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Abstract of the Dissertation

Loop spaces, cyclic homology, and the A∞ algebra of a Lagrangian submanifold

by

Yi Wang

Doctor of Philosophy

in

Mathematics

Stony Brook University

2023

The thesis consists of three chapters. In the first chapter, we prove a variant of Jones’

theorem on cyclic homology and S1-equivariant homology, and describe a chain level refinement

of the string topology gravity algebra discovered by Chas-Sullivan. In the second chapter, we

construct a new chain model of the (based and free) loop (path) space of a path-connected

topological space X, defined using the fundamental groupoid of X. This may be viewed as

a generalization of a classical theorem of Adams to non-simply-connected spaces. In the

third chapter, we give a formulation of the Lagrangian Floer theory of a single Lagrangian

submanifold in terms of its free loop space, namely lift the Fukaya A∞ algebra of a Lagrangian

submanifold L to the dg Lie algebra of cyclic invariant chains on the free loop space of L.
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Chapter 1

A cocyclic construction of

S1-equivariant homology and

application to string topology

1.1 Introduction

Let M be a closed oriented smooth manifold and LM = C∞(S1,M) be the smooth free loop

space of M . In a seminal paper [5] (and a sequal [6]), Chas-Sullivan discovered rich algebraic

structures on the ordinary homology and S1-equivariant homology of LM , initiating the

study of string topology. In particular, there is a Batalin-Vilkovisky (BV) algebra structure

on (shifted) H∗(LM) ([5, Theorem 5.4]), which naturally induces a gravity algebra structure

on (shifted) HS1
∗ (LM) ([5, Section 6], [6, page 18]).

The goal of this paper is to describe a chain level refinement of the string topology gravity

algebra, and compare it with an algebraic counterpart related to the de Rham dg algebra

Ω(M). Along the way we also obtain results on the relation between cyclic homology and

S1-equivariant homology, and an S1-equivariant version of Deligne’s conjecture.

In spirit, this paper may be compared with work of Westerland [50]. Westerland gave a
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homotopy theoretic generalization of the gravity operations on the (negative) S1-equivariant

homology of LM , whereas we describe a chain level refinement.

Cyclic homology and S1-equivariant homology

The close connection between cyclic homology (algebra) and S1-equivariant homology (topol-

ogy) was first systematically studied by Jones in [32]. One of the main theorems in that paper

([32, Theorem 3.3]) says that the singular chains {Sk(X)}k≥0 of an S1-space X can be made

into a cyclic module, such that there are natural isomorphisms between three versions of cyclic

homology (positive, periodic, negative) of {Sk(X)}k≥0 and three versions of S1-equivariant

homology of X, in a way compatible with long exact sequences.

The first result in this paper is a theorem “cyclic dual” to Jones’ theorem. As far as the

author knows, such a result did not appear in the literature.

Theorem 1.1.1 (See Theorem 1.3.1). Let X be a topological space with an S1-action. Then

{S∗(X × ∆k)}k≥0 can be made into a cocyclic chain complex, such that there are natural

isomorphisms between three versions of cyclic homology of {S∗(X×∆k)}k≥0 and three versions

of S1-equivariant homology of X, in a way compatible with long exact sequences.

Jones dealt with the cyclic set {Map(∆k, X)}k and the cyclic module {Sk(X)}k, while we

deal with the cocyclic space {X ×∆k}k and the cocyclic complex {S∗(X ×∆k)}k. It is in

this sense that these two theorems are “cyclic dual” to each other. In the special case that X

is the free loop space of a topological space Y , Theorem 1.1.1 may also be viewed as “cyclic

dual” to a result of Goodwillie ([27, Lemma V.1.4]). As does Jones’ theorem, Theorem 1.1.1

has the advantage that it works for all S1-spaces.

The cyclic structure on singular chains plays no role in Theorem 1.1.1; what matters

is the cocyclic space. Indeed, the main motivation for the author to seek for a result like

Theorem 1.1.1 is to study the S1-equivariant homology of LM , using a novel chain model of

loop space homology defined via certain “de Rham chains”, introduced by Irie [29].

2



Deligne’s conjecture

What is called Deligne’s conjecture asks whether there is an action of certain chain model of

the little disks operad on the Hochschild cochain complex of an associative algebra, inducing

the Gerstenhaber algebra structure on Hochschild cohomology discovered by Gerstenhaber

[21]. This conjecture, as well as some variations and generalizations, has been answered

affirmatively by many authors, to whom we are apologetic not to list here. What is of most

interest and importance to us is work of Ward [48].

Ward ([48, Theorem C]) gave a general solution to the question when certain complex of

cyclic (co)invariants admits an action of a chain model of the gravity operad, inducing the

gravity algebra structure on cyclic cohomology. Recall that the gravity operad was introduced

by Getzler [25] and is the S1-equivariant homology of the little disks operad. So Ward’s result

can be viewed as an S1-equivariant version of operadic Deligne’s conjecture ([48, Corollary

5.22]).

The second result in this paper is an extension, in a special case, of Ward’s theorem. To

state our result, let A be a dg algebra equipped with a symmetric, cyclic, bilinear form ⟨, ⟩ :

A⊗ A→ R of degree m ∈ Z satisfying Leibniz rule (see Example 1.5.9). Then ⟨, ⟩ induces a

dg A-bimodule map θ : A→ A∨[m], and hence a cochain map Θ : CH(A,A)→ CH(A,A∨[m])

between Hochschild cochains. Let CHcyc(A,A
∨[m]) be the subcomplex of cyclic invariants in

CH(A,A∨[m]). Let M⟲ be the chain model of the gravity operad that Ward constructed (see

also Example 1.5.3(iii)).

Theorem 1.1.2 (See Corollary 1.6.8). Given A, ⟨, ⟩, θ,Θ as above, there is an action of M⟲

on Θ−1(CHcyc(A,A
∨[m])), giving rise to a structure of gravity algebra up to homotopy. If

θ is a quasi-isomorphism and Θ restricts to a quasi-isomrphism Θ−1(CHcyc(A,A
∨[m])) →

CHcyc(A,A
∨[m]), this descends to a gravity algebra structure on the cyclic cohomology of A,

which is compatible with the BV algebra structure on Hochschild cohomology.

Here the BV algebra structure on the Hochschild cohomology of A (when θ is a quasi-
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isomorphism) is well-known (e.g. Menichi [42, Theorem 18]), where the BV operator is given

by Connes’ operator (Example 1.2.6). By compatibility with BV algebra structure we mean

the content of Lemma 1.5.1. Note that Ward’s original theorem only applies to the situation

that θ is an isomorphism ([48, Corollary 6.2]).

Chain level structures in S1-equivariant string topology

Let us say more about Irie’s work [29]. Using his chain model and results of Ward ([48,

Theorem A, Theorem B]), Irie obtained an operadic chain level refinement of the string

topology BV algebra, and compared it with a solution to the ordinary Deligne’s conjecture

via a chain map defined by iterated integrals of differential forms.

The third result in this paper is a similar story in the S1-equivariant context. Note that

the string topology BV algebra induces gravity algebra structures on two versions (positive

i.e. ordinary, and negative) of S1-equivariant homology of LM (Example 1.7.1).

Theorem 1.1.3 (See Theorem 1.7.6)). For any closed oriented C∞-manifold M , there exists

a chain complex Õcyc
M satisfying the following properties. Firstly, the homology of Õcyc

M is

isomorphic to the negative S1-equivariant homology of LM , and Õcyc
M admits an action of M⟲

(hence an up-to-homotopy gravity algebra structure) which lifts the gravity algebra structure

mentioned above. Secondly, there is a morphism of M⟲-algebras

Õcyc
M → Θ−1(CHcyc(Ω(M),Ω(M)∨[− dimM ])) (1.1.1)

which is induced by iterated integrals of differential forms, where the structure on RHS follows

from Theorem 1.1.2 and Θ comes from Poincaré pairing. At homology level, the morphism

(1.1.1) descends to a map (part of arrow 4 below) which fits into a commutative diagram of

gravity algebra homomorphisms

A B

C D.

1

2 3

4

(1.1.2)
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Here A is the S1-equivariant homology of LM , B is the negative cyclic cohomology of Ω(M),

C is the negative S1-equivariant homology of LM , D is the cyclic cohomology of Ω(M).

Arrows 1, 4 are defined by iterated integrals on free loop space, and arrow 2 (resp. 3) is the

connecting map in the tautological long exact sequence for S1-equivariant homology theories

(resp. cyclic homology theories).

The crucial part of Theorem 1.1.3 is, of course, the chain level statement that fits well

with structures on homology. The first part of Theorem 1.1.3 was conjectured by Ward in [48,

Example 6.12], but the correct statement turns out to be more complicated, as we actually

lift gravity algebra structures on negative S1-equivariant homology rather than S1-equivariant

homology, whereas they are naturally related by a morphism (arrow 2).

Other than the chain level statement, part of the results at homology level is known.

For example, the fact that arrow 1 is a Lie algebra homomorphism appeared in work of

Abbaspour-Tradler-Zeinalian as [1, Theorem 11]; The fact that (1.1.2) commutes was of

importance to Cieliebak-Volkov [10] (the arrows are only treated as linear maps there).

In a forthcoming paper, the author is going to apply results in this paper to Lagrangian

Floer theory, in view of cyclic symmetry therein (Fukaya [17]).

Outline

In Section 1.2, we review cyclic homology of mixed complexes. In Section 1.3, we prove

Theorem 1.1.1. In Section 1.4, we review Irie’s de Rham chain complex of differentiable spaces

and apply Theorem 1.1.1 to it. In Section 1.5, we review basics of operads and algebraic

structures. In Section 1.6, we prove Theorem 1.1.2. In Section 1.7, we prove Theorem 1.1.3.

Conventions

Vector spaces are over R, algebras are associative and unital, graded objects are Z-graded.

Homological and cohomological gradings are mixed by the understanding C∗ = C−∗, C∗ = C−∗.
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As for sign rules, see Appendix 1.8. For the sake of convenience, we may write (−1)ε for a

sign that is apparent from Koszul sign rule (Appendix 1.8.1).

Acknowledgements

I am grateful to my advisor, Kenji Fukaya, for guidance, encouragement and support. I also

thank Kei Irie and Benjamin Ward for correspondences.

1.2 Preliminaries on cyclic homology

A convenient way to study different versions of cyclic homology is to work in the context of

mixed complexes, which was introduced by Kassel [33]. By definition, a mixed cochain complex

is a triple (C∗, b, B) consisting of a graded vector space C∗ and linear maps b : C∗ → C∗+1,

B : C∗ → C∗−1 such that

b2 = 0, B2 = 0, bB +Bb = 0.

Let u be a formal variable of degree 2. Define graded R[u]-modules C[[u]]∗, C[[u, u−1]∗,

C[u−1]∗ by

C[[u]]n :=
{∑

i≥0

ciu
i | ci ∈ Cn−2i

}
,

C[[u, u−1]n :=
{∑
i≥−k

ciu
i | k ∈ Z≥0, ci ∈ Cn−2i

}
,

C[u−1]n :=
{ ∑

−k≤i≤0

ciu
i | k ∈ Z≥0, ci ∈ Cn−2i

}
.

Here the R[u]-module structure on C[u−1] is induced by the identification C[u−1] = C[[u, u−1]/uC[[u]].

Then b+ uB is a differential on C[[u]]∗, C[[u, u−1]∗, C[u−1]∗, resulting in cohomology groups

denoted by

HC∗
[[u]](C), HC∗

[[u,u−1](C), HC∗
[u−1](C).

These are three classical versions of cyclic homology of mixed complexes, called the negative,

periodic and ordinary (positive) cyclic homology of (C∗, b, B), respectively. We prefer to
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distinguish them by suggestive symbols ([[u]], [[u, u−1], [u−1]) rather than names, as did in

[10]. Here cohomological grading is used for cyclic homology since we deal with cochain

complexes. If we move to homological grading C∗ := C−∗ and replace u by v (a formal

variable of degree −2), then the mixed chain complex (C∗, b, B) gives negative, periodic and

ordinary (positive) cyclic homology theories

HC[[v]]
∗ = HC−∗

[[u]], HC[[v,v−1]
∗ = HC−∗

[[u,u−1], HC[v−1]
∗ = HC−∗

[u−1].

([10] also takes the Hom dual of C to define cyclic cohomology theories of (C, b, B), which we

try to avoid in this article.)

For any mixed cochain complex (C∗, b, B), there is a tautological exact sequence

· · · → HC∗
[[u]](C)

i∗−→ HC∗
[[u,u−1](C)

u·p∗−−→ HC∗+2
[u−1](C)

B0∗−−→ HC∗+1
[[u]](C)→ · · · (1.2.1)

which is induced by the short exact sequence

0→ C[[u]]
i−→ C[[u, u−1]

p−→ C[[u, u−1]/C[[u]]→ 0

and the (b+ uB)-cochain isomorphism

(C[[u, u−1]/C[[u]])∗
·u−→∼= C[u−1]∗+2;

∑
−k≤i≤−1

ciu
i 7→

∑
−k≤i≤−1

ciu
i+1.

The connecting map B0∗ : HC
∗+2
[u−1](C)→ HC∗+1

[[u]](C) is given on cocycles by

B0 : Z
∗+2(C[u−1])→ Z∗+1(C[[u]]);

∑
−k≤i≤0

ciu
i 7→ B(c0).

Note that B0 is not a cochain or anti-cochain map from C[u−1]∗+2 to C[[u]]∗+1. Similarly,

from the short exact sequences

0→ C[[u]]/uC[[u]]
i−→ C[[u, u−1]/uC[[u]]

p−→ C[[u, u−1]/C[[u]]→ 0

0→ uC[[u]]
i+−→ C[[u]]

p0−→ C[[u]]/uC[[u]]→ 0

one obtains the Gysin-Connes exact sequences

· · · → H∗(C, b)
i∗−→ HC∗

[u−1](C)
u·p∗−−→ HC∗+2

[u−1](C)
B0∗−−→ H∗+1(C, b)→ · · · (1.2.2a)

· · · → HC∗−2
[[u]](C)

i+∗ ·u−−→ HC∗
[[u]](C)

p0∗−−→ H∗(C, b)
B∗−→ HC∗−1

[[u]](C)→ · · · (1.2.2b)
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The connecting maps HC∗+2
[u−1](C)

B0∗−−→ H∗+1(C, b) and H∗(C, b)
B∗−→ HC∗−1

[[u]](C) are given on

cocycles by B0 and B, respectively.

Lemma 1.2.1. The map B0∗ : HC
∗+2
[u−1](C)→ HC∗+1

[[u]](C) in (1.2.1) and the exact sequences

(1.2.2) fit into the following commutative diagram:

· · · → H∗(C, b) HC∗
[u−1](C) HC∗+2

[u−1](C) H∗+1(C, b)→ · · ·

· · · → H∗(C, b) HC∗−1
[[u]](C) HC∗+1

[[u]](C) H∗+1(C, b)→ · · ·

i∗

id

u·p∗

B0∗

B0∗

B0∗ id

B∗ i+∗ ·u p0∗

Proof. The left and the right squares commute since they commute at the level of cocycles.

As for the middle square, let c =
∑0

j=−k cju
j ∈ Z∗(C[u−1]), then B0(u · p(c)) = B(c−1) and

i+(u ·B0(c)) = B(c0)u. Since c is a cocycle, 0 = (b+ uB)(c) =
∑0

j=−k(b(cj) +B(cj−1))u
j ∈

C[u−1]. In particular, b(c0) +B(c−1) = 0, so B(c0)u−B(c−1) = (b+ uB)(c0) is exact. This

proves B0∗ ◦ (u · p∗) = (i+∗ · u) ◦B0∗.

Definition 1.2.2. Let (C∗, b, B), (C ′′∗, b′′, B′′) be mixed cochain complexes.

(i) A series of linear maps {fi : C∗ → (C ′′)∗−2i}i∈Z≥0
is called an ∞-morphism from C∗ to

C ′′∗ if
∑

i≥0 u
ifi : (C[[u, u

−1]∗, b+ uB)→ (C ′′[[u, u−1]∗, b′′ + uB′′) is a cochain map, or

equivalently, if {fi}i≥0 satisfies b′′f0 = f0b and B
′′fi−1 + b′′fi = fi−1B + fib (i ≥ 1).

(ii) An ∞-morphism f = {fi}i≥0 : C∗ → C ′′∗ is called an ∞-quasi-isomorphism if f0 :

(C∗, b)→ (C ′′∗, b′′) is a cochain quasi-isomorphism.

(iii) Given two ∞-morphisms {fi}i≥0, {gi}i≥0 : C∗ → C ′′∗, a series of linear maps {hi :

C∗ → (C ′′)∗−2i−1}i∈Z≥0
is called an ∞-homotopy between them if h =

∑
i≥0 u

ihi :

C[[u, u−1]∗ → C ′′[[u, u−1]∗ is a (b+ uB, b′′ + uB′′)-cochain homotopy between
∑

i≥0 u
ifi

and
∑

i≥0 u
igi, or equivalently, if {hi}i≥0 satisfies f0 − g0 = b′′h0 + h0b and fi − gi =

b′′hi + hib+B′′hi−1 + hi−1B (i ≥ 1).

A morphism between mixed complexes is an ∞-morphism {fi}i≥0 such that fi = 0 for

all i > 0, namely a single degree 0 linear map that commutes with both b and B. A quasi-
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isomorphism between mixed complexes is a morphism that is also a (b, b′′)-quasi-isomorphism.

A homotopy between two morphisms f, g : (C∗, b, B) → (C ′′∗, b′′, B′′) is an ∞-homotopy

{hi}i≥0 such that hi = 0 for all i > 0, namely a single degree −1 linear map h satisfying

f − g = b′′h+ hb and B′′h+ hB = 0.

The following important lemma goes back to [32, Lemma 2.1], and is a special case of [51,

Lemma 2.3] which is stated for S1-complexes (an ∞-version of mixed complex). The proof is

a spectral sequence argument by considering the u-adic filtration on C[[u]]∗ etc.

Lemma 1.2.3. Let {fi}i≥0 : (C
∗, b, B)→ (C ′′∗, b′′, B′′) be an ∞-quasi-isomorphism. Then∑

i≥0 u
ifi induces isomorphisms on HC∗

[[u]], HC
∗
[[u,u−1] and HC∗

[u−1].

The following lemma illustrates the naturality of the tautological exact sequence and

Connes-Gysin exact sequences for cyclic homology, with respect to ∞-morphisms between

mixed complexes.

Lemma 1.2.4. Let f = {fi}i≥0 : (C∗, b, B) → (C ′′∗, b′′, B′′) be an ∞-morphism. Then

f =
∑

i u
ifi induces a morphism between the exact sequence (1.2.1) for C and C ′′, namely

there is a commutative diagram

· · ·HC∗
[[u]](C) HC∗

[[u,u−1](C) HC∗+2
[u−1](C) HC∗+1

[[u]](C) · · ·

· · ·HC∗
[[u]](C

′′) HC∗
[[u,u−1](C

′′) HC∗+2
[u−1](C

′′) HC∗+1
[[u]](C

′′) · · · .

i∗

f∗

u·p∗

f∗

B0∗

f∗ f∗

i′′∗ u·p′′∗ B′′
0∗

Similarly, for the exact sequence (1.2.2a), there is a commutative diagram

· · ·H∗(C, b) HC∗
[u−1](C) HC∗+2

[u−1](C) H∗+1(C, b) · · ·

· · ·H∗(C ′′, b′′) HC∗−1
[u−1](C

′′) HC∗+1
[u−1](C

′′) H∗+1(C ′′, b′′) · · · .

i∗

f0∗

u·p∗

f∗

B0∗

f∗ f0∗

i′′∗ u·p′′∗ B′′
0∗

The case of the exact sequence (1.2.2b) is also similar.

Proof. We only write proof for the first diagram since the others are similar. The left

and the middle squares commute since they commute at the level of cocycles. Now let
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c =
∑k

j=0 c−ju
−j ∈ Z∗+2(C[u−1]). (b + uB)(c) = 0 says b(c−j) + B(c−j−1) = 0 for all

j ∈ {0, . . . , k}. Also recall the ∞-morphism f satisfies B′′fi−1 + b′′fi = fi−1B + fib. Using

these relations, it is a straightforward calculation to see

∑
i≥0

fi(B(c0)) · ui −B′′
( ∑

0≤j≤k

fj(c−j)
)
= (b′′ + uB′′)

(∑
i≥0

∑
0≤j≤k

fi+j+1(c−j) · ui
)
.

The LHS is (f ◦B0 −B′′
0 ◦ f)(c), and the RHS is exact, so commutativity of the right square

is proved.

We now discuss some important examples of mixed (co)chain complexes and their cyclic

homologies. Recall that a cosimplicial object in some category is a sequence of objects C(k)

(k ∈ Z≥0) together with morphisms

δi : C(k − 1)→ C(k) (0 ≤ i ≤ k), σi : C(k + 1)→ C(k) (0 ≤ i ≤ k)

satisfying the following relations:

δjδi = δiδj−1 (i < j); (1.2.3a)

σjσi = σiσj+1 (i ≤ j); (1.2.3b)

σjδi =


δiσj−1 (i < j)

id (i = j, j + 1)

δi−1σj (i > j + 1).

(1.2.3c)

A cocyclic object is a cosimplicial object {C(k)}k together with morphisms τk : C(k)→ C(k)

satisfying the following relations:

τ k+1
k = id; (1.2.4a)

τkδi = δi−1τk−1 (1 ≤ i ≤ k), τkδ0 = δk; (1.2.4b)

τkσi = σi−1τk+1 (1 ≤ i ≤ k), τkσ0 = σkτ
2
k+1. (1.2.4c)

For example, let ∆0 := R0, ∆k := {(t1, . . . , tk) ∈ Rk | 0 ≤ t1 ≤ · · · ≤ tk ≤ 1} (k > 0) be the

standard simplices, then {∆k}k∈Z≥0
is a cocyclic set (topological space, etc.) with standard
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cocyclic maps δi : ∆
k−1 → ∆k, σi : ∆

k+1 → ∆k, τk : ∆
k → ∆k defined by

δi(t1, . . . , tk−1) :=


(0, t1, . . . , tk−1) (i = 0)

(t1, . . . , ti, ti, . . . , tk−1) (1 ≤ i ≤ k − 1)

(t1, . . . , tk−1, 1) (i = k),

(1.2.5a)

σi(t1, . . . , tk+1) := (t1, . . . , t̂i+1, . . . , tk+1) (miss ti+1) (0 ≤ i ≤ k), (1.2.5b)

τk(t1, . . . , tk) := (t2 − t1, . . . , tk − t1, 1− t1). (1.2.5c)

Remark 1.2.5. Equivalently, for ∆̃k := {(s0, s1, . . . , sk) ∈ [0, 1]k+1 | s0 + s1 · · · + sk = 1}

(k ≥ 0), τk : ∆̃
k → ∆̃k reads τk(s0, s1, . . . , sk) = (s1, . . . , sk, s0).

Example 1.2.6 (Cocyclic complex and Connes’ version of cyclic cohomology). Consider

the category of cochain complexes where the morphisms are degree 0 cochain maps. Let(
(C(k)∗, d), δi, σi, τk

)
be a cocyclic cochain complex, then a mixed cochain complex (C, b, B)

is obtained as follows. Let

δ : C(k − 1)∗ → C(k)∗; ck−1 7→ (−1)|ck−1|+k−1
∑
0≤i≤k

(−1)iδi(ck−1), (1.2.6)

then δ2 = 0, δd + dδ = 0. Let (C∗, b) be the product total complex of the double complex(
C(k)l, d, δ

)k∈Z≥0

l∈Z :

C∗ :=
∏
l+k=∗

C(k)l =
∏
k≥0

C(k)∗−k, b = d+ δ.

For later purpose we also introduce the normalized subcomplex (C∗
nm, b) of (C

∗, b):

C∗
nm :=

∏
k≥0

Cnm(k)
∗−k, Cnm(k) :=

⋂
0≤i≤k−1

Ker
(
σi : C(k)→ C(k − 1)

)
.

Note that the natural inclusion {Cnm(k)} ⊂ {C(k)} is not cosimplicial since δj does not

restricts to Cnm(k). The natural inclusion (C∗
nm, b) ↪→ (C∗, b) is a quasi-isomorphism (see [38,

Proposition 1.6.5] or [29, Lemma 2.5]). Note that so far only the cosimplicial structure on

{C(k)∗}k≥0 has come into play. Next, define the operator B : C∗ → C∗−1 by

B := Ns(1− λ) (Connes’ operator),
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where λ,N, s are given by (here |c| is the degree of c = (ck)k≥0 ∈
∏

k≥0C(k) in C
∗)

λ|C(k) := (−1)kτk, N |C(k) := 1 + λ+ · · ·+ λk, s(c) := (−1)|c|−1(σkτk+1(ck+1))k≥0.

Although Cnm is not closed under λ, N , it is closed under s, B. For ck+1 ∈ Cnm(k+1)∗, there

holds s(λ(ck+1)) = (−1)|ck+1|σkτ
2
k+1(ck+1) = (−1)|ck+1|τkσ0(ck+1) = 0, so Connes’ operator B

has simpler form on normalized subcomplex:

B|Cnm = Ns.

To see (C∗, b, B) is a mixed complex, define

b′ : C∗ → C∗+1, c 7→ b(c)− ((−1)|ck−1|−1δk(ck−1))k≥0.

It is a routine calculation to see (b′)2 = 0, N(1− λ) = (1− λ)N = 0, (1− λ)b = b′(1− λ),

bN = Nb′ and b′s + sb′ = 1. It follows that B2 = Ns((1 − λ)N)s(1 − λ) = 0 and

bB+Bb = Nb′s(1−λ)+Nsb′(1−λ) = N(1−λ) = 0, as desired. The identity (1−λ)b = b′(1−λ)

also implies that the space of cyclic invariants,

Ccyc := Ker(1− λ) ⊂ (C, b),

forms a subcomplex (we denote this inclusion by iλ). This leads to Connes’ version of cyclic

cohomology of the cocyclic cochain complex,

HC∗
λ(C) = HC∗

λ

(
C(k), d, δi, σi, τk

)
:= H∗(Ccyc, b).

Since B = Ns(1− λ) vanishes on Ccyc, (C
∗
cyc, b) is also naturally a subcomplex of (C[[u]]∗, b+

uB). By an argument similar to [38, Theorem 2.1.5, 2.1.8] one sees that this inclusion

Iλ : (C
∗
cyc, b) ↪→ (C[[u]]∗, b+ uB) induces an isomorphism

Iλ∗ : HC
∗
λ(C)

∼= HC∗
[[u]](C). (1.2.7)

The short exact sequence 0→ (Ccyc, b)
iλ−→ (C, b)

pλ−→ (C/Ccyc, b)→ 0 induces Connes’ long

exact sequence (we follow the presentation of [34, Section 0.14])

· · · → HC∗
λ(C)

iλ∗−→ H∗(C, b)
Bλ−→ HC∗−1

λ (C)
Sλ−→ HC∗+1

λ (C)→ · · · . (1.2.8)
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Here we have made use of an isomorphism HC∗−1
λ (C) ∼= H∗(C/Ccyc, b), which is a consequence

of another short exact sequence

0→ (C/Ccyc, b)
1−λ−−→ (C, b′)

N−→ (Ccyc, b)→ 0 (1.2.9)

and the fact that (C, b′) is acyclic (since b′s+ sb′ = 1). Lemma 1.2.9 below says (1.2.8) can

be identified with (1.2.2b). Finally we mention that HC∗
[[u]](Cnm) ∼= HC∗

[[u]](C)
∼= HC∗

λ(C),

where the first isomorphism follows from Lemma 1.2.3.

A subexample of Example 1.2.6 is as follows.

Example 1.2.7 (Cyclic cohomology of dg algebras). Let A∗ be a dg algebra with unit

1A. Then {Hom∗(A⊗k+1,R)}k≥0 has the structure of a cocyclic cochain complex, where

δi : Hom
∗(A⊗k,R) → Hom∗(A⊗k+1,R), σi : Hom∗(A⊗k+2,R) → Hom∗(A⊗k+1,R) and τk :

Hom∗(A⊗k+1,R)→ Hom∗(A⊗k+1,R) are

δi(φ)(a1 ⊗ · · · ⊗ ak+1) :=


(−1)εφ(a2 ⊗ · · · ⊗ ak ⊗ ak+1a1) (i = 0)

φ(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak+1) (1 ≤ i ≤ k),

σi(φ)(a1 ⊗ · · · ⊗ ak+1) := φ(a1 ⊗ · · · ⊗ ai ⊗ 1A ⊗ ai+1 ⊗ · · · ⊗ ak+1) (0 ≤ i ≤ k),

τk(φ)(a1 ⊗ · · · ⊗ ak+1) := (−1)εφ(ak+1 ⊗ a1 · · · ⊗ ak). (1.2.10)

The associated mixed total complex is denoted by CH∗(A,A∨). For simplicity, denote cyclic

homologies of CH∗(A,A∨) by HC∗
[u−1](A,A

∨), HC∗
[[u]](A,A

∨) ∼= HC∗
λ(A,A

∨), etc. Classically,

HC∗
λ(A,A

∨) is called (Connes’) cyclic cohomology of A.

Let us also recall that for any dg A-bimodule M∗, there is a structure of cosimpli-

cial complex on {Hom∗(A⊗k,M)}k≥0, where δi : Hom
∗(A⊗k−1,M) → Hom∗(A⊗k,M), σi :
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Hom∗(A⊗k+1,M)→ Hom∗(A⊗k,M) are

δi(f)(a1 ⊗ · · · ⊗ ak) :=


(−1)εa1 · f(a2 ⊗ · · · ⊗ ak) (i = 0)

f(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak) (1 ≤ i ≤ k − 1)

f(a1 ⊗ · · · ⊗ ak−1) · ak (i = k),

σi(f)(a1 ⊗ · · · ⊗ ak) := f(a1 ⊗ · · · ⊗ ai ⊗ 1A ⊗ ai+1 ⊗ · · · ⊗ · · · ⊗ ak) (0 ≤ i ≤ k).

The associated total complex, denoted by CH∗(A,M), is called the Hochschild cochain complex,

whose cohomology group, denoted by HH∗(A,M), is called the Hochschild cohomology. Taking

M∗ = (A∨)∗ = Hom∗(A,R) with dg A-bimodule structure satisfying

(dφ)(a) + (−1)|φ|φ(da) = 0, φ(ab) = (−1)(|a|+|φ|)|b|(b · φ)(a) = (φ · a)(b), (1.2.11)

one sees that the cosimplicial structure on {Hom∗(A⊗k, A∨)}k is the same as that on

{Hom∗(A⊗k+1,R)} described previously, in view of the natural isomorphism

Hom∗(A⊗k, A∨) ∼= Hom∗(A⊗k ⊗ A,R) = Hom∗(A⊗k+1,R)

from Hom-⊗ adjunction. See Example 1.5.9 for further discussion.

Remark 1.2.8. We shall use the name “Connes’ version of cyclic cohomology” for “cocyclic

complex”, even if we work with chain complexes rather than cochain complexes. For

a cocyclic chain complex
(
(C(k)∗, ∂), δj, σi, τk

)
, Connes’ version of cyclic cohomology is

HCλ
∗(C) := H∗(C

cyc, b) where Ccyc
∗ := Ker(1− λ) ⊂ C∗, and HCλ

∗(C) is isomorphic to HC[[v]]
∗

of the mixed chain complex (C∗, b, B) =
(∏

k≥0C(k)∗+k, ∂ + δ,Ns(1− λ)
)
.

Lemma 1.2.9. In the situation of Example 1.2.6, the isomorphism (1.2.7) and the long exact

sequences (1.2.8) and (1.2.2b) fit into the following commutative diagram:

· · ·HC∗
λ(C) H∗(C, b) HC∗−1

λ (C) HC∗+1
λ (C) · · ·

· · ·HC∗
[[u]](C) H∗(C, b) HC∗−1

[[u]](C) HC∗+1
[[u]](C) · · ·

iλ∗

Iλ∗∼=

Bλ

id

−Sλ

Iλ∗∼= Iλ∗∼=

p0∗ B∗ i+∗ ·u
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Proof. The left square commutes since it commutes at cochain level. To verify commutativity

of the other two squares, we need explicit formulas of Bλ and Sλ. Since (1− λ)b = b′(1− λ),

there is a cochain isomorphism (C/Ccyc, b)
1−λ−−→∼= (Im(1− λ), b′). Also note that Ccyc = ImN

and N |Ccyc = ((k + 1)idKer(1−(−1)kτk))k≥0 : Ccyc → Ccyc is a linear isomorphism. By definition,

Bλ is the composition

H∗(C, b)
pλ∗−−→ H∗(C/Ccyc, b)

1−λ−−→∼= H∗(Im(1− λ), b′)
Q−1

λ∗−−→∼= HC∗−1
λ (C),

where by examining (1.2.9), Qλ∗ : HC
∗−1
λ (C)

∼=−→ H∗(Im(1− λ), b′) is given on cocycles by

Qλ : Z
∗−1(Ccyc, b)→ Z∗(Im(1− λ), b′); x 7→ (b′ ◦ (N |Ccyc)

−1)(x).

Let us calculate that on Z(C, b),

QλB = QλNs(1− λ) = b′s(1− λ) = (1− sb′)(1− λ) = 1− λ− s(1− λ)b = 1− λ. (1.2.12)

Thus (B|C→Ccyc)∗ = (Qλ∗)
−1 ◦ (1− λ) ◦ pλ∗ = Bλ, which says the middle square commutes.

Similarly, Sλ is the composition

HC∗−1
λ (C)

Qλ∗−−→∼= H∗(Im(1− λ), b′) (1−λ)−1

−−−−−→∼=
H∗(C/Ccyc, b)

Rλ∗−−→ HC∗+1
λ (C),

where Rλ∗ : H
∗(C/Ccyc, b)→ HC∗+1

λ (C) is induced by the map

Rλ : {y ∈ C∗ | b(y) ∈ Ccyc} → Z∗+1(Ccyc, b); y 7→ b(y).

(1.2.12) also holds on Z(C/Ccyc, b), and implies (1− λ)−1Qλ∗ = (B|C/Ccyc→Ccyc)
−1
∗ . Therefore

for x ∈ Z∗−1(Ccyc, b),

Sλ([x]) = [b(y)] ∈ HC∗+1
λ (C),

where y is any choice of elements in C∗ satisfying B(y) = x and (1− λ)(b(y)) = 0. For such

x and y, −b(y)− x · u = (b+ uB)(−y) is exact in C∗+1[[u]], so Iλ∗ ◦ (−Sλ) = (i+∗ · u) ◦ Iλ∗, i.e.

the right square commutes.

Example 1.2.10 (S1-equivariant homology theories [32]). Let X be a topological S1-space,

namely a topological space with a continuous S1-action FX : S1 × X → X. Let (C∗, b) =
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(S∗(X), ∂) be the singular chain complex of X, and define the rotation operator B = J :

S∗(X)→ S∗+1(X) by

J(a) := FX
∗ ([S1]× a), a ∈ S∗(X). (1.2.13)

Here [S1] ∈ S1(S1) is the fundamental cycle of S1, namely [S1] = π∆1

S1 : ∆1 = [0, 1]→ R/Z = S1,

and × is the simplicial cross product induced by standard decomposition of ∆l ×∆k into

(k + l)-simplices (see [28, page 278]). Then ∂J + J∂ = 0 since ∂([S1] × a) = ∂[S1] × a +

(−1)deg[S1][S1]×∂a = −[S1]×∂a. To see J2 = 0, let us write down the cross product with [S1]

explicitly. For k ∈ Z≥0 and j ∈ {0, . . . , k}, consider the embeddings ιk,j : ∆
k+1 → ∆1 ×∆k

defined by

ιk,j(t1, . . . , tk+1) := (tj+1, (t1, . . . , tj, tj+2, . . . , tk+1)),

then for (σ : ∆k → X) ∈ Sk(X),

[S1]× σ =
∑

0≤j≤k

(−1)j(π∆1

S1 × σ) ◦ ιk,j ∈ Sk+1(S1 ×X).

Let F S1 : S1 × S1 → S1, ([t], [t′]) 7→ [t+ t′] be the rotation S1-action on S1, then

F S1
∗ ([S1]× [S1]) = F S1 ◦ (π∆1

S1 × π∆1

S1 ) ◦ ι1,0 − F S1 ◦ (π∆1

S1 × π∆1

S1 ) ◦ ι1,1 = 0.

From the commutative diagram

S1 × S1 ×X S1 ×X

S1 ×X X

idS1×F
X

F S1×idX

FX

FX

([t], [t′], x) ([t+ t′], x)

([t], FX([t′], x)) FX([t+ t′], x)

we conclude that for any a ∈ S∗(X),

J2(a) = FX
∗ ([S1]× FX

∗ ([S1]× a)) = FX
∗ (F S1

∗ ([S1]× [S1])× a)) = 0.

