containing
E satisfies ℓ(Γ) = 1 + β. By taking β → 0, this configuration gives a family of exam-
ples showing that one cannot take δ = 0 in (2.6). The only cubes Q which contribute
to
∑
βE(3Q)

2 diam(Q) are those for which E ⊆ 3Q because E only contains three points
total. But, for any cube Q which contains 0, βΓ(3Q) ≳ 1 so that one can show that∑
βΓ(3Q)

2 diam(Q) ≥ 1+ cβ. The point is that the connectedness of Γ adds more geometry
with more locations and scales to measure curvature at, increasing the contribution of the
β-numbers and loosening the requirement on the diam(E) term.

In each of the previously stated traveling salesman theorems, the implicit constants in
the given inequalities increase exponentially as n→ ∞. The constants’ exponential blowup
can be attributed to the exponential increase in the relative number of dyadic cubes on each
scale as n increases. To formulate a version of the traveling salesman theorem in Hilbert
space H, Schul invented a replacement for the set of dyadic cubes called a multiresolution
family.

Definition 2.1.3 (Multiresolution family). Fix a connected set Σ ⊆ H. For ϵ > 0, we call
a set E ⊆ Σ an ϵ-net of Σ if both

(i) For all x, y ∈ E, |x− y| > ϵ, and

(ii) Σ ⊆
⋃
x∈E B(x, ϵ)

Any subset satisfying (i) can be extended to an ϵ-net since it can be extended to satisfy (ii) by
adding a maximal number of appropriately spaced points. Fixing an integer n0, let Xn0 ⊆ Σ
be a 2−n0-net. The extension property implies the existence of a sequence of 2−n-nets {Xn}
satisfying Xn ⊆ Xn+1. Fix a constant A > 1 and put

H := {B(x,A2−n) : x ∈ Xn, n ∈ Z, n ≥ n0} (2.8)

where B(x,A2−n) is the closed ball of radius A2−n around x. We call H a multiresolution
family for Σ and refer to an element Q ∈ H as a ball. Given Q = B(x,A2−n), define
xQ := x and rad(Q) := A2−n. For λ > 0, we let λQ := B(xQ, λ rad(Q)). The starting point
n0 is of no consequence; all of the results obtained will be independent of it.
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Remark 2.1.7 (Reduction to H = ℓ2). If Σ ⊆ H is a closed, connected set with H1(Σ) <∞,
then Σ is compact and hence a separable subset of H. This gives the existence of a countable
set of vectors v1, v2, . . . such that Σ ⊆ span{v1, v2, . . .} =: V . Hence, Σ is contained in the
separable subspace V ⊆ H which is isometric (via a linear transformation) to ℓ2. Therefore,
it suffices to fix H = ℓ2 in the following theorems concerning Hilbert space.

The important difference between a multiresolution family and the set of dyadic cubes is
that the former is centered on the set, while the latter is a partition of the ambient space. In
infinite dimensional space (and general metric spaces), it is necessary to concentrate on the
intrinsic properties of the set in question rather than where the set happens to lie relative
to pre-defined pieces of the ambient space. We can now state Schul’s result:

Theorem 2.1.8 ([Sch07a] Theorem 1.1, Theorem 1.5). Let E ⊆ ℓ2 and let H be a mul-
tiresolution family for E with inflation factor A > 200. Then E is contained in a rectifiable
curve if and only if

β2
E(H ) := diam(E) +

∑
Q∈H

βE(Q)
2 diam(Q) <∞.

If Σ ⊆ H is a connected set of shortest length containing E, then

β2
Σ(H ) ≲A H1(Σ) (2.9)

and
H1(Σ) ≲A β

2
E(H ). (2.10)

The exponent 2 can again be attributed to the fact that the Pythagorean theorem holds
in Hilbert space. The inflation factor A given in the definition of H is the analogue of taking
3Q rather than Q in the Euclidean space traveling salesman theorems. Schul’s proof of (2.10)
closely parallels Jones’ constructive proof of (2.2), replacing dimension-dependent estimates
with dimension-independent estimates needed. We mention here that Badger, Naples, and
Vellis provide a refined constructive proof of this result in [BNV19] which produces a nice se-
quence of parameterizations which they used to prove traveling salesman sufficient conditions
for Hölder curves.

On the other hand, Schul’s proof of (2.9) differs significantly from Jones’s original proof,
incorporates some key ideas from Okikiolu’s proof in Rn, and introduces several ingenious
new constructions to remove dimension-dependent estimates. Unfortunately, several errors
have since been discovered in the original presentation in [Sch07a], leaving gaps in the proof.
The results of this paper will fill in these gaps, providing a full proof of (2.9) in parallel with
the following new results:

Theorem A. Let Γ ⊆ ℓ2 be a Jordan arc. For any multiresolution family H associated to
Γ with inflation factor A > 200, we have∑

Q∈H

βΓ(Q)
2 diam(Q) ≲A ℓ(Γ)− crd(Γ). (2.11)

The second main result is the other side of the inequality in Theorem 2.1.3 for ℓ2:
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Theorem B. Let Γ ⊆ ℓ2 be a Jordan arc. For any multiresolution family H associated to
Γ with inflation factor A > 30, we have∑

Q∈H

βΓ(Q)
2 diam(Q) ≳A ℓ(Γ)− crd(Γ). (2.12)

These results are to Hilbert space what Bishop’s Theorem 2.1.3 is to Euclidean space.
One can again look to Remarks 2.1.5 and 2.1.6 to gain intuition about the nature of these
improvements over the estimates in Theorem 2.1.8.

Remark 2.1.9 (General rectifiable arcs). Theorems A and B raise a natural question: Do
similar results hold for general rectifiable arcs? In this case, we must be careful about the
definitions. If γ : [0, ℓ(γ)] → Σ is any constant arc length parameterization of a compact,
connected set Σ ⊆ ℓ2, then we interpret ℓ as the pushforward of Lebesgue measure onto Σ
which does not necessarily coincide with H1|Σ as it does for a Jordan arc or curve. If Γ′

is a rectifiable arc, then ℓ(Γ′) ≥ H1(Γ′), so Theorem A is weaker than the more natural
inequality ∑

Q∈H

βΓ′(Q)2 diam(Q) ≲A H1(Γ′)− crd(Γ′). (2.13)

Whether or not (2.13) holds remains open. In Remark 2.4.30 we give some ideas on how one
might modify some of our methods in this direction.

2.1.2 Related Results and Questions

2.1.2.1 Weil-Petersson Curves

Theorem 2.1.3 arose as an improvement to the traveling salesman theorem necessary to con-
nect some of the geometric characterizations of Weil-Petersson curves discovered in [Bis20]
(a few out of 26 total definitions given!). The Weil-Petersson curves are defined to be the
closure of smooth curves in R2 in the Weil-Petersson metric on universal Teichmüller space
introduced in [TT06] by Takhtajan and Teo for studying problems related to string theory.
This class of curves has also been studied in relation to computer vision [FKL14], [FN17],
[SM06], and Schramm-Loewner evolutions [Wan19a], [Wan19b].

The following result gives the aforementioned characterizations when n = 2. We say that
a curve Γ is chord-arc if any two points x, y ∈ Γ are connected by a subarc γ ⊆ Γ with
ℓ(γ) ≤ C|x− y| for some constant C independent of x and y.

Theorem 2.1.10 ([Bis22] Theorem 1.4). The following are equivalent for a closed Jordan
curve Γ ⊆ Rn, n ≥ 2,

(i) Γ satisfies ∑
Q∈∆(Rn)

βΓ(3Q)
2 <∞.
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(ii) Γ is chord-arc, and for any dyadic decomposition of Γ, the inscribed polygons {Γn}
defined by taking the n-th generation points as vertices satisfy

∞∑
n=1

2n[ℓ(Γ)− ℓ(Γn)] <∞

with a bound that is independent of the choice of decomposition.

(iii) Γ has finite Möbius energy. That is,

Möb(Γ) :=

�
Γ

�
Γ

(
1

|x− y|2
− 1

ℓ(x, y)2

)
dxdy <∞

where ℓ(x, y) is the length of the shortest arc contained in Γ connecting x and y and
the integration is with respect to arc length measure.

The Möbius energy in (iii) was one of several functionals introduced by O’Hara to study
knots [OHa91], [OHa92]. One can interpret (i) as a bound on the total curvature of the
curve Γ over all locations and scales. The missing factor of diam(Q) when compared with
the sums that appear in the traveling salesman theorems makes this condition much harder
to satisfy in general. For instance, a curve satisfying (i) cannot have a “corner” (conical type
singularity) because this would give an infinite collection of cubes Q such that βΓ(3Q) ≳ 1.
In (ii), a dyadic decomposition is an ordered collection of points contained in Γ which divide
Γ into 2n intervals of equal length. We let Γn be the polygon with these points as vertices.
Hence, we interpret (ii) as measuring the rate of convergence of the length of inscribed
polygonal approximations to Γ to the length of Γ itself. The term ℓ(γ)− crd(γ) a subarc γ
can be expected to appear because it measures exactly this form of difference in length.

One of the corollaries of Theorem 2.1.3 that Bishop uses to prove Theorem 2.1.10 trans-
lates directly to our setting:

Corollary 2.1.11 ([Bis22] Corollary 5.2 in Rn). If Γ ⊆ ℓ2 is a closed Jordan curve and
S :=

∑
Q∈H βΓ(Q)

2 <∞, then Γ is chord-arc, i.e.. any pair of points z, w ∈ Γ are connected
by a subarc γ with ℓ(γ) ≲ |z − w|.

One can check that Bishop’s proof of the Rn-version is independent of the dimension n
so that this result follows if one replaces usages of Theorem 2.1.3 there with Theorem D. For
more on how the traveling salesman theorem applies to Weil-Petersson curves and related
subjects, the reader should see Section 4 of [Bis20]. The rest of the paper gives connec-
tions between these curves and a plethora of objects such as conformal maps, Schwarzian
derivatives, quasiconformal mappings, Sobolev spaces, and minimal surfaces in hyperbolic
3-space.

2.1.2.2 Traveling salesman in Banach spaces

A separate, related branch of research is that of traveling salesman problems in more general
metric spaces. Recent success has been achieved by Matthew Badger and Sean McCurdy
[BM23a], [BM23b] in attaining traveling salesman-type necessary and sufficient conditions
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in Banach spaces. Much of their work was inspired by the paper of Edelen, Naber, and
Valtorta [ENV19] which implemented the Reifenberg algorithm in Banach spaces.

Roughly speaking, [ENV19] gave a Banach space version of Reifenberg’s topological disk
theorem [Rei60], which states that any subset Σ ⊆ Rn which is sufficiently bilaterally close
to an affine k-dimensional plane at all locations in Σ and all sufficiently small scales is locally
homeomorphic to an open subset of Rk, hence is locally topologically a k-dimensional disk.
Edelen, Naber, and Valtorta extended this result to infinite-dimensional Banach spaces, and
gave a traveling salesman-type application in the form of a structure theorem for measures in
Banach spaces ([ENV19] Theorem 2.1). They give a sufficient condition on a Borel measure
µ to be well concentrated around a k-dimensional set in terms of the pointwise boundedness
of a sum of integral beta numbers βkµ which measure how close µ is locally to a k-dimensional
affine plane. An important aspect of their result which is particularly relevant to Badger
and McCurdy’s work is that the exponent on βkµ appearing in Edelen, Naber, and Valtorta’s
sum differs based on the geometric structure of the Banach space. The exponent 2 appears
in the Hilbert space case, but one must make other assumptions on the geometry in more
general Banach spaces to say something stronger.

Indeed, Badger and McCurdy use the well-studied notions of modulus of smoothness and
modulus of convexity to estimate the triangle inequality excess (recall Remark 2.1.2) from
above and below respectively. They apply their results to prove necessary and sufficient
conditions in ℓp spaces for 1 < p < ∞. A major difference between ℓp, p ̸= 2 and ℓ2 is
that the sharp necessary and sufficient conditions they prove in ℓp using the standard Jones
beta number diverge from one another. One reason this result might be expected is that the
triangle inequality excess for orthogonally (in the ℓ2 sense) perturbed vectors differs based
on the direction of the perturbed vector.

To illustrate this point, if e1, e2 are standard unit basis vectors for ℓp and 0 < δ ≪ 1,
then

|e1 + δe2|p − |e1|p = (1 + δp)1/p − 1 ≃p δ
p.

On the other hand, suppose we take a “diagonal” vector v = 1
21/p

(e1 + e2) and perturb it by
the orthogonal (in the ℓ2 sense) vector w = 1

21/p
(e1 − e2). We have

|v + δw|p − |v|p =
1

21/p
((1 + δ)p + (1− δ)p)1/p − 1 ≃p δ

2.

The length gain by small orthogonal perturbation in ℓp varies depending on the direction of
the perturbed vector in contrast to the ℓ2 case.

Theorem 2.1.12 ([BM23a] Theorem 1.6). (sharp sufficient conditions in ℓp) Let 1 < p <∞.
If E ⊆ ℓp and SE,min(p,2)(G ) < ∞ for some multiresolution family G for E with inflation
factor AG ≥ 240, then E is contained in a curve Γ in ℓp with

H1(Γ) ≲p,AG
SE,min(p,2)(G ).

The exponent min(p, 2) on beta numbers is sharp.

Theorem 2.1.13 ([BM23a] Theorem 1.7). (sharp necessary conditions in ℓp) Let 1 < p <∞.
If Σ ⊆ ℓp is a connected set and H is a multiresolution family for Σ with inflation factor
AH > 1, then

SΣ,max(2,p)(H ) ≲p,AH
H1(Σ).
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The exponent max(2, p) on beta numbers is sharp.

Badger and McCurdy’s results give a similar proof of Theorem 2.1.8 by taking the case
p = 2 in their above results.

Remark 2.1.14 (Banach space Jordan arcs). Given the results of this paper, it is natural to
ask whether there is any analogue of Theorems A and B in ℓp. That is, for a Jordan arc
Γ ⊆ ℓp and multiresolution family H for Γ, could one show that

SΓ,max(2,p)(H ) ≲p,AH
ℓ(Γ)− crd(Γ)

or
SΓ,min(p,2)(H ) ≳p,AH

ℓ(Γ)− crd(Γ)

by combining the methods of [BM23a], [BM23b] and those given here? If these inequalities
do not hold, can one find a different geometric function of the endpoints of Γ which could
replace crd(Γ)? What about for general rectifiable arcs?

2.1.2.3 Traveling salesman in general metric spaces

Some success has also been achieved in the setting of general metric spaces by Hahlomaa
[Hah05] and David and Schul [DS21]. Because there is no ambient linear structure in a general
metric space which one can use to define the standard Jones beta number, the work in metric
spaces uses replacements which directly measure the triangle inequality excess. Hahlomaa
originally defined a general metric beta number using the notion of Menger curvature, but
this definition is equivalent to the following given by David and Schul. Let E be a metric
space, p ∈ E and r > 0. Let Q = B(p, r) and define the metric beta number by

βE∞(Q)2 := r−1 sup{ dist(x, y) + dist(y, z)− dist(z, x) :

x, y, z ∈ E ∩B(p, r) and dist(z, y) ≤ dist(y, z) ≤ dist(z, x)}.

If E is ℓ2, then this is proportional to the normalized length difference between the line
segment [x, z] and its perturbed version given by [x, y] ∪ [y, z]. The exponent 2 is added in
the definition as a convention to preserve the form of Theorem 2.1.1. Hahlomaa was the first
to give a sufficient condition in general metric spaces:

Theorem 2.1.15 ([Hah05] Theorem 5.3). Let E be a metric space and let G be a multires-
olution family for E with inflation factor A ≃ 1. If

βE∞(G ) := diam(E) +
∑
Q∈G

βE∞(Q)2 diam(Q) <∞,

then there exists a set F ⊆ [0, 1] and a surjective Lipschitz map f : F → E with Lipschitz
constant Lip(f) ≲ βE∞(G ).

See [Sch07b] Example 3.3.1 for a counterexample to the converse to Hahlomaa’s result in
R2 with the ℓ1 metric. Schul notes however that this counterexample is not fully satisfactory,
as Hahlomaa’s result can be strengthened, for instance, by defining the metric beta number
to be a supremum taken over more restrictive triples. In any case, David and Schul have
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recently achieved a partial converse to this result. Their result concerns doubling metric
spaces. We say that a metric space is doubling if there exists a constant N such that every
ball of radius r > 0 can be covered by at most N balls of radius r

2
.

Theorem 2.1.16 ([DS21] Theorem A). Let Σ be a connected doubling metric space with
doubling constant N and let H be a multiresolution family for Σ with inflation factor A > 1.
For every ϵ > 0,

diam(Q) +
∑
Q∈H

βΣ
∞(Q)2+ϵ diam(Q) ≲ϵ,A,N H1(Σ).

The authors conjecture that the doubling hypothesis can be dropped by utilizing the
techniques of [Sch07a].

Remark 2.1.17 (Metric space Jordan arcs). It would again be interesting to know whether
these results could be strengthened in the special case of a Jordan arc. That is, let Γ be a
metric space which is the image of a continuous injective map γ : [0, 1] → Γ. Suppose G is
a multiresolution family for Γ. Do the näıve inequalities∑

Q∈G

βΓ
∞(Q)2 diam(Q) ≳A ℓ(Γ)− crd(Γ)

or, for Γ with doubling constant N ,∑
Q∈G

βΓ
∞(Q)2+ϵ diam(Q) ≲ϵ,A,N ℓ(Γ)− crd(Γ)

hold? As our methods rely heavily on linear structure, these seem further from proof than
the proposed extension to Banach space. But even if these do not hold, can one find a
different geometric function of the endpoints of Γ to replace crd(Γ) in the equations above?
What about for general rectifiable arcs?
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2.1.4 Preliminaries

2.1.4.1 Parameterizations of finite-length continua and arcs associated to a
parameterization in Hilbert space

From this point on, fix a connected, compact set Σ ⊆ ℓ2 and a rectifiable Jordan arc Γ ⊆ ℓ2.
We are guaranteed that Γ has an injective arc length parameterization γ : [0, ℓ(Γ)] → Γ
by definition. It is a vital fact that we also have access to an arc length parameterization
of Σ. We deduce the existence of this map as a consequence of the more general results
on parameterization of finite-length continua in metric spaces carried out by Alberti and
Ottolini [AO17].

Let X be a metric space and I = [a, b] ⊆ R be a closed interval. Following Alberti and
Ottolini, for a continuous map γ : I → X (often referred to as a path) and a point x ∈ X,
define the multiplicity of γ at x as

m(γ, x) := #(γ−1(x))

where for any set A, #A denotes the cardinality of A. We define the length of γ as

ℓ(γ) = ℓ(γ, I) := sup

{
n∑
i=1

d(γ(ti−1), γ(ti)) : n ≥ 0, t0 < t1 < . . . < tn, tj ∈ I for all j

}
.

(2.14)
Additionally, γ has constant speed if there exists a finite constant c such that

ℓ(γ, [t0, t1]) = c(t1 − t0) for every [t0, t1] ⊆ I.

We will refer to γ as an arc length parameterization if γ has constant speed with c = 1.
We will only consider constant speed parameterizations, and given a fixed parameterization
γ : I → Σ with constant speed c, we define a finite Borel measure ℓ supported on Σ by

dℓ := cγ∗(dt)

where γ∗ denotes the pushforward measure so that ℓ(A) = c
�
γ−1(A)

dt. Alberti and Ottolini

prove the following general parameterization result:

Theorem 2.1.18 ([AO17] Theorem 4.4). Let X be a connected, compact metric space with
H1(X) <∞. Then there exists a path γ : [0, 1] → X with the following properties:

(i) γ is closed, Lipschitz, surjective, and has degree zero;

(ii) m(γ, x) = 2 for H1-a.e. x ∈ X, and ℓ(γ) = 2H1(X); and,

(iii) γ has constant speed, equal to 2H1(X).

See [AO17] Section 4.1 for the definition of degree zero. (Essentially, the path passes
through almost every point thee same number of times in one direction as in the opposite
direction.) Fix a multiresolution family H for Σ, and let γ be a constant speed parame-
terization of Σ, the existence of which is guaranteed by Theorem 2.1.18. We will use γ to
properly study the geometry of Σ inside of the balls of H .
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Definition 2.1.4 (Arcs). We define an arc τ := γ|[a,b] to be the restriction of γ to a subin-
terval [a, b] ⊆ I. Given a ball Q ⊆ ℓ2, we define the family of arcs of Σ inside Q as

Λ(Q) := {γ|[a,b] : [a, b] ⊆ [0, 1], [a, b] is a connected component of γ−1(2Q ∩ Σ)}.

These are arcs inside 2Q which intersect Q in the style of [BM23a]. Fix an arc τ as above.
Further following [BM23a], we use bold terms to refer to operators acting on arcs and define

Domain(τ) := [a, b], Image(τ) := τ(Domain(τ)), Diam(τ) := diam(Image(τ)),

Edge(τ) := [τ(a), τ(b)], Line(τ) := {τ(a) + t(τ(b)− τ(a)) : t ∈ R}, Crd(τ) := |τ(a)− τ(b)|,
Start(τ) := τ(a), End(τ) := τ(b).

where [τ(a), τ(b)] ⊆ ℓ2 is the line segment connecting the endpoints of τ , and hence Line(τ)
is the line passing through the endpoints of τ . We will often use the term arc to refer to both
τ and Image(τ), but the referent should be clear from context. If ξ = γ|[c,d] for [c, d] ⊆ [a, b],
then we will often call ξ a subarc of τ . For two general arcs ξ and τ we define shorthand
notation by defining (in the sense of logical formulas)

(ξ ⊆ τ) := (Domain(ξ) ⊆ Domain(τ)) and (x ∈ τ) := (x ∈ Image(τ)),

and we define

ξ ∩ τ := γ|Domain(τ)∩Domain(ξ) and ξ ∪ τ := γ|Domain(τ)∪Domain(ξ).

If E ⊆ ℓ2 and µ is a Borel measure on ℓ2 then we set

τ ∩ E := Image(τ) ∩ E and µ(τ) := µ(Image(τ)).

Definition 2.1.5 (Almost flat and non-flat arcs). In order to measure the flatness of an arc,
we define the arc beta number

β̃(τ) := sup
x∈Image(τ)

dist(x,Edge(τ))

Diam(τ)
.

We also set

Max(τ) := {y ∈ Image(τ) : β̃(τ)Diam(τ) = dist(y,Edge(τ))} ≠ ∅,
Drift(τ) := β̃(τ)Diam(τ) = dist(y,Edge(τ)) for any y ∈ Max(τ).

Fix a constant ϵ2 > 0 whose specific value will be set in Section 2.1.5 Given a ball Q ∈ H ,
we define the set of almost flat arcs for Q as

S(Q) := {τ ∈ Λ(Q) : β̃(τ) ≤ ϵ2βΣ(Q)}

and refer to any arc τ ∈ S(Q) as an almost flat arc. We will commonly refer to Λ(Q) \S(Q)
as the set of non-flat arcs. For any collection of arcs T , we define

βT (Q) := β∪τ∈T Image(τ)(Q),

and for a single arc τ we set βτ (Q) := βImage(τ)(Q).
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Considering different configurations of almost flat and non-flat arcs will give us useful
ways of classifying balls Q ∈ H . For η ∈ S(Q), we get that Image(η) lies very close to
Edge(η) on the scale of Diam(η) ≃ diam(Q), so that in many cases one can think of η as
a line segment. The parameter ϵ2 will be fixed small enough such that this approximation
will work well on all small scales relative to diam(Q) which are relevant to our almost flat
analysis in Section 2.4.

2.1.4.2 The division of H

Figure 2.2: A tree denoting the subfamilies of the multiresolution family H . Those in the
green rectangle were considered by Schul in his proof of Theorem 2.1.8. The in the red
rectangle are new introductions made in the proof of Theorem A

.

We begin classifying balls of H based on their geometry by splitting off the large balls
and balls with βΣ(Q) = 0: Define

GL := {Q ∈ H : Γ ∩ (H \ 12Q) = ∅ or βΣ(Q) = 0},
G := H \ GL.

Next, we extend the family G by considering G λ = {λQ : Q ∈ G } for λ ∈ {1, 2, 8, 12}
together. For any ball Q ∈ G 1∪G 2∪G 8∪G 12, choose a subarc γQ ∋ xQ such that we always
have γQ ⊆ γ2Q ⊆ γ8Q ⊆ γ12Q. Let ϵ1 > 0 be small (to be fixed in Section 2.1.5) and partition
G λ = G λ

1 ∪ G λ
2 ∪ G λ

3 where

G λ
1 = {Q ∈ G : β̃(γλQ) > ϵ2β(λQ)},

G λ
2 = {Q ∈ G : β̃(γλQ) ≤ ϵ2βΣ(λQ); βSλQ

(λQ) > ϵ1βΣ(Q)},
G λ
3 = {Q ∈ G : β̃(γλQ) ≤ ϵ2βΣ(λQ); βSλQ

(λQ) ≤ ϵ1βΣ(Q)}.

See Figure 2.2 for examples. This decomposition is slightly different than Schul’s in the
style of [BM23a]. Notice that for any Q ∈ G 1 ∪ G 2 ∪ G 8 ∪ G 12, either
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Figure 2.3: Examples of balls in G1,G2,G3,∆1,∆2.1 and ∆2.2.

(i) Q ∈
⋃
λ G λ

1 ∪ G λ
2 , or

(ii) Q ∈
⋂
λ G λ

3 .

Hence, it suffices to consider the collections G1 = ∪λG λ
1 , G2 = ∪λG λ

2 , and G3 = ∩λG λ
3 , and

our total family of collections of balls is now

{GL,G1,G2,G3}.

The collections GL, G1, and G3 will be handled as they are, but G2 needs further refinement.
To describe the refinement of G2, we will define a ball-like set associated to each ball Q ∈ G
called its “core”.

Definition 2.1.6 (Cores [Sch07a]). Let Q ∈ G with Q = B(xQ, A2
−n). For any c ∈ R, 0 <

c < 1
4A

and J ∈ Z, J ≥ 10, define U c,J,0
Q := cQ. Let i ≥ 0 and set

U c,J,i+1
Q := U c,J,i

Q ∪
⋃

xQ′∈Xn+J(i+1)

cQ′∩Uc,J,i
Q ̸=∅

cQ′.

We then define the core of Q with dilation factor c and scaling factor J to be

U c,J
Q :=

⋃
i≥0

U c,J,i
Q .
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For J as fixed in Section 2.1.5 and c0 :=
1

64A
, we define three successively larger cores for Q

as

UQ := U c0,J
Q , Ux

Q := U8c0,J
Q , Uxx

Q := U16c0,J
Q .

These are the concrete families we will work with.

The cores have nice separation and inclusion properties which will allow us to work with
some families of balls more easily. These are given in the following proposition:

Proposition 2.1.19 (properties of core families, cf. [Sch07a] Lemma 3.19). Let J ≥ 10 and
c < 1

4A
. Fix 1 ≤ j ≤ J and define

Qj := {Q ∈ G : Q = B(xQ, A2
−n), x ∈ Xn, n ≡ j mod J}.

Let Q,Q′ ∈ Qj, with Q = B(xQ, A2
−n), Q′ = B(xQ′ , A2−m) and corresponding cores U c

Q :=

U c,J
Q , U c

Q′ := U c,J
Q′ . Then

(i) cQ ⊆ U c
Q ⊆ (1 + 2−J+2)cQ,

(ii) If n = m, then either Q = Q′ or dist(U c
Q, U

c
Q′) ≥ 2−n−1, and

(iii) If n > m and U c
Q ∩ U c

Q′ ̸= ∅, then U c
Q′ ⊊ U c

Q.

Proof. For a proof of (i), one can apply [Sch07b] Lemma 2.16 to show that any point y ∈ UQ
satisfies

dist(y, UQ) ≤ c rad(Q)
∞∑
k=0

(2 · 2−J)k ≤ (1 + 2−J+2)c rad(Q).

For (ii), notice that because xQ, xQ′ ∈ Xn, we know |xQ − xQ′ | ≥ 2−n. This combined with
the second inclusion in (i) completes the proof. Property (iii) follows from the definition. ■

Remark 2.1.20. Property (i) above implies the following containments:

c0Q ⊆ UQ ⊆ (1 + ϵ1)c0Q ⊆ 2c0Q,

8c0Q ⊆ Ux
Q ⊆ (1 + ϵ1)8c0Q ⊆ 9c0Q,

16c0Q ⊆ Uxx
Q ⊆ (1 + ϵ1)16c0Q ⊆ 17c0Q,

where the penultimate containment in each line follows from the fact that 2−J+2 < ϵ1 (see
Section 2.1.5). It is usually best to think of cores as small perturbations of balls.

Using the cores, we can now refine the family G2. Let CU > 0 and define

∆1 := {Q ∈ G2 : CUβS(Q)(U
x
Q) > βS(Q)(Q)},

∆2 := G2 \∆1.

The constant CU will be fixed in Section 2.1.5. We further divide ∆2 by defining

∆2.2 := {Q ∈ ∆2 : ∃τ ∈ Λ(Q) \ S(Q), τ ∩ Ux
Q ̸= ∅},

∆2.1 := ∆2 \∆2.2.

We note here that it suffices to assume G2 ⊆ G 1
2 :

27



Remark 2.1.21 (Reduction of G2 to G 1
2 ). Suppose that we have proven the inequality∑

Q∈G1

βΣ(Q)
2 diam(Q) +

∑
Q∈G3

βΣ(Q)
2 diam(Q) +

∑
Q∈G 1

2

βΣ(Q)
2 diam(Q) ≲A H1(Σ) (2.15)

for any multiresolution family with arbitrary inflation factor A > 200. Recall that Q ∈ G2

implies Q ∈ G λ
2 for some λ ∈ {1, 2, 8, 12}. We would like to show that∑

Q∈G λ
2

βΣ(Q)
2 diam(Q) ≲A H1(Σ).

Let λH be the multiresolution family with the same net points as H but inflation factor
λA. Define Q̂ := λQ. Then Q̂ ∈ λH and β̃(γQ̂) ≤ ϵ2βΣ(Q̂). If βS(Q̂)(Q̂) > ϵ1βΣ(Q̂),

then Q̂ ∈ G 1
2 (λH ), the subfamily G 1

2 defined relative to the multiresolution family λH .
Otherwise, βS(Q̂)(Q̂) ≤ ϵ2βΣ(Q̂), implying Q̂ ∈ G 1

3 (λH ) ⊆ G1(λH ) ∪ G3(λH ). Therefore,
the desired inequality follows from (2.15) applied to the multiresolution family λH . A
similar argument shows that the same reduction holds for Γ where the right side of (2.15) is
replaced by ℓ(Γ)− crd(Γ).

With this remark, we are justified in assuming G2 ⊆ G 1
2 and need not worry about factors

of λ in our analysis of G2 in Section 2.4. See examples of balls in these families in Figure
2.3. These are all of the subcollections necessary to prove (2.9), the Hilbert space necessary
condition. When we restrict to the case of a Jordan arc, we will need to further divide the
family ∆2.1. This is carried out in Section 2.4.2 (also see Figure 2.2 for a full diagram of the
divisions).

2.1.5 Constants

In this section, we fix the values of constants used in the proof of Theorem A and give general
descriptions of their purposes and where the values come from. We fix

ϵ1 := 10−10,

CU := 100Aϵ−1
1 ,

J := − log2(10
−3ϵ1c0),

ϵ3 := (100A)−1ϵ21,

ϵ2 := min((105ACU)
−1ϵ21, 100

−1c0ϵ
2
3).

We first fix ϵ1, a catch-all, small reference parameter. Next, we fix CU , the constant used in
the definition of ∆1. It is fixed small enough here to facilitate (2.39) in the proof of Lemma
2.4.6, ensuring that βγQ(U

x
Q) ≲ϵ1 βS(Q)(U

x
Q). We now fix the “jump” parameter J . This is

fixed large enough so that for any balls Q,Q′ ∈ Qj, the “thinned” family gotten by skipping
J scales in the multiresolution family H , diam(Q′) < diam(Q) implies

diam(2Q′) ≤ 2−J+1 diam(Q) ≤ 100−1ϵ1c0 diam(2Q) < ϵ1 diam(UQ). (2.16)
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This means any future generation ball Q′ is very small even on the scale of UQ (this is
important in Section 2.4.1.3, for instance). We can also conclude from Proposition 2.1.19
that

c diam(Q) ≥ 1

1 + 2−J+2
diam(U c

Q) ≥ (1− ϵ1) diam(U c
Q), and

diam(U c
Q) ≤ (1 + 2−J+2)c diam(Q) ≤ (1 + ϵ1)c diam(Q).

for c < 1
4A
. We next fix ϵ3, a constant introduced in Section 2.4.2 to define the families

∆2.1.1 and ∆2.1.2. This constant is fixed small in terms of ϵ1 to facilitate the final estimate in
the proof of Lemma 2.4.24. It is fixed small in terms of A to ensure that 100ϵ3 diam(Q) <
c0
4
diam(Q) to facilitate the neighborhood inclusion needed in the proof of Lemma 2.4.25.

The constant ϵ2 is fixed last. It is fixed small in terms of all of the previous parameters to
ensure that almost flat arcs stay close to their edge segments on all of the needed scales, i.e.,
relative to C−1

U ϵ1 diam(UQ) needed in estimates for ∆1 and relative to ϵ3 diam(UQ) needed
in estimates for ∆2.1.2. We have not attempted to optimize these.

2.2 Large-scale balls: GL

The goal of this section is to prove the following proposition:

Proposition 2.2.1 (cf. [Sch07a] Lemma 3.9, cf. [BM23a] Lemma 3.27). We have∑
Q∈GL

βΣ(Q)
2 diam(Q) ≲A ℓ(Σ) and

∑
Q∈GL

βΓ(Q)
2 diam(Q) ≲A ℓ(Γ)− crd(Γ). (2.17)

Proof. We first prove the Σ inequality in (2.17). Since Σ ⊆ 12Q for any Q ∈ GL, we know

diam(Q) ≥ diam(Σ)
12

. For k ≥ 0, define

Bk :=

{
Q ∈ GL :

diam(Σ)

12
2k ≤ diam(Q) <

diam(Σ)

12
2k+1

}

and letNk = #Bk. The net spacing forQ ∈ Bk must be at least diam(Q)
2A

≥
diam(Σ)

12
2k

2A
≥ diam(Σ)

24A
.

Since Nk is maximal when Σ is a line segment with net points separated by distance greater
than diam(Σ)

24A
along length H1(Σ), we get

Nk ≤ 1 +
24AH1(Σ)

diam(Σ)
≤ 48AH1(Σ)

diam(Σ)
. (2.18)

Now, to estimate beta numbers, observe that for any ball Q ∈ Bk we have the trivial bound
βΣ(Q) ≤ diam(Σ)

diam(Q)
≤ 12 · 2−k so that

βΣ(Q)
2 diam(Q) ≤ 144 · 2−2kdiam(Σ)

12
2k+1 ≤ 12 diam(Σ)2−k+1
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We now put this all together:

∑
Q∈GL

βΣ(Q)
2 diam(Q) ≤

∞∑
k=0

∑
Q∈Bk

βΣ(Q)
2 diam(Q) ≤

∞∑
k=0

Nk · (12 diam(Σ)2−k+1)

≲A H1(Σ)
∞∑
k=0

2−k ≲ H1(Σ).

This completes the proof of the Σ inequality in (2.17). In order to prove the Γ inequality in
(2.17), we first note that it suffices to assume

ℓ(Γ)− crd(Γ) ≤ ϵ1ℓ(Γ). (2.19)

Indeed, otherwise (2.17) would imply∑
Q∈GL

βΓ(Q)
2 diam(Q) ≲A ℓ(Γ) <

1

ϵ1
(ℓ(Γ)− crd(Γ))

as desired. The only modifications we need to the above proof for this case are improved
upper bounds for Nk and βΓ(Q). Our assumption (2.19) implies

ℓ(Γ)− diam(Γ) ≤ ℓ(Γ)− crd(Γ) ≤ ϵ1ℓ(Γ) =⇒ ℓ(Γ)

diam(Γ)
≤ 1

1− ϵ1
≤ 2

so that (2.18) implies

Nk ≤
48Aℓ(Γ)

diam(Γ)
≤ 96A.

We now give a new estimate for βΓ(Q). Assume without loss of generality that the endpoints
x and z of Γ satisfy x := 0 and z := crd(Γ)e1 so that the chord segment of Γ lies along the e1
axis. Define π : ℓ2 → R to be the othogonal projection onto the e1-axis and let π⊥ : ℓ2 → ℓ2
be the projection onto the orthogonal subspace of the e1-axis. Let y ∈ Γ be a point satisfying

|π⊥(y)| = sup
u∈Γ

|π⊥(u)|.

Define b := π(y)e1. The two triples of points x, b, y and z, b, y form right triangles with
common altitude length d := |π⊥(y)| = |y − b|. Let a1 := |x − b|, a2 := |b − z| be the
lengths of the bases of these triangles and let c1 := |x − y|, c2 := |y − z| be the lengths of
their hypotenuses (See Figure 2.1 for a picture). Applying the Pythagorean theorem to each
triangle gives

d2 = c2i − a2i = (ci − ai)(ci + ai) ≤ 2 diam(Γ)(ci − ai)

for i = 1, 2 . Summing these inequalities over i gives

d2 = diam(Γ)(c1 + c2 − a1 − a2) ≤ 2 diam(Γ)(ℓ(Γ)− crd(Γ))
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where we used the fact that a1 + a2 ≥ crd(Γ) and c1 + c2 ≤ ℓ(Γ) because Γ is a connected

set containing x, y, and z. Now, if Q ∈ Bk, then diam(Q) ≥ diam(Γ)
12

2k and the definition of
βΓ(Q) implies βΓ(Q) ≤ d

diam(Q)
using the e1 axis as an approximating line. This means

βΓ(Q)
2 diam(Q) ≤ d2

diam(Q)
≤ 2 diam(Γ)(ℓ(Γ)− crd(Γ)) · 12 · 2−k

diam(Γ)
≤ 24(ℓ(Γ)− crd(Γ))2−k.

(2.20)
Therefore,

∑
Q∈GL

βΓ(Q)
2 diam(Q) ≤

∞∑
k=0

∑
Q∈Bk

βΓ(Q)
2 diam(Q) ≤

∞∑
k=0

Nk · (24(ℓ(Γ)− crd(Γ))2−k)

≲A (ℓ(Γ)− crd(Γ))
∞∑
k=0

2−k ≲ ℓ(Γ)− crd(Γ). ■

2.3 Non-flat arcs: G1,G3,∆2.2

The goal of this section is to prove the following proposition:

Proposition 2.3.1. Set N := G1 ∪ G3 ∪∆2.2. We have∑
Q∈N

βΣ(Q)
2 diam(Q) ≲A ℓ(γ)− crd(γ). (2.21)

In particular,∑
Q∈N

βΣ(Q)
2 diam(Q) ≲A H1(Σ) and

∑
Q∈N

βΓ(Q)
2 diam(Q) ≲A ℓ(Γ)− crd(Γ). (2.22)

Remark 2.3.2. Both inequalities in (2.22) follow from (2.21). For the first, Theorem 2.1.18
gives a parameterization γ of Σ such that ℓ(γ) ≤ 2H1(Σ). For the second, Γ comes with an
injective parameterization γ for which ℓ(Γ) = ℓ(γ) and crd(Γ) = crd(γ) by definition.

Recall that N consists of balls Q which have βΣ(Q) ≲ϵ2 β̃(τQ) for some τQ ∈ Λ(Q). That
is, their beta number is dominated by the beta-tilde number of some arc they contain. Our
strategy to prove (2.22) is to construct an appropriate mapping Q 7→ τQ and prove that the
associated sum

∑
Q∈N β̃(τQ)

2 diam(Q) is controlled. The first subsection below develops the
general method for building an appropriate mapping and proving that the associated sum is
controlled, while the second subsection applies the results of the first to proving (2.22).

2.3.1 Filtration construction and properties of β̃

It turns out to be most appropriate to derive bounds for sums over β̃(τQ) by only considering
certain nice families of arcs called filtrations.

Definition 2.3.1 (Filtrations [Oki92], [Sch07a]). A filtration of γ is a family of subarcs
F =

⋃∞
n=0 Fn of γ of whose constituent subfamilies {Fn}n≥0 satisfy the following:
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(i) For all τ ′ ∈ Fn+1, there exists a unique τ ∈ Fn such that Domain(τ ′) ⊆ Domain(τ),

(ii) There exist constants A,A > 0, ρ < 1 such that for all n ≥ 0 and τ ∈ Fn, Aρ
−n ≤

Diam(τ) ≤ Aρ−n,

(iii) For all τ, τ ′ ∈ Fn, either τ = τ ′ or #(Domain(τ) ∩ Domain(τ ′)) ≤ 1, and

(iv)
⋃
τ∈F0

Domain(τ) =
⋃
τ ′∈Fn

Domain(τ ′).

We are interested in constructing filtrations with constituent arcs associated to subfam-
ilies of N because of the following lemma:

Lemma 2.3.3. ([Oki92], cf. [Sch07a] Lemma 3.11) Let F be a filtration for γ. Then

∑
τ∈F

β̃(τ)2Diam(τ) ≲A ℓ

( ⋃
τ∈F0

τ

)
−
∑
τ∈F0

Crd(τ). (2.23)

If
⋃
τ∈F0

τ = γ, then ∑
τ∈F

β̃(τ)2Diam(τ) ≲A ℓ(γ)− crd(γ). (2.24)

Proof. We refer the reader to the proof of Lemma 3.11 in [Sch07a] for the the proof of (2.23).
In order to prove (2.24), we follow Schul’s aforementioned proof to the second to last equation
of page 349. Summing this equation over n, we replace the first equation on page 350 with

∑
τ∈F

d2τ
Diam(τ)

≲ sup
n

∑
τ∈Fn

H1(Iτ )−
∑
τ∈F0

H1(Iτ ) ≲ ℓ

( ⋃
τ∈F0

τ

)
−
∑
τ∈F0

Crd(τ).

Finally, replace the following occurrences of ℓ
(⋃

τ∈F0
τ
)
on page 350 with ℓ

(⋃
τ∈F0

τ
)
−∑

τ∈F0
Crd(τ). The result follows from the fact that

⋃
τ∈F0

τ = γ and crd(γ) ≤
∑

τ∈F0
Crd(τ)

by the triangle inequality. ■

In order to apply this lemma, we must preprocess the collections of dominating arcs
{τQ}Q∈N coming from each the families G1,G3,∆2.2 ⊆ N individually into a bounded num-
ber of filtrations. [Sch07a] provides Lemma 3.13 for this. However, the statement and proof
of the lemma as written contain errors which must be addressed.

First, the statement of the lemma makes the following claim: There exists c0 > 0 such
that for any arcs τ ⊆ τ ′ with Diam(τ ′) ≤ 2Diam(τ), we have β̃(τ ′) ≥ c0β̃(τ). In general,
this is false. For example, Figure 2.4 gives two counterexamples for this claim. The problem
is not an issue for the results of the paper; although the claim is not true in general, an
inequality of this type does hold for the specific arc families we will use. The proof of the
lemma also contains a gap which is fixed in a modified, more general version given below.
Before we state the lemma, we give a definition:

Definition 2.3.2 (Augmentations). Fix an arc τ . We refer to any arc τ ′ ⊇ τ as a τ -
augmentation if we can write

τ ′ = η1 ∪ τ ∪ η2 (2.25)
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where η1, η2 are arcs such that

Diam(ηi) ≤
1

1000
Diam(τ) and Domain(ηi) ∩ Domain(τ) ̸= ∅. (2.26)

This also gives Diam(τ ′) ≤
(
1 + 1

100

)
Diam(τ).

Lemma 2.3.4 (prefiltration lemma [BM23a]). Let X be a metric space and let f : [0, 1] → Σ
be a continuous parameterization of a set Σ ⊂ X. Assume that ρ > 1, 0 < A < A <∞, and
J ≥ 1 is any integer such that ρJ > 6A/A. Then for every family F 0 =

⋃∞
n=n0

F 0
n of arcs

in Σ with F 0
n0

̸= ∅ satisfying

(i) bounded overlap: for every arc τ ∈ F 0
n , there exists no more than C arcs τ ′ ∈ F 0

n such
that Domain(τ) ∩ Domain(τ ′) ̸= ∅ for some constant C independent of τ

(ii) geometric diameters: for every arc τ ∈ F 0
n , we have Aρ−n ≤ Diam(τ) ≤ Aρ−n,

we can construct 5(A/A)CJ or fewer filtrations F 1 =
⋃∞
n=n1

F 1
n , F 2 =

⋃∞
n=n2

F 2
n , . . . ,

with starting index nj ∈ {n0, n0 + 1, . . . , n0 + J − 1} for all j and

1

1000

(
Aρ(J−1)nj

)
ρ−Jn ≤ Diam(τ) <

(
1 +

1

100

)(
Aρ(J−1)nj

)
ρ−Jn (2.27)

for all j, τ ∈ F j
n, n ≥ nj such that for every index n ≥ n0 and arc τ ∈ F 0

n , there exists
F j (in the list of filtrations), an index N with n − nj = J(N − nj), and a τ -augmentation
τ ′ ∈ F j

N . The assignment (n, τ) 7→ (F j, N, τ ′) is injective.

Remark 2.3.5 (Changes to the statement of Lemma 2.3.4). In our statement of this lemma,
we have first changed (2.27) by replacing a 1

4
in the diameter lower bound with a 1

1000
and

by replacing a 2 in the corresponding upper bound with 1+ 1
100

. The result of this change is
that the lemma produces a τ -augmentation τ ′ such that Diam(τ ′) ≤

(
1 + 1

100

)
Diam(τ) rather

than a general extension τ ′ such that Diam(τ ′) ≤ 2Diam(τ) as in the statement in [BM23a].
This improvement can be made as long as J is sufficiently large by carefully following the
proof in [BM23a]. In the following paragraph, we give a sketch of how one can justify this
change.

Indeed, each filtration F j produced in the lemma is composed of essentially two types
of arcs: τ -type arcs which are extensions of arcs in F 0 originally passed into the lemma
and σ-type arcs which are the leftover arcs in-between the τ type arcs. Each arc ξ ∈ F0 is
extended to a τ -type arc by adding in a chain of arcs of geometrically decreasing diameter,
beginning with diameter ≲ ρ−J diam(ξ). Hence, each chain can be made to have arbitrarily
small diameter compared to ξ as long as we take J small enough. After doing this process to
all arcs in one stage of the filtration, the remaining in-between arcs of the curve are broken
up appropriately and either added to the filtration themselves or added onto the ends of
the recently produced τ -type arcs. By replacing the appropriate factors of 1

4
in this stage of

the proof with 1
1000

, we can ensure each in-between arc is chopped into arcs of no diameter
greater than

(
1 + 1

100

) (
Aρ(J−1)nj

)
ρ−Jn and no less than 1

1000

(
Aρ(J−1)nj

)
ρ−Jn. Hence, they

satisfy the desired bounds and appending these arcs to the previously produced τ -type arcs
gives the form τ ′ = η1 ∪ τ ∪ η2.
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If we pass a family of arcs F into lemma 2.3.4, we receive a finite family of filtrations
Fj such that for any arc τ ∈ F , there exists a filtration Fi and a unique τ -augmentation
τ ′ ∈ Fi. In order to effectively apply the filtration estimate in Lemma 2.3.3, we must show
that taking the τ ′ rather than τ does not ruin the arc beta number estimate β̃(τQ) ≳ϵ2 βΣ(Q).
That is, we would like to show that β̃(τ ′) ≳ β̃(τ) for any τ -augmentation τ ′.

Badger and McCurdy do not need this in [BM23a] because they use βτ (Image(τ)) instead
of β̃(τ) as their measure of non-flatness of arcs which requires slightly different definitions
of the primary arc families. Here, we take the different approach of showing that mapping
τ ′ 7→ τ given in Lemma 2.3.4 also preserves β̃(·) in the sense that there exists a constant
c > 0 such that β̃(τ) ≥ cβ̃(τ ′) for any arc τ ′ in one of the particular families F which we
pass into Lemma 2.3.4.

Fix an arc τ and let τ ′ be a τ -augmentation. We begin with the simple observation that
if τ has large Jones beta number, then β̃(τ ′) ≳ β̃(τ) trivially.

Remark 2.3.6. Let ϵ > 0 and suppose βτ (Image(τ)) ≥ ϵ. Then by definition,

Drift(τ ′) ≥ βτ ′(Image(τ ′))Diam(τ ′) ≥ 1

2
βτ ′(Image(τ))Diam(τ ′)

=
1

2
βτ (Image(τ))Diam(τ ′) ≥ ϵ

Diam(τ ′)

2
.

where the second inequality follows from the fact that Image(τ ′) ⊇ Image(τ) and Diam(τ) ≥
1
2
Diam(τ ′). Hence, β̃(τ ′) ≥ ϵ

2
≥ ϵ

2
β̃(τ).

This remark means that we can fix a small constant ϵ ≳A 1 and achieve β̃(τ ′) ≳ϵ β̃(τ)
whenever τ satisfies βτ (Image(τ)) ≥ ϵ. It turns out that any remaining arc not covered by
this case which we will need to pass into Lemma 2.3.4 will be a member of Λ(Q) for some Q,
meaning its endpoints lie in ∂(2Q) and its image has nonempty intersection with Q. This
geometric information is enough to conclude the desired bound.

Lemma 2.3.7. There exists c1 > 0 such that for all Q ∈ G and τ ∈ Λ(Q), any τ -
augmentation τ ′ satisfies

β̃(τ ′) ≥ c1β̃(τ). (2.28)

Our goal for the rest of this section is to prove Lemma 2.3.7. We begin by distinguishing
between tall and wide arcs.

Definition 2.3.3 (Tall and wide arcs). Let τ : [a, b] → Σ be an arc. One of the following
two inequalities holds:

(i) Crd(τ) < 100Drift(τ), or

(ii) Crd(τ) ≥ 100Drift(τ)

If τ satisfies (i), then we call τ tall. If τ instead satisfies (ii), then we call τ wide. Tall arcs
are allowed to drift very far from the line segment Edge(τ) while wide arcs stay relatively
close. Figure 2.4 gives an example of each type.

Lemma 2.3.8. Suppose τ is tall. Then β̃(τ ′) ≥ 1
4
β̃(τ).
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Proof. Let x, y ∈ Image(τ) such that Diam(τ) = dist(x, y). Then

Diam(τ) ≤ dist(x,Edge(τ)) + diam(Edge(τ)) + dist(y,Edge(τ))

≤ 2Drift(τ) + Crd(τ) ≤ 102Drift(τ).

The augmentation τ ′ has the form τ ′ = η1 ∪ τ ∪ η2 where Diam(ηi) ≤ 1
1000

Diam(τ) ≤
102
1000

Drift(τ). Hence, Drift(τ ′) ≥ Drift(τ)− Diam(η1) ≥ 1
2
Drift(τ) and Diam(τ ′) ≤ Diam(τ) +

Diam(η1) + Diam(η2) ≤ 2Diam(τ). Therefore,

β̃(τ ′) =
Drift(τ ′)

Diam(τ ′)
≥ 1

4

Drift(τ)

Diam(τ)
=

1

4
β̃(τ). ■

Hence, tall arcs extended via Lemma 2.3.4 satisfy (2.28) with c1 = 1
4
. With Lemma

2.3.8, we now only need a way of proving (2.28) for a wide arc τ ∈ Λ(Q). The basic idea is
as follows. The facts that τ is wide and Image(τ) ∩ Q ̸= ∅ mean that Edge(τ) must have
nonempty intersection with 3

2
Q. It suffices to show that there exists x ∈ Image(τ) such that

a fixed fraction of the value of dist(x,Edge(τ)) comes from the direction perpendicular to
Edge(τ) rather than the direction parallel. This is proven in the following lemma:

Lemma 2.3.9. Suppose τ is a wide arc, and there exists α < 1 and x ∈ Image(τ) such that
dist(x, Line(τ)) ≥ αDrift(τ). Then β̃(τ ′) ≥ α

2000
β̃(τ).

Proof. Define Ba := B
(
Start(τ), α

1000
Drift(τ)

)
and Bb := B

(
End(τ), α

1000
Drift(τ)

)
. Suppose

first that either Edge(τ ′) ∩Ba = ∅ or Edge(τ ′) ∩Bb = ∅. Assume without loss of generality
that the latter holds. Then End(τ) ∈ Image(τ ′) so that Drift(τ ′) ≥ dist(End(τ),Edge(τ ′)) ≥
α

1000
Drift(τ). This implies

β̃(τ ′) =
Drift(τ ′)

Diam(τ ′)
≥ α

2000

Drift(τ)

Diam(τ)
=

α

2000
β̃(τ).

Now, suppose that Edge(τ ′) has nonempty intersection with bothBa andBb. Assume without
loss of generality that Line(τ) is the e1-axis. Because τ is wide, Drift(τ) ≤ 1

100
Crd(τ) so that

Ba ∩ Bb = ∅ and Edge(τ) hits both ends of the cylinder of length Crd(τ)− 2 α
1000

Drift(τ) ≥
99
100

Crd(τ) and radius α
1000

Drift(τ) whose central axis is collinear with the e1-axis. Let θ
be the angle between Edge(τ ′) and Edge(τ). (We measure this by translating Edge(τ ′) to
intersect Edge(τ), then measuring the angle in the plane containing Edge(τ) and Edge(τ ′).)
We conclude

tan(θ) ≤
2 α
1000

Drift(τ)
99
100

Crd(τ)
≤ α

100

Drift(τ)

Crd(τ)
≤ 10−4α. (2.29)

We will derive a lower bound for Drift(τ ′) in terms of Drift(τ) by showing that Edge(τ ′)
remains much closer to Line(τ) than the point x is. We know Diam(τ) ≤ 2Drift(τ) +
Crd(τ) ≤ 2Crd(τ) so that the fact that τ ′ is a τ -augmentation means that End(τ ′) ∈
B(End(τ), 1

1000
Diam(τ)) ⊆ B(End(τ), 1

500
Crd(τ)). A similar result holds for Start(τ ′). A

very rough estimate gives

sup
y∈Edge(τ ′)

dist(y, Line(τ)) ≤ α

1000
Drift(τ) + 2Crd(τ) tan(θ) ≤ α

25
Drift(τ).
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Figure 2.4: The arc τ is an example of a tall arc while ξ is an example of a wide arc (neither
are drawn to scale, but we hope the ideas are clear). Both of these arcs admit extensions
τ ′ and ξ′ such that Diam(τ ′) ≤ 2Diam(τ) and Diam(ξ′) ≤ 2Diam(ξ), but τ ′ and ξ′ have
much smaller β̃ then τ and ξ. Arcs of the first type are excluded in our analysis by enforcing
τ -augmentations to extend only a small distance from the endpoints of τ , while Lemma 2.3.9
gives conditions for excluding arcs of the second type. (Roughly speaking, if ξ ∈ Λ(Q), then
it is not allowed to extend outwards in the direction parallel to its chord line outside of the
ball 2Q.)

We conclude

Drift(τ ′) ≥ dist(x,Edge(τ ′)) ≥ dist(x, Line(τ))− sup
y∈Edge(τ ′)

dist(y, Line(τ))

≥ αDrift(τ)− α

25
Drift(τ) ≥ α

2
Drift(τ).

Therefore, β̃(τ ′) ≥ α
4
β̃(τ). ■

Remark 2.3.10. One can derive the existence of a point x as in Lemma 2.3.9 by showing that τ
lies outside half cones centered at Start(τ) and End(τ) pointing away from Edge(τ) of aperture
2θ such that tan(θ) ≥ α. Indeed, then every point y ∈ Image(τ) satisfies dist(y, Line(τ)) ≥
α dist(y,Edge(τ)) so that any point x ∈ Max(τ) satisfies dist(x, Line(τ)) ≥ αDrift(τ).

With this, we can now give the proof of Lemma 2.3.7.

Proof of Lemma 2.3.7. First, suppose that Edge(τ) ∩ 3
2
Q = ∅. Then since τ ∈ Λ(Q),

Image(τ) ∩ Q ̸= ∅ and we get Drift(τ) ≥ 1
2
rad(Q) ≥ 1

8
diam(2Q) ≥ 1

8
Crd(τ) so that τ

is tall. Lemma 2.3.8 implies β̃(τ ′) ≥ 1
4
β̃(τ) as desired.

Now, suppose that Edge(τ) ∩ 3
2
Q ̸= ∅. Our goal is to apply Lemma 2.3.9. By Remark

2.3.10, it suffices to show that there is a θ > 0 independent of τ such that the cone of aperture
θ centered at End(τ) (and Start(τ)) pointing away from Edge(τ) lies entirely outside the ball
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2Q. Intuitively, this is true because the fact that Line(τ) ∩ 3
2
Q ̸= ∅ implies that every line

in the tangent plane to ∂(2Q) at End(τ) makes large angle with Line(τ). We supply the full
details below.

Let P be any two-dimensional affine plane containing Edge(τ) and assume without loss
of generality that 2Q = B(0, 1), Line(τ) = {de1 + te2 : t ∈ R} for some d < 3

4
, and

P = {de1+ te2+ sv : t, s ∈ R, |v| = 1, v2 = 0}. First, we show that Edge(τ) also intersects
a central ball in the disk P ∩ 2Q.

Claim : Edge(τ) ∩ 3
4
(P ∩ 2Q) ̸= ∅.

Proof : P ∩B(0, 1) is a disk whose boundary has points satisfying the equation

(d+ sv1)
2 + t2 + s2(1− v21) = 1 ⇐⇒ (s+ dv1)

2 + t2 = 1− d2(1− v21).

This is a circle with radius
√

1− d2(1− v21) and center (s, t) = (−dv1, 0) which corresponds
to the point de1−dv1v. We want to show that de1 ∈ 3

4
(P∩B(0, 1)). But |de1−(de1−dv1v)| =

|dv1| ≤ d ≤ 3
4
, as desired ■

Now, it suffices to assume that Line(τ) = {de1 + te2 : t ∈ R} ⊆ R2 and to prove that
there is θ such that the angle between Line(τ) and any line tangent to ∂B(0, 1) ⊆ R2 at
x ∈ Edge(τ)∩ ∂B(0, 1) = {(d,

√
1− d2), (d,−

√
1− d2)} makes angle greater than θ. But by

implicit differentiation of the equation x2 + y2 = 1, we see that

dy

dx

∣∣∣∣
(x,y)=(d,−

√
1−d2)

= −x
y

∣∣∣∣
(x,y)=(d,−

√
1−d2)

=

√
1− d2

d
≥

√
7

3
.

Hence, we can take θ such that arctan θ <
√
7
3
< 2. We apply Lemma 2.3.9 with α = 1

2
to

get β̃(τ ′) ≥ 1
4000

β̃(τ). This proves we can take c1 =
1

4000
. ■

2.3.2 Bounds on the G3,G1, and ∆2.2 sums

In this subsection, we use the results from the previous subsection to prove Proposition 2.3.1.
The proofs are mostly adaptations of those for the corresponding lemmas in [Sch07a].

The following three proofs share the same structure, each proving the desired bound
for a particular family C ∈ {G3,G1,∆2.2}. In each case, we define a mapping from Q to
some associated arc τQ. We then show that the collection {τQ}Q∈C satisfies the geometric
diameters and bounded overlap properties necessary to apply Lemma 2.3.4. This gives a
bounded number of filtrations F j

C such that each τQ has a τQ-augmentation τ ′Q as in the
conclusion of Lemma 2.3.4. The desired bound then follows from applying Lemma 2.3.3 to
each of the filtrations as long as βΣ(Q) ≲ β̃(τ ′Q). This β̃ inequality is achieved by either the
fact that τQ uniformly has βτQ(Image(τQ)) > ϵ or by showing that τQ satisfies the hypotheses
of Lemma 2.3.7.

Proposition 2.3.11 (cf. [Sch07a] Lemma 3.16).∑
Q∈G3

βΣ(Q)
2 diam(Q) ≲J,A,ϵ2 H1(Σ) and

∑
Q∈G3

βΓ(Q)
2 diam(Q) ≲J,A,ϵ2 ℓ(Γ)− crd(Γ).
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Proof. We begin by defining a new family E ⊆ G3 and proving the claim for E ∩ G3 in place
of G3. Define

E :=

{
Q ∈ G3 :∃η ⊆ γ12Q, Diam(η) ≥ diam(Q) and β̃(η′) ≥ 10−6ϵ2βΣ(Q)

for all η′ ⊇ η with Diam(η) ≤ Diam(η′) ≤
(
1 +

1

100

)
Diam(η)

}
.

We will build an appropriate mapping Q 7→ τQ ⊆ γ12Q to pass into Lemma 2.3.4. We will
then apply Lemma 2.3.3 to conclude the result.

Now, for any Q ∈ E we have the existence of an arc ηQ ⊆ γ12Q with diam(Q) ≤
Diam(ηQ) ≤ 24 diam(Q) and β̃(ηQ) ≥ 10−6ϵ2βΣ(Q). We define τQ := ηQ.

In order to apply Lemma 2.3.4, we must verify that the family {τQ}Q∈E has geometric
diameters and bounded overlap. The diameter requirement is satisfied by definition, so we
only need to prove that EQ := {R ∈ E : diam(R) = diam(Q), τR ∩ τQ ̸= ∅} satisfies
#(EQ) ≤ C for some C independent of Q. Using the parameterization γ, we can put
a total order on balls with diameter equal to diam(Q) by setting R < Q if and only if
γ−1
R (xR) < γ−1

Q (xQ). Because Xn is finite, there exist balls R1, R2 ∈ EQ which are respectively
maximal and minimal in EQ with respect to this ordering. By definition, any R ∈ EQ must
satisfy xR ∈ γ12R1 ∪γ12Q∪γ12R2 . But, since β̃(γ12Q′) ≤ ϵ2 for all Q

′ ∈ E , the set Image(γ12Q′)
is contained in a cylinder of width at most ϵ2(24 diam(Q′)) and length at most 24 diam(Q′).

Since net points on the scale of Q′ must be separated by distance at least diam(Q′)
2A

, the net

points must be separated by at least distance diam(Q′)
4A

along the axis of the cylinder because
ϵ2 ≪ A−1. This means the number of net points on each of γ12Q′ , γ12R1 , γ12R2 is less than

24 diam(Q′) · diam(Q′)
4A

+ 1 ≤ 100A so that #(EQ) ≤ 300A as desired.
This verifies the geometric diameter and bounded overlap conditions for {τQ}Q∈E . We

apply Lemma 2.3.4 to receive a bounded number of filtrations F j
E , j ∈ JE such that for any

τQ, there exists a τQ-augmentation τ ′Q ∈ F j
E for some j. Therefore, the definition of E also

implies that β̃(τ ′Q) ≥ 10−6ϵ2βΣ(Q). Therefore, we have∑
Q∈G3∩E

βΣ(Q)
2 diam(Q) ≲ϵ2

∑
j∈J

∑
τ∈F j

E

β̃(τ)2Diam(τ) ≲J,A ℓ(γ)− crd(γ)

using Lemma 2.3.3. This proves the desired inequalities for G3 ∩ E . We will now prove this
for G3 \ E .

Indeed, fix Q ∈ G3 \ E . We look to build an appropriate mapping Q 7→ τQ to pass into
Lemma 2.3.4. Let x ∈ Σ ∩ Q be such that dist(x,

⋃
τ∈S(Q) Image(τ)) is maximal and let

ξQ ∈ Λ(Q) \ S(Q) be such that x ∈ Image(ξQ). By the definition of G3, βS(Q)(Q) ≤ ϵ1βΣ(Q)
so that

βS(Q)∪ξQ(Q) ≥
1

3
βΣ(Q).

Indeed, otherwise Σ ∩Q is contained in a cylinder of width

2

3
βΣ(Q) diam(Q) + cϵ1βΣ(Q) diam(Q)
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with ϵ1 ≪ c contradicting the definition of βΣ(Q). We set τQ := ξQ. We now verify that
the family {τQ}Q∈G3\E has geometric diameters and bounded overlap in order to apply the
pre-filtration lemma.

Since τQ ∈ Λ(Q), we know τQ ∩Q ̸= ∅ and τQ ∩H \ 2Q ̸= ∅ so that

2 diam(Q) ≥ Diam(τQ) ≥ rad(2Q)− rad(Q) =
1

2
diam(Q).

In order to verify bounded overlap, set GQ := {R ∈ G3\E : diamR = diamQ, τR∩τQ ̸= ∅} so
that we want to show #(GQ) ≤ C for C independent of Q. Assume first that βΣ(R) ≤ βΣ(Q).
Because τR∩τQ ̸= ∅, we have 2Q∩2R ̸= ∅ so that xR ∈ 8Q ⊆ 12R. Let γ12R|8Q be a largest
diameter subarc of γ12R which is in Λ(8Q). We want to show that γ12R|8Q ∈ S8Q. This is
the reason for the addition of E . Because R ̸∈ E and Diam(γ12R|8Q) ≥ diamR, there exists
some extension η′ ⊇ γ12R|8Q such that β̃(η′) < 10−6ϵ2βΣ(R). But, xR ∈ 4Q = 1

2
8Q implies

we can apply Lemma 2.3.7 to conclude

β̃(γ12R|8Q) ≤ 4000β̃(η′) ≤ 4000

106
ϵ2βΣ(R) < ϵ2βΣ(8Q).

This proves that γ12R|8Q ∈ S8Q. In particular, the fact that βS8Q
(8Q) ≤ ϵ1βΣ(Q) implies

that xR is contained in a small tube around γ8Q. We assumed that βΣ(R) ≤ βΣ(Q) for this,
but if βΣ(R) > βΣ(Q), then running the argument for γ12Q|8R in place of γ12R|8Q proves the
same claim with Q and R reversed. In either case, all R ∈ GQ are contained in a small
neighborhood of the almost flat arc γ12Q, proving #(GQ) ≤ 100A.

This verifies the geometric diameters and bounded overlap condition, so we apply Lemma
2.3.4 to get a bounded family of filtrations F j

G3
, j ∈ JG3 such that for each Q ∈ G3 \E , there

exists τ ′Q ∈ F j
G3

for some j which is a τQ-augmentation. Because τQ ∈ Λ(Q) \ SQ, we apply
Lemma 2.3.7 to conclude

β̃(τ ′Q) ≥
1

4000
β̃(τQ) ≥

ϵ2
4000

βΣ(2Q) ≥
ϵ2

8000
βΣ(Q).

Therefore, Lemma 2.3.3 implies∑
Q∈G3\E

βΣ(Q)
2 diam(Q) ≲ϵ2

∑
j∈JG3

∑
τ∈F j

G3

β̃(τ)2Diam(τ) ≲J,A ℓ(γ)− crd(γ). ■

Proposition 2.3.12 (cf. [Sch07a] Lemma 3.14).∑
Q∈G1

βΣ(Q)
2 diam(Q) ≲J,A H1(Σ) and

∑
Q∈G1

βΓ(Q)
2 diam(Q) ≲J,A ℓ(Γ)− crd(Γ).

Proof. Let us build an appropriate mapping Q 7→ τQ. Put Q = B(xQ, Aλ2
−n). We define

τQ in one of two ways:

(i) If #(γQ ∩Xn) ≤ 3λA, then set τQ := γQ.

(ii) Otherwise, let τQ be a subarc of γQ containing xQ such that #(τQ ∩Xn) = 3λA.
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In order to apply Lemma 2.3.4, we must check the geometric diameters and bounded over-
lap conditions. The geometric diameters condition follows in case (i) because γQ ∈ Λ(Q).
It follows in case (ii) because the net point condition implies that 2−n ≤ Diam(τQ) ≤
2 diam(Q) = 4λA2−n. In either case, bounded overlap follows from a similar argument
to that in the proof of Proposition 2.3.11. Because each arc is centered on a unique net
point in Xn and each arc contains at most 3λA net points, ordering the net points via
the parameterization γ shows that there can be at most 6λA net points (inclusive) be-
tween intersecting arcs τQ and τR for either arcs of type (i) or (ii) above. This proves
#({R ∈ G1 : diam(R) = diam(Q), τR ∩ τQ ̸= ∅}) ≤ 12λA.

Applying Lemma 2.3.4 to the collections of type (i) and (ii) arcs above gives a family of
filtrations F j

G1
, j ∈ JG1 such that for any Q ∈ G λ

3 , there exists a τQ-augmentation τ ′Q ∈ F j
G1

for some j. In order to finish, we only have to check that β̃(τ ′Q) ≳A βΣ(Q). For arcs of type
(i), τQ = γQ ∈ Λ(Q) so that Lemma 2.3.7 gives the result. For arcs of type (ii), observe that
#(τQ ∩ Xn) = 3λA implies that βτ ′Q(τ

′
Q) ≳ βτQ(τQ) ≳A 1 ≳A βΣ(Q). Therefore, applying

Lemma 2.3.3 to this collection of filtrations gives∑
Q∈G1

βΣ(Q)
2 diam(Q) ≲A

∑
j∈JG1

∑
τ∈F j

G1

β̃(τ)2 diam(τ) ≲J,A ℓ(γ)− crd(γ). ■

Proposition 2.3.13 (cf. [Sch07a] Lemma 3.24).∑
Q∈∆2.2

βΣ(Q)
2 diam(Q) ≲J,A H1(Σ) and

∑
Q∈∆2.2

βΓ(Q)
2 diam(Q) ≲J,A ℓ(Γ)− crd(Γ).

Proof. Let us build an appropriate mapping Q 7→ τQ as in the previous two propositions.
Again, let Q = B(xQ, λA2

−n) By definition, there exists ξQ ∈ Λ(Q)\SQ such that ξQ∩Ux
Q ̸=

∅. We define τQ in one of two ways

(i) If #({R ∈ ∆2.2 : diam(R) = diam(Q), ξQ ∩ Ux
R ̸= ∅}) ≤ 9λA, then set τQ = ξQ.

(ii) Otherwise, let τQ be a subarc of ξQ such that τQ ∩ Ux
Q ̸= ∅ and #({R ∈ ∆2.2 :

diam(R) = diam(Q), ξQ ∩ Ux
R ̸= ∅}) = 9λA.

Type (i) arcs have geometric diameters since ξQ ∈ Λ(Q). Type (ii) arcs have nonempty in-
tersection with two distinct, disjoint cores Ux

Q and Ux
R so that Diam(ξQ) ≥ dist(∂Ux

Q, ∂U
xx
Q ) ≳

diam(Q). To check bounded overlap, we argue almost exactly as in the corresponding part
of the proof of Proposition 2.3.12. Indeed, τQ ∩Ux

Q ̸= ∅ so that we can order the arcs τQ via
the parameterization γ by the ordering of xQ ∈ Ux

Q. There can be at most 18λA net points
separating xQ and xR for admissible R so that #({R ∈ ∆2.2 : diam(R) = diam(Q), τR∩τQ ̸=
∅}) ≤ 36λA.

Applying Lemma 2.3.4 gives a bounded number of filtrations F j
∆ such that each Q ∈ ∆2.2

has an associated τQ-augmentation τ ′Q. We only need to show that β̃(τ ′Q) ≳ βΣ(Q). This
follows for type (i) arcs by Lemma 2.3.7 and for type (ii) arcs by the fact that #({R ∈
∆2.2 : diam(R) = diam(Q), ξQ ∩ Ux

R ̸= ∅}) = 9λA implies β̃(τ ′Q) ≳ βτQ(τQ) ≳A 1 ≳A βΣ(Q)
as in the proof of Proposition 2.3.12. The result follows by applying Lemma 2.3.3 to each
filtration to get∑

Q∈∆2.2

βΣ(Q)
2 diam(Q) ≲A

∑
j∈J∆2.2

∑
τ∈F j

∆2.2

β̃(τ)2 diam(τ) ≲J,A ℓ(γ)− crd(γ). ■
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2.4 Almost flat arcs: ∆1,∆2.1

Our goal now is to prove the following proposition:

Proposition 2.4.1. Set A := ∆1 ∪∆2.1. We have∑
Q∈A

βΣ(Q)
2 diam(Q) ≲A ℓ(Σ) and

∑
Q∈A

βΓ(Q)
2 diam(Q) ≲A ℓ(Γ)− crd(Γ). (2.30)

Recall that A ⊆ G2 so that for any Q ∈ A , βΣ(Q) ≤ ϵ−1
1 βS(Q)(Q). That is, the beta

number of the union of images of almost flat arcs controls the total beta number for Q. For
the purposes of estimating the beta-squared sum, we can essentially think of Σ (or Γ) inside
of Q as consisting of a union of line segments (we have taken the parameter ϵ2 sufficiently
small so that this heuristic holds at all scales we will perform estimates at). In Section 2.4.1
we prove the first inequality in (2.30), finishing the proof of the Hilbert space necessary
condition. In Section 2.4.2 we prove the second, finishing the proof of Theorem A.

We begin by giving some comments on the structure of almost flat arcs. Recall that an
almost flat arc τ ∈ S(Q) satisfies the inequality

β̃(τ) ≤ ϵ2βΣ(Q). (2.31)

We interpret this as saying that τ is a very small perturbation of Edge(τ) relative to the
overall flatness of Σ inside Q. This means that τ is bilaterally close to Edge(τ), forcing τ to
be “diametrical” and giving it the crossing property we prove in Lemma 2.4.2 below. The
condition (2.31) is importantly stronger than the similar inequality

βτ (Image(τ)) ≤ ϵ2βΣ(Q). (2.32)

This condition only forces the image of τ to be unilaterally close to some line L relative to
the overall flatness of Σ inside Q. This allows almost flat arcs which are “radial” rather than
“diametrical”. This is an important point at which the results here diverge from results of
[BM23b] in which analogous results are proven for this weaker notion of almost flat arcs in
Banach spaces.

We now record two lemmas needed in the following sections.

Definition 2.4.1 (Cylinders). Let a, b ∈ ℓ2, let s := [a, b] be a line segment, and let r > 0.
We define the cylinder C of radius r around s as

C(s, r) := {z ∈ π−1
s (s) : π⊥

s (z) ≤ r},

where πs is the orthogonal projection onto the line collinear with the line segment s and
π⊥
s : ℓ2 → ℓ2 is the projection onto the corresponding affine orthogonal hyperplane. We also

allow s to be an affine line. For a segment s as above, we define the faces

Fa(s, r) := {z ∈ C(s, r) : πs(z) = a} and Fb(s, r) := {z ∈ C(s, r) : πs(z) = b}.

For any τ ∈ Λ(Q), τ ⊆ C(Line(τ), β̃(τ)Diam(τ)) ⊆ C(Line(τ), β̃(τ) diam(2Q))..
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Lemma 2.4.2 (Crossing Property). Let Q ∈ G , τ ∈ Λ(Q), and τ ′ := [aτ ′ , bτ ′ ] ⊆ Edge(τ) :=
[aτ , bτ ]. Let ϵ > 0 such that β̃(τ) ≤ ϵ

2
. There exists an arc τ0 such that

(i) Domain(τ0) ⊆ Domain(τ) ∩ γ−1(C(τ ′, ϵ diam(Q))), and

(ii) Diam(τ0) ≥ Diam(τ ′).

Proof. Let C := C(Line(τ ′), ϵ diam(Q)). Because β̃(τ) ≤ ϵ
2
and Diam(τ) ≤ 2 diam(Q), we

know τ ⊆ C. Because Image(τ) is connected, πτ ′ is continuous, and aτ , bτ ∈ Edge(τ)∩τ , there
must exist u ∈ τ ∩Faτ ′ and v ∈ τ ∩Fbτ ′ . This implies that {t ∈ Domain(τ) : τ(t) ∈ Fbτ ′} ≠ ∅
and {t ∈ Domain(τ) : τ(t) ∈ Faτ ′} ≠ ∅ so that we can further suppose without loss of
generality that

0 ≤ inf{t ∈ Domain(τ) : τ(t) ∈ Faτ ′} < inf{t ∈ Domain(τ) : τ(t) ∈ Fbτ ′}. (2.33)

That is, τ enters Faτ ′ before Fbτ ′ . We define

t2 := inf{t ∈ Domain(τ) : τ(t) ∈ Fbτ ′},
t1 := sup{t ∈ Domain(τ) : t ≤ t2, τ(t) ∈ Faτ ′},
τ0 := τ |[t1,t2].

Suppose without loss of generality that πτ ′(aτ ′) ≤ πτ ′(bτ ′). We know τ(t2) ∈ Fbτ ′ by the
continuity of τ . By the continuity of πτ ′ and the definition of t2, we also know that πτ ′(τ(t)) ≤
πτ ′(bτ ′) for all t ≤ t2. On the other hand, the definition of t1 implies that πτ ′(τ(t)) ≥ πτ ′(aτ ′)
for all t1 ≤ t ≤ t2 so that τ |[t1,t2] ⊆ C(τ ′, ϵ diam(Q)). Item (i) follows. In fact, we can
conclude τ(t1) ∈ Faτ ′ because the supremum in the definition of t1 is over a non-empty set
by (2.33). Item (ii) follows because Diam(τ0) ≥ |bτ ′ − aτ ′| = Diam(τ ′). ■

For convenience, we also record an estimate for lower-bounding the diameter of chord
segments of arcs which touch central balls inside of Q:

Lemma 2.4.3. Let Q = B(xQ, R) be a ball and let 0 < α < 1 be such that α2 < 1/2. Let
φ′ := [aφ′ , bφ′ ] be a line segment such that aφ′ , bφ′ ∈ ∂Q and φ′ ∩ αQ ̸= ∅. Then,

H1([aφ′ , bφ′ ]) ≥ diam(Q)
(
1− 2α2

)
.

Proof. We will first give a lower bound for the function
√
1− x, then apply this to a

Pythagorean theorem estimate. Let 0 < x < 1
2
and observe that, by the generalized bi-

nomial theorem,

√
1− x =

∞∑
n=0

(−1)n
1
2
(1
2
− 1) · · · (1

2
− n+ 1)

n!
xn ≥ 1−

∞∑
n=1

xn ≥ 1− x− x

1− x
≥ 1− 2x

using our assumption that x ≤ 1
2
in the last line. Now, let yφ′ be the point in φ′ closest to

xQ. Then, using the Pythagorean theorem, we get |yφ′ − aφ′|2 = |aφ′ − xQ|2 − |xQ − yφ′ |2
from which we can estimate

|yφ′ − aφ′| ≥
√
R2 − (αR)2 ≥ R

√
1− α2 ≥ R

(
1− 2α2

)
.

Applying the same argument to |yφ′ − bφ′|, we get H1([aφ′ , bφ′ ]) = |yφ′ − bφ′ |+ |yφ′ − aφ′ | ≥
diam(Q)(1− 2α2). ■
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2.4.1 Almost flat arcs for Σ

In this section, we complete our proof of (2.9), the necessary condition in the Hilbert space
traveling salesman theorem. We begin in Section 2.4.1.1 by giving a general presentation
of Schul’s martingale construction. In Section 2.4.1.2, we give the first application of the
martingale construction by repeating Schul’s proof of the beta-squared sum bound for the
family ∆1. Finally, in Section 2.4.1.3 we give a new proof of the beta-squared sum bound
for the family ∆2.1 using Schul’s martingales again, filling in the final gap in proof of the
Hilbert space necessary condition in [Sch07a].

2.4.1.1 Schul’s Martingale Lemma

The martingale argument relies heavily on the structure of the cores for balls constructed
in Proposition 2.1.19, so we begin by giving some definitions and notation related to the
families of cores. For the rest of this section, fix 0 < c < 1

4A
and J ≥ 10.

Definition 2.4.2 (The tree structure of cores). Fix a collection L ⊆ G . Proposition 2.1.19
gives a partition of G into J families {Qj}Jj=1 such that cores for balls inside Qj satisfy
the inclusion and separation properties (i), (ii), and (iii) in Proposition 2.1.19. Defining
Lj := L ∩ Qj, we see that for any Q ∈ Lj, either

(a) For all Q′ ∈ Lj such that U c
Q′ ∩ UQ ̸= ∅, U c

Q′ ⊆ U c
Q, or

(b) There exists Q′ ∈ Lj such that U c
Q ⊊ U c

Q′ .

These set inclusion properties induce a partial order on L , giving it the structure of a forest
in which the balls satisfying the first condition above are the roots of trees in the forest
while the balls satisfying the second condition are descendants of some root. We denote the
forest of trees (whose partial order depends on the constants c and J) by T c,J

L = T c
L = TL

where we often suppress the constants when understood (in practice, we suppress J more
often than c in the construction because J will be fixed once and for all while c will vary).
We refer to the root of T ∈ T c,J

L as Q(T ). For each Q ∈ T, Q ̸= Q(T ), there exists a unique
minimal ball P (Q) respect to the ordering of T such that U c

Q ⊊ U c
P (Q). We call P (Q) the

parent of Q. Similarly, for any Q ∈ T we define the collection of children of Q in T by

C(Q) := {Q′ ∈ T : Q′ is maximal in T such that U c
Q′ ⊊ U c

Q}.

We also think of C1(Q) := C(Q) as the first generation descendants of Q. Given the set
Cn(Q) for some n ≥ 1, we define the n+ 1-th generation descendants of Q as

Cn+1(Q) := {Q′′ ∈ C(Q′) : Q′ ∈ Cn(Q)}.

Because each ball is either a root or its core is contained in the core of some root ball, we
have

U c
L :=

⋃
Q∈T c

L

U c
Q(T ) =

⋃
Q∈L

U c
Q.

If L ⊆ Qj for some j, 1 ≤ j ≤ J , then the union above over trees is disjoint. Otherwise it
is a union in which each point is contained in at most J constituent sets.
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We now give the definition of a martingale and relevant notions from probability theory.

Definition 2.4.3 (Martingales). Given a probability space (Ω,A,P), we define a filtration
of A to be an increasing sequence (Fn)n≥0 of sub-σ-algebras of A. We say that a collection
of real-valued random variables (Xn)n≥0 on Ω is a martingale with respect to (Fn)n≥0 if for
all n ≥ 0,

(i) Xn is Fn-measurable,

(ii) E(Xn) <∞,

(iii) E(Xn+1|Fn) = Xn.

where E(Xn+1|Fn) denotes the conditional expectation of Xn+1 with respect to Fn. Impor-
tantly, it is well-known that positive martingales converge pointwise almost surely. That
is, if Xn ≥ 0 for all n ≥ 0, then there exists a positive random variable X such that
X(ω) = limn→∞Xn(ω) for P almost all ω ∈ Ω. We will only consider positive martingales.

Remark 2.4.4 (Schul’s martingales). Let L ⊆ G and form the forest T c
L which gives L

a partial order, hence a child-parent structure as defined above. For each Q ∈ L , Schul
constructs a martingale (wnQ)n≥0 supported inside U c

Q ∩ Σ. We define the remainder

RQ := UQ ∩ Σ \

 ⋃
Q′∈C(Q)

U c
Q′ ∩ Σ


so that

U c
Q ∩ Σ =

 ⋃
Q′∈C(Q)

U c
Q′ ∩ Σ

 ∪RQ

where the collection {U c
Q′ ∩Σ}Q′∈C(Q)∪{RQ} is pairwise disjoint. Applying this partitioning

scheme iteratively to each U c
Q′ ∩ Σ in the union above, we see that for any n ≥ 0, we can

write U c
Q ∩ Σ as the partition.

U c
Q ∩ Σ = RQ ∪

 ⋃
Q′∈C1(Q)

RQ′

 ∪ . . . ∪

 ⋃
Q′∈Cn(Q)

RQ′

 ∪

 ⋃
Q′∈Cn+1(Q)

U c
Q′ ∩ Σ

 (2.34)

This gives a decomposition of U c
Q∩Σ into “atoms” at the (n+1)-th level, from which we will

define a filtration by setting Fn to be the sigma algebra generated by ∪k≤n{U c
Q′ ∩Σ}Q′∈Ck(Q).

We will form the martingale (wnQ)n≥0 by setting w0
Q to be constant on U c

Q ∩ Σ and defining

wn+1
Q by distributing the mass that wnQ assigns to U c

Q′ ∩ Σ for any Q′ ∈ Cn(Q) onto its
constituent pieces RQ′ ∪

⋃
Q′′∈C(Q′) U

c
Q′′ ∩ Σ = U c

Q′ ∩ Σ with weighting factors depending on

the size and number of children in C(Q′) and the length of the remainder RQ′ .

Lemma 2.4.5 (Martingale construction). Fix a constant D > 0, c < 1
4A

and let L ⊆ G∩Qj.
Suppose that there exists a constant q < 1 such that for any Q ∈ L

diam(U c
Q)∑

Q′∈C(Q) diam(U c
Q′) +Dℓ(RQ)

≤ q. (2.35)
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Then, there exists a collection of positive real-valued functions {wQ}Q∈L satisfying

(i)
�
Σ
wQdℓ = diam(U c

Q),

(ii)
∑

Q∈L wQ(x) ≤ D
1−qχUc

L
(x) for almost every x ∈ Σ,

(iii) supp(wQ) ⊆ U c
Q ∩ Σ.

Proof. We will suppress the superscript of the cores and write UQ = U c
Q. Fix Q ∈ L .

For any set E and function w : Σ → R, we let w(E) =
�
E
wdℓ. Let Fn be the σ-algebra

generated by ∪k≤n{UQ′ ∩ Σ}Q′∈Ck(Q). We construct the function wQ as the pointwise limit
of a martingale (wnQ)n≥0 adapted to the filtration (Fn)n≥0 with underlying finite measure
ℓ|UQ∩Σ. We begin by defining the function w0

Q:

w0
Q(x) :=

diam(UQ)

ℓ(UQ ∩ Σ)
for any x ∈ UQ ∩ Σ.

The martingale sequence will have fixed total mass w0
Q(UQ) = diam(UQ). We next define

sQ :=
∑

Q′∈C(Q)

diam(UQ′) +Dℓ(RQ) <∞.

Given the function wnQ, we define w
n+1
Q by readjusting the distribution of mass inside the cores

{UQ′}Q′∈Cn+1(Q) and leaving the remainders RQ′′ constant for any ancestor balls Q′′ ∈ Cj(Q)
for j < n. Let Q′ ∈ Cn(Q), Q′′ ∈ C(Q′) ⊆ Cn+1(Q), and Q0 ∈ Cj(Q) for some j < n.
We define wn+1

Q (x) by declaring wn+1
Q to be constant on each of RQ0 , RQ′ , and UQ′′ ∩ Σ and

imposing

wn+1
Q (RQ0) = wnQ(RQ0), (2.36)

wn+1
Q (RQ′) = wnQ(UQ′) · Dℓ(RQ′)

sQ′
, (2.37)

wn+1
Q (UQ′′) = wnQ(UQ′) · diam(UQ′′)

sQ′
. (2.38)

We could find the pointwise value for wn+1 on each set by dividing the three above equations
by ℓ(RQ0), ℓ(RQ′), and ℓ(UQ′′ ∩ Σ) respectively. It follows from the definition that wnQ(UQ)
is Fn measurable. In order to show that (wnQ) is a martingale adapted to the filtration (Fn),
we must prove

E(wn+1
Q |Fn) = wnQ.

It suffices to show that wn+1
Q (UQ′) = wnQ(UQ′) for any Q′ ∈ ∪k≤nCk(Q′). First, suppose

Q′ ∈ Cn(Q). Then, using (2.38) and (2.37),

wn+1
Q (UQ′) = wn+1

Q (RQ′) +
∑

Q′′∈C(Q′)

wn+1
Q (UQ′)

= wnQ(UQ′) · Dℓ(RQ′)

sQ′
+

∑
Q′′∈C(Q′)

wnQ(UQ′) · diam(UQ′′)

sQ′
= wnQ(UQ′).
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On the other hand, if Q′ ∈ Ck(Q) for some k < n, we can apply (2.34) to Q′ to write UQ′ in
terms of the remainders down to level n− 1 and the cores at level n inside of UQ′ :

wn+1
Q (UQ′) =

n−k−1∑
j=0

∑
Q′′∈Cj(Q′)

wn+1
Q (RQ′) +

∑
Q′′∈Cn−k(Q′)

wn+1
Q (UQ′)

=
n−k−1∑
j=0

∑
Q′′∈Ck(Q′)

wnQ(RQ′) +
∑

Q′′∈Cn−k(Q′)

wnQ(UQ′) = wnQ(UQ′)

using the previous two cases. This also shows that wn+1
Q (UQ) = wnQ(UQ) = . . . = diam(UQ),

verifying the finite expectation condition. Hence, (wnQ)n≥0 is a positive martingale so that it
converges pointwise ℓ almost everywhere to a function

wQ(x) = lim
n→∞

wnQ(x).

By definition, supp(wQ) ⊆ supp(w0
Q) = UQ ∩ Σ and

�
Q
wQdℓ = wQ(UQ) = w0

Q(UQ) =

diam(UQ) verifying properties (i) and (iii) above. We now prove (ii). Fix x ∈ UQ ∩ Σ for
which limn→∞wnQ(x) exists and suppose that x ∈ RQN

∩ UQN
⊂ UQN−1

⊂ · · · ⊂ UQ0 = UQ.
Then (2.38) and (2.35) imply

wQ(UQN
)

diam(UQN
)
=
wQ(UQN−1

)

sQN−1

=
wQ(UQN−1

)

diam(UQN−1
)

diam(UQN−1
)

sQN−1

< q
wQ(UQN−1

)

diam(UQN−1
)
.

Applying this N times, we get

wQ(UQN
)

diam(UQN
)
< qN

wQ(UQ)

diam(UQ)
= qN .

Therefore, using (2.37), we conclude

wQ(x) =
wQ(RQN

)

ℓ(RQN
)

≤ wQ(UQN
)

ℓ(RQN
)

Dℓ(RQN
)

sQN

≤ D
wQ(UQN

)

sQN

< DqN .

In particular, if x is contained in an infinite sequence of nested cores, then wQ(x) = 0 for all
Q. Applying the above calculation for each Qk, 0 ≤ k ≤ N , we see that wQk

(x) ≤ DqN−k. .
Because supp(wQ) = UQ∩Σ, we also know that

⋃
Q∈L supp(wQ) ⊆ UL and we can compute

∑
Q∈L

wQ(x) =
∑
Q∈L

wQ(x)χUQ
(x) ≤

(∑
Q∈L

wQ(x)

)
χUL

(x)

≤

(
∞∑
n=0

Dqn

)
χUL

(x) ≤ D

1− q
χUL

(x).

This concludes the proof of (ii). ■
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2.4.1.2 Bound on the ∆1 sum for Σ

The ideas of this section are all present in [Sch07a]. We present them here in greater detail
out of a desire for completeness. For M ∈ N, define

∆(M) = {Q ∈ ∆1 : 2
−M ≤ βS(Q)(U

x
Q) < 2−M+1}.

Fix K ∈ N such that 1 ≤ K ≤MJ and define

∆′ := ∆′(M,K) := {Q ∈ ∆(M) : rad(Q) = A2K+MJn, n ∈ Z}.

Intuitively, ∆′ is obtained by starting at an offset K and skipping all elements in ∆(M) on
the nearest MJ scales so that the difference in scale between adjacent levels within ∆′ is
large. We want to apply the martingale lemma, Lemma 2.4.5, with L = ∆′, so we need to
prove the following lemma:

Lemma 2.4.6 (cf. [Sch07a] Lemma 3.25). For any Q ∈ ∆′,

diam(Uxx
Q )∑

Q′∈C(Q) diam(Uxx
Q′ ) + ℓ(RQ)

≤ 1

1 + 1
10

.

Proof. (See Figure 2.5 for a picture of this proof). Recall that the definition of ∆1 implies
βS(Q)(U

x
Q) ≥ C−1

U βS(Q)(Q) ≥ C−1
U ϵ1βΣ(Q). For any η ∈ S(Q), we get the bound

β̃(η) ≤ ϵ2βΣ(Q) < ϵ1(10
5ACU)

−1ϵ1βΣ(Q) ≤ 10−5A−1ϵ1βS(Q)(U
x
Q) < 10−5A−1ϵ12

−M+1.
(2.39)

Therefore, because γQ ∈ S(Q) we conclude

βγQ(U
x
Q) ≤ 16AβγQ(Q) ≤ 32Aβ̃(γQ) ≤ 10−3ϵ1βS(Q)(U

x
Q).

This implies that there exists ξQ ∈ S(Q), ξQ ̸= γQ such that we have y ∈ ξQ ∩ Ux
Q with

dist(y,Edge(γQ)) ≥ βS(Q)(U
x
Q) diam(Ux

Q) ≥ 2−M diam(Ux
Q) by using the line collinear with

Edge(γQ) as an approximating line for βS(Q)(U
x
Q). Define

γ′ := Edge(γQ), Bγ′ := B(γ′, ϵ12
−M diam(Ux

Q)),

ξ′ := Edge(ξQ) ∩ 15c0Q, Bξ′ := B(ξ′, ϵ12
−M diam(Ux

Q)).

By Lemma 2.4.2, there exists yξ′ ∈ ξ′ such that

|y − yξ′| ≤ β̃(ξQ) diam(2Q) ≤ ϵ12
−M−1 diam(Ux

Q)

so that dist(yξ′ , γ
′) ≥ 2−M−1 diam(Ux

Q), and hence yξ′ ∈ 9c0Q. Write ξ′ as the union of two
subsegments ξ′ = [aξ′ , yξ′ ] ∪ [yξ′ , bξ′ ] where aξ′ and bξ′ are the endpoints of ξ′. Because the
line segments [aξ′ , yξ′ ] and [bξ′ , yξ′ ] extend in opposite directions away from yξ′ , one of them,
suppose it is [aξ′ , yξ′ ], satisfies dist([aξ′ , yξ′ ], γ

′) ≥ dist(yξ′ , γ
′) ≥ 2−M−5 diam(Uxx

Q ) also using
the fact that γ′ is a line segment. In addition, [aξ′ , yξ′ ] has nonempty intersection with both
9c0Q and 15c0Q ⊆ Uxx

Q so that we can assume both of the following hold:

dist([aξ′ , yξ′ ], γ
′) ≥ 2−M−5 diam(Uxx

Q ), (2.40)

diam([aξ′ , yξ′ ]) ≥ 6c0 rad(Q) = 3c0 diam(Q). (2.41)
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Therefore, we can apply Lemma 2.4.2 to the segment [aξ′ , yξ′ ] to get an arc ξ0 ⊆ ξQ such
that ξ0 ⊆ Bξ′ ⊆ 16c0Q ⊆ Uxx

Q and Diam(ξ0) ≥ 3c0 diam(Q). Now, Q ∈ ∆′ implies, for all
Q′ ∈ C(Q),

diam(Uxx
Q′ ) ≤ diam(Q′) ≤ 2−MJ diam(Q) ≤ 2−M ·2−J+2 diam(Q) ≤ 2−Mϵ1 diam(Uxx

Q ) (2.42)

Using (2.40) and the fact that γQ ⊆ Bγ′ , this implies that ξ0 satisfies the following:

Uxx
Q′ ∩ γQ = ∅ for all Q′ ∈ C(Q) such that Uxx

Q′ ∩ ξ0 ̸= ∅.

Hence, we can estimate∑
Q′∈C(Q)

diam(Uxx
Q′ ) + ℓ(RQ) ≥

∑
Q′∈C(Q)
Uxx
Q′ ∩γQ ̸=∅

diam(Uxx
Q′ ) + ℓ(RQ ∩ γQ) +

∑
Q′∈C(Q)
Uxx
Q′ ∩ξ0 ̸=∅

diam(Uxx
Q′ ) + ℓ(RQ ∩ ξ0)

≥ diam(γQ ∩ Uxx
Q ) + Diam(ξ0) ≥ 15c0 diam(Q) + 3c0 diam(Q)

≥
(
1 +

1

10

)
diam(Uxx

Q ). (2.43)

■

Proposition 2.4.7 (cf. [Sch07a] Lemma 3.25).∑
Q∈∆1

βΣ(Q)
2 diam(Q) ≲A,J H1(Σ).

Proof. Fix ∆′(M,K) ⊆ ∆1 as defined above and order it via the forest T 16c0
∆′ . By Lemma

2.4.6, we can apply Lemma 2.4.5 with L = ∆′, D = 1, q = 1
1+ 1

10

to get a collection of

positive real-valued functions {wQ}Q∈∆′ such that

(i)
�
Q
wQ dℓ = diam(Uxx

Q ), and

(ii)
∑

Q∈∆′ wQ(x) ≲ χ
U

16c0
∆′

(x) for almost every x ∈ Σ,

Therefore, we have∑
Q∈∆′

βΣ(Q) diam(Q) ≲A 2−M
∑
Q∈∆′

�
Q

wQdℓ ≤ 2−M
�
Γ

∑
Q∈∆′

wQdℓ

≲ 2−M
�
U

16c0
∆′ ∩Σ

dℓ ≤ 2−M
∑

T∈T 16c0
∆′

ℓ(Uxx
Q(T ) ∩ Σ) ≲ 2−Mℓ(Σ)

where the final inequality follows because the collection {Uxx
Q(T )}T∈T 16c0

∆′
is pairwise disjoint.

Summing this over M ≥ 0 and 1 ≤ K ≤MJ , we get

∑
Q∈∆1

βΣ(Q)
2 diam(Q) ≤

∞∑
M=0

MJ∑
K=1

∑
Q∈∆′(M,K)

βΣ(Q) diam(Q) ≲A,J

∞∑
M=0

M2−Mℓ(Σ) ≲ H1(Σ).

■
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Figure 2.5: A picture of the proof of Lemma 2.4.6.

2.4.1.3 Bound on the ∆2.1 sum for Σ

Our proof of the beta sum bound for ∆2.1 relies heavily on the construction of weights analo-
gous to those of Proposition 2.4.7 adapted to ∆2.1 balls rather than ∆1 balls. Unfortunately,
the proof of the existence of these weights in [Sch07a] Lemma 3.28 contains technical er-
rors which leave gaps in the proof (see [BM23b] Appendix C. for further explanation of the
issues). In this section, we provide a new proof.

We begin with a general lemma which gives a nice approximating line segment for almost
flat γQ inside the core of a general ball Q ∈ G for a range of core sizes. We will use this line
segment γ′ as an accounting tool for proving the analogue of Lemma 2.4.6 for ∆2.1 balls.

Lemma 2.4.8. Let Q ∈ G such that γQ ∈ S(Q) and fix 2ϵ2
ϵ1
< c < 1

4A
. There exists a line

segment γ′ = [aγ′ , bγ′ ] ⊆ Edge(γQ) such that

(i) H1(γ′) ≥ (1− 30ϵ1) diam(U c
Q),

(ii) B(γ′, 5ϵ1 diam(U c
Q)) ⊆ U c

Q,

49



(iii) γ′ ⊆ πγ′(γQ ∩ cQ), and

(iv) If βΣ(U
c
Q) < ϵ1, then for any Q′ ∈ C(Q), πγ′(U

c
Q′) ∩ γ′ ̸= ∅ =⇒ 2Q′ ⊆ U c

Q.

Proof. Let γ′′ := [aγ′′ , bγ′′ ] := Edge(γQ) ∩ cQ. Define γ′ to be the line segment gotten by
chopping off the segments of length 10ϵ1 diam(U c

Q) from either end of γ′′:

γ′ :=

[
aγ′′ − 10ϵ1 diam(U c

Q)
bγ′′ − aγ′′

|bγ′′ − aγ′′ |
, bγ′′ − 10ϵ1 diam(U c

Q)
aγ′′ − bγ′′

|bγ′′ − aγ′′|

]
=: [aγ′ , bγ′ ].

Because xQ ∈ γQ ∈ S(Q) implies dist(xQ, γ
′′) < 2ϵ2 diam(Q) ≤ ϵ1c rad(Q), and aγ′′ , bγ′′ ∈

∂(cQ), Lemma 2.4.3 implies

H1(γ′′) = |aγ′′ − bγ′′ | ≥ c diam(Q)
(
1− 2ϵ21

)
≥ (1− 2ϵ1) diam(U c

Q)

where we used the fact that c diam(Q) ≥ 1
1+2−J+2 diam(U c

Q) ≥ (1− ϵ1) diam(U c
Q). This gives

H1(γ′) ≥ H1(γ′′)− 20ϵ1 diam(U c
Q) ≥ (1− 30ϵ1) diam(U c

Q).

This proves (i). In a similar vein, we can use the Pythagorean theorem to estimate

|aγ′ − xQ| ≤
√

(1− 10ϵ1)2 diam(U c
Q)

2 + ϵ21 diam(U c
Q)

2 ≤ diam(U c
Q)
√
1− 20ϵ1 + 101ϵ21

≤ diam(U c
Q)
√
1− 19ϵ1 ≤ (1− 9ϵ1) diam(U c

Q)

using the Taylor expansion estimate
√
1− x = 1− x

2
− x2

8
− . . . ≤ 1− x

2
. A similar inequality

holds for bγ′ , implying
B(γ′, 5ϵ1 diam(U c

Q)) ⊆ cQ ⊆ U c
Q (2.44)

by the triangle inequality, the convexity of balls in ℓ2, and the fact that γ′ is a line seg-
ment. This proves (ii). To prove (iii), we observe that β̃(γQ) diam(2Q) ≤ 2ϵ2 diam(Q) <
cϵ1 diam(Q) ≤ ϵ1 diam(U c

Q) and apply Lemma 2.4.2 to the segment γ′ to get a subarc γ0 ⊆ γQ
such that Domain(γ0) ⊆ Domain(γQ) ∩ γ−1(C(γ′, ϵ1 diam(U c

Q))) such that πγ′(γ0) = γ′. We
now prove (iv). We compute

dist(πγ′(xQ′), γ′) ≤ diam(2Q′) ≤ 2−J+1 diam(Q) < 2(10A)−2ϵ1 diam(Q) ≤ ϵ1 diam(U c
Q).
(2.45)

On the other hand, βΣ(U
c
Q) < ϵ1 implies |π⊥

γ′(xQ′)| ≤ 2ϵ1 diam(U c
Q) which combined with

(2.45) gives 2Q′ ⊆ B(γ′, 5ϵ1 diam(U c
Q)) ⊆ U c

Q by (ii). ■

For the rest of this section, we consider ∆2.1 with the ordering given by the forest T c0
∆2.1

.
We now identify a good family of balls from which we will extract excess length in order to
prove the existence of q < 1 such that diam(UQ) ≤ qsQ for Q ∈ ∆2.1.

Definition 2.4.4 (Dominant balls). Fix Q ∈ ∆2.1 and let γ′ be as in Lemma 2.4.8. Define
the “interior” and “exterior” children as

CI(Q) := {Q′ ∈ C(Q) : πγ′(UQ′) ∩ γ′ ̸= ∅},
CE(Q) := {Q′ ∈ C(Q) : πγ′(UQ′) ∩ γ′ = ∅},

= C(Q) \ CI(Q).

We have
⋃
Q′∈CI(Q) 2Q

′ ⊆ UQ by Lemma 2.4.8 (iv). For any Q′ ∈ CI(Q), one of the following
two properties holds:
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(i) For all Q′′ ∈ C(Q) such that UQ′′ ∩ 2Q′ ̸= ∅, diam(Q′′) ≤ diam(Q′), or

(ii) There exists Q′′ ∈ C(Q) such that UQ′′ ∩ 2Q′ ̸= ∅ and diam(Q′′) > diam(Q′)

Define the “dominant” and “minor” balls as

CD(Q) := {Q′ ∈ CI(Q) : Q
′ satisfies (i)},

CM(Q) := {Q′ ∈ CI(Q) : Q
′ satisfies (ii)}

= CI(Q) \ CD(Q).

The balls in CD(Q) have dominant projections on γ′ in the sense of the following lemma:

Lemma 2.4.9. Let Q ∈ ∆2.1 be such that ℓ(RQ) < ϵ1 diam(UQ). Then

H1

 ⋃
Q′∈CD(Q)

πγ′(UQ′)

 ≥ (1− 50ϵ1) diam(UQ).

Proof. The collection {πγ′(UQ′)}Q′∈CI(Q)∪{πγ′(RQ∩γQ)} is a covering of γ′ by Lemma 2.4.8
(iii) and (iv). Hence,

H1

 ⋃
Q′∈CI(Q)

πγ′(UQ′)

+ ℓ(RQ ∩ γQ) ≥ H1

 ⋃
Q′∈CI(Q)

πγ′(UQ′)

+H1(πγ′(RQ ∩ γQ))

≥ H1(γ′) ≥ (1− 30ϵ1) diam(UQ)

by Lemma 2.4.8 (i). Using the fact that ℓ(RQ) < ϵ1 diam(UQ), we get

H1

 ⋃
Q′∈CI(Q)

πγ′(UQ′)

 ≥ (1− 31ϵ1) diam(UQ).

The rest of the proof amounts to showing that the projections of cores of balls in the subfamily
CD(Q) ⊆ CI(Q) cover most of the projected cores of balls in CI(Q).

We begin by defining a many-to-one mapping ψ : CM(Q) → C(Q). Fix Q0 ∈ CM(Q). By
definition, there exists some Q1 ∈ C(Q) such that UQ1∩2Q0 ̸= ∅ and diam(Q1) > diam(Q0).
If Q1 ∈ CD(Q)∪CE(Q), then define ψ(Q0) = Q1. Otherwise, Q1 ∈ CM(Q) and, applying the
same logic to Q1 as we did to Q0, we get the existence of Q2 ∈ C(Q) satisfying condition (ii)
for Q1. Repeating this argument recursively, we get a finite chain of balls Q0, Q1, Q2, . . . , QN

with strictly increasing diameter such that QN ∈ CD(Q)∪CE(Q) and Q0, . . . , QN−1 ∈ CM(Q)
with 2Qi∩UQi+1

̸= ∅ (the chain must be finite because there is an absolute upper bound on
the diameter for balls in C(Q)). Set ψ(Q0) = ψ(Q1) = · · · = ψ(QN−1) = QN .

Now, let x ∈ Q0 ∈ CM(Q) with the above described chain Q0, . . . , QN−1, ψ(Q0). By the
triangle inequality, we get

dist(x, Uψ(Q0)) ≤
N−1∑
i=0

diam(2Qi) ≤ 2−J+1

N−1∑
i=0

(2−J)i diam(ψ(Q0)) ≤
2−J+1

1− 2−J
diam(ψ(Q0))

< ϵ1 diam(Uψ(Q0)).
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This implies that for any Q′ ∈ CD(Q) ∪ CE(Q), the set of balls Q′′ ∈ CM(Q) such that
ψ(Q′′) = Q′ are contained in a neighborhood of radius ϵ1 diam(UQ′) around UQ′ . Therefore,
the projection πγ′(UQ′) is an interval of length at least c0 diam(Q′) ≥ (1 − ϵ1) diam(UQ′)

while the set
(⋃

ψ(Q′′)=Q′ πγ′(UQ′′)
)
\ πγ′(UQ′) is contained in the union of two intervals of

length ϵ1 diam(UQ′) adjoined to either end of πγ′(UQ′). This means that if Q′ ∈ CM(Q) is
such that ψ(Q′) ∈ CE(Q), then πγ′(UQ′′) ∩ γ′ is contained in an interval of width less than
ϵ1 diam(UQ′) ≤ ϵ1 diam(UQ) containing one of the two endpoints of γ′. Hence,

H1

 ⋃
Q′∈CM (Q)
ψ(Q′)∈CE(Q)

πγ′(UQ′)

 ≤ 2ϵ1 diam(UQ).

This implies

H1

 ⋃
Q′∈CM (Q)

πγ′(UQ′) \
⋃

Q′∈CD(Q)

πγ′(UQ′)



≤ H1

 ⋃
Q′∈CM (Q)
ψ(Q′)∈CD(Q)

πγ′(UQ′) \
⋃

Q′∈CD(Q)

πγ′(UQ′)

+H1

 ⋃
Q′∈CM (Q)
ψ(Q′)∈CE(Q)

πγ′(UQ′′)


≤ 4ϵ1H1

 ⋃
Q′∈CD(Q)

πγ′(UQ′)

+ 2ϵ1 diam(UQ).

Therefore, we conclude

(1− 31ϵ1) diam(UQ) ≤ H1

 ⋃
Q′∈CI(Q)

πγ′(UQ′)


≤ H1

 ⋃
Q′∈CD(Q)

πγ′(UQ′)

+H1

 ⋃
Q′∈CM (Q)

πγ′(UQ′) \
⋃

Q′∈CD(Q)

πγ′(UQ′)


≤ (1 + 4ϵ1)H1

 ⋃
Q′∈CD(Q)

πγ′(UQ′)

+ 2ϵ1 diam(UQ)

from which we get the result. ■

We now want to show that each ball Q′ ∈ C(Q) has double 2Q′ which contains a signif-
icant amount of excess length which contributes to the value of sQ. We begin by isolating
an almost flat arc τQ′ of large diameter which does not overlap with γQ too badly.

Remark 2.4.10 (Existence of τQ′). Fix Q′ ∈ ∆2.1. Because βSQ′ (U
x
Q′) < C−1

U βSQ′ (Q
′), there

must exist an arc τQ′ ∈ SQ′ such that both
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(i) τQ′ ∩ Ux
Q′ = ∅, and

(ii) βγQ′∪τQ′ (2Q
′) ≳A 1.

Intuitively, we think of τQ′ as an “additional” arc alongside γQ′ which makes a significant
contribution to

∑
Q′′∈C(Q) diam(UQ′′)+ ℓ(RQ) inside 2Q

′ because it carries a large number of
child cores disjoint from those on γQ.