For the mixed chain complex (C∗, b, B) = (S∗(X), ∂, J), there is a natural isomorphism ([32,

Lemma 5.1])

HC[v−1]
∗ (S(X)) ∼= HS1

∗ (X) := H∗(X ×S1 ES1),
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namely HC[v−1]
∗ (S(X)) is isomorphic to the S1-equivariant homology of X, i.e. homology

of the homotopy quotient (Borel construction). The other two cyclic homology groups of

(S∗(X), ∂, J) are called the negative and periodic S1-equivariant homology of X, and are

denoted by

GS1
∗ (X) := HC[[v]]

∗ (S(X)), ĤS1
∗ (X) := HC[[v,v−1]

∗ (S(X)),

respectively. The tautological exact sequence (1.2.1) translates into

· · · → GS1
∗ (X)→ ĤS1

∗ (X)→ HS1
∗−2(X)→ GS1

∗−1(X)→ · · · , (1.2.14)

and the Connes-Gysin exact sequences (1.2.2) translate into

· · · → H∗(X)→ HS1
∗ (X)→ HS1

∗−2(X)→ H∗−1(X)→ · · · (1.2.15a)

· · · → GS1
∗+2(X)→ GS1

∗ (X)→ H∗(X)→ GS1
∗+1(X)→ · · · . (1.2.15b)

We end this example by mentioning that (1.2.15a) coincides with the Gysin sequence associated

to the S1-fibration X × ES1 → X ×S1 ES1.

Remark 1.2.11. There seems to be no interpretation of GS1
∗ (X) and ĤS1

∗ (X) as homol-

ogy groups of some spaces naturally associated to X, but there are homotopy theoretic

interpretations. For example, when X is a (finite) S1-CW complex, [3, Lemma 4.4] says

GS1
∗ (X) is naturally isomorphic to the homotopy groups of the homotopy fixed point spectrum

(H ∧X+)
hS1 , where H is the Eilenberg-MacLane spectrum {K(Z, n)}.

1.3 A cocyclic complex and an ∞-quasi-isomorphism

Let X be a topological space with S1-action FX : S1 ×X → X. There is a cocyclic structure

on {X × ∆k}k∈Z≥0
, where δX×∆k

i := idX × δ∆
k

i , σX×∆k

i := idX × σ∆k

i (δ∆
k

i , σ∆k

i are as in

(1.2.5)), and τX×∆k

k : X ×∆k → X ×∆k is defined by

τX×∆k

k (x, t1, . . . , tk) := (FX([t1], x), t2 − t1, . . . , tk − t1, 1− t1).
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Taking singular chains of the cocyclic space {X ×∆k}k≥0 yields a cocyclic chain complex

{S∗(X ×∆k)}k≥0. Let us denote the associated mixed complex by

(SX∆
∗ , b, B) :=

(∏
k≥0

S∗+k(X ×∆k), ∂ + δ,Ns(1− λ)
)
.

The S1-action on X extends to X ×∆k where the S1-action on ∆k is trivial, and then the

rotation operator J : S∗(X)→ S∗+1(X) defined in Example 1.2.10 extends component-by-

component to SX∆
∗ by

J : SX∆
∗ → SX∆

∗+1, (xk)k≥0 7→ (J(xk))k≥0.

By Example 1.2.10, J2 = 0 and ∂J + J∂ = 0. Since S1 acts trivially on ∆k, J commutes with

δi, σi. It follows that δJ + Jδ = 0 and J(SX∆,nm) ⊂ SX∆,nm, so (SX∆
∗ , b, J), (SX∆,nm

∗ , b, J)

are also mixed complexes. J also commutes with τX×∆k

k because of the commutative diagram

S1 ×X ×∆k S1 ×X ×∆k

X ×∆k X ×∆k

FX×∆k

idS1×τ
X×∆k

k

FX×∆k

τX×∆k

k

(1.3.1)

([t], x, t1, . . . , tk) ([t], FX([t1], x), t2 − t1, . . . , 1− t1)

(FX([t], x), t1, . . . , tk) (FX([t+ t1], x), t2 − t1, . . . , 1− t1),

so JB +BJ = 0. We will analyze the relationship between the mixed complexes

(SX∆
∗ , b, B), (SX∆

∗ , b, J), (S∗(X), ∂, J).

If there is no risk of confusion, we shall write δX×∆k

i , σX×∆k

i , τX×∆k

k and the induced maps on

singular chain complexes as δi, σi, τk for short. Note that δi, σi do not involve S1-action, so if

we forget the S1-action, there is still a total complex (SX∆
∗ , b = ∂ + δ) from the cosimplicial

chain complex {S∗(X ×∆k)}k∈Z≥0
.

Let us state the main theorem of this section.
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Theorem 1.3.1. Let X be a topological S1-space. Then for both of the mixed complex

structures (b, B) and (b, J) on SX∆
∗ =

∏
k≥0 S∗+k(X ×∆k), there are natural isomorphisms

HC[v−1]
∗ (SX∆) ∼= HS1

∗ (X) as R[v−1]-modules,

HC[[v,v−1]
∗ (SX∆) ∼= ĤS1

∗ (X) as R[[v, v−1]-modules,

HC[[v]]
∗ (SX∆) ∼= GS1

∗ (X) as R[[v]]-modules.

Moreover, these isomorphisms throw the (tautological and Connes-Gysin) exact sequences

(1.2.1)(1.2.2) for cyclic homology theories onto the (tautological and Gysin) exact sequences

for S1-equivariant homology theories.

Proof. The statement about isomorphisms is a consequence of Lemma 1.2.3, Corollary 1.3.5

and Proposition 1.3.7 below. The statement about long exact sequences is then a consequence

of Lemma 1.2.4.

Corollary 1.3.2. For any topological S1-space X, Connes’ version of cyclic cohomology

of the cocyclic chain complex {S∗(X × ∆k)}k∈Z≥0
is naturally isomorphic to the negative

S1-equivariant homology of X.

Lemma 1.3.3. For any topological space X, the projection chain map

pr0 : (S
X∆
∗ , b)→ (S∗(X), ∂); (ck)k≥0 7→ c0

is a quasi-isomorphism.

Proof. Since pr0 is surjective, it suffices to prove Ker(pr0)∗ =
∏

k≥1 S∗+k(X ×∆k) is b-acyclic.

Let us write S̃∗ := Ker(pr0)∗ and consider the decreasing filtration Fp (p ∈ Z≥1) on S̃ defined

by FpS̃∗ :=
∏

k≥p S∗+k(X ×∆k). The E1-page of the spectral sequence of this filtration is

divided into columns indexed by q ∈ Z≥0, each of which looks like

0→ Hq(X ×∆1)
δ∗−→ Hq(X ×∆2)

δ∗−→ Hq(X ×∆3)
δ∗−→ · · · . (1.3.2)

For each k ≥ 1, the map pk := σ0σ1 · · ·σk−1 : X × ∆k → X × ∆0 = X, (x, t1, . . . , tk) 7→

(x, 0) = x is a homotopy equivalence. Since pk+1 = pkσk and σjδi = id (i = j, j + 1), we
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conclude that for any k ≥ 1 and 0 ≤ i ≤ k, H∗(X×∆k−1)
(δi)∗−−→ H∗(X×∆k) is an isomorphism

such that (δi)∗ = (σk−1)
−1
∗ .Then since δ|Sq(∆k−1×X) = (−1)q+k

∑k
i=0(−1)iδi, (1.3.2) is nothing

but

0→ Hq(X ×∆1)
(−1)q(σ1)

−1
∗−−−−−−−→∼=

Hq(X ×∆2)
0−→ Hq(X ×∆3)

(−1)q(σ3)
−1
∗−−−−−−−→∼=
· · · .

Thus all E2-terms vanish. Finally, since the filtration Fp on S̃ is complete (S̃ = lim←− S̃/FpS̃)

and bounded above (S̃∗ = F1S̃∗), standard convergence theorem [49, Theorem 5.5.10(2)] gives

H∗(S̃, b) = 0.

Remark 1.3.4. The proof of Lemma 1.3.3 implies that more generally, for a cosimplicial

complex {(C(k)∗, ∂)}k≥0, if σ0σ1 · · ·σk−1 : C(k) → C(0) is a quasi-isomorphism for each

k ≥ 1, then so is pr0 : (
∏

k≥0C(k)∗+k, ∂ + δ)→ (C(0)∗, ∂) ([29, Lemma 8.3]).

Corollary 1.3.5. For any topological S1-space X, pr0 : (SX∆
∗ , b, J) → (S∗(X), ∂, J) is a

mixed complex quasi-isomorphism.

Note that S∗(X) = SX∆
∗ (0) = SX∆,nm

∗ (0) by vacuum normalized condition. Since

(SX∆,nm
∗ , b) ↪→ (SX∆

∗ , b) is a quasi-isomorphism, Lemma 1.3.3 and Corollary 1.3.5 also hold

true if SX∆
∗ is replaced by SX∆,nm

∗ . In the following, we may use SX∆,nm
∗ to simplify calculation

involving Connes’ operator B. One could also stick with SX∆
∗ , though.

Recall the augmentation map ε : S0(X)→ R,
∑
λi · (∆0 ui−→ X) 7→

∑
λi.

Lemma 1.3.6. Consider the topological S1-space S1 with rotation action on itself.

(i) There exists a sequence of elements {ξn = (ξnk )k≥0 ∈ SS1∆,nm
2n }n∈Z≥0

such that

ε(ξ00) = 1, b(ξ0) = 0, b(ξn) = (J −B)(ξn−1) (n ≥ 1).

(ii) Suppose {ξn}n≥0, {ξ′n}n≥0 both satisfy conditions in (i). Then there exists a sequence

of elements {ηn = (ηnk )k≥0 ∈ SS1∆,nm
2n+1 }n∈Z≥0

such that

ξ0 − ξ′0 = b(η0), ξn − ξ′n = b(ηn)− (J −B)(ηn−1) (n ≥ 1).
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Proof. (i) Consider the isomorphisms (pr0)∗ : H0(S
S1∆,nm, b)

∼=−→ H0(S1) from Lemma 1.3.3

and ε∗ : H0(S1)
∼=−→ R induced by augmentation. Choose a 0-cycle ξ0 in the homology class

(ε∗ ◦ (pr0)∗)−1(1) ∈ H0(S
S1∆,nm, b), then ξ0 = (ξ0k)k≥0 is as desired. Next, since bB = −Bb

and bJ = −Jb, B(ξ0) and J(ξ0) are 1-cycles. We claim that they are homologous. Since pr0

is a quasi-isomorphism, it suffices to look at pr0(B(ξ0)) and pr0(J(ξ
0)). By definition,

pr0(B(ξ0)) = (Ns(ξ0))0 = σ0τ1(ξ
0
1), pr0(J(ξ

0)) = J(ξ00) = F S1
∗ ([S1]× ξ00).

By construction, ξ00 ∈ S0(S1) is homologous to the map ∆0 ∋ 0 7→ [0] ∈ S1, and ξ01 ∈

S1(S1×∆1) is homologous to the map ∆1 ∋ t 7→ ([0], t) ∈ S1×∆1. So pr0(B(ξ0)), pr0(J(ξ
0))

are homologous to

∆1 → S1 ×∆1 τ1−→ S1 ×∆1 σ0−→ S1; t 7→ ([0], t) 7→ ([t], 1− t) 7→ [t],

∆1 → ∆1 ×∆0 → S1 × S1 F S1

−−→ S1; t 7→ (t, 0) 7→ ([t], [0]) 7→ [t],

respectively. Namely they are both homologous to [S1]. This proves the existence of

ξ1 ∈ SS1∆,nm
2 satisfying b(ξ1) = (J − B)(ξ0). Now suppose ξ0, ξ1, . . . , ξn (n ≥ 1) have been

chosen as desired, to find ξn+1, simply notice that (J −B)(ξn) is a (2n+ 1)-cycle:

b((J −B)(ξn)) = −(J −B)(b(ξn)) = −(J −B)2(ξn−1) = 0,

where (J − B)2 = 0 since J2 = 0, B2 = 0 and JB + BJ = 0 (see (1.3.1)). Since

H2n+1(S
S1∆,nm, b) ∼= H2n+1(S1) = 0 (n ≥ 1), (J −B)(ξn) is exact, i.e. ξn+1 exists.

(ii) By construction, ξ0 is homologous to ξ′0, so η0 exists. To inductively find ηn for

n ≥ 1, simply check that ξn − ξ′n + (J − B)(ηn−1) is a 2n-cycle, which is then exact since

H2n(S1) = 0 (n ≥ 1).

Proposition 1.3.7. Let X be a topological S1-space. Denote the transposition X×S1 → S1×X

by ν.

(i) Choose ξ = {ξn}n≥0 as in Lemma 1.3.6(i). Define a sequence of linear maps f ξ = {f ξn :

S∗(X)→ SX∆,nm
∗+2n }n≥0 by

f ξn(a) :=
(
(FX×∆k ◦ (ν × id∆k))∗(a× ξnk )

)
k≥0

.
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Then f ξ is an ∞-quasi-isomorphism from (S∗(X), ∂, J) to (SX∆,nm
∗ , b, B).

(ii) For two choices ξ, ξ′, the ∞-quasi-isomorphisms f ξ, f ξ
′
are ∞-homotopic.

Proof. (i) The verification of f ξ0 ◦∂−b◦f
ξ
0 = 0 is simpler than f ξn◦∂−b◦f ξn = B◦f ξn−1−f

ξ
n−1◦J

(n ≥ 1), so we omit it. Let us write Fk := FX×∆k ◦ (ν × id∆k) : X × S1 ×∆k → X ×∆k. For

n ≥ 1,

(
(f ξn ◦ ∂ − b ◦ f ξn)(a)

)
k
= (Fk)∗(∂a× ξnk − ∂(a× ξnk )− δ(a× ξnk−1))

= (Fk)∗((−1)|a|a× (−∂ξnk − δξnk−1))

= (−1)|a|(Fk)∗(a× (B(ξn−1
k+1 )− J(ξ

n−1
k ))),

where the last equality follows from b(ξn) = (J −B)(ξn−1). Now introduce maps

Gk : X × S1 ×∆k → X ×∆k

(x, [t], t1, . . . , tk) 7→ (FX([t+ t1], x), t2 − t1, . . . , 1− t1),

Hk : X × S1 × S1 ×∆k → X ×∆k

(x, [t], [t′], t1, . . . , tk) 7→ (FX([t+ t′], x), t1, . . . , tk),

then

Gk = Fk ◦ (idX × τ S
1×∆k

k ) = τX×∆k

k ◦ Fk,

Hk = Fk ◦ (idX × F S1×∆k

) = Fk ◦ (FX × idS1×∆k) ◦ (ν × idS1×∆k).

It follows that

(−1)|a|(Fk)∗(a×B(ξn−1
k+1 )) = B((Fk)∗(a× ξn−1

k+1 )),

(−1)|a|(Fk)∗(a× J(ξn−1
k )) = (Fk)∗(J(a)× ξn−1

k ).

This implies (f ξn ◦ ∂ − b ◦ f ξn)(a) = (B ◦ f ξn−1 − f
ξ
n−1 ◦ J)(a), so f ξ is an ∞-morphism. It

remains to show f ξ0 is a quasi-isomorphism. Since ξ00 is homologous to ∆0 ∋ 0 7→ [0] ∈ S1,

pr0 ◦ f
ξ
0 is chain homotopic to idS∗(X). Since pr0 is a quasi-isomorphism, so is f ξ0 .
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(ii) Choose η as in Lemma 1.3.6(ii). Define a sequence of linear maps hη = {hηn : S∗(X)→

SX∆,nm
∗+2n+1}n≥0 by

hηn(a) := (−1)|a|
(
(FX×∆k ◦ (ν × id∆k))∗(a× ηnk )

)
k≥0

.

Then similar calculation as (i) shows hη is an ∞-homotopy between f ξ and f ξ
′
.

1.4 The story of differentiable spaces

1.4.1 Differentiable spaces and de Rham chains

Materials in this subsection are collected from Irie [29]. The notion of differentiable spaces is

a modification of that utilized by Chen [8], and the notion of de Rham chains is inspired by

an idea of Fukaya [16].

Let U :=
∐

n≥m≥0 Un,m where Un,m denotes the set of oriented m-dimensional C∞-

submanifolds of Rn. Let X be a set. A differentialble structure P(X) on X is a family of

maps {(U,φ)} called plots, such that:

• Every plot is a map φ from some U ∈ U to X;

• If φ : U → X is a plot, U ′ ∈ U and θ : U ′ → U is a submersion, then φ ◦ θ : U ′ → X

is a plot.

A differentiable space is a pair of a set and a differentiable structure on it. A map f : X → Y

between differentiable spaces is called smooth, if (U, f ◦ φ) ∈P(Y ) for any (U,φ) ∈P(X).

A subset of a differentiable space and the product of a family of differentiable spaces admit

naturally induced differentiable structures ([29, Example 4.2(iii)(iv)]).

Remark 1.4.1. Differentiable structures are defined on sets rather than topological spaces.

For later purpose, we say a differentiable structure and a topology on a set X are compatible

if every plot is continuous.

Example 1.4.2. Here are some important examples of differentiable spaces.
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(i) Let M be a C∞-manifold. Consider two differentiable structures on it:

a) Define (U,φ) ∈P(M) if φ : U →M is a C∞-map;

b) Define (U,φ) ∈P(Mreg) if φ : U →M is a (C∞-)submersion.

The set-theoretic identity map idM :Mreg →M is smooth, but its inverse is not.

(ii) Let LM := C∞(S1,M) be the smooth free loop space of M , where S1 = R/Z. There is

a differentiable structure P(LM) on LM defined by: (U,φ) ∈P(L) iff U × S1 →M ,

(u, [t]) 7→ φ(u)(t) is a C∞-map.

(iii) For each k ∈ Z≥0, the smooth free loop space of M with k inner marked points, denoted

by Lk+1M , is defined as

{(γ, t1, . . . , tk) ∈ LM ×∆k | ∂mt γ(0) = ∂mt γ(tj) = 0 (1 ≤ ∀j ≤ k, ∀m ≥ 1)}.

It has induced differentiable structure P(LMk+1) as a subspace of LM ×∆k, where ∆k

is viewed as a subspace of Rk with the differentiable structure in (i)(a).

(iv) The smooth free Moore path space of M , denoted by ΠM , is defined as

{(T, γ) | T ∈ R≥0, γ ∈ C∞([0, T ],M), ∂mt γ(0) = ∂mt γ(T ) = 0 (∀m ≥ 1)}.

Consider two differentiable structures P(ΠM),P(ΠM
reg) on ΠM :

a) Define (U,φ) ∈ P(ΠM) if φ = (φT , φγ) : U → ΠM satisfies the following

conditions: (1) φT : U → R≥0 is a C∞-map. (2) The map

Ũ := {(u, t)|u ∈ U, t ∈ [0, φT (u)]} →M ; (u, t) 7→ φγ(u)(t)

extends to a C∞-map from an open neighborhood of Ũ in U × R to M .

b) Define (U,φ) ∈P(ΠM
reg) if: (U,φ) ∈P(ΠM ) and the map U →M , u 7→ φγ(u)(t0)

is a submersion for t0 = 0, T .
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(v) For each k ∈ Z≥0, the smooth free Moore loop space of M with k inner marked points,

denoted by Lk+1M , is defined as

{((T0, γ0), . . . , (Tk, γk)) ∈ (ΠM)k+1 | γj(Tj) = γj+1(0) (0 ≤ j ≤ k − 1),

γk(Tk) = γ0(0)},

= {(T, γ, t1, . . . , tk) ∈ ΠM × Rk | 0 ≤ t1 ≤ · · · ≤ tk ≤ T, γ(0) = γ(T ),

∂mt γ(tj) = 0 (1 ≤ ∀j ≤ k, ∀m ≥ 1)}.

Apparently there are two ways to endow the set Lk+1M with differentiable structures,

namely as a subset of (ΠM)k+1 or of ΠM × Rk. It basically follows from [29, Lemma

7.2] that these two ways are equivalent. Let us denote by LM
k+1 (resp. LM

k+1,reg) the

differentiable space obtained from ΠM (resp. ΠM
reg).

Note that the inclusion of sets Lk+1M = {T = 1} ⊂ Lk+1M , induced by the inclusion

L1M ×∆k ⊂ ΠM × Rk, is also an inclusion of differentiable spaces LMk+1 ↪→ LM
k+1.

The de Rham chain complex (CdR
∗ (X), ∂) of a differentiable space X is defined as follows.

For n ∈ Z, let Cn :=
⊕

(U,φ)∈P(X) Ω
dimU−n
c (U). For any (U,φ) ∈P(X) and ω ∈ ΩdimU−n

c (U),

denote the image of ω under the natural inclusion ΩdimU−n
c (U) ↪→ Cn by (U,φ, ω). Let

Dn ⊂ Cn be the subspace spanned by all elements of the form (U,φ, π!ω
′)− (U ′, φ ◦ π, ω′),

where (U,φ) ∈P(X), U ′ ∈ U , ω′ ∈ ΩdimU ′−n
c (U ′), and π : U ′ → U is a submersion. Then

define CdR
n (X) := Cn/Dn. By abuse of notation we still denote the image of (U,φ, ω) under

the quotient map Cn → CdR
n (X) by (U,φ, ω). Then ∂ : CdR

∗ (X) → CdR
∗−1(X) is defined by

∂(U,φ, ω) := (U,φ, dω). The homology of (CdR
∗ (X), ∂) is denoted by HdR

∗ (X).

Remark 1.4.3. For any oriented C∞-manifold M , there exists n ∈ Z≥0 and an embedding

ι :M ↪→ Rn. Then (ι(M), ι−1) ∈P(Mreg) ⊂P(M), and (ι(M), ι−1, (ι−1)∗ω) ∈ CdR
∗ (Mreg) ⊂

CdR
∗ (M) for any ω ∈ Ωc(M). Such a de Rham chain is independent of choices of n and ι, and

by abuse of notation we write it as (M, idM , ω). If M is closed oriented, we call (M, idM , 1)

the fundamental de Rham cycle of M (or Mreg).
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Let X, Y be differentiable spaces. The cross product on de Rham chains is a chain map

CdR
k (X)⊗ CdR

l (Y )→ CdR
k+l(X × Y ), defined by

(U,φ, ω)× (V, η, ψ) := (−1)l·dimU(U × V, φ× ψ, ω × η). (1.4.1)

1.4.2 S1-equivariant homology of differentiable S1-spaces

Let X be a differentiable S1-space, namely X is a differentiable space with a smooth map

FX : S1 × X → X, where S1 is endowed with the differentiable structure in Example

1.4.2(i)(a). Let (S1, idS1 , 1) ∈ CdR
1 (S1) be the fundamental de Rham 1-cycle of S1. Define

J : CdR
∗ (X)→ CdR

∗+1(X); a 7→ FX
∗ ((S1, idS1 , 1)× a),

then J is clearly an anti-chain map. We claim J2 = 0. Let g : S1 × S1 → S1 be the smooth

map ([t], [t′]) 7→ [t + t′], then by the same arguments as Example 1.2.10, to see J2 = 0, it

suffices to prove g∗((S1, idS1 , 1)× (S1, idS1 , 1)) = 0 ∈ CdR
2 (S1). This is easy:

g∗((S1, idS1 , 1)× (S1, idS1 , 1))
(1.4.1)
== −g∗((S1 × S1, idS1×S1 , 1))

= −(S1 × S1, idS1 ◦ g, 1) = −(S1, idS1 , g!(1)) = 0.

The middle equality on the second line holds since g is a submersion. Thus (CdR
∗ (X), ∂, J)

is a mixed chain complex. One can then define positive (ordinary), periodic and negative

“S1-equivariant de Rham homology” of X as the HC[v−1]
∗ , HC[[v]]

∗ and HC[[v,v−1]
∗ versions of

cyclic homology of (CdR
∗ (X), ∂, J).

Consider ∆k as a differentiable subspace of Rk. Then the cocyclic maps δi, σi, τk among

{X ×∆k}k∈Z≥0
, defined by the same formulae as in Section 1.3, are smooth maps between

differentiable spaces. So {X × ∆k}k∈Z≥0
is a cocyclic differentiable space and {CdR

∗ (X ×

∆k)}k∈Z≥0
is a cocyclic chain complex, which gives rise to a mixed complex

(CdR,X∆
∗ , b, B) :=

(∏
k≥0

CdR
∗+k(X ×∆k), ∂ + δ,Ns(1− λ)

)
.

The smooth S1-action S1 ×X → X also extends trivially to S1 ×X ×∆k → X ×∆k and

gives a mixed complex (CX∆
∗ , b, J).
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There is counterpart of Theorem 1.3.1 for differentiable S1-spaces, whose proof is also

similar. We omit the details since we will not make essential use of it.

The smooth singular chain complex (Csm
∗ (X), ∂) of a differentiable space X, introduced

in [29, Section 4.7], is defined in a similar way as the singular chain complex of topological

spaces, except that only “strongly smooth” maps ∆k → X are considered. The homology of

(Csm
∗ (X), ∂) is denoted by Hsm

∗ (X).

Smooth singular homology is related to singular homology and de Rham homology in the

following way.

• Let X be a differentiable space with a fixed compatible topology (Remark 1.4.1). Then

every strongly smooth map ∆k → X is continuous, hence there is a natural inclusion

(Csm
∗ (X), ∂) ↪→ (S∗(X), ∂).

• Csm
∗ , CdR

∗ are functors from the category of differentiable spaces to the category of

chain complexes. Given a cocycle u = (uk)k≥0 ∈ CdR,pt∆
0 =

∏
k≥0C

dR
k (∆k) in the class

1 ∈ R ∼= HdR
0 (pt) ∼= HdR,pt

0 , there is a natural transformation ιu : Csm
∗ → CdR

∗ defined

by ιu(X)k : C
sm
k (X) → CdR

k (X), σ 7→ σ∗(uk). The homotopy class of ιu(X) does not

depend on u (since HdR,pt
n = 0 when n > 0).

Assumption 1.4.4. X is a differentiable space with a fixed compatible topology, such that

the chain maps discussed above induce isomorphisms H∗(X)
∼=←− Hsm

∗ (X)
∼=−→ HdR

∗ (X).

Proposition 1.4.5. Let X be a set which satisfies Assumption 1.4.4 and admits an S1-action

that is both smooth (w.r.t. differentiable structure) and continuous (w.r.t. topology). Then

there are natural isomorphisms HC[v−1]
∗ (CdR,X∆) ∼= HS1

∗ (X), HC[[v,v−1]
∗ (CdR,X∆) ∼= ĤS1

∗ (X),

and HCλ
∗(C

dR,X∆) ∼= HC[[v]]
∗ (CdR,X∆) ∼= GS1

∗ (X), which are compatible with tautological and

Connes-Gysin long exact sequences.

Proof. Consider the mixed complex (Csm,X∆
∗ , b, B) associated to the cocyclic complex {Csm

∗+k(X×

∆k}k. For any k ≥ 0, X×∆k is a differentiable and topological S1-space satisfying Assumption
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1.4.4. By construction, the inclusions (Csm
∗ (X ×∆k), ∂) ↪→ (S∗(X ×∆k), ∂) commute with

the cocyclic maps δi, σi, τk, so there is an inclusion (Csm,X∆
∗ , b, B) ↪→ (SX∆

∗ , b, B). On the

other hand, given a choice of u, the chain maps ιu(X ×∆k)∗ : C
sm
∗ (X ×∆k)→ CdR

∗ (X ×∆k)

commute with cocyclic maps since ιu is a natural transformation, so we obtain a morphism

(Csm,X∆
∗ , b, B)→ (CdR,X∆

∗ , b, B), whose homotopy class does not depend on u. Now consider

the following commutative diagram of chain maps

(SX∆
∗ , b) (Csm,X∆

∗ , b) (CdR,X∆
∗ , b)

(S∗(X), ∂) (Csm
∗ (X), ∂) (CdR

∗ (X), ∂).

pr0 pr0 pr0

By Lemma 1.3.3 and Remark 1.3.4, all vertical arrows are quasi-isomorphisms, and by

assumption, arrows in the second row are quasi-isomorphisms. Thus arrows in the first

row are quasi-isomorphisms. In this way we obtain quasi-isomorphisms of mixed complexes

(SX∆
∗ , b, B)← (Csm,X∆

∗ , b, B)→ (CdR,X∆
∗ , b, B), and get the desired isomorphisms by Lemma

1.2.3, Theorem 1.3.1 and Corollary 1.3.2. Compatibility with long exact sequences is a

consequence of Lemma 1.2.4 and Lemma 1.2.9.

Example 1.4.6. Let M be a closed oriented C∞-manifold. It is proved in [29, Section 5,

Section 6] that Assumption 1.4.4 is satisfied for M,Mreg (with manifold topology) and LM

(with Frechét topology) in Example 1.4.2. Moreover, LM is an S1-space that Propositon 1.4.5

applies to.

1.4.3 Application to marked Moore loop spaces

Consider the various versions of smooth loop spaces in Example 1.4.2. The following lemma

is proved in [29, Section 7].

Lemma 1.4.7. For any closed oriented C∞-manifold M and k ∈ Z≥0, the zig-zag of smooth

maps between differentiable spaces

LM
k+1,reg

idLk+1M−−−−−→ LM
k+1

T=1←−−↩ LMk+1 ↪→ LM ×∆k
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induces a zig-zag of isomorphisms between de Rham homology groups:

HdR
∗ (LM

k+1,reg)
∼=−→ HdR

∗ (LM
k+1)

∼=←− HdR
∗ (LMk+1)

∼=−→ HdR
∗ (LM ×∆k).

The cocyclic structure on {LM×∆k}k restricts to {LMk+1}k. There is also a similar structure

of cocyclic set on {Lk+1M}k as follows. Regarding Lk+1M ⊂ (ΠM)k+1, δi : LkM → Lk+1M ,

σi : Lk+2M → Lk+1M , τk : Lk+1M → Lk+1M are

δi(T, γ, t1, . . . , tk−1) :=


(T, γ, 0, t1, . . . , tk−1) (i = 0)

(T, γ, t1, . . . , ti, ti, . . . , tk−1) (1 ≤ i ≤ k − 1)

(T, γ, t1, . . . , tk−1, T ) (i = k),

(1.4.2a)

σi(T, γ, t1, . . . , tk+1) := (T, γ, t1, . . . , t̂i+1, . . . , tk+1) (0 ≤ i ≤ k), (1.4.2b)

τk(T, γ, t1, . . . , tk) := (T, γt1 , t2 − t1, . . . , tk − t1, T − t1), (1.4.2c)

where γt1(t) := γ(t+ t1). These cocyclic maps are smooth for both {LM
k+1}k and {LM

k+1,reg}k.

Note that if we view Lk+1M ⊂ (ΠM)k+1, then (1.4.2c) can be written as τk((T0, γ0), . . . , (Tk, γk)) =

((T1, γ1), . . . , (Tk, γk), (T0, γ0)).

Let us write (CL
∗ , b, B) :=

(∏
k≥0C

dR
∗+k(L

M
k+1,reg), ∂ + δ,Ns(1 − λ)

)
for the mixed total

complex of the cocyclic chain complex {CdR
∗ (LM

k+1,reg)}k.

Proposition 1.4.8. For any closed oriented C∞-manifold M , there are natural isomorphisms

HC[v−1]
∗ (CL ) ∼= HS1

∗ (LM), HC[[v,v−1]
∗ (CL ) ∼= ĤS1

∗ (LM), and HCλ
∗(C

L ) ∼= HC[[v]]
∗ (CL ) ∼=

GS1
∗ (LM), which are compatible with long exact sequences.

Proof. The smooth maps LM
k+1,reg

id−→ LM
k+1

T=1←−−↩ LMk+1 ↪→ LM ×∆k commute with cocyclic

maps, inducing a zig-zag of mixed complex morphisms between the mixed total complexes

associated to the cocyclic de Rham chain complexes of these cocyclic differentiable spaces.

By Lemma 1.4.7, this is a zig-zag of mixed complex quasi-isomorphisms. The rest is obvious

in view of Lemma 1.2.3, Proposition 1.4.5 and Example 1.4.6.
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1.5 Preliminaries on operads and algebraic structures

Let V = {Vi}i∈Z be a (homologically) graded vector space.

A Lie bracket of degree n ∈ Z is a Lie bracket on V [−n], namely a bilinear map

[, ] : V ⊗ V → V of degree n satisfying shifted skew-symmetry and Jacobi identity:

[a, b] = −(−1)(|a|−n)(|b|−n)[b, a], [a, [b, c]] = [[a, b], c] + (−1)(|a|−n)(|b|−n)[b, [a, c]].

Note that in this definition, there is no need to apply sign change (1.8.1).

A structure of Gerstenhaber algebra is a Lie bracket of degree 1 and a graded commutative

(and associative, by default) product · satisfying the Poisson relation:

[a, b · c] = [a, b] · c+ (−1)(|a|+1)|b|b · [a, c].

A structure of Batalin-Vilkovisky (BV) algebra is a graded commutative product · and a

linear map ∆ : V∗ → V∗+1 (called the BV operator) such that ∆2 = 0, and

∆(a · b · c) = ∆(a · b) · c+ (−1)|a|a ·∆(b · c) + (−1)(|a|+1)|b|b ·∆(a · c) (1.5.1)

−∆a · b · c− (−1)|a|a ·∆b · c− (−1)|a|+|b|a · b ·∆c.

By induction, the defining relation (1.5.1) implies that for any k ≥ 2,

∆(a1 · a2 · · · · · ak) =
∑

1≤i<j≤k

(−1)ε(i,j)∆(ai · aj) · a1 · · · · âi · · · âj · · · · ak (1.5.2)

−(k − 2)
∑
1≤i≤k

(−1)|a1|+···+|ak|a1 · · · · ·∆ai · · · · · ak,

where ε(i, j) is from Koszul sign rule. By [24, Proposition 1.2], a BV algebra is equivalently

a Gerstenhaber algebra with a linear map ∆ : V∗ → V∗+1 such that ∆2 = 0 and

[a, b] = (−1)|a|∆(a · b)− (−1)|a|∆a · b− a ·∆b. (1.5.3)

Following Getzler [25], a structure of gravity algebra is a sequence of graded symmetric

linear maps V ⊗k → V (k ≥ 2) of degree 1, a1 ⊗ · · · ⊗ ak 7→ {a1, . . . , ak} (which we call k-th
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bracket), satisfying the following generalized Jacobi relations:

∑
1≤i<j≤k

(−1)ε(i,j){{ai, aj}, a1, . . . , âi, . . . , âj, . . . , ak, b1, . . . , bl}

=


{{a1, . . . , ak}, b1, . . . , bl} (l > 0)

0 (l = 0).

Note that the relation for (k, l) = (3, 0) implies that, with sign change (1.8.1), the second

bracket becomes an honest Lie bracket on V [−1].

The following lemma, which goes back to [5, Theorem 6.1], is well-known to experts.

Lemma 1.5.1. Let (V∗, ·,∆) be a BV algebra, W∗ be a graded vector space, with linear maps

α : W∗ → V∗, β : V∗ → W∗+1 such that ∆ = α ◦ β and β ◦ α = 0. Then:

(i) W∗ is a gravity algebra where the brackets W⊗k → W are

x1 ⊗ · · · ⊗ xk 7→ {x1, . . . , xk} := β(α(x1) · · · · · α(xk)) (k ≥ 2). (1.5.4)

(ii) Let [, ] be the Gerstenhaber bracket (1.5.3) on V∗. Then for any x1, x2 ∈ W ,

α({x1, x2}) = (−1)|x1|[α(x1), α(x2)].

Proof. To prove (i), first note that since · is graded commutative, {x1, . . . , xk} is graded

symmetric in its variables. Next, the generalized Jacobi relations follow from a straightforward

calculation based on (1.5.2) (see the proof of [9, Theorem 8.5]), and is omitted. The proof of

(ii) is trivial.

A BV algebra homomorphism between two BV algebras is an algebra homomorphism that

commutes with their BV operators. The case of gravity algebras is similar. The following

lemma is obvious.

Lemma 1.5.2. Suppose there is a commutative diagram of linear maps
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W∗ V∗ W∗+1

W ′
∗ V ′

∗ W ′
∗+1

α

f

β

g f

α′ β′

such that (V∗,W∗, α, β) and (V ′
∗ ,W

′
∗, α

′, β′) satisfy the assumptions in Lemma 1.5.1, and g is

a BV algebra homomorphism. Then f is a gravity algebra homomorphism (for the induced

structures on W ,W ′).

Next we need to work in the language of operads. We collect some basics below, and refer

the reader to [29, Section 2] or standard references [39][40] for more details.

Let (C ,⊗, 1C ) be a symmetric monoidal category. A nonsymmetric operad (ns operad for

short) O in C consists of the following data:

• An object O(k) in C for each k ∈ Z≥0.

• Morphisms ◦i : O(k)⊗O(l)→ O(k + l− 1) for each 1 ≤ i ≤ k and l ≥ 0, called partial

compositions, that are associative: for x ∈ O(k), y ∈ O(l), z ∈ O(m),

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z) (1 ≤ i ≤ k, 1 ≤ j ≤ l, m ≥ 0), (1.5.5a)

(x ◦i y) ◦l+j−1 z = (x ◦j z) ◦i y (1 ≤ i < j ≤ k, l ≥ 0, m ≥ 0). (1.5.5b)

• A morphism 1O : 1C → O(1), which a two-sided unit for ◦i.

An operad is a ns operad such that each O(k) admits a right action of the symmetric group

Sk (S0 is the trivial group), in a way compatible with partial compositions.

A (ns) operad in the symmetric monoidal category of dg (resp. graded) vector spaces is

called a (ns) dg (resp. graded) operad. A Koszul sign (−1)|y||z| should appear in (1.5.5b) in

graded and dg cases. Taking homology yields a functor from the category of (ns) dg operads

to the category of (ns) graded operads.

Example 1.5.3. Here are some examples of dg operads and graded operads.
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(i) (Endomorphism operad EndV .) For any dg (resp. graded) vector space V∗, there is

a dg (resp. graded) operad EndV defined as follows. For each k ≥ 0, EndV (k)∗ :=

Hom∗(V
⊗k, V ), where Hom∗(V

⊗0, V ) = Hom∗(R, V ) = V∗. For 1 ≤ i ≤ k, l ≥ 0,

f ∈ Hom∗(V
⊗k, V ), g ∈ Hom∗(V

⊗l, V ), and σ ∈ Sk,

(f ◦i g)(v1 ⊗ · · · ⊗ vk+l−1) := (−1)εf(v1 ⊗ · · · ⊗ g(vi ⊗ · · · )⊗ · · · ),

(f · σ)(v1 ⊗ · · · ⊗ vk) := (−1)εf(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)),

1EndV := idV ∈ Hom0(V, V ).

Let O be a (ns) graded operad or dg operad. A structure of algebra over O on V , or

say an action of O on V , means a morphism O → EndV as (ns) operads.

(ii) (Gerstenhaber operad Ger, BV operad BV , and gravity operad Grav.) These are graded

operads that can be defined in terms of generators subject to the relations defining

Gerstenhaber/ BV/ gravity algebras. A Gerstenhaber/ BV/ gravity algebra is exactly

an algebra over Ger/ BV/ Grav.

(iii) (Ward’s construction [48].) There is a dg operad M⟲ constructed from certain “labeled

A∞ trees”, such that H∗(M⟲) ∼= Grav as graded operads, and there are explicit

homotopies measuring the failure of gravity relations on M⟲ (while Jacobi relation for

the second bracket strictly holds). For this reason an algebra over M⟲ can be viewed as

a gravity algebra up to homotopy. M⟲ is closely related to the operad of “cyclic brace

operations” (Section 1.6). There are other important properties of M⟲ that we will use

later (Proposition 1.5.6(v)). Indeed the notation of Ward [48] is M⟳, but we use M⟲ for

the reason of Remark 1.5.5.

Definition 1.5.4. ([29, Definition 2.6, 2.9].) Let O be a ns dg operad.

(i) A cyclic structure (τk)k≥0 on O is a sequence of morphisms τk : O(k)→ O(k) (k ≥ 0)

such that τ k+1
k = idO(k), τ1(1O) = 1O, and that for any 1 ≤ i ≤ k, l ≥ 0, x ∈ O(k),

33



y ∈ O(l),

τk+l−1(x ◦i y) =


τkx ◦i−1 y (i ≥ 2)

(−1)|x||y|τly ◦l τkx (i = 1, l ≥ 1)

τ 2kx ◦k y (i = 1, l = 0).

(ii) A multiplication µ and a unit ε in O are elements µ ∈ O(2)0, ε ∈ O(0)0 satisfying

∂µ = 0, µ ◦1 µ = µ ◦2 µ, ∂ε = 0 and µ ◦1 ε = µ ◦2 ε = 1O.

Remark 1.5.5. An operad with a cyclic structure is called a cyclic operad. The cyclic relation

in Definition 1.5.4 differs from some authors (in particular, Ward [48]) in the orientation of

performing cyclic permutation, but they are equivalent. See e.g. [42, Section 3].

Let O = (O(k))k≥0 be a ns dg operad endowed with a multiplication µ and a unit

ε. Then {(O(k)∗, ∂)}k≥0 is a cosimplicial chain complex where δi : O(k − 1)∗ → O(k)∗,

σi : O(k + 1)∗ → O(k)∗ (0 ≤ i ≤ k) are

δi(x) :=


µ ◦2 x (i = 0)

x ◦i µ (1 ≤ i ≤ k − 1)

µ ◦1 x (i = k),

σi(x) := x ◦i+1 ε. (1.5.6)

Denote the associated total complex by (Õ∗, b). If there is also a cyclic structure (τk)k≥0

on O such that µ is cyclically invariant, i.e. τ2(µ) = µ, then {(O(k)∗, ∂), δi, σi, τk}k≥0 is a

cocyclic chain complex. Denote the associated mixed complex by (Õ∗, b, B).

Proposition 1.5.6. Let O = (O(k)∗, ∂)k≥0 be a ns dg operad. Define binary operations ◦

and [, ] on Õ∗ :=
∏

k≥0O(k)∗+k by: for x = (xk)k≥0, y = (yk)k≥0,

(x ◦ y)k :=
∑

l+m=k+1
1≤i≤l

(−1)(i−1)(m−1)+(l−1)(|y|+m)xl ◦i ym, (1.5.7a)

[x, y] := x ◦ y − (−1)(|x|−1)(|y|−1)y ◦ x. (1.5.7b)

Then for (Õ∗, ∂), statement (i)(a) below hold true.
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If there is a multiplication µ and a unit ε on O, define a binary operation · on Õ∗ by

(x · y)k :=
∑
l+m=k

(−1)l|y|(µ ◦1 xl) ◦l+1 ym. (1.5.8)

Then for (Õ∗, b), statements (i)(b) and (ii)(a) below hold true.

If there is a cyclic structure (τk)k≥0 on O, then for Õcyc
∗ = Ker(1− λ) ⊂ Õ∗, statement

(iii) below holds true.

If there is a multiplication µ, a unit ε and a cyclic structure (τk)k≥0 on O such that

τ2(µ) = µ, then for (Õ∗, b, B) and Õcyc
∗ , the other statements below hold true.

(i) a) (Õ∗, ∂, ◦) is a dg pre-Lie algebra (with shifted grading) such that [, ] is a Lie bracket

of degree 1.

b) (Õ∗, b, ◦) is a dg pre-Lie algebra (with shifted grading) such that [, ] is a Lie bracket

of degree 1, and (Õ∗, b, ·) is a dg algebra.

(ii) a) · and [, ] induce a Gerstenhaber algebra structure on H∗(Õ, b).

b) · and Connes’ operator B induce a BV algebra structure on H∗(Õ, b) where the

BV operator is ∆ = B∗.

c) The above two structures on H∗(Õ, b) are related by (1.5.3).

(iii) Õcyc
∗ is closed under the operation [, ]. The restriction of [, ] to Õcyc

∗ is called the cyclic

bracket.

(iv) a) The BV algebra structure on H∗(Õ, b) obtained in (ii)(b) naturally induces gravity

algebra structures on HCλ
∗(Õ), HC[[v]]

∗ (Õ) and HC[v−1]
∗ (Õ)[−1].

b) The map B0∗ : HC
[v−1]
∗ (Õ)[−1]→ HC[[v]]

∗ (Õ) in (1.2.1) is a gravity algebra homo-

morphism. The map Iλ∗ : HCλ
∗(Õ) ∼= HC[[v]]

∗ (Õ) in (1.2.7) is a gravity algebra

isomorphism.

c) The Lie bracket on HCλ
∗(Õ)[−1] induced from (iii) coincides with the second bracket

of its gravity algebra structure, up to sign change (1.8.1).
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(v) Õcyc
∗ admits an action of the operad M⟲ (see Example 1.5.3) which covers the cyclic

bracket in (iii). Via the isomorphism H∗(M⟲) ∼= Grav, this induces a gravity algebra

structure on HCλ
∗(Õ) which is the same as that in (iv)(a).

Proof. Statements (i) and (ii)(a) are exactly [29, Theorem 2.8 (i)-(iii)], which in turn follows

from [48, Lemma 2.32]. Statements (ii)(b) and (ii)(c) follow from [29, Theorem 2.10], which

in turn is a consequence of [48, Theorem B]. Note that [29, Theorem 2.10] uses the normalized

subcomplex Õnm
∗ , but there is no difference on homology: as explained in [29, Section 2.5.4],

the BV operator is just induced by Connes’ operator B = Ns on Õnm.

Statement (iii) is a straightforward consequence of [48, Corollary 3.3]. Alternatively, it is

quite handy to use definition of cyclic structures to verify that if τkixi = (−1)kixi (xi ∈ O(ki),

i = 1, 2), then τk1+k2−1[x1, x2] = (−1)k1+k2−1[x1, x2].

Statement (iv)(a) is an application of Lemma 1.5.1(i) to part of the exact sequences

(1.2.2)(1.2.8). Note that there is a transition between (co)homological gradings.

• For HC[[v]]
∗ , take V∗ = H∗(Õ, b), W∗ = HC[[v]]

∗ (Õ), α = p0∗, and β = B∗.

• For HC
[v−1]
∗−1 , take V∗ = H∗(Õ, b), W∗ = HC[v−1]

∗ (Õ)[−1] = HC
[v−1]
∗−1 (Õ), α = B0∗, and

β = i∗.

• For HCλ
∗ , take V∗ = H∗(Õ, b), W∗ = HCλ

∗(Õ), α = iλ∗, and β = Bλ. Here the condition

α ◦ β = ∆ is satisfied because of Lemma 1.2.9.

Statement (iv)(b) follows from Lemma 1.5.2, Lemma 1.2.1 and Lemma 1.2.9. Statement

(iv)(c) follows from Lemma 1.5.1(ii) and statement (ii)(c).

Statement (v) is a consequence of [48, Theorem C], where the Maurer-Cartan element

ζ = (ζk)k≥2 is taken as ζ2 = −µ and ζk = 0 (k ̸= 2).

To see Statement (v) covers Statement (iii), we need concrete description of the action of

M⟲ on Õcyc
∗ . For arity 2 it is the same as cyclic brace operations (see Example 1.6.3).
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Remark 1.5.7. The sign in (1.5.7a) comes from operadic suspension (see Appendix 1.8.3).

Indeed, Õ = (
∏

n≥0 sO(n))[−1].

Remark 1.5.8. [29, Theorem 2.8 & 2.10] and [48, Theorem A & B] contain much stronger

statements than Proposition 1.5.6(i)(ii) which we do not need (e.g. existence of an action of

a chain model of the (framed) little 2-disks operad on Õ or Õnm). Proposition 1.5.6(i)(ii)

themselves were known much earlier, e.g. see [42, 1.2 & Theorem 1.3].

Example 1.5.9. Let (A∗, d, ·) be a dg algebra with unit 1A. Then EndA admits a multiplica-

tion and a unit given by µ(a1 ⊗ a2) := a1 · a2, ε := 1A. Viewing A as a dg A-bimodule, the

cosimplicial maps δi, σi in Example 1.2.7 are the same as (1.5.6) for (EndA, µ, ε) in (i). To

discuss cyclic structures, suppose there is a graded symmetric bilinear form ⟨, ⟩ : A× A→ R

of degree m ∈ Z, such that

d⟨a, b⟩ = ⟨da, b⟩+ (−1)|a|⟨a, db⟩, ⟨ab, c⟩ = ⟨a, bc⟩ (∀a, b, c ∈ A). (1.5.9)

Namely A is a dg version of Frobenius algebra, but we do not require dimRA to be finite

or ⟨, ⟩ to be nondegenerate. Note that since ⟨, ⟩ is symmetric, the relation ⟨ab, c⟩ = ⟨a, bc⟩ is

equivalent to ⟨, ⟩ being cyclic, i.e.

⟨ab, c⟩ = (−1)|a|(|b|+|c|)⟨bc, a⟩. (1.5.10)

Now consider A∨[m] where with a dg A-bimodule structure characterized by (1.2.11) (the

degree of φ ∈ A∨[m] is now shifted). The degree 0 map

θ : A→ A∨[m]; θ(a)(b) := ⟨a, b⟩ (∀a, b ∈ A) (1.5.11)

is a dg A-bimodule map, and Hom(−, θ) : Hom∗(A⊗k, A)→ Hom∗(A⊗k, A∨[m]) is a morphism

of cosimplicial complexes. {Hom∗(A⊗k, A∨[m]) = Hom∗+m(A⊗k+1,R)}k≥0 is moreover cocyclic

with cyclic permutations (τk)k≥0 given in Example 1.2.7.

If θ happens to be an isomorphism, then {Hom(−, θ)−1 ◦ τk ◦ Hom(−, θ)}k≥0 endows

(EndA, µ, ε) with a cyclic structure. All statements of Proposition 1.5.6 hold for O = EndA.
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If θ is a quasi-isomorphism, then ẼndA = CH∗(A,A) and CH∗(A,A∨[m]) are quasi-

isomorphic through a natural map induced by θ. In this case, let us examine the statements

(i)-(v) in Proposition 1.5.6 for O = EndA.

(A) Statements (i) and (ii)(a) still hold honestly (they are irrelevant to θ).

(B) Statements (ii)(b), (ii)(c) “hold weakly” in the following sense: Connes’ operator B

on CH∗(A,A∨[m]) induces a BV operator on HH∗(A,A) ∼= HH∗(A,A∨[m]), making

HH∗(A,A) into a BV algebra, which is compatible with its Gerstenhaber algebra

structure. This is proved by Menichi [43, Theorem 18].

(C) Statement (iii) “holds weakly” in the sense that the subspace of weakly cyclic invariants

in CH∗(A,A), Θ−1(CH∗
cyc(A,A

∨[m])), is closed under the bracket (1.5.7b), and hence is

a dg Lie subalgebra. Here Θ : CH∗(A,A)→ CH∗(A,A∨[m]) is the cochain map induced

by (1.5.11), and CH∗
cyc(A,A

∨[m]) := Ker(1− λ) is the subcomplex of cyclic invariants

in CH∗(A,A∨[m]), with respect to the cocyclic structure on {Hom∗+m(A⊗k+1,R)}k≥0.

This result is rather simple and should be well-known, e.g. it is stated without proof in

[44, Lemma 4].

(D) Statement (iv) “holds weakly” in the following sense: there are gravity algebra struc-

tures on HC∗
λ(A,A

∨[m]) ∼= HC∗
[[u]](A,A

∨[m]) ∼= HC∗
[[u]](A,A) and HC∗

[u−1](A,A
∨[m]) ∼=

HC∗
[u−1](A,A), induced by the BV algebra structure on HH∗(A,A) ∼= HH∗(A,A∨[m])

described in (C).

(E) Statement (v) “holds weakly” by Corollary 1.6.8, which largely generalizes (C).

Remark 1.5.10. Statements (C)(E) above hold true even if θ : A→ A∨[m] is not a quasi-

isomorphism. If θ is a quasi-isomorphism, then so is Θ : CH(A,A) → CH(A,A∨[m]). If Θ

also restricts to a quasi-isomorphism Θ−1(CHcyc(A,A
∨[m])) → CHcyc(A,A

∨[m]), then the

structures in (C)(E) are compatible with those in (B)(D).
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Remark 1.5.11. Statement (C) in Example 1.5.9 is irrelevant to the algebra structure on A.

It holds true when A is just a graded vector space endowed with a symmetric bilinear form

⟨, ⟩ : A × A → R of degree m. In this case, we shall write Θ−1(
∏

k≥0Hom
∗+m
cyc (Ak+1,R)) in

place of Θ−1(CH∗
cyc(A,A

∨[m])).

1.6 Cyclic brace operations

This section is devoted to the proof of Theorem 1.1.3. Recall Õ :=
∏

k≥0O(k) if O is dg

operad, and Õcyc := Ker(1− λ) ⊂ Õ if O is a dg cyclic operad .

Definition 1.6.1 (Brace operations via concrete formulae). Let O be a dg operad. For each

n ∈ Z≥0, define an (n + 1)-ary operation on Õ as follows. When n = 0, for a ∈ O(r), let

a{} := a. When n > 0, for a ∈ O(r) and bj ∈ O(tj) (1 ≤ j ≤ n), let

a{b1, . . . , bn} :=
∑
i1,...,in

±(· · · ((a ◦i1 b1) ◦i2 b2) · · · ◦in bn), (1.6.1)

where the summation is taken over tuples (i1, . . . , in) ∈ Zn≥1 satisfying ij+1 ≥ ij + tj and

in ≤ r − n+ 1 +
∑n−1

l=1 tl. The sign ± is from iteration of (1.8.2).

Brace operations were first described by Getzler [23] in Hochschild context (generalizing

the Gerstenhaber bracket [21] which corresponds to n = 2) and later by Gerstenhaber-Voronov

[22] in operadic context. There is also an interpretation of brace operations via planar rooted

trees, going back to the “minimal operad” of Kontsevich-Soibelman [37] (see also [12, Section

7-9]), which allows for a variation in the cyclic invariant setting ([48]).

Let us fix terminologies about trees before moving to more details.

• A tree without tails is a contractible 1-dimensional finite CW complex. A 0-cell is called

a vertex ; the closure of a 1-cell is called an edge (identified with [0, 1]).

• A tree with tails is a tree without tails attached with copies of [0, 1) called tails by

gluing each 0 ∈ [0, 1) to some vertex.
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The set of vertices, edges and tails in a tree T is denoted by VT , ET and LT , respectively.

The set of edges and tails at v ∈ VT is denoted by Ev and Lv, respectively. The valence of a

vertex v is the number |Ev ∪ Lv|. The arity of a vertex is its valence −1.

• An oriented tree is a tree with a choice of direction for each edge, from one vertex to

the other. Such a choice of directions is called an orientation of the tree.

• A rooted tree is a tree with a choice of a distinguished tail called the root.

Every rooted tree is naturally oriented by directions towards the root.

• A planar tree is a tree with a cyclic order on Ev ∪ Lv for each vertex v.

Every planar tree can be embedded into the plane in a way unique up to isotopy, so that

at each vertex v, the cyclic order on Ev ∪ Lv is counterclockwise.

Every planar rooted tree T carries a natural total order on ET ∪LT , which can be obtained

by moving counterclockwise along the boundary of a small tubular neighborhood of T in the

plane. It starts from the root and is compatible with the cyclic order on Ev ∪ Lv for each

v ∈ VT , and also restricts to total orders on ET , LT and Ev, Lv for each v ∈ VT .

• An n-labeled tree is a tree T with a bijection between {1, 2, . . . , n} and VT . If the

number of vertices is not specified, it is just called a labeled tree.

The vertex with label i in an n-labeled tree T is denoted by vi(T ), with arity ai(T ).

The notion of isomorphisms of trees (with various structures) is obvious. We shall view

isomorphic trees as the same.

For n ∈ Z≥1, let B
s(n) be the set of n-labeled planar rooted trees without non-root tails,

and let B(n) be the vector space spanned by Bs(n). Let B̄s(n) be the set of n-labeled planar

rooted trees with tails, and let B̄(n) be the vector space spanned by B̄s(n).
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Given T ′ ∈ B̄(n) and k = (k1, . . . , kn) ∈ Zn≥0, define a set

T (T ′, k) := { T ′′ ∈ B̄s(n)
∣∣ T ′′ can be obtained by attaching tails to T ′

so that ai(T
′′) = ki (1 ≤ ∀i ≤ n) }. (1.6.2)

Definition 1.6.2 (Brace operations via trees). Let O be a dg operad. Define linear maps

κn : B(n)→ Hom(Õ⊗n, Õ), κ̄n : B̄(n)→ Hom(Õ⊗n, Õ)

as follows. κn is the restriction of κ̄n. For T
′ ∈ B̄s(n) and fi ∈ O(ki) (1 ≤ i ≤ n),

κ̄n(T
′)(f1, f2, . . . , fn) :=

∑
T ′′∈T (T ′,k)

±κ̄n(T ′′)(f1, f2, . . . , fn),

where by convention summation over the empty set is zero. If ai(T
′) = ki (1 ≤ i ≤ n), then

κ̄n(T
′)(f1, . . . , fn) is the operadic composition of f1, . . . , fn in the obvious way described by

T ′, where fi is assigned to vi(T
′). The sign ± is from iteration of (1.8.2).

Definition 1.6.1 and Definition 1.6.2 describe the same operations on Õ, as explained

below. Consider βn ∈ Bs(n+ 1) characterized by: Eβn = {e1, . . . , en}, Vβn = {v1, . . . , vn+1}

where vi is labeled by i, Lβn = {l1}, v1 = l1 ∩ e1 ∩ · · · ∩ en, vi+1 ∈ ei (1 ≤ ∀i ≤ n), and the

cyclic order on Ev1 ∪Lv1 is (l1, e1, . . . , en). Then κn+1(βn) ∈ Hom(Õ⊗n+1, Õ) is exactly given

by (1.6.1). Moreover, putting B(n) in degree n− 1, B = {B(n)} carries a reduced (meaning

B(0) = 0 and B(1) = R) graded operad structure (see [48, Definition 2.11 & 2.13]) so that

{βn}n≥0 generates B under operadic compositions and symmetric permutations, and

κ = {κn} : B→ EndÕ (1.6.3)

is a morphism of operads. B is called the brace operad, which tautologically controls brace

operations on brace algebras, i.e. algebras over B. We have just seen that Õ is naturally a

brace algebra. For the purpose of this paper we omitted details of operadic compositions on

B but explained how κ is defined.

In [48, Section 3.2], Ward introduced an operad B⟲ which he called cyclic brace operad.

Let Bs⟲(n) be the set of oriented n-labeled planar trees without tails. Then B⟲(n) is the
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graded vector space spanned by Bs⟲(n) modulo the relation that reversing direction on an

edge produces a negative sign. If there is no risk of confusion, we will by abuse of notation not

distinguish T⟲ ∈ Bs⟲(n) from its image in B⟲(n). There is a morphism of operads ρ : B⟲ → B,

which is induced by maps

ρsn : Bs⟲(n)→ B(n), T⟲ 7→
∑

T∈R1(T⟲)

(−1)ε(T⟲,T )T, (1.6.4)

where R1(T⟲) is the set of labeled planar rooted trees that can be obtained by adding a root

to the (nonrooted) tree underlying T⟲, and ε(T⟲, T ) is the number of edges in ET⟲ = ET

whose direction from T⟲ does not agree with the direction from the rooted structure of T .

Here and hereafter, in appropriate contexts we use f s to denote a set-theoretic map which

induces a linear map f .

A natural example of cyclic brace algebras, i.e. algebras over B⟲, is as follows.

Example 1.6.3 ([48, Corollary 3.11]). Let Õ be a dg cyclic operad. Consider Õcyc ⊂ Õ

and κ : B → EndÕ in (1.6.3). For T ∈ Bs⟲(n), ρ(T ) ∈ B(n) and (κ ◦ ρ)(T ) ∈ Hom(Õ⊗n, Õ).

Restricting (κ ◦ ρ)(T ) to Õcyc gives an element in Hom((Õcyc)⊗n, Õ). Moreover, if fi ∈ O(ki)

(1 ≤ i ≤ n) are cyclic invariant, then so is (κ ◦ ρ)(T )(f1, . . . , fn). (Such a claim appears in

[48, Theorem 5.5] where it is referred to [48, Proposition 3.10], but there is no direct proof

given in [48]. We will give a direct proof in a slightly different situation.) Hence κ ◦ ρ gives a

morphism B⟲ → EndÕcyc .

Definition 1.6.4 (Cyclic brace operations). Let O be a dg cyclic operad. The cyclic brace

operations on Õcyc are those characterized by the linear maps

κn ◦ ρn : B⟲(n)→ Hom((Õcyc)⊗n, Õcyc)

discussed in Example 1.6.3.

Remark 1.6.5. It seems hard to write a direct formula for cyclic brace operations on Õcyc

in terms of operadic compositions, in a way as explicit as (1.6.1).
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Consider B̄s⟲(n) ⊃ Bs⟲(n) and B̄⟲(n) ⊃ B⟲(n) by extending the definitions to labeled

planar trees with tails. There is a forgetful map

wsn : B̄s(n)→ B̄s⟲(n) \ Bs⟲(n)

forgetting the choice of root but keeping the orientation from rooted structure. Note that wsn

induces wn : B̄(n)→ B̄⟲(n)/B⟲(n). There is also a map

rsn : B̄s⟲(n) \ Bs⟲(n)→ B̄(n), T ′
⟲ 7→

∑
T ′∈R0(T ′

⟲)

(−1)ε(T ′
⟲,T

′)T ′,

where R0(T
′
⟲) is the set of n-labeled planar rooted trees obtained by choosing one of the tails

in T ′
⟲ as the root, and ε(T ′

⟲, T
′) is defined similar to ε(T⟲, T ) in (1.6.4).

It is clear that (wn ◦ rn)(T ′
⟲) = |R0(T

′
⟲)| · T ′

⟲. To describe rn ◦ wn, consider a map

tsn : B̄s(n)→ B̄s(n)

so that T ′ and tsn(T
′) are the same after forgetting the root, and the root of tsn(T

′) is the first

non-root tail of T ′ (if there are no non-tail roots then tsn(T
′) = T ′). Then for any T ′ ∈ R0(T

′
⟲),

we have R0(T
′
⟲) = {T ′, tsn(T

′), . . . , (tsn)
p(T ′)} , where p = |R0(T

′
⟲)| − 1. It follows that

(rn ◦ wn)(T ′) = ε(T ′
⟲, T

′) · rn(T ′
⟲) =

∑
0≤i≤|R0(T ′

⟲)|−1

(−1)ε(T ′,tin(T
′)) · tin(T ′). (1.6.5)

Here ε(T ′, tin(T
′)) is the number of edges in ET ′ = Etin(T ′) whose direction towards the root of

T ′ does not agree with the direction towards the root of tin(T
′).

Given k = (k1, . . . , kn) ∈ Zn≥0, define a map

νsk : B
s
⟲(n)→ B̄⟲(n), T⟲ 7→

∑
T ′
⟲∈T (T⟲,k)

T ′
⟲,

where T (k, T⟲) ⊂ B̄s⟲(n) is defined similar to T (k, T ) in (1.6.2).

Lemma 1.6.6. Let O be a dg operad. For any T⟲ ∈ Bs⟲(n) and fi ∈ O(ki) (1 ≤ i ≤ n), there

holds

(κn ◦ ρsn)(T⟲)(f1, . . . , fn) = (κ̄n ◦ rn ◦ νsk)(T⟲)(f1, . . . , fn).
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Proof. Consider the set of labeled planar rooted trees whose vertices have arities equal to

k = (k1, . . . , kn) in accordance with the labeling. Such a set can be represented as

⋃
T∈R1(T⟲)

T (T, k) =
⋃

T ′
⟲∈T (T⟲,k)

R0(T
′
⟲),

and the result follows.

In the rest of this section, we take O = EndA, where A is a dg algebra endowed with a

symmetric, cyclic, bilinear form ⟨, ⟩ of degree m. Recall from Example 1.5.9 that ⟨, ⟩ induces

θ : A→ A∨[m] and Θ : CH(A,A)→ CH(A,A∨[m]). To deal with signs, we may work with

A[1] instead of A. As explained in Appendix 1.8, the symmetric bilinear form ⟨, ⟩ on A

becomes anti-symmetric on A[1], and the cyclic permutation τk on Hom(A⊗k+1,R) reads as

τ̃k = (−1)kτk = λ on Hom(A[1]⊗k+1,R). Since s(EndA) ∼= EndA[1], there is no need to take

operadic suspension of B⟲, and B⟲(n) stands in degree 0 when dealing with A[1].

Since the pairing ⟨, ⟩ is not necessarily nondegenerate, there is not always a cyclic

structure on EndA compatible with cyclic permutations on {Hom(A⊗k+1,R)} via the map

Hom(A⊗k, A)→ Hom(A⊗k, A∨[m]) induced by ⟨, ⟩, so the discussion of Example 1.6.3 does

not directly apply here. However, the following is true.

Proposition 1.6.7. Θ−1(
∏

k≥0Hom
∗+m
cyc (A⊗k+1,R)) is naturally a B⟲-algebra.

Proof. (This proposition is irrelevant to the multiplication on A; compare Remark 1.5.11.)

Similar to Example 1.6.3, it suffices to show if T⟲ ∈ Bs⟲(n) and fi ∈ Hom(A⊗ki , A) is weakly

cyclic invariant in the sense that λ(θ ◦ fi) = θ ◦ fi, then (κ ◦ ρ)(T⟲)(f1, . . . , fn) is weakly

cyclic invariant. This is immediate from Lemma 1.6.6 and Lemma 1.6.9 below.

Corollary 1.6.8. (Θ−1(CHcyc(A,A
∨[m])), d+ δ) admits an action of M⟲. Moreover, if θ is

a quasi-isomorphism and Θ restricts to a quasi-isomrphism from Θ−1(CHcyc(A,A
∨[m])) to

CHcyc(A,A
∨[m]), this M⟲-action lifts the gravity algebra structure on HC∗

λ(A,A
∨[m]) induced

by the BV algebra structure on HH∗(A,A∨[m]) (see Example 1.5.9(D)).
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Proof. As explained in the proof of [48, Theorem 5.5], to show M⟲ acts on the space of

weakly cyclic invariants, it suffices to consider cyclic brace operations, which is nothing but

Proposition 1.6.7. In more details, Ward [48] defined a dg operad M using “A∞-labeled planar

rooted black/white trees” (M is isomorphic to the “minimal operad” of Kontsevich-Soibelman

[37]), and M⟲ is the nonrooted version of M. M contains B as a graded suboperad, and

acts on CH(A,A) extending brace operations. What M does more than B to CH(A,A) is

generated by the operation (f, g) 7→ µA{f, g} where µA ∈ Hom(A⊗2, A) is the multiplication.

The action of M⟲ on Θ−1(CHcyc(A,A
∨[m])) comes from an operad morphism M⟲ → M which

extends the morphism B⟲ → B from (1.6.4). Therefore, that Θ−1(CHcyc(A,A
∨[m])) is closed

under the action of M⟲ on CH(A,A) essentially follows from Proposition 1.6.7 and weakly

cyclic invariance of µA, i.e. (1.5.10).

Now we explain why the M⟲-action induces exactly the gravity algebra structure from

BV structure on homology under quasi-isomorphism assumptions; this is just by definition.

The gravity algebra structure on HC∗
λ(A,A

∨[m]) follows from Lemma 1.5.1 and (1.2.8)

with V∗ = HH−∗(A,A) = HH−∗(A,A∨[m]), W∗ = HC−∗
λ (A,A∨[m]), α = iλ∗, β = Bλ.

The product · (1.5.8) on CH(A,A) is just the cup product (f, g) 7→ µA{f, g}, so the k-th

gravity bracket (1.5.4) on HCλ(A,A
∨[m]) is induced by the operation (f1, f2, . . . , fk) 7→

µA{f1, µA{f2, µA{· · · , µA{fk−1, fk} · · · }}} at chain level, which is represented by certain

black/white tree with k − 1 adjacent black vertices labeled by µA. Edges with both black

vertices in such a tree should be contracted, creating a new tree with a single black vertex, see

[48, Appendix A, (A.10)]. This gives exactly the tree representing the generators of H∗(M⟲),

see [48, Definition 5.12, Figure 2].

Lemma 1.6.9. Let T ′
⟲ ∈ B̄⟲(n), T

′ ∈ R0(T
′
⟲), fi ∈ Hom(A[1]⊗ki , A[1]) where ki = ai(T

′)

(1 ≤ i ≤ n). Suppose every fi is weakly cyclic invariant. Then

θ ◦ ((κ̄n ◦ rn)(T ′
⟲)(f1, . . . , fn)) = ε(T ′

⟲, T
′) ·N(θ ◦ (κ̄n(T ′)(f1, . . . , fn))).
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Proof. In view of (1.6.5), it suffices to prove the following equality:

θ ◦ ((κ̄n ◦ tn)(T ′)(f1, . . . , fn)) = ε(T ′, tn(T
′)) · λ(θ ◦ (κ̄n(T ′)(f1, . . . , fn))). (1.6.6)

If there is only one tail or only one vertex (equivalently, no edges) in T ′, then tn acts trivially

on B̄(n), and (1.6.6) is obvious. Now suppose there are at least two tails and at least one

edge in T ′. Then there is a unique path in T ′ connecting the root l1 to the first non-root

tail l2, consisting of successive edges with successive vertices vi1 , vi2 , . . . , vik (k ≥ 1), where

vi1 , vik are vertices of l1, l2, respectively. Note that these k − 1 successive edges are the only

edges in T ′ whose directions towards l1 and l2 disagree, so

ε(T ′, tn(T
′)) = k − 1.

If k = 1, (1.6.6) simply follows from cyclic invariance of θ ◦ fi1 .

If k ≥ 2, for each j ∈ {1, . . . , k − 1}, denote the edge joining vij to vij+1
by [vij , vij+1

],

which is identified with [0, 1]. By removing 1
2
∈ [vij , vij+1

] for all 1 ≤ j ≤ k − 1, T ′ is cut into

k pieces, where the j-th (1 ≤ j ≤ k) piece Tj contains vij . By regarding [vij ,
1
2
) and (1

2
, vij+1

]

as tails, these pieces become labeled planar trees, where the planar structures are induced

from T ′, and the vertex labeling is in the same order as T ′: say the vertices of Tj are labeled

by ij,1 < ij,2 < · · · < ij,nj
in T ′, then put their labels as 1, 2, . . . , nj in Tj . Let T

′
j,− (resp. T ′

j,+)

be the labeled planar rooted tree obtained by choosing the tail (1
2
, vij ] (resp. [vij ,

1
2
)) in Tj as

the root, where (1
2
, vi1 ] is indeed l1 and [vik ,

1
2
) is indeed l2. Suppose (1

2
, vij ] (resp. [vj,

1
2
)) is

the pj-th (resp. qj-th) non-root tail in the total order on Lvij from planar rooted structure of

T ′
j,+ (resp. T ′

j,−). Since l2 is the first non-root tail in T ′, we have q1 = · · · = qk = 1, and

p1 + · · ·+ pk − k + 1 = |LT ′ | − 1 = k1 + · · ·+ kn + 1− n =: K.

Denote

F+
j := κ̄nj

(T ′
j,+)(fij,1 , . . . , fij,nj

), F−
j := κ̄nj

(T ′
j,−)(fij,1 , . . . , fij,nj

).
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Then for any x1, . . . , xK+1 ∈ A[1], there holds (Koszul sign (−1)ε is taken w.r.t. A[1])

⟨(κ̄n ◦ tn)(T ′)(f1, . . . , fn)(x1 ⊗ · · · ⊗ xK), xK+1⟩ (1.6.7)

= (−1)ε⟨F+
k ◦pk (F

+
k−1 ◦pk−1

(· · · ◦p2 F+
1 ))(x1 ⊗ · · · ⊗ xK), xK+1⟩

= (−1)ε⟨F−
k (· · · ⊗ xpk−1), F

+
k−1 ◦pk−1

(· · · ◦p2 F+
1 )(xpk ⊗ · · · )⟩

= −(−1)ε⟨F+
k−1 ◦pk−1

(· · · ◦p2 F+
1 )(xpk ⊗ · · · ), F−

k (· · · ⊗ xpk−1)⟩,

where the second equality follows from cyclic invariance of θ ◦ fik , and the third equality

follows from (anti-)symmetry of ⟨, ⟩. Iterating the above calculation by cyclic invariance of

θ ◦ fik−1
, θ ◦ fik−2

, . . . , θ ◦ fi1 and (anti-)symmetry of ⟨, ⟩, we see that (1.6.7) is equal to

(−1)k(−1)ε⟨xp1+···+pk−k+1, F
−
1 ◦q1 (F−

2 ◦q2 (· · · ◦qk−1
F−
k ))(· · · ⊗ xp1+···+pk−k)⟩

= (−1)k−1(−1)ε⟨F−
1 ◦1 (F−

2 ◦1 (· · · ◦1 F−
k ))(xK+1 ⊗ x1 ⊗ · · · ⊗ xK−1), xK⟩

= (−1)ε(T ′,tn(T ′))(−1)ε⟨κ̄n(T ′)(f1, . . . , fn)(xK+1 ⊗ x1 ⊗ · · · ), xK⟩.

Since τ̃K on Hom(A[1]⊗K , A[1]∨[m]) corresponds to λ on Hom(A⊗K , A∨[m]), this proves

(1.6.6). The proof is now complete.

Remark 1.6.10. It is easy to generalize Proposition 1.6.7 to A∞ algebras with cyclic invariant

symmetric bilinear forms (not necessarily nondegenerate), and the proof is similar.

1.7 Chain level structures in S1-equivariant string

topology

In this section we describe chain level structures in S1-equivariant string topology, based on

the previous results. Let us first review the initial homology level structures dicovered by

Chas-Sullivan, and the chain level construction due to Irie.

Example 1.7.1 (String topology BV algebra and gravity algebra). Let M be a closed

oriented manifold and LM be its free loop space. It was discovered by Chas-Sullivan in [5][6]

that:
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• There is a BV algebra structure (∆, ·) on H∗(LM) := H∗+dimM(LM). Here ∆ is

induced by the S1-action of rotating loops (i.e. ∆ = J∗ where J is defined by (1.2.13)),

· is induced by concatenation of crossing loops and is called the loop product. The

associated Gerstenhaber bracket is called the loop bracket. We call this BV algebra the

string topology BV algebra.

• There is a gravity algebra structure on HS1
∗+dimM−1(LM) (as an application of Lemma

1.5.1 to part of the Gysin sequence (1.2.15a)), whose second bracket is the string bracket

([5, Theorem 6.1]) up to sign (1.8.1). We call this gravity algebra the string topology

gravity algebra.

A similar application of Lemma 1.5.1 to part of the Connes-Gysin sequence (1.2.2b) for

the mixed complex (S∗(LM), ∂, J), together with Lemma 1.2.1 and Lemma 1.5.2, yields the

following lemma.

Lemma 1.7.2. For any closed oriented manifold M , there is a gravity algebra structure on

GS1
∗+dimM(LM), such that the natural map HS1

∗+dimM−1(LM)→ GS1
∗+dimM(LM) in (1.2.14) is

a morphism of gravity algebras.