In order to estimate the core diameter sum, we will use line segment approximations
to τQ′ and γQ′ with the idea of first isolating appropriate subsegments which are far apart,
then applying Lemma 2.4.2 to get associated arcs which are far apart. We define τ ′ :=
Edge(τQ′) ∩ (1 − 3c0)2Q

′. Then τ ′ is a line segment with endpoints in the boundary of
(1−3c0)2Q

′ such that τ ′∩(1+c0)Q′ ̸= ∅ because β̃(τQ′) ≤ ϵ2 and τ∩Q ̸= ∅ because τ ∈ Λ(Q).
Similarly, we define η′ := Edge(γQ′) ∩ (1 − 3c0)2Q

′. Because xQ′ ∈ γQ′ and γQ′ ∈ SQ′ , we
have dist(η′, xQ′) ≤ β̃(γQ) diam(2Q′) ≤ ϵ2 diam(2Q′) = ϵ2

(1−3c0)
· (1 − 3c0) diam(2Q′) so that

we can apply Lemma 2.4.3 and receive

diam(η′) ≥

(
1− 2

(
ϵ2

1− 3c0

)2
)
(1− 3c0) diam(2Q′)

≥ (1− 8ϵ22)(1− 3c0) diam(2Q′) ≥ 999

1000
diam(2Q′)

because (1 − 8ϵ22)(1 − 3c0) ≥ (1 − 4c0) ≥ (1 − 4 · 10−4) ≥ 999
1000

. We will use η′ and τ ′ in the
following lemma:

Lemma 2.4.11. Let Q ∈ ∆2.1. For any Q′ ∈ CD(Q),∑
Q′′∈C(Q)
UQ′′⊆2Q′

UQ′′∩(γQ′∪τQ′ )̸=∅

diam(UQ′′) + ℓ(RQ ∩ 2Q′) ≥
(
1 +

1

10

)
diam(2Q′).

Proof. Our plan is to apply Lemma 2.4.2 to η′ and a large diameter subsegment τ ′′ ⊆ τ ′

which is far from η′ to get arcs γ0 ⊆ γQ′ and τ0 ⊆ τQ′ such that no child core of Q touches
both (See Figure 2.6 for a picture of the proof). Because β̃(γQ′) diam(2Q′) ≤ ϵ2 diam(2Q′) ≤
ϵ1 diam(UQ′), we can apply Lemma 2.4.2 to the segment η′ to get an arc γ0 ⊆ γQ′ such
that Domain(γ0) ⊆ Domain(γQ′) ∩ γ−1(C(η′, ϵ1 diam(UQ′))) with Diam(γ0) ≥ diam(η′) ≥
999
1000

diam(Q). We claim that for any Q′′ ∈ C(Q),

UQ′′ ∩ γ0 ̸= ∅ =⇒ UQ′′ ⊆ 2Q′. (2.46)

For proof, first note that because Q′ ∈ CD(Q), UQ′′ ∩ 2Q′ ̸= ∅ implies diam(Q′′) ≤ diam(Q′)
so that

diam(UQ′′) ≤ (1 + 2−J+2)c0 diam(Q′) ≤ (1 + ϵ1)c0 diam(Q′) = (1 + ϵ1)c0 rad(2Q
′). (2.47)
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Hence, if Q′′ ∈ C(Q) such that UQ′′ ∩ γ0 ̸= ∅, then UQ′′ ∩ (1 − 3
2
c0)2Q

′ ̸= ∅ so that any
x ∈ UQ′′ satisfies

dist(x, xQ) ≤
(
1− 3

2
c0

)
rad(2Q′) + diam(U ′′

Q)

≤
(
1− 3

2
c0

)
rad(2Q′) + (1 + ϵ1)c0 rad(2Q

′) ≤ rad(2Q′)

so that UQ′′ ⊆ 2Q′. Because Q′ ∈ CD(Q), we also know that γ0 ⊆ γQ′ ⊆ 2Q′ ⊆ UQ so that
the family {UQ′′ : Q′′ ∈ C(Q), UQ′′ ∩ γ0 ̸= ∅} ∪ {RQ ∩ γ0} is a covering of γ0. We can then
estimate ∑

Q′′∈C(Q)
UQ′′∩γQ′ ̸=∅

diam(UQ′′) + ℓ(RQ ∩ γQ′) ≥
∑

Q′′∈C(Q)
UQ′′⊆2Q′

UQ′′∩γ0 ̸=∅

diam(UQ′′) + ℓ(RQ ∩ γ0)

≥ Diam(γ0) ≥
999

1000
diam(2Q′).

We want to apply a similar argument to τ ′, this time finding an arc τ0 which lies close to
a subsegment τ ′′ of τ ′ which is far from η′, hence from γQ. Indeed, suppose first that there
exists a point yτ ′ ∈ τ ′ ∩ (1 + c0)Q such that dist(yτ ′ , η

′) ≥ 7c0 rad(Q
′). Write τ ′ as the union

of two subsegments τ ′ = [aτ ′ , yτ ′ ] ∪ [yτ ′ , bτ ′ ] where aτ ′ , bτ ′ are the endpoints of τ ′. Because
the line segments [aτ ′ , yτ ′ ] and [yτ ′ , bτ ′ ] extend in opposite directions away from yτ ′ , we know
that one of them, suppose it is [aτ ′ , yτ ′ ], satisfies dist([aτ ′ , yτ ′ ], η

′) ≥ dist(yτ ′ , η
′) ≥ 7c0 rad(Q)

using the fact that η′ is a line segment. Set τ ′′ := [aτ ′ , yτ ′ ]. This completes the definition of
τ ′′ in the first case.

If instead there is no such point yτ ′ ∈ (1+c0)Q
′∩τ ′, then (1+c0)Q

′∩τ ′ ⊆ B(η′, 7c0 rad(Q
′)).

We claim that τ ′ is nearly perpendicular to η′. Indeed, consider E := ∂((1 + c0)Q
′)∩ τ ′ and

let C1, C2 be the two connected components of the set B(η′, 7c0 rad(Q
′)) ∩ ∂((1 + c0)Q

′).
First, we claim there cannot exist distinct points e1, e2 ∈ E such that e1 ∈ C1 and e2 ∈ C2.
If there did exist such points, then because τ ′ is a line segment and B(η′, 7c0 rad(Q

′)) is con-
vex, there would exist e′ ∈ τ ′ ∩ B(η′, 7c0 rad(Q

′)) with πη′(e) = πη′(xQ′) so that e′ ∈ 15
2
c0Q

′.
Hence, we would have τQ′ ∩Ux

Q′ ̸= ∅, contradicting the definition of τQ′ . Therefore, without
loss of generality we can assume that E ⊆ C1.

Let P ⊆ H be the affine plane containing the line segments η′ and τ ′ (this is at most
3-dimensional). By translating and rotating, we can assume without loss of generality that
xQ′ = 0 and η′ is collinear with the x1-axis so that

E ⊆ S :=

{
x ∈ P : x1 > 0, |x| = (1 + c0) rad(Q

′), |x⊥| ≤ 1

1000
rad(Q′)

}
where |x⊥|2 = |x|2 − |x1|2, and we have used the fact that 8c0 <

1
1000

. The set S is a small
spherical cap of the (at most 2-dimensional) sphere {x ∈ P : |x| = (1 + c0) rad(Q

′)} around
the point ((1 + c0) rad(Q

′), 0, 0, . . .). Fix eτ ′ ∈ E. We can write [aτ ′ , eτ ′ ] = {eτ ′ + tv : 0 ≤
t ≤ |aτ ′ − eτ ′ |} where |v| = 1 and we claim v is parallel to a tangent vector to S. Indeed, if
#(E) = 1, then τ ′ is tangent to S while if #(E) = 2, then τ ′ ∩ (1 + c0)Q

′ is a line segment
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with two endpoints in S and the claim follows from considering S as a graph over the plane
{x1 = 0} and applying the mean value theorem (geometrically, one can imagine translating
the line segment to be tangent to S).

One can compute by implicit differentiation in S ⊆ P ⊆ R3 that |v⊥|
|v| ≥ 1

2
. We can

also assume dist(eτ ′ + tv, η′) is increasing in t by exchanging [aτ ′ , eτ ′ ] with [eτ ′ , bτ ′ ] or v
with −v if necessary. Therefore, dist(eτ ′ + (20c0 rad(Q

′))v, η′) ≥ 7c0 rad(Q
′). Define τ ′′ :=

[aτ ′ , eτ ′ + (20c0 rad(Q
′))v].

With τ ′′ defined as in either of the two cases above, we get the following two lower bounds:

dist(τ ′′, η′) ≥ 7c0 rad(Q
′), (2.48)

diam(τ ′′) ≥ 2(1− 3c0) rad(Q
′)− (1 + c0) rad(Q

′)− 20c0 rad(Q
′)

≥ 1

4
(1− 27c0) diam(2Q′) ≥ 1

5
diam(2Q′).

Applying Lemma 2.4.2 to the segment τ ′′, we get an arc τ0 ⊆ C(τ ′′, ϵ1c0 rad(Q
′)) with

Diam(τ0) ≥ 1
5
diam(2Q′). Therefore, we conclude from (2.48) and (2.47) that UQ′′ ∩ τ0 ̸= ∅

implies UQ′′ ∩ γ0 = ∅ and UQ′′ ⊆ 2Q′ as in (2.46) so that we can estimate∑
Q′′∈C(Q)

UQ′′∩γQ′=∅
UQ′′∩τQ′ ̸=∅

diam(UQ′′) + ℓ(RQ ∩ τQ′) ≥
∑

Q′′∈C(Q)
UQ′′⊆2Q′

UQ′′∩τ0 ̸=∅

diam(UQ′′) + ℓ(RQ ∩ τ0)

≥ Diam(τ0) ≥
1

5
diam(2Q′).

By summing the estimates for γ0 and τ0, we conclude∑
Q′′∈C(Q)
UQ′′⊆2Q′

UQ′′∩(γQ′∪τQ′ )̸=∅

diam(UQ′′) + ℓ(RQ ∩ 2Q′) ≥
(

999

1000
+

1

5

)
diam(2Q′) ≥

(
1 +

1

10

)
diam(2Q′).

■

We can now combine this lemma with Lemma 2.4.9 on dominant projections to prove
that the martingale construction can be applied to ∆2.1.

Lemma 2.4.12 (cf. [Sch07a] Lemma 3.28). For any Q ∈ ∆2.1,

diam(UQ)∑
Q′∈C(Q) diam(UQ′) + 2ϵ−1

1 ℓ(RQ)
≤ 1

1 + 1
50

.

Proof. First, observe that if ℓ(RQ) > ϵ1 diam(UQ), then

diam(UQ)

sQ
=

diam(UQ)∑
Q′∈C(Q) diam(UQ′) + 2ϵ−1

1 ℓ(RQ)
<

diam(UQ)

2 diam(UQ)
=

1

2
< 1.

55



Figure 2.6: A picture of the proofs of Lemmas 2.4.12 and 2.4.11. At the top is a picture of
γQ ∩ UQ in Lemma 2.4.12 on which lies members of the large family of disjoint dominant
balls. In the image below, we have zoomed-in on one of these balls and have labeled pieces
present in the proof of Lemma 2.4.11.
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Therefore, we can assume without loss of generality that ℓ(RQ) ≤ ϵ1 diam(UQ). For Q′ ∈
CD(Q), define IQ′ := πγ′(2Q

′). Identifying γ′ with R, we can apply a covering lemma for
the real line (see [Ald91] Lemma 2.1, for example) to the collection {IQ′}Q′∈CD(Q) to get a
collection Q ⊆ CD(Q) of balls with pairwise disjoint doubles so that

H1

( ⋃
Q′∈Q

IQ′

)
≥ 1

3
H1

 ⋃
Q′∈CD(Q)

IQ′

 ≥ 1

3
(1− 50ϵ1) diam(UQ) ≥

1

4
diam(UQ) (2.49)

where we used Lemma 2.4.9 in the penultimate inequality. We can then enumerate the
components of γ′ \

⋃
Q′∈Q IQ′ as

γ′ \
⋃
Q′∈Q

IQ′ =:
⋃
j∈JQ

Ij.

Define Qc := {Q′ ∈ C(Q) : UQ′ \
⋃
Q′′∈Q 2Q′′ ̸= ∅}. We have

⋃
j∈JQ

Ij ⊆ πγ′

(
RQ \

⋃
Q′∈Q

2Q′

)
∪
⋃

Q′∈Qc

πγ′(UQ′)

using Lemma 2.4.8 (iii). Therefore, combining this fact with Lemma 2.4.11,∑
Q′∈C(Q)

diam(UQ′) + 2ϵ−1
1 ℓ(RQ)

≥
∑
Q′∈Q

∑
Q′′∈C(Q)
UQ′′⊆2Q′

diam(UQ′′) + ℓ(RQ ∩ 2Q′) +
∑
Q′∈Qc

diam(UQ′) + ℓ

(
RQ \

⋃
Q′∈Q

2Q′

)

≥
∑
Q′∈Q

(
1 +

1

10

)
diam(2Q′) +

∑
Q′∈Qc

H1(πγ′(UQ′)) +H1

(
πγ′

(
RQ \

⋃
Q′∈Q

2Q′

))

≥
∑
Q′∈Q

(
1 +

1

10

)
H1(IQ′) +

∑
j∈JQ

H1(Ij)

≥ 1

10

∑
Q′∈Q

H1(IQ′) +H1(γ′)

(2.49)

≥ 1

40
diam(UQ) + (1− 30ϵ1) diam(UQ) >

(
1 +

1

50

)
diam(UQ). ■

Proposition 2.4.13 (cf. [Sch07a] Lemma 3.28).∑
Q∈∆2.1

βΣ(Q)
2 diam(Q) ≲A

∑
Q∈∆2.1

diamUQ ≲J ℓ(Σ)

Proof. Order ∆2.1 via the forest T c0
∆2.1

. Using Lemma 2.4.12, we apply Lemma 2.4.5 with
L = ∆2.1, D = 2ϵ−1

1 , q = 1
1+ 1

50

to get the existence of a collection of positive real-valued

functions {wQ}Q∈∆2.1 satisfying
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(i)
�
Q
wQdℓ = diam(UQ), and

(ii)
∑

Q∈∆′ wQ(x) ≲ ϵ−1
1 χUc0

∆2.1

(x) for almost every x ∈ Σ.

Using these properties, we can finish the proof of the lemma as follows:∑
Q∈∆2.1

β(Q)2 diam(Q) ≲A

∑
Q∈∆2.1

diam(UQ) =
∑

Q∈∆2.1

�
Q

wQdℓ =

�
Γ

∑
Q∈∆2.1

wQdℓ

≲ϵ1

�
U

c0
∆2.1

dℓ =
∑

T∈T c0
∆2.1

ℓ(UQ(T )) ≲J H1(Σ). ■

2.4.2 Almost flat arcs for Γ

The goal of this section is to finish the proof of Proposition 2.4.1 by proving the second
inequality in (2.30). In Section 2.4.2.1, we give preliminary definitions and lemmas needed to
refine the results of the previous section. In Section 2.4.2.2 we use these tools to strengthen
the previously given martingale arguments for the family ∆1 and the newly defined family
∆2.1.1 ⊆ ∆2. Finally, in Section 2.4.2.3 we analyze the leftover family ∆2.1.2 and finish the
proof of Proposition 2.4.1, and hence the proof of Theorem A.

2.4.2.1 New Definitions and Tools

Recall that Γ ⊆ ℓ2 is a Jordan arc with an injective arc length parameterization γ : I → Γ
where we fix I := [0, ℓ(Γ)]. We assume without loss of generality that the chord line of Γ is
the e1-axis. Let π : ℓ2 → R is the orthogonal projection onto the e1-axis and let π⊥ : ℓ2 → ℓ2
be the orthogonal projection onto the orthogonal hyperplane to the e1-axis. For every i ∈ N
the function γi(t) := ⟨γ(t), ei⟩ is 1-Lipschitz, hence differentiable almost everywhere. We let
γ′i(t) denote the derivative and write

γ(t) =
∞∑
i=1

γi(t)ei and γ
′(t) :=

∞∑
i=1

γ′i(t)ei.

The fact that γ is an arc length parameterization means that |γ′(t)| = 1 almost everywhere.
In particular, γ′(t) gives an almost everywhere well-defined notion of tangent vector to Γ at
γ(t). For x ∈ Γ, we let t(x) ∈ I be the unique number such that γ(t(x)) = x.

We begin by defining a new measure µ ≪ ℓ which quantifies how much subsets of Γ
contribute to the value of ℓ(Γ)− crd(Γ).

Definition 2.4.5 (µ measure). Let ρ : I → [0, 2] be given by

ρ(t) :=

{
1− γ′1(t), γ′1(t) exists

1, otherwise.

Define the finite Borel measure µ supported on Γ as

dµ := γ∗(ρ dt).

where µ(A) = γ∗(ρ dt)(A) :=
�
γ−1(A)

ρ(t)dt is the pushforward of ρ(t)dt by γ.
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The definition of µ is motivated by the fundamental theorem of calculus in the following
way:

Lemma 2.4.14. Let a, b ∈ I with a ≤ b. Then

µ(γ|[a,b]) = ℓ(γ|[a,b])− (π(γ(b))− π(γ(a))).

In particular,
µ(Γ) = ℓ(Γ)− crd(Γ).

Proof. We compute

µ(γ|[a,b]) := µ(Image(γ[a,b])) =

�
γ([a,b])

γ∗(ρ dt) =

� b

a

ρ(t) dt =

� b

a

1− γ′1(t) dt

= (b− a)− (γ1(b))− γ1(a)) = ℓ(γ|[a,b])− (π(γ(b))− π(γ(a))).

Setting a = 0 and b = ℓ(Γ) gives µ(Γ) = ℓ(Γ)− crd(Γ). ■

Remark 2.4.15 (Null sets and examples). Fix x, y ∈ Γ with t(x) < t(y) and suppose ξ is a
subarc of Γ such that Start(ξ) = x and End(ξ) = y. If µ(ξ) = 0, then

ℓ(ξ) = π(y)− π(x) = y1 − x1.

This forces y1 > x1 and forces ξ to be a parameterization of the line segment [x, y] =
[x, x + (y1 − x1)e1 which is parallel to the chord line of Γ. Now, suppose τ(t) := x + t y−x|y−x|
for t(x) ≤ t ≤ t(x) + |y − x|. That is, τ parameterizes [x, y] ⊆ Γ. In general, we have the
formula

µ(τ) = ℓ(τ)− (π(y)− π(x)) = |y − x| − (y1 − x1). (2.50)

If y1 < x1, then µ is larger than ℓ on τ ; this measure assigns “bonus” length to arcs which
“backtrack” along the direction of the chord line of Γ. If y1 > x1, the right side of (2.50)
bears resemblance to triangle inequality excess estimates. Indeed, let x, y, z ∈ Γ and suppose
there exists a subarc η such that

η(t) :=

{
x+ t y−x|y−x| , t(x) ≤ t ≤ t(x) + |y − x|
y + t z−y|z−y| , t(x) + |y − x|t ≤ t(x) + |y − x|+ |z − y|.

The arc η injectively parameterizes the line segments [x, y] and [y, z]. We compute

µ(η) = ℓ(η)− (π(x)− π(z)) = |x− y|+ |y − z| − (z1 − x1).

When x1 < y1 < z1, this is something like a triangle inequality excess estimate (see Remark
2.1.2) where instead of subtracting the length of the triangle base [x, z], we subtract the
length of the projection of [x, z] along the chord line of Γ .

Our goal for proving Theorem A is to bound the beta sums above by µ(Γ) rather than
ℓ(Γ). Intuitively, this is plausible since µ assigns small measure only to those regions of Γ
which are nearly parallel to the chord and are directed via the parameterization γ towards
the terminal endpoint of Γ, i.e., have γ′1 > 1− δ for δ > 0 small. One would expect βΓ(Q) to
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be small on average for Q centered in such a region. There is a problem with this definition
of µ, however. We would like to have a bound of the form

µ(UQ) ≳ ℓ(UQ) (2.51)

for individual cores in some family because this would allow a translation of the preceding
martingale arguments to this setting. However, such a result cannot hold, as µ(UQ) = 0
may hold even for UQ with βΓ(UQ) ≈ 1 (see Figure 2.7). However, in order for a situation
like Figure 2.7 to occur, there must be some “backtracking” arc (given in the figure by the
bottom-most horizontal piece of Γ outside of UQ). On this arc, γ′1 < 0 so that dµ ≥ dℓ. To
recover inequalities like (2.51), we will construct a new, larger measure µ̃ that fills in the
µ measure gaps in Figure 2.7 by “borrowing” mass from backtracking arcs. We begin by
isolating these regions of change as maximal disjoint arcs where Γ “bends” back on itself
along the e1 axis in the sense that the projection map π is non-injective. This is made more
precise with the following definition.

Figure 2.7: A core with βΓ(UQ) ≈ 1 but µ(UQ) = 0. The red arrows indicate the direction of
the parameterization such that ρ ≡ 0 on the two horizontal lines passing through UQ. The
thickened piece of Γ in between the vertical dotted lines is a bend (assume that Γ’s chord
line is horizontal).

Definition 2.4.6 (Multiplicity). For t ∈ I, define

perp(t) := γ−1(π−1(π(γ(t))) ∩ Γ).

This is the set of points in I which map to points in Γ that have the same first coordinate
as γ(t). Define M : I → N ∪ {∞}, the multiplicity function, by

M(t) := #perp(t).

Additionally, we let E := {t ∈ I : π(γ(t)) = min(π(Γ)) or π(γ(t)) = max(π(Γ))} and set

Sπ := {t ∈ I :M(t) = 1},
Mπ := {t ∈ I :M(t) ≥ 2} ∪ E.
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Sπ is the set where perp(t) = {t} is a singleton while Mπ is the set where either perp(t) has
multiple elements or γ(t) is an extremal point of Γ along the e1-axis. If one of these latter
points is also a member of Sπ, then it is isolated by connectedness.

We will add mass to µ by raising the value of ρ in a carefully chosen neighborhood of
Mπ. In order to define this neighborhood, we first provide a decomposition of Mπ into the
maximal arcs promised above. The following structure lemma for Mπ will aid us:

Lemma 2.4.16. Suppose a, b ∈ I with π(γ(a)) = π(γ(b)) and a ≤ b. Then [a, b] ⊆Mπ.

Proof. Let r ∈ (a, b). If π(γ(r)) = π(γ(a)), then r ∈Mπ. Otherwise, π(γ(r)) ̸= π(γ(a)) and

inf
t∈[a,b]

π(γ(t)) ≤ π(γ(r)) ≤ sup
t∈[a,b]

π(γ(t)).

Since π is continuous, there exist points s, u ∈ [a, b] on which π ◦ γ achieves the infimum
and supremum above respectively. Suppose first that π(γ(r)) = π(γ(s)). If there exists
s′ ∈ I, s′ ̸= r such that π(γ(s′)) = π(γ(r)), then r ∈ Mπ by definition. Otherwise,
π(x) > π(γ(r)) for all x ∈ Γ\γ(r) so that γ(r) = min(π(Γ)) ∈ E ⊆Mπ. Therefore, it suffices
to consider the case when π(γ(r)) > π(γ(s)). By a similar argument, we can also assume
π(γ(r)) < π(γ(u)). Hence, the function f : [a, b] → R given by f(t) = π(γ(t)) − π(γ(a)) is
continuous and satisfies

(i) f(r) ̸= 0,

(ii) f(s) < f(r) < f(u), and

(iii) f(a) = f(b) = 0.

We claim that the intermediate value theorem implies the existence of a point r′ ∈ [a, b], r ̸=
r′ with f(r′) = f(r) so that γ(r) ∈ Mπ. Indeed, suppose without loss of generality that
f(r) > 0. If u < r, then f(a) < f(r) < f(u) so that there exists such r′ ∈ [a, u]. Otherwise,
u > r and f(b) < f(r) < f(u) so that there exists such r′ ∈ [u, b]. ■

Definition 2.4.7 (Bends). It follows from Lemma 2.4.16 that for any t ∈Mπ, the family

Ct := {[a, b] ⊆ I : t ∈ [a, b] ⊆Mπ}

contains a non-degenerate interval so that the union It :=
⋃

Ct is also a non-degenerate
interval. The union

⋃
t∈I It =Mπ has countably many disjoint connected components, each

of which is a non-degenerate subinterval of I (which is possibly open). Thus, the closureMπ

has connected components that are closed, non-degenerate intervals which we enumerate as
Mπ =

⋃
k∈K [sk, uk]. We define

Φ := {γ|[sk,uk] : k ∈ K}.

We refer the elements of Φ as bends.

An important fact is that these regions contribute a proportionally large amount of
measure to µ.
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Lemma 2.4.17. Let ϕ ∈ Φ. Then

µ(ϕ) ≥ 1

2
ℓ(ϕ).

Proof. Let ϕ ∈ Φ. Lemma 2.4.14 implies

µ(ϕ) = ℓ(ϕ)− [π(End(ϕ))− π(Start(ϕ))] .

But π is at least two-to-one almost everywhere on Image(ϕ) ⊆ Mπ, implying ℓ(ϕ) ≥
2|π(End(ϕ))− π(Start(ϕ))|. ■

Lemma 2.4.17 says that the bends are arcs on which µ measure is globally comparable
to length measure. This allows us to promote µ to a bigger measure µ̃ which is pointwise
comparable to length inside bends at the cost of increasing the total measure by a bounded
factor independent of Γ. In fact, at the cost of further increasing µ’s mass by a bounded
factor, we can take our proposed larger measure µ̃ to be comparable to length on regions of
Γ which extend a distance comparable to ℓ(ϕ) out from ϕ in the e1 direction.

Definition 2.4.8 (µ̃ measure). For any ϕ ∈ Φ, define

Nϕ := {t ∈ I : dist(π(γ(t)), π(Image(ϕ))) ≤ 100ℓ(ϕ)},

and set
N(Φ) :=

⋃
ϕ∈Φ

Nϕ.

We define a new weight ρ̃ : I → [0, 2] as

ρ̃(t) :=


2, t ∈ Domain(ϕ) for some ϕ ∈ Φ

1, t ∈ N(Φ) \
⋃
ϕ∈ΦDomain(ϕ)

ρ(t), t ∈ I \N(Φ).

We use the value 2 in the first case so that ρ̃(t) ≥ ρ(t) for all t ∈ I. Put

dµ̃ := γ∗(ρ̃ dt).

In words, µ̃ is equal to twice length measure on bends, equal to length measure just outside
of bends, and equal to µ measure far away from bends.

Looking back at Figure 2.7, we can see that µ̃(UQ) = 2ℓ(UQ) because Γ∩UQ is contained
in a single bend ϕ. We will use µ̃ as our primary accounting tool for bounding the beta-
squared sum from above. We begin by verifying that the total mass of µ̃ is controlled by the
total mass of µ.

Lemma 2.4.18.
µ̃(Γ) ≲ µ(Γ).
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Proof. Fix ϕ ∈ Φ and consider the region

Uϕ := γ

Nϕ \
⋃
ϕ′∈Φ
ϕ′ ̸=ϕ

Image(ϕ′)


Observe that we can bound the mass added in Uϕ as follows:

µ̃(Uϕ)− µ(Uϕ) = µ̃(Uϕ \ Image(ϕ)) + µ̃(ϕ)− [µ(Uϕ \ Image(ϕ)) + µ(ϕ)]

= ℓ(Uϕ \ Image(ϕ))− µ(Uϕ \ Image(ϕ)) + 2ℓ(ϕ)− µ(ϕ)

≤ 2ℓ(ϕ) +

�
Uϕ\Image(ϕ)

γ′1(t) dt

≤ diam(π(Uϕ \ Image(ϕ))) + 2ℓ(ϕ) ≤ 200ℓ(ϕ) + 2ℓ(ϕ) ≤ 404µ(ϕ)

where the final inequality follows from Lemma 2.4.17. The fact that ρ̃(t) ≥ ρ(t) for all t ∈ I
implies µ̃ − µ is a positive measure so that, because ρ̃(t) = ρ(t) for all t ∈ I \ N(Φ) and
N(Φ) =

⋃
ϕ∈Φ γ

−1(Uϕ),

µ̃(Γ)− µ(Γ) ≤ µ̃

(⋃
ϕ∈Φ

Uϕ

)
− µ

(⋃
ϕ∈Φ

Uϕ

)
= (µ̃− µ)

(⋃
ϕ∈Φ

Uϕ

)
≤
∑
ϕ∈Φ

(µ̃− µ)(Uϕ) =
∑
ϕ∈Φ

µ̃(Uϕ)− µ(Uϕ) ≤ 404
∑
ϕ∈Φ

µ(ϕ) ≤ 404µ(Γ). ■

The final lemma we will prove in this section gives sufficient conditions for an inequality
like µ̃(B) ≳ ℓ(B) to hold for any Borel set B. The fact that µ̃ is comparable to ℓ on γ(Mπ)
means that in order for µ̃(B) ≪ ℓ(B) to hold, most of Γ ∩ B must be contained in γ(Sπ).
Even then, it must be true that ρ̃≪ 1 on most of Γ∩B so that γ′1 ≈ 1 inside B, constraining
the total amount of length that B is allowed to contain. Lemma 2.4.20 proves a sort of
contrapositive of this observation, showing that a lower bound on ℓ(B) translates into a
lower bound on µ̃(B) in terms of ℓ(B). First, we will need a version of the area formula:

Lemma 2.4.19. (Area formula) Let f : R → R be a Lipschitz map and let g : R → R be an
integrable function. Then the map

z 7→
∑

x∈f−1({z})

g(x),

is measurable, and �
R
g(y)|f ′(y)|dy =

�
R

∑
x∈f−1({z})

g(x)dz.

For proof of this result, see [Fed69] Theorem 3.2.5.

Lemma 2.4.20. Fix δ < 1
10

and let B ⊆ ℓ2 be Borel. If either
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(i) ℓ(B) ≥ (1 + δ) diam(B), or

(ii) µ̃(B) ≥ δ diam(B),

then,

µ̃(B) ≥ δ3

2
ℓ(B).

Proof. We first prove that (i) implies the conclusion. Consider the set Eδ2 = {t ∈ I : ρ̃(t) <
δ2} ∩ γ−1(B). Observe that ρ̃(t) < δ2 implies γ′1(t) > 1 − δ2 so that Eδ2 ⊆ Sπ. The former
inequality directly implies t ∈ Sπ so that Eδ2 ⊆ Sπ. Applying the area formula (Lemma
2.4.19) with the Lipschitz function γ1 : I → R and the integrable function 1

γ′1
χEδ2

gives
�
Eδ2

1

γ′1
|γ′1| dt =

�
R

∑
s∈γ−1

1 (u)

1

γ′1(s)
χEδ2

(s) du =

�
R

∑
s∈γ−1(π−1(u))∩Eδ2

1

γ′1(s)
du.

Because Eδ2 ⊆ Sπ and γ is injective, the set γ−1(π−1(u))∩Eδ2 contains at most one element,
and is nonempty only if u ∈ π(γ(Eδ2)) ⊆ B. Therefore, we get∑

s∈γ−1(π−1(u))∩Eδ2

1

γ′1(s)
=

∑
s∈γ−1(π−1(u))∩Eδ2

1

γ′1(s)
χγ1(Eδ2 )

(u) ≤ 1

1− δ2
χγ1(Eδ2 )

(u).

Using these statements, the area formula simplifies to

ℓ(Eδ2) =

�
R

∑
s∈γ−1(π−1(u))∩Eδ2

1

γ′1(s)
du ≤

�
γ1(Eδ2 )

1

1− δ2
du ≤ diam(B)

1− δ2
.

Now, define Cδ2 := B ∩ Γ \ γ(Eδ2). We have

µ̃(B) ≥ µ̃(Cδ2) ≥ δ2ℓ(Cδ2) = δ2(ℓ(B)− ℓ(Eδ2)).

Adding in the lemma’s hypothesis, we have both

ℓ(B) ≥ (1 + δ) diam(B), and

ℓ(Eδ2) ≤
diam(B)

1− δ2
.

This means

ℓ(Eδ2)

ℓ(B)
≤ diam(B)

1− δ2
· 1

(1 + δ) diam(B)
= 1 +

(
1

(1 + δ)(1− δ2)
− 1

)
= 1− δ − δ2 − δ3

(1 + δ)(1− δ2)
≤ 1−

δ − δ
10

− δ
100

1 + 1
10

≤ 1− δ

2
.

using the fact that δ < 1
10
. Rearranging this inequality gives ℓ(B) − ℓ(Eδ2) ≥ δ

2
ℓ(B).

Therefore

µ̃(B) ≥ δ2(ℓ(B)− ℓ(Eδ2)) ≥
δ3

2
ℓ(B).

This concludes the proof that (i) implies the conclusion. We now show that (ii) implies the
conclusion. From (i), it suffices to assume ℓ(B) < (1 + δ) diam(B). Then,

µ̃(B) ≥ δ diam(B) ≥ δ
1 + δ

2
diam(B) ≥ δ

2
ℓ(B). ■
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2.4.2.2 Martingale refinement: Bounds on the ∆1 and ∆2.1.1 sums for Γ

In this section, we provide the refinements of Proposition 2.4.7 and (part of) Proposition
2.4.7 for a rectifiable Jordan arc Γ.

Lemma 2.4.21. For any Q ∈ ∆′(M,K)

µ̃(Uxx
Q ) ≳ ℓ(Uxx

Q ).

Proof. In the proof of Lemma 2.4.6, we gave the existence of an arc ξ0 ⊆ Uxx
Q such that

ℓ(Uxx
Q ) ≥ ℓ(γQ ∩ Uxx

Q ) + ℓ(ξ0) ≥
(
1 +

1

10

)
diam(Uxx

Q )

as in (2.43). Applying Lemma 2.4.20 gives the result. ■

Proposition 2.4.22.∑
Q∈∆1

βΓ(Q)
2 diam(Q) ≲A

∑
Q∈∆1

diam(UQ) ≲A,J µ̃(Γ).

Proof. Fix ∆′ = ∆′(M,K) and follow the proof of Proposition 2.4.7 to get∑
Q∈∆′

βΓ(Q) diam(Q) ≲A 2−M
∑

T∈T 16c0
∆′

ℓ(Uxx
Q(T )) ≲ 2−M µ̃(Uxx

Q(T )) ≤ 2−M µ̃(Γ).

The result follows by summing over M and K. ■

We wish to argue for similarly for ∆2.1, but an inequality like that of Lemma 2.4.21 does
not hold for ∆2.1 balls. We proceed by splitting ∆2.1 into a subfamily where µ̃(UQ) ≳ ℓ(UQ) on
which we can run the martingale argument and a leftover subfamily on which µ̃(UQ) ≪ ℓ(UQ).
We define

∆2.1.1 = {Q ∈ ∆2.1 : µ̃(UQ) ≥ ϵ23ℓ(UQ)},
∆2.1.2 = {Q ∈ ∆2.1 : µ̃(UQ) < ϵ23ℓ(UQ)}

= ∆2.1 \∆2.1.1.

The collection ∆2.1.1 can be handled with the addition of one inequality to the proof of
Proposition 2.4.13.

Proposition 2.4.23.∑
Q∈∆2.1.1

βΓ(Q)
2 diam(Q) ≲A

∑
Q∈∆2.1.1

diam(UQ) ≲J,ϵ1,ϵ3 µ(Γ).

Proof. We apply Lemma 2.4.5 withD = 2ϵ−1
1 , q = 1

1+ 1
50

to the family L = ∆2.1.1 with ordered

by the forest structure T c0
∆2.1.1

and use the produced collection {wQ}Q∈∆2.1.1 to calculate, as
in the proof of Proposition 2.4.13,∑

Q∈∆2.1.1

diam(UQ) ≲ϵ1

∑
T∈T c0

∆2.1.1

ℓ(UQ(T )) ≲ϵ3

∑
T∈T c0

∆2.1.1

µ̃(UQ(T )) ≲J µ̃(Γ). ■
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2.4.2.3 Bound on the ∆2.1.2 sum

We now handle the family ∆2.1.2, beginning with a general summary of the argument. We
show that Q ∈ ∆2.1.2 implies UQ ∩ Γ essentially consists of a small perturbation (in length)
of a line segment through the center of Q which is parallel to the chord line of Γ (see Lemma
2.4.24). Because of the definition of the bends and µ̃, the nearly-segment pieces inside disjoint
cores in this family project to line segments on the chord line of Γ which have controlled
overlap (see Lemma 2.4.25). By decomposing ∆2.1.2 into a sequence of “levels”, each of which
consists of a disjoint subfamily of ∆2.1, we can exploit this packing lemma by controlling the
number of balls which have overlapping τQ arcs (see Remark 2.4.10), controlling the core
diameter sum on each level in terms of a disjoint collection of subarcs of τQ’s (see Lemma
2.4.27 and 2.4.28). This all works for the subcollection of cores which lie on the “inner”
region of parent cores. The proof is completed by showing that the “outer” family of cores
is controlled by the inner family (see Lemma 2.4.26).

Let us begin the proof. Define

ηQ := {xQ + te1 : t ∈ R}.

This is the line parallel to the chord of Γ which passes through the center of Q. The next
lemma states that any Q ∈ ∆2.1.2 has γQ close to ηQ with constant dependent on ϵ3.

Lemma 2.4.24. Let Q ∈ ∆2.1.2 and ξ ⊆ Γ such that ξ ∩ γQ = ∅. Then,

(i) γQ ⊆ B(ηQ, 100ϵ3 diam(Q)), and

(ii) ξ ∩ π−1((1− 10ϵ1)c0Q) = ∅.

Proof. We begin by proving (i). We will assume that γQ ̸⊆ B(ηQ, 100ϵ3 diam(Q)) and show
that µ̃(UQ) > ϵ23ℓ(UQ). Let γ

′′ := Edge(γQ), γ
′ := γ′′∩c0Q =: [x, y], and let φ be a connected

component of γQ ∩ c0Q of largest diameter. We will show that γ′ makes angle of order ϵ3
with ηQ, derive a lower bound for the “excess” length of γ′, and then use that to bound µ̃(φ)

ℓ(φ)

from below. First, observe that β̃(γQ) diam(2Q) ≤ 2ϵ2 diam(Q) implies, by Lemma 2.4.2,

γQ ⊆ B(γ′′, 2ϵ2 diam(Q)) and γ′′ ⊆ B(γQ, 2ϵ2 diam(Q)). (2.52)

Let z ∈ γQ be such that dist(z, ηQ) ≥ 100ϵ3 diam(Q). Then, there exists z′′ ∈ γ′′ such
that |z − z′′| ≤ 2ϵ2 diam(Q) ≤ ϵ3 diam(Q) so that dist(z′′, ηQ) ≥ dist(z, ηQ) − |z − z′′| ≥
99ϵ3 diam(Q). We can define the angle θ := ∠(γ′, ηQ) = ∠(γ′′, ηQ) by translating the
segment γ′′ so that one of its endpoints lies in ηQ and measuring the angle in the (at
most 2-dimensional) plane containing ηQ and this translated segment. The previous es-

timates then imply tan(θ) ≥ 99ϵ3 diam(Q)
diam(2Q)

≥ 45ϵ3. Using the Pythagorean theorem, we

get |x − y|2 = |π(x) − π(y)|2 + |π⊥(x) − π⊥(y)|2, and the lower bound on tan(θ) implies
|π⊥(x) − π⊥(y)| ≥ 45ϵ3|π(x) − π(y)|. Using the difference of squares formula with the
Pythagorean theorem estimate, we compute

|x− y| − |π(x)− π(y)|
|x− y|

=
|π⊥(x)− π⊥(y)|2

|x− y|(|x− y|+ |π(x)− π(y)|)
≥ 452ϵ23|π(x)− π(y)|2

|x− y|(|x− y|+ |π(x)− π(y)|)

≥ 452ϵ23

1
4
diam(UQ)

2

diam(UQ) · 2 diam(UQ)
≥ 100ϵ23 (2.53)
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Now, let x′, y′ be the endpoints of φ on ∂(c0Q). By (2.52) and the fact that xQ ∈ γQ, we
have

|x− x′| ≤ 8ϵ2 diam(Q) and |y − y′| ≤ 8ϵ2 diam(Q).

We estimate

µ̃(φ)

ℓ(φ)
≥ µ(φ)

ℓ(φ)
≥ 1− |π(x′)− π(y′)|

|x′ − y′|
=

|x′ − y′| − |π(x′)− π(y′)|
|x′ − y′|

≥ |x− y| − |π(x)− π(y)| − 32ϵ2 diam(Q)

|x− y|+ 16ϵ2 diam(Q)

≥ 1

2

|x− y| − |π(x)− π(y)|
|x− y|

− 32ϵ2 diam(Q)

|x− y|+ 16ϵ2 diam(Q)
≥ 50ϵ23 − 64c−1

0 ϵ2 ≥ 40ϵ23

(2.54)

where we used (2.53) and |x−y| ≥ 1
2
c0 diam(Q) in the penultimate inequality. We would like

to show that µ̃(γQ ∩ UQ) ≥ ϵ23ℓ(γQ ∩ UQ). Given the preceding inequality, the only possible
obstruction is the existence of components of γQ∩UQ with long length and small µ̃ measure.
It suffices to consider the case where µ̃(γQ ∩ UQ \ φ) ≤ 40ϵ23ℓ(γQ ∩ UQ \ φ). Unpacking this
inequality, we see

40ϵ23ℓ(γQ ∩ UQ \ φ) ≥ µ̃(γQ ∩ UQ \ φ) ≥ µ(γQ ∩ UQ \ φ)
≥ ℓ(γQ ∩ UQ \ φ)− diam(π(γQ ∩ UQ \ φ)).

Rearranging gives

ℓ(γQ ∩ UQ \ φ) ≤ diam(π(γQ ∩ UQ \ φ))
1− ϵ23

≤ diam(UQ)

1− 40ϵ23
≤ 2ℓ(φ) (2.55)

where the final inequality follows since xQ ∈ γQ ∈ S(Q). Using (2.54) and (2.55),

µ̃(γQ ∩ UQ) ≥ µ̃(φ) ≥ 40ϵ23ℓ(φ) ≥
1

2
(40ϵ23ℓ(φ) + 10ϵ23ℓ(γQ ∩ UQ \ φ)) ≥ 5ϵ23ℓ(γQ ∩ UQ).

With this intermediate inequality, we can now prove the lemma. Arguing as in the proof of
µ̃(γQ ∩ UQ) ≥ 5ϵ23ℓ(γQ ∩ UQ) above, it suffices to assume that µ̃(UQ \ γQ) ≤ 5ϵ23ℓ(UQ \ γQ).
We get

ℓ(UQ \ γQ) ≤
diam(π(UQ \ γQ))

1− 5ϵ23
≤ 2ℓ(γQ ∩ UQ).

Multiplying this inequality on both sides by ϵ23, we use this to estimate

µ̃(UQ) ≥ µ̃(UQ ∩ γQ) ≥ 5ϵ23ℓ(UQ ∩ γQ) ≥ 3ϵ23ℓ(UQ ∩ γQ) + ϵ23ℓ(UQ \ γQ) > ϵ23ℓ(UQ).

This concludes the proof of (i). We now prove (ii). Suppose Q ∈ ∆2.1.2 is such that ξ ∩
π−1(1−10ϵ1)c0Q ̸= ∅ and let x ∈ ξ∩π−1((1−10ϵ1)c0Q). We will show that µ̃(UQ) > ϵ23ℓ(UQ).
By Lemma 2.4.24, we have either γQ ∩ UQ ∩ {z : π(z) ≥ π(x)} ⊆ γ(Mπ) or γQ ∩ UQ ∩ {z :
π(z) ≤ π(x)} ⊆ γ(Mπ) because the extension of γQ to an arc containing ξ must cross from
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the boundary of 2Q to x with an arc disjoint from γQ. Therefore, we conclude that γQ ∩UQ
contains an arc ζ ⊆ γQ ∩ c0Q ∩ (1 − 10ϵ1)c0Q with µ̃(ζ) = 2ℓ(ζ) ≥ 2(10ϵ1c0) rad(Q) ≥
10ϵ1 diam(UQ). This means µ̃(UQ) ≥ 2ϵ1 diam(UQ) so that, by Lemma 2.4.20,

µ̃(UQ) ≥
(2ϵ1)

3

2
ℓ(UQ) ≥ ϵ31ℓ(UQ) > ϵ23ℓ(UQ). ■

This lemma places strong restrictions of the geometry of Γ ∩ 2Q. The fact that γQ is
restricted to be nearly parallel to ηQ on the scale of diam(Q) allows us to derive packing
estimates for disjoint families of balls in ∆2.1.2 along the direction of the chord of Γ as in the
following lemma.

Lemma 2.4.25. For any Q1, Q2 ∈ ∆2.1.2 such that UQ1 ∩ UQ2 = ∅,

π

(
1

4
c0Q1

)
∩ π

(
1

4
c0Q2

)
= ∅.

Proof. Suppose by way of contradiction that π
(
1
4
c0Q1

)
∩ π

(
1
4
c0Q2

)
̸= ∅ and assume that

diam(Q2) ≤ diam(Q1). The fact that c0Q1 ∩ c0Q2 = ∅ and π
(
1
4
c0Q1

)
∩ π

(
1
4
c0Q2

)
̸= ∅

imply, respectively,

|xQ1 − xQ2| ≥ c0(rad(Q1) + rad(Q2)),

|π(xQ1)− π(xQ2)| ≤
c0
4
(rad(Q1) + rad(Q2)).

From these, we estimate

|π⊥(xQ1)− π⊥(xQ2)| ≥ |xQ1 − xQ2| − |π(xQ1)− π(xQ2)|

≥ 3c0
4
(rad(Q1) + rad(Q2)) ≥

c0
2
rad(Q1) + c0 rad(Q2).

Therefore, B(ηQ1 , 100ϵ3 diam(Q1)) ∩ UQ2 = ∅ because 100ϵ3 diam(Q1) <
c0
4
rad(Q1) so that

Lemma 2.4.24 implies γQ1 ∩ UQ2 = ∅ and π(UQ2) ⊆ π(γQ1). Because π(UQ2) ⊆ π(γQ2), we
get UQ2 ⊆ Mπ, implying µ̃(UQ2) = 2ℓ(UQ2), contradicting the fact that µ̃(UQ2) < ϵ23ℓ(UQ2)
because Q2 ∈ ∆2.1.2. ■

Definition 2.4.9 (Levels and inner/outer cores). Because we would prefer to work with
pairwise disjoint subfamilies of ∆2.1.2 in view of Lemma 2.4.25, we will divide ∆2.1.2 into
pairwise disjoint “levels” using its tree structure. Indeed, fix j, 1 ≤ j ≤ J and recall Qj is
one of the J families of balls ordered by inclusion of cores constructed in Proposition 2.1.19.
Consider the family ∆j

2.1.2 := ∆2.1.2 ∩ Qj. We define the k-th level of ∆j
2.1.2 for k ≥ 0 as

Lk := {Q ∈ ∆j
2.1.2 : Q ∈ Ck(Q(T )), T ∈ T c0

∆j
2.1.2

}

where we set C0(Q(T )) = {Q(T )}. The family Lk is pairwise disjoint for any k ≥ 0 and
∆j

2.1.2 =
⋃
k≥0 Lk. We additionally want to single out balls which live away from from the

boundary of the core of their parent in the tree structure. We define the inner and outer
balls:

∆I := L0 ∪ {Q ∈ ∆j
2.1.2 \ L0 : 2Q ⊆ (1− 5ϵ1)c0P (Q)},

∆O := ∆j
2.1.2 \∆I .
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We can show that the diameters of the outer cores are controlled by the diameters of the
inner cores using Lemma 2.4.25 and some algebra.

Lemma 2.4.26. ∑
Q∈∆O

diam(UQ) ≲
∑
Q∈∆I

diam(UQ).

Proof. Fix Q ∈ ∆j
2.1.2 and let Q′ ∈ C(Q). Recall that diam(2Q′) ≤ ϵ1 diam(UQ) as in (2.45).

Hence, if Q′ ∈ ∆O, then Lemma 2.4.24 implies

(Γ \ γQ) ∩ 2Q′ ∩ π−1 ((1− 10ϵ1)c0Q) = ∅. (2.56)

Because the cores of balls in C(Q) are pairwise disjoint, the projection lemma 2.4.25 implies∑
Q′∈C(Q)∩∆O

diam(UQ′) ≤ 5
∑

Q′∈C(Q)∩∆O

H1
(
π
(c0
4
Q′
))

≤ 200ϵ1c0 diam(Q) ≤ 200ϵ1 diam(UQ).

Summing this inequality over Q ∈ Lk, we get∑
Q′∈Lk+1∩∆O

diam(UQ′) =
∑
Q∈Lk

∑
Q′∈C(Q)∩∆O

diam(UQ′) ≤ 200ϵ1
∑
Q∈Lk

diam(UQ)

≤ 200ϵ1
∑

Q′∈Lk∩∆O

diam(UQ′) + 200ϵ1
∑

Q′∈Lk∩∆I

diam(UQ′). (2.57)

In order to simplify the notation, define

SOk :=
∑

Q′∈Lk∩∆O

diam(UQ′),

SIk :=
∑

Q′∈Lk∩∆I

diam(UQ′).

The lemma will follow from some algebraic manipulations of (2.57). We can restate (2.57)
in this notation as

SOk+1 ≤ 200ϵ1S
O
k + 200ϵ1S

I
k .

Iterating this inequality over k, we get

SOk ≤
k∑

n=0

(200ϵ1)
nSIk−n

which gives

∑
Q∈∆O

diam(UQ) =
∞∑
k=0

SOk ≤
∞∑
k=0

k∑
n=0

(200ϵ1)
nSIk−n =

∑
(k,n)∈N×N

n≤k

(200ϵ1)
nSIk−n

=
∞∑
m=0

∞∑
n=0

(200ϵ1)
nSIm ≲

∞∑
m=0

SIm =
∑
Q∈∆I

diam(UQ). ■
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With this lemma, we now concentrate on proving
∑

Q∈∆I
diam(UQ) ≲ µ̃(Γ). Because

∆I ⊆ ∆2.1, any Q ∈ ∆I has the existence of an arc τQ as described in the section following
Lemma 2.4.9. It follows from the neighborhood containment of γQ in Lemma 2.4.24 that
there exists a subarc ζQ ⊆ τQ ∩ (1− c0)2Q ⊆ γ(Mπ) such that

Diam(ζQ) ≥
1

10
diam(2Q).

These properties imply

µ̃(ζQ) ≥
1

5
diam(2Q). (2.58)

Fix a level L I
k := Lk ∩∆I and define an equivalence relation on L I

k by putting Q ∼ Q′ if
and only if there exists a collection {Qn}n≥1 ⊆ L I

k such that ζQi
∩ ζQi+1

̸= ∅ while both
ζQ ∩

⋃
n≥1 ζQn ̸= ∅ and ζQ′ ∩

⋃
n≥1 ζQn ̸= ∅. That is, Q ∼ Q′ if and only if ζQ and ζQ′ can

be connected by a connected path of ζ arcs from L I
k . This partitions L I

k into equivalence
classes L I

k =
⋃
i∈Ik Ck,i. In each equivalence class Ck,i, there exists a ball QM

k,i of maximal
diameter. The arc ζQM

k,i
dominates the sum of diameters of balls in this equivalence class in

the sense of the following lemma:

Lemma 2.4.27. ∑
Q∈Ck,i

diam(UQ) ≲ µ̃(ζQM
k,i
).

Proof. Define ζk,i :=
⋃
Q∈Ck,i

ζQ. We claim that for any Q ∈ Ck,i,

0 < dist(π(xQ), π(Image(ζk,i))) ≤ diam(2Q) ≤ diam(2QM
k,i).

Indeed, to prove the left inequality, suppose that dist(π(xQ), π(Image(ζk,i))) = 0. Because
ζQ ⊆ γ(Mπ) for any Q ∈ Lk, we know that ζk,i ⊆ γ(Mπ). Therefore, there exists ϕ ∈ Φ such
that ζk,i ⊆ ϕ and ℓ(ϕ) ≥ ℓ(ζQM

k,i
) ≥ 1

10
diam(2QM

k,i) ≥ diam(UQ). Recalling the definition of

N(Φ) (see Definition 2.4.8), it follows from the fact that supx∈UQ
dist(π(x), π(Image(ϕ))) ≤

diam(UQ) that γ−1(UQ) ⊆ N(Φ), implying µ̃(UQ) ≥ ℓ(UQ) which contradicts the fact that
Q ∈ ∆2.1.2. For the right inequality above, notice that ζQ ⊆ 2Q so that ζk,i ∩ 2Q ̸= ∅.
Therefore, by Lemma 2.4.25, {π

(
c0
4
Q
)
}Q∈Ck,i

is a collection of pairwise disjoint intervals of
total length less than 10 diam(QM

k,i). This means∑
Q∈Ck,i

diam(UQ) ≤ 5
∑
Q∈Ck,i

H1
(
π
(c0
4
Q
))

≤ 50 diam(QM
k,i) ≤ 250µ̃(ζQM

k,i
)

using (2.58) in the final inequality. ■

The following lemma gives the reason for restricting this argument to the inner cores.

Lemma 2.4.28. The arcs in the collection {ζQM
k,i
}k≥0,i∈Ik have pairwise disjoint images. As

a result, ∑
Q∈∆I

diam(UQ) ≲ µ̃(Γ).
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Proof. Fix k, k′ ≥ 0 and i ∈ Ik, i
′ ∈ Ik′ . Because the cores of balls in Lk are pairwise

disjoint for any k ≥ 0, we can assume k > k′ ≥ 0. For ease of notation, let Q1 := QM
k,i, Q2 :=

QM
k′,i′ , and Q

′ = P (Q1) which exists because k > 0. Suppose by way of contradiction that
Image(ζQ1) ∩ Image(ζQ2) ̸= ∅. We first claim that UQ′ ∩ UQ2 = ∅. Indeed, further suppose
by way of contradiction that UQ2 ∩ UQ′ ̸= ∅. Then k < k′ implies Q′ ∈ Cm(Q2) for some
m ≥ 0. Because Q1 ∈ ∆I and because diam(Q2) ≥ diam(Q′) > diam(Q1), we have

2Q1 ⊆ (1− 5ϵ1)c0Q
′, and

diam(2Q1) ≤ ϵ1 diam(UQ′).

We conclude 2Q1 ⊆ UQ′ ⊆ UQ2 , which contradicts Image(ζQ1) ∩ Image(ζQ2) ̸= ∅ because
ζQ2 ∩ UQ2 = ∅ by definition as a subarc of τQ2 .