Example 1.7.3 (Irie’s construction [29]). Given any closed oriented C∞-manifold M , one

can associate to M a ns cyclic dg operad (OM , (τk)k≥0, µ, ε) with a multiplication and a unit,

defined by:

• For each k ∈ Z≥0, (OM(k)∗, ∂) :=
(
CdR

∗+dimM(LM
k+1,reg), ∂

)
.

• For each k ∈ Z≥1, k
′ ∈ Z≥0 and j ∈ {1, . . . , k}, the partial composition ◦j : OM(k)⊗

OM(k′)→ OM(k + k′ − 1) is defined by

x ◦j x′ := (conj)∗(x evj×ev0x
′),

where evj×ev0 is fiber product of de Rham chains with respect to evaluation maps evj :

LM
k+1,reg → Mreg and ev0 : LM

k′+1,reg → Mreg (it is well-defined because of submersive

48



condition), and conj : Lk+1M evj×ev0 Lk′+1M → Lk+k′M is the concatenation map

defined by inserting the second loop into the first loop at the j-th marked point.

• For each k ∈ Z≥0, τk : OM(k)∗ → OM(k)∗ is induced by (1.4.2c).

• 1OM
:= (M, i1, 1) ∈ OM(1)0, µ := (M, i2, 1) ∈ OM(2)0, ε := (M, i0, 1) ∈ OM(0)0. Here

for k ≥ 0, ik :M → Lk+1M is the map p 7→ (0, γp, 0, . . . , 0), where γp is the constant

loop of length 0 at p ∈M .

By [29, Theorem 3.1(ii)], there is an isomorphism H∗(ÕM , b) ∼= H∗(LM) of BV algebras,

where these BV algebra structures are from Proposition 1.5.6 and Example 1.7.1, respectively.

(The crucial thing about ÕM is the chain level structure which refines the string topology

BV algebra, but we do not need to use it.)

Let (Ω(M)∗, d,∧) be the dg algebra of differential forms on M . For each k ≥ 0, there

is a chain map Ik : C
dR
∗+dimM(LM

k+1,reg)→ Hom−∗(Ω(M)⊗k,Ω(M)), called iterated integral of

differential forms : for η1, . . . , ηk ∈ Ω(M),

Ik(U,φ, ω)(η1 ⊗ · · · ⊗ ηk) := (−1)ε0(φ0)!(ω ∧ φ∗
1η1 ∧ · · · ∧ φ∗

kηk), (1.7.1)

where ε0 := (dimU − dimM)(|η1| + · · · + |ηk|) and φj := evj ◦ φ (0 ≤ j ≤ k). Moreover,

I = (Ik)k≥0 : OM → EndΩ(M) is a morphism of ns dg operads preserving multiplications and

units ([29, Lemma 8.5]).

The paring ⟨α, β⟩ :=
∫
M
α ∧ β is a graded symmetric bilinear form on Ω∗(M) of degree

m = − dimM , in line with Example 1.5.9. The induced dg Ω(M)-bimodule map θ :

Ω∗(M)→ (Ω(M)∨[− dimM ])∗ is a quasi-isomorphism by Poincaré duality, hence induces a

quasi-isomorphism

Θ : CH(Ω(M),Ω(M))
≃−→ CH(Ω(M),Ω(M)∨[− dimM ]). (1.7.2)

Lemma 1.7.4. The composition

θ ◦ Ik : OM(k)∗ → Hom−∗(Ω(M)⊗k,Ω(M)∨[− dimM ]) (k ≥ 0) (1.7.3)
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is a morphism of cocyclic complexes.

Proof. {θ◦Ik}k is a composition of cosimplicial maps, so it suffices to check τk◦θ◦Ik = θ◦Ik◦τk,

which is a simple computation by definition.

According to Lemma 1.7.4, Θ ◦ I : ÕM → CH(Ω(M),Ω(M)∨[− dimM ]) preserves cyclic

invariants. Moreover, the following is true.

Lemma 1.7.5.

I : (Õcyc
M )∗ → Θ−1(CH−∗

cyc(Ω(M),Ω(M)∨[− dimM ])) (1.7.4)

is a morphism of M⟲-algebras.

Proof. First, (1.7.4) is a morphism of B⟲-algebras since I : OM → EndΩ(M) is a morphism of

ns operads, and the (cyclic) brace operations on the associated complexes are defined using

operadic compositions. Then by the proof of Corollary 1.6.8, to show (1.7.4) is a morphism of

M⟲-algebras, it suffices to show I2(µ) = ∧, where µ = (M, i2, 1) ∈ OM (2) is the multiplication

in OM . But this is obvious from definition.

Theorem 1.7.6. For any closed oriented C∞-manifold M , the ns dg operad OM with (τk)k≥0,

µ, ε in Example 1.7.3 gives rise to the following data:

(i) A chain complex Õcyc
M := Ker(1− λ) ⊂ ÕM which is an algebra over M⟲. In particular,

H∗(Õcyc
M ) carries a gravity algebra structure.

(ii) An isomorphism H∗(Õcyc
M ) ∼= GS1

∗+dimM(LM) of gravity algebras, where the gravity

algebra structure on GS1
∗+dimM(LM) is as in Lemma 1.7.2.

(iii) A morphism I : (Õcyc
M )∗ → Θ−1(CH−∗

cyc(Ω(M),Ω(M)∨[− dimM ])) of M⟲-algebras, such

that the induced map in homology fits into the following commutative diagram of gravity
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algebra homomorphisms:

HS1
∗+dimM−1(LM) HC−∗+1

[u−1] (CH(Ω(M),Ω(M)∨[− dimM ]))

HC−∗
[[u]](CH(Ω(M),Ω(M)∨[− dimM ]))

GS1
∗+dimM(LM) HC−∗

λ (CH(Ω(M),Ω(M)∨[− dimM ])).

1

2

3

(1.2.7)

4

(1.7.5)

Here arrows 1, 4 are induced by (1.7.3), arrow 2 is as in (1.2.14), arrow 3 is as

in (1.2.1). The gravity algebra structures are those on the (negative) S1-equivariant

homology of LM (Example 1.7.1, Lemma 1.7.2) and on (negative) cyclic cohomology

of Ω(M) (Example 1.5.9) in view of Poincaré duality.

Proof. Statement (i) follows from Proposition 1.5.6(v). Statement (ii) follows from Proposition

1.5.6(iv) and Proposition 1.4.8. As for statement (iii), I is defined in Lemma 1.7.5; Arrows 2,

3 are gravity algebra homomorphisms by Proposition 1.5.6(iv) and Example 1.5.9; Arrows 1,

4 are gravity algebra homomorphisms by Lemma 1.7.4, Lemma 1.2.4 and Lemma 1.5.2; The

diagram (1.7.5) commutes by Lemma 1.2.4. Strictly speaking, since the grading of OM(k)∗

has been shifted by dimM from CdR
∗ (LM

k+1,reg), there is a minor sign change for δ (1.2.6)

in ÕM compared to CL (the same thing happens in [29, Lemma 8.4]), and thus we should

repeat the proof of Proposition 1.4.8 under new signs and use new isomorphisms to make the

diagram commute without question of signs, but this is straightforward.

Remark 1.7.7. Statement (i) in Theorem 1.7.6 is an easy combination of work of Irie and

Ward, so it is not new. But it was not known before if the chain level structures in statement

(i) correctly fit with known homology level structures in string topology (it was even not

known whether H∗(Õcyc
M ) is the S1-equivariant homology of LM), so statement (ii) is new.

As for statement (iii), some (perhaps not all) of the homology level statements are known,

see the discussion after Theorem 1.1.3; the chain level statement is more crucial, and is new

because the fact that M⟲ (nontrivially) acts on Θ−1(CH−∗
cyc(Ω(M),Ω(M)∨[− dimM ])) is new

(Corollary 1.6.8).
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Remark 1.7.8. It is known that if M is simply-connected, then the iterated integral map

I : (ÕM)∗ → CH−∗(Ω(M),Ω(M)) is a quasi-isomorphism (proved by K. T. Chen [7] and

improved by Getzler-Jones-Petrack [26]). In this case Lemma 1.2.3 implies arrows 1, 4 in

(1.7.5) are isomorphisms of gravity algebras.

Note that arrow 4 in (1.7.5) is not exactly induced by I, but is the composition Θ∗ ◦ I∗.

The author does not know an answer to the following question.

Conjecture 1.7.9. For any closed oriented C∞-manifold M , the quasi-isomorphism (1.7.2)

restricts to a quasi-isomorphism on (weakly) cyclic invariants,

Θ−1(CH−∗
cyc(Ω(M),Ω(M)∨[− dimM ]))

≃−→ CH−∗
cyc(Ω(M),Ω(M)∨[− dimM ]).

1.8 Appendix: Sign rules

1.8.1 Koszul sign rule

Compared to ungraded formulas, a sign (−1)|a||b| is produced in graded setting whenever a

symbol a travels across another symbol b. For example if A,B are graded vector spaces, the

graded tensor product of graded linear maps f : A→ B and g : C → D, f⊗g : A⊗C → B⊗D,

is defined by (f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w).

1.8.2 Sign change rule for (de)suspension

Let C = {Ci}i∈Z be a graded vector space. For any n ∈ Z, define a shifted graded

vector space C[n] = {C[n]i}i∈Z by C[n]i := Ci+n. (In homological grading this turns into

C[−n]−i := C−i−n.) C[−1] is often denoted by ΣC and is called the suspension of C. Let

s : C → C[−1]; x 7→ sx be the shifted identity map which is of degree 1. By Kozsul sign rule,

for x1, . . . , xk ∈ C,

s⊗k(x1 ⊗ · · · ⊗ xk) = (−1)
∑k

i=1(k−i)|xi|sx1 ⊗ · · · ⊗ sxk. (1.8.1)
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Here |xi| denotes the degree of xi in C, and the sign (−1)(k−i)|xi| comes from exchanging

positions of k − i copies of s with that of xi. The sign change (1.8.1) identifies the graded

exterior algebra of C with the graded symmetric algebra of C[−1], as

(s⊗ s)((−1)|x1||x2|x2 ⊗ x1) = (−1)|x1|((−1)1+|sx1||sx2|sx2 ⊗ sx1).

The same rule applies to sign change between A and A[1], the desuspension of A.

1.8.3 Operadic suspension

Let (O, ◦i) be a dg operad in cohomological grading. The operadic suspension of O is a dg

operad (sO) with partial compositions ◦̃i satisfying

sO(n) = O(n)[1− n],

a◦̃ib = (−1)(i−1)(m−1)+(n−1)|b;O(m)|, (1.8.2)

where a ∈ sO(n), b ∈ sO(m), |b;O(m)| is the degree of b in O(m). For an explanation of

signs (which comes from Koszul sign rule), see e.g. [29, Section 2.5.4].

When O = EndA is the endomorphism operad of a dg algebra A, there is an isomorphism

of dg operads sO = s(EndA) ∼= EndA[1]. Therefore, for signs related to s(EndA), one may

alternatively use Koszul sign rule for A[1] and perform (1.8.1) when necessary.

1.8.4 Cyclic permutation

If (O, ◦i) is a cyclic dg operad, then (sO, ◦̃i) also carries a cyclic structure where τ̃k =

(−1)kτk under the naive identification sO(k) = O(k). On the other hand, let A be a

dg algebra, consider the cocyclic complex {Hom(A⊗k+1,R), τk} and the operation τ̃k on

Hom(A[−1]⊗k+1,R) induced by τk under the linear isomorphism s : A→ A[−1]. Then the

following equality says τ̃k = (−1)kτk after sign change (1.8.1):

τ̃k ◦ s⊗k+1 = τ̃k ◦ (s⊗k ⊗ s) = (−1)k(s⊗ s⊗k) ◦ τk,
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where s⊗k applies to x1 ⊗ · · · ⊗ xk ∈ A⊗k and s applies to xk+1 ∈ A. Therefore, when

discussing cyclic homology theories of A under the naive identification A = A[−1], cyclic

invariants in C(k) is Ker(1− λ) = Ker(1− τ̃k), and N |C(k) =
∑k

i=0 λ
i =

∑k
i=0 τ̃

i
k.
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Chapter 2

A chain model of path spaces and loop

spaces from the fundamental groupoid

2.1 Introduction

Let X be a path-connected, locally path-connected, semilocally simply-connected topological

space. This is the standing assumption throughout this chapter, leading to existence of the

universal covering space of X at any base point. The purpose of this chapter is to study

chain models of the following spaces of paths (loops) in X in a united way:

• (Free path space). PX := Map([0, 1], X).

• (Free loop space). LX := Map(S1, X) = {γ ∈ PX | γ(0) = γ(1)}.

• (Space of paths between two points). Px,x′X := {γ ∈ PX | γ(0) = x, γ(1) = x′}, where

x, x′ ∈ X.

• (Based loop space). LxX := {γ ∈ LX | γ(0) = x} = Px,xX, where x ∈ X.

The basic idea is that, instead of only considering points in X (as people usually do), we also

add the information of homotopy classes of paths between points.
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Since this chapter is short (no more than 20 pages in thesis format), we are lazy to write a

more detailed introduction here. Let us simply mention that the main result (Theorem 2.2.1)

can be viewed as a generalization of Adams’ cobar theorem [2] on homology of the based

loop space, and Chen’s theorem [7] on iterated integrals of differential forms and homology

of the free loop space. Adams’ work and Chen’s work both require X to be simply-connected

(but see Remark 2.1.1 below), while we drop this condition by adding information of the

fundamental group(oid) of X to the chain model. Of course, both the statement and proof of

Theorem 2.2.1 won’t appear here without the precursors.

Remark 2.1.1. Recent work of Rivera-Zeinalian [46] and Rivera [45] shows that Adams’

cobar theorem is true without the simply-connectedness assumption, as long as one carefully

chooses suitable versions of chains on X and LxX. It might be interesting to compare their

results with Theorem 2.2.1.
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the author in Fall 2022. (To be precise, Kei Irie proposed the free loop space version of the
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attempts of the proof, and for generously suggesting that I can write a single-authored paper

based on current results. (Or this should be part of a collaboration.) I also want to thank

Manuel Rivera for helpful communication, especially for teaching me Lemma 2.3.4.

2.2 Construction of the chain model

Let Π1X be the fundamental groupoid of X, which consists of elements (p, q, σ) where

p, q ∈ X and σ is a (relative) homotopy class of paths in X from p to q. There is a source

map

s : Π1X → X, s(p, q, σ) := p,
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and a target map

t : Π1X → X, t(p, q, σ) = q.

For p ∈ X, define [p] ∈ Π1X by [p] := (p, p, [constant path at p]). There is a natural

surjection PX ↠ Π1X sending γ to (γ(0), γ(1), [γ]), which makes Π1X into a topological

space with quotient topology. There is a continuous map

{(c0, c1) ∈ (Π1X)2 | t(c0) = s(c1)} → Π1X, (c0, c1) 7→ c0 ∗ c1, (2.2.1)

which is induced by concatenation of two paths γ0, γ1 with γ0(1) = γ1(0) in the obvious way.

For each k ∈ Z≥0, consider the following subspaces of (Π1X)k+1.

• PkX is consists of (c0, . . . , ck) ∈ (Π1X)k+1 such that t(ci) = s(ci+1) (0 ≤ ∀i ≤ k − 1).

• LkX consists of (c0, . . . , ck) ∈ PkX such that t(ck) = s(c0).

• Pkx,x′X consists of (c0, . . . , ck) ∈ PkX such that s(c0) = x, t(ck) = x′.

• LkxX consists of (c0, . . . , ck) ∈ LkX such that s(c0) = x. Clearly LkxX = Pkx,xX.

For simplicity of exposition, we introduce a symbol X ∈ {P ,L,Px,Px,x′ ,Lx}, so that XX

means one of PX, LX, Px,x′X, LxX, and X kX means one of PkX, LkX, Pkx,x′X, LkxX.

For each of X ∈ {P ,L,Px,x′ ,Lx}, there is a cosimplicial structure (see (1.2.3)) on

{X kX}k≥0 given by operations δi : X k−1X → X kX, σi : X k+1X → X kX, where

δi(c0, . . . , ck−1) :=


(c0, . . . , ci−1, [s(ci)], ci, . . . , ck−1) (0 ≤ i ≤ k − 1)

(c0, . . . , ck−1, [t(ck−1)]) (i = k),

σi(c0, . . . , ck+1) := (c0, . . . , ci ∗ ci+1, . . . , ck+1) (0 ≤ i ≤ k).

Moreover, for X = L, there is a rotation operation τk : LkX → LkX,

τk(c0, . . . , ck) := (c1, . . . , ck, c0) (2.2.2)

making {LkX}k≥0 into a cocyclic space (see (1.2.4)).
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Recall the standard simplex ∆k := {(t1, . . . , tk) ∈ R≥0 | 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}. There is

a natural map (by convention t0 := 0, tk+1 := 1)

ek : XX ×∆k → X kX; (γ, t1, . . . , tk) 7→ (γ(ti), γ(ti+1), [γ|[ti,ti+1]])0≤i≤k. (2.2.3)

In fact, ek is a quotient map. Define (γ, t1, . . . , tk) ∼ (γ′, t′1, . . . , t
′
k) iff for all 0 ≤ i ≤ k + 1,

γ(ti) = γ′(t′i) and [γ|[ti,ti+1]] = [γ′|[t′i,t′i+1]
] (after linear reparametrization of γ|[ti,ti+1], γ

′|[t′i,t′i+1]
),

then ek induces a homeomorphism between (XX × ∆k)/ ∼ and X kX. There are also

evaluation maps evkj : X kX → X (0 ≤ j ≤ k + 1),

evkj (c0, . . . , ck) :=


s(cj) (0 ≤ j ≤ k)

t(ck) (j = k + 1).

(2.2.4)

Putting these together gives covering maps

PkX → Xk+2; (c0, . . . , ck) 7→ (s(c0), . . . , s(ck), t(ck)) (2.2.5a)

Px,x′X → {x} ×Xk × {x′}; (c0, . . . , ck) 7→ (x, s(c1) . . . , s(ck), x
′) (2.2.5b)

LkX → Xk+1; (c0, . . . , ck) 7→ (s(c0), . . . , s(ck)) (2.2.5c)

LkxX → {x} ×Xk; (c0, . . . , ck) 7→ (x, s(c1), . . . , s(ck)). (2.2.5d)

These covering maps are compatible with cosimplicial structures, where the cosimplicial

structure on {Xk+2}k≥0 is defined by

δi : X
k+1 → Xk+2, (x0, . . . , xk) 7→ (x0, . . . , xi−1, xi, xi, xi+1, . . . , xk), 0 ≤ i ≤ k,

σi : X
k+3 → Xk+2, (x0, . . . , xk+2) 7→ (x0, . . . , xi−1, xi+1, . . . , xk+2), 0 ≤ i ≤ k,

and the cosimplicial structures on the other spaces are obtained by restriction. If X is

simply-connected, these covering maps are trivial, i.e. identity maps.

Recall from Example 1.2.6 that for a cosimplicial complex {(C(k)∗, ∂), δi, σi}k≥0 there is

a total complex (
∏

k≥0C(k)∗+k, ∂ + δ), and for a cocyclic complex {(C(k)∗, ∂), δi, σi, tk}k≥0

there is a mixed total complex (
∏

k≥0C(k)∗+k, ∂ + δ, B), where B is Connes’ operator.
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Conjecture-Theorem 2.2.1. For any path-connected, locally path-connected, semilocally

simply-connected topological space X, any points x, x′ ∈ X, and all of X ∈ {P ,L,Px,x′ ,Lx},

the natural map (2.2.3) ek : XX ×∆k → X kX (k ≥ 0) of cosimplicial (cocyclic if X = L)

spaces induces a quasi-isomorphism

C∆
∗ (XX) :=

(∏
k≥0

C∗+k(XX ×∆k), ∂ + δ

)
e∗−→
≃

(∏
k≥0

C∗+k(X kX), ∂ + δ

)
=: CX

∗ (X),

where (C∗, ∂) is any chain complex functor of an ordinary homology theory such that every-

thing appearing in the statement is well-defined. (Unless otherwise specified, C∗ stands for

normalized singular chains with coefficients in a commutative ring R with unity.)

Remark 2.2.2. One can easily state a cochain (cohomology) version of Conjecture-Theorem

2.2.1, and prove it by the same method as the chain (homology) version which we will display.

Lemma 2.2.3. For any topological space Y , the projection

pr0 : C
∆
∗ (Y ) :=

(∏
k≥0

C∗+k(Y ×∆k), ∂ + δ

)
→ (C∗(Y ), ∂) ; (ak)k≥0 7→ a0 (2.2.6)

is a quasi-isomorphism. Moreover, if ξ = (ξk)k≥0 ∈
(∏

k≥0C∗+k(∆
k), ∂ + δ

)
= C∆

0 (pt) is a

cycle such that [ξ0] = 1 · [(∆0 → pt)] ∈ H0(pt), then the map

Eξ : C∗(Y )→ C∆
∗ (Y ); a 7→ (a× ξk)k≥0

is a chain map such that pr0 ◦ Eξ = idC∗(Y ).

Proof. pr0 is a quasi-isomorphism by Lemma 1.3.3. The rest holds by direct computations.

Remark 2.2.4. Throughout this chapter, we fix the choice of ξ = (ξk)k≥0 in Lemma 2.2.3 as

ξk = [∆k] := 1 · (∆k id−→ ∆k) ∈ Ck(∆k).

In the rest of this chapter, we will prove Conjecture 2.2.1 (and it becomes Theorem 2.2.1).

In view of Lemma 2.2.3, Conjecture 2.2.1 says that for each of X ∈ {P ,L,Px,x′ ,Lx}, CX
∗ (X)
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is a chain model of XX. Moreover, when X = L, the natural map ek : LX ×∆k → LkX

preserves cocyclic structures, so by results in Chapter 1, the cyclic (co)homology groups of

CL
∗ (X) are isomorphic to the S1-equivariant homology groups of LX.

Our proof follows the strategy of Getzler-Jones-Petrack [26], which borrows ideas from

Adams [2] and Chen [7].

2.3 Revisiting Adams’ cobar theorem

Let us first prove Conjecture 2.2.1 for X = P .

Proposition 2.3.1. Conjecture 2.2.1 for PX is true.

Proof. Define a chain map β : (CP
∗ (X), ∂ + δ) → (C∗(X), ∂) by β := t∗ ◦ pr0, where pr0

is the projection chain map CP
∗ (X) → C∗(P0X) as in (2.2.6), and t∗ : C∗(P0X) → C∗(X)

is induced by the target map t : P0X = Π1X → X. Consider the following commutative

diagram

C∆
∗ (PX) CP

∗ (X)

C∗(PX) C∗(P0X) C∗(X),

e∗

pr0 pr0
β

e0∗ t∗

where pr0 : C
∆
∗ (PX)→ C∗(PX) is defined in the obvious way and is a quasi-isomorphism.

Since the map t ◦ e0 : PX → X sending γ to γ(1) is a homotopy equivalence, we know

t∗ ◦ e0∗ : C∗(PX) → C∗(X) is a quasi-isomorphism. Therefore, in order to show e∗ is a

quasi-isomorphism, it suffices to show β is a quasi-isomorphism. To this end, consider a chain

map η = ι ◦ c∗ : C∗(X)→ CP
∗ (X), where c∗ : C∗(X)→ C∗(P0X) is the chain map induced

by the constant path map c : X → P0X, p 7→ [p], and ι : C∗(P0X)→ CP
∗ (X) is defined by

(ι(a))0 = a, (ι(a))k = 0 (∀k > 0). It is clear that β ◦ η = idC∗(X). On the other hand, define a

linear map s : CP
∗ (X)→ CP

∗ (X),

(s(a))k := (−1)|a|−1fk∗(ak+1) (∀k ≥ 0), a = (ak)k≥0 ∈ CP
∗ (X),

60



where fk∗ : C∗(Pk+1X)→ C∗(PkX) is induced by the map fk : Pk+1X → PkX defined by

fk(c0, . . . , ck+1) := (c1, . . . , ck+1). It follows from definition that

f0 ◦ δ1 = c ◦ t on P0X,

fk ◦ δ0 = id on PkX (k ≥ 0),

fk ◦ δi = δi−1 ◦ fk−1 on PkX (k ≥ 0, 1 ≤ i ≤ k + 1) .

Using these identities, it is easy to check idCP
∗ (X) − η ◦ β = δ ◦ s+ s ◦ δ. Since s also satisfies

∂ ◦ s+ s ◦ ∂ = 0, we conclude that η is a chain homotopy inverse of β.

Theorem 2.3.2. If X is simply-connected, then Conjecture 2.2.1 for LxX is true.

Remark 2.3.3. Theorem 2.3.2 is essentially due to Adams [2] with a slightly different

statement. Let us make a short comparison between our statement and Adams’:

• The chain map Adams constructed is in the opposite direction to ours. Namely, Adams’

map goes from chains on X to chains on LxX.

• Adams was working with a based version of normalized singular chains on X (which

we will recall later) and normalized cubical chains on LxX, while in the statement of

our theorem, the choices of chains on X and LxX are flexible.

In the following, we present a detailed proof of Theorem 2.3.2 which is similar to Adams’

original proof. It is worth doing so, as some ingredients in the proof will be important later.

We need some preparations. Recall the R-module of normalized singular n-chains of X is

Cn(X) = ⟨maps σ : ∆n → X⟩/⟨degenerate maps⟩ = ⟨nondegenerate σ : ∆n → X⟩.

We shall use Map(∆n, X) to denote the set of nondegenerate maps ∆n → X, or shall not

explicitly mention that degenerate chains have been modded out when such a thing is obvious.

The normalized singular chains of X form a dg coassociative coalgebra (C∗(X), ∂,∆), where

∆ : C∗(X)→ C∗(X)⊗ C∗(X) is the Alexander-Whitney coproduct,

∆(σ) :=
∑

0≤s≤n

σ0,...,s ⊗ σs,...,n, σ ∈ Map(∆n, X),
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where for 0 ≤ k ≤ l ≤ n, σk,...,l : ∆
l−k → X is the restriction of σ to the subsimplex of ∆n

with vertices k, k + 1, . . . , l. For 0 ≤ i ≤ k, define chain maps δi : C∗(X)⊗k+1 → C∗(X)⊗k+2,

σi : C∗(X)⊗k+3 → C∗(X)⊗k+2 by

δi(a0 ⊗ · · · ⊗ ak) := a0 ⊗ · · · ⊗ ai−1 ⊗∆(ai)⊗ ai+1 ⊗ · · · ⊗ ak, (2.3.1a)

σi(a0 ⊗ · · · ⊗ ak+2) :=


a0 ⊗ · · · ⊗ ai ⊗ ai+2 ⊗ · · · ⊗ ak+2 (deg ai = 0)

0 (deg ai > 0).

(2.3.1b)

Then {(C∗(X)⊗k+2, ∂), δi, σi}k≥0 is a cosimplicial chain complex. If x ∈ X is a base point,

then via the natural inclusion C∗({x}) ↪→ C∗(X), {C∗({x})⊗C(X)⊗k⊗C∗({x})}k≥0 becomes

a cosimplicial subcomplex of {C∗(X)⊗k+2}k≥0. Note that

Cn({x}) =


R · (∆0 → {x}) ∼= R (n = 0)

0 (n ̸= 0),

so C∗({x}) can be identified with the trivial coalgebra R with ∆(1) = 1⊗ 1, and the inclusion

C∗({x}) ↪→ C∗(X) can be identified with a coaugmentation R→ C∗(X).

For k ∈ Z≥0, there is a quasi-isomorphism AWk : C∗(X
k+2)→ (C(X)⊗k+2)∗ defined by

AWk(σ) :=
∑

0≤s1≤···≤sk+1≤n

(π1 ◦ σ0,...,s1)⊗ (π2 ◦ σs1,...,s2)⊗ · · · ⊗ (πk+2 ◦ σsk+1,...,n), (2.3.2)

where πj : Xk+2 → X is projection onto the j-th factor. (This is just a generalization

of the usual Alexander-Whitney map AW0 : C∗(X × X) → (C(X) ⊗ C(X))∗.) It is not

hard to see {AWk}k≥0 is a map of cosimplicial chain complexes, generalizing the fact that

∆ = AW0 ◦Diag∗, where Diag∗ : C∗(X)→ C∗(X×X) is induced by the diagonal map. Then

by a comparison argument, {AWk}k≥0 induces a quasi-isomorphism(∏
k≥0

C∗+k(X
k+2), ∂ + δ

)
≃−→

(∏
k≥0

(
C(X)⊗k+2

)
∗+k, ∂ + δ

)
. (2.3.3)

Similarly, restricting to C∗({x} ×Xk × {x}), AWk gives a quasi-isomorphism

C∗({x} ×Xk × {x}) ≃−→ (C({x})⊗ C(X)⊗k ⊗ C({x}))∗ (2.3.4)
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which is compatible with cosimplicial structures. Thus(∏
k≥0

C∗+k({x} ×Xk × {x}), ∂ + δ

)
≃

(∏
k≥0

(C({x})⊗ C(X)⊗k ⊗ C({x}))∗+k, ∂ + δ

)
.

When X is simply-connected, LkxX = {x} ×Xk × {x}. In order to prove Theorem 2.3.2, it

suffices to show the map C∗(LxX)→
(∏

k≥0(C({x})⊗ C(X)⊗k ⊗ C({x}))∗+k, ∂ + δ
)
defined

as

C∗(LxX)
Eξ−→
≃

C∆
∗ (LxX)

e∗−→ CLx
∗ (X)

(AWk)k≥0−−−−−−→
≃

(∏
k≥0

(C({x})⊗ C(X)⊗k ⊗ C({x}))∗+k, ∂ + δ

)
is a quasi-isomorphism, where Eξ is described in Lemma 2.2.3.

For technical reasons, we will need a based version of normalized singular chains. For any

space X, x ∈ X, and m ∈ Z≥0, define a subcomplex C
[m]
∗ (X, x) of C∗(X) such that C

[m]
n (X, x)

is generated by maps σ : ∆n → X which send the m-skeleton of ∆n to x, modulo degenerate

singular simplices. It is clear that ∆ : C∗(X) → C∗(X)⊗ C∗(X) satisfies ∆(C
[m]
∗ (X, x)) ⊂

C
[m]
∗ (X, x)⊗C [m]

∗ (X, x), so C
[m]
∗ (X, x) is a dg subcoalgebra of C∗(X), and there are cosimplicial

complexes {C [m]
∗ (X, x)⊗k+2}k≥0 and {C [m]

∗ ({x}, x)⊗ C [m]
∗ (X, x)⊗k ⊗ C [m]

∗ ({x}, x)}k≥0 similar

to the discussion above.

The following lemma is pointed out to the author by Manuel Rivera.

Lemma 2.3.4. If πi(X, x) = 0 (0 ≤ ∀i ≤ m), then the inclusion (C
[m]
∗ (X, x), ∂) ⊂ (C∗(X), ∂)

is a quasi-isomorphism.

We can now prove Theorem 2.3.2.

Proof of Theorem 2.3.2. Consider the fibration πP : PX → X × X, π(γ) = (γ(0), γ(1)).

We follow [41, Section 5.3] to define an increasing filtration {Fp}p≥0 on C∗(PX). For

i, j ∈ Z≥0, let S(i, j) be the set of nondecreasing maps {0, . . . , i} → {0, . . . , j}. There is an

obvious identification between S(i, j) and the set of simplicial maps ∆i → ∆j which are

order-preserving on vertices. Now we are ready to define

Fp(Cn(PX)) :=
〈
σ : ∆n → PX | ∃i ≤ p, τ : ∆i → X ×X, φ ∈ S(n, i)

s.t. πP ◦ σ = τ ◦ φ
〉
.
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Then {Fp} is bounded, leading to a convergent spectral sequence {Er
p,q} which is exactly the

Serre spectral sequence of the fibration πP : PX → X ×X. Since X is simply-connected,

E2
p,q = Hp(X ×X;Hq(LxX)).

Consider the chain map (which is a quasi-isomorphism by Proposition 2.3.1)

Φ := AW ◦ e∗ ◦ Eξ : (C∗(PX), ∂)→

(∏
k≥0

(C(X)⊗k+2)∗+k, ∂ + δ

)
.

Define an increasing filtration {F̃p}p≥0 on
∏

k≥0(C(X)⊗k+2)∗+k by

F̃p

(∏
k≥0

(C(X)⊗k+2)n+k

)
:=
∏
k≥0

⊕
i0+···+ik+1=n+k

i0+ik+1≤p

Ci0(X)⊗ · · · ⊗ Cik+1
(X),

which induces a spectral sequence {Ẽr
p,q}. One verifies by definition that Φ(Fp) ⊂ F̃p, so

Φ induces a morphism of spectral sequences Φ∗ : {Er
p,q} → {Ẽr

p,q}. However, the filtration

{F̃p} on
∏

k≥0(C(X)⊗k+2)∗+k is only bounded below, but not exhaustive. In order to prove

convergence of {Ẽr
p,q} and calculate it, we will need the help of C

[1]
∗ (X, x).

Let us first figure out what (Ẽ0
p,q, d

0) is. By definition,

Ẽ0
p,q = F̃p

(∏
k≥0

(C(X)⊗k+2)p+q+k

)
/F̃p−1

(∏
k≥0

(C(X)⊗k+2)p+q+k

)

=
∏
k≥0

⊕
j1+j2=p

i1+···+ik=q+k

Cj1(X)⊗ Ci1(X)⊗ · · · ⊗ Cik(X)⊗ Cj2(X) ∼=
∏
k≥0

Ap ⊗B(k)q+k,

where

Ap :=
⊕

j1+j2=p

Cj1(X)⊗ Cj2(X), B(k)q+k :=
⊕

i1+···+ik=q+k

R⊗ Ci1(X)⊗ · · · ⊗ Cik(X)⊗R.

The two factors R in B(k) can be both identified with C∗({x}), and B∗ :=
∏

k≥0B(k)∗+k is

just the subcomplex
∏

k≥0(C({x})⊗C(X)⊗k+2⊗C({x}))∗+k of
∏

k≥0(C(X)⊗k+2)∗+k, namely

B∗ = CLx
∗ (X). We claim that d0 : Ẽ0

p,q → Ẽ0
p,q−1 is equal to

(
idAp ⊗ (∂B(k) + δ|B(k))

)
k≥0

.

Since d0 is induced by the boundary map ∂ + δ on
∏

k≥0(C(X)⊗k+2)∗+k, the claim means
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that on (F̃p/F̃p−1)(C(X)⊗k+2)p+q+k = Ap ⊗B(k)q+k,

∂C(X)⊗k+2 + δ|C(X)⊗k+2 − idAp ⊗ (∂B(k) + δ|B(k))

= ∂Ap ⊗ idB(k) ± (δ0|C(X)⊗k+2 − idAp ⊗ δ0|B(k))± (δk+1|C(X)⊗k+2 − idAp ⊗ δk+1|B(k))

= 0 mod F̃p−1.

Clearly ∂Ap ⊗ idB(k) = 0 mod F̃p−1. As for δ0|C(X)⊗k+2 − idAp ⊗ δ0|B(k), by definition (2.3.1a),

for any j1+j2 = p, i1+ · · ·+ ik = q+k, and as ∈ Cjs(X) (s = 1, 2), bt ∈ Cit(X) (t = 1, . . . , k),

(δ0|C(k)′ − idAp ⊗ δ0|B(k))(a1 ⊗ b1 ⊗ · · · ⊗ bk ⊗ a2)

=


0 (j1 = 0)

(∆(a1)− a1 ⊗ 1)⊗ b1 ⊗ · · · ⊗ bk ⊗ a2 (j1 > 0).

Since ∆(a1)− a1 ⊗ 1 ∈
⊕

j<j1
Cj(X)⊗ Cj1−j(X), we have

(∆(a1)− a1 ⊗ 1)⊗ b1 ⊗ · · · ⊗ bk ⊗ a2 ∈ F̃p−1(C(X)⊗k+2)p+q+k.

This proves δ0|C(X)⊗k+2 − idAp ⊗ δ0|B(k) = 0 mod F̃p−1, and in the same way we can prove

δk+1|C(X)⊗k+2 − idAp ⊗ δk+1|B(k) = 0 mod F̃p−1.Thus we have proved

(
Ẽ0
p,∗, d

0
)
∼=

(∏
k≥0

Ap ⊗B(k)∗+k,
(
idAp ⊗ (∂B(k) + δ|B(k))

)
k≥0

)
. (2.3.5)

Now we need C
[1]
∗ (X, x). Since X is simply-connected, the inclusion C

[1]
∗ (X, x) ↪→ C∗(X)

is a quasi-isomorphism, and so is
∏

k≥0(C
[1](X, x)⊗k+2)∗+k ↪→

∏
k≥0(C(X)⊗k+2)∗+k. Let∏

k≥0C(k)
′
∗+k be the normalized subcomplex of

∏
k≥0(C

[1](X, x)⊗k+2)∗+k, i.e.

C(k)′∗+k := (C [1](X, x)⊗k+2)∗+k ∩
⋂

0≤i≤k−1 kerσi.

The inclusion
∏

k≥0C(k)
′
∗+k ↪→

∏
k≥0(C

[1](X, x)⊗k+2)∗+k is a quasi-isomorphism by [29,

Lemma 2.5]. Since C
[1]
0 (X, x) = R · (∆0 → {x}) has rank 1, from the definition of σi (2.3.1b),
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we have

(C
[1]
i0
(X, x)⊗ · · · ⊗ C [1]

ik+1
(X, x)) ∩

⋂
0≤i≤k−1 kerσi

=


C

[1]
i0
(X, x)⊗ · · · ⊗ C [1]

ik+1
(X, x) if ij > 0 (∀j ∈ {1, . . . , k}),

0 if ij = 0 (∃j ∈ {1, . . . , k}).
(2.3.6)

Moreover, C
[1]
1 (X, x) = 0 since the constant singular 1-chain ∆1 → {x} is degenerate. Thus

if 0 ̸= a0 ⊗ a1 ⊗ · · · ⊗ ak ⊗ ak+1 ∈ C(k)′, then deg ai ≥ 2 (1 ≤ ∀i ≤ k). This fact is crucial

and has the following consequences.

(i) Consider the restriction of {F̃p} to
∏

k≥0C(k)
′
∗+k. Then F̃q−kC(k)′q+k = C(k)′q+k.

Thus F̃q
∏

k≥0C(k)
′
q+k =

∏
k≥0C(k)

′
q+k, so the filtration on

∏
k≥0C(k)

′
∗+k is bounded.

Denote the associated convergent spectral sequence by {′Ẽr
p,q}.

(ii) C(k)′q+k = 0 whenever q + k < 2k, i.e. k > q. Thus
∏

k≥0C(k)
′
∗+k =

⊕
k≥0C(k)

′
∗+k.

Let B′
∗ =

∏
k≥0B(k)′∗+k be the normalized subcomplex of

∏
k≥0(R⊗C [1](X, x)⊗k⊗R)∗+k,

where R is identified with C
[1]
∗ ({x}, x). Explicitly,

B(k)′q+k =
⊕

i1+···+ik=q+k
i1,...,ik>0

R⊗ C [1]
i1
(X, x)⊗ · · · ⊗ C [1]

ik
(X, x)⊗R.

Then (B′
∗, ∂+δ) ↪→ (B∗, ∂+δ) is a quasi-isomorphism. Similarly, there are quasi-isomorphisms∏

k≥0Ap⊗B(k)′∗+k
≃
↪−→
∏

k≥0Ap⊗(R⊗C [1](X, x)⊗k⊗R)∗+k
≃
↪−→
∏

k≥0Ap⊗B(k)∗+k. By (2.3.5),

Ẽ1
p,q = Hq(E

0
p,∗, d

0) = Hq

(∏
k≥0

Ap ⊗B(k)∗+k, ∂ + δ

)
∼= Hq

(∏
k≥0

Ap ⊗B(k)′∗+k, ∂ + δ

)
.

For the same reason as (ii), we have B(k)′q+k = 0 whenever k > q, thus
∏

k≥0Ap⊗B(k)′∗+k =⊕
k≥0Ap ⊗B(k)′∗+k. Since Ap is a free R-module, we then have

Ẽ1
p,q
∼= Hq

(⊕
k≥0

Ap ⊗B(k)′∗+k, ∂ + δ

)
∼= Ap ⊗

⊕
k≥0

Hq

(
B(k)′∗+k, ∂ + δ

)
= Ap ⊗Hq(B

′
∗)
∼= Ap ⊗Hq(B∗),

Ẽ2
p,q
∼= Hp(A∗ ⊗Hq(B)) ∼= Hp

(
(C(X)⊗2)∗ ⊗Hq(C

LxX)
)
.
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Thus {Ẽr
p,q} is first-quadrant for r ≥ 1. Clearly Ẽ2

0,q = Hq(C
LxX). Since B(k)′k = 0 when

k > 0, we have H0(B∗, ∂ + δ) ∼= H0(B
′
∗, ∂ + δ) = H0(B(0)∗, ∂) = R, so Ẽ2

p,0 = Hp(C(X)⊗2).

Now we prove convergence of {Ẽr
p,q}. Recall (i) {′Ẽr

p,q} ⇒ Hp+q(
∏

k≥0C(k)
′
∗+k). Let

A′
p :=

⊕
j1+j2=p

C
[1]
j1
(X, x)⊗ C [1]

j2
(X, x). In the same way as calculating Er

p,q (r = 0, 1, 2), we

get (′Ẽ0
p,∗, d

0) =
(⊕

k≥0A
′
p ⊗B(k)′∗+k, ∂B + δB

)
, ′Ẽ1

p,q = A′
p⊗Hq(B

′
∗),

′Ẽ2
p,q = Hp(A

′
∗⊗Hq(B

′)).

Since Hq(B
′) = Hq(B) and A′

∗ ≃ A∗, by universal coefficient theorem, ′Ẽ2
p,q
∼= Ẽ2

p,q. This

isomorphism of E2-pages is induced by the inclusion
∏

k≥0C(k)′∗+k ↪→
∏

k≥0C(k)∗+k, so it also

induces ′Ẽr
p,q
∼= Ẽr

p,q (∀r ≥ 2). Thus {Ẽr
p,q} ⇒ Hp+q(

∏
k≥0C(k)

′
∗+k)
∼= Hp+q(

∏
k≥0C(k)∗+k).

By Proposition 2.3.1, Φ∗ : H∗(PX)→ H∗(C
P (X)) is an isomorphism, so the morphism

Φ∗ : {Er
p,q} → {Ẽr

p,q} induces an isomorphism E∞
p,q
∼= Ẽ∞

p,q for all p, q ≥ 0. By previous

calculation, Φ∗ also induces an isomorphism E2
p,0 = Hp(X ×X) ∼= Hp(C(X)⊗2) = Ẽ2

p,0 for

all p ≥ 0. Then by Zeeman’s comparison theorem ([41, Theorem 3.26]), Hq(LxX) ∼= E2
0,q
∼=

Ẽ2
0,q
∼= Hq(C

LxX) for all q ≥ 0. Here the conditions for applying [41, Theorem 3.26] are

satisfied because of the Universal Coefficient Theorem. The proof of Theorem 2.3.2 is now

complete.

2.4 Proof of the conjecture in general

Lemma 2.4.1. Let f : X → Y be a weak homotopy equivalence between topological spaces.

Then for each of X ∈ {P ,L,Px,x′ ,Lx}, Conjecture 2.2.1 is true for XX iff it is true for XY .

(Here Px,x′X corresponds to Pf(x),f(x′)Y .)

Proof. The fundamental groupoid Π1X is a fibration over X whose fiber at x ∈ X is the

universal cover X̃ of X based at x. If f : X → Y is a weak homotopy equivalence, so is the

map X̃ → Ỹ induced by f . Using the long exact sequence of homotopy groups induced by a

fibration we know Π1X is weakly homotopy equivalent to Π1Y . The space LkX is the pull

back of Π1(X)k+1 along certain diagonals in X2k+2, so LkX is weakly homotopy equivalent

to LkY . Recall that a weak homotopy equivalence induces isomorphisms of homology groups
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with arbitrary coefficients ([28, Proposition 4.21]). By a comparison argument ([49, Theorem

5.5.11]), f induces a quasi-isomorphism between CL
∗ (X) and CL

∗ (Y ). Similar arguments

show that f induces quasi-isomorphisms CX
∗ (X) ≃ CX

∗ (Y ) for other choices of X . On the

other hand, f : X → Y clearly induces a weak homotopy equivalence between PX ≃ X and

PY ≃ Y . Since there is a fibration Px,x′X ↪→ PX ↠ X×X (and similar for Y ), by comparing

the long exact sequences of homotopy groups induced by the fibrations, we see f induces

a weak homotopy equivalence between Px,x′X and Pf(x),f(x′)Y , and in particular, a weak

homotopy equivalence between LxX and Lf(x)Y . Since there is a fibration LxX ↪→ LX ↠ X,

the same argument shows f induces a weak homotopy equivalence between LX and LY . It

remains to verify commutativity of diagrams, which is straightforward.

Lemma 2.4.2. If Conjecture 2.2.1 for Lx0X is true (∃x0 ∈ X), then for Px,x′X (∀x, x′ ∈ X)

it is also true.

Proof. Suppose Conjecture 2.2.1 is true for Lx0X. Since X is path-connected, for any

x, x′ ∈ X, there exists γ : [0, 1]→ X such that γ(0) = x0, γ(
1
2
) = x, γ(1) = x′. Consider the

space X ∨ [0, 1] where 0 ∈ [0, 1] is glued to x0 ∈ Z. Then f = idX ∨ γ : X ∨ [0, 1]→ X is a

homotopy equivalence such that f(1
2
) = x, f(1) = x′. On the other hand, the quotient map

g : X ∨ [0, 1]→ X contracting [0, 1] is a homotopy equivalence such that g(1
2
) = g(1) = x0.

Applying Lemma 2.4.1 to X
f←− X ∨ [0, 1]

g−→ X finishes the proof.

Corollary 2.4.3. If X is simply-connected, then Conjecture 2.2.1 for Px,x′X is true.

Theorem 2.4.4. Conjecture 2.2.1 for LxX is true in general.

Proof. Let π : X̃ → X be the universal covering space of X based at x, and fix x̃ ∈ π−1(x).

There is a homeomorphism LxX ∼=
∐

α∈π1(X,x)Px̃,α·x̃X̃, so C∗(LxX) =
⊕

α∈π1(X,x)C∗(Px̃,α·x̃X̃).

Similarly, for each k ∈ Z≥0, there is a homeomorphism LkxX ∼=
∐

α∈π1(X,x)P
k
x̃,α·x̃X̃, and
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C∗(LkxX) =
⊕

α∈π1(X,x)C∗(Pkx̃,α·x̃X̃). Consider the following commutative diagram:⊕
α∈π1(X,x)

C∗(Px̃,α·x̃X̃)
⊕

α∈π1(X,x)

C
Px̃,α·x̃
∗ (X̃) =

⊕
α∈π1(X,x)

∏
k≥0

C∗+k(Pkx̃,α·x̃X̃)

C∗(LxX) CLx
∗ (X) =

∏
k≥0

⊕
α∈π1(X,x)

C∗+k(Pkx̃,α·x̃X̃).

⊕
α e∗◦Eξ

e∗◦Eξ

(2.4.1)

By Corollary 2.4.3, the upper horizontal map in (2.4.1) is a quasi-isomorphism. Therefore, in

order to prove the Conjecture for LxX, i.e. the lower horizontal map is a quasi-isomorphism,

it suffices to prove the right vertical map in (2.4.1) is a quasi-isomorphism.

By the proof of Lemma 2.4.2, for any α ∈ π1(X, x), there is a zig-zag of homotopy

equivalences

X̃
≃←− X̃ ∨ [0, 1]

≃−→ X̃ s.t. x̃ 7→1
2
7→ x̃, α · x̃ 7→1 7→ x̃.

Then by the proof of Lemma 2.4.1, there are zig-zags of quasi-isomorphisms

C∗(Px̃,α·x̃X̃)
≃←− C∗(P 1

2
,1(X̃ ∨ [0, 1]))

≃−→ C∗(Lx̃X̃),

C∗(Pkx̃,α·x̃X̃)
≃←− C∗(Pk1

2
,1
(X̃ ∨ [0, 1]))

≃−→ C∗(Lkx̃X̃), k ∈ Z≥0.

Thus there is a commutative diagram⊕
α∈π1(X,x)

∏
k≥0

C∗+k(Pkx̃,α·x̃X̃)
∏
k≥0

⊕
α∈π1(X,x)

C∗+k(Pkx̃,α·x̃X̃)

⊕
α∈π1(X,x)

∏
k≥0

C∗+k(Pk1
2
,1
(X̃ ∨ [0, 1]))

∏
k≥0

⊕
α∈π1(X,x)

C∗+k(Pk1
2
,1
(X̃ ∨ [0, 1]))

⊕
α∈π1(X,x)

∏
k≥0

C∗+k(Lkx̃X̃)
∏
k≥0

⊕
α∈π1(X,x)

C∗+k(Lkx̃X̃)

≃

≃

≃

≃

(2.4.2)

Since X̃ is simply-connected, Lkx̃X̃ = {x̃} × X̃k × {x̃}. So there are quasi-isomorphisms

C∗(Lkx̃X̃)
(2.3.4)−−−→

≃
(C({x̃})⊗ C(X̃)⊗k ⊗ C({x̃}))∗

≃←−↩ (C [1]({x̃}, x̃)⊗ C [1](X̃, x̃)⊗k ⊗ C [1]({x̃}, x̃))∗. (2.4.3)
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Let C
[1]
+ (X̃, x̃) ⊂ C [1](X̃, x̃) be the part in positive grading. Since C

[1]
1 (X̃, x̃) = 0 and

C
[1]
0 (X̃, x̃) = R, by a fact similar to (ii) in Theorem 2.3.2, the normalized subcomplexes of⊕

α∈π1(X,x)

∏
k≥0

(
C [1]({x̃}, x̃)⊗ C [1](X̃, x̃)⊗k ⊗ C [1]({x̃}, x̃)

)
∗+k

and ∏
k≥0

⊕
α∈π1(X,x)

(
C [1]({x̃}, x̃)⊗ C [1](X̃, x̃)⊗k ⊗ C [1]({x̃}, x̃)

)
∗+k

are both equal to ⊕
α∈π1(X,x)

⊕
k≥0

(
C [1]({x̃}, x̃)⊗ C [1]

+ (X̃, x̃)⊗k ⊗ C [1]({x̃}, x̃)
)
∗+k

.

Combining this with (2.4.3)(2.4.2)(2.4.1) finishes the proof.

Theorem 2.4.5. Conjecture 2.2.1 for LX is true in general.

Proof. Consider the fibration πL : LX → X, γ 7→ γ(0). Define an increasing filtration

{Fp}p≥0 on C∗(LX) by

Fp(Cn(LX)) :=
〈
σ : ∆n → LX | ∃i ≤ p, τ : ∆i → X, φ ∈ S(n, i)

s.t. πL ◦ σ = τ ◦ φ
〉
.

Then {Fp} is bounded, and the associated convergent spectral sequence {Er
p,q} is the Serre

spectral sequence of the fibration πL : LX → X. In particular,

E1
p,q =

⊕
σ∈Map(∆p,X)

Hq(Lσ(0)X), E2
p,q = Hp(X;Hq(LxX)),

where Hq(LxX) is the local system of groups Hq(LxX) on X induced by the fibration πL.

Recall the evaluation map (2.2.4):

evk0 : LkX → Xk+1, (c0, . . . , ck) 7→ s(c0).

Define a filtration {F̃p} on CL
∗ (X) by F̃p(CL

n (X)) :=
∏

k≥0 F̃pCn+k(LkX), where for each k,

F̃pCn+k(LkX) :=
〈
σ : ∆n+k → LkX | ∃i ≤ p, τ : ∆i → X, φ ∈ S(n+ k, i)

s.t. evk0 ◦ σ = τ ◦ φ
〉
.
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Let {Ẽr
p,q} be the associated spectral sequence. We claim that there is an isomorphism

Ẽ1
p,q = Hq

(
Ẽ0
p,∗, d

0
)
∼= Hq

∏
k≥0

⊕
σ∈Map(∆p,X)

C∗+k(Lkσ(0)X), ∂ + δ

 , ∀p, q, (2.4.4)

where σ(0) is (image of) the 0-th vertex of σ. Let us first construct maps that will be

proved to induce (2.4.4). For k ∈ Z≥0, σ ∈ Map(∆p, X), f ∈ Map(∆q+k,Lkσ(0)X), define

σ#f ∈ Map(∆p ×∆q+k,LkX) as follows. For u ∈ ∆p, let γu : [0, 1]→ ∆p, γu(t) := tu. Then

(σ ◦ γu)(0) = (σ ◦ γ−1
u )(1) = σ(0). For v ∈ ∆q+k, write f(v) = (c0(v), . . . , ck(v)). Then define

(σ#f)(u, v) :=
(
(σ ◦ γ−1

u ) ∗ c0(v), c1(v), . . . , ck−1(v), ck(v) ∗ (σ ◦ γu)
)
.

Let Sh(q + k, p) be the set of (q + k, p) shuffles (Definition 3.6.1). For any τ ∈ Sh(q + k, p),

there is an embedding

ιτ : ∆
p+q+k → ∆p ×∆q+k, (t1, . . . , tp+q+k) 7→ ((tτ(q+k+1), . . . , tτ(p+q+k)), (tτ(1), . . . , tτ(q+k))).

Now define an R-linear map (defined on generators)

ψk :
⊕

σ∈Map(∆p,X)

Cq+k(Lkσ(0)X)→ F̃pCp+q+k(LkX),

(σ, f) 7→
∑

τ∈Sh(q+k,p)

sgn(ετ ) · (σ#f) ◦ ιτ .

On the other hand, for each k ∈ Z≥0, there is an R-linear map

ϕk : F̃pCp+q+k(LkX)→
⊕

σ∈Map(∆p,X)

Cq+k(Lkσ(0)X)

(g : ∆p+q+k → LkX) 7→ (ev0 ◦ gq+k,...,p+q+k, g0,...,q+k).

Here g0,...,q+k is restriction of g to the simplex ∆q+k
0,...,q+k ⊂ ∆p+q+k spanned by vertices

0, . . . , q + k, and gq+k,...,p+q+k is obtained similarly. We need to show ϕk is well-defined,

i.e. g0,...,q+k(∆
q+k) ⊂ Lkσ(0)X where σ = ev0 ◦ gq+k,...,p+q+k. Since g ∈ F̃p, there exists i ≤ p,

τ : ∆i → X and φ ∈ S(p+q+k, i) such that ev0◦g = τ ◦φ. By abuse of notation, let j be the

j-th vetex in a simplex ∆n. If ϕk(g) ̸= 0, then ev0 ◦gq+k,...,p+q+k = τ ◦φ|∆p
q+k,...,p+q+k

: ∆p → X
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is nondegenerate, so i = p and φ(j + q + k) = j (0 ≤ ∀j ≤ p). Then since φ is order-

preserving on vertices, φ(j) = 0 for all 0 ≤ j ≤ q + k, and so φ|∆q+k
0,...,q+k

is constant. Thus

ev0 ◦ g0,...,q+k = τ ◦ φ|∆q+k
0,...,q+k

≡ (ev0 ◦ g)(q + k) = σ(0), as desired. The previous argument

also proves ϕk|F̃p−1
= 0. Thus we have defined R-linear maps

ψk :
⊕

σ∈Map(∆p,X)

Cq+k(Lkσ(0)X)→ F̃pCq+k(LkX)/F̃p−1Cq+k(LkX),

ϕk : F̃pCq+k(LkX)/F̃p−1Cq+k(LkX)→
⊕

σ∈Map(∆p,X)

Cq+k(Lkσ(0)X).

By [41, Lemma 5.23], ψk is a ∂-chain map. By [41, Lemma 5.25], ϕk is a ∂-chain map. By

[41, Lemma 5.24], ψk and ϕk are ∂-chain homotopy inverse to each other. Thus ϕk induces

an isomorphism⊕
σ∈Map(∆p,X)

H∗
(
C(Lkσ(0)X), ∂

) ∼= H∗

(
F̃pCq+k(LkX)/F̃p−1Cq+k(LkX), ∂

)
.

Moreover, it is clear from definition that (ϕk)k≥0 is a map of cosimplicial chain complexes.

Since Ẽ0
p,q =

∏
k≥0 F̃pCq+k(LkX)/F̃p−1Cq+k(LkX) and d0 is induced by ∂ + δ, we conclude

that (ϕk)k≥0 induces the isomorphism (2.4.4).

To calculate the RHS of (2.4.4), we proceed as follows. By the proof of Theorem 2.4.4,∏
k≥0

⊕
σ∈Map(∆p,X)

C∗+k(Lkσ(0)X) =
∏
k≥0

⊕
σ∈Map(∆p,X)

⊕
α∈π1(X,σ(0))

C∗+k(Pkx̃σ ,α·x̃σX̃σ),

where for σ ∈ Map(∆p, X), πσ : X̃σ → X is the universal covering space of X based at

σ(0), and x̃σ ∈ π−1
σ (σ(0)). Again, by similar arguments as the proof of Theorem 2.4.4 (use

simply-connectedness of X̃σ to pass from C∗(X̃σ) to C
[1]
∗ (X̃σ, x̃σ), use X̃σ ∨ [0, 1] to pass from

Pkx̃σ ,α·x̃σX̃σ to Lkx̃σX̃σ, use the normalized subcomplex of the total complex to pass from
∏

k

to
⊕

k), we can show the inclusion⊕
σ∈Map(∆p,X)

∏
k≥0

⊕
α∈π1(X,σ(0))

C∗+k(Pkx̃σ ,α·x̃σX̃σ) ↪→
∏
k≥0

⊕
σ∈Map(∆p,X)

⊕
α∈π1(X,σ(0))

C∗+k(Pkx̃σ ,α·x̃σX̃σ)

is a quasi-isomorphism, and {Ẽr
p,q} converges. Thus

Ẽ1
p,q = Hq

(
Ẽ0
p,∗, d

0
)
∼=

⊕
σ∈Map(∆p,X)

Hq

(
C

Lσ(0)
∗ (X), ∂ + δ

)
.
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By Theorem 2.4.4, the filtration-preserving chain map e∗ ◦ Eξ : C∗(LX)→ CL
∗ (X) induces

isomorphisms E1
p,q
∼= Ẽ1

p,q for all p, q. Then by classical comparison theorem ([49, Theorem

5.2.12]), e∗ ◦ Eξ induces an isomorphism H∗(LX) ∼= H∗(C
L(X)).

Remark 2.4.6. In the proof of Theorem 2.4.5, although (ϕk)k≥0 is a map of cosimplicial

complexes, (ψk)k≥0 does not seem to be a map of cosimplicial complexes. It seems not true

that ψk ◦ δ0 − δ0 ◦ ψk = 0 mod F̃p−1; the same problem occurs for δk.

2.5 Some remarks

First remark. For X = Lx, there is a concatenation map

conx : LkxX × Lk
′

x X → Lk+k
′

x X

((c0, . . . , ck), (c
′
0, . . . , c

′
k′)) 7→ (c0, . . . , ck−1, ck ∗ c′0, c′1, . . . , c′k′),

which induces a product operation on CLx
∗ (X) =

∏
k≥0C∗+k(LkxX):

(ak)k≥0 · (bk)k≥0 :=

( ∑
k1+k2=k

(conx)∗(ak1 × bk2)

)
k≥0

. (2.5.1)

It is clear that (CLx
∗ (X), ∂ + δ, ·) is a dg associative algebra. (Possibly there are some signs

in (2.5.1), but let us forget about it at the moment).

Let L̃xX be the based Moore loop space of X, then C∗(L̃xX) is a dg associative algebra

whose product is induced by concatenation of based Moore loops. Let {(L̃x)kX}k≥0 be the

cosimplicial space defined similar to {Lk+1M}k≥0 in Example 1.4.2(v). There are natural

maps (L̃x)kX → LkxX, and Theorem 2.2.1 holds when we use (L̃x)kX in place of LxX ×∆k.

Proposition 2.5.1. The quasi-isomorphism e∗ ◦ Eξ : C∗(L̃xX) → CLx
∗ (X) obtained by

Theorem 2.2.1 and Lemma 2.2.3 induces an isomorphism of homology groups as R-algebras.

Proof. If we choose ξk = 1 · (∆k id−→ ∆k) and handle signs in (2.5.1), then we may check

e∗◦Eξ : C∗(L̃xX)→ CLx
∗ (X) is a dg algebra map. Alternatively, for any choice of ξ (all choices
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of ξ are homologous in C∆
∗ (pt)), we can argue as follows. There is a dg algebra structure

on
∏

k≥0C∗+k((L̃x)kX) defined in the same way as CLx
∗ (X), and e∗ :

∏
k≥0C∗+k((L̃x)kX)→

CLx
∗ (X) is a dg algebra map. The quasi-isomorphism pr0 :

∏
k≥0C∗+k((L̃x)kX)→ C∗(L̃xX)

is clearly a dg algebra map. Since pr0 and Eξ are chain homotopy inverse to each other, we

get the conclusion.

Second remark. For X = L, one can define string topology operations on CL
∗ (X) as long

as the chain complex C∗ is good for transversality purposes. For example, C∗ may be the

(regular) de Rham chain complex defined by Irie [29] (see Section 1.4). See also Chapter 3.

Third remark. Let (M, g) be a Riemannian manifold, and consider piecewise smooth paths

and loops on M . For each of X ∈ {P ,L,Lx,Px,x′}, there is a length function l : XM → R≥0,

l(γ) :=
∫ 1

0
|γ̇(t)|gdt. For a ∈ R≥0 ∪ {∞}, define (XM)a := l−1([0, a]) ⊂ XM . Similarly,

Define a function l0 : Π1M → R≥0 by

l0(p, q, σ) := inf
{
l(γ)

∣∣ γ : [0, 1]→M, γ(0) = p, γ(1) = q, [γ] = σ
}
,

and for each k ∈ Z≥0, define a function lk : X kM → R≥0 by lk(c0, . . . , ck) := l0(c0 ∗ · · · ∗ ck).

For a ∈ R≥0 ∪ {∞}, define (X kM)a := l−1
k ([0, a]) ⊂ X kM . Then (X kM)a is a cosimplicial

subspace of X kM , and we have a cosimplicial chain complex C∗((X kM)a). Denote its total

complex by CX
∗ (M)a.

We have the following refined version of Conjecture 2.2.1.

Conjecture 2.5.2. For any a ∈ R≥0 ∪{∞}, and for all of X ∈ {P ,L,Lx,Px,x′}, the natural

map e∗ : C
∆
∗ (XM)a → CX

∗ (M)a is a quasi-isomorphism.

Conjecture 2.5.2 is open to the author. It seems that the proof of Theorem 2.2.1 presented

in this chapter does not work for Conjecture 2.5.2, even in the case M is simply-connected.

If Conjecture 2.5.2 is true, it might be useful in studying quantitative aspects of symplectic

geometry (e.g. symplectic capacities). Some work of Irie [31] is in this flavour.
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Chapter 3

Cyclic loop bracket and Fukaya A∞

algebra

3.1 Introduction

Let (M,ωM ) be a symplectic manifold which is closed or convex at infinity, and let L ⊂M be

an embedded Lagrangian submanifold which is connected, closed, oriented. Assume L ⊂M

is relatively spin ([18, Definition 1.6]) and fix a relative spin structure, which is used to orient

moduli spaces of pseudoholomorphic disks (D, ∂D)→ (M,L) ([18, Theorem 8.1.1]). These

are the standing assumptions of Fukaya-Oh-Ohta-Ono [18], where they rigorously constructed

the Lagrangian Floer theory of such (M,L):

• (Fukaya-Oh-Ohta-Ono [18]) There is a gapped filtered (homotopy-)unital A∞ algebra

structure m = {mk}k≥0 on a version of simplicial chain complex QXL of L with ΛQ
0,nov

coefficients, obtained by counting pseudoholomorphic disks (D, ∂D) → (M,L) with

mark points on ∂D. (ΛQ
0,nov is the Novikov ring over Q, see (3.4.2).) The homotopy

equivalence class of this filtered A∞ algebra is independent of choices of the almost

complex structure on (M,ωM) and virtual perturbations made in the construction.
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• (Fukaya [17]) Using differential forms Ω∗(L) in place of QXL in the construction, this

filtered A∞ algebra is cyclic (over R), and is unique up to pseudo-isotopy.

Fukaya-Oh-Ohta-Ono also studied the Lagrangian intersection Floer theory for a pair of

Lagrangian submanifolds, but the discussion in this chapter is restricted to a single L (and

so its Hamiltonian perturbations).

In [16], over R, Fukaya outlined another construction of the A∞ algebra associated to

L ⊂M , using the free loop space of L. Fukaya’s observation is that, every map u : (D, ∂D)→

(M,L) restricts to a loop u|∂D : S1 = ∂D → L, and if one copies this for moduli spaces of

pseudoholomorphic disks bounded by L, then one gets a chainM on LL, which is Maurer-

Cartan with respect to chain level loop bracket by disk bubbling (M being Maurer-Cartan

corresponds to the A∞ relations). Moreover,M should be S1-equivariant since S1 ⊂ Aut(D),

and is Maurer-Cartan with respect to chain level string bracket.

In order for Fukaya’s idea to work, one needs a chain complex C∗ such that H∗(C) ∼=

H∗(LL;R), or better a chain complex CS1
∗ such that H∗(C

S1) ∼= HS1
∗ (LL;R), such that the

following conditions are satisfied:

(i) Chain level loop bracket on C∗ / string bracket on CS1
∗ can be defined.

(ii) Definition of chains fit with geometry of holomorphic disks. Namely, one can really

define a chainM in C∗⊗̂Λ0,nov or CS1
∗ ⊗̂Λ0,nov from moduli spaces of pseudoholomoprhic

disks (D, ∂D)→ (M,L), andM satisfies the Maurer-Cartan equation.

(iii) There is a naturally defined chain map C∗ or CS1
∗ →

∏
k≥0Hom(C∗(L;R)⊗k, C∗(L;R))

which send Maurer-Cartan elements in C∗ or CS1
∗ to A∞ operations on C∗(L), where

C∗(L;R) is a suitable version of (co)chains on L over R.

In [29], Irie worked out details of (i)(iii) for C∗. In [30], Irie worked out details of (ii) and

then realized some applications outlined in [16], including a proof of Audin’s conjecture and

the classification of prime oriented (embedded) Lagrangian submanifolds in (C3, ωstd) up to
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diffeomorphism. Irie did not work in the S1-equivariant situation, and his motivation was not

to study the (cyclic) A∞ algebra of L.

The purpose of this chapter was initially to work out details of Fukaya’s proposal mentioned

above in the cyclic invariant setting, based on results of the previous two chapters. In

order to keep unity of all three chapters, we omit details corresponding to Step (ii) as

well as applications to the Lagrangian Floer theory of L in this thesis, but present details

corresponding to Steps (i)(iii). Details of Step (ii) will appear in the author’s future writings.

Let us state the outcome of Steps (i)(ii)(iii) altogether, though. Note that we obtain a

chain complex Ccyc
∗ such that H∗(C

cyc) ∼= GS1
∗ (LL) instead of HS1

∗ (LL).

• Moduli spaces of marked holomorphic disks (D, ∂D) → (M,L) push forward to a

gapped filtered elementM∈ Ccyc⊗̂Λ0,nov, which is Maurer-Cartan with respect to the

cyclic loop bracket: ∂M = {M,M}.

• There is a dg Lie algebra homomorphism Ccyc →
∏

k≥0Hom
cyc(Ω(L)⊗k,Ω(L)) sending

M to the gapped filtered cyclic A∞ deformation of (Ω∗(L), d,∧) defined by Fukaya-Oh-

Ohta-Ono [18] and Fukaya [17].

• The gauge equivalence class of M is independent of choices of the almost complex

structure on (M,ωM) and artificial choices (Kuranishi structures, CF perturbations,

etc.) made in the construction, which implies that the cyclic A∞ deformation of

(Ω∗(L), d,∧) induced byM is unique up to pseudo-isotopy.

Let us point out what (in addition to working in the cyclic invariant setting) is improved in

Step (ii) compared to what Irie did in [30].

• In [30], in order to handle families of disks and loops in a consistent way, starting from

moduli spaces of holomorphic disks, Irie first obtained maps to the continuous loop

space, then used a technical C0-approximation to obtain maps to the smooth loop

space. If we use the chain model in Chapter 2 (combine it with de Rham chains), then
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there is no need to care about smoothness of loops, and one only needs to care about

evaluation maps at mark points. Then there is no essential technical difficulty on the

loop space side. Thus the technical details to handle Step (ii) are greatly simplified.

• It becomes much easier to check the (cyclic) A∞ operations induced by M agrees

with the definition of Fukaya-Oh-Ohta-Ono, when there is not need to apply extra

C0-approximation to get smooth loops. (Irie did not do this.)

• We generalize the notion of de Rham chains to include plots that are maps from

manifolds with corners. This is not an essential improvement but is just a matter of

convenience for Step (ii), but it is also interesting and might be useful elsewhere.

Remark 3.1.1. We have worked out a cyclic invariant story, which at homology level

corresponds to the negative S1-equivariant homology of LL rather than the S1-equivariant

homology. This fits very well with cyclic A∞ algebras, and is better than the non-cyclic

invariant story in applications. However, a truly S1-equivariant story of the Lagrangian Floer

theory of L ⊂M with potential applications, as proposed by Fukaya [16], is still a mystery.

Outline

In Section 3.2, we introduce a version of de Rham chain complexes defined via manifolds

with corners. In Section 3.3, we combine results in Chapter 1 and Chapter 2 to present a

chain model for chain level string bracket (cyclic bracket) and iterated integrals, as well as

the [0, 1]-parameterized version. In Section 3.4, we review basics about (cyclic) A∞ algebras.

In Section 3.5, we establish the equivalence between pseudo-isotopy of (cyclic) A∞ algebras

and gauge equivalence of corresponding Maurer-Cartan elements in the (cyclic) Hochschild

cochain complex. In Section 3.6, we briefly discuss homological algebra of L∞ algebras that

is relavant to gauge equivalence of Maurer-Cartan elements.
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Conventions

Unless otherwise specified:

• (Algebraic structures, sign rule) The same as Chapter 1.

• (Orientations) We follows [20].
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3.2 de Rham chain complex via manifolds with corners

In Section 1.4, we reviewed Irie’s construction of the de Rham chain complex of differentiable

spaces, where smooth manifolds without boundary are utilized to define the de Rham chain

complex. To establish results in this chapter, it is most natural to include manifolds with

corners into the definition of plots, and we choose to do so. (This is also the original proposal

of Fukaya in [16], and it is tricky to make things rigorous.) For simplicity, we will not discuss

the general theory of differentiable spaces in this setting (which is straightforward but requires

more writing), but only present what we need. In order not to cause confusions, we will use

a different notation for de Rham chains (involving manifolds with corners) compared to the

notation in Section 1.4.

3.2.1 Some facts about manifolds with corners

Terminologies about (smooth) manifolds with corners in this chapter are adapted from [18].

Definition 3.2.1. Let P be a manifold with corners, and n = dimP .
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(i) (Corner structure stratification). For k ∈ {0, . . . , n}, let Sk(P ) be the closure of the

set of points in P whose neighborhoods are diffeomorphic to open neighborhoods of

0 in Rn−k × [0, 1)k. Clearly
◦
Sk(P ) := Sk(P ) \ Sk+1(P ) carries a structure of a smooth

manifold without boundary of dimension n− k, which is uniquely determined by the

structure of P .

(ii) (Charts of product type). For p ∈
◦
Sk(P ), we can choose a chart (Vp, ϕp) of P at p, such

that ϕp : Vp
∼=−→ [Vp]× [0, 1)k, ϕp(p) = (p̄, 0), where [Vp] is an open subset of Rn−k. For

simplicity, we may just write Vp = [Vp]× [0, 1)k when there is no risk of confusion.

Definition 3.2.2. Let P,Q be manifolds with corners, and f : Q→ P be a continuous map.

(i) (Smooth map). f is called a smooth map if for any q ∈ P , p = f(q) ∈ Q, there exists

ε > 0, charts of product type Vq = [Vq]× [0, 1)kq at q = (q̄, 0) and Vp = [Vp]× [0, 1)kp

at p = (p̄, 0), such that f(Vq) ⊂ Vp, and the restriction of f to Vq extends to a smooth

map (in the usual sense) from [Vq]× (−ε, 1)kq to [Vp]× (−ε, 1)kp .

(ii) (Corner stratified smooth map). f is called a corner stratified smooth map if for any

q ∈ Q, p = f(q) ∈ P , there exist charts of product type Vq = [Vq]× [0, 1)l+k at q = (q̄, 0)

and Vp = [Vp]× [0, 1)k at p = (p̄, 0), and a smooth map f̄q : Vq → [Vp], such that f is of

the form

f(x, (s1, . . . , sl, t1, . . . , tk)) =
(
f̄q(x, (s1, . . . , sl, t1, . . . , tk)), t1, . . . , tk

)
in coordinates x ∈ [Vq], (s1, . . . , sl) ∈ [0, 1)l, (t1, . . . , tk) ∈ [0, 1)k.

(iii) (Corner stratified submersion). f is called a corner stratified submersion if for any

q ∈ Q, p = f(q) ∈ P , there exist Vq = [Vq]× [0, 1)l+k, Vp = [Vp]× [0, 1)k, f̄q : Vq → [Vp]

which satisfy the conditions in (ii) and the following condition:

For any (t1, . . . , tk) ∈ [0, 1)k and i ∈ {0, . . . , l}, the map

[Vq]×
◦
Si([0, 1)

l)→ [Vp]; (x, (s1, . . . , sl)) 7→ f̄q(x, (s1, . . . , sl, t1, . . . , tk))
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is a submersion between smooth manifolds without boundary.

Note that if P has no boundaries or corners, then a corner stratified smooth map Q→ P

is the same as a smooth map Q→ P .

Lemma 3.2.3. Let f : Q → P be a corner stratified submersion between manifolds with

corners. Then for any q ∈ Q, p = f(q) ∈ P , there exist charts of product type Vq =

[Vq]× [0, 1)l+k at q = (q̄, 0) and Vp = [Vp]× [0, 1)k at p = (p̄, 0), and an open subset [Vq,p] of

Rdim[Vq ]−dim[Vp], such that [Vq] = [Vp]× [Vq,p], and that f is of the form

f(y, z, s, t) = (y, t)

in coordinates y ∈ [Vp] ⊂ Rdim[Vp], z ∈ [Vq,p] ⊂ Rdim[Vq ]−dim[Vp], s ∈ [0, 1)l, t ∈ [0, 1)k.