From this claim, we see that dist(2Q1, xQ2) ≥ 4ϵ1 diam(UQ′) so that we can again conclude
diam(Q2) ≥ diam(Q′), for otherwise we would have 2Q1∩2Q2 = ∅ which is in contradiction
to our starting assumption that Image(ζQ1)∩Image(ζQ2) ̸= ∅. Now, because ζQ2 , ζQ1 ⊆ γ(Mπ)
and Image(ζQ2) ∩ Image(ζQ1) ̸= ∅, we can conclude that there exists a bend ϕ ∈ Φ such
that Image(ζQ1) ∪ Image(ζQ2) ⊆ Image(ϕ), hence ℓ(ϕ) ≥ ℓ(ζQ2) ≥ 1

10
diam(2Q2). Because

2Q1 ∩ 2Q2 ̸= ∅, this implies γ−1(Q1) ⊆ N(Φ) so that µ̃(UQ1) ≥ ℓ(UQ1), contradicting the
fact that Q ∈ ∆2.1.2 and implying our assumption that Image(ζQ1) ∩ Image(ζQ2) ̸= ∅ must
be false. This proves the first claim of the lemma. Using Lemma 2.4.27, we get∑

Q∈∆I

diam(UQ) =
∑
k≥0

∑
i∈Ck,i

∑
Q∈Ck,i

diam(UQ) ≲
∑
k≥0

∑
i∈Ck,i

µ̃(ζQM
k,i
) ≤ µ̃(Γ). ■

Now that we have controlled the inner cores, we can finish the proof of the bound for
∆2.1.2 and of the proof of Theorem A.

Proposition 2.4.29.∑
Q∈∆2.1.2

βΓ(Q)
2 diam(Q) ≲A

∑
Q∈∆2.1.2

diam(UQ) ≲J µ̃(Γ).

Proof. Using Lemmas 2.4.26 and 2.4.28, we get

∑
Q∈∆2.1.2

diam(UQ) =
J∑
j=1

∑
Q∈∆j

2.1.2

diam(UQ) ≲J

∑
Q∈∆I

diam(UQ) +
∑
Q∈∆O

diam(UQ) ≲ µ̃(Γ). ■

This completes the proof of Theorem A.

Remark 2.4.30 (General rectifiable arcs). Given a rectifiable arc Γr with arc length pa-
rameterization γr, one can proceed as for Jordan arcs and define the measure µ by dµ :=
(γr)∗(ρ dℓ). Lemma 2.4.16 likely holds, and one can define bends and likely carry out a simi-
lar program to that of Section 2.4.2 to show that

∑
Q∈A βΓr(Q)

2 diam(Q) ≲A ℓ(Γr)−crd(Γr).
This is importantly weaker than the more desirable inequality∑

Q∈A

βΓr(Q)
2 diam(Q) ≲A H1(Γr)− crd(Γr). (2.59)
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If one would like to achieve 2.59 via methods similar to those used here, one likely needs a
stronger definition of µ. For any t ∈ I, set m(t) := inf{γ′1(s) : γ(s) = γ(t)}. A more prudent
choice of µ might be something like

dµr := σrdH1

where

σr(x) :=

{
1− γ′1(t), γ′1(t) exists and γ

′
1(t) = inf{γ′1(s) : s ∈ γ−1(x)}

0 otherwise.

That is, we assign to x the maximal ρ value achieved on γ−1(x). We do not investigate this
approach further here.

2.5 Theorem B

In this section, we show how making minor modifications to the proof of the ≳ direction of
Theorem 1.3 in [Bis20] gives a proof of Theorem B. First, we need a slightly weaker version
of Theorem B.

Theorem 2.5.1 ([Bis20] Theorem 1.1 in Rn). Let Γ ⊆ ℓ2 be a rectifiable Jordan arc. For
any multiresolution family H associated to Γ with inflation factor A > 30, we have

ℓ(Γ)− diam(Γ) ≲
∑
Q∈H

βΓ(Q)
2 diam(Q).

Proof. The proof is similar in form to Bishop’s proof in Rn, but we construct coverings of the
curve by pieces of Γ inside Voronoi cells centered at net points rather than dividing convex
hulls of pieces of the curve along diameter segments. Assume diam(Γ) = 1. Define

Vn := {Vn(x) : x ∈ Xn}

where, given any x ∈ Xn,

Vn(x) := {y ∈ Γ : ∀z ∈ Xn, |x− y| ≤ |z − y|}.

Since Xn is a 2−n-net centered on Γ, it is clear that

2−n−1 ≤ diam(Vn(x)) < 2−n+1. (2.60)

By definition, for any n ≥ 0 we also have Γ =
⋃
x∈Xn

Vn(x) so that

ℓ(Γ) = H1(Γ) ≤ lim sup
n→∞

∑
x∈Xn

diam(Vn(x)).

This means is suffices to prove∑
x∈Xn

diam(Vn(x)) ≤ diam(Γ) + C
∑
Q∈H

βΓ(Q)
2 diam(Q) (2.61)
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for any n ≥ 0 and some C > 0. We will show∑
x∈Xn

diam(Vn(x)) ≤
∑

y∈Xn−1

diam(Vn−1(y)) + C ′
∑
Q∈Gn

βΓ(Q)
2 diam(Q) (2.62)

where each ball Q ∈ H will only appear in Gn for a bounded number of values of n. We
can prove Theorem 2.5.1 by repeatedly applying inequality (2.62). Indeed,∑

x∈Xn

diam(Vn(x)) ≤
∑

y∈Xn−1

diam(Vn−1(y)) + C ′
∑
Q∈Gn

βΓ(Q)
2 diam(Q)

≤
∑

y∈Xn−2

diam(Vn−2(y)) + C ′
∑

Q∈Gn−1∪Gn

βΓ(Q)
2 diam(Q)

...

≤ diam(V0(x0)) + C ′
n∑
k=1

∑
Q∈Gk

βΓ(Q)
2 diam(Q)

≤ diam(Γ) + C
∑
Q∈H

βΓ(Q)
2 diam(Q).

We now turn to proving (2.62). Fix ϵ < 2−10. For any net point x ∈ Xn, call x flat
if βΓ(B(x, 10 · 2−n)) < ϵ and call x non-flat if βΓ(B(x, 10 · 2−n)) ≥ ϵ. We will construct a
function P : ∪nXn → ∪nXn which assigns each y ∈ Xn+1 to a parent P (y) ∈ Xn. Since
diam(Γ) = 1, V0 = {V0(x0)} so for any y ∈ X1, define P (y) = x0. Fix n > 0 and a point
y ∈ Xn+1. If there exists x′ ∈ Xn such that x′ is non-flat and y ∈ Vn(x

′), then define
P (y) = x′. Otherwise, every x ∈ Xn such that y ∈ Vn(x) is flat. Choose one such x and
let x′, y′ ∈ Vn(x) such that diam(Vn(x)) = |x′ − y′|. We define dx := [x′, y′] and call dx a
diameter segment of Vn(x). Let πdx : ℓ2 → R be the orthogonal projection onto the line
containing dx. Since ϵ is small, we can write

Xn ∩B(x, 10 · 2−n) = {v1, . . . , vN}
Xn+1 ∩ Vn(x) = {u1, . . . , uM}

where

πdx(v1) < . . . < πdx(vN),

πdx(u1) < . . . < πdx(uM)

We define Ex := {u1, uM}. If y ̸∈ Ex, then define P (y) = x. If y ∈ Ex we define P (y)
dependent on the behavior of points adjacent to x in Xn. Assuming x = vj with 0 < j < N ,
suppose first that y = u1. Then if vj−1 is non-flat, define P (y) = vj−1. Similarly, if y = uM
and vj+1 is non-flat, then put P (y) = vj+1. Otherwise, put P (y) = x.

With the function P defined, we write∑
y∈Xn+1

diam(Vn+1(y)) =
∑

y∈Xn+1

P (y) flat

diam(Vn+1(y)) +
∑

z∈Xn+1

P (z) non-flat

diam(Vn+1(z)).
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If P (z) is non-flat, then |z−P (z)| < 4 ·2−n so that B(P (z), 10 ·2−n) ⊆ B(z, A2−n−1) because
A > 30. Hence, βΓ(B(z, A2−n−1)) ≳A ϵ. Using (2.60), this means∑

z∈Xn+1

P (z) non-flat

diam(Vn+1(z)) ≲ϵ,A

∑
z∈Xn+1

P (z) non-flat

βΓ(B(z, A2−n−1))2 diam(B(z, A2−n−1))

≤
∑
x∈Xn

x non-flat

diam(Vn(x)) + C ′
∑

P (z)=x

βΓ(B(z, A2−n−1))2 diam(B(z, A2−n−1))


≤

∑
x∈Xn

x non-flat

diam(Vn(x)) + C ′
∑

rad(Q)=A2−n−1

βΓ(Q)
2 diam(Q). (2.63)

Now, let x ∈ Xn be flat. We will construct a set seg(x) of subsets of diameter segments
of the sets {Vn+1(y)} for y with P (y) flat. For y ∈ Xn+1 with P (y) flat, let dy be a diameter
segment. If y ∈ Xn+1 ∩ Vn(x) but y ̸∈ Ex, then put dy into seg(x). If y = u1 ∈ Ex, then we
have the decomposition

Vn+1(y) = (Vn+1(y) ∩ Vn(x)) ∪ (Vn+1(y) ∩ Vn(vj−1))

because ϵ is small. Put the segment dy ∩Vn(vj−1) in seg(vj−1) and the segment dy ∩Vn(x) in
seg(x). We similarly handle the case when y = uN . In this case, put the segment dy ∩ Vn(x)
in seg(x) and the segment dy ∩ Vn(vj+1) in seg(vj+1). With these sets constructed, we can
now write ∑

y∈Xn+1

P (y) flat

diam(Vn+1(y)) =
∑

y∈Xn+1

P (y) flat

dy =
∑
x∈Xn
x flat

∑
s∈seg(x)

H1(s). (2.64)

With (2.64) in place, we only need to give an appropriate bound for
∑

s∈seg(x)H1(s). Define

Qx = B(x,A2−n). We claim∑
s∈seg(x)

H1(s) ≤ diam(Vn(x)) + CβΓ(Qx)
2 diam(Qx) (2.65)

for some large C > 0. In order to prove this statement, we first state a lemma given in
[BS17]:

Lemma 2.5.2. ([BS17] Lemma 8.3) Suppose that V ⊆ Rn is a 1-separated set with #V ≥ 2
and there exist lines ℓ1 and ℓ2 and a number 0 ≤ α ≤ 1/16 such that

dist(v, ℓi) ≤ α for all v ∈ V and i = 1, 2.

Let πi denote the orthogonal projection onto ℓi. There exist compatible identifications of ℓ1
and ℓ2 with R such that π1(v

′) ≤ π1(v
′′) if and only if π2(v

′) ≤ π2(v
′′) for all v′, v′′ ∈ V . If

v1 and v2 are consecutive points in V relative to the ordering of π1(V ), then

H1([u1, u2]) < (1 + 3α2) · H1([π1(u1), π1(u2)]) for all [u1, u2] ⊆ [v1, v2]. (2.66)

Moreover,

H1([y1, y2]) < (1 + 12α2) · H1([π1(y1), π1(y2)]) for all [y1, y2] ⊆ ℓ2. (2.67)
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Applying this lemma with ℓ1 = dx and ℓ2 = dy, for any segment [s1, s2] ⊆ dy, we have

H1([s1, s2]) < (1 + CβΓ(Qx)
2 diam(Qx))H1([πdx(s1), πdx(s2)]).

Enumerate seg(x) = {s1, . . . , sN}. With this, we can write∑
s∈seg(x)

H1(s) < (1 + CβΓ(Qx)
2 diam(Qx))

∑
s∈seg(x)

H1(πdx(s))

≤ (1 + CβΓ(Qx)
2 diam(Qx))

(
H1(dx) + 2

N−1∑
i=1

H1(πdx(si) ∩ πdx(si+1))

)

= (1 + CβΓ(Qx)
2 diam(Qx))

(
diam(Vn(x)) + 2

N−1∑
i=1

H1(πdx(si) ∩ πdx(si+1))

)
.

(2.68)

Because x is flat, # seg(x) is bounded above by a universal constant, so we only need to
show that

H1(πL(si) ∩ πL(si+1)) ≤ C ′βΓ(Qx)
2 diam(Qx). (2.69)

for some C ′ > 0. It suffices to bound the length of the overlap between the projections of
consecutive Voronoi cells Vn+1(ui), Vn+1(ui+1) within the tube of radius 2βΓ(Qx) diam(Qx)
around dx. The boundary between the cells is the intersection of this tube with the hyper-
plane of points of equal distance from both ui and ui+1. A simple geometric estimate of the
type carried out in [BS17] pages 41 and 42 gives (2.69) (also see Figure 2.8). Combining
(2.68) and (2.69) gives (2.65). Applying (2.65) to (2.64), we can finally write∑

y∈Xn+1

diam(Vn+1(y)) =
∑

y∈Xn+1

P (y) flat

diam(Vn+1(y)) +
∑

z∈Xn+1

P (z) non-flat

diam(Vn+1(z))

≤
∑
x∈Xn

x non-flat

diam(Vn(x)) + C ′
∑

rad(Q)=A2−n−1

βΓ(Q)
2 diam(Q)

+
∑
x∈Xn
x flat

∑
s∈seg(x)

H1(s)

≤
∑
x∈Xn

x non-flat

diam(Vn(x)) + C ′
∑

rad(Q)=A2−n−1

βΓ(Q)
2 diam(Q)

+
∑
x∈Xn
x flat

diam(Vn(x)) + C ′′
∑

rad(Q)=A2−n

βΓ(Q)
2 diam(Q)

≤
∑
x∈Xn

diam(Vn(x)) + C
∑

rad(Q)∈{A2−n−1,A2−n}

βΓ(Q)
2 diam(Q).

This proves inequality (2.61) and finishes the proof of Theorem 2.5.1. ■

The method for replacing diam(Γ) with crd(Γ) in Theorem 2.5.1 is nearly identical to
that given in [Bis20]. Since most of the argument is dimension independent, we only need
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Figure 2.8: This figure depicts a worst case estimate for the overlap of Vn+1(ui) and Vn+1(ui+1)
along the diameter dx for ui, ui+1 ∈ Xn+1∩Vn(x). The blue line depicts the hyperplane which
forms the boundary between Vn+1(ui) and Vn+1(ui+1) while the overlap is bounded above

by the quantity r. We have tan θ = 2βΓ(Qx) diam(Qx)
2−n−1−1 = r

2βΓ(Qx) diam(Qx)
. Rearranging, we find

r = 8βΓ(Qx)
2 diam(Qx)

2 · 2n+1 ≲A βΓ(Qx)
2 diam(Qx) as desired.

to replace certain collections of dyadic cubes with appropriate collections of balls in a mul-
tiresolution family, and switch out applications of the version of Theorem 2.5.1 proven there
with Theorem 2.5.1 itself. We now give a summary of the needed modifications to Bishop’s
proof.

Proof. (Theorem B) We will make some amendments to Section 4 of [Bis20] beginning on
page 15, but the vast majority of the proof is identical because Bishop’s arguments are
mostly dimension-independent from this point on. We reproduce most of the argument here
for convenience.

Assume the
∑

Q∈H βΓ(Q)
2 diam(Q) < ∞ and that diam(Γ) = 1. Let Q0 ∈ H with

2 < diam(Q0) ≤ 4 so that Γ ⊆ Q. Suppose β0 is a small positive number to be chosen below.
If βΓ(Q0) > β0, then we have

crd(Γ) ≤ diam(Γ) = 1 ≤ βΓ(Q0)
2

β2
0

diam(Q0) ≲ βΓ(Q0)
2 diam(Q0).

Therefore, by Theorem 2.5.1,

ℓ(Γ)− crd(Γ) ≤ diam(Γ)− crd(Γ) + C
∑
Q∈H

βΓ(Q)
2 diam(Q) ≲

∑
Q∈H

βΓ(Q)
2 diam(Q).

Hence, we may assume that βΓ(Q0) < β0. Let x, y ∈ Γ be such that |x− y| = diam(Γ) and
re-orient Γ so that x = 0 and y = (1, 0, 0, . . .). Assuming t(x) < t(y), let γ1 = γ(0, t(x)) and
γ2 = γ(t(y), ℓ(Γ)). That is, γ1 is the subarc of Γ from the beginning of Γ to x and γ2 is the
subarc from y to the end of Γ. Observe that

crd(Γ) ≥ diam(Γ)− ℓ(γ1)− ℓ(γ2)
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so that applying Theorem 2.5.1 three times (using the fact that γ1, γ2 are Jordan arcs) gives

ℓ(Γ)− crd(Γ) ≤ ℓ(Γ)− diam(Γ) + ℓ(γ1) + ℓ(γ2)

≤ C(A)
∑
Q∈H

βΓ(Q)
2 diam(Q) + diam(γ1) + diam(γ2). (2.70)

This means we only need to show that diam(γ1) + diam(γ2) ≲A

∑
Q∈H βΓ(Q)

2 diam(Q).
Because the arguments for both arcs are the same, we only consider γ1.

Let ϵ = diam(γ1) > 0. Let Q1, . . . , Qk be balls with diameter going from diam(Q0) to
ϵ such that among all balls of their given radius, their center is closest to x. We have that
k ≃ log(diam(Q0)/ϵ). If any of these balls satisfies βΓ(Qj) > β0, then

diam(γ1) ≤
βΓ(Qj)

2

β2
0

diam(γ1) ≲ βΓ(Qj)
2 diam(Qj)

so that diam(γ1) satisfies the desired bound. Hence, we assume that βΓ(Qj) ≤ β0 for all
1 ≤ j ≤ k. Let Lj be an infimizing line in the definition of βΓ(Qj). We measure the angle
that Lj makes with the x1-axis by translating it to intersect 0, then measuring the angle
between these lines in the (at most 2-dimensional) plane containing them.
Case 1: Assume that Li makes an angle larger than 10β0 with the x1 axis for some i. Since
the angle between L0 and Li is bounded by C

∑i
j=1 βΓ(Qj) and the best line for Q0 is within

an angle β0 of the x1-axis, we have
∑k

j=1 βΓ(Qj) ≳ β0 ≳ 1. The Cauchy-Schwarz inequality
implies

1 ≲

(
k∑
j=1

βΓ(Qj)

)2

≲

(
k∑
j=1

βΓ(Qj)
22−j

)
·

(
k∑
j=1

2j

)
≃ 2k

k∑
i=j

βΓ(Qj)
22−j.

Therefore,
∑k

j=1 β(Qj)2
−j ≳ 2−k ≳ ϵ so that

ϵ = diam(γ1) ≲
k∑
j=1

βΓ(Qj)
2 diam(Qj)

as desired.
Case 2: Now, assume that all of the lines Lj, 1 ≤ j ≤ k make angle less than 10β0 with
the x1-axis. Consider a subarc γ′1 ⊆ γ1 that is contained in and connects the boundary
components of the annulus

B

(
x,

1

5
diam(γ1)

)∖
B

(
x,

1

10
diam(γ1)

)
.

Because γ′1 and γ1 have comparable diameters, it suffices to bound diam(γ′1).
Given any p ∈ γ′1, one of the following two statements holds:

(i) Every ball Q = B(x,A2−n) with p ∈ B(x, 2−n) and diam(Q) ≤ 1
10
diam(γ1) satisfies

βΓ(Q) ≤ β0.
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(ii) There exists a ball Qp of the above form such that βΓ(Qp) > β0.

We let E ⊆ γ′1 be the set of points p where a ball Qp as in (ii) exists. Since γ′1 is rectifiable,
it has tangents almost everywhere. Bishop provides the following two lemmas

Lemma 2.5.3. ([Bis20] Lemma 4.1 for H ) If p ∈ γ′1\E and p is a tangent point of Γ, then

p has a “crossing property”: If Q ∈ H has p ∈ 1
2
Q with diam(Q) ≤ diam(γ1)

10
then γ1 must

“cross” Q in the sense that γ1 must connect the two components of ∂Q ∩W where W is a
cylinder of radius diam(Q)

10
containing p.

Lemma 2.5.4. ([Bis20] Lemma 4.2) ℓ(E) = ℓ(γ′1).

We have changed the statement of Lemma 2.5.3 only by replacing the setting from Rn

to ℓ2 and replacing dyadic cubes with balls in a multiresolution family. Bishop proves this
lemma by constructing a “dividing” hypersurface which γ1 can only cross once because γ1
is a Jordan arc. It is straightforward to modify Bishop’s construction by replacing n − 1-
dimensional planes in Rn with corresponding hyperplanes in ℓ2. Given Lemma 2.5.3, Lemma
2.5.4 follows directly from Bishop’s original argument. For the proofs of these results, we
direct the reader to [Bis20] (especially see Figure 6 there for a good picture of Lemma 2.5.3).

Given these lemmas, we can complete the proof of Theorem B by noting that Lemma
2.5.4 implies that γ′1 is nearly covered by the balls {Qp}p∈E so that there is subcollection of
distinct balls {Qpj}j with

diam(γ′1) ≤ 5
∑
j

diam(Qpj) ≲β0

∑
j

βΓ(Qpj)
2 diam(Qpj) ≤

∑
Q∈H

βΓ(Q)
2 diam(Q).

Combining this result with (2.70) completes the proof of Theorem B. ■

78



Chapter 3

Lipschitz decompositions of domains
with bilaterally flat boundaries

3.1 Introduction

3.1.1 Overview

In many areas of analysis, general domains which are somehow “close” or well-approximated
by a Lipschitz domain tend to have many desirable properties.

Definition 3.1.1 (Lipschitz domains). We say that Ω ⊆ Rd+1 is a Lipschitz domain if for
each p ∈ ∂Ω, there exists r > 0 such that B(p, r) ∩ ∂Ω is a Lipschitz graph.

For instance, the idea of finding good Lipschitz domains inside of more general domains
has an important place in the study of harmonic measure in the plane and beyond [DJ90],
[Dah77], [Bad10], [Azz18]. Lipschitz domains have similarly been used to give characteri-
zations of rectifiability and uniform rectifiability [Akm+19], [Akm+17], [BH17], [GMT18].
The slightly stronger notion of a Lipschitz graph domain has also played an important role
in quantitative geometric measure theory.

Definition 3.1.2 (Lipschitz graph domains). We say that an open, connected set Ω ⊆ Rd+1

is an M-Lipschitz graph domain if the following holds: There exists a composition of a
translation, dilation, and rotation A with image domain Ω̃ = A(Ω) such that there exists a
function rΩ̃ : Sd → R+ with

∂Ω̃ =
{
rΩ̃(θ)θ : θ ∈ Sd

}
and, for any θ, ψ ∈ Sd

|rΩ̃(θ)− rΩ̃(ψ)| ≤M |θ − ψ|,

1

1 +M
≤ rΩ̃(θ) ≤ 1.

Intuitively, a Lipschitz graph domain is a “Lipschitz graph over a sphere”. These domains
appear in the following striking result due to Peter Jones which is the primary inspiration
for this paper:
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Theorem 3.1.1 ([Jon90] Theorem 2). There exists a constantM > 0 such that the following
holds: For any simply connected domain Ω ⊆ C with H1(∂Ω) <∞, there is a rectifiable curve
Γ such that

Ω \ Γ =
⋃
j

Ωj

where Ωj is an M-Lipschitz graph domain for each j, and∑
j

H1(∂Ωj) ≤MH1(∂Ω).

We informally say that Theorem 3.1.1 gives a Lipschitz decomposition of a domain Ω in
the sense that Ω is written as a union of closures of disjoint Lipschitz graph domains with
boundary lengths controlled by the boundary length of Ω. Also see [GJM92] for a similar
result for minimal surfaces in Rn. Despite being geometrically interesting in and of itself,
Theorem 3.1.1 has an important place in the history of quantitative geometric measure
theory because it is central to Jones’s original proof of the Analyst’s Traveling Salesman
Theorem in R2. This central result gives a characterization of subsets of rectifiable curves
and an estimate on their lengths in terms of a quantity called the Jones beta number which
measures how close a subset E ⊆ R2 is to being linear locally.

Definition 3.1.3 (Jones beta number). Let E,Q ⊆ R2 where Q has finite diameter. We
define the β-number for E in the “window” Q by

βE(Q) = inf
L

sup
x∈Q∩E

dist(x, L)

diam(Q)
,

where L ranges over all affine lines in R2.

Theorem 3.1.2 (cf. [Jon90] Theorem 1, [Oki92] in Rn, n > 2). Let E ⊆ R2. E is contained
in a rectifiable curve if and only if

β2
E(R2) = diam(E) +

∑
Q∈∆(R2)

βE(3Q)
2 diam(Q) <∞

where ∆(R2) is the set of all dyadic cubes in R2 and 3Q is the cube with the same center as
Q but three times the side length. If Σ is a connected set of shortest length containing E,
then

β2
Σ(R2) ≲ H1(Σ) (3.1)

and
β2
E(R2) ≳ H1(Σ). (3.2)

There are now many results referred to as “Traveling Salesman Theorems” which share
the general structure and philosophy of Theorem 2.1.1 but take place in different spaces
such as Hilbert space [Sch07a], Banach spaces [BM23a], [BM23b], Carnot groups [Li22],
graph inverse limit spaces [DS16], and general metric spaces [DS21], [Hah05]. Many also
apply to different geometric objects such as Jordan arcs [Bis22], Hölder curves [BNV19],
higher-dimensional sets [AS18], [Hyd22a], [Hyd22b], [Ghi17], or measures [BS17], [BLZ23].

80



Jones proves Theorem 2.1.1 essentially as a corollary of Theorem 3.1.1. Roughly speaking,
given a rectifiable curve Γ ⊆ D, one can apply the Lipschitz decomposition result to each
component of D\Γ and use the boundaries of the produced Lipschitz graph domains to control
the beta numbers of Γ. In fact, this shows that rectifiable curves in R2 admit extensions
of controlled length which are quasiconvex: if one considers the union of the boundaries as
a new curve Γ̃ = ∪j∂Ωj ∪ Γ, then H1(Γ̃) ≲ H1(Γ) and Γ̃ is quasiconvex (see [AS12b] for a
generalization of this corollary to higher dimensions).

Jones’s result is powerful, but it is confined to two dimensions. In this paper, we consider
the following question:

Question 3.1.3. For Ω ⊆ Rd+1, d > 1, what geometric conditions on ∂Ω are sufficient for
Ω to admit a Lipschitz decomposition?

One of the attractive features of Theorem 3.1.1 is the minimality of its assumptions on
Ω; Jones only assumes simple connectivity and finite boundary length. These assumptions
suffice essentially because they give access to a nicely behaved parameterization in the form
of a conformal map φ : D → Ω. The lack of similar conformal maps in higher dimensions
precludes one from directly translating Jones’s original argument from R2 to higher dimen-
sions, but, by assuming stronger control of the geometry of ∂Ω, one does get access to nicely
behaved parameterizations which are sufficient replacements. The vital geometric condition
on ∂Ω is called Reifenberg flatness, which states that ∂Ω is bilaterally close to a d-plane at
all scales and all locations. This bilateral closeness is measured by the bilateral beta number.

Definition 3.1.4 (bilateral beta number). For E ⊆ Rn, P a d−plane, and B a ball, the
d-bilateral beta number relative to P for E inside B is

bβdE(B,P ) =
2

diam(B)
dH(B ∩ E,B ∩ P ).

The full bilateral beta number for E inside B is then

bβdE(B) = inf
P d-plane

bβdE(B,P ).

Definition 3.1.5 ((ϵ, d)-Reifenberg flatness). For fixed ϵ > 0 and d, n ∈ N with 0 < d < n,
we say a set E ⊆ Rn is (ϵ, d)-Reifenberg flat if, for all x ∈ E and r > 0,

bβdE(B(x, r)) ≤ ϵ.

Sets that are (ϵ, d)-Reifenberg flat for small enough ϵ ≤ ϵ0(d, n) admit bi-Hölder pa-
rameterizations which we informally call Reifenberg parameterizations. This was first shown
by Reifenberg in [Rei60], but was later generalized by David and Toro [DT12] to produce
parameterizations of Reifenberg flat sets “with holes” along with giving a condition under
which the parameterization can be upgraded from bi-Hölder to bi-Lipschitz.

Theorem 3.1.4 (cf. [DT12] Theorem 1.10). For any d, n ∈ N with 0 < d < n and 0 < τ <
1
10
, there exists a constant ϵ0(d, n) such that if ϵ ≤ ϵ0 and 0 ∈ E ⊆ Rn is (ϵ, d)-Reifenberg
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flat, then there exists a bijection g : Rn → Rn satisfying the following conditions: For any
z, x, y ∈ Rn with z arbitrary, |x− y| ≤ 1,

|g(z)− z| ≤ τ,

1

4
|x− y|1+τ ≤ |g(x)− g(y)| ≤ 3|x− y|1−τ ,

and, for some d-plane P such that bβE(B(0, 10), P ) ≤ ϵ,

E ∩B(0, 1) = g(P ) ∩B(0, 1).

Given a domain Ω ⊆ Rd+1 such that ∂Ω is (ϵ, d)-Reifenberg flat, we use the Reifenberg
parameterization g produced by Theorem 3.1.4 as a replacement for the conformal map in
Jones’s original argument to first prove the following new result

Theorem C. Let Ω ⊆ Rd+1 be a domain with 0 ∈ ∂Ω. There exists ϵ0(d) > 0 such that for
any L > 0, if ϵ ≤ ϵ0 and

(i) ∂Ω is (ϵ, d)-Reifenberg flat,

(ii)
∑∞

k=1 β
d,1
∂Ω(B(x, 2−k))2 ≤ L for all x ∈ ∂Ω,

then there exists a Ahlfors d-regular, d-rectifiable set Σ such that

Ω ∩B(0, 1) \ Σ =
∞⋃
j=1

Ωj

and there exists L1(ϵ, L, d) > 0 such that L = {Ωj}j∈JL
is a collection of disjoint L1-

Lipschitz graph domains. In addition, for any y ∈ ∂Ω ∩B(0, 1) and 0 < r < 1, we have

∞∑
j=1

Hd(∂Ωj ∩B(y, r)) ≲ϵ,L,d r
d.

See Definition 3.2.10 for the definition of βd,1∂Ω(B(x, 2−k)). Hypothesis (ii) is used to ensure
that David and Toro’s bi-Lipschitz condition for the Reifenberg parameterization is satisfied.
If this hypothesis is not satisfied, then one can still run the proof of Theorem C to produce a
collection of Lipschitz graph domains whose total boundary measure and Lipschitz constants
blow up near where the sum in (ii) diverges. However, we conjecture that a result similar to
Theorem C holds without assumption (ii).

If one is willing to weaken the conclusion of {Ωj} being disjoint to having bounded
overlap, then one can show that similar Lipschitz decompositions exist for domains with
weaker assumptions on the boundary. We prove the following result of this type:

Theorem D. Let Ω ⊆ Rd+1 be a domain with 0 ∈ ∂Ω. There exist constants A(d), L(d), ϵ(d) >
0 such that if 0 ∈ ∂Ω is (ϵ, d)-Reifenberg flat, then there exists a collection of L-Lipschitz
graph domains {Ωj}j∈L such that

(i) Ωj ⊆ Ω,
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(ii) Ω ∩B(0, 1) ⊆
⋃∞
j=1Ωj,

(iii) ∃C(d) > 0 such that ∀x ∈ Ω, x ∈ Ωj for at most C values of j,

(iv) For any y ∈ ∂Ω ∩B(0, 1) and 0 < r ≤ 1, we have

∞∑
j=1

Hd(∂Ωj ∩B(y, r)) ≲ϵ,d,L Hd(∂Ω ∩B(y, Ar)).

To prove this result, we use a collection of (1 + Cδ)-bi-Lipschitz Reifenberg parameter-
izations to produce a large collection of disjoint Lipschitz graph domains with controlled
boundaries and expand these domains with Whitney-type “buffer zones” to form a true cov-
ering of Ω∩B(0, 1). This method carries over to the well-known d-uniformly rectifiable sets
of David and Semmes who give many different equivalent definitions of d-uniform rectifiabil-
ity [DS93]. One such definition involves the bilateral weak geometric lemma (BWGL), which
roughly says that E looks Reifenberg flat on most scales and locations.

Definition 3.1.6 (bilateral weak geometric lemma). Given a family of Christ-David cubes
D for E (see Theorem 3.2.5) and constants M, ϵ > 0, define

BWGL(M, ϵ) = {Q ∈ D : bβdE(MBQ) > ϵ}.

For Q ∈ D , define

BWGL(Q,M, ϵ) =
∑
R⊆Q

R∈BWGL(M,ϵ)

ℓ(R)d.

We say that E satisfies the bilateral weak geometric lemma if for any M, ϵ > 0, there exists
a constant C0(M, ϵ) such that for all Q ∈ D ,

BWGL(Q,M, ϵ) ≤ C0ℓ(Q)
d. (3.3)

If E is (ϵ, d)-Reifenberg flat, then BWGL(Q,M, ϵ) = 0 for all Q and M . Equation (3.3)
is often referred to as a Carleson packing condition. One can define a d-uniformly rectifiable
set as a Ahlfors d-regular set which satisfies the BWGL.

Definition 3.1.7 (Ahlfors d-regularity). We say that a set E ⊆ Rn is Ahlfors d-regular if E
is closed and there exists a constant C0 > 0 such that for any x ∈ E and 0 < r < diam(E),
we have

C−1
0 rd ≤ H d(E ∩B(x, r)) ≤ C0r

d.

Definition 3.1.8 (d-uniform rectifiability). We say a Ahlfors d-regular set E ⊆ Rn is d-
uniformly rectifiable if E satisfies the BWGL.

Using similar methods to those of the proof of Theorem D, we prove an analogue of
Theorem D for d-uniformly rectifiable sets.
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Theorem E. Let Ω ⊆ Rd+1 be a domain with 0 ∈ ∂Ω. If ∂Ω is d-uniformly rectifiable,
then there exists L(d), A(d) > 0 such that there exists a collection of L-Lipschitz graph
domains {Ωj}j∈JL

such that conclusions (i), (ii), (iii), and (iv) (with additional dependence
on uniform rectifiability constants) of Theorem D hold.

Uniform rectifiability was studied in detail by David and Semmes in [DS93] where connec-
tions between the BWGL and numerous other equivalent definitions involving boundedness
of singular integral operators, approximation by Lipschitz graphs (the existence of corona
decompositions), “big piece” parameterizations by Lipschitz maps, and more. Uniform recti-
fiability has recently become of interest in the study of harmonic measure and the solvability
of the homogeneous Dirichlet problem in rough domains. In [Azz+20], the authors give a
geometric characterization of open sets Ω ⊆ Rd+1 such that there exists p <∞ such that the
Lp(∂Ω)-Dirichlet problem is solvable given the background hypotheses that ∂Ω is Ahllfors-
David d-regular and Ω satisfies the interior corkscrew condition. They prove that solvability
is equivalent to ∂Ω being d-uniformly rectifiable and Ω satisfying a quantitative connectiv-
ity condition called the weak local John condition. A related line of research studies Lp

solvability of inhomogeneous problems on rough domains. In the course of preparing this
work, the author was notified of [MPT22] in which the authors study equivalences of solu-
tions to boundary value problems in rough domains and show that the regularity problem
for so-called DKP operators is Lp-solvable on certain geometrically nice domains. In the
course of their study, the authors derive a very similar result to Theorem E with the added
assumption that Ω satisfies the interior corkscrew condition and the added conclusion that
the nice approximating domains are adapted to a DKP operator (see Section 4.3 of [MPT22]
and see also [MT22] for an earlier version of their construction).

3.1.2 Outlines of the paper and proofs of the theorems

In Section 3.2, we introduce the necessary notation and basic facts about Reifenberg parame-
terizations, Whitney decompositions, Christ-David cubes, coronizations, Reifenberg flat sets,
and uniformly rectifiable sets.

In Sections 3.3 and 3.4 we respectively prove Theorems C and Theorems D and E while
taking for granted the results on Lipschitz graph domains proved in Section 3.5 and results
on controlling the derivative of Reifenberg parameterizations proved in Section 3.6.

Roughly speaking, the proof of Theorem C in Section 3.3 proceeds as follows. The
fact that ∂Ω is Reifenberg flat means that we can produce a Reifenberg parameterization
g : Rd+1 → Rd+1 such that g(Rd×{0})∩B(0, 1) = ∂Ω∩B(0, 1). The uniform bound on the
beta-squared sum in condition (ii) of Theorem C ensures that g is L′(d, L)-bi-Lipschitz so
that ∂Ω is in fact a bi-Lipschitz image, hence uniformly rectifiable. This means that there
exists a Christ-David lattice D for ∂Ω with a graph coronization whose stopping time regions
F = {S} consist of cubes well-approximated by Lipschitz graphs with Lipschitz constant
small in terms of d and L′ (this is a coronization that produces a corona decomposition).
Proposition 3.6.7 implies that Dg is nearly constant on parts of its domain which are mapped
into regions of Ω sitting “above” a stopping time region S on the scale of the cubes inside
S. By the results of Section 3.5, g maps forward Lipschitz graph domains to Lipschitz graph
domains when the change in Dg is small compared to the Lipschitz constants of the mapped
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domains. Therefore, to produce a Lipschitz decomposition of Ω ∩ B(0, 1), it suffices to
produce a Lipschitz decomposition L0 (see Definition 3.3.3) of the domain of g into domains
over which Dg is nearly constant so that the collection of images L = {g(D) : D ∈ L0} is
a Lipschitz decomposition.

In order to form this decomposition, we produce a “coronization” of a lattice of Whitney
boxes which parallels the coronization for D on ∂Ω (see 3.3.1). That is, we separate Whitney
boxes into bad boxes which g maps near bad cubes in D ∩ B or cubes on the “edges” in
scale and location of stopping time regions in D . This decomposition then maps forward to
a collection of domains whose total surface measure is bounded by the surface measure of
∂Ω plus the Carleson packing sums for the bad and “edge” cubes of D .

The proofs of Theorems D and E both follow a single similar argument to that of Theorem
C. In the Reifenberg flat case, the difference is that any single global Reifenberg parameteri-
zation g produced for the set is not in general bi-Lipschitz, so we have no uniform estimates
on how g distorts any given cube. In the uniformly rectifiable case, we have no global Reifen-
berg parameterization because there can be many scales and locations at which Reifenberg
flatness fails. In either case, we sidestep these by producing a collection of local (1 + δ)-
bi-Lipschitz parameterizations by parameterizing pieces of the domain above stopping time
regions in a graph coronization (see Definition 3.2.9) using single stopping time domains
composed of Whitney cubes. By similar arguments, the surface measure of these domains is
controlled by the surface masure of ∂Ω∩B(0, 1) plus the Carleson packing sum of the same
bad set of cubes in D ∩B and near “edges” of stopping time domains. We then fill parts of
Ω∩B(0, 1) that are missed by these domains with “buffer zones” of cubes on the exterior of
these domains as well as families of cubes which sit above surface cubes in the bad set. By
similar reasoning, the surface measure of these domains is bounded by the same Carleson
packing sums as above.

3.1.3 Acknowledgements
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3.2 Preliminaries

3.2.1 Conventions and basic definitions

Whenever we write A ≲ B, we mean that there exists some constant C independent of A and
B such that A ≤ CB. If we write A ≲a,b,c B for some constants a, b, c, then we mean that
the implicit constant C mentioned above is allowed to depend on a, b, c. We will sometimes
write A ≃ B to mean that both A ≲ B and B ≲ A hold.

In many computations, we use a constant C to denote a catch-all, general constant which
is allowed to vary significantly from one line to the next.
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Definition 3.2.1 (Hausdorff measure, Hausdorff distance, Nets). For F,E ⊆ Rn, a ∈ Rn,
we let

dist(E,F ) = inf{|x− y| : x ∈ F, y ∈ E},
dist(a,E) = dist({a}, E)

and define
diam(F ) = sup{|x− y| : x, y ∈ F}.

For any r > 0, we let
B(E, r) = {x ∈ Rd+1 : dist(x,E) < r}.

For any subset F ⊆ Rd+1, an integer m ≥ 0, and constant 0 < δ ≤ ∞, we define

H m(F ) = inf
{∑

diam(Ei)
d : F ⊆

⋃
Ei, diam(Ei) < δ

}
.

The Hausdorff m-measure of F is defined as

H m(F ) = lim
δ→0

H m
δ (F ),

We will only use this in the case m = d, and we often use the notation |F | = H d(F ). We
refer to the function H m

∞ as the m-dimensional Hausdorff content. Given two closed sets
E,F ⊆ Rd+1, and a third set B ⊆ Rd+1 we define the Hausdorff distance between E and F
inside B as

dB(E,F ) =
2

diamB
max

{
sup

y∈E∩B
dist(y, F ), sup

y∈F∩B
dist(y, E)

}
.

Given a subset E ⊆ Rd+1 and r > 0, we let Net(E, r) denote the set of r-nets of E. That is,
X ∈ Net(E, r) if X ⊆ E such that both

(i) For any x ̸= y ∈ X, |x− y| ≥ r,

(ii) E ⊆
⋃
x∈X B(x, r).

3.2.2 Reifenberg parameterizations

In this section, we record the basic facts about Reifenberg parameterizations needed from
[DT12].

3.2.2.1 Coherent Collections of Balls and Planes (CCBP)

Set rk = 10−k and let xj,k ∈ Rd+1, j ∈ Jk satisfy

|xj,k − xi,k| ≥ rk. (3.4)

Put Bj,k = B(xj,k, rk) and for λ > 0 define V λ
k =

⋃
j∈Jk λBj,k =

⋃
j∈Jk B(xj,k, λrk) where λB

is always the ball with the same center as B and radius dilated by a factor of λ. We also
assume

xj,k ∈ V 2
k−1. (3.5)
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We will always use a d-plane as the initial surface Σ0. We require

dist(xj,0,Σ0) ≤ ϵ for j ∈ J0. (3.6)

Finally, the coherent collection of planes is a collection of planes (in general of any dimension
m < d + 1, although here we only take d-planes) Pj,k associated to xj,k such that the
compatibility conditions

dxj,k,100rk(Pi,k, Pj,k) ≤ ϵ for k ≥ 0 and i, j ∈ Jk such that |xi,k − xj,k| ≤ 100rk (3.7)

dxi,0,100(Pi,0, Px) ≤ ε for i ∈ J0 and x ∈ Σ0 such that |xi,0 − x| ≤ 2, (3.8)

dxi,k,20rk(Pi,k, Pj,k+1) ≤ ε for i ∈ Jk and j ∈ Jk+1 such that |xi,k − xj,k+1| ≤ 2rk. (3.9)

With these conditions, we can define a CCBP

Definition 3.2.2. A CCBP is a triple (Σ0, {Bj,k}, {Pj,k}) such that conditions (3.4), (3.5),
(3.6), (3.7), (3.8), (3.9) are satisfied with ϵ sufficiently small in terms of d.

We first state a small modification of a lemma in [AS18] which gives criteria for a triple
(Σ0, {Bj,k}, {Pj,k}) to be a CCBP.

Lemma 3.2.1 (cf. [AS18] Theorem 2.5). For any k ∈ N∪{0}, let rk = 10−k. Let {xj,k}j∈Jk
be a collection of points such that for some d-plane P0 we have

dist(xj,0, P0) < ϵ,

|xj,k − xi,k| ≥ rk,

and, with Bj,k = B(xj,k, rk),
xi,k ∈ V 2

k−1

where
V λ
k =

⋃
j∈Jk

λBj,k.

Let Pj,k be a d-plane such that xj,k ∈ Pj,k. There is ϵ0 > 0 such that for any 0 < ϵ < ϵ0, if

ϵ′k(xj,k) ≲ ϵ for all k ≥ 0 and j ∈ Jk

then (P0, {Bj,k}, {Pj,k}) is a CCBP. See (3.74) for the definition of the ϵ′k numbers.

CCBPs allow the construction of Reifenberg parameterizations which we will denote by
the letter g. David and Toro give the following Theorem

Theorem 3.2.2 ([DT12] Theorems 2.15, 2.23). Let (Σ0, {Bj,k}, {Pj,k}) be a CCBP with ϵ
sufficiently small. Then there exists a bijection g : Rn → Rn such that

g(z) = z when dist(z,Σ0) ≥ 2, (3.10)

|g(z)− z| ≤ Cε for z ∈ Rn, (3.11)
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1

4
|z′ − z|1+Cε ≤ |g(z′)− g(z)| ≤ 3|z′ − z|1−Cε (3.12)

for z, z′ ∈ Rn such that |z′ − z| ≤ 1, and Σ = g(Σ0) is a Cε-Reifenberg flat set that contains
the accumulation set

E∞ =
{
x ∈ Rn ; x can be written as x = lim

m→+∞
xj(m),k(m), with k(m) ∈ N

and j(m) ∈ Jk(m) for m ≥ 0, and lim
m→+∞

k(m) = +∞
}
.

If in addition there exists M > 0 such that∑
k≥0

ϵ′k(fk(z))
2 ≤ L for all z ∈ Σ0,

then g is bi-Lipschitz: there is a constant C(n, d, L) ≥ 1 such that

C(n, d, L)−1|z − z′| ≤ |g(z)− g(z′)| ≤ C(n, d, L)|z − z′|.

3.2.2.2 The definition of g

Following Chapter 3 of [DT12], we take ψk to be a smooth function vanishing outside V 8
k

and θj,k to be a collection of smooth compactly supported functions in 10Bj,k such that
|∇mθj,k(y)| ≤ Cmr

−m
k and ψk(y) +

∑
j∈Jk θj,k(y) = 1. We then define a sequence of maps fk

by
f0(y) = y, fk+1 = σk ◦ fk

where
σk(y) = y +

∑
j∈Jk

θj,k(y) [πj,k(y)− y] = ψk(y)y +
∑
j∈Jk

θj,k(y)πj,k(y),

where πj,k is orthogonal projection onto Pj,k. In our application, we only care about points
inside V 8

k , so ψk(y) = 0 and the formula simplifies to

σk(y) =
∑
j∈Jk

θj,k(y) πj,k(y).

The map σk also satisfies
|σk(y)− y| ≤ Cϵrk (3.13)

for k ≥ 0 and y ∈ Σk.
The map g is constructed by, roughly speaking, interpolating between adjacent maps in

the sequence fk at distance rk from the surface Σk = fk(Σ0). In order to construct this,
David and Toro define a collection of linear isometries Rk on Rn. The following proposition
summarizes the properties of Rk that we need

Proposition 3.2.3 ([DT12] Proposition 9.29). Let R denote the set of linear isometries of
Rn. Also set

Tk(x) = TΣk(fk(x)) for x ∈ Σ0 and k ≥ 0.
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There exist C1 mappings Rk : Σ0 → R, with the following properties:

R0(x) = I for x ∈ Σ0,

Rk(x)(T0(x)) = Tk(x) for x ∈ Σ0 and k ≥ 0,

|Rk+1(x)−Rk(x)| ≤ Cε for x ∈ Σ0 and k ≥ 0, (3.14)

In addition, we record the bounds the distance between generations of tangent planes
and between planes at different locations

Lemma 3.2.4 ([DT12] Lemma 9.2). We have that for k ≥ 0 and x, x′ ∈ Σ0 such that
|x′ − x| ≤ 10,

D(TΣk+1(fk+1(x)), TΣk(fk(x))) ≤ C1ε

D(TΣk(fk(x
′)), TΣk(fk(x))) ≤ C2ε r

−1
k |fk(x′)− fk(x)|.

Now, following Chapter 10 in [DT12], we define a collection ρk of positive, smooth, radial
functions such that

∑
k≥0 ρk(y) = 1 for y ∈ Rn \ {0} and ρk(y) = 0 unless rk < |y| < 20rk.

Because [rk, 20rk] ∩ [rk−2, 20rk−2] = [rk, 20rk] ∩ [100rk, 2000rk] = ∅, we always have at most
two values of k such that ρk(y) ̸= 0 for any fixed y. In order to single out specific values of
k, we define functions l, n : R+ → N by

l(y) = min{k ∈ N : ρk(y) > 0}, (3.15)

n(y) = max{k ∈ N : ρk(y) > 0} = l(y) + 1. (3.16)

More concretely, we have

n(y) = n ⇐⇒ 20rn+1 = 2rn < y ≤ 20rn (3.17)

because then ρn+1(y) = 0 while ρn(y) > 0. Roughly speaking, n(y) gives the index of the
maps fn(y) which is most relevant for the behavior of g on points roughly distance |y| from
Σ0. We will now assume Σ0 = Rd and write

g(z) =
∑
k≥0

ρk(y) {fk(x) +Rk(x) · y} for z = (x, y)

We will commonly use the notation z = (x, y) as understood above when discussing points
in the domain of g.

3.2.3 Whitney cubes, Whitney boxes, and Christ-David cubes

We will make significant use of the standard Whitney decomposition of the upper half-space
with respect to Rd × {0} ⊆ Rd+1.

Definition 3.2.3 (Whitney cubes). Define

W =
{
[k12

−n, (k1 + 1)2−n]× · · · × [kd2
−n, (kd + 1)2−n]× [2−n, 2−n+1] : k1, . . . , kd, n ∈ Z

}
.
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W consists of exactly the dyadic cubes in Rd × [0,∞) which satisfy ℓ(W ) = h(W ) =
dist(W,Rd) where ℓ(W ) = h(W ) denote the side length of W and the height of W . Cubes
W,R ∈ W have a natural partial order induced by distance to Rd × {0}. We define the
projection π : Rd+1 → Rd × {0} by π(x, y) = x where (x, y) ∈ Rd × R and write

W ≤ R

if and only if π(W ) ⊂ π(R). If h(W ) = 1
2
h(R), we call W a child of R and R a parent of W .

This gives a partial order on W which we use to define the descendants of W

D(W ) = {R ∈ W : R ≤ W}.

This partial order imposes a natural tree structure on W which we will use in stopping
time constructions. It will additionally be useful to refine the family of Whitney cubes into
rectangular Whitney boxes in which the side length of the boxes in the first d-coordinate
directions is allowed to vary.

Definition 3.2.4 (Whitney boxes). We define the set of p-th order Whitney boxes by

Rp =
{
[k12

−p−n, (k1 + 1)2−p−n]× · · · × [kd2
−p−n, (kd + 1)2−p−n]× [2−n, 2−n+1] : ki, n ∈ Z

}
.

These are like Whitney cubes, but they have lengths along the first d coordinate directions
contracted by a factor of 2p. Given R ∈ Rp, we call ℓ(R) = 2−p−n the side length and
h(R) = 2−n = dist(R,Rd) the height so that

ℓ(R) = 2−ph(R).

Any collection of Whitney boxes has a tree structure induced by the same partial order as
in Definition 3.2.3. We set R = ∪pRp.

We will later construct stopping time regions composed of Whitney boxes in the upper
half space. We will also need the following notion of “closeness”.

Definition 3.2.5 (A-close subsets). We call two subsets W,R ⊆ Rd+1 A-close (as in [DS93]
pg. 59) if the following hold:

1

A
diamW ≤ diamR ≤ A diamW,

dist(W,R) ≤ A(diamW + diamR).

We will also use the notation
W ≃A R

when W is A-close to R.

We will also need families of partitions of ∂Ω ⊆ Rd+1 which function as dyadic cubes do
for Rd+1. These were originally devised by Christ in [Chr90], but the formulation given here
is due to Hytonen and Martikainen from [HM12].
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Theorem 3.2.5 (Christ-David cubes). Let X be a doubling metric space. Let Xk be a nested
sequence of maximal ρk-nets for X where ρ < 1/1000 and let c0 = 1/500. For each k ∈ Z
there is a collection Dk of “cubes,” which are Borel subsets of X such that the following hold.

(i) X =
⋃
Q∈Dk

Q.

(ii) If Q,Q′ ∈ D =
⋃

Dk and Q ∩Q′ ̸= ∅, then Q ⊆ Q′ or Q′ ⊆ Q.

(iii) For Q ∈ D , let k(Q) be the unique integer so that Q ∈ Dk and set ℓ(Q) = 5ρk(Q). Then
there is ζQ ∈ Xk so that

B(xQ, c0ℓ(Q)) ⊆ Q ⊆ B(xQ, ℓ(Q))

and
Xk = {xQ : Q ∈ Dk}.

If in addition we assume X ⊆ Rd+1 and X is Ahlfors-David d-regular, then these cubes also
satisfy

(iv) |Q| ≃d (diamQ)d ≃d ℓ(Q)
d.

For any Q ∈ D , we will use the notation Q(1) to refer to the parent of Q

We will refer to any family of Christ-David Cubes for ∂Ω by D and define

BQ = B(xQ, ℓ(Q)).

3.2.4 Coronizations for Reifenberg flat and uniformly rectifiable
sets

The boundary measure bounds for our Lipschitz decompositions come from Carleson packing
conditions for well-chosen coronizations of a Christ-David lattice for ∂Ω. Coronizations
essentially consist of a partition of D into “good” cubes G and “bad” cubes B and a further
partition of G into disjoint stopping time regions F = {Si}i.

Definition 3.2.6 (stopping time regions). We call S ⊆ G ⊆ D a stopping time region if it
is coherent, i.e.

(i) There exists a “top cube” Q(S) ∈ S such that R ⊆ Q(S) for all R ∈ S,

(ii) If Q ∈ S and R ∈ D satisfies Q ⊆ R ⊆ Q(S), then R ∈ S,

(iii) If Q ∈ S, then either every child of Q is in S, or none of them are.

Remark 3.2.6. We note that Definition 3.2.6 makes sense with any well-ordered collection of
subsets of Rd+1 in place of D . For instance, we will use the term stopping time region to
refer to such collections of Whitney boxes with the partial order defined in Definition 3.2.3.

Definition 3.2.7 (Coronizations (cf. [DS93] Definition 3.13)). We say that a triple (G ,B,F )
is a coronization of D if
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(i) F is a collection of disjoint stopping time regions as in Definition 3.2.6 with G =⋃
S∈F S,

(ii) G ∪ B = D and G ∩ B = ∅,

(iii) B and {Q(S)}S∈F satisfy Carleson packing conditions. That is, there exist constants
C1, C2 > 0 such that for any Q ∈ D∑

R∈B
R⊆Q

ℓ(R)d ≤ C1Hd(Q), and
∑
S∈F

Q(S)⊆Q

ℓ(Q(S))d ≤ C2Hd(Q).