Proof. Choose charts as in Definition 3.2.2(iii), and assume [Vq] is precompact. Write

dim[Vp] = m, dim[Vq] = m + n. By definition, the map [Vq] → [Vp], x 7→ f̄q(x, 0, 0) is a

submersion. So there is ε ∈ (0, 1) such that for any (s, t) = (s1, . . . , sl, t1, . . . , tk) ∈ [0, ε)l+k,

the map [Vq]→ [Vp], x 7→ f̄q(x, s, t) is a submersion. By inverse function theorem, there is a

neighborhood Bq of q in Rm+n, a neighborhood Bp of p in Rm, and an open set [Uq,p] ⊂ Rn,

which depend on ε but are independent of (s, t) ∈ [0, ε)l × [0, ε)k, and diffeomorphisms

Φs,t : [Vq] ∩Bq

∼=−→ ([Vp] ∩Bp)× [Uq,p] ⊂ Rm × Rn

which depend smoothly on (s, t) ∈ [0, ε)l+k, such that

f̄q(·, s, t) ◦ Φ−1
s,t : ([Vp] ∩Bp)× [Uq,p]→ Rm

is the map (y, z) 7→ y. Then, the diffeomorphism

gq : ([Vp] ∩Bp)× [Uq,p]× [0, ε)l+k
∼=−→ ([Vq] ∩Bq)× [0, ε)l+k

(y, z, s, t) 7→ (Φ−1
s,t (y, z), s, t)

is a coordinate change on ([Vq] ∩Bq)× [0, ε)l+k, such that

(f ◦ gq)(y, z, s, t) = f(Φ−1
s,t (y, z), s, t) = (f̄q(Φ

−1
s,t (y, z), s, t), t) = (y, t).

Finally we rescale the coordinates on [0, ε)l+k, and the proof is complete.
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Definition 3.2.4 (Integration along the fiber). Let f : Q → P be a corner stratified

submersion between oriented manifolds with corners. Define a linear map f! : Ω
∗
c(Q) →

Ω∗+dimP−dimQ
c (P ) in the following way.

• For any q ∈ Q, p = f(q), choose charts Vq = [Vp]× [Vq,p]× [0, 1)l+k, Vp = [Vp]× [0, 1)k as

in Lemma 3.2.3. Let d = dim[Vp], y1, . . . , yd be coornidates on [Vp] ⊂ Rn, and t1, . . . , tk

be coordinates on [0, 1)k. If ω ∈ Ω∗
c(Q) is supported in Vq, then in the chosen charts, ω

can be uniquely written as

ω =
∑

|I|≤k,|J |≤d

dtI ∧ dyJ ∧ ωIJ ,

where I, J are multi-indices, and each ωIJ satisfies ωIJ(
∂
∂ti
, · · · ) = ωIJ(

∂
∂yj
, · · · ) = 0

(1 ≤ ∀i ≤ k, 1 ≤ ∀j ≤ d). Define

f!ω :=
∑

|I|≤k,|J |≤d

dtI ∧ dyJ ∧
∫
[Vq,p]×[0,1)l

ωIJ .

Then f!ω ∈ Ω∗+dimP−dimQ
c (P ) and f!ω is supported in Vp.

• In general, for ω ∈ Ω∗
c(Q), define f!ω by patching together local definitions with the aid

of a partition of unity on Q. The definition of f!ω does not depend on the choice of the

partition of unity.

Definition 3.2.5 (Normalized boundary). Let P be a manifold with corners. Define a

manifold with corners ∂P and a map π : ∂P → S1(P ) as follows.

For any p ∈
◦
Sk(P ), choose a chart of product type Vp = [Vp]× [0, 1)k at p = (p̄, 0), and

assume [Vp] is connected. Then

S1(Vp) =
⋃

1≤i≤k

[Vp]× [0, 1)i−1 × {0} × [0, 1)k−i.

Define

∂Vp :=
∐

1≤i≤k

[Vp]× [0, 1)i−1 × {0} × [0, 1)k−i,
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and define π|∂Vp : ∂Vp → S1(Vp) in the obvious way, so that the restriction of π|∂Vp

to each component of ∂Vp is the natural inclusion. The coordinate changes among

charts {Vp}p∈P restricts componentwise to coordinate changes among {∂Vp}p∈P , and

the charts ∂Vp (p ∈ P ) glue to be a manifold with corners, which is denoted by ∂P .

The map π : ∂P → S1(P ) has been defined locally.

We call ∂P the normalized boundary of P and π : ∂P → S1(P ) the normalization map.

The normalization map π : ∂P → S1(P ) induces a map
◦
Sk(∂P ) →

◦
Sk+1(P ) for each

k ≥ 0, which is a (k + 1)-fold covering map. The composition π : ∂P → S1(P ) ↪→ P is a

smooth map. If ω ∈ Ω∗(P ), denote

ω|∂P := π∗ω ∈ Ω∗(∂P ). (3.2.1)

If ω is compactly supported, so is ω|∂P .

Remark 3.2.6. If P is a manifold with boundary (without corners of codimension ≥ 2),

then ∂P agrees with the boundary of P in the usual sense. If S2(P ) ̸= ∅, then ∂P is not a

subset of P , and (3.2.1) is written by abuse of notation.

Lemma-Definition 3.2.7 (Decompositon of the normalized boundary with respect to a

corner stratified smooth map). Let f : Q → P be a corner stratified smooth map between

manifolds with corners. Then ∂Q = ∂vQ
∐
∂hQ, where ∂vQ, ∂hQ are manifolds with corners

which can be characterized locally in the following way.

For any q ∈ Q, p = f(q), choose charts Vq = [Vq]× [0, 1)l× [0, 1)k and Vp = [Vp]× [0, 1)k

as in Definition 3.2.2(ii). Then

Vq ∩ ∂vQ =
∐

1≤i≤k

[Vq]× [0, 1)l × [0, 1)i−1 × {0} × [0, 1)k−i,

Vq ∩ ∂hQ =
∐
1≤i≤l

[Vq]× [0, 1)i−1 × {0} × [0, 1)l−i × [0, 1)k.
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∂vQ, ∂hQ are called the horizonal and horizontal boundaries of Q (with respect to f),

respectively. The corner stratified smooth map f : Q→ P induces corner stratified smooth

maps

f |∂vQ : ∂vQ→ ∂P, f |∂hQ : ∂hQ→ P

in an obvious way. (The symbols f |∂vQ, f |∂hQ are abuse of notation.) In particular,

• If f is a corner stratified submersion, then so are f |∂vQ, f |∂hQ.

• If P is a manifold without boundary or corner, then ∂vQ = ∅ and ∂hQ = ∂Q.

Lemma 3.2.8. Let f : Q → P be a corner stratified submersion between manifolds with

corners. Then for any ω ∈ Ω∗
c(Q),

(f!ω)|∂P = (f |∂vQ)!(ω|∂vQ).

Proof. It suffices to prove it locally, which is obvious from definitions.

Lemma 3.2.9 (Stokes’ formula). Let f : Q→ P be a corner stratified submersion between

oriented manifolds with corners. Then

df!ω − f!dω = (−1)|ω|+dimQ(f |∂hQ)!(ω|∂hQ), ∀ω ∈ Ω∗
c(Q).

Proof. The proof is the same as Stokes’ theorem on oriented manifolds with boundary.

3.2.2 de Rham chain complex of manifolds without boundary via

manifolds with corners

Let

V :=
∐

n≥m≥0

Vn,m, (3.2.2)

where Vn,m is the set of oriented m-dimensional submanifolds (possibly with corners) of Rn.

Let N be an oriented manifold without boundary or corner. Define

P̄(N) := {(V, φ) | V ∈ V , φ : V → N is a smooth map}.
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For every n ∈ Z≥0, consider the vector space

⊕
(V,φ)∈P̄(N)

ΩdimV−n
c (V ). (3.2.3)

For any (V, φ) ∈ P̄(N) and ω ∈ ΩdimV−n
c (V ), denote by (V, φ, ω) the image of ω under the

natural inclusion ΩdimV−n
c (V ) ↪→ (3.2.3). Consider the subspace Zn of (3.2.3) generated by

{
(V, φ, π!ω)− (V ′, φ ◦ π, ω) | (V, φ) ∈ P̄(N), V ′ ∈ V , ω ∈ ΩdimV ′−n

c (V ′),

π : V ′ → V is a corner stratified submersion
}
.

Then define

C̄dR
n (N) :=

( ⊕
(V,φ)∈P̄(N)

ΩdimV−n
c (V )

)
/Zn.

We shall write the image of (V, φ, ω) in C̄dR
n (N) as [(V, φ, ω)].

Define a linear map ∂ : C̄dR
∗ (N)→ C̄dR

∗−1(N) on generators by

∂[(V, φ, ω)] := [(V, φ, dω)] + (−1)|ω|+dimV [(∂V, φ|∂V , ω|∂V )]. (3.2.4)

Lemma 3.2.10. ∂ : C̄dR
∗ (N)→ C̄dR

∗−1(N) in (3.2.4) is well-defined.

Proof. Consider a generator (V, φ, π!ω)− (V ′, φ ◦ π, ω) ∈ Zn. Then we check

[(V, φ, dπ!ω)] + (−1)|π!ω|+dimV [(∂V, φ|∂V , (π!ω)|∂V )]

= [(V, φ, π!dω + (−1)|ω|+dimV ′
(π|∂hV ′)!(ω|∂hV ′))] + (−1)|π!ω|+dimV [(∂V, φ|∂V , (π!ω)|∂V )]

= [(V ′, φ ◦ π, dω)] + (−1)|ω|+dimV ′
[(∂hV ′, φ ◦ π|∂hV ′ , ω|∂hV ′) + (∂vV ′, φ ◦ π|∂vV ′ , ω|∂vV ′)]

= [(V ′, φ ◦ π, dω)] + (−1)|ω|+dimV ′
[(∂V ′, φ ◦ π|∂V ′ , ω|∂V ′)],

where ∂hV ′, ∂vV ′ are said with respect to π : V ′ → V . The first equality follows from Lemma

3.2.9 (Stokes’ formula), and the second equality follows from Lemma 3.2.8.

Lemma 3.2.11. ∂ : C̄dR
∗ (N)→ C̄dR

∗−1(N) in (3.2.4) satisfies ∂2 = 0.
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Proof. By definition,

∂2[(V, φ, ω)]

= ∂[(V, φ, dω)] + (−1)|ω|+dimV ∂[(∂V, φ|∂V , ω|∂V )]

= [(∂V, φ|∂V , (−1)|dω|+dimV (dω)|∂V + (−1)|ω|+dimV d(ω|∂V ))] + [(∂2V, φ|∂2V , ω|∂2V )]

= [(∂2V, φ|∂2V , ω|∂2V )].

We claim there is an orientation-reversing diffeomorphism r : ∂2V → ∂2V such that

φ|∂2V ◦ r = φ|∂2V , r∗(ω|∂2V ) = ω|∂2V , r2 = id. (3.2.5)

The normalization map ∂(∂V )→ S1(∂V ) induces a diffeomorphism π1 :
◦
S0(∂

2V )
∼=−→

◦
S1(∂V ),

and the normalization map ∂V → S1(V ) induces a double covering map π2 :
◦
S1(∂V )→

◦
S2(V ).

Let r′ :
◦
S0(∂

2V )
∼=−→

◦
S0(∂

2V ) be the only nontrivial deck transformation over the covering map

π2 ◦ π1 :
◦
S0(∂

2V )→
◦
S2(V ). It is easy to see r′ extends to a diffeomorphism r : ∂2V

∼=−→ ∂2V

which is orientation-reversing and satisfies (3.2.5). Then we have

[(∂2V, φ|∂2V , ω|∂2V )] = [(∂2V, φ|∂2V ◦ r, ω|∂2V )]

= [(∂2V, φ|∂2V , r!(ω|∂2V ))] = −[(∂2V, φ|∂2V , ω|∂2V )],

which implies [(∂2V, φ|∂2V , ω|∂2V )] = 0.

We have proved (C̄dR
∗ (N), ∂) is a chain complex. Denote its homology by H̄dR

∗ (N). We

also need a transverse version of de Rham chain complex of M . Define

P̄(Nreg) := {(V, φ) | V ∈ V , φ : V → N is a corner stratified submersion}.

Using P̄(Nreg) in place of P̄(N), we can define a chain complex (C̄dR
∗ (Nreg), ∂) in the same

way as defininig (C̄dR
∗ (N), ∂). There is a natural chain map C̄dR

∗ (Nreg)→ C̄dR
∗ (N) induced

by the natural inclusion P̄(Nreg) ⊂ P̄(N).

Lemma 3.2.12. The natural map C̄dR
∗ (Nreg)→ C̄dR

∗ (N) is a quasi-isomorphism.
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Proof. The proof is the same as [29, Proposition 5.2]. We remark that in [29], de Rham chain

complexes CdR
∗ (N), CdR

∗ (Nreg) are defined using plots consisting of maps from manifolds

without boundary, while in this section, de Rham chain complexes C̄dR
∗ (N), C̄dR

∗ (Nreg) are

defined using plots consisting of maps from manifolds with corners. In order to apply the

proof of CdR
∗ (Nreg) ≃ CdR

∗ (N) ([29, Proposition 5.2]) to this lemma, it suffices to observe the

following obvious fact: If V is a manifold with corners, φ : V → N is smooth, φ(V ) ⊂ W ⊂ N ,

and F : N × RD → N is a smooth map such that for any x ∈ W , F |{x}×RD : RD → N is a

submersion, then F ◦ (φ× idRD) : V × RD → N is a corner stratified submersion.

Recall the definitions of P(N) and P(Nreg) from Example 1.4.2. There are natural

inclusions P(N) ⊂ P̄(N) and P(Nreg) ⊂ P̄(Nreg), which induce natural chain maps

CdR
∗ (N)→ C̄dR

∗ (N) and CdR
∗ (Nreg)→ C̄dR

∗ (Nreg).

Lemma 3.2.13. The natural map i : CdR
∗ (Nreg) → C̄dR

∗ (Nreg) is an isomorphism of chain

complexes. Moreover, (CdR
∗ (Nreg), ∂)

∼=−→ (C̄dR
∗ (Nreg), ∂)

∼=−→ (ΩdimN−∗
c (N), d).

Proof. There is a chain map

j : (C̄dR
∗ (Nreg), ∂)→ (ΩdimN−∗

c (N), d); [(V, φ, ω)] = [(N, idN , φ!ω)] 7→ φ!ω,

and a chain map

k : (ΩdimN−∗
c (N), d)→ (CdR

∗ (Nreg), ∂); ω 7→ [(N, idN , ω)].

It is clear that k ◦ j ◦ i = idCdR
∗ (Nreg), i ◦ k ◦ j = idC̄dR

∗ (Nreg), j ◦ i ◦ k = idΩdimN−∗
c (N).

Corollary 3.2.14. H̄dR
∗ (N) ∼= H̄dR

∗ (Nreg) ∼= HdR
∗ (Nreg) ∼= HdimN−∗

c,dR (N) ∼= H∗(N ;R).

3.3 Chain level string bracket and iterated integral of

differential forms

In this section, N is a closed oriented smooth manifold.
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3.3.1 Chain model of LN and cyclic loop bracket

Consider the cocyclic space {LkN}k≥0 (see Section 2.2). For each k, LkN is a smooth oriented

manifold of dimension (k + 1) · dimN . There are smooth evaluation maps

evki : LkN → N, (c0, . . . , ck) 7→ s(ci) (0 ≤ i ≤ k).

From Section 3.2.2, we have de Rham chain complexes (C̄dR
∗ (LkN), ∂) and (C̄dR

∗ ((LkN)reg), ∂).

Define

P̃(LkN) :=
{
(V, φ) ∈ P̄(LkN) | evki ◦ φ : V → N is a submersion (0 ≤ ∀i ≤ k)

}
.

Using P̃(LkN) in place of P̄(LkN) or P̄((LkN)reg), we can define a chain complex

(C̃dR
∗ (LkN), ∂) in the same way as defining C̄dR

∗ (LkN) or C̄dR
∗ ((LkN)reg). Similar to Lemma

3.2.12, we see the natural inclusions P̄((LkN)reg) ⊂ P̃(LkN) ⊂ P̄(LkN) induce natural

quasi-isomorphisms C̄dR
∗ ((LkN)reg) ≃ C̃dR

∗ (LkN) ≃ C̄dR
∗ (LkN).

Recall from Example 1.7.3 (Irie’s construction) that ((CdR
∗+dimN(L

N
k+1,reg), ∂))k≥0 is a ns

cyclic dg operad with a multiplication and a unit. In the same way, we can define a structure

of a ns cyclic dg operad on ((C̃dR
∗+dimN(LkN), ∂))k≥0, with a multiplication µ and a unit ε.

Let us spell out the structures below for clarity.

• For k ∈ Z≥1, k
′ ∈ Z≥0 and j ∈ {1, . . . , k}, there is a chain map

◦j : C̃dR
l+dimN(LkN)⊗ C̃dR

l′+dimN(Lk
′
N)→ C̃dR

l+l′+dimN(Lk+k
′−1N)

defined as follows. If x = [(V, φ, ω)] and x′ = [(V ′, φ′, ω′)], set φj := evkj ◦ φ and

φ′
0 := evk

′
0 ◦ φ′. Then

x ◦j x′ := (−1)l′(dimV−dimN)[(V ×(φj ,φ′
0)
V ′, conj ◦ (φj × φ′

0), ω × ω′)].

Here the fiber product V ×(φj ,φ′
0)
V ′ is a smooth manifold with corners since φj, φ

′
0 are
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corner stratified submersions to N , and conj is the concatenation map

conj : LkN×(evkj ,ev
k′
0 )L

k′N → Lk+k′−1N

((c0, . . . , ck),(c
′
0, . . . , c

′
k′))

7→


(c0, . . . , cj−2, cj−1 ∗ c′0, c′1, . . . , c′k′−1, c

′
k′ ∗ cj, . . . , ck) (k′ ≥ 1),

(c0, . . . , cj−2, cj−1 ∗ c′0 ∗ cj, cj+1, . . . , ck) (k′ = 0),

where cj−1 ∗ c′0 etc. are as in (2.2.1). The operations ◦j are associative (1.5.5).

• For each k ∈ Z≥0, τk : C̃
dR
∗+dimN(LkN)→ C̃dR

∗+dimN(LkN) is induced by (2.2.2).

• µ := [(N, i2, 1)] ∈ C̃dR
dimN(L

2N), ε := [(N, i0, 1)] ∈ C̃dR
dimN(L

0N). Here

ik : N → LkN ; p 7→ ([p], . . . , [p]), (3.3.1)

where [p] = (p, p, [constant path at p]) ∈ Π1N .

Lemma 3.3.1. There is a morphism of cyclic dg operads

Φ = (Φk)k≥0 : ((C
dR
∗+dimN(L

N
k+1,reg), ∂))k≥0 → ((C̃dR

∗+dimN(LkN), ∂))k≥0 (3.3.2)

which preserves multiplicatioins and units, and induces a quasi-isomorphism

Φ∗ :

(∏
k≥0

CdR
∗+k+dimN(L

N
k+1,reg), ∂ + δ

)
≃−→

(∏
k≥0

C̃dR
∗+k+dimN(LkN), ∂ + δ

)
.

Proof. The morphism (Φk)k≥0 is defined by

CdR
∗+dimN(L

N
k+1,reg)→ C̃dR

∗+dimN(LkN),

[(U,φ, ω)] ∈ 7→ [(U, ϕk ◦ φ, ω)],

where ϕk : L N
k+1,reg → LkN is the set-theoretic map (γi, Ti)0≤i≤k 7→ (γi(0), γi(Ti), [γi])0≤i≤k.

Clearly this morphism preserves µ and ε. The fact that Φ∗ is a quasi-isomorhism follows

from Theorem 2.2.1 and some commutative diagrams which we omit here.

89



Proposition-Definition 3.3.2 (Chain level loop bracket and cyclic loop bracket). There

are dg Lie algebras (CL,cyc
∗ (N), b, [, ]) ⊂ (CL

∗ (N), b, [, ]) whose bracket [, ] is of degree 1, where

CL
∗ (N) :=

∏
k≥0

C̃dR
∗ (LkN),

CL,cyc
∗ (N) :=

∏
k≥0

C̃dR,cyc
∗ (LkN),

C̃dR,cyc
∗ (LkN) := C̃dR

∗+dimN+k(LkN) ∩ ker(1− (−1)kτk),

and for x = (xk)k≥0, y = (yk)k≥0 in CL
∗ (N),

bx := ∂x+ δx = (∂xk + δxk−1)k≥0, (x−1 is vaccum)

(δx)k :=
∑
0≤i≤k

(−1)|x|+iδixk−1

= (−1)|x|µ ◦2 xk−1 +
∑
0<i<k

(−1)|x|+ixk−1 ◦i µ+ (−1)|x|+kµ ◦1 xk−1,

[x, y] := x ◦ y − (−1)(|x|−1)(|y|−1)y ◦ x,

(x ◦ y)k :=
∑

k1+k2=k+1
1≤i≤k1

(−1)(i−1)(k2−1)+(k1−1)(|y|+k2)xk1 ◦i yk2 .

There are isomorphisms

HL
∗ (N) := H∗(C

L
∗ (N), b) ∼= H∗+dimN(LN ;R),

HL,cyc
∗ (N) := H∗(C

L,cyc
∗ (N), b) ∼= GS1

∗+dimN(LN ;R),

where GS1
∗ is negative S1-equivariant homology (Example 1.2.10). Under these isomor-

phisms, [, ] corresponds to the loop bracket on H∗+dimN(LN ;R) and the string bracket on

GS1
∗+dimN(LN ;R) (Example 1.7.1, Lemma 1.7.2).

Proof. Direct consequences of Proposition 1.5.6, Example 1.7.3 and Lemma 3.3.1.

3.3.2 Model of [0, 1]×CL and [0, 1]×CL,cyc

For each k ∈ Z≥0, [0, 1]× LkN is an oriented manifold with boundary. For V ∈ V (3.2.2),

a map φ : V → [0, 1] × LkN and an interval I ⊂ R, we denote φ =: (φ[0,1], φL), and
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VI := φ−1
[0,1](I).

Fix ϵ0 ∈ (0, 1
4
). Let P [0,1]

ϵ0 (LkN) be the set consisting of tuples (V, φ, σ+, σ−) satisfying

the following conditions:

• V ∈ V , φ : V → [0, 1]× LkN is a corner stratified smooth map.

• (φ[0,1], ev
k
i ◦ φL) : V → [0, 1]×N is a corner stratified submersion (0 ≤ ∀i ≤ k).

• σ+ : V[1−ϵ0,1]
∼=−→ [1− ϵ0, 1]× V1 is a diffeomorphism such that

φ|V[1−ϵ0,1]
= (i[1−ϵ0,1] × φL|V1) ◦ σ+,

where i[1−ϵ0,1] : [1− ϵ0, 1]→ [0, 1] is the inclusion map.

• σ− : V[0,ϵ0]
∼=−→ [0, ϵ0]× V0 is a diffeomorphism such that

φ|V[0,ϵ0] = (i[0,ϵ0] × φL|V0) ◦ σ−,

where i[0,ϵ0] : [0, ϵ0]→ [0, 1] is the inclusion map.

For (V, φ, σ+, σ−) ∈P [0,1]
ϵ0 (LkN), define

A ∗
ϵ0
(V, φ, σ+, σ−) :=

{
ω ∈ Ω∗

c(V )
∣∣ ω|V[1−ϵ0,1]

= σ∗
+(1× ω|V1), ω|V[0,ϵ0] = σ∗

−(1× ω|V0)
}
.

For n ∈ Z≥0, define (we omit ϵ0 in the notation for C
dR,[0,1]
n (LkN) etc.)

CdR,[0,1]
n (LkN) :=

 ⊕
(V,φ)∈P

[0,1]
ϵ0

(LkN)

A dimV−n−1
ϵ0

(V, φ, σ+, σ−)

 /Z [0,1]
n ,

where Z
[0,1]
n is a subspace generated by vectors

(V, φ, σ+, σ−, ω)− (V ′, φ′, σ′
+, σ

′
−, ω

′)

such that there exists a corner stratified submersion π : U ′ → U satisfying

φ′ = φ ◦ π,

ω = π!ω
′,

σ+ ◦ π|V ′
[1−ϵ0,1]

= (id[1−ϵ0,1] × π|V ′
1
) ◦ σ′

+,

σ− ◦ π|V ′
[0,ϵ0]

= (id[0,ϵ0] × π|V ′
0
) ◦ σ′

−.
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For (V, φ) ∈ P [0,1](LkN), let ∂hV be the horizontal boundary of V with respect to φ

(Lemma-Definition 3.2.7). Define a linear map ∂ : C
dR,[0,1]
∗ (LkN)→ C

dR,[0,1]
∗−1 (LkN) by

∂[(V, φ, σ+, σ−, ω)] := [(V, φ, σ+, σ−, dω)]

+ (−1)|ω|+dimV [(∂hV, φ|∂hV , σ+|∂hV , σ−|∂hV , ω|∂hV )].

Note that here we take ∂hV instead of ∂V . Similar to Lemma 3.2.10 and Lemma 3.2.11, we

can prove ∂ : C
dR,[0,1]
∗ (LkN)→ C

dR,[0,1]
∗−1 (LkN) is well-defined and ∂2 = 0, so (C

dR,[0,1]
∗ (LkN), ∂)

is a chain complex. We omit details of the proof, but point out the following lemma which is

needed in the proof.

Lemma 3.3.3. Suppose X, Y, Z are oriented manifolds with corners, and f : X → Y ,

g : Y → Z are corner-stratified submersions. Let ∂h,fX be the horizontal boundary of X with

respect to f . Similarly, there are ∂v,fX, ∂h,gY , ∂v,gY , ∂h,g◦fX, ∂v,g◦fX. Then

∂h,g◦fX = ∂h,fX
∐

(∂v,fX ∩ ∂h,g◦fX).

There is a corner stratified submersion

f |∂v,fX∩∂h,g◦fX : ∂v,fX ∩ ∂h,g◦fX → ∂h,gY.

For any ω ∈ Ω∗
c(X), there holds

(f!ω)|∂h,gY = (f |∂v,fX∩∂h,g◦fX)!(ω|∂v,fX∩∂h,g◦fX).

There is an orientation-reversing diffeomorphism r : (∂h,g)2Y → (∂h,g)2Y such that

r2 = id, g|(∂h,g)2Y ◦ r = g|(∂h,g)2Y , r∗(η|(∂h,g)2Y ) = η|(∂h,g)2Y (∀η ∈ Ω∗(Y )).

Remark 3.3.4. Concerning psedoholomorphic disks (D, ∂D)→ (M,L), the appearance of

ϵ0 in the definition of C
dR,[0,1]
∗ (LkL) corresponds to choosing almost complex structures Jt

(t ∈ [0, 1]) on M such that Jt ≡ J0 for t ∈ [0, ϵ0] and Jt ≡ J1 for t ∈ [1 − ϵ0, 1]. The same

applies when choosing a [0, 1]-family of Kuranishi structures, CF perturbations, etc.

92



Similar to ((C̃dR
∗+dimN(LkN), ∂))k≥0, there is a structure of a ns cyclic dg operad on

((C
dR,[0,1]
∗+dimN(LkN), ∂))k≥0, with a multiplication µ[0,1] and a unit ε[0,1]:

• For k ∈ Z≥1, k
′ ∈ Z≥0 and j ∈ {1, . . . , k}, the partial composition chain map

◦j : CdR,[0,1]
l+dimN(L

kN)⊗ CdR,[0,1]
l′+dimN(L

k′N)→ C
dR,[0,1]
l+l′+dimN(L

k+k′−1N)

is defined as follows. For x = [(V, φ, σ+, σ−, ω)], x
′ = [(V ′, φ′, σ′

+, σ
′
−, ω

′)], set

φj := (φ[0,1], ev
k
j ◦ φL), φ′

j := (φ′
[0,1], ev

k′

0 ◦ φ′
L).

Then

x ◦j x′ := (−1)l′(dimV−dimN−1)[(V ×(φj ,φ′
0)
V ′, φ̃, σ̃+, σ̃−, ω × ω′)],

where φ̃ : V ×(φj ,φ′
0)
V ′ → [0, 1]× Lk+k′−1N is defined by

φ̃(v, v′) := (φ[0,1](v), conj(φL(v), φ
′
L(v

′))),

and σ̃+, σ̃− are defined as follows:

ρ+(v, v
′) := pr[1−ϵ0,1] ◦ σ+(v) = pr[1−ϵ0,1] ◦ σ

′
+(v

′),

σ̃+(v, v
′) := (ρ+(v, v

′), (prV1 ◦ σ+(v), prV1 ◦ σ
′
+(v

′))),

ρ−(v, v
′) := pr[0,ϵ0] ◦ σ−(v) = pr[0,ϵ0] ◦ σ

′
−(v

′),

σ̃−(v, v
′) := (ρ−(v, v

′), (prV0 ◦ σ−(v), prV0 ◦ σ
′
−(v

′))).

• For k ∈ Z≥0, τk : C
dR,[0,1]
∗+dimN(LkN)→ C

dR,[0,1]
∗+dimN(LkN) is induced by id[0,1] × (τk)LkN .

• µ[0,1] ∈ CdR,[0,1]
dimN (L2N), ε[0,1] ∈ CdR,[0,1]

dimN (L0N) are defined by

µ[0,1] := [([0, 1]×N, id[0,1] × i2, id[1−ϵ0,1]×N , id[0,ϵ0]×N , 1)],

ε[0,1] := [([0, 1]×N, id[0,1] × i0, id[1−ϵ0,1]×N , id[0,ϵ0]×N , 1)],

where ik : N → LkN (k = 2, 0) is the embedding (3.3.1).
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As a consequence, similar to Proposition-Definition 3.3.2, there are natural dg Lie algebra

structures (b, [, ]) on C
L,[0,1]
∗ (N) and C

L,[0,1],cyc
∗ (N), where

CL,[0,1]
∗ (N) :=

∏
k≥0

C
dR,[0,1]
∗+dimN+k(L

kN),

CL,[0,1],cyc
∗ (N) :=

∏
k≥0

C
dR,[0,1],cyc
∗+dimN+k(L

kN),

CdR,[0,1],cyc
∗ (LkN) := CdR,[0,1]

∗ (LkN) ∩ ker(1− (−1)kτk).

For any k ∈ Z≥0, there is a chain map

i(k) : C̃dR
∗ (LkN)→ CdR,[0,1]

∗ (LkN)

[(V, φ, ω)] 7→ [([0, 1]× V, id[0,1] × φ, id[1−ϵ0,1]×V , id[0,ϵ0]×V , 1× ω)],

and there are chain maps

e
(k)
+ , e

(k)
− : CdR,[0,1]

∗ (LkN)→ C̃dR
∗ (LkN)

e
(k)
+ : [(V, φ, σ+, σ−, ω)] 7→ [(V1, φ|V1 , ω|V1)],

e
(k)
− : [(V, φ, σ+, σ−, ω)] 7→ [(V0, φ|V0 , ω|V0)].

Clearly, (i(k))k≥0 and (e
(k)
± )k≥0 are morphisms of ns cyclic dg operads, and

i(2)(µ) = µ[0,1], i(0)(ε) = ε[0,1], e
(2)
± (µ[0,1]) = µ, e

(0)
± (ε[0,1]) = ε.

It follows that (i(k))k≥0, (e
(k)
± )k≥0 induce dg Lie algebra homomorphisms

i : CL
∗ (N)→ CL,[0,1]

∗ (N), CL,cyc
∗ (N)→ CL,cyc,[0,1]

∗ (N),

e± : CL,[0,1]
∗ (N)→ CL

∗ (N), CL,cyc,[0,1]
∗ (N)→ CL,cyc

∗ (N).

Clearly e± ◦ i = idCL
∗ (N) and e± ◦ i|CL,cyc

∗ (N) = idCL,cyc
∗ (N).

Lemma 3.3.5. (e+, e−) : C
L,[0,1]
∗ (N) → CL

∗ (N) ⊕ CL
∗ (N) is surjective. The same is true

when restricting to C
L,cyc,[0,1]
∗ (N).
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Proof. It suffices to show (e
(k)
+ , e

(k)
− ) : C

dR,[0,1]
∗ (LkN)→ C̃dR

∗ (LkN)⊕ C̃dR
∗ (LkN) is surjective

for all k. Let t be the coordinate function on [0, 1], and let ξ ∈ C∞([0, 1], [0, 1]) be a smooth

function such that ξ(t) = 1 for all t ∈ [0, ϵ0] and ξ(t) = 0 for all t ∈ [1−ϵ0, 1]. If x = [(V, φ, ω)]

is a generator of C̃dR
∗ (LkN), let

x̃ := [([0, 1]× V, id[0,1] × φ, id[1−ϵ0,1]×V , id[0,ϵ0]×V , ξ × ω)].

Then e+(x̃) = 0, e−(x̃) = x. Thus the image of (e+, e−) contains 0⊕ C̃dR,cyc
∗ (LkN). Similarly,

the image of (e+, e−) contains C̃
dR
∗ (LkN)⊕ 0. This completes the proof for C

L,[0,1]
∗ (N). The

same proof applies to C
L,cyc,[0,1]
∗ (N).

Lemma 3.3.6. i ◦ e± is chain homotopic to id
C

L,[0,1]
∗ (N)

. The same is true for C
L,cyc,[0,1]
∗ (N).

Proof. Since the chain complexes are over R, it suffices to prove (i ◦ e±)∗ = id
H

L,[0,1]
∗ (N)

. Since

e± ◦ i = idCL
∗ (N), it suffices to prove i, e± are quasi-isomorphisms, which is true if i(k), e

(k)
± are

quasi-isomorphisms for each k. By Remark 3.3.7, we can modify the proof of [30, Lemma 4.8]

to show that for each k, i(k) ◦ e(k)± is chain homotopic to id
C

dR,[0,1]
∗ (LkN)

. This completes the

proof for id
C

L,[0,1]
∗ (N)

. As for id
C

L,cyc,[0,1]
∗ (N)

, it suffices to prove i|CL,cyc
∗ (N), e±|CL,cyc,[0,1]

∗ (N)
are

quasi-isomorphisms, which follows from the result for i, e± and lemmas in Section 1.2.

Remark 3.3.7. The way we define C
dR,[0,1]
∗ (LkN) is equivalent to Irie’s ([30, Section 4.4]),

modulo that we have included manifolds with corners into the definition of de Rham chains.

Irie’s definition is to consider (U, ψ, τ+, τ−) where ψ : U → R×LkN , τ+ : U[1,∞)
∼= [1,∞)×U1,

τ− : U(−∞,0]
∼= (−∞, 0] × U0, instead of (V, φ, σ+, σ−). Let us denote C

dR,[0,1]
∗ (LkN) by C∗

and denote the chain complex defined by Irie (but in our manifolds-with-corners setting) by

C ′
∗. The advantage of Irie’s C ′

∗ is that one does not need to distinguish between horizontal

boundaries and vertical boundaries when taking the boundary operator, and it is easy to

construct corner stratified submersion to R×N (compared to [0, 1]×N). The advantage of

our C∗ is that it fits with geometric constructions in a straightforward way, as we will see in

later sections. In the following, we show C∗, C
′
∗ are chain homotopy equivalent.
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(i) Define a chain map f : C∗ → C ′
∗ as follows. Let (V, φ, σ+, σ−) ∈ P [0,1]

ϵ0 (LkN) and

ω ∈ Aϵ0(V, φ, σ+, σ−). We can glue [1,∞)×V1 to [1−ϵ0, 1]×V1 ⊂ V in the obvious way,

and extend ω to [1,∞)×V1 as 1×ω|V1 . Similarly we glue (−∞, 0]×V1 to V and extend

ω. Let U := ((−∞, 0]×V1)∪V ∪ ([1,∞)×V1), and define ψ = (ψR, ψL) : U → R×LkN

by

ψ|(−∞,0]×V1(t, x) = (t, φL(x)), ψ|[1,∞)×V1(t, x) = (t, φL(x)), ψ|V = φ.

Then (ψR, ev
k
i ◦ψL) is a corner stratified submersion. There are natural diffeomorphisms

τ+ : U[1,∞) := φ−1
R ([1,∞))

∼=−→ [1,∞)× U1, τ− : U(−∞,0]

∼=−→ (−∞, 0]× U0

such that ψ and ω̃ (the extension of ω) are of product forms in the obvious way on

U[1,∞), U(−∞,0] (via τ+, τ−). Then f([(V, φ, σ+, σ−, ω)]) := [(U, ψ, τ+, τ−, ω̃)].

(ii) Define a chain map g : C ′
∗ → C∗ as follows. Let U be a manifold with corners,

ψ : U → R×LkN be a smooth map such that (ψR, ev
k
i ◦ψL) : U → R×N (0 ≤ i ≤ k) is a

corner stratified submersion, and τ+ : U[1,∞)

∼=−→ [1,∞)×U1, τ− : U(−∞,0]

∼=−→ (−∞, 0]×U0,

such that ψ|U[1,∞)
, ψ|U(−∞,0]

are of product form in the above sense. Suppose ω ∈ Ω∗(U)

satisfies that ω|U[0,1]
is compactly supported, and ω|U[1,∞)

, ω|U(−∞,0]
are of product form

1× ω|U1 , 1× ω|U0 via τ+, τ−, respectively. Fix ξ ∈ C∞(R,R) which satisfies

ξ(t) = 1 (t ≤ ϵ0), ξ(t) = −1 (t ≥ 1− ϵ0), |ξ′(t)| < 1

ϵ0
(0 ≤ t ≤ 1).