The stopping time regions in coronizations collect scales and locations into good, “con-
nected” packages on which ∂Ω behaves well. David and Semmes used the concept of a
coronization to produce a definition of uniform rectifiability involving corona decompositions

Definition 3.2.8 (Corona decomposition (cf. [DS93] Definition 3.19)). We say that a set
E ⊆ Rn admits a d-dimensional corona decomposition if for any constants η, θ > 0, there
exists a coronization (G ,B,F ) of a d-dimensional lattice D for E such that for each S ∈ F ,
there exists a d-dimensional Lipschitz graph Γ(S) with Lipschitz constant less than η such
that for each x ∈ 2Q and Q ∈ S

dist(x,Γ(S)) ≤ θ diam(Q). (3.18)

If one has an appropriate coronization, then one can use Reifenberg parameterizations to
produce the approximating Lipschitz graphs in the definition of the corona decomposition
directly. We call these specific good coronizations graph coronizations

Definition 3.2.9 (graph coronizations). For constantsM, ϵ, δ > 0, we say that (G ,B,F ) is
a d-dimensional (M, ϵ, δ)−graph coronization if it is a coronization such that B ⊇ BWGL(M, ϵ)
and for each S ∈ F and Q ∈ S, there exists a d-plane PQ ∋ xQ such that

(i) bβE(MBQ, PQ) ≤ 2bβE(MBQ) ≤ 2ϵ,

(ii)
∑

x∈Q∈S β
d,1
E (MBQ)

2 ≤ ϵ2 for any x ∈ Q(S).

(iii) Angle(PQ, PQ(S)) ≤ δ,

Condition (ii) above uses the content beta number introduced by Azzam and Schul in
[AS18]. This is closely related to the more standard Lp beta numbers used by David and
Semmes in characterizing uniform rectifiability via the strong geometric lemma.

Definition 3.2.10 (Lp beta numbers and content beta numbers). Let B = B(x, r) ⊆ Rd+1

and let P be a d-plane. We define

βdE,p(B,P ) =

(
1

rd

�
B∩E

(
dist(y, P )

r

)p
dH d(y)

)1/p

,

and we define the Lp beta number as

βdE,p(B) = inf{βdE,p(B,P ) : P is a d-dimensional plane in Rd+1}.
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Similarly, we define

βd,pE (B,P ) =

(
1

rdB

� ∞

0

H d
∞{x ∈ B ∩ E : dist(x, P ) > trB}tp−1dt

)1/p

,

and we define the Lp content beta number as

βd,pE (B) = inf{βd,pE (B,P ) : P is a d-dimensional plane in Rd+1}.

If E is Ahlfors d-regular, then these two beta numbers are comparable with constants de-
pending on d and the regularity constant.

Proposition 3.2.7 (cf. [DS93] Part I, Theorem 1.57 and Theorem 2.4; Part IV Proposition
2.1). Let E ⊆ Rd+1 be Ahlfors d-regular for d ≥ 1. The following are equivalent:

(i) E is d-uniformly rectifiable,

(ii) E satisfies the strong geometric lemma: For any Q ∈ D , M > 1, and 1 ≤ p < 2d
d−2

,∑
R⊆Q

βdE,p(MBR)
2ℓ(R)d ≲M,d ℓ(Q)

d,

(iii) E admits a corona decomposition.

(iv) E admits an (M, ϵ, δ)-graph coronization for any M, ϵ, δ > 0.

The main tool we will use to create Lipschitz decompositions is the graph coronization. In
Appendix 3.7, we review the d-dimensional traveling salesman results of [AS18] and [Hyd22a]
which give a similar analysis for general Reifenberg flat sets. By collecting these results, we
prove the following proposition:

Proposition 3.2.8. For any d, n ∈ N with 0 < d < n, there exists ϵ0(d, n), δ(d, n) > 0 such
that if ϵ ≤ ϵ0 ≪ δ4 and E ⊆ Rn is (ϵ, d)-Reifenberg flat, then E admits an (M, ϵ, δ)-graph
coronization for any M > 0.

We will use the existence of graph coronizations as in the previous two propositions to
prove Theorems D and E.

We also record some important facts about using beta numbers to control the Hausdorff
distance of planes. Given a set E ⊆ Rd+1 and a Christ-David lattice D for E, we define
epsilon numbers adapted to the lattice D and a collection of planes {PQ}Q∈D . Fix K = 104

ρ
.

We define

ϵ(Q) = sup

{
dKBR

(PU , PR) : k(R) ∈ {k(Q), k(Q)− 1}, k(U) = k(Q), xQ ∈ K

10
BQ ∩ K

10
BR

}
.

This is essentially a version of David and Toro’s ϵ′k numbers which is adapted to a cube
structure rather than a general collection of nets. Now, let M ≥ 10K

ρ2
. We will use these to

control ϵ′k in terms of βd,1(MBQ) in the second lemma below. First, we give a recall a general
result that allows one to bound the Hausdorff distance between planes by beta numbers:
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Lemma 3.2.9 ([AS18] Lemma 2.16). Suppose E ⊆ Rn and B is a ball centered on E such
that for all balls B′ ⊆ B, H d

∞(B′) ≥ crdB′. Let P and P ′ be two d-planes. Then

dB′(P, P ′) ≲d,c

(
rB
rB′

)d+1

βd,1E (B,P ) + βd,1E (B′, P ′).

The next lemma applies this to bound ϵ(Q) by βd,1E (MBQ):

Lemma 3.2.10. Let D be a Christ-David lattice for a lower content d-regular set E and
K,M > 0 be constants such that 104

ρ
≤ K ≤ 10−1ρ2M . If {PQ}Q∈D is a family of d planes

satisfying βd,1E (2ρ−1KBQ, PQ) ≲ βd,1E (2ρ−1KBQ), then

ϵ(Q) ≲ρ,M,d β
d,1
E (MBQ).

Proof. Let U,R ∈ D be cubes which achieve the supremum in the definition of ϵ(Q). Then

ϵ(Q) = dKBR
(PU , PR).

We want to apply Lemma 3.2.9 with B = B′ = KBR. First, we prove some ball inclusions.
We claim

KBR ⊆ 2ρ−1KBU . (3.19)

Indeed, we let y ∈ KBR and we compute

|y − xU | ≤ |y − xR|+ |xR − xQ|+ |xQ − xU |

≤ Kℓ(R) +
K

10
ℓ(R) +

K

10
ℓ(U) ≤ 2Kℓ(R) ≤ 2ρ−1Kℓ(U).

Second, we claim
2ρ−1KBU ⊆MBQ and 2ρ−1KBR ⊆MBQ. (3.20)

Because ℓ(R) ≥ ℓ(U), it suffices to prove 2ρ−1KBR ⊆ MBQ. We let y ∈ 2ρ−1KBR and
compute

|y − xQ| ≤ |y − xR|+ |xR − xQ| ≤ 4ρ−1Kℓ(R) +
K

10
ℓ(R) ≤ 10Kρ−2ℓ(Q) < Mℓ(Q).

Now, we apply Lemma 3.2.9 with B = B′ = KBR, then

dKBR
(PU , PR) ≲ βd,1E (KBR, PR) + βd,1E (KBR, PU)

≲ρ β
d,1
E (2ρ−1KBR, PR) + βd,1E (2ρ−1KBU , PU)

≲ βd,1E (2ρ−1KBR) + βd,1E (2ρ−1KBU)

≲M βd,1E (MBQ).

where the second line follows from (3.19), the third line follows from the hypothesis on PQ,
and the final line from (3.20). ■
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3.3 The proof of Theorem C

Fix constants ρ = 1
1000

, K = 104

ρ
, M = 10K

ρ2
, A0 =

1000
√
d

c0ρ
. Throughout this section, assume

that Ω ⊆ Rd+1 satisfies the hypotheses of Theorem C. We begin by constructing a Reifenberg
parameterization for ∂Ω ∩B(0, 1)

3.3.1 The CCBP adapted to D

We want to form a CCBP adapted to the Christ-David lattice D for ∂Ω with the aim of
applying David and Toro’s bi-Lipschitz Reifenberg parameterization result Theorem 3.2.2.
For any k ∈ Z, let s(k) be an integer such that

50ρs(k) ≤ rk < 50ρs(k)−1 (3.21)

We note that if Q ∈ Ds(k), then this means

10ℓ(Q) ≤ rk < 10ρ−1ℓ(Q) (3.22)

and
ρ

5000
rk ≤

c0
10ρ

rk ≤ c0ℓ(Q) ≤ diamQ ≤ ℓ(Q) ≤ rk
10
.

For any k ≥ 0, define

Yk = {xQ : Q ∈ Ds(k), Q ∩B(0, A0) ̸= ∅}, (3.23)

Xk ∈ Net(Yk, rk). (3.24)

We enumerate Xk = {xj,k}j∈Jk and often use the notation xj,k = xQ = xQj,k
. Let P0 achieve

the infimum in the definition of bβ∂Ω(B(0, 10A0)) and define

Bj,k = B(xj,k, rk),

Pj,k = PQj,k
,

where PQj,k
∋ xQj,k

are such that bβd,1∂Ω(2ρ
−1KBQj,k

) ≲ bβd,1∂Ω(2ρ
−1KBQj,k

) as in the hypothe-
ses of Lemma 3.2.10. We first show that ϵ′k(xj,k) is controlled by ϵ(Qj,k).

Lemma 3.3.1. Fix k ≥ 0 and Q ∈ Ds(k). For any z ∈ Rd+1 such that |z−xQ| < 200ρ−1ℓ(Q),

ϵ′k(z) ≤ Kϵ(Q).

Proof. We first show that the supremum in the definition of ϵ(Q) is over a larger collection
of pairs of planes than that in the definition of ϵ′k(z). Let i ∈ Jk be such that z ∈ 10Bi,k.
Then by (3.22),

|xQ − xi,k| < |xQ − z|+ |z − xi,k| < 200ρ−1ℓ(Q) + 10rk < 300ρ−1ℓ(Qi,k) <
K

10
ℓ(Q)

because K ≥ 104ρ−1 and ℓ(Q) = ℓ(Qi,k). Therefore, xQ ∈ K
10
BQi,k

. If instead z ∈ 11Bi,k−1

for some i ∈ Jk−1, then

|xQ−xi,k−1| < |xQ−z|+|z−xi,k−1| < 200ρ−1ℓ(Q)+11rk−1 < 310ρ−1ℓ(Qi,k−1) <
K

10
ℓ (Qi,k−1) .
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Therefore, xQ ∈ K
10
BQi,k−1

. In addition, for any admissible xi,l in the definition of ϵ′k(z) we
can write 100rl ≤ 1000ρ−1ℓ(Qi,l) < Kℓ(Qi,l) so that 100Bi,l ⊆ KBQi,l

. Let Pi,k and Pm,l be
planes which achieve the supremum in the definition of ϵ′k(z). Then

dxm,l,100Bm,l
(Pi,k, Pm,l) ≤

Kℓ(BQm,l
)

100rl
dKBQm,l

(PQi,k
, PQm,l

) ≤ KdKBQm,l
(PQi,k

, PQm,l
)

using the fact that ℓ(Qm,l) < rl. ■

Applying this result for z = xj,k shows that ϵ′k(xj,k) ≲ ϵ(Qj,k) which we can use to prove
that the triple Z = (P0, {Bj,k}, {Pj,k}) is a CCBP.

Lemma 3.3.2. Z is a CCBP.

Proof. We will use Lemma 3.2.1. First, we will show that for any j ∈ J0, dist(xj,0, P0) ≲ ϵ.
Indeed, xj,0 = xQ for some Q ∈ Ds(0) with Q ∩ B(0, A0) ̸= ∅. Hence, xQ ∈ B(0, 2A0) ∩ ∂Ω
so that bβ∂Ω(B(0, 10A0), P0) ≤ ϵ implies

dist(xQ, P0) ≲ bβ(B(0, 10A0)) · 10A0 ≲d ϵ.

Now, we fix k > 0 and j ∈ Jk and prove the following claim:

Claim T:here exists i ∈ Jk−1 such that xj,k ∈ Bi,k−1

Proof I:ndeed, let xj,k = xQj,k
. If s(k) = s(k− 1), then Yk−1 = Yk so that xQj,k

∈ Yk−1. The
claim follows since Xk−1 is an rk−1-net for Yk−1. If instead s(k) > s(k−1), then x

Q
(1)
j,k

∈ Yk−1

so that there exists i ∈ Jk−1 such that x
Q

(1)
j,k

∈ Bi,k−1. We have

ℓ
(
Q

(1)
j,k

)
= 5ρs(k−1) ≤ 5ρs(k)−1 ≤ rk−1

so that

dist(xQj,k
, xi,k−1) ≤ dist(xQj,k

, x
Q

(1)
j,k
) + dist(x

Q
(1)
j,k
, xi,k−1) ≤ ℓ

(
Q

(1)
j,k

)
+ rk−1 ≤ 2rk−1

which proves xQj,k
∈ 2Bi,k−1. ■

By Lemma 3.3.1, it suffices to show that ϵ(Qj,k) ≲ ϵ. But by the definition of PQj,k
and

Lemma 3.2.10, we have ϵ(Qj,k) ≲M,d β
d,1
∂Ω(MBQj,k

) ≲ ϵ. ■

Since we’ve shown that Z is a CCBP, Theorem 3.2.2 gives a Reifenberg parameterization
g : Rd+1 → Rd+1 such that

g(P0) ∩B(0, 1) = ∂Ω ∩B(0, 1)

Without loss of generality, we can assume P0 = Rd×{0} and translate the Whitney decompo-
sition W as in Definition 3.2.3 to a new decomposition W ′ such that W0 = [−2, 2]d× [4, 8] ∈
W ′. We have that

Ω ∩B(0, 1) ⊆ g([−2, 2]d × [0, 8])

because ∂Ω is contained in the closure of ∪kXk, so in practice we only need to consider the
set of descendants of W0 to cover Ω ∩B(0, 1):

W0 = {W ∈ W ′ : W ∈ D(W0)}. (3.25)

We can now derive some useful properties of g.
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Lemma 3.3.3 (Properties of g).

(i) For any x ∈ [−2, 2]d × {0} and n ∈ N,

fn(x) ∈ V 8
n ,

(ii) For any z = (x, y) ∈ [−2, 2]d × [0, 8]

(1− C(d)ϵ)|y| ≤ dist(g(z), ∂Ω) ≤ (1 + C(d)ϵ)|y|. (3.26)

(iii) For any x ∈ [−2, 2]d × {0} and p, n ∈ N with p < n, there exists a collection of cubes
Qn ⊆ Qn−1 ⊆ · · · ⊆ Qp such that for any k with p ≤ k ≤ n, dist(g(x, rk), Qs(k)) ≲ rk
and

n∑
k=p

ϵ′(fk(x))
2 ≲M,ρ,d

n∑
k=p

βd,1∂Ω(MBQk
)2.

In particular, g is L′(L, ρ,M, d)-bi-Lipschitz.

Proof. Let z = (x, y) be as in (ii) with n = n(y). We first prove (ii) with the added hypothesis
that fn(x) ∈ V 8

n . We will then prove (i) which will complete the proof of (ii).
Observe that

g(z)− fn(x) =
∑
k

ρk(y) {fk(x)− fn(x) +Rk(x) · y}

where |fk(x) − fn(x)| ≲ ϵrn and Rk(x) · y is a vector of norm |y| which is orthogonal to
the tangent plane Tk(x) to Σk at fk(x). The fact that fn(x) ∈ V 8

n implies the existence of
Q ∈ Ds(n) such that |fn(x) − xQ| ≤ 8rn. The fact that bβ∂Ω(MBQ, PQ) ≲ ϵ combined with
Lemma 3.6.1 and (3.77) implies

dfn(x),19rn(Σn, ∂Ω) ≤ dfn(x),19rn(Σn, PQ) + dfn(x),19rn(PQ, ∂Ω) ≲ ϵ. (3.27)

We conclude dfn(x),19rn(Tn(x) + fn(x), ∂Ω) < Cϵ, which implies

(1− Cϵ)|y| ≤ dist(g(z), ∂Ω) ≤ (1 + Cϵ)|y|

as desired.
We now prove (i) by induction on n. For the base case n = 0, notice that f0(x) =

x ∈ B(0, 5
√
d) ∩ P0 so that bβ∂Ω(B(0, 10A0), P0) ≤ ϵ implies the existence of y ∈ ∂Ω with

dist(y, x) ≲A0 ϵ. There exists Q0 ∈ Ds(0) such that y ∈ Q0 and dist(Q, 0) ≤ 10
√
d so that

xQ0 is a member of the set Y0 (see (3.23)) from which the maximal net X0 forming the CCBP
is taken. Notice that

|f0(x)− xQ0 | ≤ |x− y|+ |y − xQ0| ≤ Cϵ+ ℓ(Q0) ≤ 2r0.
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Hence, we are done if xQ0 ∈ X0. Otherwise, there exists xQ′
0
∈ X0 such that |xQ0 −xQ′

0
| ≤ r0

so that |f0(x)− xQ′
0
| ≤ 3r0 implying f0(x) ∈ V 3

0 . This proves the base case for (i).
For the inductive step, assume that fn(x) ∈ V 8

n for some n ∈ N. Using (3.27), we find
y ∈ ∂Ω such that

|fn+1(x)− y| ≤ |fn+1(x)− fn(x)|+ |fn(x)− y| ≲ ϵrn+1

and hence there exists Qn+1 ∈ Ds(n+1) with dist(Qn+1, 0) ≤ 10
√
d such that |fn+1(x) −

xQn+1 | ≤ 2rn+1. By a similar argument to the base case, this finishes the proof of (i).
To prove (iii), notice that f(x) ∈ ∂Ω so that there exists an infinite chain of (possibly

repeating) cubes Q0 ⊇ Q1 ⊇ · · · ∋ f(x) where Qk ∈ Ds(k). We claim that

ϵ′(fk(x)) ≲ ϵ(Qk) ≲ βd,1∂Ω(MBQk
).

Indeed, by Lemmas 3.3.1 and 3.2.10, we only need to show that |fk(x)−xQk
| < 200ρ−1ℓ(Qk)

to verify the first inequality. But we have

|fk(x)− xQk
| ≤ |fk(x)− f(x)|+ |f(x)− xQk

|
≤ Cϵrk + 10rk + ℓ(Qk) ≤ (Cϵ+ 100)ρ−1ℓ(Qk) + ℓ(Qk) ≤ 102ρ−1ℓ(Qk)

as desired. Because the set {n : s(k) = s(n)} has a uniformly bounded number of elements
in terms of ρ, it follows that

n∑
k=p

ϵ′k(fk(x))
2 ≲M,ρ

n∑
k=p

ϵ(Qk)
2 ≲M,ρ,d

n∑
k=p

βd,1∂Ω(MBQk
)2.

The claim that dist(g(x, rk), Qk) ≲ rk follows from (ii). By the hypotheses on Ω, we have∑∞
k=1 ϵ

′(fk(x))
2 ≲

∑
f(x)∈Q β

d,1
∂Ω(MBQ)

2 ≤ L so that g is L′(L, ρ,M, d)-bi-Lipschitz by The-
orem 3.2.2. ■

Now that we know that g is L′-bi-Lipschitz, we define p(L′) ∈ Z such that

2p−1 ≤ L′ < 2p (3.28)

and we replace W0 with

Rw = {R ∈ Rp : ∃W ∈ W0, R ⊆ W}.

That is, Rw is the set of Whitney boxes R with ℓ(R) = 2−ph(R) which are contained in some
member of W0. This ensures that

L′ℓ(R) = L′2−ph(R) ≤ h(R) (3.29)

so that g does not stretch R across too far of a region on the scale of h(R).
We say more about the shape of image boxes in the following lemma:
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Lemma 3.3.4 (Image boxes). For any W ∈ Rw, we have

(1− Cϵ)h(W ) ≤ dist(g(W ), ∂Ω) ≤ (1 + Cϵ)h(W ), (3.30)

(1− Cϵ)h(W ) ≤ diam g(W ) ≤ 5
√
dh(W ). (3.31)

There exists constants C0(L
′), C1(d) such that

B(g(cW ), C−1
0 h(W )) ⊆ g(W ) ⊆ B(g(cW ), C1h(W )) (3.32)

where cW is the center of W .

Proof. We first note that (3.30) follows from (3.26) and the fact that dist(W,Rd) = h(W )
by definition. To prove (3.31), let z, z′ ∈ R with z = (x, y), z′ = (x′, y′). We have

|g(x, y)− g(x′, y′)| ≤ |g(x, y)− g(x′, y)|+ |g(x′, y)− g(x′, y′)|
≤ L′|x− x′|+ 2|y − y′|
≤ L′

√
dℓ(R) + 2h(R)

≤ 5
√
dh(R)

The lower bound follows from (3.26) by considering the distance between images of points
in the lower and upper faces of W . To prove (3.32), we first observe that each box W ∈ R
contains a small ball B(cW , c(L

′)h(W )) around its center. Since g is L′-bi-Lipschitz, we get
a larger constant C0(L

′) such that the lower containment in (3.32) holds. The existence of
C1(d) as in the upper containment follows from the upper inequality in (3.31). We also note
that because g is injective and distinct boxes R,W ∈ Rw have disjoint interiors, we have

B(g(cW ), C−1
0 h(W )) ∩B(g(cR), C

−1
0 h(R)) = ∅. (3.33)

■

3.3.2 Whitney coronizations and the Lipschitz decomposition

In Item (iii) of Lemma 3.3.3, we showed that the mapping g was bi-Lipschitz so that ∂Ω
is locally a bi-Lipschitz image. Hence, ∂Ω is d-uniformly rectifiable and therefore has an
(M, ϵ, δ)-graph coronization for arbitrarily small values of ϵ and δ by Proposition 3.2.7. Take
ϵ′(d, L), δ′(d, L) > 0 fixed later sufficiently small and let C = (G ,B,F ) be an (M, ϵ′, δ′)-
graph coronization for ∂Ω.

The plan for the proof of Theorem C is to construct a “coronization” of Rw which
“follows” the coronization C of ∂Ω. That is, we will construct a triple

Cw = (Gw,Bw,T )

of good boxes, bad boxes, and stopping time regions T = {T}T∈T (see Remark 3.2.6)
partitioning Gw such that for each T ∈ T , there exists some S ∈ F such that the images of
all boxes in T under g are “surrounded” in scale and location by cubes in S.
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Definition 3.3.1 (g-Whitney coronizations). Let g,Rw be as above. We now give a partition
of Rw into a bad set Bw and good set Gw which picks out all Whitney boxes whose images
under g are “A0-surrounded” by surface cubes within a single stopping time region S ∈ F :

Gw = {W ∈ W : ∃S ∈ F , ∀Q ∈ D such that Q ≃A0 g(W ) we have Q ∈ S} , (3.34)

Bw = W \ Gw. (3.35)

(See Definition 3.2.5.) Given a root box W ∈ Gw, we define the stopping time region TW
with top cube W to be the maximal sub tree of D(W )∩Gw such that for any R ∈ TW , either
all of its children are in TW , or none are. Any such stopping time region has associated
minimal cubes and stopped cubes

m(TW ) = {R ∈ TW : R has a child not in TW},
Stop(TW ) = {R ∈ W : R has a parent in m(TW )}.

We initialize our construction with the lattice Rw and triple (Gw,Bw,T0 = ∅). Given the
k-th stage stopping time collection Tk, we choose a root box W ∈ Gw \∪T∈Tk

T and form the
stopping time region TW . We set Tk+1 = Tk ∪ {TW}. Repeating this process inductively,
we obtain a partition T =

⋃∞
k=1 Tk of Gw into coherent stopping time regions. This gives

the triple Cw = (Gw,Bw,T ). We call Cw the g-Whitney coronization of Rw with respect to
C = (G ,B,F ).

Remark 3.3.5 (improving the stopping time). In this construction, we used Whitney boxes
with side length ℓ(R) = 2−ph(R) to ensure that for any R ∈ Rw, diam g(R) ≲d h(R).
Without this condition or some other method of controlling the size of image boxes, we
could have z = (x, y), z = (x′, y′) such that h(R) ≪ |g(z)− g(z′)| which would cause us to
lose control of the change in Dg across R we desire in Lemma 3.3.8 below.

What we really want are image pieces of some kind which satisfy the conclusions of
Lemma 3.3.4 along with small parameterization derivative change across the pieces as in
Lemma 3.3.8 below. If one could form reasonable stopping time domains out of similar
pieces whose images satisfy the conclusions of 3.3.4 with constant C0 dependent only on
d, this would essentially prove a version of Theorem C without hypothesis (ii). If g were
K(d)-quasiconformal, then this could likely be accomplished by adding modifications to the
stopping time by dynamically either combining or cutting apart children boxes for a given
top box W (T ) along coordinate directions according to the size and shape of Dg inside.
In general though, Dg can distort boxes so badly that coordinate boxes cannot be mapped
forward appropriately in general, so one would need to devise a better way of partitioning
the domain into pieces which are mapped forward well under a more wild parameterization.

We will use Cw to break up Rw into regions which will map forward under g to the
Lipschitz graph domains we desire as in the conclusion of Theorem C

Definition 3.3.2 (Stopping time domains). Let Cw = (Gw,Bw,T ) be a g-Whitney coro-
nization as above. For each T ∈ T , we define a stopping time domain

DT =
⋃
W∈T

W.

100



For each W ∈ Bw, we note that ℓ(W ) = 2−ph(W ) where p is as in (3.28) and define a
collection of associated trivial domains by chopping W into 2p cubes of common side length
ℓ(W ). That is, assuming W = [0, ℓ(W )]d × [h(W ), 2h(W )], we set

LW = {[0, ℓ(W )]d × [h(W ) + kℓ(W ), h(W ) + (k + 1)ℓ(W )] : 0 ≤ k ≤ 2p − 1}.

The collection L ′ = {DT}T∈T ∪
⋃
W∈Bw

LW is a partition of
⋃
W∈R W = [−2, 2]d× [0, 8] up

to finite overlaps on boundaries. Each cube domain RW ∈ LW is C(d)-Lipschitz graphical,
but the domain DT is not Lipschitz graphical in general. However, T consists of a coherent
collection of boxes of a given ratio of side length to height ℓ(R) = 2−ph(R). Therefore,
applying a dilation Ap by a factor of 2p in the first d coordinates gives a domain Ap(DT )
consisting of cubes. Proposition 3.5.1 then gives the existence of a d-rectifiable, d-Ahlfors
upper regular set ΣT such that

Ap(DT ) \ ΣT =
⋃
j∈JT

Ap(Dj
T )

where {Ap(Dj
T )}j∈JT is a collection of C(d)-Lipschitz graph domains with disjoint interiors.

By Lemma 3.5.4, we then get the existence of a constant C ′(L, d) such that Dj
T is a C ′(L, d)-

Lipschitz graph domain. We then finally define

L0 =
{
Dj
T

}
T∈T ,j∈JT

∪
⋃

W∈Bw

LW .

We can now define the collection of Lipschitz graph domains L as desired in Theorem
C:

Definition 3.3.3 (Lipschitz decomposition). Let L0 be as in Definition 3.3.2. We define
the Lipschitz decomposition of Ω ∩B(0, 1) as

L = {g(D) : D ∈ L0}. (3.36)

In order to prove Theorem C, it suffices to prove Propositions 3.3.6 and 3.3.7 below.

Proposition 3.3.6. Let Ω be as in Theorem C and L = {Ωj}j∈JL
be as in (3.36). There

exists L1(L, d, ϵ) > 0 such that for any j ∈ JL , Ωj is an L1-Lipschitz graph domain.

To prove Proposition 3.3.6, we use the fact that the graph coronization C of ∂Ω and the
Whitney coronization Cw of Definition 3.3.1 adapted to C were chosen so that Dg is very
close to being constant on any given domain D ∈ L0. This uses the explicit calculations for
Dg given in Proposition 3.6.7. This means g distorts D only slightly such that D remains a
Lipschitz graph domain (see Proposition 3.5.6). The refinement of Whitney cubes to smaller
Whitney boxes ensures that diam(g(W )) ≃d h(W ) holds for any box W so that g(W ) does
not stretch across too long of a region of ∂Ω compared to its distance from ∂Ω. If W ∈ BW ,
then this ensures that Dg|W varies at a rate determined at worst by the Reifenberg flatness
constant ϵ. Because in this case, W is divided into the set LW of cubes, which are C(d)-
Lipschitz graph domains (note C is independent of L), g maps them forward to Lipschitz
graph domains given that ϵ is fixed small enough with respect to d.
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The construction of stopping time regions T proceeds in such a way that any T ∈ T
is a coherent collection of (potentially long and thin) Whitney boxes such that the change
in Dg on DT is controlled by the geometry of ∂Ω inside some surface stopping time region
S ∈ F . These regions are defined such that ∂Ω looks like a Lipschitz graph with small
constant ϵ′(L, d) and angle variation δ′(L, d) on the scale of cubes in S from which we derive
that Dg|DT

varies at a rate determined by δ′(L, d) (See Lemma 3.3.8), giving Lipschitz
graphicality for domains in {g(Dj

T )}j∈JT ,T∈T by Proposition 3.5.6 again as long as ϵ′, δ′ are
fixed small enough with respect to L and d.

Proposition 3.3.7. Let Ω be as in Theorem C and L = {Ωj}j∈JL
be as in (3.36). For any

y ∈ ∂Ω ∩B(0, 1) and 0 < r < 1, we have∑
j∈jL

Hd(∂Ωj ∩B(y, r)) ≲ϵ,L,d r
d. (3.37)

To prove 3.3.7 we use the fact that the Whitney coronization is chosen in such a way
that the images of boxes in the bad set Bw have surface measure controlled by the measure
of the A0-close bad cubes B or cubes in D on the “edges” of stopping time regions which we
collect in the set Be in (3.45) below. These cubes form a Carleson set (see Lemma 3.3.12)
which gives Carleson packing type estimates for the surface measure of the image cubes
{g(RW )}W∈Bw, RW∈LW

. Because the only time we stop in the construction of T ∈ T is
when we hit some W ∈ Bw the surface measure of domains in {g(DT )}T∈T is controlled by
the measure of nearby cubes in Be. The fact that g is bi-Lipschitz and preserves distances
to the boundary means that the family {g(W )}W∈R behaves in many ways like a Whitney
decomposition itself (see Lemma 3.3.10) so that we can bound the number of image boxes
which are A0-close to any fixed bad cube Q ∈ Be, giving the desired Carleson type estimates.

3.3.3 Lipschitz bounds for Theorem C

The goal of this section is to prove Proposition 3.3.6. The following lemma allows us to
control the change in Dg on any stopping time domain T .

Lemma 3.3.8 (Variation of Dg). For any T ∈ T and z, w ∈ DT , we have

|Dg(z) ·Dg(w)−1 − I| ≤ Cδ′ (3.38)

Proof. First, fix some T ∈ T . We want to apply Proposition 3.6.7 with M0 ≲d 1 and
z = c(W (T )) = (x, y) by showing that DT ⊆ GM0

z . So, let z′ = (x′, y′) ∈ R ∈ T and let
n = n(y′), p = l(y). We need to prove the following three statements:

(i) |fp(x)− fp(x
′)| ≲d rp,

(ii)
∑n

k=p ϵ
′
k(fk(x

′))2 ≲ ϵ′,

(iii) Angle(Tk(x
′), Tp(x

′)) ≲ δ′.
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We begin by observing that (i) follows from the fact that fp is L
′-bi-Lipschitz so that

|fp(x)− fp(x
′)| ≤ L′|x− x′| ≤ 2L′

√
dℓ(W (T )) ≲d h(W (T )) ≲ rp

using (3.29). To prove (ii), letQp ⊇ Qp+1 ⊇ · · · ⊇ Qn be the cubes given by Lemma 3.3.3. For
any k with p ≤ k ≤ n the fact that dist(g(x′, rk), Qk) ≲ rk means that (x′, rk) ∈ R ≤ W (T )
with

diamQk ≥ c0ℓ(Qk+1) ≥
c0ρ

10
rk ≥

c0ρ

200
h(R) ≥ c0ρ

1000
√
d
diam(R) = A0 diamR.

so that Qk ≃A0 R. This means there exists S ∈ F such that Qk ∈ S for any k by the
definition of the stopping time region T . We conclude that

n∑
k=p

ϵ′k(fk(x))
2 ≲

n∑
k=p

βd,1∂Ω(MBQk
)2 ≲ ϵ′.

To prove (iii), observe that

Angle(Tp(x
′), Tn(x

′)) ≤ Angle(Tp(x
′), PQp) + Angle(PQp , PQn) + Angle(PQn , Tn(x

′))

≲ ϵ′ + δ′ + ϵ′ ≲ δ′.

where we used Lemma 3.6.1 and the fact that Qp, Qn ∈ S. ■

Using the results of Section 3.5, we can now prove Proposition 3.3.6.

Proof of Proposition 3.3.6. Every domain in L is either of the form g(Dj
T ) for some T ∈

T , j ∈ JT or g(RW ) for some W ∈ Bw, R ∈ LW . We first consider domains of the first
form.

Let T ∈ T and let Ap : Rd × R → Rd+1 be given by Ap(x, y) = (2px, y). By definition,
the image stopping time region D′

T = Ap(DT ) is composed of cubes and Proposition 3.5.1
implies there exists a constant L0(d) such that D′

T has a decomposition into L0-Lipschitz
graph domains which passes to a decomposition of DT into L′

0(d, L
′)-Lipschitz graph domains

{Dj
T}j∈JT by applying A−1

p . Now, using Lemma 3.3.8, we see (3.38) holds on DT so that by

taking ϵ′(L′, d), δ′(L′, d) sufficiently small, Proposition 3.5.6 implies g(Dj
T ) is an L1(L

′, d)-
Lipschitz graph domain.

Now, let W ∈ Bw and RW ∈ LW . The proof of Lemma 3.3.8 shows that |Dg(z) ·
Dg(w)−1− I| ≤ Cϵ using only the fact that ∂Ω is ϵ Reifenberg flat. Since RW is a cube, it is
a C(d)-Lipschitz graph domain so that Proposition 3.5.6 implies g(RW ) is a C ′(d)-Lipschitz
graph domain as long as ϵ is sufficiently small with respect to d. ■

3.3.4 Surface area bounds for Theorem C

We now focus on proving Proposition 3.3.7. We will justify the name coronization by proving
Carleson estimates for the g-Whitney coronization which will imply the desired estimates
for our domains.
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Definition 3.3.4 (C0-Whitney family). Let Ω0 ⊆ Rd+1 be a domain and let C0 ≥ 1. We
say that a collection V of subsets of Ω0 is a C0-Whitney family if for every V ∈ V , we have

C−1
0 diamV ≤ dist(V,Ωc

0) ≤ C0 diamV, (3.39)

there exists cV ∈ V such that

B(cV , C
−1
0 diamV ) ⊆ V, (3.40)

and, if V ̸= V ′, then

B(cV , C
−1
0 diamV ) ∩B(cV ′ , C−1

0 diamV ′) = ∅. (3.41)

Lemma 3.3.9. Let Ω0,V be as in Definition 3.3.4. Let A ≥ 1, U ⊆ Rd+1 and set

VA,U = {V ∈ V : V ≃A U}.

Then,
#(VA,U) ≲A,C0,d 1. (3.42)

If U is a collection of subsets such that for any V ∈ V , there exists U ∈ U such that
V ≃A U , then ∑

V ∈V

(diamV )d ≲A,C0,d

∑
U∈U

(diamU)d. (3.43)

Proof. For any V ∈ V , we have

dist(U, V ) ≤ A diamU,

A−1 diamU ≤ diamV ≤ A diamU.

Let BV = B(cV , C
−1
0 diamV ) and fix u ∈ U . It follows that BV ⊆ V ⊆ B(u, 3A diamU) and

C−1
0 diamV ≥ (C0A)

−1 diamU so that {BV }V ∈VA,U
is a collection of disjoint balls with radius

r(BV ) ≥ (C0A)
−1 diamU contained in the ball B(u, 3A diamU) and hence has cardinality

bounded in terms of C0, A, and d. This proves (3.42).
To prove (3.43), notice that∑

V ∈V

(diamV )d ≤
∑
U∈U

∑
V ∈VA,U

(diamV )d ≲A

∑
U∈U

#(VA,U)(diamU)d ≲A,C0,d

∑
U∈U

(diamU)d ■

We define
G0 = {g(W ) : W ∈ Rw} (3.44)

and observe that G0 is a Λ0(L
′, d)-Whitney family by equations (3.30) - (3.33):

Lemma 3.3.10. There exists a constant Λ0(L
′, d) > 0 such that G0 is a Λ0(L

′, d)-Whitney
family.

Combining this fact with Lemma 3.3.9 will allow us to bound the surface measure of
images of stopped boxes in terms of the side-length of A0-close bad and stopped cubes in D .
The following two lemmas will give a Carleson packing condition on this bad subset Be ⊆ D
defined in (3.45) below from which we will be able to conclude the desired surface measure
bound (3.37). We begin with the following lemma due to David and Semmes.
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Lemma 3.3.11 (cf. [DS93] Part I Lemma 3.27, (3.28)). Let A ≥ 1, let D be a Christ-David
lattice with coronization (G ,B,F ). Then,

(a) The set
A = {Q ∈ G : ∃Q′ ∈ S ′ ̸= S ∋ Q such that Q ≃A Q

′}

satisfies a Carleson packing condition.

(b) Suppose H ⊆ D satisfies a Carleson packing condition. The set

HA = {Q ∈ D : ∃Q′ ∈ H such that Q ≃A0 Q
′}

satisfies a Carleson packing condition.

This lemma will directly give us a Carleson packing condition on the set

Be = B ∪ {Q ∈ G : ∃Q′ ∈ S ′ ̸= S ∋ Q such that Q ≃2A2
0
Q′}. (3.45)

Lemma 3.3.12 (Be Carleson packing condition). The family Be satisfies a Carleson packing
condition. For any W ∈ Bw, there exists QW ∈ Be such that g(W ) ≃A0 QW .

Proof. The fact that Be satisfies a Carleson packing condition follows from Lemma 3.3.11.
For the second statement, let W ∈ Bw. By definition, W ̸∈ Gw so that either

(i) ∃Q ∈ B such that g(W ) ≃A0 Q,

(ii) ∃S1, S2 ∈ F such that Q1 ∈ S1 ̸= S2 ∋ Q2 with g(W ) ≃A0 Q1 and g(W ) ≃A0 Q2.

The first case gives the desired cube QW immediately. In the second case, a calculation using
the definition of A0-closeness shows that Q1 ≃2A2 Q2 so that Q1, Q2 ∈ Be and we can set
QW = Q1. ■

We now fix y ∈ ∂Ω ∩ B(0, 1) and 0 < r ≤ 1. In order to pick out the pieces of the
domains which actually intersect B(y, r), for any T ∈ T we define

T ′
y,r = {T ∈ T : ΩT ∩B(y, r) ̸= ∅}.

We break up T ′
y,r into regions with large and small top cubes:

TL,r = {T ∈ Ty,r′ : h(W (T )) > 10r},
Ty,r = T ′

y,r \ TL.

It is also convenient to collect all of the boundaries associated with a given stopping time
domain T ∈ T into one set:

BT =
⋃
j∈JT

∂Ωj
T .

We note that BT is d-upper Ahlfors regular by Proposition 3.5.1. Proposition 3.3.7 will
follow from the following three lemmas below. The first gives a bound for the domains in
TL,r while the second gives a bound for those in Ty,r.
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Lemma 3.3.13. ∑
T∈TL,r

Hd(BT ∩B(y, r)) ≲L′,d r
d ≤ Hd(∂Ω ∩B(y, r)).

Proof. We will show that #(TL,r) is bounded independent of y and r. For any T ∈ TL,r we
claim that there exists some WT ∈ T such that h(WT ) ≃ r and dist(g(WT ), y) ≃ r. Indeed,
by definition there exists RT ∈ T such that g(RT ) ∩ B(y, r) ̸= ∅. There then exists a box
WT ∈ T with WT ≥ RT with the desired properties because of (3.26) and the inequality
h(W (T )) > 10r. But, since the collection {g(WT )}T∈TL,r

is a Whitney family, it follows that
N = #(TL,r) = #({g(WT )}T∈TL,r

) ≲L′,d 1. Therefore, since BT is d-upper Ahlfors regular,∑
T∈TL,r

Hd(BT ∩B(y, r)) ≲d #(TL,r)r
d ≲L′,d r

d. ■

We now handle the regions with small top boxes:

Lemma 3.3.14.∑
T∈Ty,r

Hd(BT ∩B(y, r)) ≲L′,d,ϵ′ Hd(∂Ω ∩B(y, A2
0r)) ≲L′,d r

d. (3.46)

Proof. We first note that since Hd(BT ) ≲d Hd(∂ΩT ), we have∑
T∈Ty,r

Hd(BT ∩B(y, r)) ≤
∑
T∈Ty,r

Hd(BT ) ≲d

∑
T∈Ty,r

Hd(∂ΩT ).

Therefore, it suffices to prove
∑

T∈Ty,r
Hd(∂ΩT ) ≲L′,d,ϵ Hd(∂Ω ∩B(y, A2

0r)).

For any T ∈ Ty,r, (3.29) gives diam g(Bot(W ))) ≲d h(W ) so that Lemma 3.3.8 and the
fact that g is L′-bi-Lipschitz give an analogue of (3.67):

Hd(∂ΩT ) ≲d,L′ Hd(∂ΩT ∩ ∂Ω) +
∑

W∈m(T )

Hd(g(Bot(W )))

≲d Hd(∂ΩT ∩ ∂Ω) +
∑

W∈m(T )

h(W )d. (3.47)

Now, W ∈ m(T ) implies that there exists a child W ′ ∈ Stop(T ) ∩ Bw for which we have
Q ∈ Be with g(W

′) ≃A0 Q by Lemma 3.3.12. For any x ∈ Q, we compute

|x− y| ≤ diamQ+ dist(Q, g(W ′)) + diam g(W ′) + dist(y, g(W ′))

≤ 2A0 diam g(W ′) + 2A0 diam g(W ′) + diam g(W ′) + 10r

≤ 10
√
dA0h(W

′) + 10r ≤ 100
√
dA0r ≤ A2

0r (3.48)

This shows that Q ⊆ B(y, A2
0r). Hence, applying Lemma 3.3.9 with V = {g(W ) : W ∈

m(T )} and U = {Q ∈ Be : Q ⊆ B(y, A2
0r)}, we get∑

W∈m(T )

h(W )d ≲A0,d,L′

∑
Q∈Be

Q⊆B(y,A2
0r)

ℓ(Q)d ≲d,ϵ′ Hd(∂Ω ∩B(y, A2
0r)) (3.49)
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where the last inequality follows from the Carleson packing condition for Be. By ob-
serving that ∂ΩT ∩ ∂Ω ⊆ B(y, 50

√
dr) for any T ∈ Ty,r and Hd(∂ΩT ∩ ∂ΩT ′ ∩ ∂Ω) = 0 for

T ̸= T ′, (3.47) implies∑
T∈Ty,r

Hd(∂ΩT ) ≲A0,L′,d,ϵ′ Hd(∂Ω ∩B(y, A2
0r)) ≲d,L′ rd

using the fact that g is bi-Lipschitz and parameterizes ∂Ω in the last inequality. ■

Finally, we handle the boundaries of “trivial” cube domains associated to the bad boxes
in Bw. To do so, we collect the boundaries associated to fixed W ∈ Bw into the set

BW =
⋃

R∈LW

∂R.

Lemma 3.3.15.∑
W∈Bw

Hd(BW ∩B(y, r)) ≲L′,d,ϵ Hd(∂Ω ∩B(y, A2
0r)) ≲A0,d,L′ rd.

Proof. We first note that∑
W∈Bw

Hd(BW ∩B(y, r)) ≤
∑
W∈Bw

g(W )∩B(y,r)̸=∅

Hd(BW ) ≲L′ Hd(∂g(W )) ≲ h(W )d

using Hd(g(Bot(W ))) ≲d h(W )d as in (3.47) above. In addition, there exists some cube
Q ∈ Be such that g(W ) ≃A0 Q and, as in (3.48), Q ⊆ B(y, A2

0r). Hence, we have∑
W∈Bw

Hd(BW ∩B(y, r)) ≲d

∑
W∈Bw

g(W )∩B(y,r)̸=∅

h(W )d ≲A0,d,L′

∑
Q∈Be

Q⊆B(y,A2
0r)

ℓ(Q)d

≲d,ϵ′ Hd(∂Ω ∩B(y, A2
0r)) ≲d,L′ rd. ■

Proof of Proposition 3.3.7. First, consider Ωj ∈ L such that either there exists j0, T0 such
that Ωj = Ωj0

T0
or there exists W ∈ Bw and R ∈ LW such that Ωj = g(R). Therefore, we

have∑
j∈JL

Hd(∂Ωj ∩B(y, r))

≤
∑

T∈TL,r

∑
j∈JT

Hd(∂Ωj
T ∩B(y, r)) +

∑
T∈Ty,r

∑
j∈JT

Hd(∂Ωj
T ∩B(y, r))

+
∑
W∈Bw

∑
R∈LW

Hd(∂R ∩B(y, r))

≲
∑

T∈TL,r

Hd(BT ∩B(y, r)) +
∑
T∈Ty,r

Hd(BT ∩B(y, r)) +
∑
W∈Bw

Hd(BW ∩B(y, r))

≲L′,d,ϵ′ r
d

by Lemmas 3.3.13, 3.3.14, and 3.3.15. ■

This completes the proof of Theorem C.
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3.4 The proofs of Theorems D and E

We now turn to proving Theorems D and E. Both of these theorems will follow from the
following result

Theorem 3.4.1. Let Ω ⊆ Rd+1 be a domain. There exists constants A(d), L(d), ϵ0(d) > 0
such that if ∂Ω admits a d-dimensional graph coronization with ϵ ≤ ϵ0, then there exists a
collection L = {Ωj}j∈JL

of L-Lipschitz graph domains such that

(i) Ωj ⊆ Ω,

(ii) Ω ∩B(0, 1) ⊆
⋃∞
j=1Ωj,

(iii) ∃C(d) > 0 such that ∀x ∈ Rd+1, x ∈ Ωj for at most C values of j,

(iv) For any y ∈ ∂Ω ∩B(0, 1) and 0 < r ≤ 1, we have

∞∑
j=1

Hd(∂Ωj ∩B(y, r)) ≲ϵ,d Hd(∂Ω ∩B(y, Ar)).

The proof will be via relatively minor modifications of the argument for Theorem C. The
idea is to construct a collection of CCBPs with associated maps {gi}i∈I where gi : Di → Ω
which individually parameterize only a little piece of Ω at a time. These maps will be
(1 + Cδ)-bi-Lipschitz at the cost of introducing an outer “buffer zone” of domains in the
image of these mappings having bounded overlap.

We now fix constants ρ,A0, K as in Section 3.3 and set

A1 = max

{
20A2

0,
2000

√
dA0

c0ρ

}
,

M = max

{
10K

ρ2
, A2

1

}
.

3.4.1 Local CCBPs adapted to D

We will construct Reifenberg parameterizations as in subsection 3.3.1 centered around the
points of a Whitney-like net C0 of Ω ∩B(0, 1) rather than having a single global map.

For every n ≥ 0, define

sn = 3 · 2−n+1,

Dn = {z ∈ B(0, 1) : dist(z, ∂Ω) = sn},
Cn = Net(Dn, sn) = {pi,n}i∈In .

Set C0 =
⋃
nCn.
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Definition 3.4.1 (flat and non-flat points). Let p ∈ Ω ∩B(0, 1). Define

Qp =

{
Q ∈ D : Q ≃10

√
dA1

B

(
p,

1

2
dist(p, ∂Ω)

)}
We say that p is flat if there exists S ∈ F such that Qp ⊆ S. Otherwise, we say that p is
non-flat. Given the set C0 above, we define the flat and non-flat points of C0 by

F0 = {p ∈ C0 : ∃S ∈ F , Qp ⊆ S},
N0 = C0 \ F0.

Fix p ∈ F0 and let Sp ∈ F be such that Qp ⊆ Sp. Without loss of generality, assume
that dist(p, 0) = dist(p, ∂Ω) = 6 = s0. The fact that p ∈ F0 implies there exists Qp ∈ Ds(0)

with dist(p,Qp) ≤ 6 and c0ρ ≤ diam(Qp) ≤ 1 = r0 so that Qp ∈ Qp because A1 ≥ 10(c0ρ)
−1.

Hence, bβ∂Ω(MBQp) ≤ ϵ. Without loss of generality, suppose PQp = Rd achieves the infimum
in the definition of bβ∂Ω(MBQp).

For any k ≥ 0, let

Y p
k = {xQ : Q ∈ Sp ∩ Ds(k)}, (3.50)

Xp
k ∈ Net(Y p

k , rk). (3.51)

We enumerate Xp
k = {xj,k}j∈Jk and define

Bj,k = B(xj,k, rk),

Pj,k = PQj,k
,

Zp = (PQp , {Bj,k}, {Pj,k}).

where PQj,k
∋ xQj,k

satisfy βd,1∂Ω(2ρ
−1KBQj,k

, PQj,k
) ≲ βd,1∂Ω(2ρ

−1KBQj,k
BQj,k

) as in the hy-
potheses of Lemma 3.2.10. Using the fact that Q ∈ Sp ⊆ G so that bβ(MBQ) ≤ ϵ, a nearly
identical argument to that of Lemma 3.3.2 gives that Zp is a CCBP:

Lemma 3.4.2. For any p ∈ F0, Zp is a CCBP.

We will now prove the following analogue of Lemma 3.3.3

Lemma 3.4.3 (properties of gp). There exists a choice of constant A1 ≲d A0 such that for

any z = (x, y) ∈ D̂p, the following hold:

(i) fn(y)(x) ∈ V 8
n(y),

(ii) (1− Cϵ)|y| ≤ dist(gp(z), ∂Ω) ≤ (1 + Cϵ)|y|.

(iii) For any m ∈ N with m < n(y), there exists a collection of cubes Qn(y) ⊆ Qn(y)−1 ⊆
· · · ⊆ Qm such that for any k with m ≤ k ≤ n, Qk ∈ Sp and dist(g(x, rk), Qk) ≲ rk
and

n∑
k=m

ϵ′(fk(x))
2 ≲M,ρ,d

n∑
k=m

βd,1∂Ω(MBQk
)2 ≲ ϵ.
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Proof. The proof is similar to that of 3.3.3 with the only complication being that we need
the map gp to also behave nicely on the buffer region of A0 close cubes to those in W0. We
will prove this for fixed z = (x, y) by first assuming that (i) holds and showing that items (ii)

and (iii) hold. We will then prove item (i) by induction, considering the points (x, rk) ∈ D̂p

for 0 ≤ k < n(y) (assume without loss of generality that h(W (T )) = 4).
So, first assume that item (i) holds. Given this, item (ii) follows exactly as in Lemma

3.3.3 item (ii). Similarly, item (iii) follows as in Lemma 3.3.3 item (iii) by replacing the
infinite chain of cubes with a chain terminating in Qn(y) ∈ Ds(n(y)) ∩ Sp.

We now prove item (i) by the induction discussed above. For the base case, recall that

f0(x) = x so that (x, y) ∈ D̂p means dist(x,W (Tp)) ≤ 2A0 diamW (T ). Since we’ve chosen
M large enough, x ∈MBQp ∩ PQp so that dist(x, ∂Ω) ≲M ϵ. This means p ∈ F implies that
there exists Q0 ∈ Ds(0) ∩ Sp such that |x− xQ0| ≤ 2r0 from which the claim follows. We will
finish the proof by proving the following claim:

Claim F:or any k < n(y), fk(x) ∈ V 8
k implies that fk+1(x) ∈ V 8

k+1.

Proof T:he fact that (x, rk) ∈ D̂p means that (x, rk) ∈ Rk ∈ W ′
p and there exists W ∈ Tp

such that Rk ≃A0 W . This gives dist(Rk,W ) ≲A0 h(W ) and rk ≃ h(Rk) ≃d diamRk ≃A0

h(W ). If now fk(x) ∈ V 8
k , then there exists Q ∈ Sp ∩ Ds(k) such that |fk(x) − xQ| ≤ 8rk,

so that bβ∂Ω(MBQ) ≤ ϵ implies there is Qk+1 ∈ Ds(k+1) with |fk+1(x) − xQk+1
| ≤ 2rk+1.

Applying item (ii) and (3.31) gives

dist(Qk+1, g(W )) ≤ dist(Qk+1, g(Rk)) + diam g(Rk) + dist(g(Rk), g(W ))

≤ 2
√
dh(Rk) + 2

√
dh(Rk) + A0(diam g(Rk) + diam g(W ))

≤ 5
√
dA0h(Rk) + 5

√
dA0(h(Rk) + diam g(W ) ≤ A2

0 diam g(W )

and
diamQk+1 ≤ rk+1 ≤ h(R) ≤ A0h(W ) ≤ 2A0 diam g(W ).

diamQk+1 ≥ c0ℓ(Q) ≥
c0ρ

10
rk+1 ≥

c0ρ

200
h(Rk) ≥

c0ρ

200A0

h(W ) ≥ c0ρ

1000
√
dA0

diam g(W ).

Therefore, Qk+1 ≃A1 g(W ). By the definition of Tp, we then have Qk+1 ∈ Sp so that
xQk+1

∈ Y p
k+1 and fk+1(x) ∈ V 8

k+1 as in Lemma 3.3.3 (i). ■ ■

3.4.2 The Lipschitz decomposition with bounded overlaps

Hence, by Theorem 3.2.2, we get a Reifenberg parameterization gp : Rd+1 → Rd+1 and we
let W ′

p be the Whitney decomposition of Hd+1 such that W0 = [−2, 2]d × [4, 8] ∈ W ′
p so that

p = c(W0) = (0, 6) and let W0 = {W ∈ W ′
p : W ∈ D(W0) as in (3.25). We now give a

one-step version of the stopping time construction in Definition 3.2.6 to produce a single
domain Dp and an extended version D̂p which contains additional “buffer” cubes which gp
maps forward to approximating Lipschitz graph domains

Definition 3.4.2 (Stopping time regions around flat p). Fix a constant A1 > 1 and p ∈ F
and form the map gp and Whitney lattices W ′

p and W0 as above. As in (3.34), we define

Gp = {W ∈ W0 : ∀Q ∈ D such that Q ≃A1 gp(W ) we have Q ∈ Sp}
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By definition, p ∈ F0 implies W0 ∈ Gp. Define a single stopping time region Tp ⊆ W0 by
setting Tp to be the maximal subtree of D(W0) ∩ Gp such that for any R ∈ Tp, either all of
its children are in Tp or none are.

Definition 3.4.3 (Stopping time domains around flat p). For any p ∈ F0, we define a
stopping time domain

Dp =
⋃
W∈Tp

W.

Additionally, we extend Dp by a “buffer” region of A0-close cubes on the boundary of Dp by
defining the extended stopping time region and extended stopping time domain by

T̂p = {W ∈ W ′
p : ∃R ∈ Tp, W ≃A0 R},

D̂p =
⋃
W∈T̂p

W.

We will carve up the image domains

Ωp = gp(Dp),

Ω̂p = gp(D̂p)

to construct one family of our desired Lipschitz graph domains in the conclusion of Theorem
3.4.1.

We will also need to construct Lipschitz graph domains around non-flat q ∈ N0. Because
∂Ω admits a graph coronization, there are a controlled number of such q so that we can cover
the regions around them by “trivial” domains without adding too much total boundary.