Note that ξ exists because ϵ0 ∈ (0, 1
4
). Then the map λ : R → R, t 7→ t + ξ(t)ϵ0 is a

diffeomorphism which satisfies

λ(t) = t+ ϵ0 (t ≤ ϵ0), λ(t) = t− ϵ0 (t ≥ 1− ϵ0).
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We can define (V, φ, σ+, σ−) ∈P [0,1]
ϵ0 (LkN) and ω̄ ∈ Aϵ0(V, φ, σ+, σ−) by

V := U[−ϵ0,1+ϵ0]

φ := (λ ◦ ψR|U[−ϵ0,1+ϵ0]
, ψL|U[−ϵ0,1+ϵ0]

)

σ+ := (φ[0,1]|U[1,1+ϵ0]
, prU1

◦ τ+|U[1,1+ϵ0]
)

σ− := (φ[0,1]|U[−ϵ0,0]
, prU0

◦ τ−|U[−ϵ0,0]
)

ω̄ := ω|U[−ϵ0,1+ϵ0]
.

Then g([(U, ψ, τ+, τ−, ω)]) := [(V, ϕ, σ+, σ−, ω̄)].

Let us show f , g are chain homotopy inverse to each other. Fix χ ∈ C∞([0, 1], [0, 1]) which

satisfies χ(s) = 0 for s near 0 and χ(s) = 1 for s near 1. Define a smooth map

µ : [0, 1]× R→ R, (s, t) 7→ t+ χ(s)ξ(t)ϵ0.

Then µ0 = idR, µ1 = λ, and for any s ∈ [0, 1], µs := µ(s, ·) : R → R is a diffeomorphism

which satisfies

µs(t) = t+ χ(s)ϵ0 (t ≤ ϵ0), µs(t) = t− χ(s)ϵ0 (t ≥ 1− ϵ0).

If (V, φ, σ+, σ−) ∈ P [0,1]
ϵ0 (LkN) and ω ∈ Aϵ0(V, φ, σ+, σ−), denote [(V 1, φ1, σ1

+, σ
1
−, ω

1)] =

(g ◦ f)([(V, φ, σ+, σ−, ω))]) ∈ C∗, where V
1 = ([−ϵ0, 0] × V0) ∪ V ∪ ([0, ϵ0] × V1). For any

s ∈ [0, 1], we can define (V s, φs, σs+, σ
s
−) ∈ P [0,1]

ϵ0 (LkN) and ωs ∈ Aϵ0(V
s, φs, σs+, σ

s
−) in a

similar way, where V s = ([−χ(s)ϵ0, 0]× V0) ∪ V ∪ ([0, χ(s)ϵ0]× V1) and φs is defined using

µs. Let V := ∪s∈[0,1]V s, φ : V → [0, 1] × LkN , φ(s, x) := φs(x), and define σ+, σ−, ω in

the obvious way, so that [(V , φ, σ+, σ−, ω)] ∈ C∗+1. Define a linear map h : C∗ → C∗+1 by

h([(V, φ, σ+, σ−, ω)]) := [(V , φ, σ+, σ−, ω)]. Then we can check ∂ ◦ h + h ◦ ∂ = g ◦ f − idC∗ .

Similarly we can show f ◦ g ≃ idC′
∗ .

By Lemma 3.3.5 and Lemma 3.3.6, C
L,[0,1]
∗ (N) is a dg Lie algebra model of [0, 1]×CL

∗ (N),

and C
L,cyc,[0,1]
∗ (N) is a dg Lie algebra model of [0, 1]×CL,cyc

∗ (N), in the following sense.
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Definition 3.3.8. Let
(
B = {Bi}i∈Z, d, {, }

)
be a dg Lie algebra over R. A dg Lie algebra

model of [0, 1]×B is a dg Lie algebra B̃ together with dg Lie algebra homomorphisms

Incl : B → B̃, Evalt=0 : B̃ → B, Evalt=1 : B̃ → B

satisfying the following conditions:

• Evalt=0 ◦ Incl = Evalt=1 ◦ Incl = idB;

• Incl, Evalt=0, Evalt=1 are (co)chain homotopy equivalences;

• Evalt=0 ⊕ Evalt=1 : B̃ → B ⊕B is surjective.

3.3.3 Iterated integrals of differential forms parametrized by [0,1]

There is an iterated integral map

Jk : C̃
dR
∗+dimN(LkN)→ Hom−∗(Ω(N)⊗k,Ω(N)) (3.3.3)

Jk([(V, φ, ω)])(η1 ⊗ · · · ⊗ ηk) := (−1)(dimV−dimN)(|η1|+···+|ηk|)(φ0)!(ω ∧ φ∗
1η1 ∧ · · · ∧ φ∗

kηk),

which is defined in the same way as the map Ik : C
dR
∗+dimN (L

N
k+1,reg)→ Hom−∗(Ω(N)⊗k,Ω(N))

in (1.7.1). Clearly Jk ◦ Φk = Ik where Φk is the map (3.3.2).

For later purposes, we need to discuss smooth dependence of a linear map Ω(N)⊗k → Ω(N).

Let us make the following definition, which is motivated from [20, Definition 21.25].

Definition 3.3.9 (Smoothly extendable multi-linear maps).

(i) We say ψk ∈ Hom(Ω(N)⊗k,Ω(N)) is smoothly extendable, if for any smooth manifold S

and smooth sections η1, . . . , ηk ∈ Γ(S ×N, pr∗NΩN),

(s, x) 7→ ψk(i
∗
sη1 ⊗ · · · ⊗ i∗sηk)(x), (s, x) ∈ S ×N

is also an element in Γ(S ×N, pr∗NΩN). Here prN : S ×N → N is the projection onto

N , and is : N → S ×N is the embedding N ∼= {s} ×N ↪→ S ×N .
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(ii) We say φk ∈ Hom(Ω(N)⊗k,Ω([0, 1] × N)) is smoothly extendable, if for any smooth

manifold S and smooth sections η1, . . . , ηk ∈ Γ(S ×N, pr∗NΩN),

(s, t, x) 7→ φk(i
∗
sη1 ⊗ · · · ⊗ i∗sηk)(t, x), (s, t, x) ∈ S × [0, 1]×N

is an element in Γ(S × [0, 1] × N, pr∗[0,1]×NΩ[0,1]×N). Here pr[0,1]×N : S × [0, 1] × N →

[0, 1]×N and is : [0, 1]×N ↪→ S × [0, 1]×N are defined similar to (i).

The space of smoothly extendable linear maps Ω(N)⊗k → Ω(N) (resp. → Ω([0, 1]×N)) is

denoted by Hom⋄(Ω(N)⊗k,Ω(N)) (resp. Hom⋄(Ω(N)⊗k,Ω([0, 1]×N))).

Remark 3.3.10. It is clear that whether S has boundaries (corners) does not influence the

meaning of smooth extendability in Definition 3.3.9. Let us list some simple facts about

smooth extendability that will be useful later:

(i) For ψk ∈ Hom(Ω(N)⊗k,Ω(N)), ψk is smoothly extendable if and only if pr∗N ◦ ψk :

Ω(N)⊗k → Ω([0, 1]×N) is smoothly extendable.

(ii) If φk ∈ Hom⋄(Ω(N)⊗k,Ω([0, 1]×N)), then i∗t ◦φk ∈ Hom⋄(Ω(N)⊗k,Ω(N)) (∀t ∈ [0, 1]).

(iii) If φk ∈ Hom⋄(Ω(N)⊗k,Ω([0, 1]×N)), then for any η1, . . . , ηk ∈ Ω([0, 1]×N),

(
(t, x) 7→ φk(i

∗
tη1 ⊗ · · · ⊗ i∗tηk)(t, x)

)
∈ Ω([0, 1]×N).

Indeed, setting S = [0, 1], φk(i
∗
tη1 ⊗ · · · ⊗ i∗tηk)(t, x) is C∞ in (t, x) because it is the

pull-back of φk(i
∗
sη1 ⊗ · · · ⊗ i∗sηk)(t, x) via the smooth diagonal map

[0, 1]×N → [0, 1]2 ×N, (t, x) 7→ (t, t, x).

This fact is the main reason why we introduce such a notion of smooth extendability.

(iv) The exterior derivative d and the wedge product ∧ are smoothly extendable, and

End⋄Ω(N) := (Hom⋄(Ω(N)⊗k,Ω(N)))k≥0 is a dg sub-operad of EndΩ(N) (Example 1.5.3(i),

Example 1.5.9). Thus CH∗
⋄(Ω(N),Ω(N)) is a dg Lie subalgebra of CH∗(Ω(N),Ω(N)).
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Example 3.3.11. Suppose V is a smooth manifold with corners, ω ∈ Ωc(V ), f1, . . . , fk :

V → N are smooth maps, and (g, f0) : V → [0, 1] × N is a corner stratified submersion.

Define ψk : Ω(N)⊗k → Ω(N), φk : Ω(N)⊗k → Ω([0, 1]×N) by

φk(η1 ⊗ · · · ⊗ ηk) := (g, f0)!(ω ∧ f ∗
1 η1 ∧ · · · ∧ f ∗

kηk),

ψk(η1 ⊗ · · · ⊗ ηk) := (f0)!(ω ∧ f ∗
1 η1 ∧ · · · ∧ f ∗

kηk).

By looking at local expressions, it is easy to see φk, ψk are smoothly extendable.

By Lemma 1.7.5 and Lemma 3.3.1, the iterated integral maps (Jk)k≥0 (3.3.3) induce dg

Lie algebra homomorphisms

J = (Jk)k≥0 : CL
∗ (N)→ CH−∗(Ω(N),Ω(N)),

CL,cyc
∗ (N)→ CH−∗

cyc(Ω(N),Ω(N)),

where CH∗
cyc(Ω(N),Ω(N)) is the weakly cyclic subcomplex of CH∗(Ω(N),Ω(N)) with respect

to Poincaré pairing (Section 1.7). (Here and hereafter, we write CH−∗
cyc(Ω(N),Ω(N)) in place

of Θ−1(CH−∗
cyc(Ω(N),Ω(N)∨[− dimN ])) in Section 1.7.) By Example 3.3.11, we have

J(CL
∗ (N)) ⊂ CH−∗

⋄ (Ω(N),Ω(N)), J(CL,cyc
∗ (N)) ⊂ CH−∗

cyc,⋄(Ω(N),Ω(N)).

Similarly, we can define a linear map (using the same formula as J 3.3.3 except for signs)

J̃ : CL,[0,1]
∗ (N)→

∏
k≥0

Hom−∗−k
⋄ (Ω(N)⊗k,Ω([0, 1]×N))

which restricts to a linear map C
L,cyc,[0,1]
∗ (N)→

∏
k≥0Hom

−∗−k
cyc,⋄ (Ω(N)⊗k,Ω([0, 1]×N)).

In Section 3.5, we will see that
∏

k≥0Hom
∗−k
⋄ (Ω(N)⊗k,Ω([0, 1]×N)) carries a natural dg

Lie algebra structure, and it is a dg Lie algebra model of [0, 1] × CH∗
⋄(Ω(N),Ω(N)). The

same holds for the (weakly) cyclic invariant subcomplexes.

3.4 (Cyclic) A∞ algebras and (cyclic) A∞ deformations

Deformation problems (in characteristic zero) are in principle governed by dg Lie algebras

(or L∞ algebras) via solutions of Maurer-Cartan equation (modulo gauge equivalence), see
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for example [15]. Following this philosophy, in this subsection we discuss (cyclic) filtered

A∞ deformations of the de Rham dg algebra Ω(X) over the Novikov ring, and relate it to

iterated integrals of differential forms on chains on loop spaces.

We use the sign convention of Fukaya forA∞ algebras, namely transited from (de)suspension

(Appendix 1.8). ([18] does not use (1.8.1) to view dg algebras as A∞ algebras, but [20] does.)

3.4.1 Coderivations on the tensor coalgebra

We discuss R-vector spaces below, but everything extends to modules over a commutative

ring with unity. First recall that a graded vector space D = {Di}i∈Z is called a graded

coalgebra if there is a degree 0 linear map (called comultiplication) ∆ : D → D ⊗D which is

coassociative, namely (idD ⊗∆) ◦∆ = (∆ ⊗ idD) ◦∆. Let D be such a graded coalgebra.

Then one can define ∆n : D → D⊗(n+1) (n ∈ Z≥0) recursively by

∆0 := idD, ∆
n := (∆⊗ idD) ◦∆n−1.

A linear map ϵ : D0 → R is called a counit if (ϵ ⊗ idD) ◦∆ = idD = (idD ⊗ ϵ) ◦∆, and a

counit is unique if it exists. A coderivation of degree d is a linear map Φ : D∗ → D∗+d such

that ∆ ◦ Φ = (Φ ⊗ idD + idD ⊗ Φ) ◦∆, where Koszul sign rule is applied in Φ ⊗ idD and

idD ⊗Φ. The space of coderivations, Coder(D), is a graded Lie algebra under the Lie bracket

[, ] defined by

[Φ,Φ′] := Φ ◦ Φ′ − (−1)|Φ||Φ′|Φ′ ◦ Φ, Φ,Φ′ ∈ Coder(D). (3.4.1)

Let V = {V i}i∈Z be a graded vector space. Consider the tensor algebra of V :

T (V ) :=
∞⊕
k=0

V ⊗k, T+(V ) :=
∞⊕
k=1

V ⊗k,

where the grading is given on each component by |v1 ⊗ · · · ⊗ vk| = |v1|+ · · ·+ |vk|. There is

a graded coalgebra structure on T (V ) defined by

∆(v1 ⊗ · · · ⊗ vn) :=
n∑
k=0

(v1 ⊗ · · · ⊗ vk)⊗ (vk+1 ⊗ · · · ⊗ vn), ϵ : V 0 ↠ V ⊗0 ∼=−→ R,
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which also restricts to a graded coalgebra structure (without counit) on T+(V ).

There is a natural correspondence between Hom(T (V ), V ) and Coder(T (V )) as follows.

• For k ≥ 0, a graded linear map φk : V
⊗k → V can be extended to a coderivation φ̂k:

– If n ≥ k, φ̂k(v1 ⊗ · · · ⊗ vn) :=

n−k+1∑
i=1

(−1)|φk|(|v1|+···+|vi−1|)v1⊗· · ·⊗vi−1⊗φk(vi⊗· · ·⊗vi+k−1)⊗vi+k⊗· · ·⊗vn.

Here when k = 0, φk(vi ⊗ · · · ⊗ vi+k−1) simply means φ0(1).

– If n < k, φ̂k(v1 ⊗ · · · ⊗ vn) := 0.

• For any coderivation φ̂ on T (V ), denote its Hom(V ⊗k, V ) component by φk, then φ̂

can be recovered as φ̂ =
∑

k≥0 φ̂k. This is a finite sum when evaluating on T (V ).

By restricting to k ≥ 1, one also identifies Hom(T+(V ), V ) with Coder(T+(V )).

If there is a fixed graded skew-symmetric bilinear form ⟨, ⟩ on V , let Homcyc(V
⊗k, V ) be

the subspace of Hom(V ⊗k, V ) consisting of φk : V
⊗k → V such that

⟨φk(v1 ⊗ · · · ⊗ · · · ⊗ v0), vk+1⟩ = (−1)|v0|(|v1|+···+|vk|)⟨φk(v0 ⊗ v1 ⊗ · · · ⊗ · · · ⊗ vk−1), vk⟩.

We say φk ∈ Hom(V ⊗k, V ) is cyclic if it is in Homcyc(V
⊗k, V ), and denote the subspace of

cyclic linear maps in Hom(T (V ), V ) = Coder(T (V )) by Homcyc(T (V ), V ) = Codercyc(T (V )).

It is clear that Codercyc(T (V )) is closed under the bracket [, ] (3.4.1) on Coder(T (V )).

Let C = {Ci}i∈Z be a graded vector space, recall that C[1] = {C[1]i}i∈Z, C[1]i := Ci+1

(see Appendix 1.8). For simplicity we still denote sx ∈ C[1] by x, and to avoid ambiguity, we

shall write |x| for the original degree of x ∈ C, and write |x|′ for its degree considered in C[1],

so that |x|′ = |x| − 1. The degree of φk ∈ Hom(C[1]⊗k, C[1]) is then |φk|′ = |φk|+ k − 1. If

⟨, ⟩ is a graded symmetric bilinear form on C, define

⟨x, y⟩′ := (−1)|y|⟨x, y⟩.

Then ⟨x, y⟩′ is graded skew-symmetric if degrees of x, y are considered in C[1].
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Definition 3.4.1 (A∞ algebras and cyclic A∞ algebras).

(i) A structure of A∞ algebra on C is a sequence of linear maps {mk : C[1]
⊗k → C[1]}k≥0

of degree 1 such that the coderivation m̂ =
∑

k≥0 m̂k on (T (C[1]),∆) is a codifferential,

i.e. m̂m̂ = 0.

(ii) If a graded symmetric bilinear form ⟨, ⟩ on C is given, a structure of cyclic A∞ algebra

on (C, ⟨, ⟩) is a sequence of linear maps {mk : C[1]
⊗k → C[1]}k≥0 of degree 1 such that

(C, {mk}k≥0) is an A∞ algebra and mk is cyclic with respect to ⟨, ⟩′.

Remark 3.4.2. In Definition 3.4.1(ii), one usually requires ⟨, ⟩ to be nondegenerate. For

example, nondegeneracy of ⟨, ⟩ is needed in the construction of the canonical model of cyclic

filtered A∞ algebras in [17].

The condition m̂m̂ = 0 (A∞ relation) is equivalent to m ◦ m̂ = (m̂ ◦ m̂)|T (C[1])→C[1] = 0,

which explicitly says that for each n ≥ 0 and x1, . . . , xn ∈ C[1],

∑
k1+k2=n+1

1≤i≤k1

(−1)|x1|′+···+|xi−1|′mk1(x1 ⊗ · · · ⊗ xi−1 ⊗mk2(xi ⊗ · · · ⊗ xi+k2−1)⊗ · · · ⊗ xn) = 0.

We say an A∞ algebra (C, (mk)k≥0) is curved if m0 ̸= 0, and is strict (or uncurved) if

m0 = 0. In case C is strict, A∞ relation implies m1m1 = 0, so H(C,m1) is defined.

Example 3.4.3. Let (A, d, ·) be a dg algebra. In view of (1.8.1), let us define (mk)k≥0 by

m1(a) = da, m2(a⊗ b) = (−1)|a|a · b,

and mk = 0 for other k. Then it is easy to see (A,m1,m2) becomes an A∞ algebra. If ⟨, ⟩ is

a symmetric bilinear form on A, then (A,m1,m2, ⟨, ⟩) is a cyclic A∞ algebra if and only if

(A, d, ·, ⟨, ⟩) is a dg Frobenius algebra (1.5.9). In particular, if N is a closed oriented manifold,

then (Ω∗(N), d,∧, ⟨, ⟩N) is a cyclic A∞ algebra, where ⟨, ⟩N is the Poincaré pairing:

⟨ω, η⟩N :=

∫
N

ω ∧ η, ω, η ∈ Ω∗(N).
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Recall that for every graded Lie algebra (B, [, ]), each element x ∈ B gives rise to a

derivation adx := [x, ·] on B. If x has degree 1 and [x, x] = 0, then adxadx =
1
2
[adx, adx] =

1
2
ad[x,x] = 0, and (B, adx, [, ]) becomes a dg Lie algebra. If (C, (mk)k≥0) is an A∞ alge-

bra, then Coder(T (C[1])) is a graded Lie algebra, m̂ has degree 1 and [m̂, m̂] = 0, so

(Coder(T (C[1])), adm̂, [, ]) is a dg Lie algebra. Similarly, if (C, (mk)k≥0, ⟨, ⟩) is a cyclic A∞

algebra, then (Codercyc(T (C[1])), adm̂, [, ]) is a dg Lie algebra.

Definition 3.4.4 (Hochschild cochain complex of (cyclic) A∞ algebras).

(i) If (C,m) is an A∞ algebra, we call (Coder(T (C[1])), adm̂, [, ]) the Hochschild cochain

complex of (C,m), which is a dg Lie algebra.

(ii) If (C,m, ⟨, ⟩) is a cyclic A∞ algebra, we call (Coder(T (C[1])), adm̂, [, ]) the cyclic

Hochschild cochain complex of (C,m, ⟨, ⟩), which is a dg Lie algebra.

Example 3.4.5. Let (A,m1,m2) be a dg algebra as in Example 3.4.3. There are identifications

Coder(T (A[1])) ∼= Hom(T (A[1]), A[1]) =
∏
k≥0

Hom(A[1]⊗k, A[1]) ∼=
∏
k≥0

Hom(A⊗k[k], A[1])

φ̂ =
∑
k≥0

φ̂k ←→ φ = (φk)k≥0 ←→ sign change (1.8.1).

For homogeneous φ̂, ψ̂ ∈ Coder(T (A[1])),

(φ ◦ ψ̂)(a1 ⊗ · · · ⊗ ak)

=
∑

l+m=k+1
1≤i≤l

(−1)|ψm|′(|a1|′+···+|ai−1|′)φl(a1 ⊗ · · · ⊗ ψm(ai ⊗ · · · ⊗ ai+m−1)⊗ · · · ⊗ ak),

which up to sign is the same as operad composition in EndA (Example 1.5.3). Under sign

change (1.8.1), the commutator bracket [, ] on Coder(T (A[1])) coincides with Gerstenhaber

bracket (1.5.7b) on CH(A,A). Moreover, adm̂ := [m̂, ·] = [m̂1 + m̂2, ·] coincides with d − δ.

(Here it is d− δ instead of d+ δ because we use the sign convention of Irie [29] for Hochschild

differntial. See [29, Section 2.5.4] and the proof of Proposition 1.5.6: the operadic Maurer-

Cartan element ζ = (ζk)k≥0 is taken as ζ2 = −µ and ζk = 0 (k ̸= 2). If ζ is taken as ζ2 = µ

instead, then adm̂ corresponds to d+ δ).
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3.4.2 Deformation over the Novikov ring

Let R be a commutative ring with unity, the universal Novikov ring over R defined in [18] is

ΛR0,nov :=

{
∞∑
i=0

aiT
λieni

∣∣∣∣ ai ∈ R, λi ∈ R≥0, ni ∈ Z, lim
i→∞

λi =∞

}
, (3.4.2)

where T and e are formal generators such that deg T = 0, deg e = 2. Degree assumption

means that for any graded ΛR0,nov-module C = {Cm}m∈Z, it holds that T λenCm ⊂ Cm+2n.

Since e has even degree, it does not affect signs appearing in various formulae.

Since we always work with R = R, for simplicity let us write Λ0,nov in place of ΛR
0,nov.

Similarly define

Λnov :=

{
∞∑
i=0

aiT
λieni

∣∣∣∣ ai ∈ R, λi ∈ R, ni ∈ Z, lim
i→∞

λi =∞

}
,

Λ+
0,nov :=

{
∞∑
i=0

aiT
λieni

∣∣∣∣ ai ∈ R, λi ∈ R>0, ni ∈ Z, lim
i→∞

λi =∞

}
.

Then Λnov is the fraction field of Λ0,nov, and Λ+
0,nov ⊂ Λ0,nov is an ideal. There is a ring

isomorphism

Λ0,nov/Λ
+
0,nov
∼= R[e, e−1] =: Re,

and a splitting of R-algebras Λ0,nov = Λ+
0,nov ⊕Re.

There is a natural decreasing filtration on Λnov defined by

FλΛnov :=

{∑
i

aiT
λieni ∈ Λnov

∣∣∣∣ λi ≥ λ

}
, λ ∈ R,

which restricts to Λ0,nov,Λ
+
0,nov. A filtered Λ0,nov-module is a Λ0,nov-module C endowed with

a decreasing filtration Fλ, called energy filtration, such that FλΛ0,nov · Fλ
′
C ⊂ Fλ+λ′C and

that
⋂
λFλC = {0} (i.e. we assume the filtration is Hausdorff). Such filtration equips C

with a non-Archimedian norm and a metric

∥x∥ := exp
(
− sup{λ | x ∈ FλC}

)
, d(x, y) := ∥x− y∥. (3.4.3)

Λnov,Λ0,nov,Λ
+
0,nov are complete with respect to this metric.
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We will take completion of filtered Λ0,nov-modules when necessary, and the completion

of C is denoted by Ĉ. The completed tensor product of C,C ′ is written as C⊗̂Λ0,novC
′ :=

(C⊗Λ0,nov C
′)̂. There is a natural isomorphism C⊗̂Λ0,novC

′ ∼= Ĉ⊗̂Λ0,novĈ
′, so a finite completed

tensor product is defined without ambiguity.

We say a Λ0,nov-module homomorphism φ : C → C ′ is filtered if φ(FλC) ⊂ FλC ′ (∀λ),

or equivalently, its operator norm ∥φ∥ ≤ 1. Let Hom(C,C ′) be the Λ0,nov-module of filtered

homomorphisms C → C ′. It is easy to see Hom(C,C ′) is naturally filtered, and is complete

as long as C ′ is complete. For any C,C ′, Hom(C, Ĉ ′) = Hom(Ĉ, Ĉ ′).

Now let C = {Cm}m∈Z be a graded vector space, viewed as trivially filtered, i.e. F0C = C

and FλC = 0 (∀λ > 0). Then C ⊗ Λ0,nov inherits energy filtration from Λ0,nov. Write

C = {Cm}m∈Z = C⊗̂Λ0,nov, so that

Cm =

{
∞∑
i=0

ciT
λieni

∣∣∣∣ ci ∈ Cm−2ni
, λi ∈ R≥0, ni ∈ Z, lim

i→∞
λi =∞

}
.

Similar to T (V ) where V is a vector space, there is a structure of a graded filtered coalgebra

over Λ0,nov on the uncompleted tensor algebra T (C) =
⊕

k≥0C
⊗Λ0,nov

k, and there is an

identification Hom(T (C), C) = Coder(T (C)).

Let us recall the completed tensor algebra T̂ (C) defined in [18, Definition 3.2.16]. Let

C⊗̂Λ0,nov
k denote the k-fold completed tensor product of C, then T̂ (C) is defined as a completion

of
⊕

k≥0C
⊗̂Λ0,nov

k with respect to both energy filtration
⊕

k≥0Fλ(C
⊗̂Λ0,nov

k), λ ∈ R≥0 and

length filtration
⊕

k≥nC
⊗̂Λ0,nov

k, n ∈ Z≥0. Concretely,

T̂ (C) :=
{ ∞∑
k=0

xk formal sum | xk ∈ Fλk(C⊗̂Λ0,nov
k), lim

k→∞
λk =∞

}
.

The coalgebra structure on T (C) uniquely extends to a (formal) coalgebra structure on T̂ (C),

and every coderivation on T (C) uniquely extends to a formal coderivation on T̂ (C).

Definition 3.4.6 (Filtered A∞ algebras and cyclic filtered A∞ algebras).
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(i) A structure of filtered A∞ algebra on C = C⊗̂Λ0,nov is a sequence of degree 1 filtered

homomorphisms m =
{
mk : C[1]

⊗Λ0,nov
k → C[1]

}
k≥0

such that the following conditions

are satisfied:

• m̂ =
∑

k≥0 m̂k ∈ Coder(T (C[1]))1 is a codifferential, i.e. m̂m̂ = 0. (Equivalently,

m̂ ∈ Coder(T̂ (C[1]))1 is a formal codifferential.)

• There is a strict A∞ algebra structure m on C such that mk ≡ mk⊗idRe mod Λ+
0,nov

on C[1]⊗k ⊗Re for each k ≥ 0. In case k = 0 this says m0 : Λ0,nov → C[1] satisfies

m0(1) ∈ Fλ0C[1] for some λ0 > 0.

(ii) Fix a symmetric bilinear form ⟨, ⟩ on C, which extends in the obvious way to a Λ0,nov-

valued symmetric bilinear form on C = C⊗̂Λ0,nov. A structure of cyclic filtered A∞

algebra on C is a sequence of degree 1 filtered homomorphisms m =
{
mk : C[1]⊗Λ0,nov

k →

C[1]
}
k≥0

such that (C,m) is a filtered A∞ algebra, and mk is cyclic with respect to ⟨, ⟩′.

(Equivalently, m̂ ∈ Codercyc(T̂ (C[1]))
1 is a formal codifferential.)

From now on, we call a strict A∞ algebra over R an unfiltered A∞ algebra.

Definition 3.4.7 (Filtered A∞ deformations and cyclic filtered A∞ deformations).

(i) Let (C,m) be an unfiltered A∞ algebra. A filtered A∞ deformation of (C,m) over Λ0,nov

is a filtered A∞ algebra structure m on C = C⊗̂Λ0,nov satisfying Definition 3.4.6(i).

(ii) Let (C,m, ⟨, ⟩) be cyclic unfiltered A∞ algebra. A cyclic filtered A∞ deformation of

(C,m, ⟨, ⟩) over Λ0,nov is a cyclic filtered A∞ algebra structure m on (C = C⊗̂Λ0,nov, ⟨, ⟩)

satisfying Definition 3.4.6(ii).

Remark 3.4.8. (i) Our definition of filtered A∞ deformations is narrower than [18, Defi-

nition 3.2.34]. Namely, we insist on the same underlying unfiltered A∞ algebra (C,m)

rather than a weak homotopy equivalent one as [18, Definition 3.2.34] did.
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(ii) Filtered A∞ algebras can be described by T (C[1]) without using T̂ (C[1]). But the

introduction of T̂ (C[1]) is natural, which makes it possible to interpret filtered A∞

homomorphisms (Definition 3.5.1) as morphisms between formal coalgebras.

We want to use dg Lie algebra formalism to describe filtered A∞ deformations (c.f. [13]).

Let (C,m) be an unfiltered A∞ algebra and C = C⊗̂Λ0,nov. For each k ≥ 0, there is an

obvious map Coder(T (C[1])) → Hom(C[1]⊗k, C[1]) → Hom(C[1]⊗Λ0,nov
k, C[1]) , inducing

Coder(T (C[1]))⊗̂Λ0,nov → Hom(C[1]⊗Λ0,nov
k, C[1]) since the latter is complete. Thus we

obtain a natural map Coder(T (C[1]))⊗̂Λ0,nov → Coder(T (C[1])), which is easily seen to be an

embedding of dg Lie algebras: (Coder(T (C[1]))⊗̂Λ0,nov, adm̂, [, ]) ⊂ (Coder(T (C[1])), adm̂, [, ]).

We say a filteredA∞ deformation (C,m) of (C,m) is uniform if m̂ ∈ Coder(T (C[1]))⊗̂Λ0,nov.

For example, gapped filtered A∞ deformations, defined below, are uniform.

Consider the additive monoid R≥0 × 2Z. Let E, µ be projection onto its two factors.

Definition 3.4.9. A discrete submonoid G ⊂ R≥0 × 2Z is a submonoid satisfying

• E(G) ⊂ R≥0 is discrete.

• G ∩ ({0} × 2Z) = {(0, 0)}, and G ∩ ({λ} × 2Z) is a finite set for any λ > 0.

Definition 3.4.10. A (cyclic) filtered A∞ deformation (C,m) of (C,m) is called gapped (and

G-gapped if we want to specify G) if there is a discrete submonoid G ⊂ R≥0 × 2Z, and a

sequence of linear maps
{
mk,β : C[1]⊗k → C[1]

}
k≥0

for each β ∈ G, such that

mk =
∑
β∈G

TE(β)e
µ(β)
2 mk,β.

Notice that by definition mk,(0,0) = mk. An unfiltered A∞ algebra is trivially gapped.

Let
(
B = {Bi}i∈Z, d, {, }

)
be a dg Lie algebra over R, and let B = B⊗̂Λ0,nov be its trivial

extension over Λ0,nov. To be consistent with L∞ language (Definition 3.6.15), we only consider

Maurer-Cartan elements with norm (3.4.3) less than 1. Thus we set

MC(B) := {x ∈ (B⊗̂Λ+
0,nov)

1 | dx− 1

2
{x, x} = 0}.
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Definition 3.4.11. x ∈ MC(B) is called gapped (and G-gapped to specify G) if there is a

discrete submonoid G ⊂ R≥0 × 2Z, and xβ ∈ B
1−µ(β)

for each β ∈ G, such that

x =
∑
β∈G

TE(β)e
µ(β)
2 xβ.

Denote the set of G-gapped Maurer-Cartan elements in B by MCG(B). Notice that by

definition, x(0,0) = 0 for any x ∈ MCG(B).

Remark 3.4.12. If G ⊂ G′, then G-gappedness implies G′-gappedness. Thus if there are

finitely many elements that are gapped for different Gi, we can take a large common G so that

everything is G-gapped. This applies not only to gapped filtered A∞ algebras and gapped

Maurer-Cartan elements, but also to gapped filtered A∞ homomorphisms (Definition 3.5.1).

Lemma 3.4.13. There are bijections

{uniform filtered A∞ deformations of (C,m)} ↔ MC
(
Coder(T (C[1]))⊗̂Λ0,nov, adm̂, [, ]

)
,

{G-gapped filtered A∞ deformations of (C,m)} ↔ MCG

(
Coder(T (C[1]))⊗̂Λ0,nov, adm̂, [, ]

)
.

Similar results hold for (uniform / G-gapped) cyclic filtered A∞ deformations.

Proof. Since Λ0,nov = Re ⊕ Λ+
0,nov, m̂ ∈ (Coder(T (C[1]))⊗̂Λ0,nov)

1 can be uniquely written as

m̂ = m̂− n̂, n̂ ∈ (Coder(T (C[1]))⊗̂Λ+
0,nov)

1.

One readily checks that A∞ relation m̂m̂ = 0 is equivalent to m̂n̂ + n̂m̂ − n̂n̂ = 0, or say,

adm̂n̂−
1
2
[n̂, n̂] = 0. Then the desired bijection is simply m̂↔ n̂. Clearly m̂ is G-gapped iff n̂

is G-gapped. If m is cyclic, then m̂ is cyclic iff n̂ is cyclic.

Remark 3.4.14. In the above we are using the usual (unshifted, cohomological) grading of a

dg Lie algebra, so Maurer-Cartan elements are of degree 1. If grading is shifted (or opposite),

then Maurer-Cartan elements are of a shifted (or opposite) degree.
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3.5 “Pseudo-isotopy = gauge equivalence”

The purpose of this section is to establish equivalence between the following two notions

(whose definitions will be given), which enhances the 1-1 correspondence in Lemma 3.4.13:

• Pseudo-isotopy of (cyclic) filtered A∞ deformations of an A∞ algebra.

• Gauge equivalence of Maurer-Carten elements in the (cyclic) Hochschild cochain complex

of the A∞ algebra.

In Sections 3.5.1,3.5.2, we collect some materials from [17, 18], and there is nothing new.

In Section 3.5.3, we collect some materials from [17, 18, 20], and prove the main result.

Before discussing (cyclic) A∞ algebras, let us introduce some notations.

Let (D,∆), (D′,∆′) be graded coalgebras, a linear map F : D → D′ is called a coalgebra

homomorphism if ∆′ ◦ F = (F ⊗ F ) ◦∆. Fix such an F ∈ Hom((D,∆), (D′,∆′)), then the

space of coderivations with respect to F , denoted by Coder(D,D′;F ), consists of linear maps

Φ : D → D′ such that ∆′ ◦ Φ = (Φ⊗ F + F ⊗ Φ) ◦∆.

Let V ,W be graded vector spaces, then every f = (fk)k≥1 ∈
∏

k≥1Hom(V
⊗k
,W ) can be

uniquely extended to a coalgebra homomorphism

f̂ :=
∑
m≥1

(⊗mf) ◦∆m−1 ∈ Hom((T+(V ),∆), (T+(W ),∆)).

This assignment identifies Hom(T+(V ),W ) with Hom((T+(V ),∆), (T+(W ),∆)). Fix such an

f̂ , then every φ = (φk)k≥0 ∈
∏

k≥0Hom(V
⊗k
,W ) can be uniquely extended to

φ̂ := (f̂ ⊗ φ⊗ f̂) ◦∆2 ∈ Coder(T (V ), T (W ); f̂). (3.5.1)

This assignment identifies Hom(T (V ),W ) with Coder(T (V ), T (W ); f̂) ([18, Lemma 4.4.43]).

Let V = V ⊗̂Λ0,nov,W = W ⊗̂Λ0,nov, then each f = (fk)k≥0 ∈
∏

k≥0Hom(V ⊗Λ0,nov
k,W )
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with ∥f0∥ < 1 can be uniquely extended to a (formal) filtered coalgebra homomorphism

f̂ :=
∑
m≥0

(⊗mf) ◦∆m−1 : T̂ (V )→ T̂ (W ) (3.5.2)

f̂(v1 ⊗ · · · ⊗ vn) :=
∑

k1+···+km=n
m≥0, kj≥0

(−1)εfk1(v1 ⊗ · · · ⊗ vk1)⊗ · · · ⊗ fkm(vn−km+1 ⊗ · · · ⊗ vn),

where (−1)ε is Koszul sign. Notice that (3.5.2) converges in T̂ (W ) since ∥f0∥ < 1, ∥fk∥ ≤ 1.