Definition 3.4.4 (Trivial domains around non-flat q). Fix once and for all an auxiliary

Whitney decomposition W̃ of Ω. For any q ∈ N0, there exists a Whitney cube Wq ∈ W̃ such
that q ∈ Wq and

diamWq ≤ dist(q, ∂Ω) ≤ 8 diamWq.

We directly define

Dq = Ωq = Wq,

D̂q = {W ∈ W̃ : W ≃A0 Wq},

Ω̂q =
⋃

W∈D̂q

W.

We will get our final collection of domains by choosing a well-spaced subsets F ⊆ F0 and
N ⊆ N0 and carving up the domains in {Ω̂p}p∈F ∪ {Ω̂q}q∈N .

To choose our collections F and N , we put an ordering on the points of C0 by choosing
some ordering on each finite set Cn and then imposing pn < pm for any pn ∈ Cn, pm ∈ Cm
with n < m. C0 has a least element which we call c0 and we define an auxiliary collection
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P0 = {p0}. Given the definitions of C0 and P0, we define Cn+1 and Pn+1 inductively for any
n ≥ 0 by

Cn+1 = Cn \

{
p ∈ Cn : dist

(
p,
⋃
p′∈Pn

Ωp′

)
<
A0

30
dist(p, ∂Ω).

}
, (3.52)

Pn+1 = Pn ∪ {pn+1}, (3.53)

where pn+1 is the least element of Cn+1 with respect to the ordering inherited from C0. Finally,
put

C =
∞⋃
n=0

Pn,

F = F0 ∩ C,
N = N0 ∩ C.

We can now give the definition of our desired Lipschitz decomposition with bounded overlaps

Definition 3.4.5 (Lipschitz decomposition with bounded overlap). For any p ∈ F , Propo-
sition 3.5.1 implies there exists an Ahlfors regular d-rectifiable set ΣTp such that

Dp \ ΣTp =
⋃
j∈Jp

Dj
p

where Dj
p is an L0(d)-Lipschitz graph domain. We set Ωj

p = gp(Dj
p) and define our Lipschitz

decomposition with bounded overlap

L = {gp(W )}p∈F , W∈D̂p\Dp
∪ {Ωj

p}p∈F , j∈Jp ∪ {R}q∈N , R∈D̂q
. (3.54)

In analogy to Propositions 3.3.6 and 3.3.7, we will finish the proof of Theorem 3.4.1 if
we can prove the following propositions:

Proposition 3.4.4. Let Ω be as in Theorem 3.4.1 and L = {Ωj}j∈JL
be as in (3.54). There

exists L1(d) > 0 such that for any j ∈ JL , Ωj is an L1-Lipschitz graph domain. In addition,
we have

(i) Ωj ⊆ Ω,

(ii) Ω ⊆
⋃
j∈JL

Ωj,

(iii) ∃C(d) > 0 such that ∀x ∈ Ω, x ∈ Ωj for at most C values of j.

Proposition 3.4.5. Let Ω be as in Theorem 3.4.1 and L = {Ωj}j∈JL
be as in (3.54). For

any y ∈ ∂Ω ∩B(0, 1) and 0 < r < 1, we have∑
j∈jL

Hd(∂Ωj ∩B(y, r)) ≲ϵ,d Hd(∂Ω ∩B(y, A1r)). (3.55)
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3.4.3 Lipschitz bounds and covering / overlap properties for
Theorems D and E

In order to prove Propositions 3.4.4 and 3.4.5, we must show that the mapping gp behaves

on D̂p as our single Reifenberg parameterization g did on each DT in the setting of Theorem
C.

The following analogue of Lemma 3.3.8 allows us to control the change in Dgp on any

extended stopping time domain D̂p.

Lemma 3.4.6 (Variation of Dgp). For any p ∈ F and z ∈ D̂p, we have

|Dgp(z)− I| ≤ Cδ (3.56)

In particular, gp|D̂p
is (1 + Cδ)-bi-Lipschitz.

This result follows directly from the proof of Lemma 3.3.8. Equation (3.56) follows
from the added observation that p ∈ Dp and dist(p, ∂Ω) ≥ 2 (after normalizing) implies
Dgp(p) = I so that the claim follows from (3.38) by taking w = p.

We now have enough to show that each domain in L as in (3.54) is Lipschitz graphical

Lemma 3.4.7. There exists a constant L1(d) > 0 such that Ωj is an L1-Lipschitz graph
domain for all j ∈ JL .

Proof. Each domain in the set {R}q∈N , R∈D̂q
is a cube, which is an L0(d)-Lipschitz graph

domain trivially. Each domain Ωj in the set {gp(W )}p∈F , W∈D̂p\Dp
∪ {Ωj

p}p∈F , j∈Jp is the
image under gp of an L0-Lipschitz graph domain. Therefore, by Lemma 3.4.6 and 3.5.6 there
exists L1(d) > L0 such that each such Ωj is an L1-Lipschitz graph domain. ■

In order to prove the remaining statements of Proposition 3.4.4, we first show that the
buffer region Ω̂p \ Ωp contains a cone around ΩT with respect to the distance to ∂Ω for any
p ∈ C:

Lemma 3.4.8. For any p ∈ C, Ω̂p contains a A0

10
-cone around Ωp with respect to distance

from ∂Ω. That is,

F =

{
w ∈ Ω : dist(w,Ωp) <

A0

10
min {dist(w, ∂Ω), dist(gp(W (Tp)), ∂Ω)}

}
⊆ Ω̂p (3.57)

Proof. First, suppose that p ∈ F and let z ∈ F . Since Ω̂p = gp(D̂p) where gp is (1 + Cδ)-bi-
Lipschitz by Lemma 3.4.6 and translates distance in the domain to Rd to distance to ∂Ω in
the image by Lemma 3.4.3 (ii), it suffices to show{

z ∈ Ω : dist(z,Dp) <
A0

4
min

{
dist(z,Rd), dist(W (Tp),Rd)

}}
⊆ D̂p (3.58)

because the desired containment then follows by mapping (3.58) forward. Now, there exists
W ∈ Tp such that dist(z,W ) = dist(z,Dp) and there exists a cube Wz ∈ W ′

p such that
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z ∈ Wz. By the definition of D̂p, it suffices to show that W ≃A0 Wz. We estimate

dist(W,Wz) ≤ dist(z,Dp) <
A0

4
min{dist(z,Rd), dist(W (Tp),Rd)} (3.59)

≤ A0

2
min{h(Wz), h(W (Tp))} =

A0

2
min{ℓ(Wz), ℓ(W (Tp))}.

Using this we get

ℓ(W ) = h(W ) ≤ dist(W,Wz) + diamWz + h(Wz) ≤
(
A0

2
+
√
d+ 1 + 1

)
ℓ(Wz) ≤ A0ℓ(Wz)

given that A0 ≥ 4
√
d. A similar calculation shows that ℓ(Wz) ≤ A0ℓ(W ) which completes

the proof in the case when p ∈ F . If q ∈ N , then Ωq = Wq. Let w ∈ F and let Ww ∈ W̃
with w ∈ Ww. By a similar computation to the above, one can show that Wq ≃A0 Ww from
which the result follows. ■

With the help of Lemma 3.4.8, we can prove the bounded overlap and covering properties
of L .

Lemma 3.4.9. Let p, p′ ∈ C, p ̸= p′. The following hold:

(i) Ωp ∩ Ωp′ = ∅,

(ii) Ω ∩B(0, 1) ⊆
⋃
p∈C Ω̂p,

(iii) ∃C(d) > 0 such that ∀x ∈ Ω, x ∈ Ω̂p for at most C values of j,

(iv) Ω̂p ⊆ Ω.

Proof. We begin with proving (i). Using the partial order on C, assume without loss of
generality that p′ < p. By the definition of C , we have dist(p,Ωp′) ≥ A0

30
dist(p, ∂Ω). We

claim that

Ωp ⊆ B(p, 3
√
d dist(p, ∂Ω)) ⊆ B

(
p,
A0

30
dist(p, ∂Ω)

)
where the final inclusion follows because A0 ≥ 120

√
d. Indeed, if p ∈ N , then Ωp = Wp ∋ p

with diamWp ≤ dist(p, ∂Ω). If instead p ∈ F , then Ωp = gp(Dp) where Dp is composed of a
union of cubes in the descendants D(W (Tp)) where dist(p, ∂Ω) ≥ ℓ(W (Tp)) so that the fact
that gp is (1 + Cδ)-bi-Lipschitz means

√
d+ 1dist(p,Ω) ≥ diam(gp(W )) and dist(p,Ω) ≥

dist(gp(W ), p) for any W ∈ Tp. The claim follows.
We now prove (ii). Let z ∈ Ω∩B(0, 1) and let k ≥ 0 be such that sk+1 ≤ dist(z, ∂Ω) ≤ sk.

By the definition of Ck, there exists pk ∈ Ck such that

|z − pk| ≤ 3sk = 6sk+1 ≤ 6 dist(z, ∂Ω).

Now, if pk ∈ C, then by Lemma 3.4.8, z ∈ Ω̂pk . Otherwise, pk ̸∈ C so that by (3.52) there
exists p ∈ C such that p < pk and dist(pk,Ωp) <

A0

30
dist(pk, ∂Ω) =

A0

30
sk =

A0

15
sk+1. But then

dist(z,Ωp) ≤ |z − pk|+ dist(pk,Ωp) ≤ 6sk+1 +
A0

15
sk+1 ≤

A0

10
dist(z, ∂Ω)
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so that z ∈ Ω̂p by Lemma 3.4.8 as long as dist(z,Ωp) ≤ A0

10
dist(g(Wp), ∂Ω) which follows

from the fact that p < pk (p is not a net point of smaller scale).

We now prove (iii). Let z ∈ Ω ∩ B(0, 1) and define Cz = {p ∈ C : z ∈ Ω̂p}. It suffices to
prove

#(Cz) ≲d 1

First, suppose p ∈ Cz ∩F . Then there exists W ∈ T̂p such that z ∈ gp(W ) and the definition

of Ω̂p then implies that there exists Rp ∈ Tp such that Rp ≃A0 W . Let rz = dist(z, ∂Ω).
Lemmas 3.4.3 and 3.4.6 imply that diam gp(Rp) ≃d dist(gp(Rp), ∂Ω) ≃A0 rz and there exists
C0(d,A0) > 0 such that

B(gp(cRp), C
−1
0 rz) ⊆ gp(Rp) ⊆ B(z, C0rz) (3.60)

Since Ωp ∩ Ωp′ = ∅ for p ̸= p′, we have

gp(Rp) ∩ gp′(Rp′) = ∅. (3.61)

it follows from (3.60) and (3.61) that #(Cz ∩ F) ≲A0,d 1. A similar argument shows that
#(Cz ∩N ) ≲d,A0 1 from which the claim follows.

Item (iv) follows from Lemma 3.4.3 (ii). ■

Remark 3.4.10 (Whitney family). In fact, (3.60) and (3.61) in combination with Lemma
3.4.3 show that there exists a constant Λ1(d) such that the family

G1 =
⋃
p∈F
W∈Tp

gp(W ) ∪
⋃
q∈N

Wq. (3.62)

is a Λ1-Whitney family in the sense of Definition 3.3.4 (compare with Lemma 3.3.10).

We can now finish the proof of Proposition 3.4.4.

Proof of Proposition 3.4.4. We showed the existence of L1 such that Ωj is L1-Lipschitz
graphical forany j ∈ JL in Lemma 3.4.7. The fact that Ωj ⊆ Ω follows from Lemma
3.4.9 (iv) while Ω ⊆

⋃
j∈JL

Ωj follows from Lemma 3.4.9 (ii). Finally, item (iii) of Propo-
sition 3.4.4 follows from Lemma 3.4.9 (iii) because for each p ∈ C, there is by definition at

most one index jp such that x ∈ Ωjp ⊆ Ω̂p. ■

3.4.4 Surface area bounds for Theorems D and E

In this section, we prove Proposition 3.4.5. The proof is similar to that of Proposition 3.3.7
given Remark 3.4.10. Fix y ∈ ∂Ω ∩ B(0, 1) and 0 < r ≤ 1 and let A2 = 100

√
dA2

0, A3 =

50
√
dA1A2. If p ∈ F is such that Ω̂p∩B(y, r) ̸= ∅, then there exists a cube R with ℓ(R) ≤ 2r

such that gp(R) ∩B(y, r) ̸= ∅ and gp(R) ≃A0 W with W ∈ Tp. Then

dist(gp(W ), y) ≤ dist(gp(W ), gp(R)) + diam gp(R) ≤ A0(1 + A0) diam gp(R)

≤ 3
√
dA2

0ℓ(R) < 10
√
dA2

0r.
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Therefore, since A2 > 50
√
dA2

0, we get that Ωp ∩B(y, A2r) ̸= ∅. We set

T ′
y,A2r

= {Tp : p ∈ F , Ωp ∩B(y, A2r) ̸= ∅}.

The above discussion gives that Ω̂p ∩ B(y, r) ̸= ∅ =⇒ Ωp ∩ B(y, A2r) ̸= ∅, so it suffices
to consider stopping time domains in the family T ′

y,A2r
. Break up T ′

y,A2r
into regions with

large and small top cubes:

TL,A2r = {Tp ∈ T ′
y,A2r

: h(W (Tp)) > 10A2r},
Ty,A2r = T ′

y,A2r
\ TL,A2r.

We also collect all of the boundaries of domains in our decomposition L associated with a
given flat point p ∈ F into the set

Bp =
⋃
j∈JTp

∂Ωj
p ∪

⋃
W∈D̂p\Dp

g(∂W ). (3.63)

We note that Bp is Ahlfors d-regular with constant depending on d and A0 by Proposition

3.5.1 and the fact that each cube W ⊆ D̂p \ Dp is A0-close to a cube W ′ ∈ Tp with at least
one face inside ∂Dp.

We can then use the arguments of the previous section to get the following analogues of
Lemmas 3.3.13 and 3.3.14.

Lemma 3.4.11. ∑
p∈F

Tp∈TL,A2r

Hd(Bp ∩B(y, r)) ≲d r
d ≤ Hd(∂Ω ∩B(y, r)).

Proof. It follows from the proof of Lemma 3.3.13 and the fact that G1 is a Whitney family
(see Remark 3.4.10) that #(TL,A2r) ≲A2,d 1. Since Bp is Ahlfors d-regular, we have∑

p∈F
Tp∈TL,A2r

Hd(Bp ∩B(y, r)) ≲A0,d #(TL,A2r)r
d ≲A2,d r

d. ■

We now handle the regions with small top boxes:

Lemma 3.4.12. ∑
p∈F

Tp∈Ty,A2r

Hd(Bp ∩B(y, r)) ≲d,ϵ Hd(∂Ω ∩B(y, A3r)). (3.64)

Proof. We modify the proof of Lemma 3.3.14. We first observe that since Hd(Bp) ≲A0,d

Hd(∂Ωp), we have∑
p∈F

Tp∈Ty,A2r

Hd(Bp ∩B(y, r)) ≤
∑
p∈F

Tp∈Ty,A2r

Hd(Bp) ≲A0,d

∑
p∈F

Tp∈Ty,A2r

Hd(∂Ωp).
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Therefore, it suffices to prove (3.64) with Bp∩B(y, r) replaced by ∂Ωp. For any Tp ∈ TL,A2r,
we get

Hd(∂Ωp) ≲d Hd(∂Ωp ∩ ∂Ω) +
∑

W∈m(Tp)

h(W )d (3.65)

Now, W ∈ m(Tp) implies that there exists a child W ′ ∈ Stop(Tp) for which we have Q ∈ Be

of (3.45) with g(W ′) ≃A1 Q by Lemma 3.3.12. By replacing A0 with A1 and r with A2r
in (3.48), we get Q ⊆ B(y, 50

√
dA1A2r) ⊆ B(y, A3r). Hence, applying Lemma 3.3.9 with

V = {g(W ) : W ∈ m(Tp), Tp ∈ Ty,A2r} and U = {Q ∈ Be : Q ⊆ B(y, A3r)}, we get∑
p∈F

T∈Ty,A2r

∑
W∈m(Tp)

h(W )d ≲d

∑
Q∈Be

Q⊆B(y,A3r)

ℓ(Q)d ≲d,ϵ Hd(∂Ω ∩B(y, A3r)) (3.66)

where the last inequality follows from the Carleson packing condition for Be. By observ-
ing that ∂Ωp ∩ ∂Ω ⊆ B(y, 50

√
dA2r) and Hd(∂Ωp ∩ ∂Ωp′ ∩ ∂Ω) = 0 for any p ̸= p′, (3.65)

implies ∑
Tp∈Ty,A2r

Hd(∂Ωp) ≲d,ϵ Hd(∂Ω ∩B(y, A3r)). ■

We also need to bound the surface measure associated to trivial domains around non-flat
q ∈ N . For any q ∈ N , we define the set of boundaries

Bq = ∂Wq ∪
⋃
W∈W̃

W⊆D̂q\Dq

∂W.

We note that Hd(Bq) ≲d,A0 ℓ(Wq)
d.

Lemma 3.4.13. ∑
q∈N

Hd(Bq ∩B(y, r)) ≲d,ϵ Hd(∂Ω ∩B(y, A3r))

Proof. Observe that Bq ∩ B(y, r) ̸= ∅ implies there exists Q ∈ Be such that Wq ≃10A1 Q
and Q ⊆ B(y, A3r) so that we have∑
q∈N

Hd(Bq∩B(y, r)) ≤
∑
q∈N

Bq∩B(y,r)̸=∅

ℓ(Wq)
d ≲A1,d

∑
Q∈Be

Q⊆B(y,A3r)

ℓ(Q)d ≲d,ϵ Hd(∂Ω∩B(y, A3r)). ■

Proof of Proposition 3.4.5. Ωj ∈ L implies that there either there exists j0, T0 such that

Ωj = Ωj0
T0

or q ∈ N such that Ωj = R ∈ W̃ where R ≃A0 Wq. This means that∑
j∈jL

Hd(∂Ωj ∩B(y, r))

≤
∑

T∈TL,A2r

∑
j∈JT

Hd(∂Ωj
T ∩B(y, r)) +

∑
T∈Ty,A2r

∑
j∈JT

Hd(∂Ωj
T ∩B(y, r)) +

∑
q∈N

Hd(Bq ∩B(y, r))

≲
∑

T∈TL,A2r

Hd(BT ∩B(y, r)) +
∑

T∈Ty,A2r

Hd(BT ∩B(y, r)) +
∑
q∈N

Hd(Bq ∩B(y, r))

≲L′,d,ϵ Hd(∂Ω ∩B(y, A3r))

by Lemmas 3.4.11, 3.4.12, and 3.4.13. ■
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3.5 Lipschitz graph domains

Because each stopping time domain is not necessarily a Lipcshitz graph domain, we will
construct a Ahlfors d-regular, d-rectifiable set ΣT which carves DT into a collection of c(d)-
Lipschitz graph domains. The images of these nicer domains under a Reifenberg parame-
terization whose derivative is nearly constant on the domain will then map them forward to
Lipcshitz graph domains as desired in the conclusions of Theorems C, D, and E.

3.5.1 Carving up stopping time domains

We want to prove the following proposition:

Proposition 3.5.1. There exists a constant L0(d) > 0 such that for any stopping time region
T ⊆ W , there exists a d-Ahlfors upper regular set ΣT which is a union of subsets of d-planes
such that

DT \ ΣT =
⋃
j∈JT

Dj
T

where ∑
j∈JT

Hd(∂Dj
T ) ≲d Hd(∂DT ) ≃d Hd(DT ∩ Rd) +

∑
W∈m(T )

ℓ(W )d (3.67)

and Dj
T is an L0-Lipschitz graph domain.

Remark 3.5.2. In Proposition 3.5.1, we only care that T is a coherent collection of cubes in the
sense of Definition 3.2.6, not that they are produced by the specific g-Whitney coronization
construction in Definition 3.3.1.

ΣT will be defined as a union of more local sets ΣW for W ∈ m(T ). The basic idea is
to use a “cover” emanating from the bottom face of every minimal cube W downwards at
a π

4
angle with the vertical in order to turn the jagged right angles made by stopped cubes

into smoother π
4
angles which look Lipschitz to a point sitting above them higher up in the

domain. This is essentially a modification of Peter Jones’s algorithm for turning chord arc
domains composed of Whitney boxes in the disk into Lipschitz graph domains in his proof
of the Analyst’s Traveling Salesman Theorem in the complex plane (see pg. 8 of [Jon90]).
We now construct ΣW .

Fix T and W ∈ m(T ). By translating and dilating, we can without loss of generality
assume W = [−1, 1]d × [2, 4]. For any function f : Rd → R, we let Graph(f) denote the
graph of f in R over Rd × {0}. We begin by defining, for 1 ≤ j ≤ d,

H0(x) = 2,

H2j−1(x) = 3 + xj,

H2j(x) = 3− xj.
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Figure 3.1: A representation of W , Cover(W ), and Divider(W ) in R2.

The graphs of these functions (except H0) over Rd are planes which make an angle of π
4
with

Rd and contain the edges of Bot(W ) with xj = −1 and xj = 1 respectively. We define

HW (x) = min
0≤i≤2d

Hi(x),

Cover(W ) = Graph(HW ) ∩Hd+1.

Cover(W ) is the lower envelope of the collection of planes given by the graphs of the Hi.
In R3, Cover(W ) forms the sides of a square pyramid minus its tip with base [−3, 3]2 ×{0}.
In general, Cover(W ) divides Hd+1 into two components: a bounded component CW with
boundary Cover(W )∪ [−3, 3]d×{0} and the unbounded complimentary component. It also
follows that

Hd(Cover(W )) ≲d Hd(Bot(W )) = ℓ(W )d. (3.68)

Cover(W ) is one of two parts of ΣW . The second part will be called Divider(W ) because its
purpose will be to ensure that all future domains beneath Cover(W ) look similar to the top
domain by separating future domains from one another with vertical plane extensions of the
sides of cubes sliced by Cover(W ).

We begin by defining tn = 1 +
∑n−1

j=0 2
−j and

Qn =

{
Q ∈ ∆d([−3, 3]d × {0}) : ℓ(Q) = tn+1 − tn = 2−n,

∃j, 1 ≤ j ≤ d, aj = ±tn, Q =
d∏
j=1

[aj, bj]

}
where ∆d([−3, 3]d×{0}) is the set of d-dimensional dyadic cubes contained in [−3, 3]d×{0}.
Intuitively, we think of tn as the radii of growing balls in the ℓ∞ metric centered at 0,

119



Figure 3.2: A representation of [−3, 3]2×{0} split into Q1 in yellow, Q2 in red, and ∪∞
n=3Qn

left uncolored at the edge of Q2 (The white square in the middle sits below the cube W ∈
m(T ), hence nothing above it lies in DT ). The set Divider(W ) shoots out of the page as a
union of extensions of the sides of the squares up to the points at which they hit the slanting
top of Cover(W ).

and the cubes inside Qn as the natural collection of dyadic cubes tiling the set difference
between successive balls with side length exactly equal to the gap between the two square
rings forming the boundaries of the ℓ∞ balls (See Figure 3.2). Set Q =

⋃∞
n=1 Qn and define

Divider(W ) = CW ∩
⋃

{Fj × [0, 2ℓ(Q)] : Fj ∈ Faces(Q), Q ∈ Q} .

Because
∑2d

j=1Hd(Fj× [0, 2ℓ(Q)]) ≲d Hd(Q) and [−3, 3]d×{0} =
⋃
Q∈Q Q is a disjoint union,

it follows immediately that

Hd(Divider(W )) ≲d Hd(Bot(W )) = ℓ(W )d. (3.69)

Now, we define
ΣW = Cover(W ) ∪Divider(W ),

ΣT =
⋃

W∈m(T )

ΣW ∩ DT .

We first prove the upper regularity claim of Proposition 3.5.1.

Lemma 3.5.3. ΣT is upper d-Ahlfors upper regular with constant C ≲d 1.

Proof. Fix R > 0 and x ∈ ΣW ⊆ ΣT for some W ∈ m(T ). We write

Hd(ΣT ∩B(x,R)) =
∑

W∈m(T )
h(W )<10R

Hd(ΣW ∩B(x,R)) +
∑

W∈m(T )
h(W )≥10R

Hd(ΣW ∩B(x,R)).

120



We note that π(W ) and π(W ′) have disjoint interiors for any W,W ′ ∈ m(T ) with W ̸= W ′,
so that ∑

W∈m(T )
h(W )<10R

Hd(ΣW ∩B(x,R)) ≲d

∑
W∈m(T )
h(W )<10R

Hd(Bot(W )) ≤ (20R)d.

On the other hand, there are a uniformly bounded number of minimal cubes N(d) with
h(W ) ≥ 10R such that B(x,R) ∩ ΣW ̸= ∅ so that∑

W∈m(T )
h(W )≥10R

Hd(ΣW ∩B(x,R)) ≤ N(d) · c(d)Rd ≲d R
d

because Hd(ΣW ∩ B(x,R)) ≤ c(d)Rd for any particular W by construction. Therefore, ΣT

is upper regular. ■

We now finish the proof of Proposition 3.5.1.

Proof of Proposition 3.5.1. It follows from (3.68) and (3.69) that

Hd(ΣT ) ≤
∑

W∈m(T )

Hd(ΣW ) ≲d

∑
W∈m(T )

Hd(Bot(W )) ≤ Hd(Bot(W (T ))) ≲d Hd(∂DT )

which proves (3.67). We now need to show that the resulting domains Dj
T are Lipschitz-

graphical. If Dj
T is the domain containing W (T ), then the claim follows with the choice of

central point cW (T ). Indeed, the cube W (T ) is clearly Lipschitz-graphical with respect to

cW (T ), and any boundary point of Dj
T not in ∂W (T ) is either in a vertical plane containing one

of the vertical faces of W (T ), or is part of the Lipschitz graph consisting of the horizontally
planar faces Bot(W ) for W ∈ m(T ) and the planes of Cover(W ) making π

4
angles with the

bottom faces.
Now, suppose Dj

T ∩ W (T ) = ∅. We have set up the construction such that this will
not differ too much from the top cube case. Let W ∈ m(T ) be a cube of minimal height
such that Dj

T ⊆ CW and Hd(∂Dj
T ∩ Cover(W )) > 0. Such W exists because its minimality

implies that for any W ′ ∈ m(T ) of smaller side length than W , Cover(W ′) can only be part
of the “lower” boundary of Dj

T while the only non-vertical planar pieces in ΣT are bottoms
and covers of minimal cubes. Then the cube R of maximal height such that R ∩ Dj

T ̸= ∅ is
exactly the cube of length ℓ(Q) sitting above Q ⊆ Rd×{0}, Q ∈ Q used in the definition of
Divider(W ).

Therefore, R ∩ Dj
T is a cube sliced by finitely many d-planes passing through its sides

and corners at π
4
angles. By the geometry described above, Dj

T contains the convex hull of

cR and Bot(R), so we have that Dj
T is Lipschitz-graphical with respect to 1

2
(cR + cBot(R)).

Indeed, Lipschitz-graphicality follows for points in R ∩ Dj
T immediately, and follows for the

rest of Dj
T by the same argument as for the region containing W (T ) because the definition

of Divider(W ) ensures that all cubes which make up Dj
T are children of R. Indeed, the

boundary outside of ∂R consists of vertical planes containing one of the vertical faces of R
or is part of a Lipschitz graph consisting of horizontally planar faces Bot(W ′) forW ′ ∈ m(T )
with W ′ ≤ R and the planes of Cover(W ′) making π

4
angles with the bottom faces. ■
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3.5.2 Images of Lipschitz graph domains

We now show that the Lipschitz graph domain property is preserved under images of maps
whose derivatives are nearly constant. We begin by observing that linear transformations
preserve Lipschitz graph domains

Lemma 3.5.4. Let Ω ⊆ Rd+1 be an L0-Lipschitz graph domain and let A : Rd+1 → Rd+1 be
an L′-bi-Lipschitz affine map. Then there exists a constant L1(L0, L

′) such that A(Ω) is an
L1-Lipschitz graph domain.

Proof. Without loss of generality, assume A(0) = 0 and set Ω′ = A(Ω). Then since Ω =
{tθ : 0 ≤ t ≤ r(θ), θ ∈ Sd}, we know that Ω′ = {tA(θ) : 0 ≤ t ≤ A(θ), θ ∈ Sd} so that Ω′ is
star-shaped and rΩ′ is well-defined. We have

∂Ω′ = A(∂Ω) = {A(r(θ)θ) = r(θ)A(θ) : θ ∈ Sd}.

Therefore, given ψ ∈ Sd, we see that

rΩ′(ψ) = rΩ

(
A−1(ψ)

|A−1(ψ)|

)
1

|A−1(ψ)|
.

Because A−1 is L′-bi-Lipschitz and rΩ is L0-Lipschitz on Sd, rΩ′ is composed of products and
compositions of bounded Lipschitz functions and it follows that there exists L1(L0, L

′) such
that rΩ′ satisfies the requirements of Definition 3.1.2 after scaling. ■

We now move from affine maps to maps whose derivative is sufficiently close to the
identity. In preparation, define ℓz for any z ∈ Rd+1 to be the line passing through 0 and z
and let Pz = ℓ⊥z + z. Define the radial cone at x of aperture α and radius R as

Cx(α,R) =

{
y ∈ B(x,R) :

dist(y, ℓx)

dist(y, Px)
< tan(α)

}
\ {x}.

Lemma 3.5.5. Let Ω ⊆ Rd+1 be an L0-Lipschitz graph domain. There exists a constant
δ0(L0, d) > 0 such that if δ < δ0 and φ : Ω → φ(Ω) is a (1 + δ)-bi-Lipschitz C1 map
satisfying

|Dφ(z)− I| ≤ δ (3.70)

for all z ∈ Ω, then there exists L1 ≲L0,d 1 such that φ(Ω) is a L1-Lipschitz graph domain.

Proof. Assume without loss of generality that Ω is Lipschitz graphical with respect to 0 and
φ(0) = 0. We first verify that rΩ : Sd → R+ is well-defined, i.e., the domain is star-shaped
with respect to 0. Let φ(x) ∈ ∂Ω and let γ(t) = tφ(x). We want to show γ∩∂φ(Ω) = {φ(x)}.
Set γ̃(t) = φ−1(γ(t)). We would like to prove

|γ̃′(t)− x| ≤ 5δ|x| (3.71)

for all t ∈ [0, 1]. First note that

|Dφ(z)−1 − I| = |Dφ(z)−1 ·
[
I −Dφ(z)−1

]
| ≤ 2δ||Dφ(z)−1| ≤ 3δ
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using the bound |Dφ(z)−1| ≤ 1
σmin(Dφ(z))

≤ (1+2δ) where σmin(Dφ(z)) is the smallest singular

value of Dφ(z). This means

|γ̃′(t)− x| = |Dφ−1(γ(t)) · γ′(t)− x| = |
[
Dφ(γ̃(t))−1 − I

]
· γ′(t) + γ′(t)− x|

≤ 3δ|φ(x)|+ |φ(x)− x| ≤ 5δ|x|

where the final line follows from the fact that φ(x) =
� 1

0
Dφ(tx) ·x dt = x+

� 1

0
(Dφ(tx)− I) ·

x dt so that |φ(x)−x| ≤ δ|x|. It follows from the mean value theorem that γ̃ ⊆ Cx(10δ, |x|).
Since Cx(10δ, |x|) ∩ ∂Ω = ∅ for δ sufficiently small in terms of L0, it follows that choosing
δ0 small enough gives γ̃ ∩ ∂Ω = {x} so that γ ∩ ∂φ(Ω) = {φ(x)} as desired.

Set Ω′ = φ(Ω). Now, rΩ′ is well-defined and (3.70) implies

1

2(L0 + 1)
≤ rΩ′(θ) ≤ 2

so that we only need to show that rΩ′ satisfies the Lipschitz bound in Definition 3.1.2 for
some constant L1(L0, d). Let a, b ∈ ∂Ω′ with a = |a|ψ1 and b = |b|ψ2. Let ψ = |ψ1 − ψ2|. If
ψ ≥ π

4
, then the result follows directly from the fact that φ is (1+ δ)-bi-Lipschitz. If instead

ψ < π
4
, then there exist unique x, y ∈ ∂Ω such that a = φ(x) and b = φ(y) and we assume

without loss of generality that |x| ≥ |y|. Let x = rΩ(θ1)θ1 = |x|θ1, y = rΩ(θ2)θ2 = |y|θ2 and
set θ = |θ1 − θ2|.

We first claim that it suffices to show

|θ1 − θ2| ≲L0,d |ψ1 − ψ2|. (3.72)

Indeed, if (3.72) holds, then

|rΩ′(ψ1)− rΩ′(ψ2)| = ||a| − |b|| ≤ |a− b| = |φ(x)− φ(y)| ≤ (1 + δ)|x− y|
≤ (1 + δ)(|x− θ1|y||+ |θ1|y| − y|)
= (1 + δ)(rΩ(θ1)− rΩ(θ2) + |y||θ1 − θ2|)
≤ (1 + δ)(L0 + 1)|θ1 − θ2| ≲L0,d |ψ1 − ψ2|.

Now, we concentrate on proving 3.72.
Put z = (1− |x− y|)x and c = (1− |a− b|)a and define

α = ∠zxy, α′ = ∠φ(z)ab, β = ∠cab.

By the law of cosines,

cosα =
|z − x|2 + |x− y|2 − |z − y|2

2|z − x||x− y|
= 1− |z − y|2

2|z − x|2
,

cosα′ =
|φ(z)− φ(x)|2 + |φ(x)− φ(y)|2 − |φ(z)− φ(y)|2

2|φ(x)− φ(z)||φ(x)− φ(y)|

≤ 2(1 + δ)2|z − x|2 − (1− δ)2|z − y|2

2(1− δ)2|z − x|2
≤ 1− |z − y|2

2|z − x|2
+ 5δ = cosα + 5δ.
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Because Ω is L0-Lipschitz-graphical, α ≳L0 1 so that if δ is sufficiently small, then α′ ≥ α
2
.

In addition, (3.71) implies that φ([x, z]) ⊆ Cφ(x)(10δ, 2(|φ(x)| − |c|) so that |β − α′| ≤ 20δ,
meaning β ≥ α

4
as long as δ is small enough. To complete the proof, observe that |ψ1−ψ2| ≃

∠a0b, |θ1 − θ2| ≃ ∠x0y, β = ∠0ab, and α = ∠0xy so that β ≥ α
4
implies (3.72) using the

fact that φ is (1 + δ)-bi-Lipschitz. ■

Finally, by chaining Lemmas 3.5.4 and 3.5.5, we can prove the following desired propo-
sition:

Proposition 3.5.6. Let Ω ⊆ Rd+1 be an L0-Lipschitz graph domain and suppose g : Ω →
g(Ω) ⊆ Rd+1 is C1 and L-bi-Lipschitz. There exist constants L1, δ0(L0, L) > 0 such that if
δ < δ0 and

|Dg(z) ·Dg(w)−1 − I| ≤ δ (3.73)

for all z, w ∈ Ω, then g(Ω) is an L1-Lipschitz graph domain.

Proof. Suppose Ω is Lipschitz graphical around 0 and set

L(z) = Dg(0) · z.

By Lemma 3.5.4, L(Ω) is L′
0(L,L0)-Lipschitz graphical. The map φ : L(Ω) → g(Ω) given by

φ = g ◦ L−1

satisfies

Dφ(z)(L(w)) = Dg(L−1(L(w))) ·DL−1(L(w)) = Dg(w) ·Dg(0)−1 · w

so that
|Dφ− I| ≤ δ.

By taking δ0 sufficiently small in terms of L′
0, Lemma 3.5.5 implies that there exists L1(L

′
0)

such that g(Ω) is L1-Lipschitz graphical. ■

3.6 Controlling the change in the derivative of

Reifenberg parameterizations

The goal of this appendix is to give conditions under which we can say that the change in
the derivative of a Reifenberg parameterization g : Rd+1 → Rd+1 is small. This is specified
exactly in Proposition 3.6.7 below.

3.6.1 Preliminary derivative estimates and regularity

In this section, we review some properties of the maps used in the construction of a Reifenberg
parameterization g that we need to make specific estimates on the change in Dg. First, the
surface Σk has a nice local Lipschitz representation:
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Lemma 3.6.1 ([DT12] Lemma 6.12). For k ≥ 0 and y ∈ Σk, there is an affine d-plane P
through y and a Cε-Lipschitz and C2 function A : P → P⊥ such that |A(x)| ≤ Cϵrk for all
x ∈ B(y, 19rk) and

Σk ∩B(y, 19rk) = Γ ∩B(y, 19rk).

where Γ denotes the graph of A over P .

Now, we record distortion estimates for Dσk as in [DT12] chapter 7. Importantly, Dσk
is very close to the identity in the following sense:

Lemma 3.6.2 ([DT12] Lemma 7.1). For k ≥ 0, σk is a C
2-diffeomorphism from Σk to Σk+1

and, for y ∈ Σk,

Dσk(y) : TΣk(y) → TΣk+1(σk(y)) is bijective and (1 + Cε)-bi-Lipschitz.

In addition,
|Dσk(y) · v − v| ≤ Cε|v| for y ∈ Σk and v ∈ TΣk(y)

|σk(y)− σk(y
′)− y + y′| ≤ Cε|y − y′| for y, y′ ∈ Σk.

More precise estimates can be obtained when restricting Dσk to its action on vectors
tangent to Σk. The best way to capture this is to define quantities which take into account
exactly how close the nearby planes of appropriate scale in the CCBP are. These are the ϵ′k
numbers, defined by

ϵ′k(y) = sup
{
dxi,l,100rl(Pj,k, Pi,l) ; j ∈ Jk, l ∈ {k − 1, k}, (3.74)

i ∈ Jl, and y ∈ 10Bj,k ∩ 11Bi,l

}
The following lemma gives estimates in terms of these numbers

Lemma 3.6.3 ([DT12] Lemma 7.32). For k ≥ 1 and y ∈ Σk ∩ V 8
k , choose i ∈ Jk such that

|y − xi,k| ≤ 10rk. Then

|Dπi,k ◦Dσk(y) ◦Dπi,k −Dπi,k| ≤ Cε′k(y)
2, (3.75)

and ∣∣|Dσk(y) · v| − 1
∣∣ ≤ Cε′k(y)

2 for every unit vector v ∈ TΣk(y). (3.76)

Similarly, these numbers also control the distance between tangent planes to the surface
and nearby Pj,k. For any k ≥ 0 and y ∈ Σk ∩ V 8

k and i ∈ Jk such that |y − xi,k| ≤ 10rk, we
have ([DT12] (7.22))

Angle(TΣk(y), Pi,k) ≤ Cϵ′k(y). (3.77)

Finally, we also use an estimate on D2σk obtained in by Ghinassi in [Ghi17] in work on
constructing C1,α parametrizations.

Lemma 3.6.4 ([Ghi17] Lemma 3.16). For k ≥ 0, y ∈ Σk ∩ V 8
k ,

|D2σk(y)| ≤ C
ϵk(y)

rk
≤ C

ϵ

rk
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where we interpret the norm on the tensor D2σk as the Euclidean norm on Rn3
. We also

provide the following lemma and proof adapted from a proof of [DT12] to fit our needs.

Lemma 3.6.5 (cf. [DT12] (11.22)). Suppose Σ0 is such that for any x, x′ ∈ Σ0, there exists
a curve γ0 connecting x and x′ with ℓ(γ0) ≤ (1 + Cϵ)|x− x′|. Let 1 ≤ M3ϵ < c(d) < 1 with
c(d) sufficiently small and k ≥ 0 be such that |fk(x)− fk(x

′)| < Mrk. Then there is a curve
γ : I → Σk such that ℓ(γ) ≤ 2|fk(x)− fk(x

′)|.

Proof. We first prove the following claim:
Claim F:or any 0 ≤ p ≤ k,

|fk−p(x)− fk−p(x
′)| < Mrk−p

5p
. (3.78)

Proof W:e prove this by induction. Indeed, observe that

|fk−p−1(x)−fk−p−1(x
′)| = |σ−1

k−p−1(fk−p(x))−σ
−1
k−p−1(fk−p(x

′))| ≤ (1+Cϵ)|fk−p(x)−fk−p(x′)|.

by (3.13). Applying this for p = 1 gives

|fk−1(x)− fk−1(x
′)| < (1 + Cϵ)(Mrk) <

Mrk−1

5

This proves the base case. Assuming the claim holds for some p, we get

|fk−p−1(x)− fk−p−1(x
′)| ≤ (1 + Cϵ)

Mrk−p
5p

<
Mrk−p−1

5p+1
.

■
To continue the proof of the lemma, we modify the proof of [DT12] (11.22). If |fk(x)−

fk(x
′)| < 18rk, then the claim follows immediately from the local Lipschitz graph description

of Σk in Lemma 3.6.1. So, assume |fk(x)− fk(x
′)| > 18rk and suppose first that there exists

an integer 0 ≤ m ≤ k such that |fm(x)− fm(x
′)| < 5rm. We calculate

Mrm
5k−m

< 5rm ⇐⇒ log5M − 1 < k −m

so that by the above claim we can assume k−m < log5M < logM . Applying the Lipschitz
graph lemma for B(fm(x), 19rm), we see that there exists a path γm ⊆ Σm such that

ℓ(γm) ≤ (1 + Cϵ)|fm(x)− fm(x
′)| ≤ (1 + Cϵ)(Cϵrm + |fk(x)− fk(x

′)|)
≤ (1 + Cϵ)|fk(x)− fk(x

′)|+ Cϵrk logM.

On the other hand, since |fm(x) − fm(x
′)| < 5rm, we get ℓ(γm) ≤ 10rm and so we can

choose a chain of N ≤ 10rm
10rk

= 10k−m ≤ M2 points contained in γm with consecutive points

separated by a distance of at least 11rk beginning at fm(x) and ending at fm(x
′). Call this

collection of points {fm(xl)}Nl=1 for xl ∈ Σ0. This implies the total length of the string of
points {fk(xl)} is

L′ =
N∑
l=1

|fk(xl)− fk(xl+1)| ≤
N∑
l=1

[Cϵrm + |fm(xl)− fm(xl+1)|] ≤ CϵrkM
2 logM + ℓ(γm)

≤ CϵrkM
2 logM + (1 + Cϵ)|fk(x)− fk(x

′)|.
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In addition, for any admissible l we can calculate

|fk(xl)− fk(xl+1)| ≤ Cϵrm + |fm(xl)− fm(xl+1)| ≤ Cϵrk logM + 11rk < 12rk. (3.79)

Using (3.79) and Lemma 3.6.1 once again, we connect each pair (fk(xl), fk(xl+1)) by a curve
γl of length ℓ(γl) ≤ (1 + Cϵ)|fk(xl)− fk(xl+1)| to get a curve γ with

ℓ(γ) ≤ (1 + Cϵ)L′ ≤ (1 + Cϵ)|fk(x)− fk(x)|+ CϵrkM
2 logM ≤ 2|fk(x)− fk(x

′)|

using the fact that |fk(x)−fk(x′)| > 18rk andM ≪ ϵ−1, i.e. ϵ is sufficiently small compared
to M . This completes the proof if there exists such an m where fk(x) and fk(x

′) pull back
to a Lipschitz neighborhood in Σm. If there does not exist such an m (i.e., k is too small),
then we instead use the assumed curve γ0 ⊆ Σ0 in place of γm and argue as in the previous
case. ■

We also recall a reverse triangle inequality:

Lemma 3.6.6. (Reverse Triangle Inequality) Let u, v ∈ Rd+1 with ⟨u, v⟩ ≥ −1
2
|u||v|. Then

|u|+ |v| ≤ 2|u+ v|. (3.80)

3.6.2 Controlling the change in Dg

Proposition 3.6.7 follows from a series of computations involving the derivative of the map g
produced by Theorem 3.2.2 for a given CCBP. Proposition 3.6.7 says that given a “central”
point z ∈ Rd+1 and an inflation factor 1 ≤M0 such that M0ϵ is sufficiently small, we can get
a set GM0

z such that w ∈ GM0
z means Dg(w) is very close to Dg(z) in the sense of (3.81).

Proposition 3.6.7 follows from Lemmas 3.6.8 and 3.6.10 which give separate horizontal
and vertical estimates respectively. Define the sets of horizontal and vertical vectors by

H = Rd × {0}, V = {0}d × R.

These lemmas show how to appropriately bound the individual pieces of the difference
Dg(x, y)−Dg(x′, y) and Dg(x′, y)−Dg(x′, y′) between points z = (x, y), z′ = (x′, y′) respec-
tively when acting on v ∈ H ∪ V . Corollaries 3.6.9 and 3.6.11 put these pieces together to
get the requisite Dg estimates, from which we prove Proposition 3.6.7.

Proposition 3.6.7. Let 0 < ϵ < δ < 1 and M0 > 0 such that 1 ≤ M3
0 ϵ < c(d) with c(d)

sufficiently small. Fix a CCBP (Σ0, {Bj,k}, {Pj,k}). Let z, z′ ∈ Rd × R with z = (x, y), z′ =
(x′, y′) where |y′| ≤ |y| and assume fn(y)(x) ∈ V 8

n(y) and fn(y′)(x
′) ∈ V 8

n(y′) (see (3.16)). Define

GM0
z =

{
z′ = (x′, y′) ∈ Rd+1 : |fn(y)(x)− fn(y)(x

′)| < M0rn(y),

n(y′)∑
k=n(y)

ϵ′k(fk(x
′))2 < ϵ,

Angle(Tk(x
′), Tn(y)(x

′) ≤ δ
}
.

Then there exists C(d) > 0 such that for any w ∈ GM0
z , we have

|Dg(w) ·Dg(z)−1 − I| ≤ C(d)δ. (3.81)
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Lemma 3.6.8 (Horizontal Estimates). Let z, z′,M0, ϵ be as in Proposition 3.6.7 and let
v ∈ H ∪ V . Let k be such that ρk(y) > 0. If |fk(x)− fk(x

′)| < M0rk, then

|Dfk(x) · v −Dfk(x
′) · v| ≤ Cϵ|Dfk(x) · v|, (3.82)

|(Dx(Rk(x) · y)) · v − (Dx(Rk(x
′) · y)) · v| ≤ Cϵ|Dfk(x) · v|. (3.83)

In any case, ∣∣∣∣∂g∂y (x, y)− ∂g

∂y
(x′, y)

∣∣∣∣ ≤ Cϵ

∣∣∣∣∂g∂y (x, y)
∣∣∣∣ (3.84)

where the constant C depends on M .

Proof. We begin with proving (3.82). We have

|Dfk(x) · v −Dfk(x
′) · v| =

∣∣[Dσk−1(fk−1(x))−Dσk−1(fk−1(x
′))
]
Dfk−1(x) · v

+Dσk−1(fk−1(x
′))
[
Dfk−1(x)−Dfk−1(x

′)
]
· v
∣∣

≤ |Dfk−1(x) · v||Dσk−1(fk−1(x))−Dσk−1(fk−1(x
′))|

+ |Dσk−1(fk−1(x
′))||Dfk−1(x) · v −Dfk−1(x

′) · v|

Recursively applying this inequality for decreasing values of k gives

|Dfk(x) · v −Dfk(x
′) · v|

≤ |Dfk−1(x) · v||Dσk−1(fk−1(x))−Dσk−1(fk−1(x
′))|

+ |Dσk−1(fk−1(x
′))|
(
|Dfk−2(x) · v||Dσk−2(fk−2(x))−Dσk−2(fk−2(x

′))|
+ |Dσk−2(fk−2(x

′))||Dfk−2(x) · v −Dfk−2(x
′) · v|

)
≤ |Dfk−1(x) · v||Dσk−1(fk−1(x))−Dσk−1(fk−1(x

′))| (3.85)

+
k∑
p=1

(
p∏

m=1

|Dσk−m(fk−m(x′))|

)
|Dfk−p−1(x) · v| · |Dσk−p−1(fk−p−1(x))−Dσk−p−1(fk−p−1(x

′)|.

Now, Lemma 3.6.2 implies

p∏
m=1

|Dσk−m(fk−m(x′))| ≤ (1 + Cϵ)p, (3.86)

and

|Dfk−p−1(x) · v| =

∣∣∣∣∣
p+1∏
m=1

Dσ−1
k−m(fk−m+1(x))Dfk(x) · v

∣∣∣∣∣ ≤ (1 + Cϵ)p+1|Dfk(x) · v|. (3.87)

Using Lemma 3.6.5, we see that (3.78) implies |fk−p−1(x) − fk−p−1(x
′)| < M0rk−p−1

5p+1 ≤
M0rk−p−1 so that we get a rectifiable curve γk−p−1 connecting fk−p−1(x) and fk−p−1(x

′) such
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that ℓ(γk−p−1) ≤ 2|fk−p−1(x)− fk−p−1(x
′)|. Lemma 3.6.4 gives

|Dσk−p−1(fk−p−1(x))−Dσk−p−1(fk−p−1(x
′))| =

∣∣∣∣�
I

D2σk−p−1(γk−p−1(t)) · γ′k−p−1(t) dt

∣∣∣∣
≤
�
I

|D2σk−p−1(γk−p−1(t))||γ′k−p−1(t)|dt

≤ C
ϵ

rk−p−1

· 2|fk−p−1(x)− fk−p−1(x
′)|

≤ C
ϵ

rk−p−1

M0rk−p−1

5p+1

≤ CM0
ϵ

5p+1
. (3.88)

Applying (3.86), (3.87), and (3.88) to (3.85) gives

|Dfk(x) · v −Dfk(x
′) · v| ≤ (1 + Cϵ)C

ϵ

5
|Dfk(x) · v|+

k∑
p=1

(1 + Cϵ)p(1 + Cϵ)p+1|Dfk(x) · v|CM0
ϵ

5p+1

≤ Cϵ|Dfk(x) · v|+ CϵM0|Dfk(x) · v|
k∑
p=1

(1 + Cϵ)2p

5p+1

≤ Cϵ|Dfk(x) · v|.

We now prove (3.83). For any t > 0, Proposition 3.2.3 implies that the quantity Rk(x+
tv)·ed+1−Rk(x)·ed+1 is the difference between the unit normal vectors to the linear subspaces
TΣk(fk(x+ tv)) and TΣk(fk(x)). But by Lemma 3.2.4, we have

|Rk(x+ tv) ·ed+1−Rk(x) ·ed+1| ≤ D(TΣk(fk(x+ tv)), TΣk(fk(x))) ≤ C
ϵ

rk
|fk(x+ tv)−fk(x)|.

(3.89)
Hence, we can write

|(Dx(Rk(x) · y)) · v| ≤ |y| lim
t→0

|Rk(x+ tv) · ed+1 −Rk(x) · ed+1|
|t|

≤ Cϵ
|y|
rk

lim
t→0

|fk(x+ tv)− fk(x)|
|t|

≤ Cϵ|Dfk(x) · v| (3.90)

where |y| ≲ rk since ρk(y) > 0. We then have

|(Dx(Rk(x) · y)) · v − (Dx(Rk(x
′) · y)) · v| ≤ Cϵ(|Dfk(x) · v|+ |Dfk(x′) · v|) ≤ Cϵ|Dfk(x) · v|

using (3.82).
Finally, we prove (3.84). First, we compute

∂g

∂y
(x, y)− ∂g

∂y
(x′, y) =

∑
k≥0

∂ρk
∂y

(y) {fk(x)− fk(x
′) +Rk(x) · y −Rk(x

′) · y}

+
∑
k≥0

ρk(y)(Rk(x) · ed+1 −Rk(x
′) · ed+1)

=: I + II
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Let p, p + 1 be the values of k such that ρk(y) > 0. Since ρp(y) + ρp+1(y) = 1, we have
∂ρp
∂y

(y) + ∂ρp+1

∂y
(y) = 0. This implies

I =
∂ρp
∂y

(y) (fp(x)− fp+1(x) +Rp(x) · y −Rp+1(x) · y)

+
∂ρp
∂y

(y) (fp(x
′)− fp+1(x

′) +Rp(x
′) · y −Rp+1(x

′) · y)

But using (3.13) and (3.14), we have

|I| ≤ C

rp
(Cϵrp + Cϵ|y|) ≤ Cϵ.

By (3.89) we have

|II| ≤ |ρp(y)|
Cϵ

rp
|fp(x)− fp(x

′)|+ |ρp+1(y)|
Cϵ

rp+1

|fp+1(x)− fp+1(x
′)|

≤ CM0ϵ(|ρp(y)|+ |ρp+1(y)|) ≤ Cϵ.

We’ve proven that
∣∣∣∂g∂y (x, y)− ∂g

∂y
(x′, y)

∣∣∣ ≤ Cϵ. We will complete the proof of (3.84) by

showing that
∣∣∣∂g∂y (x, y)∣∣∣ ≳ 1. Indeed,

∂g

∂y
(x, y) =

∣∣∣∣ [∂ρp∂y (y) (fp(x)− fp+1(x) +Rp(x) · y −Rp+1(x) · y)
]

(3.91)

+ [ρp(y)Rp(x) · ed+1 + ρp+1(y)Rp+1(x) · ed+1]

∣∣∣∣.
But the previous computation shows that the first expression has norm ≤ Cϵ, while the
second expression is a convex combination of two nearly parallel unit vectors because Rp(x)
and Rp+1(x) are orthogonal matrices which are Cϵ close. Hence, we get∣∣∣∣∂g∂y

∣∣∣∣ ≳ 1. (3.92)
■

Corollary 3.6.9. Let z, z′ be as in Lemma 3.6.8 and set p = n(y′),m = n(y). Then for any
vector v ∈ H ∪ V , we have

|Dg(x, y) · v −Dg(x′, y) · v| ≤ Cϵ|Dg(x, y) · v|

Proof. First, suppose v = vx ∈ H. Since vx · ed+1 = 0, we have

Dg(x, y) · vx =
∑
k≥0

ρk(y) {Dfk(x) · vx +D(Rk(x) · y) · vx} . (3.93)

Therefore, we get

|Dg(x, y) · vx −Dg(x′, y) · vx| (3.94)

≤
∑
k≥0

ρk(y)
{
|Dfk(x) · vx −Dfk(x

′) · vx|+ |D(Rk(x) · y) · vx −D(Rk(x
′)) · vx|

}
≤ CM0ϵ

∑
k≥0

ρk(y) {|Dfk(x) · vx|} .
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using (3.82) and (3.83). We now want to bound
∑

k≥0 ρk(y) {|Dfk(x) · vx|} by |Dg(x, y) ·vx|.
In order to do so, we first simplify notation by setting

s = ρp(y), t = ρp+1(y),

v1 = Dfp(x) · vx, u1 = Dfp+1(x) · vx,
v2 = D(Rp(x) · y) · vx, u2 = D(Rp+1(x) · y) · vx.

Putting v = v1 + v2, u = u1 + u2, we have Dg(x, y) · vx = sv + tu. In this notation,

|v1 − u1| ≤ Cϵ|v1|, (3.95)

|v2|, |u2| ≤ Cϵ|v1|, (3.96)

by Lemma 3.6.2 and (3.90). We then want to prove the following claim:

Claim : s|v1|+ t|u1| ≲ |sv + tu|.
Proof U:sing (3.96), we get s|v1| ≤ s|v1| + s|v2| ≤ s|v| and similarly t|u1| ≤ t|u|. We now
just need to show that |sv| + |tu| ≲ |sv + tu|. By Lemma 3.6.6, this follows if we can show
⟨sv, tu⟩ ≥ −1

2
|sv||tu|. Indeed, we have

⟨sv, tu⟩ = st (⟨v1, u1⟩+ ⟨v1, u2⟩+ ⟨v2, u1⟩+ ⟨v2, u2⟩) ,
≥ st(|v1|2 − ⟨v1, u1 − v1⟩ − Cϵ|v1|2) ≥ st(1− Cϵ)|v1|2 ≥ 0.

■
This completes the proof for v = vx. If instead v = vy ∈ V , then Dg(z) · vy = vy · ∂g∂y (z)

and the result follows from (3.84) in Lemma 3.6.8. ■

Lemma 3.6.10 (Vertical Estimates). Let z, z′, v, p,m be as in Corollary 3.6.9. If
∑m

k=p ϵ
′
k(fk(x

′))2 ≤
Cϵ and Angle(TΣp(fp(x

′)), TΣm(fm(x
′))) ≤ Cδ, we have∣∣∣∣∣∑

k≥0

(ρk(y)− ρk(y
′))Dfk(x

′) · v

∣∣∣∣∣ ≤ Cδ|Dfp(x′) · v|, (3.97)

∣∣∣∣∣∑
k≥0

ρk(y)D(Rk(x
′) · y) · v − ρk(y

′)D(Rk(x
′) · y′) · v

∣∣∣∣∣ ≤ Cδ|Dfp(x′) · v|, (3.98)

∣∣∣∣∂g∂y (x′, y)− ∂g

∂y
(x′, y′)

∣∣∣∣ ≤ Cδ

∣∣∣∣∂g∂y (x′, y)
∣∣∣∣ . (3.99)

Proof. We being by proving (3.97). First, since Dσk is (1 + Cϵ)-bi-Lipschitz for any k, we
have

|Dfp(x′) · v −Dfp+1(x
′) · v| ≤ Cϵ|Dfp(x′) · v|.

This implies∣∣∣∣∣∑
k≥0

ρk(y)Dfk(x
′) · v −Dfp(x

′) · v

∣∣∣∣∣ ≤∑
k≥0

ρk(y)|Dfk(x′) · v −Dfp(x
′) · v| (3.100)

≤ Cϵ|Dfp(x′)|
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because ρk(y) ̸= 0 only for k = p, p+1. An identical argument gives (3.100) with y replaced
by y′ and p replaced by m. We now want a similar bound for |Dfm(x′) · v−Dfp(x

′) · v|. For
ease of notation, define u = Dfp(x

′) · v and w =
∏m−1

k=p Dσk(fk(x
′)) · u. We can then write

|Dfm(x′) · v −Dfp(x
′) · v| =

∣∣∣∣∣
[
m−1∏
k=p

Dσk(fk(x
′))

]
· u− u

∣∣∣∣∣ = |w − u|.

The fact that
∑m

k=p ϵ
′
k(fk(x

′))2 ≤ Cϵ2 means∣∣∣∣∣
m−1∏
k=p

Dσk(fk(x
′))

∣∣∣∣∣ ≤
m−1∏
k=p

1 + CM2
0 ϵ

′
k(fk(x

′))2 ≤ 1 + CM2
0 ϵ

2. (3.101)

Hence, ||w| − |u|| ≤ CM2
0 ϵ

2|u|. Since w ∈ TΣm(fm(x
′)), u ∈ TΣp(fp(x

′)), and we’ve as-
sumed that Angle(TΣp(fp(x

′)), TΣm(fm(x
′))) ≤ Cδ, we have Angle(w, u) ≤ Cδ and it follows

that
|w − u| ≲M0 δ|u| (3.102)

as long as δ and ϵ are sufficiently small. Finally, using (3.100) and (3.102), we see∣∣∣∣∑
k≥0

(ρk(y)− ρk(y
′))Dfk(x

′) · v
∣∣∣∣

≤

∣∣∣∣∣∑
k≥0

ρk(y)Dfk(x
′) · v −Dfp(x

′) · v

∣∣∣∣∣+
∣∣∣∣∣∑
k≥0

ρk(y
′)Dfk(x

′) · v −Dfm(x
′) · v

∣∣∣∣∣
+ |Dfp(x′) · v −Dfm(x

′) · v|
≤ Cϵ|Dfp(x′) · v|+ Cϵ|Dfm(x′) · v|+ Cδ|Dfp(x′) · v|
≤ Cδ|Dfp(x′) · v|.

The proof of (3.98) follows from (3.90) and (3.97). Indeed,∣∣∣∣∑
k≥0

ρk(y)D(Rk(x
′) · y) · v − ρk(y

′)D(Rk(x
′) · y′) · v

∣∣∣∣
≤ Cϵ|Dfp(x′) · v|+ Cδ|Dfp(x′) · v|+ Cϵ|Dfm(x′) · v|
≤ Cδ|Dfp(x′) · v|.

Finally, we prove (3.99). We have∣∣∣∣∂g∂y (x′, y)− ∂g

∂y
(x′, y′)

∣∣∣∣ ≤∑
k≥0

∣∣∣∣∂ρk∂y (y) {fk(x′) +Rk(x
′) · y}

∣∣∣∣+ ∣∣∣∣∂ρk∂y (y′) {fk(x′) +Rk(x
′) · y′}

∣∣∣∣
+ |(ρk(y)− ρk(y

′))Rk(x
′) · ed+1|

=: δ1 + δ2 + δ3.

We first handle δ1 and δ2. We have

δ1 ≤
∣∣∣∣∂ρp∂y (y)

∣∣∣∣ (|fp(x′)− fp+1(x
′)|+ |Rp(x

′)−Rp+1(x
′)||y|) ≤ C

rp
(Cϵrp + Cϵrp) ≤ Cϵ
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by (3.13) and (3.14). A nearly identical calculation gives the same bound for δ2. We now
handle δ3. First, notice that∣∣∣∣∣∑

k≥0

ρk(y)Rk(x
′) · ed+1 −Rp(x

′) · ed+1

∣∣∣∣∣ ≤∑
k≥0

|ρk(y)||Rk(x
′) · ed+1 −Rp(x

′) · ed+1| ≤ Cϵ

(3.103)

by (3.14). Because Rk(x
′) is an isometry such that Rk(x

′)(TΣ0(x
′)) = TΣk(fk(x)), Rk(x

′) ·
ed+1 is the unit normal to TΣk(fk(x

′)) so that

|Rp(x
′) · ed+1 −Rm(x

′) · ed+1| ≤ C Angle(TΣp(fp(x
′)), TΣm(fm(x

′))) ≤ Cδ. (3.104)

Finally, (3.103) and (3.104) imply

δ3 ≤

∣∣∣∣∣∑
k≥0

ρk(y)Rk(x
′) · ed+1 −Rp(x

′) · ed+1

∣∣∣∣∣+
∣∣∣∣∣∑
k≥0

ρk(y
′)Rk(x

′) · ed+1 −Rm(x
′) · ed+1

∣∣∣∣∣
+ |Rp(x

′) · ed+1 −Rm(x
′) · ed+1|

≤ Cϵ+ Cϵ+ Cδ ≤ Cδ

∣∣∣∣∂g∂y (y′)
∣∣∣∣ .

where the final inequality uses (3.92). ■

Corollary 3.6.11. Let z, z′ be as in Lemma 3.6.10. Then for any vector v ∈ H ∪ V , we
have

|Dg(x′, y) · v −Dg(x′, y′) · v| ≤ Cδ|Dg(x′, y) · v|

Proof. Suppose first that v = vx ∈ H. Then using (3.93), we compute

|Dg(x′, y) · vx −Dg(x′, y′) · vx| (3.105)

=

∣∣∣∣∑
k≥0

(ρk(y)− ρk(y
′))Dfk(x

′) · vx + ρk(y)D(Rk(x
′) · y) · vx − ρk(y

′)D(Rk(x
′) · y′) · vx

∣∣∣∣
(3.106)

≤ Cδ|Dfp(x′) · vx| ≤ Cδ|Dg(x′, y) · vx|
≤ Cδ(1 + Cδ)|Dg(x, y) · vx| ≤ Cδ|Dg(x, y) · vx| (3.107)

using (3.97) and (3.98) in the first inequality, (3.90) in the second, and (3.94) in the third.
If instead v = vy ∈ V , then Dg(x′, y) = vy · ∂g∂y (x

′, y) and the result follows from (3.99) and

(3.84). ■

Using Corollaries 3.6.9 and 3.6.11, we can prove Proposition 3.6.7.

Proof of Proposition 3.6.7. Let z′ = (x′, y′) ∈ GM0
z . We will show that for any vector v ∈

H ∪ V ,
|Dg(x, y) · v −Dg(x′, y) · v| ≤ Cδ|Dg(x, y) · v|. (3.108)
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The set GM0
z is designed exactly so that z′ ∈ GM0

z implies that the hypotheses of Lemmas
3.6.8 and 3.6.10 are satisfied. Hence, we can apply Corollaries 3.6.9 and 3.6.11 so that

|Dg(x, y) · v−Dg(x′, y′) · v|
≤ |Dg(x, y) · v −Dg(x′, y) · v|+ |Dg(x′, y) · v −Dg(x′, y′) · v|
≤ Cδ|Dg(x, y) · v|+ Cδ|Dg(x′, y) · v|
≤ Cδ|Dg(x, y) · v|.

By decomposing an arbitrary v′ ∈ Rd+1 as v′ = vx + vy where vx ∈ H and vy ∈ V , we write

|Dg(x, y) · v′−Dg(x′, y′) · v′|
≤ |Dg(x, y) · vx −Dg(x′, y′) · vx|+ |Dg(x, y) · vy −Dg(x′, y′) · vy|
≤ Cδ(|Dg(x, y) · vx|+ |Dg(x, y) · vy|)
≤ Cδ|Dg(x, y) · v′|, (3.109)

Where the final inequality follows from an application of the reverse triangle inequality in
Lemma 3.6.6. We justify the application of the lemma by looking at the equations (3.93)
and (3.91). These imply that the vector Dg(x, y) · vx is nearly parallel to TΣk(x) while
the vector Dg(x, y) · vy is nearly perpendicular to TΣk(x) for some value of k where the
deviations described are on the order of ϵ. This implies |⟨Dg(x, y) · vx, Dg(x, y) · vy⟩| ≤
1
2
|Dg(x, y) · vx| · |Dg(x, y) · vy| so that the lemma applies. With this, we now compute,

|Dg(z′) ·Dg(z)−1 · v′ − v′| = |[Dg(z′)−Dg(z)] ·Dg(z)−1 · v′| ≤ Cδ|Dg(z) ·Dg(z)−1 · v′|
= Cδ|v′|. ■

This concludes the computations we need to bound the change in Dg. By integrating
Dg over paths in a quasiconvex domain Ω, we get a companion result to Proposition 3.6.7
which roughly states that the map g|Ω is a (1 +Cδ)-bi-Lipschitz perturbation of Dg(z0) for
any z0 ∈ Ω. More precisely, for any z ∈ Rd+1 define

Lz0(z) = z0 +Dg(z0)(z − z0). (3.110)

This is the affine transformation which approximates g near z0. Define

φz0 = g ◦ L−1
z0

(3.111)

Proposition 3.6.12. Let Ω ⊆ Rd+1 be a quasiconvex domain with constant M0 such that
Ω ⊆ GM0

z0
for some z0 ∈ Ω andM0, ϵ be as in Proposition 3.6.7. Then the map φz0 : Lz0(Ω) →

g(Ω) is (1 + Cδ)-bi-Lipschitz and

|Dφz0(w)− I| ≤ Cδ (3.112)

for all w ∈ Lz0(Ω).

Proof. Because w ∈ Lz0(G
M0
z0

) by assumption, we get

Dφz0(w) = Dg(L−1
z0
(w)) ·DL−1

z0
(w) = Dg(z) ·Dg(z0)−1
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for z′ = L−1
z0
(w) ∈ GM0

z0
. Equation (3.112) follows from (3.6.7).

To prove that φz0 is (1 + Cδ)-bi-Lipschitz, let γ : [0, 1] → Rd+1 be a path with γ(0) =
z0, γ(1) = z, and ℓ(γ) ≲M0 |z0 − z|. Put γ̃(t) = Lz0(γ(t)) and w0 = Lz0(z) = z. Observe
that

L−1
z0
(w) = z0 +Dg(z0)

−1(w − z0).

We estimate

|φz0(w)− φz0(w0)| =
∣∣∣∣� 1

0

D(g ◦ L−1
z0
)(γ̃(t)) · γ̃′(t)dt

∣∣∣∣
=

∣∣∣∣� 1

0

Dg(γ(t)) ·DL−1
z0
(γ̃(t)) · γ̃′(t)dt

∣∣∣∣
=

∣∣∣∣� 1

0

Dg(γ(t)) ·Dg(z0)−1 · γ̃′(t)dt
∣∣∣∣

=

∣∣∣∣w − w0 +

� 1

0

[
Dg(γ(t)) ·Dg(z0)−1 − I

]
· γ̃′(t)dt

∣∣∣∣ .
Using the fact that γ(t) ∈ GM0

z0
for all t, Proposition 3.6.7 implies, on one hand

|φz0(w)− φz0(w0)| ≤ |w − w0|+
� 1

0

∣∣Dg(γ(t)) ·Dg(z0)−1 − I
∣∣ · |γ̃′(t)|dt

≤ |w − w0|+ Cδ|Dg(z0)| · ℓ(γ)
≤ (1 + Cδ)|w − w0|.

On the other,

|φz0(w)− φz0(w0)| ≥ |w − w0| −
� 1

0

∣∣Dg(γ(t)) ·Dg(z0)−1 − I
∣∣ · |γ̃′(t)|dt

≥ |w − w0| − Cδ|Dg(z0)| · ℓ(γ)
≥ (1− Cδ)|w − w0|

where the final inequality on both hands comes from the fact that |w′−w| = |Dg(z)·(z′−z)| ≤
|Dg(z)| · |z − z′| and our assumption that ℓ(γ) ≲M0 |z − z′|. ■

3.7 Graph coronizations for Reifenberg flat sets

The goal of this section is to provide a proof of Proposition 3.2.8 which states that there
exist (sufficiently small in terms of d) constants ϵ, δ > 0 such that Reifenberg flat sets admit
(M, ϵ, δ)-graph coronizations.

Reifenberg flat sets are a subset of a more general class of sets called lower content d-
regular sets studied by Azzam and Schul [AS18] and later Hyde [Hyd22a] as a class of objects
for d-dimensional traveling salesman results.

Definition 3.7.1 (lower content d-regularity). A set E ⊆ Rd+1 is said to be lower content
d-regular in a ball B(x, r) if there exists a constant c > 0 and rB > 0 such that

H d
∞(E ∩B(x, r)) ≥ crd for all x ∈ E ∩B and r ∈ (0, rB).
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A set E is lower content d-regular if there exists a constant c such that E is lower content
regular with constant c in every ball centered on E.

Since a Reifenberg flat set Σ satisfies bβΣ(B) ≤ ϵ in every ball by definition, the only
remaining requirements for the existence of a graph coronization are control over βd,1Σ -squared
sums and control over the frequency of angle turning of well-approximating planes. The
necessary control over β-sums is contained in the following traveling salesman theorems
formulated for general lower content regular sets:

Theorem 3.7.1 ([Hyd22a] Theorem 1.6). Let H be a Hilbert space and 1 ≤ d < dim(H), 1 ≤
p < p(d), C0 > 1, and A > 105. Let E ⊆ H be a lower content d-regular set with regularity
constant c and Christ-David cubes D . There exists ϵ > 0 small enough so that the following
holds. Let Q0 ∈ D and

βE,C0,d,p(Q0) = ℓ(Q0)
d +

∑
Q⊆Q0

βd,pE (C0BQ)
2ℓ(Q)d.

Then
βE,C0,d,p(Q0) ≲A,d,c,p,C0,ϵ Hd(Q0) + BWGL(Q0, A, ϵ). (3.113)

Theorem 3.7.2 ([Hyd22a] Theorem 1.7). Let H be a Hilbert space, 1 ≤ d < dim(H), 1 ≤
p < ∞, A > 1, ϵ > 0, and C0 > 2ρ−1 where ρ is as in the construction of the Christ-David
lattice D . Let E ⊆ H be lower content d-regular with regularity constant c and Christ-David
cubes D . For Q0 ∈ D , we have

Hd(Q0) + BWGL(Q0, A, ϵ) ≲A,d,c,C0,ϵ βE,C0,d,p(Q0).

If E is (ϵ, d)-Reifenberg flat, then the BWGL terms above vanish and (3.113) gives
a Carleson packing condition for the content beta number sum reminiscent of the strong
geometric lemma for uniformly rectifiable sets from which we will conclude the desired β2

sum control.
We will require small technical tweaks of the stopping time machinery of Azzam and

Schul on Reifenberg flat sets. We review the necessary definitions here, but refer to [AS18]
sections 5-8 for a full treatment of the construction.

Definition 3.7.2 (d-dimensional traveling salesman stopping time). We fix constants 0 <
ϵ ≪ α4 with α(d), ϵ(d) to be chosen sufficiently small in terms of δ as required in [AS18] .
For any cube Q ∈ D , we define a stopping time region SαQ by adding cubes R ⊆ Q to SQ if

(i) R(1) ∈ SαQ,

(ii) Angle(PU , PQ) < α for any sibling U of R (including R itself).

For any collection of cubes Q, define a distance function

dQ(x) = inf{ℓ(Q) + dist(x,Q) : Q ∈ Q}.

For any Q ∈ D , define

dQ(Q) = inf
x∈Q

dQ(x) = inf{ℓ(R) + dist(Q,R) : R ∈ Q}.
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We let m(S) be the set of minimal cubes of S, those which have no children contained in S
and define

z(S) = Q(S) \
⋃

Q∈m(S)

Q.

Let
Stop(−1) = D0

and fix a small constant τ ∈ (0, 1). Suppose we have defined Stop(N − 1) for some integer
N ≥ 0 and define

Layer(N) =
⋃

{SαQ : Q ∈ Stop(N − 1)}.

We then set Up(−1) = ∅ and put

Stop(N) = {Q ∈ D : Q maximal such that Q has a sibling Q′ with ℓ(Q′) < τdLayer(N)(Q
′)},

Up(N) = Up(N − 1) ∪ {Q ∈ D : Q ⊃ R for some R ∈ Stop(N) ∪ Layer(N)}

[AS18] Lemma 5.5 says that, in fact

Up(N) = {Q ∈ D : Q ̸⊂ R for any R ∈ Stop(N)}.

Essentially, Layer(N) is a layer of stopping time regions SαQ beginning at the stopped
cubes of the previous generation and continuing until reaching a cube R with a child R′ such
that Angle(PQ, PR′) > α. Stop(N) is formed by taking a “smoothing” of Layer(N) that
ensures that nearby minimal cubes in Stop(N) are of similar size. One forms a CCBP from
the centers and bβ-minimizing planes of cubes in Up(N) which gives a surface ΣN for any
N ≥ 0 which converges to Σ as N → ∞. Azzam and Schul give tools for proving bounds on
the degree of stopping in this construction in the following lemma

Lemma 3.7.3 ([Hyd22a] Lemma 4.4 (5)). Let Σ be (ϵ, d)-Reifenberg flat and D a Christ-
David lattice for Σ. Let N ≥ 0. For any Q0 ∈ D ,∑

N≥0

∑
Q∈Stop(N)
Q⊆Q0

ℓ(Q)d ≲d,α,ϵ Hd(Q0)

Proof of Proposition 3.2.8. Fix M ≥ 1, and ϵ, α > 0 sufficiently small in terms of M,d, n
determined by Lemma 3.7.3 and Theorem 3.7.1 and let δ = 100α. Let D be a Christ-David
lattice for Σ and let {PQ}Q∈D be a family of d-planes such that xQ ∈ PQ and βd,1Σ (MBQ, PQ) ≤
2βd,1Σ (MBQ). FixQ0 ∈ D and form a collection of stopping time regions F = {SQ} contained
within Q0 satisfying the stopping conditions Items (ii) and (iii) of Definition 3.2.9. We set
G = D , B = ∅. To prove that C = (G ,B,F ) is an (M, ϵ, δ)-graph coronization, we only
need to show that C is a coronization, i.e., there exists a constant C(M, ϵ, δ, d) such that∑

S∈F

ℓ(Q(S))d ≤ CHd(Q0).
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Define

Sδ = {Q ∈ D : ∃S ∈ F , Q ∈ Stop(S), Angle(PQ, PQ(S)) > δ},

Sβ =

Q ∈ D : ∃S ∈ F , Q ∈ Stop(S),
∑

Q⊆R⊆Q(S)

βd,1Σ (MBR)
2 > η

 .

It suffices to show that
∑

Q∈Sδ∪Sβ
ℓ(Q)d ≤ CHd(Q0). We define

Stop(−1, δ) = {Q0},

and, given Stop(N − 1, δ) for some integer N ≥ 0, we define

Stop(N, δ) = {R ∈ Sδ : R maximal such that R ⊆ Q ∈ Stop(N − 1, δ)}.

With this, we have

Sδ =
⋃
N≥0

Stop(N, δ).

We will use this to show that
∑

Q∈Sδ
ℓ(Q)d ≤ CH d(Q0).

Fix Q ∈ Stop(N, δ) and let x ∈ Q \ z(S). Then there exists R ∈ Sδ, R ⊂ Q such that
x ∈ R and, since δ ≥ 100α, there exists a cube R′ ∈ Stop(K) for some K ≥ 0 such that
R ⊆ R′ ⊆ Q. Set

Stop(Q) =

{
R ∈ D : R maximal such that R ∈

⋃
N≥0

Stop(N) and R ⊆ Q

}
.

The above argument has shown that Q \ z(SQ) ⊆ ∪R∈Stop(Q)R. We see

ℓ(Q)d ≲d

∑
R∈Stop(Q)

ℓ(R)d + H d(z(SQ)).

This means ∑
Q∈Sδ

ℓ(Q)d =
∑
N≥0

∑
Q∈Stop(N,δ)

ℓ(Q)d

≲d

∑
N≥0

∑
Q∈Stop(N,δ)

 ∑
R∈Stop(Q)

ℓ(R)d +Hd(z(SQ))


≲ Hd(Q0) +

∑
K≥0

∑
R∈Stop(K)

ℓ(R)d

≲d,δ,ϵ Hd(Q0)

where the penultimate line follows from the fact that Stop(Q) ∩ Stop(Q′) = ∅ for Q,Q′ ∈
Sδ, Q ̸= Q′, and the final line follows from Lemma 3.7.3.
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We now show that
∑

Q∈Sβ
ℓ(Q)d ≤ CHd(Q0). We have

∑
Q∈Sβ

ℓ(Q)d ≤
∑
Q∈Sβ

ℓ(Q)d
[
ϵ−2

∑
Q⊆R⊆Q(S)
Q∈S∈F

βd,1Σ (MBR)
2

]
= ϵ−2

∑
R∈D

βd,1Σ (MBR)
2

∑
Q maximal ⊆R

Q∈Sβ

ℓ(Q)d,

≲ ϵ−2
∑
R∈D

βd,1Σ (MBR)
2ℓ(R)d ≲d,η Hd(Q0) ■

using Theorem 3.7.1 in the last line.
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Chapter 4

Uniformly rectifiable metric spaces
satisfy the weak constant density
condition

4.1 Introduction

The relation between the rectifiability properties and density properties of sets and measures
has long been a topic of interest in geometric measure theory. For a metric space X, we say
that E ⊆ X with H n(E) < ∞ is n-rectifiable if E can be covered H n almost everywhere
by a countable union of Lipschitz images of subsets of Rn. In Euclidean space, rectifiable
sets give a natural generalization of C1 manifolds. If E ⊆ X is n-rectifiable, then for H n

almost every x ∈ E,

lim
r→0

H n(B(x, r) ∩ E)
(2r)n

= 1 (4.1)

as holds for an n-dimensional submanifold of Euclidean space (See [Kir94] Theorem 9 for a
proof of (4.1)). In fact, if E ⊆ Rd, then the above condition also implies n-rectifiability and
hence gives a characterization of rectifiability equivalent to coverings by Lipschitz images.
This was first proven by Marstrand for n = 2, d = 3 [Mar61] and Mattila for general n, d
[Mat75]. Later, Preiss showed that any measure in Rd whose n-dimensional density merely
exists and is finite H n-a.e. is rectifiable, generalizing this result [Pre87].

The weak constant density condition (WCD) is one of several conditions meant to provide
an analog of (4.1) in the world of uniform rectifiability pioneered by David and Semmes in
their foundational works [DS91] and [DS93].

Definition 4.1.1 (uniform n-rectifiability). We say that a set E ⊆ Rd is uniformly n-
rectifiable if there exists a constant C0 > 0 such that E is Ahlfors (C0, n)-regular, i.e., for all
x ∈ E and 0 < r < diam(E),

C−1
0 rn ≤ H n(B(x, r) ∩ E) ≤ C0r

n, (4.2)

and E has Big Pieces of Lipschitz images of Rn (BPLI), i.e., there exist constants L, θ > 0
such that for all x ∈ E and 0 < r < diam(E), there exists an L-Lipschitz map f : B(0, r) ⊆
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Rn → Rd such that
H n(B(x, r) ∩ E ∩ f(B(0, r))) ≥ θrn. (4.3)

One can think of this as a stronger form of n-rectifiability in which one requires a uniform
percentage of the measure of each ball to be covered by a Lipschitz image. David and Semmes
introduced the WCD as a way of quantifying (4.1) by requiring that in almost every ball,
there exists a measure supported on the set with nearly constant density nearby.

Definition 4.1.2 (Weak constant density condition, Carleson sets and measures). Let E ⊆
Rd be Ahlfors n-regular, let C0, ϵ0 > 0, and define

Gcd(C0, ϵ0) =

 (x, r) ∈ E × R+

∣∣∣∣∣∣
∃ Ahlfors (C0, n)-regular µ, spt(µ) = E,
∀y ∈ B(x, r), 0 < t ≤ r,
|µ(E ∩B(y, t))− tn| ≤ ϵ0r

n

 , (4.4)

Bcd(C0, ϵ0) = E × R+ \ Gcd(C0, ϵ0). (4.5)

We say that E satisfies the weak constant density condition if there exists C0 > 0 such that
for all ϵ0 > 0, Bcd(C0, ϵ0) is a Carleson set. That is, there exists a constant C1 > 0 such
that for all z ∈ E and 0 < r < diam(E),

�
B(z,r)

� r

0

χBcd(C0,ϵ0)(x, t)dH
n(x)

dt

t
≤ C1r

n.

If this holds, we say that χBcd(C0,ϵ0)dH
n(x)dt

t
is a Carleson measure and say that Bcd(C0, ϵ0)

is C1-Carleson.

For related quantitative conditions involving densities, see [Cho+16], [AH22], and [TT15].
The work of David, Semmes, and Tolsa combine to prove the following Theorem:

Theorem 4.1.1. Let E ⊆ Rd be Ahlfors n-regular. Then E is uniformly n-rectifiable if and
only if E satisfies the WCD.

David and Semmes proved the forward implication in Chapter 6 of [DS91] using a char-
acterization of uniform rectifiability (condition C2 of [DS91]) more closely related to the
boundedness of singular integral operators. We will say more about this when we discuss
our result.

They proved the reverse implication only in the case n = 1, 2, and d−1. Their proof uses
the fact that if a measure is very close to having constant density in a large neighborhood of
scales and locations, then its support is well-approximated by the support of an n-uniform
measure, a measure µ for which there exists c > 0 such that µ(B(x, r)) = crn for all x ∈ spt(µ)
and r > 0. Because uniform measures in Euclidean space are completely classfied for n = 1, 2
(they are all multiples of Hausdorff measure on a plane) and for n = d−1 (they are Hausdorff
measure on products of planes and light cones [KP87]), David and Semmes are able to
show that a WCD set is very close to flat on most balls which are good for the WCD. The
absence of a classification for uniform measures in intermediate dimensions prevented a direct
adaptation of their arguments. However, Tolsa completed the proof of the reverse direction
in Theorem 4.1.1 in [Tol15] by replacing elements of David and Semmes’s argument specific
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to their examples of uniform measures with general flatness properties of uniform measures
derived by Preiss [Pre87] in addition to new arguments using the Riesz transform.

In general, classifying uniform measures is a difficult open problem, but see [Nim22] for
an interesting family of examples. For further studies of uniform measures in Euclidean
spaces see [Pre87] (and [De 08] for a more gentle presentation of Preiss), [KP02], [Nim17],
and [Nim19]. For research into uniform measures in the Heisenberg group see [CMT20] and
[Mer22] and for a related result in ℓ3∞, see [Lor03].

Given the fact that (4.1) is valid even in rectifiable metric spaces, it is natural to ask
whether there is some extension of the above theory to uniformly rectifiable metric spaces,
i.e., metric spaces which are Ahlfors n-regular and have big pieces of Lipschitz images of
subsets of Rn. In this paper, we extend a piece of this theory by proving the following
theorem.

Theorem F. Uniformly n-rectifiable metric spaces satisfy the WCD.

Our proof is made possible by the recent work of Bate, Hyde, and Schul [BHS23] which
adapted a substantial portion of the theory of uniformly rectifiable subsets of Euclidean
spaces to metric spaces. While our argument uses this theory, it does not follow David
and Semmes’s original proof very closely. Roughly speaking, David and Semmes proved the
Euclidean version of Theorem F by showing that for most balls centered on an n−uniformly
rectifiable set E, there exists a d-plane P such that the pushforward of Hausdorff measure for
E onto P must be very close to symmetric. They do this by showing that the non-symmetric
balls contribute substantially to the value of a Carleson measure defined using integrals over
E of a family of smooth odd functions designed to detect asymmetry.

We prove Theorem F by first proving that bi-Lipschitz images satisfy the WCD. Then,
using the fact that uniformly rectifiable spaces have very big pieces of bi-Lipschitz images
in Banach spaces proven by Bate, Hyde, and Schul [BHS23], we adapt the bi-Lipschitz im-
age arguments to the general case. To handle the bi-Lipschitz image case, we first prove
Lemma 4.3.3, a form of quantitative Lebesgue differentiation theorem for L2 functions very
similar to theorems considered by David and Semmes (see [DS93] Lemma IV.2.2.14, Corol-
lary IV.2.2.19, etc.), although our proof proceeds by contradiction and uses a compactness
argument, a method which differs significantly from their proofs. We apply this lemma to
the Jacobian of the metric derivative of our bi-Lipschitz function f : Rn → Σ to control the
variation of its averages over neighborhoods of scales and locations and receive control over
the variation of the Hausdorff measure of Σ using the area formula. To the knowledge of the
author, this gives a new proof of the WCD even in the Euclidean case.

We note here that the naive converse of Theorem 4.1.1 is false: There exist Ahlfors regular
metric spaces which satisfy the WCD, yet are not uniformly rectifiable. Indeed, the metric
space (X, d) = (R, | · |1/2Euc) is in fact 2-uniform: H 2(B(x, r)) = cr2 for all x ∈ R and r ≥ 0,
hence X satisfies the weak constant density condition, yet X is purely 2-unrectifiable. Some
different examples of this failure are given by Bate [Bat23]. He proves that every 1-uniform
metric measure space is either R, a particular union of disjoint circles of radius d, or a purely
unrectifiable “limit” of the circle spaces. These last two spaces are examples of 1-uniform
spaces which are not uniformly rectifiable.

Analyzing connectedness plays a special role in the proof because any 1-uniform connected
component must be locally isometric to R, implying any connected 1-uniform space is itself R.
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From these examples, it seems reasonable to think that some connectedness and topological
conditions are necessary hypotheses for any type of converse to hold. It also follows from
work of Schul [Sch07a], [Sch09], and Fassler and Violo [FV23] (see also [Hah05]) that any
Ahlfors 1-regular connected subset of a metric space is uniformly 1-rectifiable, although
perhaps adding some form of weaker hypothesis could provide an interesting converse to our
result in the one-dimensional case using Bate’s classification.

4.2 Preliminaries

Whenever we write A ≲ B, we mean that there exists some constant C independent of A and
B such that A ≤ CB. If we write A ≲a,b,c B for some constants a, b, c, then we mean that
the implicit constant C mentioned above is allowed to depend on a, b, c. We will sometimes
write A ≍a,b,c B to mean that both A ≲a,b,c B and B ≲a,b,c A hold. We use the notation
f : E ↠ F to mean f is a surjective map from E to F .

Let (X, d) be a metric space. For any subset F ⊆ X, integer n ≥ 0, and constant
0 < δ ≤ ∞, we define

H n
δ (F ) = inf

{∑
diam(Ei)

d : F ⊆
⋃

Ei, diam(Ei) < δ
}

where diam(E) = supx,y∈E d(x, y). The Hausdorff n-measure of F is defined as

H n(F ) = lim
δ→0

H m
δ (F ).

Occasionally, we will specify a subset Σ ⊆ X and write H n
Σ = H n|Σ. For any H n measur-

able A ⊆ X and measurable f : A ⊆ X → R, we define

 
A

f =
1

H n(A)

�
A

f(x)dH n(x).

We let D(Rn) denote the family of dyadic cubes in Rn. For Q ∈ D(Rn), we let ℓ(Q) denote
the side length of Q. If R ∈ D(Rn) and k ∈ Z, we define

D(R) = {Q ∈ D(Rn) | Q ⊆ R } ,
Dk(R) =

{
Q ∈ D(R)

∣∣ ℓ(Q) = 2−kℓ(R)
}
.

We will also need a version of “cubes” associated to a metric space. David [Dav88] introduced
this idea first, and it was later generalized by [Chr90] and [HM12]. The following formulation
draws most from the latter two.

Theorem 4.2.1 (Christ-David cubes). Let X be a doubling metric space. Let Xk be a nested
sequence of maximal ρk-nets for X where ρ < 1/1000 and let c0 = 1/500. For each k ∈ Z
there is a collection Dk of “cubes,” which are Borel subsets of X such that the following hold.

(i) X =
⋃
Q∈Dk

Q.

(ii) If Q,Q′ ∈ D =
⋃

Dk and Q ∩Q′ ̸= ∅, then Q ⊆ Q′ or Q′ ⊆ Q.
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(iii) For Q ∈ D , let k(Q) be the unique integer so that Q ∈ Dk and set ℓ(Q) = 5ρk(Q). Then
there is xQ ∈ Xk so that

B(xQ, c0ℓ(Q)) ⊆ Q ⊆ B(xQ, ℓ(Q))

and
Xk = {xQ : Q ∈ Dk}.

(iv) If X is Ahlfors n-regular, then there exists C ≥ 1 such that

H n(
{
x ∈ Q

∣∣ d(x,X \Q) ≤ ηρk
}
) ≲ η1/Cℓ(Q)n

for all Q ∈ D and η > 0.

In addition, we define
BQ = B(xQ, ℓ(Q)).

In analogy to the dyadic cube notation, for any R ∈ D and k ∈ Z we also write

D(R) = {Q ∈ D | Q ⊆ R } ,
Dk(R) =

{
Q ∈ D(R)

∣∣ ℓ(Q) = ρ−kℓ(R)
}
.

We will actually prove a form of the WCD adapted to Christ-David cubes. The following
two lemmas will allow us to show that the cube WCD in Definition 4.4.1 implies the WCD
from Definition 4.1.2. Recall from Theorem 4.2.1 that c0 =

1
500

.

Lemma 4.2.2. Let X be a doubling metric space with doubling constant Cd. There exists
N(Cd) ∈ N such that the following holds: There exist N Christ-David systems of cubes
{Di}Ni=1 for X such that for any x ∈ X, 0 < t < diam(X), there exists i ∈ {1, . . . , N} and
Q ∈ Di with ℓ(Q) ≤ 5

ρc0
t such that x ∈ c0

4
BQ and t < c0

4
ℓ(Q).

Proof. Fix ρ < 1
1000

. For each k, let X̃k be a maximal c0ρ
k-net for X. We now iteratively

construct maximal ρk-nets X1
k , X

2
k , . . . , X

N
k , . . . in the following way. Let X1

k be a completion
of a maximal ρk-separated subset of X̃k to a maximal ρk-net for X. Given X i

k for any i > 0,
constructX i+1

k by completing a maximal ρk-separated subset of Y i
k := X̃k\(X1

k∪X2
k∪. . .∪X i

k)
to a maximal ρk-net for X. We claim that this process terminates in N(Cd) steps, giving for
each k ∈ Z a collection of maximal ρk-nets X1

k , . . . , X
N
k . Indeed, let B be a ball of radius

2ρk. By doubling, there exists N(Cd) < ∞ such that #(B ∩ X̃k) ≤ N(Cd). Suppose that
1
2
B ∩Y j

k ̸= ∅ for some j > 0. Then, because Xj+1
k is maximal, there exists some x ∈ B ∩Y j

k

such that x ∈ Xj+1
k . Therefore, #(B ∩ Y j+1

k ) < #(B ∩ Y j
k ) whenever

1
2
B ∩ Y j

k ̸= ∅. This

means 1
2
B ∩ Y N+1

k = ∅ for any such B, implying Y N+1
k = ∅ and X̃k ⊆ ∪Ni=1X

i
k as desired.

We now show that the lemma follows from this. Recall that Theorem 4.2.1 takes as
input a collection {Xk}k∈Z of maximal ρk-nets for X and outputs a system of cubes D such
that every xαk ∈ Xk is the “center” of a cube Qα

k ∈ D with BX(x
α
k , c05ρ

k) = c0BQα
k
⊆ Qα

k .
We apply Theorem 4.2.1 to the collection {X i

k}k∈Z for every 1 ≤ i ≤ N and receive a
Christ-David system Di such that each point x̃k ∈ X̃k is the center of some Q ∈ Di for
some i. So, let x ∈ X, 0 < t < diam(X), and let k ∈ Z such that c0ρ

k−1 ≤ t < c0ρ
k.

Because X̃k is a maximal c0ρ
k-net for X, there exists x̃k ∈ X̃k such that d(x, x̃k) < c0ρ

k.
Because X̃k ⊆ ∪Ni=1X

i
k, there then exists 1 ≤ i ≤ N and Q ∈ Di such that x̃k = xQ so that

x ∈ B(xQ, c0ρ
k) = 1

5
B(xQ, c0ℓ(Q)) =

c0
5
BQ. Similarly, ρc0

5
ℓ(Q) ≤ t < c0

5
ℓ(Q). ■
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Lemma 4.2.3. Let X be Ahlfors (C0, n)-regular. If X satisfies the cube WCD of Definition
4.4.1, then X satisfies the WCD.

Proof. We first note that if an aQ > 0 as in (4.14) exists, then (2C0)
−1 ≤ aQ ≤ 2C0 by

Ahlfors regularity. Therefore, whenever |H n(X ∩B(y, r))− aQr
n| ≤ ϵ0ℓ(Q), we have

|(aQ)−1H n(X ∩B(y, r))− rn| = (aQ)
−1|H n(X ∩B(y, r))− aQr

n| ≤ (2C0)
−1ϵ0ℓ(Q).

This means that one can replace H n with a multiple of H n and aQr
n with rn in the

definition of the cube WCD at the cost of increasing ϵ0. Therefore, it suffices to show that
the complement of

G0(C0, ϵ0) =

{
(x, t) ∈ X × R+

∣∣∣∣ ∃a(x,t) > 0, such that ∀y ∈ B(x, t), 0 < r ≤ t,
|H n(X ∩B(y, r))− a(x,t)r

n| ≤ ϵ0t
n

}
is a Carleson set. In order to show this, we apply Lemma 4.2.2 to X and receive a finite
number of Christ-David systems {Di}Ni=1 with N depending only on n and C0 such that for
any x ∈ X, 0 < t < diam(X), there exists i ∈ {1, . . . , N} andQ ∈ Di with ℓ(Q) ≲ t such that
x ∈ c0

4
BQ and t < c0

4
ℓ(Q). It follows that if if Q ∈ Gcd(C0, ϵ0), then (x, t) ∈ G0(C0, C(n)ϵ0)

for any x ∈ c0
4
BQ and ρ2c0

4
ℓ(Q) ≤ t < c0

4
ℓ(Q) by choosing a(x,t) = aQ. Therefore, if X satisfies

the cube WCD then Di has a Carleson packing condition for its bad set, implying a Carleson
condition for the bad balls of the WCD with a larger choice of ϵ0 and with larger Carleson
constant. ■

4.3 Oscillation of means of L2 functions

In this section, we review necessary facts about wavelets and prove Lemma 4.3.3, one of our
main tools for the proof of Theorem F.

Definition 4.3.1. We follow the presentation of [Tol12]. Given h : Rn → R and Q ∈ D(Rn),
define

∆Qh(x) =

{�
P
h(z)dz −

�
Q
h(z)dz if x ∈ P , where P is a child of Q,

0 otherwise

If h ∈ L2(Rn), then

h =
∑

Q∈D(Rn)

∆Qh and hχQ =

 
Q

h+
∑
R⊆Q

∆Rh

where the sums converge in L2 and ⟨∆Qh,∆Q′h⟩L2 = 0 when Q ̸= Q′ so that ∥h∥2 =∑
Q∈D ∥∆Qh∥22. One can view ∆Qh as a projection of h onto the subspace of L2 formed by

the Haar wavelets hϵQ, ϵ ∈ {0, 1}n \ {(0, 0, . . . , 0)} associated to Q. For any k ∈ N, define

∆h
k(Q)

2 =
k∑
j=0

∑
R∈Dj(Q)

∥∆Rh∥22. (4.6)
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Remark 4.3.1 (Properties of ∆h
k). Notice that if h ∈ L∞(Rn), then ∆h

k has a form of geometric
lemma since

∑
Q⊆Q0

∆h
k(Q)

2 =
∑
Q⊆Q0

k∑
j=0

∑
R∈Dj(Q)

∥∆Rh∥22 ≲k,n

∑
R⊆Q0

∥∆Rh∥22 ≲∥h∥∞ ℓ(Q0)
n.

This gives the Carleson condition∑
Q⊆Q0

∆h
k(Q)>δℓ(Q)n/2

ℓ(Q)n ≲δ

∑
Q⊆Q0

∆h
k(Q)

2 ≲k,n,∥h∥∞ ℓ(Q0)
n. (4.7)

∆h
k also scales appropriately in the following manner: Let Q, Q̃ ∈ D(Rn) and let T : Rn → Rn

be the affine map sending Q̃ onto Q by

T (x) = xQ +

(
x− xQ̃

ℓ(Q̃)

)
ℓ(Q) (4.8)

where xQ̃ is the center of Q̃. Let h̃ ∈ L2(Q̃) and set h =
(
ℓ(Q̃)
ℓ(Q)

)n/2
h̃ ◦ T−1, a scaled and

translated version of h̃ satisfying ∥h∥2 = ∥h̃∥2 because, by change of variables,

�
h2 =

ℓ(Q̃)n

ℓ(Q)n

�
(h̃ ◦ T−1)2 =

ℓ(Q̃)n

ℓ(Q)n

�
h̃2
ℓ(Q)n

ℓ(Q̃)n
=

�
h̃2.

Similarly, notice that if V ⊆ Q and Ṽ ⊆ Q̃ with T (Ṽ ) = V , then

∥∆V h∥22 =
�
V

(∆V h(x))
2dx =

�
T (Ṽ )

(∆Ṽ h̃(T
−1(x)))2dx

=

(
ℓ(Q)

ℓ(Q̃)

)n �
Ṽ

(∆Ṽ h̃)
2dx =

(
ℓ(Q)

ℓ(Q̃)

)n
∥∆Ṽ h̃∥

2
2

which gives ∆h
k(Q)

2 =
(
ℓ(Q)

ℓ(Q̃)

)n
∆h̃
k(Q̃)

2.

Definition 4.3.2 (normed balls). Given L > 0, we define the set of norms on Rn which are
L-bi-Lipschitz to the Euclidean norm by

NL = {∥ · ∥ : L−1∥x∥ ≤ |x| ≤ L∥x∥}.

Given a dyadic cube Q ∈ D(Rn) and L > 0, we define a collection of L-bi-Lipschitz normed
balls inside Q by

BL(Q) = {B∥·∥(x, r) ⊆ Q : ∥ · ∥ ∈ NL, r ≥ L−1ℓ(Q)}.

The following lemma gives a form of compactness result for BL(Q).
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Lemma 4.3.2. Fix Q ∈ D(Rn) and L > 0. Let Bj = B∥·∥j ∈ BL(Q) for j ∈ N. There exists
a subsequence of Bj = B∥·∥j(xj, rj) and a normed ball B = B∥·∥(x, r) ∈ BL(Q) for which the
following holds: For every η > 0, there exists j0 ∈ N such that for all j ≥ j0,

B∥·∥(x, (1− 5η)r) ⊆ Bj ⊆ B∥·∥(x, (1 + 5η)r). (4.9)

Proof. Because ∥ · ∥j ∈ NL for all j, the functions fj : B(0, 1) → R given by fj(x) = ∥x∥j
are an equicontinuous, uniformly bounded family of continuous functions. Therefore, they
subconverge uniformly to some limit function f : B(0, 1) → R. It is straightforward to
show this function gives a norm ∥ · ∥ when extended homogeneously to Rn. By passing to
further subsequences, we can assume that xj → x ∈ Q and rj → r with L−1ℓ(Q) ≤ r. We
set B = B∥·∥(x, r) and fix η > 0 as in the statement of the lemma. By the convergences
assumed, we can take j0 large enough such that for j ≥ j0, we have ∥xj − x∥ ≤ ηmin{r, rj},
|rj − r| ≤ ηmin{r, rj}, and

(1− η)∥x∥ ≤ ∥x∥j ≤ (1 + η)∥x∥, for all x ∈ Rn,

We now aim to prove (4.9). Let y ∈ Bj. Then

∥y − x∥ ≤ ∥y − xj∥+ ∥xj − x∥ ≤ (1 + 2η)∥y − xj∥j + ηr

≤ (1 + 2η)(1 + η)r + ηr ≤ (1 + 5η)r.

so that y ∈ B∥·∥(x, (1 + 5η)r). On the other hand, if z ∈ B∥·∥(x, (1− 5η)r), then

∥z − xj∥j ≤ ∥z − x∥j + ∥x− xj∥j ≤ (1 + 2η)∥z − x∥+ (1 + 2η)∥x− xj∥
≤ (1 + 2η)(1− 5η)rj + (1 + 2η)ηrj ≤ rj

showing z ∈ Bj. ■

Lemma 4.3.3. For all ϵ,M,L > 0, n ∈ N, there exist k(ϵ,M,L, n) ∈ N and δ(ϵ,M,L, n) > 0
such that the following holds: Let h ∈ L2(Rn) with h ≥ 0 and ∥h∥2 ≤ M . Let Q ∈ D(Rn).
If ∆h

k(Q) ≤ δℓ(Q)n/2, then for any normed ball B ∈ BL(Q), we have∣∣∣∣ 
B

h−
 
Q

h

∣∣∣∣ ≤ ϵ

∣∣∣∣ 
Q

h

∣∣∣∣ . (4.10)

Proof. Suppose the conclusion of the lemma is false. Then there exist ϵ,M,L, n and a
sequence of maps h̃j ∈ L2(Rn) with h̃j ≥ 0 and ∥h̃j∥2 ≤M , cubes Q̃j ∈ D(Rn), and normed

balls B̃j ∈ BL(Q̃j) so that (4.10) does not hold for h̃j, Q̃j, B̃j, yet ∆
h̃j
j (Q̃j) ≤ 1

j
ℓ(Q̃j)

n/2. For

any j ∈ N, let Tj be the affine transformation sending Q̃j onto Q = [0, 1]n as in (4.8) and
define a scaled and translated copy of h̃j called hj : Q→ R as in Remark 4.3.1 by

hj = χQ

(
ℓ(Q̃j)

ℓ(Q)

)n/2

h̃j ◦ T−1
j

Let cj =
�
Q
hj and observe that ∆

hj
j (Q) =

(
ℓ(Q)

ℓ(Q̃j)

)n/2
∆
h̃j
j (Qj) ≤ 1

j
ℓ(Q)n/2 = 1

j
by Remark

4.3.1. In addition, we define Bj = Tj(B̃j) to be the appropriately translated and scaled copy
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of B̃j. By the weak compactness of bounded closed balls in L2, there exists some h ∈ L2(Q)
such that hj ⇀ h in L2 for some subsequence of hj. By further refining subsequences and
using Lemma 4.3.2, we can further assume the subsequence is chosen so that a limiting
normed ball B = B∥·∥(x, r) ∈ BL(Q) as in the lemma’s conclusion exists. Let c =

�
Q
h.

We will first show that h = c by showing that ∆V h = 0 for all V ⊆ Q. By weak
convergence we have

cj =

�
Q

hj →
�
Q

h = c. (4.11)

Write hj = cj +
∑

R⊆Q∆Rhj and h = c+
∑

R⊆Q∆Rh. Fix V ⊆ Q and observe

�
Q

hj∆V h =

�
Q

(
cj +

∑
R⊆Q

∆Rhj

)
∆V h = cj

�
Q

∆V h+
∑
R⊆Q

⟨∆Rhj,∆V h⟩

= ⟨∆V hj,∆V h⟩.

where the final equality follows since ⟨∆Rf1,∆V f2⟩ = 0 whenever f1, f2 ∈ L2 and R ̸= V .
Similarly, we have

�
Q

h∆V h = ⟨h,∆V h⟩ = ⟨∆V h,∆V h⟩ = ∥∆V h∥22

Using weak convergence again, we get

⟨∆V hj,∆V h⟩ =
�
Q

hj∆V h→
�
Q

h∆V h = ∥∆V h∥22.

Using Cauchy-Schwarz, we can now conclude that ∥∆V h∥2 ≤ limj ∥∆V hj∥2. We claim
that ∥∆V h∥2 = 0. Indeed, if j is sufficiently large, then both V ∈ Dj(Q) and ∥∆V h∥2 ≤
2∥∆V hj∥2. This means

∥∆V h∥22 ≤ 4∥∆V hj∥2 ≤ 4

j∑
k=0

∑
R∈Dk(Q)

∥∆Rhj∥22 = 4∆
hj
j (Q) ≤ 4

j
.

for all large j. This shows that ∆V h = 0 for all V ⊆ Q, hence h = c as desired.
We will now show how this leads to a contradiction. Let η > 0 and choose j large enough

so that
B1 := B∥·∥(x, (1− 5η)r) ⊆ Bj ⊆ B∥·∥(x, (1 + 5η)r) =: B2.

Using the fact that hj ≥ 0 (this is the first use of this hypothesis),

�
B1

hj ≤
�
Bj

hj ≤
�
B2

hj (4.12)

so that
L n(B1)

L n(Bj)

 
B1

hj −
 
Q

hj ≤
 
Bj

hj −
 
Q

hj ≤
L n(B2)

L n(Bj)

 
B2

hj −
 
Q

hj.
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Because L n(B1) ≤ L n(Bj) ≤ L n(B2) and
L n(B2)
L n(B1)

≤ (1 + c′(n)η), we can assume without
loss of generality that

lim sup
j

∣∣∣∣∣
 
Bj

hj −
 
Q

hj

∣∣∣∣∣ ≤ lim sup
j

∣∣∣∣L n(B2)

L n(B1)

 
B2

hj −
 
Q

hj

∣∣∣∣ ≤ |(1 + c′η)c− c| ≲n ηc.

Since this holds for all η > 0, we get lim supj

∣∣∣�Bj
hj −

�
Q
hj

∣∣∣ = 0. On the other hand, by

hypothesis ∣∣∣∣∣
 
Bj

hj −
 
Q

hj

∣∣∣∣∣ > ϵ

∣∣∣∣ 
Q

hj

∣∣∣∣
for all j so that lim supj

∣∣∣�Bj
hj −

�
Q
hj

∣∣∣ > ϵc ≥ 0, giving a contradiction. ■

Remark 4.3.4. Suppose that we only want to conclude (4.10) with normed balls B ∈ BL(Q)
replaced by Q′ ∈ Dj(Q) for j ≤ k ∈ N. The following stronger condition holds even without
the positivity assumption for h: Let α : D(Rn) → D(Rn) where α(Q) ∈ Dj(Q). There exists
C0(k, n) > 0 such that

∑
Q⊆R

∣∣∣∣ 
α(Q)

h−
 
Q

h

∣∣∣∣2 ℓ(Q)n ≤ C0∥h∥22. (4.13)

The proof is straightforward: because α(Q) ∈ Dj(Q), there is a chain of at most k+1 cubes
α(Q) = Qj ⊆ Qj−1 ⊆ . . . ⊆ Q0 = Q such that Qj+1 is a child of Qj. Therefore, we can use
the triangle inequality to write∣∣∣∣ 

α(Q)

h−
 
Q

h

∣∣∣∣2 ℓ(Q)n ≲k,n

j∑
i=1

∣∣∣∣ 
Qi

h−
 
Qi−1

h

∣∣∣∣2 ℓ(Qi−1)
n ≤

j∑
i=1

∥∆Qi
h∥22.

Because each cube Q′ ⊆ R can appear in at most N(n, k) < ∞ chains of the above type,
this gives ∣∣∣∣ 

α(Q)

h−
 
Q

h

∣∣∣∣2 ℓ(Q)n ≲n,k

∑
Q⊆R

j(Q)∑
i=1

∥∆Qi
h∥22 ≲n,k

∑
Q⊆R

∥∆Rh∥22 = ∥h∥22.

The reader should also see [DS93] Lemma IV.2.2.14 for a version of this statement where
α(Q) is only required to be N -close to Q rather than contained in Q.

Corollary 4.3.5 (cf. [DS93] Corollary IV.2.2.19). Let L, ϵ,M > 0 and let h ∈ L∞(Rn) with
∥h∥∞ ≤M . Let

Gh(L, ϵ) =

{
Q ∈ D(Rn)

∣∣∣∣ ∣∣∣∣ 
B

h−
 
Q

h

∣∣∣∣ ≤ ϵ for all B ∈ BL(Q)
}
.

Then Bh(L, ϵ) = D(Rn) \ Gh(L, ϵ) is C(M,L, n, ϵ)-Carleson.
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Proof. Let h̃ = h + ∥h∥∞ + 1, let ϵ,M,L > 0, and choose k, δ > 0 such that the conclusion
of Lemma 4.3.3 holds. Let

B′
h̃
=

{
Q ∈ D(Rn)

∣∣∣∣ ∃B ∈ BL(Q),
∣∣∣∣ 
B

h̃−
 
Q

h̃

∣∣∣∣ > ϵ

∣∣∣∣ 
Q

h̃

∣∣∣∣ }
and fix R ∈ D. By Lemma 4.3.3, Q ∈ B′

h̃
implies ∆h̃

k(Q) > δℓ(Q)n/2 so that by (4.7).∑
Q⊆R
Q∈Bh̃

ℓ(Q)n ≤
∑
Q⊆R

∆h̃
k(Q)>δℓ(Q)n/2

ℓ(Q)n ≲δ,k,n,M ℓ(R)n.

The result follows since
�
B
h̃−

�
Q
h̃ =

�
B
h−

�
Q
h and |

�
Q
h̃| ≤ 2M +1 so that Bh(L, (2M +

1)ϵ) ⊆ B′
h̃
. ■

4.4 Bi-Lipschitz images satisfy the weak constant

density condition

In this section, we use the tools from Section 4.3 to prove that metric spaces which are
bi-Lipschitz images of Euclidean spaces satisfy the WCD. In this section and the next, we
will use the following version of the WCD adapted to Christ-David cubes using only H n.

Definition 4.4.1 (Cube weak constant density condition). Let (X, d) be an Ahlfors n-regular
metric space, D be a system of Christ-David cubes for X, and let C0, ϵ0 > 0. Define

Gcd(C0, ϵ0) =

{
Q ∈ D

∣∣∣∣ ∃aQ > 0, such that ∀y ∈ c0
2
BQ, 0 < r ≤ c0

2
ℓ(Q),

|H n(B(y, r))− aQr
n| ≤ ϵ0ℓ(Q)

n

}
, (4.14)

Bcd(C0, ϵ0) = D \ Gcd(C0, ϵ0). (4.15)

We say that X satisfies the cube WCD if there exists C0 > 0 such that for all choices of
system D and ϵ0 > 0, Bcd(C0, ϵ0) is Carleson.

See Lemma 4.2.3 for a proof that this version of the WCD implies the version given in
Definition 4.1.2. We will also need to review some of the theory of rectifiability in metric
spaces.

Definition 4.4.2 (metric derivatives, jacobians). Let f : Rn → Σ be L-Lipschitz. We say a
seminorm on Rn |Df |(x) is a metric derivative of f at x if

lim
y,z→x

d(f(y), f(z))− |Df |(x)(y − z)|
|y − x|+ |z − x|

= 0.

Given a seminorm s on Rn, define J (s), the jacobian of s, by

J (s) = α(n)n

(�
Sn−1

(s(x))−ndH n−1(x)

)−1

.
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Kircheim used these ideas to prove the following metric analogs of Rademacher’s theorem
and the area formula for Lipschitz maps from Rn into metric spaces.

Theorem 4.4.1 (cf. [Kir94] Theorem 2, Corollary 8). Let f : Rn → Σ be L-Lipschitz and
let Jf (x) = J (|Df |(x)). A metric derivative for f exists at L n almost every x ∈ Rn. In
addition, for any Lebesgue integrable function g : Rn → R,

�
Rn

g(x)Jf (x)dL
n(x) =

�
Σ

 ∑
x∈f−1(y)

g(x)

 dH n(y).

In their work on Lipschitz analogs of Sard’s Theorem, Azzam and Schul developed the
following quantitative measure of how far a function f is from being given by a seminorm.

Definition 4.4.3. Let f : Rn → X and Q ∈ D(Rn). Define

mdf (Q) =
1

ℓ(Q)
inf
∥·∥

sup
x,y∈Q

∣∣∣∣d(f(x), f(y))− ∥x− y∥
∣∣∣∣

They used this to prove the following metric quantitative differentiation theorem.

Theorem 4.4.2 ([AS14] Theorem 1.1). Let f : Rn → X be an L-Lipschitz function. Let
δ > 0. Then for each R ∈ D(Rn),∑

Q∈D(R)
mdf (3Q)>δL

ℓ(Q)n ≤ C(δ, n)ℓ(R)n.

Finally, we will need to extend the standard system of dyadic cubes.

Definition 4.4.4 (one-third trick lattices). The following family of dyadic systems were
introduced by Okikiolu [Oki92]. For any e ∈ {0, 1}n and cube Q0 ∈ D(Rn), define the
shifted dyadic lattice

De
j(Q0) =

{
Q+

ℓ(Q)

3
e

∣∣∣∣ Q ∈ Dj(Q0)

}
,

De(Q0) =
⋃
j≥0

De
j(Rn)

and set
D̃(Q0) =

⋃
e∈{0,1}n

De(Q0).

D̃(Q0) has the following property: For any x ∈ Q0 and j ≥ 0, there exists Q ∈ D̃(Q0) such
that x ∈ 2

3
Q (See [Ler03] Proposition 3.2).

We now begin setting up the proof of the WCD for bi-Lipschitz images. We use the
following good family of dyadic cubes from our collection of dyadic trees D̃ to do analysis in
the domain of our bi-Lipschitz maps.
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Definition 4.4.5 (L-good IQ). Let f : [0, 1]n ↠ Σ be L-bi-Lipschitz. Fix Q ∈ D(Σ). We
call a dyadic cube IQ ∈ D̃ L-good for Q if the following hold:

(i) ℓ(IQ) ≍L ℓ(Q),

(ii) 3BQ ⊆ f(IQ),

where the implicit constant in 4.4.5(i) is independent of Q and IQ.

Using the special property of the one-third trick lattices and the definition of bi-Lipschitz
maps, the following lemma is standard.

Lemma 4.4.3. Let f : [0, 1]n ↠ Σ be L-bi-Lipschitz. For each Q ∈ D(Σ) with ℓ(Q) ≲L 1,
there exists an L-good IQ ∈ D̃.

For k ∈ N, δ > 0, define

GΣ(k, δ) =

{
Q ∈ D

∣∣∣∣∣ ∃ L-good IQ ∈ D̃ with

∆
Jf

k (IQ) ≤ δℓ(IQ)
n/2, mdf (IQ) ≤ δ

}
, (4.16)

BΣ(k, δ) = D \ GΣ(k, δ). (4.17)

Lemma 4.4.4. Let f : [0, 1]n ↠ Σ be L-bi-Lipschitz and let ϵ > 0. There exist k(ϵ, L, n), δ(ϵ, L, n) >
0 such that the following holds: For any Q ∈ GΣ(k, δ) there exists a constant cQ ≍L,n 1 such
that for any normed ball B ∈ BL(IQ),

|H n(f(B))− cQL n(B)| ≤ ϵcQL n(B)

Proof. Let IQ ∈ D̃ for Q be as in (4.16), let ϵ > 0, and assume k, δ are small enough to satisfy

the hypotheses of Lemma 4.3.3 with respect to 0 ≤ Jf ∈ L∞ and ϵ. Then ∆
Jf

k (IQ) ≤ δ
implies that ∣∣∣∣ 

B

Jf −
 
Q

Jf

∣∣∣∣ ≤ ϵ

∣∣∣∣ 
Q

Jf

∣∣∣∣ .
for any normed ball B ∈ BL(IQ). By setting cQ =

�
Q

Jf and using the area formula, we get
the desired inequality. ■

Lemma 4.4.5. Let f : [0, 1]n ↠ Σ be L-bi-Lipschitz, let C0 be a regularity constant for Σ,
and let ϵ0 > 0. There exist k(ϵ0, L, n), δ(ϵ0, L, n) > 0 such that GΣ(k, δ) ⊆ Gcd(2C0, ϵ0). In
fact, for any Q ∈ GΣ(k, δ), there exists a constant (2C0)

−1 ≤ aQ ≤ 2C0 such that for any
y ∈ BQ, 0 < r ≤ ℓ(Q), we have

|H n(B(y, r))− aQr
n| ≤ ϵ0ℓ(Q)

n. (4.18)

That is, the condition on cubes in Gcd(2C0, ϵ0) is attained with a multiple of H n.

Proof. First, we note that if a constant aQ such as in (4.18) exists, it must satisfy (2C0)
−1 ≤

aQ ≤ 2C0 for small enough ϵ0 because Σ is (C0, n)-regular. Let IQ be as in (4.16) and let
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ϵ > 0. By Lemma 4.4.4, we can choose k large enough and δ > 0 small enough so there
exists cQ ≍L,n 1 such that for any B ∈ B2L(IQ)

|H n(f(B))− cQL n(B))| ≤ ϵcQL n(B). (4.19)

In addition, the fact that mdf (IQ) ≤ δ implies that there exists a norm ∥ · ∥Q such that

sup
x,y∈IQ

∣∣d(f(x), f(y))− ∥x− y∥Q
∣∣ ≤ δℓ(IQ). (4.20)

Let c∥·∥Q ≍L,n 1 be such that L n(B∥·∥Q(0, r)) = c∥·∥Qr
n. We set

aQ = cQc∥·∥Q

and begin the proof of (4.18).
Let y0 = f−1(y). We claim that there exists a constant c1(n, L) > 0 such that

B1 := B∥·∥Q(y0, (1− c1δ)r) ⊆ f−1(B(y, r)) ⊆ B∥·∥Q(y0, (1 + c1δ)r) =: B2. (4.21)

For the first inclusion, let x0 ∈ B1. By (4.20),

d(f(x0), f(y0)) ≤ ∥x0 − y0∥Q + 3δℓ(IQ) ≤ (1− c1δ)r + C(L, n)δr < r

where the final inequality holds if c1 is large enough. Similarly, let z0 ∈ f−1(B(y, r)) ⊆ IQ.
Then

∥z0 − y0∥Q ≤ d(f(z0), f(y0)) + δℓ(3IQ) ≤ r + C(L, n)δr ≤ (1 + c1δ)r

with the same restriction on δ as above This finishes the proof of (4.21). Because 3BQ ⊆
f(IQ), we immediately have that B1, B2 ⊆ IQ for small enough δ so that B1, B2 ∈ B2L(IQ).
Using (4.19), this implies the existence of a constant c2(n, L) so that

H n(B(y, r)) ≤ H n(f(B2)) ≤ cQ(1 + ϵ)c∥·∥Q(1 + c1δ)
nrn ≤ aQr

n + c2(ϵ+ δ)ℓ(Q)n.

A similar computation using H n(f(B1)) gives a similar lower bound for H n(B(y, r)). This
shows that

|H n
Σ (B(y, r))− aQr

n| ≤ c2(ϵ+ δ)ℓ(Q)n

By choosing ϵ small enough, then k large enough and δ small enough, we get the conclusion
of the lemma. ■

Lemma 4.4.6. Let f : [0, 1]n ↠ Σ be L-bi-Lipschitz. For any k, δ > 0, BΣ(k, δ) is
C(k, δ, n, L)-Carleson.

Proof. Let R ∈ D . By Lemma 4.4.3, Remark 4.3.1, and Theorem 4.4.2 we have∑
Q∈B(k,δ)
Q⊆R

ℓ(Q)n ≲
∑
Q⊆R

∆
Jf
k (IQ)>δℓ(IQ)n/2

ℓ(Q)n +
∑
Q⊆R

mdf (IQ)>δ

ℓ(Q)n +
∑
Q⊆R

ℓ(Q)>C(L)

ℓ(Q)n

≲L,n

∑
IQ⊆IR

∆
Jf
k (IQ)>δℓ(IQ)n/2

ℓ(IQ)
n +

∑
IQ⊆IR

mdf (IQ)>δ

ℓ(IQ)
n + C(L, n)ℓ(R)n

≲k,δ,L,n ℓ(IR)
n + ℓ(R)n ≲L,n ℓ(R)

n. ■
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Theorem 4.4.7. The WCD holds for any bi-Lipschitz image of [0, 1]n.

Proof. Let f be L-bi-Lipschitz f : [0, 1]n ↠ Σ. Choose C0(L, n) such that Σ is Ahlfors
(C0, n)-regular and let ϵ0 > 0. Choose k large enough and δ small enough with respect
to ϵ0, L, n so that GΣ(k, δ) ⊆ Gcd(2C0, ϵ0). That is, the conclusion of Lemma 4.4.5 holds.
Then Bcd(ϵ0, 2C0) ⊆ BΣ(k, δ). Lemma 4.4.6 implies that BΣ(k, δ) is C(ϵ0, L, n)-Carleson,
implying Bcd(2C0, ϵ0) is also C(ϵ0, L, n)-Carleson which says exactly that Σ satisfies the
WCD. ■

4.5 Stability of the weak constant density condition

under big pieces

The goal of this section is to prove Theorem F: uniformly n-rectifiable metric spaces satisfy
the WCD. We will prove this via a stability argument. That is, we will use the fact that
uniformly rectifiable metric spaces have big pieces of bi-Lipschitz images (in fact, very big
pieces of bi-Lipschitz images with worsening constants) to transfer our bi-Lipschitz image es-
timates to the uniformly rectifiable case. The primary tool for this argument is the following
abstract analog of the John-Nirenberg-Stromberg theorem.

Lemma 4.5.1 ([BHS23] Lemma 4.2.8, [DS93] Lemma IV.1.12). Let X be an Ahlfors n-
regular metric space and D a system of Christ-David cubes for X. Let α : D → [0,∞) be
given and suppose there are N, η > 0 such that

H n


 x ∈ R

∣∣∣∣∣∣∣∣
∑
Q⊆R
x∈Q

α(Q) ≤ N


 ≥ ηℓ(R)n (4.22)

for all R ∈ D . Then, ∑
Q⊆R

α(Q)ℓ(Q)n ≲N,η ℓ(R)
n

for all R ∈ D .

For our application, we will take α(Q) = χBcd(C0,ϵ0)(Q) where Bcd(C0, ϵ0) is as in (4.15).
If we can show that (4.22) holds for this choice of α, then we will conclude∑

Q⊆R

χBcd(C0,ϵ0)(Q)ℓ(Q)
n =

∑
Q⊆R

Q∈Bcd(C0,ϵ0)

ℓ(Q)n ≲N,η ℓ(R)
n (4.23)

which is exactly the desired Carleson packing condition for Bcd(C0, ϵ0). We will need the
following result from Bate, Hyde, and Schul’s paper which states that uniformly rectifiable
metric spaces have very big pieces of bi-Lipschitz images.

Theorem 4.5.2 (cf. [BHS23] Theorem B, Proposition 9.0.2). Let ϵ > 0 and let X be
uniformly n-rectifiable. There is an L ≥ 1 depending only on ϵ, n, the Ahlfors regularity
constant for X, and the BPLI constants for X such that for each x ∈ X and r > 0 there
exists F ⊆ B(x, r), satisfying H n

X (B(x, r)\F ) ≤ ϵrd and an L-bi-Lipschitz map g : F → Rn.
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Remark 4.5.3. If we embed X isometrically into ℓ∞, then we can take the map g−1 : g(F ) →
F ⊆ ℓ∞ above and extend it to an L′(L, n)-bi-Lipschitz map f : Rn → ℓ∞ satisfying the
same conclusions with respect to the isometric embedding of X. (See [BHS23] Lemma 4.3.2
for a proof.)

We now begin setting up the proof of Theorem F. Fix a uniformly n-rectifiable metric
space X with regularity constant C0 and a system of Christ-David cubes D for X. Let ϵ0 > 0
and R ∈ D(X). By applying Theorem 4.5.2 to the ball 3BR, we get an L-bi-Lipschitz map
f : Rn ↠ Σ ⊆ ℓ∞ such that

H n
X (3BR \ Σ) ≤ ϵ0

4
ℓ(R)n. (4.24)

We will only need to use f near where it parameterizes 3BR, so it suffices to consider f |IR
where IR is L-good for R (See Definition 4.4.5). We can assume without loss of generality
that IR = [0, 1]n so that the results of the previous section for bi-Lipschitz images of [0, 1]n

apply to f .
Because Σ has such large intersection with 3BR, we can use the following lemma to find

a substantial subset R̃ ⊆ R such that for every x ∈ R̃, every cube Q ⊆ R with x ∈ Q has
very large intersection with Σ.

Lemma 4.5.4. Let X be a doubling metric space with a system of Christ-David cubes D .
Let ϵ > 0, F ⊆ X measurable, and let R ∈ D be such that H n(R \ F ) ≤ ϵH n(R). Define

R̃ =

{
x ∈ R

∣∣∣∣ For all Q ∈ D such that x ∈ Q ⊆ R,
H n(Q ∩ F ) ≥ (1− 2ϵ)H n(Q)

}
. (4.25)

We have H n(R̃) ≥ ϵH n(R).

Proof. This proof is essentially contained in the proof of Lemma IV.2.2.38 in [DS93], but we
need to be more precise than them about the constant ϵ. If x ∈ R \ R̃, then x is contained
in some cube Q such that H n(Q ∩ F ) ≤ (1− 2ϵ)H n(Q). Let {Qi}i be a maximal disjoint
family of such cubes so that R \ R̃ =

⋃
iQi. Then

H n((R \ R̃) ∩ F ) =
∑
i

H n(Qi ∩ F ) ≤ (1− 2ϵ)
∑
i

H n(Qi) (4.26)

≤ (1− 2ϵ)H n(R \ R̃) ≤ (1− 2ϵ)H n(R).

On the other hand,

H n((R \ R̃) ∩ F ) = H n((R ∩ F ) \ R̃) ≥ H n(R ∩ F )− H n(R̃) (4.27)

≥ (1− ϵ)H n(R)− H n(R̃).

Combining (4.26) and (4.27) and rearranging gives

H n(R̃) ≥ (1− ϵ)H n(R)− (1− 2ϵ)H n(R) = ϵH n(R). ■

While this lemma allows us to control the measure of the part of X outside of Σ, we will
also use separate control of the maximal distance of points in Q ∈ D(R) from Σ as measured
by the following quantity.
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Definition 4.5.1. Let (Z, d) be a metric space and suppose X, Y ⊆ Z. For x ∈ X and
0 < r < diam(X), define

IX,Y (x, r) =
1

r
sup

y∈X∩B(x,r)
dist(y,Y )≤r

dist(y, Y )

The following lemma gives Carleson control over cubes where IX,Y is large.

Lemma 4.5.5 ([BHS23] Lemma 4.2.6). Let (Z, d) be a metric space with X, Y ⊆ Z Ahlfors
(C0, n)-regular subsets and D a system of Christ-David cubes for X. For any δ > 0, the set
{Q ∈ D | IX,Y (3BQ) > δ } is C(C0, n, δ)-Carleson.

We can now define the good family of descendants of R we want to consider. Let E =
f−1(X). For any k ∈ N and δ > 0, consider the following three conditions applicable to
Q ∈ D(R) ⊆ D(X):

(i) H n(Q \ Σ) ≤ ϵ0
2
H n(Q),

(ii) IX,Σ(3BQ) ≤ δ,

(iii) ∃L-good IQ ∈ D̃(Rn) for which the following hold:

a) ∆
Jf ·χE

k (IQ) ≤ δℓ(IQ)
n/2,

b) mdf (IQ) ≤ δ.

Define

GR,f (k, δ) = {Q ∈ D(R) | Q satisfies (i), (ii), and (iii) } ,
BR,f (k, δ) = D \ GR,f (k, δ).

We first show that GR,f (k, δ) cubes are good for the WCD for X. The reader should compare
the following lemma with Lemma 4.4.5.

Lemma 4.5.6. Let X be uniformly n-rectifiable with regularity constant C0, let ϵ0 > 0, and
let R ∈ D(X). Let f : Rn ↠ Σ be L-bi-Lipschitz and satisfy (4.24). There exist k, δ > 0
dependent on C0, ϵ0, n, L such that GR,f (k, δ) ⊆ Gcd(2C0, ϵ0).

Proof. Let Q ∈ GR,f (k, δ), y ∈ c0
2
BQ, 0 < r ≤ c0

2
ℓ(Q) and let IQ be the cube guaranteed from

condition (iii). Notice that B(y, r) ⊆ c0BQ. By condition (ii), there exists y0 ∈ Σ satisfying
|y − y0| ≤ 3δℓ(Q). Let r± = r ± 3δℓ(Q) so that

BΣ(y0, r−) ∩X ⊆ BX(y, r) ∩ Σ ⊆ BΣ(y0, r+) ∩X.

Since mdf (IQ) ≤ δ, the proof of Lemma 4.4.5, specifically of (4.9), shows that there exists a
norm ∥ · ∥Q and c1(n, L) > 0 such that the balls

B1 = B∥·∥Q(f
−1(y0), (1− c1δ)r−),

B2 = B∥·∥Q(f
−1(y0), (1 + c1δ)r+)
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satisfy B1, B2 ∈ B2L(IQ) and

B1 ∩ E ⊆ f−1(BX(y, r) ∩ Σ) ⊆ B2 ∩ E. (4.28)

Let ϵ > 0. By taking δ small enough and k large enough so that the hypotheses of Lemma

4.3.3 are satisfied for JfχE, ∆
JfχE

k (IQ) ≤ δℓ(IQ)
n/2 gives∣∣∣∣ 

B

JfχE −
 
Q

JfχE

∣∣∣∣ ≤ ϵ

∣∣∣∣ 
Q

JfχE

∣∣∣∣
for any normed ball B ∈ B2L(IQ). Set cQ =

∣∣∣�Q JfχE

∣∣∣. After rearranging and applying the

area formula, this becomes

|H n(f(B ∩ E))− cQL n(B)| ≤ ϵcQL n(B). (4.29)

Let L n(B∥·∥Q(0, r)) = c∥·∥Qr
n and set aQ = cQc∥·∥Q . Combining (4.28) and (4.29) gives

H n(BX(y, r) ∩ Σ) ≤ H n(f(B2 ∩ E)) ≤ cQ(1 + ϵ)L n(B2) = aQ(1 + ϵ)(1− c1δ)
nrn+

= aQ(1 + ϵ)(1− c1δ)
n(r + 3δℓ(Q))n

≤ aQr
n + C(n, L)(ϵ+ δ)ℓ(Q)n.

A similar argument using B1 gives a similar lower bound so that

|H n(BX(y, r) ∩ Σ)− aQr
n| ≤ C(n, L)(ϵ+ δ)ℓ(Q)n.

Finally, using (i), we have

|H n(BX(y, r))− aQr
n| ≤ H n(BX(y, r) \ Σ) + |H n(BX(y, r)) ∩ Σ− aQr

n|
≤ H n(c0BQ ∩X \ Σ) + C(n, L)(ϵ+ δ)ℓ(Q)n

≤ ϵ0
2
ℓ(Q)n + C(n, L)(ϵ+ δ)ℓ(Q)n ≤ ϵ0ℓ(Q)

n

where the final inequality follows by first fixing ϵ sufficiently small in terms of ϵ0, L, n then
δ small and k large in terms of ϵ, ϵ0, n, L. ■

We now show that BR,f (k, δ) is not too big. The reader should compare this lemma with
Lemma 4.4.6.

Lemma 4.5.7. Let X be uniformly n-rectifiable with regularity constant C0, let ϵ0, δ, k > 0,
and let R ∈ D(X). Let f : Rn ↠ Σ be L-bi-Lipschitz and satisfy (4.24). There exist
constants N, η > 0 dependent on k, δ, ϵ0, n, L such that

H n


x ∈ R|

∑
Q⊆R
x∈Q

χBR,f (k,δ) ≤ N


 ≥ ηℓ(R)n. (4.30)
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Proof. Define

B1 = {Q ⊆ R | IX,Σ(3BQ) > δ } ,
B2 = {Q ⊆ R | there is no IQ satisfying (iii) } .

Lemma 4.5.5 shows that B1 is C(δ, C0, n)-Carleson and Lemma 4.4.6 shows that B2 is
C(k, δ, n, L)-Carleson. Let R̃ be as in (4.25) and write R̃ =

⋃
iQi for a maximal disjoint set

of cubes. By Chebyshev’s inequality,

H n


 x ∈ R̃

∣∣∣∣∣∣∣∣
∑
Q⊆R
x∈Q

χBR,f (k,δ)(Q) ≥ N


 ≤ 1

N

�
R̃

∑
Q⊆R
x∈Q

χBR,f (k,δ)(Q)

≲
1

N

�
R̃

∑
Q⊆Qi⊆R̃
x∈Q

χB1(Q) + χB2(Q)

≲
1

N

∑
i

∑
Q⊆Qi
Q∈Ba

ℓ(Q)n +
∑
Q⊆Qi
Q∈Bb

ℓ(Q)n


≲k,δ,C0,ϵ0,n,L

1

N

∑
i

ℓ(Qi)
n ≤ 1

N
ℓ(R)n.

The result follows by taking N sufficiently large and using Lemma 4.5.4. ■

We finally observe that these pieces combine to prove Theorem F:

Proof of Theorem F. Choose R ∈ D(X) and apply Theorem 4.5.2 to get an L-bi-Lipschitz
map f : Rn ↠ Σ ⊆ ℓ∞ satisfying (4.24). Fix k large enough and δ small enough in terms of
C0, ϵ0, n, L so that GR,f (k, δ) ⊆ Gcd(2C0, ϵ0). That is, the conclusion of Lemma 4.5.6 holds.
Then we have Bcd(2C0, ϵ0) ∩ D(R) ⊆ BR,f (k, δ) so that χBcd(2C0,ϵ0)(Q) ≤ χBR,f (k,δ)(Q) for
all Q ⊆ R. Lemma 4.5.7 gives the existence of N, η independent of R so that

H n


 x ∈ R

∣∣∣∣∣∣∣∣
∑
Q⊆R
x∈Q

χBcd(2C0,ϵ0) ≤ N


 ≥ ηℓ(R)n.

By Lemma 4.5.1, this implies Bcd(2C0, ϵ0) is Carleson, implying X satisfies the WCD. ■
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Chapter 5

Iterating the big pieces operator and
larger sets

5.1 Introduction

A closed set E (with more than one point) in a metric space X is said to be Ahlfors-David
k-regular if there is a constant C > 1 such that for all r ∈ (0, diam(E)) and x ∈ E we have
C−1rk < Hk(E∩B(x, r)) < Crk. For some given class F of Ahlfors-David k-regular subsets
(of a metric space X), we define BP(F ) as follows: F ∈ BP(F ) if F is a Ahlfors-David
k-regular set for which there exists a constant θ > 0 such that for any x ∈ F and R > 0,
there is a set Gx,R ∈ F such that

Hk(B(x,R) ∩ F ∩Gx,R) ≥ θHk(B(x,R) ∩ F ).

Conditions involving BP(F ) for various classes of sets F play an important role in the
theory of uniformly rectifiable sets in Rn developed By David and Semmes (see e.g. [Dav91],
[DS91]). While the original motivation was the study of singular integral operators, the
study of such conditions has taken on a life of its own.

In the context of singular integrals, the condition BP(F ) is important because it allows
the uniform boundedness of a family of SIOs given by convolution with ‘nice’ kernels over
sets in F to be transported to sets in BP(F ). In particular, one can define successively
weaker conditions BPj(F ) for all j > 0 which all imply boundedness given that the SIOs are
bounded on F ; the initial case David and Semmes considered [DS91] used Lipschitz graphs
as the base class, i.e., E ∈ BPj(LG). This raised a natural question: how do the collections
BPj(LG) behave as j grows? It turned out that for j ≥ 2 the collections BPj(LG) are all
the same and their elements are called Uniformly rectifiable sets. We refer the reader to
[DS93], [DS91], specifically to Proposition 2.2 on page 97 of [DS91], and Theorem 2.29 on
page 336 of [DS91]. For n ∈ [k, 2d + 1) one also needs [AS12a] to show that BPBI implies
BP(BP(LG)), but this is not where most of the work goes – the proofs by David and Semmes
of that stability (for j ≥ 2) are quite sophisticated and rely on a Euclidean ambient space.

There has recently been interest in other families F , in particular for the purpose of
studying Parabolic Uniform Rectifiability. See e.g. the work in [Bor+22], where the questions
about Uniform Rectifiability in the metric setting are discussed for this purpose. In fact, we
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refer to [Bor+22] for a great introduction on contemporary applications of the idea of Big
Pieces.

An immediate corollary of the main result contained in this essay (Theorem G) is that
stabilization of the operator BPj occurs in the setting of metric spaces for j ≥ 2 as well.
Our proof is both simple and direct.

5.2 A Theorem

Theorem G. Let F be a class of (closed) Ahlfors-David k-regular sets in a metric space X.
Let E ⊆ X be a Ahlfors-David k-regular set with E ∈ BP(BP(F )). Then there exists a set
F ⊂ X such that

(i) E ⊆ F ,

(ii) F is Ahlfors-David k-regular.

(iii) F ∈ BP(F ).

The constants in the conclusion are quantitative with dependance on the constants in the
assumptions.

Corollary 5.2.1. Let F be a class of closed Ahlfors-David k−regular sets in a metric space
X. For any j > 2, and any constants θ1, ..., θj > 0 defining BPj(F ), there are θ′1, θ

′
2 > 0 such

that the family BP(BP(F )) defined using θ′1, θ
′
2 is equal to BPj(F ) defined using θ1, ..., θj

Proof of Corollary 5.2.1. Let E ∈ BP3(F ). Then for any x ∈ E and R < diam(E) we
have a set E ′

x,R ∈ BP2(F ) such that Hk(B(x,R) ∩ E) ≲ Hk(B(x,R) ∩ E ∩ E ′
x,R). By

Theorem G, there is a set Fx,R ∈ BP(F ) so that Fx,R ⊃ E ′
x,R. Clearly Hk(B(x,R) ∩ E) ≲

Hk(B(x,R) ∩ E ∩ Fx,R). We have shown E ∈ BP2(F ). This gives for any j ≥ 3 that
BPj(F ) = BPj−1(F ), and so we are done by induction. ■

Proof of Theorem G for the case diamE <∞. We suppose that diamE < ∞. In order to
construct the set F , we first fix a dyadic cube decomposition of E denoted by ∆ = ∆(E)
with root cube root(∆) = Q0 = E. By construction, for each cube Q ∈ ∆ there exists a
point c(Q) ∈ Q which we call the center of Q satisfying

dist(B(c(Q), c1 diamQ), E \Q) ≥ c2 diamQ. (5.1)

for some constants c1, c2 > 0 (see e.g. [Chr90] and [HM12]). From now on, define Bc(Q) =
B(c(Q), c1 diam(Q)). We construct the set F desired in the theorem inductively. At stage 0,
use the fact that E ∈ BP(BP(F )) to find a closed set FQ0 ∈ BP(F ) such that FQ0 ⊆ Bc(Q0)

and
Hk(Bc(Q0) ∩ E ∩ FQ0) ≳θ1 Hk(Bc(Q0) ∩ E) ≳c1,c2 diam(Q0)

k.

We define

F0 = FQ0 .
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We continue the construction by defining a dyadic decomposition Q1 of the set E \ FQ0 .
Indeed, since FQ0 is closed, E \ FQ0 is relatively open in E and for any x ∈ E \ FQ0 , there
exists some dyadic cube Q ∋ x of maximal diameter such that dist(Q,FQ0) > diamQ. We
call the disjoint family of all such maximal cubes Q1, so that we have

E \ FQ0 =
⋃
Q∈Q1

Q.

We now give stage 1 of the construction of F . For each Q ∈ Q1, Again find closed a set
FQ ∈ BP(F ) such that

Hk(Bc(Q) ∩ E ∩ FQ) ≳θ1,c1,c2 Hk(Q). (5.2)

We define

F1 = FQ0 ∪
⋃
Q∈Q1

FQ.

Continue the construction inductively. Given the construction completed up to stage m, we
define the set Qm+1 to be the collection of dyadic cubes with maximal diameter contained
in E \ Fm such that Q ∈ Qm+1 satisfies

dist(Q,Fm) > diam(Q). (5.3)

Qm+1 is a disjoint decomposition of E \ Fm so that

E \ Fm =
⋃

Q∈Qm+1

Q. (5.4)

Given such a Q, let FQ ∈ BP(F ) with FQ ⊆ Bc(Q) be such that (5.2) holds and define

Fm+1 = Fm ∪
⋃

Q∈Qm+1

FQ = FQ0 ∪
⋃
Q∈Q1

FQ ∪ · · · ∪
⋃

Q∈Qm+1

FQ. (5.5)

Finally, set

F =
∞⋃
m=0

Fm (5.6)

and define Q = ∪mQm. Now that we have constructed the set F , we note two of its simple
properties. First, given any Q ̸= Q′ ∈ Q, equality (5.3) implies

dist(FQ, FQ′) > min{diam(Q), diam(Q′)}. (5.7)

Second,

limF ⊆ E ∪
∞⋃
m=0

Fm

where limF denotes the set of limit points of F . Indeed, suppose x ∈ limF with xj →
x, xj ∈ FQj

. If the set {Qj}j is finite, then (5.7) implies the sequence FQj
is eventually

constant, say FQj
→ FQi

meaning x ∈ FQi
since FQi

is closed. If instead {Qj}j is infinite,
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then consider a subsequence xkj → x such that Qkj ̸= Qki for any i, j. The fact that xkj
converges combined with (5.7) then implies diamQj → 0. Since dist(FQj

, E) ≤ diamQj, we
have dist(x,E) = 0 which implies x ∈ E. (In particular, we will soon see that this implies
Hk(limF \ ∪mFm) = 0.)

Proof of (i): Notice that for any N ∈ N,

Hk(E \ F ) ≤ Hk

(
E \

∞⋃
m=0

Fm

)
≤ Hk(E \ FN)

because the sets Fm are increasing. Letting 0 < c0 < 1 be the constant implicit in inequality
(5.2), we can write

Hk(E \ FN)
(5.5)
= Hk

(
E \ FN−1 \

⋃
Q∈QN

FQ

)
(5.4)
= Hk

( ⋃
Q∈QN

Q \
⋃

Q∈QN

FQ

)
=
∑
Q∈QN

Hk (Q \ FQ) ≤ (1− c0)
∑
Q∈QN

Hk(Q) = (1− c0)Hk(E \ FN−1)

where we used the fact that FQ ∩ FQ′ = ∅ for Q,Q′ ∈ QN . Since this holds for any N , we
can iterate this inequality to get

Hk(E \ FN) ≤ (1− c0)
NHk(E)

from which we conclude Hk(E \ F ) = 0. To finish the proof of (i), let x ∈ E be arbitrary.
Since E is Ahlfors-David regular, for any R > 0, Hk(B(x,R)) > 0 so that F ∩B(x, r) ̸= ∅.
This means x is a limit point of F , implying x ∈ F because F is closed.

Proof of (ii): Fix any point x ∈ F and some R < diamF . If x ∈ F \ ∪mFm, then
we can find a particular FQ with dist(x, FQ) <

R
100

and dist(x, FQ) = dist(x, z) for z ∈ FQ.
Then, we have B(z,R/2) ⊆ B(x,R) ⊆ B(z, 2R), and substitute the first ball or final ball
for B(x,R) in the proofs of lower and upper regularity respectively. Hence, we can assume
x ∈ ∪mFm. By definition, there exists Qm ∈ Qm such that x ∈ FQm for some m ∈ N. Write

Hk(B(x,R) ∩ F ) =
∑

FQ∩B(x,R)̸=∅
diamQ>10R

Hk(B(x,R) ∩ FQ) +
∑

FQ∩B(x,R)̸=∅
diamQ≤10R

Hk(B(x,R) ∩ FQ). (5.8)

We will first show that F is upper regular. Let QI be the collection of cubes summed over
in the first term of (5.8). By (5.7), we have that for any Q,Q′ ∈ QI , dist(FQ, FQ′) > 10R.
This means QI has at most one element. Given such a Q, choose y ∈ B(x,R)∩FQ and write

Hk(B(x,R) ∩ FQ) ≤ Hk(FQ ∩B(y, 2R)) ≲ Rk

using the fact that FQ is itself Ahlfors-David k-regular. This proves the first sum in (5.8)
has the appropriate upper bound. Let QII be the collection of cubes summed over in the
second term of (5.8). Since diam(Q) < 10R, any Q ∈ QII satisfies Q ⊆ B(x, 20R). We first
prove a lemma
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Lemma 5.2.2. Let Q ∈ Q, and let D(Q) be the descendants of Q in Q. Then

Hk

 ⋃
Q′∈D(Q)

FQ′

 =
∑

Q′∈D(Q)

Hk(FQ′) ≲θ1,c1,c2 Hk(Q).

Proof of Lemma 5.2.2. Suppose for simple notation that Q = Q0. Using the regularity of
each FQ, we have

Hk

 ⋃
Q∈D(Q0)

FQ

 =
∞∑
m=0

∑
Q∈D(Q0)∩Qm

Hk(FQ) ≤ C

∞∑
m=0

∑
Q∈D(Q0)∩Qm

Hk(Q).

In analogy to (5.4), Q0 \ Fm−1 =
⋃
Q∈D(Q0)∩Qm

Q holds so that

∑
Q∈D(Q0)∩Qm

Hk(Q) = Hk(Q0 \ Fm−1) = Hk

Q0 \ Fm−2 \
⋃

Q∈D(Q0)∩Qm−1

FQ


= Hk

 ⋃
Q∈D(Q0)∩Qm−1

Q \
⋃

Q∈D(Q0)∩Qm−1

FQ


≤

∑
Q∈D(Q0)∩Qm−1

Hk(Q \ FQ)

≤ (1− c0)
∑

Q∈D(Q0)∩Qm−1

Hk(Q)

where c0 was defined as the implicit constant in (5.2). Iterating this inequality, we find

Hk

 ⋃
Q∈D(Q0)

FQ

 ≤ C
∞∑
m=0

(1− c0)
mHk(Q0) ≲c0 Hk(Q0).

■

Using this lemma, we can write∑
FQ∩B(x,R)̸=∅
diamQ≤10R

Hk(B(x,R) ∩ FQ) ≤
∑

Q maximal
Q∈QII

∑
Q′∈D(Q)

Hk(FQ′) ≲
∑

Q maximal
Q∈QII

Hk(Q)

≤ Hk(E ∩B(x, 20R)) ≲ Rk.

This proves the desired bound for the second sum in (5.8), proving the upper regularity
of F . Now we show that F is lower regular. If R < 100 diamQm, then the claim follows
immediately from the lower regularity of FQ. If 100 diamQm ≤ R < diamF , then since
FQm ∩Qm ̸= ∅, there exists z ∈ Q (and thus, z ∈ E) with B(x,R) ⊇ B(z,R/2) and

Hk(B(x,R) ∩ F ) ≥ Hk(B(z, R/2) ∩ E) ≳ Rk
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using the fact that E ⊆ F . This completes the proof of lower regularity, hence of (ii) as well.
Proof of (iii): Fix x ∈ FQm and R > 0 as in the proof of (ii). Fix a constant α > 10 to

be chosen later. If R < α diamQm, then since FQm ∈ BP(F ), there exists Gx,R ∈ F such
that

Hk(B(x,R) ∩ FQm ∩Gx,R) ≥ θ2Hk(B(x,R) ∩ FQm) ≳C′,α R
k ≳C′′ Hk(B(x,R) ∩ F ) (5.9)

where C ′ is the regularity constant for FQm and C ′′ is the regularity constant for F . Now,
suppose that α diamQm ≤ R < diamF . Since x ∈ FQm , there exists a chain of cubes
Qi ∈ Qi, 0 ≤ i ≤ m such that

Qm ⊆ Qm−1 ⊆ . . . ⊆ Q1 ⊆ Q0.

Next, notice that for any choice of α > 10, there exists a smallest cube Qj in the above chain
such that R < α diamQj since for all admissible R, R < 10 diamQ0. Choose the constant α
such that for any y ∈ E \ Fi, the cube Qi+1 ∋ y satisfies

dist(Qi+1, FQi
) <

α

10
diamQi+1. (5.10)

In general, α will depend on the constants used in the construction of ∆, as it may be the
case that all of the children of the cube Qi are small relative to Qi with bounds given in
terms of these constants. With such an α chosen, let Qj be the smallest cube in the above
chain for x such that R < α diamQj. This means that R ≥ α diamQj+1 so that (5.10)
implies that there exists y ∈ FQj

such that B(y,R/2) ⊆ B(x,R). We can now repeat the
argument of (5.9) with Qj in place of Qm to finish the proof. This completes the proof of
Theorem G for the case diamE <∞. ■

Before we turn to the case diamE = ∞, we need the following lemma. It says, roughly,
that finite diameter subsets of E can be made regular by extending them slightly. This
extension also preserves the BP(F) property.

Lemma 5.2.3. Let E ⊆ X be a Ahlfors-David k-regular set and suppose that G ⊆ E satisfies
diamG = D <∞. For any A ≥ 1, there exists a set G̃ ⊆ E such that

(i) G ⊆ G̃ ⊆ B(G, 3D
A
) ∩ E = {x ∈ E : d(x,G) < 3D

A
},

(ii) G̃ is Ahlfors-David k-regular with constant C(k, CE, A).

Furthermore, if E ∈ BP(F) with constant θE for some class of Ahlfors-David k-regular sets,
then G̃ ∈ BP(F) with constant θ(k, θE, A).

Proof of Lemma 5.2.3. We define an “interior” of the set G ⊆ E by

IA(G) =

{
x ∈ G : d(x,E \G) ≥ D

A

}
.

The corresponding “boundary” is then

G \ IA(G) =
{
x ∈ G : d(x,E \G) < D

A

}
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We will construct the set G̃ inductively. In the first stage, we will take a maximal net of
appropriate size inside G\ IA(G) and add in balls around each net point to G. In the second
step, we consider a smaller “boundary” of this new set and repeat the above process with
a finer net and smaller balls. If we continue this process indefinitely while adding balls of
exponentially decreasing radii, we get the desired set by taking a closure. We now give this
construction explicitly.

Let G0 = G and let X1 be a maximal D
A
-net for the set G \ IA(G) ⊆ E. Define

G1 = G ∪
⋃
x∈X1

B

(
x,

2D

A

)
∩ E.

Given the set Gn, we define Xn+1 to be a maximal 4−nD
A
-net for Gn \ I4n·A(Gn) and we let

Gn+1 = Gn ∪
⋃

x∈Xn+1

B

(
x, 4−n

2D

A

)
∩ E.

Finally, define

G̃ =
∞⋃
n=0

Gn.

We will now show that G̃ satisfies the desired properties in the statement of the lemma.
Proof of (i): The maximal distance of a point x ∈ G̃ from G is just given by the sum

of the radii of the balls added in each step:

d(x,G) ≤ 2D

A

∞∑
n=0

4−n =
8

3

D

A
<

3D

A
.

Proof of (ii): First, we observe that since G̃ ⊆ E, we immediately have, for all x ∈ G̃,
R > 0,

Hk(B(x,R) ∩ G̃) ≤ Hk(B(x,R) ∩ E) ≤ CER
k.

Hence, G̃ is upper Ahlfors-David k-regular with constant CE. We will now show that G̃ is
lower regular. In order to do so, we will first prove that there exists a constant 0 < c < 1
dependent only on A such that

∀x ∈ G̃, ∀R, 0 < R < diam G̃, ∃y ∈ E such that B(y, cR) ∩ E ⊆ B(x,R) ∩ G̃. (5.11)

We note that (ii) will follow from this since for any relevant pair (x,R), we get the existence
of y ∈ E such that

Hk(B(x,R) ∩ G̃) ≥ Hk(B(y, cR) ∩ E) ≥ ckRk

CE

by the lower regularity of E. We now prove (5.11). We begin by using the constant c′ = 1
10·44·A

(we will only need to decrease it by a factor of 1
2
at the end of the proof). Let x ∈ G̃ and

assume x ∈ Gm for some m. There exists some minimal n such that x ∈ I4nA(Gn) because
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x ∈ Gm\I4mA(Gm) implies x ∈ I4m+1A(Gm+1) by the triangle inequality. Indeed, let t ∈ Xm+1

be a nearest net point to x and let z ∈ E \Gm+1. We can calculate

d(x, z) ≥ d(t, z)− d(t, x) ≥ 4−m
2D

A
− 4−m

D

A
= 4−m

D

A
> 4−m−1D

A
.

Therefore, d(x,E \ Gm+1) > 4−m−1D
A

so that x ∈ I4m+1A(Gm+1). Suppose first that n ≤ 4.
In this case, we will take y = x, and we must show the inclusion of the balls given in (5.11)
for any admissible value of R. For 0 < R ≤ 4−4D

A
, note that x ∈ I44A(G4) implies

d(x,E \ G̃) ≥ d(x,E \G4) >
D

44A
(5.12)

so that B(x,R) ∩ G̃ = B(x,R) ∩ E. If instead 4−4D
A
< R < diam G̃ < D + 6D

A
< 10D,

c′R =
R

10 · 44 · A
<

10D

10 · 44 · A
= 4−4D

A
.

Which shows that

B(x, c′R) ∩ E ⊆ B

(
x, 4−4D

A

)
∩ E = B

(
x, 4−4D

A

)
∩ G̃

by (5.12). Now, suppose n > 4. This means x ∈ I4nA(Gn) \ I4n−1A(Gn−1). Hence, if
R < 4−nD

A
, then we can take y = x and note that B(x,R) ∩ G̃ = B(x,R) ∩ E in analogy

to (5.12). Now, suppose 4−mD
A
≤ R < 4−m+1D

A
for 0 ≤ m ≤ n − 3. There exist net points

xp ∈ Xp for m+ 3 ≤ p ≤ n such that

d(x, xn) ≤ 4−n
2D

A
,

d(xp+1, xp) ≤ 4−p
2D

A
.

Hence, the triangle inequality implies

d(x, xm+3) ≤
2D

A

n∑
p=m+2

4−p ≤ 2D

A

(
4−m−2 · 2

)
= 4−m−1D

A
. (5.13)

In this case, we choose y = xm+3. We calculate

B(y, c′R) = B

(
xm+3,

R

10 · 44 · A

)
⊆ B

(
xm+3, 4

−(m+3) D

10A2

)
⊆ B

(
x, 4−m

D

A

)
⊆ B(x,R)

using (5.13) and the fact that 4−mD
A

≤ R < 4−m+1D
A
. In the case when D

A
< R < 10D,

choose y = x3, the nearest net point in X3 and observe that

B(y, c′R) = B

(
x3,

R

10 · 44 · A

)
⊆ B

(
xm+3, 4

−4D

A

)
⊆ B

(
x,
D

A

)
⊆ B(x,R)

again using (5.13). This proves (5.11) for all x ∈ Gn for some n. If x ̸∈ Gn for all n,
then given any admissible R > 0, there is a net point t ∈ XN for arbitrarily large N such
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that d(x, t) < R
4
so that B(t, R

2
) ⊆ B(x,R) and, applying (5.11) to B(t, R

2
), we get a point

y ∈ B(t, R
2
) such that B(y, c′R

2
) ⊆ B(t, R

2
) ⊆ B(x,R). Take c = c′

2
and B(y, cR) ⊆ B(x,R)

so that (5.11) holds with c = 1
20·44·A .

Proof that G̃ ∈ BP(F). This follows from (5.11). Indeed, for any admissible pair (x,R),
choose y as given by (5.11). Applying the BP(F) condition for E in the ball B(y, cR) gives
a set Hy,cR ∈ F such that

Hk(B(x,R) ∩ G̃ ∩Hy,cR) ≥ Hk(B(y, cR) ∩ E ∩Hy,cR) ≳A,θE ,k R
k ≳C Hk(B(x,R) ∩ G̃).

This concludes the proof of the lemma. ■

Proof of Theorem G for the case diamE = ∞. Fix x0 ∈ E. Let A > 1 and, for n ≥ 0, set

Bn = B(x0, A
n)

where the constant A is sufficiently large in terms of CE, k, and θE, the BP constant. Let
En be the Ahlfors-David regular extension of the set E ∩ Bn with constant A in Lemma
5.2.3 replaced with 100 so that En ⊆ B(E ∩ Bn,

An

4
). En satisfies the hypotheses of the

finite diameter case of the theorem, so apply the theorem to get a regular set Fn ∈ BP(F)
satisfying

En ⊆ Fn ⊆ B

(
x0,

5An

4

)
.

In order to ensure bounded overlap, we then define F̃0 = F0 and F̃n for n ≥ 1 to be the
regular extension of Fn \ 1

2
Bn−1 given by the lemma with constant A there replaced by 100A

here. By construction, F̃n ⊆ B(Fn,
An−1

10
) so that F̃n ∩ 1

4
Bn−1 = ∅ and F̃n ⊆ B(x0, 2A

n). We

also have F̃n ∈ BP(F) with constant θ̃F independent of n. We now define

F =
∞⋃
n=0

F̃n

and claim that F satisfies conditions (i)-(iii).
Proof of (i): By definition, E ∩ (Bn \ 1

2
Bn−1) ⊆ F̃n so E =

⋃∞
n=0E ∩ (Bn \ 1

2
Bn−1) ⊆ F .

Proof of (ii): For any n, F̃n is regular with some constant C̃F (A,CE, k) independent
of n. Lower regularity of F with constant C̃F follows immediately, so we only need to show
that F is upper regular. Let x ∈ F̃n for some n. Observe that, for j ≥ 2

d(x, F̃n+j) ≥ d

(
F̃n,

1

4
Bn+j−1

)
≥ 1

4
An+j−1 − 2An > An+j−2

provided we choose A sufficiently large. Hence, if R ≤ An−2, then B(x,R) ∩ F̃j = ∅ for
|n− j| ≥ 2. In this case,

Hk(B(x,R) ∩ F ) =
1∑

j=−1

Hk(B(x,R) ∩ F̃n+j) ≲C̃F
Rk
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independent of n because F̃n+j is regular with constant independent of n. Now, suppose
Aj < R ≤ Aj+1 for j ≥ n− 2. We can write

Hk(B(x,R) ∩ F ) =
j+2∑
i=0

Hk(B(x,R) ∩ F̃i) ≤
j+2∑
i=0

Hk(F̃i) ≤ C̃F

j+2∑
i=0

diam(F̃i)
k

≤ C̃F

j+2∑
i=0

(4A)ik ≤ 2C̃F (4A)
(j+2)k ≤ (4A)2k+1C̃F (4R)

k.

This proves upper regularity and finishes the proof of (ii). From now on, let CF = CF (CE, A, k)
be the regularity constant for F .

Proof of (iii): Let x ∈ F̃n and R > 0. Suppose first that 0 < R ≤ An+2. Because
F̃n ∈ BP(F) by the lemma with constant θ̃F (θE, A, k) independent of n, we get the existence
of a set Gx,R ∈ F such that

Hk(B(x,R) ∩ F ∩Gx,R) ≥ Hk(B(x,R) ∩ F̃n ∩Gx,R) ≳θ̃F ,A
Hk(B(x,R) ∩ F̃n)

≳CF
Rk ≳CF

Hk(B(x,R) ∩ F ).

using the fact that F̃n is regular. Now, suppose Aj < R ≤ Aj+1 for j ≥ n + 2. Because
x ∈ F̃n,

1
4
An−1 ≤ d(x, x0) ≤ 2An so that

F̃j−2 ⊆ B
(
x0, 2A

j−2
)
⊆ B

(
x, 2Aj−2 + 2An

)
⊆ B(x,Aj−1) ⊆ B(x,R).

Using the above containment and the fact that F̃j−2 ∈ BP(F), there exists a set Gx,R ∈ F
with both Gx,R ⊆ B(x,R) and

Hk(Gx,R ∩ F̃j−2) ≳θ̃F
diam(F̃j−2)

k ≳ A(j−2)k ≳A,k R
k.

Hence, we have Hk(B(x,R) ∩Gx,R ∩ F ) ≳θ̃F ,A,k
Rk ≳CF

Hk(B(x,R) ∩ F ) as desired. ■
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[DS93] Guy David and Stephen Semmes. Analysis of and on uniformly rectifiable sets.
Vol. 38. Mathematical Surveys and Monographs. Providence, RI: American
Mathematical Society, 1993.

[DT12] Guy David and Tatiana Toro. “Reifenberg parameterizations for sets with holes”.
Mem. Amer. Math. Soc. 215.1012 (2012), pp. vi+102.

[ENV19] Nick Edelen, Aaron Naber, and Daniele Valtorta. “Effective Reifenberg theorems
in Hilbert and Banach spaces”. Math. Ann. 374.3-4 (2019), pp. 1139–1218.

171



[Fed69] Herbert Federer. Geometric Measure Theory. Classics in Mathematics. Springer-
Verlag, Berlin Heidelberg, 1969.

[FKL14] Matt Feiszli, Sergey Kushnarev, and Kathryn Leonard. “Metric spaces of shapes
and applications: compression, curve matching and low-dimensional representa-
tion”. Geom. Imaging Comput. 1.2 (2014), pp. 173–221.

[FN17] Matt Feiszli and Akil Narayan. “Numerical computation of Weil-Petersson geodesics
in the universal Teichmüller space”. SIAM J. Imaging Sci. 10.3 (2017), pp. 1322–
1345.

[FV23] Katrin Fassler and Ivan Yuri Violo. “On various Carleson-type geometric lemmas
and uniform rectifiability in metric spaces”. arXiv preprint, arXiv:2310.10519.
2023.

[Ghi20] Silvia Ghinassi. “Sufficient conditions for C1,α paramerization and rectifiability”.
Ann. Acad. Sci. Fenn. Math. 45.2 (2020), pp. 1065–1094.

[GJM92] John Garnett, Peter Jones, and Donald Marshall. “A Lipschitz decomposition of
minimal surfaces”. Journal of Differential Geometry 35.3 (1992), pp. 659–673.

[GMT18] John Garnett, Mihalis Mourgoglou, and Xavier Tolsa. “Uniform rectifiability
from Carleson measure estimates and ε-approximability of bounded harmonic
functions”. Duke Math. J. 167.8 (2018), pp. 1473–1524.

[Hah05] Immo Hahlomaa. “Menger curvature and Lipschitz parametrizations in metric
spaces”. Fund. Math. 185.2 (2005), pp. 143–169.

[HM12] T. Hytönen and H. Martikainen. “Non-homogeneous Tb theorem and random
dyadic cubes on metric measure spaces”. J. Geom. Anal. 22.4 (2012), pp. 1071–
1107.

[Hyd22a] Matthew Hyde. “A d-dimensional Analyst’s Traveling Salesman Theorem for
subsets of Hilbert space”. Math. Ann. (2022).

[Hyd22b] Matthew Hyde. “The restricted content and the d-dimensional Analyst’s Trav-
elling Salesman Theorem for general sets”. Adv. Math. 397 (2022). Paper No.
108189.

[Jon90] Peter Jones. “Rectifiable sets and the traveling salesman problem”. Invent.
Math. 102.1 (1990), pp. 1–15.

[Kir94] Bernd Kirchheim. “Rectifiable metric spaces: local structure and regularity of
the Hausdorff measure”. Proc. Amer. Math. Soc. 121.1 (1994), pp. 113–123.

172



[KP02] Bernd Kirchheim and David Preiss. “Uniformly distributed measures in Eu-
clidean spaces”. Math. Scand. 90.1 (2002), pp. 152–160.
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