Here fkj(. . . ) means f0(1) if kj = 0, so in particular f̂(1) = 1 + f0(1) + f0(1)⊗ f0(1) + · · ·

(this is the only place that m = 0 in (3.5.2) makes sense).

3.5.1 (Cyclic) A∞ homomorphisms

Definition 3.5.1. Let (C,m), (C
′
,m′) be unfiltered A∞ algebras, and let (C,m), (C ′,m′) be

filtered A∞ algebras that are filtered A∞ deformations of C, C
′
, respectively.

(i) An (unfiltered) A∞ homomorphism from (C,m) to (C
′
,m′) is a sequence of degree 0

linear maps f = {fk : C[1]⊗k → C
′
[1]}k≥1 such that m̂′ ◦ f̂ = f̂ ◦ m̂.

(ii) A (filtered) A∞ homomorphism from (C,m) to (C ′,m′) is a sequence of degree 0 filtered

homomorphisms f = {fk : C[1]⊗Λ0,nov
k → C ′[1]}k≥0 such that ∥f0∥ < 1, m̂′ ◦ f̂ = f̂◦m̂, and

f ≡ f⊗ idRe mod Λ+
0,nov for some unfiltered A∞ homomorphism f : (C,m)→ (C

′
,m′).

(iii) An A∞ homomorphism f is called strict if f0 = 0, and is called linear if fk = 0 (∀k ̸= 1).

(iv) A filtered A∞ homomorphism f : (C,m)→ (C ′,m′) is called gapped (or G-gapped to spec-

ifyG), if there is a discrete submonoidG (Definition 3.4.9) and fk,β ∈ Hom
(
C[1]⊗k, C

′
[1]
)

(k ≥ 0, β ∈ G), such that C,C ′ are G-gapped and fk =
∑

β∈G T
E(β)e

µ(β)
2 fk,β.

The condition m̂′ ◦ f̂ = f̂ ◦ m̂ is equivalent to m′ ◦ f̂ = f ◦ m̂, namely for each n ≥ 0 and
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x1, . . . , xn ∈ C[1],

∑
r≥0

k1+···+kr=n

m′
r(fk1(x1 ⊗ · · · ⊗ xk1)⊗ · · · ⊗ fkr(xn−kr+1 ⊗ · · · ⊗ xn))

=
∑

l1+l2=n+1
1≤i≤l1

(−1)|x1|′+···+|xi−1|′fl1(x1 ⊗ · · · ⊗ xi−1 ⊗ml2(xi ⊗ · · · ⊗ xi+l2−1)⊗ · · · ⊗ xn).

Definition 3.5.2. Let (C,m, ⟨, ⟩C), (C ′,m′, ⟨, ⟩C′) be G-gapped cyclic filtered A∞ algebras.

A G-gapped filtered A∞ homomorphism f : C → C ′ is called cyclic if

⟨f1,(0,0)(x1), f1,(0,0)(x2)⟩C′ = ⟨x1, x2⟩C

for all x1, x2 ∈ C, and

∑
β1+β2=β

∑
k1+k2=k

⟨fk1,β1(x1 ⊗ · · · ⊗ xk1), fk2,β2(xk1+1 ⊗ · · · ⊗ xk)⟩C = 0

for all (k, β) ̸= (2, (0, 0)) and x1, . . . , xk ∈ C.

Definition 3.5.3. (i) The A∞ composition f2 ◦ f1 =
(
(f2 ◦ f1)k

)
of A∞ homomorphisms

f1, f2 is given by composition of corresponding coalgebra homomorphisms. It is easy to

see if f1, f2 are cyclic, then f2 ◦ f1 is cyclic.

(ii) An A∞ homomorphism is an A∞ isomorphism if it is invertible with respect to A∞

composition. It is easy to see if f is cyclic and invertible, then f−1 is also cyclic.

The following lemma is used in [18, Proposition 5.4.5].

Lemma 3.5.4. Let f : C → C ′ be a G-gapped filtered A∞ homomorphism. The following are

equivalent:

(i) f : C → C ′ is a filtered A∞ isomorphism;

(ii) f : C → C
′
is an unfiltered A∞ isomorphism;

(iii) f1 : C[1]→ C ′[1] is a filtered Λ0,nov-module isomorphism;
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(iv) f1 = f1,(0,0) : C[1]→ C
′
[1] is a vector space isomorphism.

Proof. “(i)⇒ (ii)⇒ (iv)” and “(iii)⇒ (iv)” are obvious, so it suffices to prove “(iv)⇒ (i),(iii)”.

We shall make induction on energy filtration, so let us write E(G) = {E0 = 0, E1, E2, . . . }

where each Ei < Ei+1, and for any G-gapped element x = {xk,β} write

xk =
∑
β∈G

TE(β)e
µ(β)
2 xk,β =

∑
i≥0

TEixk,i, xk,i :=
∑

β∈G,E(β)=Ei

e
µ(β)
2 xk,β.

Notice that in particular xk,0 = xk,(0,0) since G ∩ ({0} × 2Z) = {(0, 0)}.

To prove “(iv)⇒ (iii)”, define g′1,i inductively on i by g
′
1,0 = f−1

1,0 and g′1,i = −
∑

p<i,Ep+Eq=Ei
g′1,p◦

f1,q ◦ f−1
1,0 for i > 0. Then g′1 =

∑
i≥0 T

Eig′1,i satisfies

g′1 ◦ f1 =
∑
i≥0

TEi

∑
Ep+Eq=Ei

g′1,p ◦ f1,q = idC[1].

In the same way there exists f′1 such that f′1 ◦ g′1 = idC′[1], so f1 = f′1 = (g′1)
−1 and f1 is an

isomorphism.

To prove “(iv) ⇒ (i)”, first define a strict total order on Z2
≥0 by (k, i) < (k′, i′) iff i < i′

or i = i′, k < k′, then define gk,i inductively on (k, i) by g0,0 = 0, g1,0 = f−1
1,0 and

gk,i = −
∑

(l,i0)<(k,i)

∑
k1+···+kl=k

Ei0
+···+Eil

=Ei

gl,i0 ◦ (fk1,i1 ⊗ · · · ⊗ fkl,il) ◦ (f−1
1,0)

⊗k

for (k, i) > (1, 0). Let g = (gk)k≥0 =
∑

i≥0 T
Ei(gk,i)k≥0, then

(g ◦ f̂)|
C[1]

⊗̂Λ0,nov
k =

∑
i≥0

TEi

∑
l≥0

∑
k1+···+kl=k

Ei0
+···+Eil

=Ei

gl,i0 ◦ (fk1,i1 ⊗ · · · ⊗ fkl,il)

satisfies (g ◦ f̂)|C[1] = idC[1] and (g ◦ f̂)|
C[1]

⊗̂Λ0,nov
k = 0 for 1 ̸= k ≥ 0, so ĝ ◦ f̂ = idT̂ (C[1]). In the

same way there exists f′ such that f̂′◦ĝ = idT̂ (C′[1]), so f = f′ = g−1 as coalgebra homomorphisms.

Since f is an A∞ homomorphism, so is g, and thus f is an A∞ isomorphism.

Remark 3.5.5. In general g′1 = f−1
1 ̸= (f−1)1 = g1, since g1 contains terms from f0.
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3.5.2 Homotopy equivalence of A∞ algebras

Let (C,m) be an unfiltered A∞ algebra, and let (C,m) be a gapped filtered A∞ deformation

of (C,m).

Definition 3.5.6. A gapped filtered A∞ algebra (C̃, m̃) together with gapped filtered A∞

homomorphisms

Incl : (C,m)→ (C̃, m̃), Evalt=0 : (C̃, m̃)→ (C,m), Evalt=1 : (C̃, m̃)→ (C,m)

is said to be an (A∞ algebra) model of [0, 1]× C if the following holds:

• Incl, Evalt=0, Evalt=1 are linear A∞ homomorphisms;

• Evalt=0 ◦ Incl = Evalt=1 ◦ Incl = idC ;

• The underlying unfiltered maps Incl1, (Evalt=0)1, (Evalt=1)1 are cochain homotopy

equivalences between the underlying unfiltered cochain complexes (C,m1), (C̃, m̃1);

• (Evalt=0)1 ⊕ (Evalt=1)1 : C̃ → C ⊕ C is surjective.

The notion of a model of [0, 1]× C is similar.

Remark 3.5.7. (i) Over a field, for example over R in our setting, a quasi-isomorphism

between cochain complexes must be a cochain homotopy equivalence.

(ii) The gapping condition is crucial in the proof of Lemma 3.5.12 and Proposition 3.5.14.

Example 3.5.8. Let A0([0, 1]) be a linear subspace of the space of absolutely continuous

functions on [0, 1], which contains all constant functions and is closed under differentiation,

integration and multiplication. We further assume that there exists u(t) ∈ A0([0, 1]) such

that u(0) ̸= u(1). For example, A0([0, 1]) can be taken as the space of (piecewise) polynomial

or (piecewise) smooth functions on [0, 1]. Then

A([0, 1]) = A0([0, 1])⊕A1([0, 1]) :=
{
a(t) + b(t)dt | a(t), b(t) ∈ A0([0, 1])

}
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admits a dg algebra structure (d,∧) defined in the usual way. Consider the dg algebra

embedding (R, 0, ·) ι
↪−→ (A([0, 1]), d,∧) given by inclusion of constant functions, and the

evaluation map A([0, 1])
et0−→ R sending a(t) + b(t)dt to a(t0). It is very easy to see(

A([0, 1]), (d,∧), ι, e0, e1
)
is a model of [0, 1] × R. We remark that the surjectivity of

e0 ⊕ e1 : A([0, 1])→ R⊕ R comes from the existence of u(t).

If (C,m) is a gapped filtered A∞ algebra, there is a gapped filtered A∞ structure m̃ on

(A([0, 1])⊗ C)⊗̂Λ0,nov defined in a natural way. In order to define m̃, it suffices to look at

elements in A([0, 1])⊗ C[1] of the form aj(t) · xj + bj(t)dt · yj, j = 1, . . . , k.

• For k = 0, m̃0 is the composition

Λ0,nov
m0−→ C[1] = (C⊗̂Λ0,nov)[1] ⊂ ((A([0, 1])⊗ C)⊗̂Λ0,nov)[1];

• For k = 1, m̃1 = d⊗ idC[1] + idA([0,1]) ⊗m1, namely

m̃1(a1(t) · x1 + b1(t)dt · y1) :=
∂a1(t)

∂t
dt · x1 + a1(t) ·m1(x1)− b1(t)dt ·m1(y1);

• For k ≥ 2, m̃k is A([0, 1])-linear extension of mk, namely

m̃k((a1(t) · x1 + b1(t)dt · y1)⊗ · · · ⊗ (ak(t) · xk + bk(t)dt · yk))

:= a1(t) · · · ak(t) ·mk(x1 ⊗ · · · ⊗ xk)

+
k∑
j=1

(−1)|x1|′+···+|xj−1|′+1a1(t) · · · bj(t) · · · ak(t)dt ·mk(x1 ⊗ · · · ⊗ yj ⊗ · · · ⊗ xk).

By [18, Lemma 4.2.13], m̃ satisfies A∞ relation. (See Example 3.6.6 for an alternative

proof.) Next, let Incl1 : C[1] → ((A([0, 1]) ⊗ C)⊗̂Λ0,nov)[1] be obvious inclusion, and

(Evalt=t0)1 : ((A([0, 1])⊗ C)⊗̂Λ0,nov)[1]→ C[1], a(t) · x+ b(t)dt · y 7→ a(t0) · x be evaluation

at t = t0 ∈ [0, 1], then(
(A([0, 1])⊗ C)⊗̂Λ0,nov, m̃, Incl,Evalt=0,Evalt=1

)
is a model of [0, 1]×C ([18, Definition-Proposition 4.2.15]). We remark that Incl1 is a cochain

homotopy equivalence simply because Incl1 = ι ⊗ idC[1] and ι : (R, 0) ↪→ (A([0, 1]), d) is a

cochain homotopy equivalence. This gives an alternative proof of [18, Lemma 4.2.16].
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In the same way, we see
(
A([0, 1])⊗ C, m̃, Incl,Evalt=0,Evalt=1

)
is a model of [0, 1]× C.

Example 3.5.9. Consider (C,m) = (Ω(N), d,∧), where N is a smooth manifold. Let

prN : [0, 1]×N → N , (t, x) 7→ x be projection onto N and it0 : N → [0, 1]×N , x 7→ (t0, x)

be embedding of N at t = t0, then(
C̃, m̃, Incl,Evalt=0,Evalt=1

)
=
(
Ω([0, 1]×N), (d,∧), pr∗N , i∗0, i∗1

)
is a model of [0, 1]×Ω(N). Choose A([0, 1]) = Ω([0, 1]), then Ω([0, 1])⊗Ω(N) is also a model of

[0, 1]×Ω(N) by Example 3.5.8. Notice that there is a decomposition of (R[1, dt],∧)-modules:

Ω([0, 1]×N) = Γ([0, 1]×N, pr∗NΩN)⊕ dt ∧ Γ([0, 1]×N, pr∗NΩN)

η = α + dt ∧ γ, α, γ ∈ Γ([0, 1]×N, pr∗NΩN). (3.5.3)

Therefore the obvious dg algebra inclusion Ω([0, 1]) ⊗ Ω(N) ↪→ Ω([0, 1] × N) induces a

commutative diagram:

Ω(N)

Ω([0, 1])⊗ Ω(N) Ω([0, 1]×N)

Ω(N)

Incl

pr∗N

idΩ(N)

Evalt=t0

i∗t0

In this sense these two models of [0, 1]× Ω(N) are naturally consistent with each other.

Remark 3.5.10. In Example 3.5.8, 3.5.9, signs can be taken in the following two ways,

which are equivalent after sign change (1.8.1). In both ways, Koszul sign rule is applied when

commuting A([0, 1]) with C.

• (Our choice.) Suspended sign for C and unsuspended sign for A([0, 1]), which leads to

suspended sign for C̃. Likewise, suspended sign for Ω(N),Ω([0, 1]×N) and unsuspended

sign for Ω([0, 1]). This choice is convenient for general A∞ algebras.

• Unsuspended sign for everything, which is convenient for dg algebras like Example 3.5.9
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Definition 3.5.11. Let C,C ′ be gapped filtered A∞ algebras and f, g : C → C ′ be gapped

filtered A∞ homomorphisms. Let C̃ ′ be a model of [0, 1]× C ′. We say f is homotopic to g in

C̃ ′ and write f ≃C̃′ g, if there exists a gapped filtered A∞ homomorphism h : C → C̃ ′ such

that Evalt=0 ◦ h = f, Evalt=1 ◦ h = g.

Lemma 3.5.12. ([18, Lemma 4.2.36, Proposition 4.2.37]) ≃C̃′ is independent of choices of

the model C̃ ′ of [0, 1]× C ′, giving an equivalence relation ≃ on the set of gapped filtered A∞

homomorphisms from C to C ′.

Definition 3.5.13. Let C,C ′ be gapped filtered A∞ algebras.

(i) A gapped filtered A∞ homomorphism f : C → C ′ is called a homotopy equivalence if

there exists a gapped filtered A∞ homomorphism g : C ′ → C such that f ◦ g and g ◦ f

are homotopic to identity.

(ii) A gapped filtered A∞ homomorphism f : C → C ′ is called a weak homotopy equivalence

if f1 : (C,m1)→ (C
′
,m′

1) is a quasi-isomorphism.

(iii) C,C ′ are (weakly) homotopy equivalent if there exists a (weak) homotopy equivalence

between them.

(Weak) homotopy equivalence between unfiltered A∞ algebras is defined similarly.

The following important result is a homotopical counterpart of Lemma 3.5.4, and is an

algebraic analogue of the classical Whitehead theorem in topology.

Proposition 3.5.14. ([18, Theorem 4.2.45]) A weak homotopy equivalence between gapped

filtered A∞ algebras is a homotopy equivalence.

3.5.3 Pseudo-isotopy of (cyclic) A∞ algebras

In this subsection, N is a closed oriented smooth manifold, and (Ω∗(N), d,∧, ⟨, ⟩N) is the

cyclic A∞ algebra in Example 3.4.3.
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The following definition is adapted from [17, Definition 8.5] and [20, Definition 21.25].

In order to make things clear, we introduce two versions (algebraic version and smooth

version) of pseudo-isotopy of (cyclic) filtered A∞ algebras, and use a different notion of

smooth dependence compared to [17][20].

Definition 3.5.15. Suppose (C,m) is a (cyclic) unfiltered A∞ algebra, G is a discrete

submonoid of R≥0 × Z.

(i) We say a family of linear maps

{
mt
k,β ∈ Hom1−µ(β)(C[1]⊗k, C[1]), ctk,β ∈ Hom−µ(β)(C[1]⊗k, C[1])

}t∈[0,1]
k∈Z≥0,β∈G

is an algebraic pseudo-isotopy of G-gapped (cyclic) filtered A∞ deformations of m

(between m0,m1) if:

(a) For x1, . . . , xk ∈ C[1], the assignments

t 7→ mt
k,β(x1 ⊗ · · · ⊗ xk), t 7→ ctk,β(x1 ⊗ · · · ⊗ xk)

are elements in A0([0, 1])⊗ C[1]. Here A([0, 1]) is as in Example 3.5.8.

(b) mt = {mt
k,β} is a G-gapped (cyclic) filtered A∞ deformation of m (∀t ∈ [0, 1]).

(c) ctk,(0,0) = 0. (For cyclic pseudo-isotopy, we require ctk,β is cyclic for all t, k, β.)

(d) For every x1, . . . , xk ∈ C[1],

d

dt
mt
k,β(x1 ⊗ · · · ⊗ xk)

+
∑

k1+k2=k+1
1≤i≤k1

∑
β1+β2=β

(
(−1)εictk1,β1(x1 ⊗ · · · ⊗mt

k2,β2
(xi ⊗ · · · )⊗ · · · ⊗ xk)

−mt
k1,β1

(x1 ⊗ · · · ⊗ ctk2,β2(xi ⊗ · · · )⊗ · · · ⊗ xk)
)

= 0,

where εi := |x1|′ + · · ·+ |xi−1|′.

(ii) In case (C,m) = (Ω(N), d,∧, ⟨, ⟩N), we say a family of linear maps

{
mt
k,β ∈ Hom1−µ(β)(Ω(N)[1]⊗k,Ω(N)[1]), ctk,β ∈ Hom−µ(β)(Ω(N)[1]⊗k,Ω(N)[1])

}t∈[0,1]
k∈Z≥0,β∈G
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is a smooth pseudo-isotopy of G-gapped (cyclic) filtered A∞ deformations of (d,∧)

(between m0,m1) if:

a) For any C∞-manifold S and S-parameterized differential forms ηs1, . . . , η
s
k on N

that are C∞ in (s, x) ∈ S ×N ,

mt
k,β(η

s
1 ⊗ · · · ⊗ ηsk)(x), ctk,β(η

s
1 ⊗ · · · ⊗ ηsk)(x)

are differential forms on N parameterized by S × [0, 1], and are C∞ in (s, t, x) ∈

S × [0, 1]×N .

(b,c,d) The same as conditions (b,c,d) in (i).

We say m0,m1 are algebraically (resp. smoothly) pseudo-isotopic if there exists an algebraic

(resp. smooth) pseudo-isotopy between them.

Notice that an S-parameterized differential form ηs(x) ∈ Ω(N) which is C∞ in (s, x) ∈

S × N is the same thing as an element η(s, x) ∈ Γ(S × N, pr∗NΩN): simply set ηs = i∗sη.

Here prN : S ×N → N , is : N → S ×N are obvious maps. Similar description applies to

Γ(S × [0, 1]×N, pr∗[0,1]×NΩ[0,1]×N).

Now we need the notion of gauge equivalence of (gapped) Maurer-Cartan elements in dg

Lie algebras.

Let B be a dg Lie algebra over R. If B̃ is a model of [0, 1]×B, we put B̃ := B̃⊗̂Λ0,nov, and

trivially extend Incl, Evalt=0, Evalt=1 over Λ0,nov. Clearly (B̃, B, Incl, Evalt=0, Evalt=1)

satisfy similar properties as (B̃, B, Incl, Evalt=0, Evalt=1) (Definition 3.3.8). Recall the

definition of MCG(B) (Definition 3.4.11).

Definition 3.5.16. Suppose x0, x1 ∈ MC(B) and B̃ is a dg Lie algebra model of [0, 1]×B.

We say x0 is gauge equivalent to x1 in B̃ (via x̃) and write x0 ∼B̃ x1, if there exists x̃ ∈ MC(B̃)

such that Evalt=0(x̃) = x0, Evalt=1(x̃) = x0. If x0, x1 ∈ MCG(B) for some discrete submonoid

G, we also require x̃ ∈ MCG(B̃).
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Lemma-Definition 3.5.17. ∼
B̃
is independent of choices of the model B̃ of [0, 1]× B̃, and

induces an equivalence relation ∼, called gauge equivalence, on MC(B). The same holds for

MCG(B).

Proof. Viewing B as an L∞ algebra, a dg Lie algebra model B̃ of [0, 1]× B is also an L∞

algebra model. Then the result follows from Example 3.6.17 and Lemma-Definition 3.6.19.

We can now state the main result in this section.

Proposition 3.5.18. Under the 1-1 correspondence in Lemma 3.4.13, pseudo-isotopy of

(cyclic) filtered A∞ algebras is related to gauge equivalence of Maurer-Cartan elements in dg

Lie algebras in the following way.

(i) Two G-gapped filtered A∞ deformations m0,m1 of (C,m) are algebraically pseudo-

isotopic if and only if the corresponding G-gapped Maurer-Cartan elements n̂0, n̂1 in(
Coder(T (C[1]))⊗̂Λ0,nov, adm̂, [, ]

)
are gauge equivalent. The same holds in the cyclic

setting, where Coder(T (C[1])) is replaced by Codercyc(T (C[1])).

(ii) Two G-gapped filtered A∞ deformations m0,m1 of (C,m) = (Ω(N), d,∧) are smoothly

pseudo-isotopic if and only if the corresponding G-gapped Maurer-Cartan elements

n̂0, n̂1 in
(
Coder⋄(T (Ω(N)[1]))⊗̂Λ0,nov, adm̂, [, ]

)
are gauge equivalent. The same holds

in the cyclic setting, where Coder⋄(T (Ω(N)[1])) is replaced by Coder⋄,cyc(T (Ω(N)[1])).

Corollary 3.5.19. Algebraic pseudo-isotopy of gapped (cyclic) filtered A∞ deformations of

(C,m) is an equivalence relation. The same is true for smooth pseudo-isotopy of gapped

(cyclic) filtered A∞ deformations of (Ω(N), d,∧, ⟨, ⟩N).

To prove Proposition 3.5.18, we need some preparation.
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Let (C,m), (C
′
,m′) be unfiltered A∞ algebras, fix an A∞ homomorphism f : C → C

′
, and

consider the space of coderivations with respect to f̂, see (3.5.1). The map

δm,m′ : Coder(T (C[1]), T (C
′
[1]); f̂)→ Coder(T (C[1]), T (C

′
[1]); f̂)

φ̂ 7→ m̂′ ◦ φ̂− (−1)|φ|′φ̂ ◦ m̂

is a differential, and gives rise to a version of Hochschild cochain complex ([18, Lemma-

Definition 4.4.46]).

In the rest of this subsection, if (C,m) is an unfiltered A∞ algebra, then (C̃, m̃) is a model

of [0, 1]× (C,m) discussed in Example 3.5.8 or Example 3.5.9.

Lemma-Definition 3.5.20. (dg Lie algebra model of [0, 1]× Coder(T (C[1]))).

(i) If C̃ = A([0, 1])⊗ C, then there is an injective cochain map(
Coder(T (C[1]), T (C̃[1]); ˆIncl), δm,m̃

)
→
(
Coder(T (C̃[1])), ad ˆ̃

m

)
whose image is a dg Lie subalgebra of

(
Coder(T (C̃[1])), ad ˆ̃

m
, [, ]
)
. This dg Lie algebra,

denoted by CH(C, C̃), is a model of [0, 1]× Coder(T (C[1])).

(ii) If C̃ = Ω([0, 1]×N), then there is an injective cochain map(
Coder⋄(T (Ω(N)[1]), T (Ω([0, 1]×N)[1]); p̂r∗N), δm,m̃

)
→
(
Coder(T (Ω([0, 1]×N)[1])), ad ˆ̃

m

)
whose image is a dg Lie subalgebra of

(
Coder(T (Ω([0, 1]×N)[1])), ad ˆ̃

m
, [, ]
)
. This dg Lie

algebra, denoted by CH⋄(Ω(N),Ω([0, 1]×N)), is a model of [0, 1]×Coder⋄(T (Ω(N)[1])).

Proof. (i) C̃[1] is a graded module over the graded R-algebra
(
A([0, 1]),∧

)
. Let us define

the desired R-linear injection Coder(T (C[1]), T (C̃[1]); ˆIncl) → Coder(T (C̃[1])), φ̂ 7→ ˜̂φ by

A([0, 1])-linear extension:

Coder(T (C[1]), T (C̃[1]); ˆIncl) CoderA([0,1])(TA([0,1])(C̃[1])) Coder(T (C̃[1]))

∏
k Hom(C[1]⊗k, C̃[1])

∏
k HomA([0,1])(C̃[1]

⊗A([0,1])k, C̃[1])

∼=
as R-vs

⊂

∼=
as R-vs
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φ̂ ˆ̃φ : ˜̂φ

φ = (φk)k≥0 φ̃ = (φ̃k)k≥0

It is clear that the commutator of A([0, 1])-linear coderivations is also A([0, 1])-linear, so

CoderA([0,1])(TA([0,1])(C̃[1])) is a Lie subalgebra of Coder(T (C̃[1])). The induced Lie bracket

on Coder(T (C[1]), T (C̃[1]); ˆIncl) is simply

{φ̂, φ̂′} := ˜̂φ ◦ φ̂′ − (−1)|φ|′|φ′|′ ˜̂φ′ ◦ φ̂.

We now check φ̂ 7→ ˜̂φ is a (δm,m̃, ad ˆ̃
m
)-cochain map, namely verify the identity

( ˆ̃m ◦ φ̂− (−1)|φ|′φ̂ ◦ m̂
)̃
= [ ˆ̃m, ˜̂φ] ∈ Coder(T (C̃[1])).

It suffices to check that for each l ≥ 1,

( ˆ̃ml ◦ φ̂− (−1)|φ|′φ̂ ◦ m̂l

)̃
= [ ˆ̃ml, ˜̂φ] : T (C̃[1])→ T (C̃[1]). (3.5.4)

Notice that LHS of (3.5.4) is A([0, 1])-linear, so it suffices to show RHS of (3.5.4) is also

A([0, 1])-linear and the two sides have the same restriction to Hom(C[1]⊗k+l−1, C̃[1]) for each

k ≥ 0. There are two cases.

• If l ≥ 2, by definition m̃l = (Incl1 ◦ml)̃ is A([0, 1])-linear, so [ ˆ̃ml, ˜̂φ] = [(Incl1 ◦ml)
ˆ, φ̂]˜

is A([0, 1])-linear. Clearly both sides of (3.5.4) equal m̃l ◦ φ̂k − (−1)|φk|′φk ◦ m̂l on

C[1]⊗k+l−1 → C̃[1].

• If l = 1, m̃1 = idA([0,1])⊗m1+dA([0,1])⊗ idC[1] has two parts. The first part idA([0,1])⊗m1

is A([0, 1])-linear, so by the same reason as the case l ≥ 2, we only need to care about

the second part. Let us write dA([0,1]) ⊗ idC[1] as dt, and write left multiplication by

a ∈ A([0, 1]) on TA([0,1])(C̃[1]) as La. By Leibniz rule, d̂t is a well-defined R-linear

operator on TA([0,1])(C̃[1]), and

d̂t ◦ La = Ldta + (−1)|a|La ◦ d̂t.
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Therefore,

[d̂t, ˜̂φ] ◦ La = d̂t ◦ ˜̂φ ◦ La − (−1)|φ|′ ˜̂φ ◦ d̂t ◦ La

= (−1)|φ|′|a|d̂t ◦ La ◦ ˜̂φ− (−1)|φ|′ ˜̂φ ◦ (Ldta + (−1)|a|La ◦ d̂t)

= (−1)|φ|′|a|(Ldta + (−1)|a|La ◦ d̂t) ◦ ˜̂φ− (−1)|φ|′|a|Ldta ◦ ˜̂φ− (−1)|φ|′+|a|+|φ|′|a|La ◦ ˜̂φ ◦ d̂t

= (−1)(1+|φ|′)|a|(La ◦ d̂t ◦ ˜̂φ− (−1)|φ|′La ◦ ˜̂φ ◦ d̂t) = (−1)(1+|φ|′)|a|La ◦ [d̂t, ˜̂φ].

This proves [d̂t, ˜̂φ] is A([0, 1])-linear. As for the restrction to C[1]⊗k → C̃[1], clearly

(d̂t ◦ φ̂k )̃ = dt ◦ φk = [d̂t, ˜̂φk].

We have verified φ̂ 7→ ˜̂φ is a cochain map, so its image, CoderA([0,1])(TA([0,1])(C̃[1])), is a

subcomplex. Therefore CH(C, C̃) :=
(
CoderA([0,1])(T (C̃[1])), ad ˆ̃

m
, [, ]
)
is a dg Lie subalgebra

of
(
Coder(T (C̃[1])), ad ˆ̃

m
, [, ]
)
.

It remains to show CH(C, C̃) is a model of [0, 1]×
(
Coder(T (C[1])), adm̂, [, ]

)
. Define

Incl : Coder(T (C[1]))→ Coder(T (C[1]), T (C̃[1]); ˆIncl)

ψ̂ 7→ ˆIncl ◦ ψ̂,

Evalt=t0 : Coder(T (C[1]), T (C̃[1]);
ˆIncl)→ Coder(T (C[1]))

φ̂ 7→ ˆEvalt=t0 ◦ φ̂. (t0 = 0, 1)

Let us check Incl, Evalt=t0(t0 = 0, 1) satisfy the desired properties.

• They are dg Lie algebra homomorphisms: First, since Incl, Evalt=t0 are A∞ homo-

morphisms, Incl, Evalt=t0 are cochain maps. Next, to see they are Lie algebra

homomorphisms, note that for ψ̂, ψ̂′ ∈ Coder(T (C[1])), there holds ˆIncl ◦ ψ̂ ◦ ψ̂′ =

( ˆIncl ◦ ψ̂)˜ ◦ ˆIncl ◦ ψ̂′, so

Incl([ψ̂, ψ̂′]) = ˆIncl ◦ (ψ̂ ◦ ψ̂′ ± ψ̂′ ◦ ψ̂) = { ˆIncl ◦ ψ̂, ˆIncl ◦ ψ̂′} = {Incl(ψ̂), Incl(ψ̂′)}.

For φ̂, φ̂′ ∈ Coder(T (C[1]), T (C̃[1]); ˆIncl), we have ˆEvalt=t0 ◦ ˜̂φ = ˆEvalt=t0 ◦ φ̂ ◦
ˆEvalt=t0 ,

so

Evalt=t0({φ̂, φ̂′}) = ˆEvalt=t0 ◦ ( ˜̂φ ◦ φ̂′ ± ˜̂φ′ ◦ φ̂) = [ ˆEvalt=t0 ◦ φ̂,
ˆEvalt=t0 ◦ φ̂′].
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• Evalt=t0 ◦ Incl = idCoder(T (C[1])) since Evalt=t0 ◦ Incl = idC .

• To show Evalt=t0 is a quasi-isomorphism, simply notice that Incl is a quasi-isomorphism

by [18, Lemma 4.4.49]2, and Evalt=t0 ◦ Incl = id.

• To show Evalt=0 ⊕ Evalt=1 : Coder(T (C[1]), T (C̃[1]); ˆIncl) → Coder(T (C[1]))⊕2 is

surjective, it suffices to show that for each k ≥ 0, the induced map

Hom(C
⊗k
, C̃)→ Hom(C

⊗k
, C)⊕2, φk 7→ ((Evalt=0)1 ◦ φk, (Evalt=1)1 ◦ φk)

is surjective. Over a field, the surjection (Evalt=0)1⊕ (Evalt=1)1 : C̃[1]→ C[1]⊕2 is split

surjective, so Hom(C
⊗k
, C̃)→ Hom(C

⊗k
, C)⊕2 is also split surjective.

(ii) Proof of this part is formally the same as part (i), while technically one has to be careful

with smooth extendability. First, it is easy to see Coder⋄(T (Ω(N)[1]), T (Ω([0, 1]×N)[1]); p̂r∗N )

is a δm,m̃-subcomplex of Coder(T (Ω(N)[1]), T (Ω([0, 1]×N)[1]); p̂r∗N ), since m, m̃ are made up

of exterior differential and wedge product. Next, by the decomposition (3.5.3), there are

linear maps

p0, p1 : Ω([0, 1]×N)→ Γ([0, 1]×N, pr∗NΩN)

such that η = p0η + dt ∧ p1η for any η ∈ Ω([0, 1]×N). Then we define a linear map

Ext⋄ : Hom⋄(T (Ω(N)[1]),Ω([0, 1]×N)[1])→ Hom(T (Ω([0, 1]×N)[1]),Ω([0, 1]×N)[1])

φ = (φk)k≥0 7→ φ̃ = (φ̃k)k≥0

φ̃k(η1 ⊗ · · · ⊗ ηk)(t, x) := φk(i
∗
tp

0η1⊗ · · · ⊗ i∗tp0ηk)(t, x) (3.5.5)

+ dt ∧
∑

1≤j≤k

(−1)|φk|′+
∑j−1

l=1 |p0ηl|′φk(i
∗
tp

0η1 ⊗ · · · ⊗ i∗tp1ηj ⊗ · · · ⊗ i∗tp0ηk)(t, x).

Notice that φk(i
∗
tp

0η1 ⊗ · · · ⊗ i∗tp0ηk)(t, x) may have dt component. By Remark 3.3.10(iii),

φ̃ is well-defined. Clearly φk = φ̃k ◦ (pr∗N)⊗k, so Ext⋄ is an injective. We call φ̃ = Ext⋄(φ)

2There is a typo in the proof of [18, Lemma 4.4.49], which makes the proof there shorter than it should

be. Namely, the equation m1 ◦ ψ − (−1)degψψ ◦ d̂ = 0 in the 4th-to-last line on [18, page 229] should really

be m ◦ ψ̂ − (−1)degψψ ◦ d̂ = 0 (see [18, Lemma & Definition 4.4.46]). We will fix the error in part (ii) below.
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the smooth extension of φ. It is easy to see φ̃k is R[dt]-linear, in the sense that for any

η1, . . . , ηk ∈ Ω([0, 1]×N)[1] and j ∈ {1, . . . , k},

φ̃k(η1 ⊗ · · · ⊗ (dt ∧ ηj)⊗ · · · ⊗ ηk) = (−1)|φk|′+
∑j−1

l=1 |ηl|′dt ∧ φ̃k(η1 ⊗ · · · ⊗ ηj ⊗ · · · ⊗ ηk).

Now we show that for any φ̂, φ̂′ ∈ Coder⋄(T (Ω(N)[1]), T (Ω([0, 1] × N)[1]); p̂r∗N), the

commutator [ ˜̂φ, ˜̂φ′] ∈ Coder(T (Ω([0, 1]×N)[1])) also lies in the image of Ext⋄.

Firstly, for k ∈ Z≥1, k
′ ∈ Z≥0, j ∈ {1, . . . , k}, define

φk◦̃jφ′
k′ ∈ Hom(Ω(N)[1]⊗k+k

′−1,Ω([0, 1]×N)[1])

as follows. For η1, . . . , ηk+k′−1 ∈ Ω(N)[1],

(φk◦̃jφ′
k′)(η1 ⊗ · · · ⊗ ηk+k′−1)(t, x)

:= (−1)|φ′
k′ |

′ ∑j−1
l=1 |ηl|′φ̃k(pr

∗
Nη1 ⊗ · · · ⊗ φ′

k′(ηj ⊗ · · · )⊗ pr∗Nηj+k′ ⊗ · · · )(t, x)

= (−1)|φ′
k′ |

′ ∑j−1
l=1 |ηl|′φk(η1 ⊗ · · · ⊗ i∗tp0φ′

k′(ηj ⊗ · · · )⊗ ηj+k′ ⊗ · · · )(t, x)

+ (−1)|φk|′+(|φ′
k′ |

′+1)
∑j−1

l=1 |ηl|′dt ∧ φk(η1 ⊗ · · · ⊗ i∗tp1φ′
k′(ηj ⊗ · · · )⊗ ηj+k′ ⊗ · · · )(t, x).

We claim φk◦̃jφk′ is smoothly extendable. Indeed, similar to Remark 3.3.10(iii), for m = 0, 1

and any C∞-manifold S,

φk(η
s
1 ⊗ · · · ⊗ i∗tpmφ′

k′(η
s
j ⊗ · · · ⊗ ηsj+k′−1))⊗ · · · ⊗ ηsk+k′−1)(t, x)

is C∞ in (s, t, x) ∈ S × [0, 1] × N because of smooth extendability of φ′
k′ (with respect to

S) and φk (with respect to S × [0, 1]), taking into account pull-back via the diagonal map

S × [0, 1]×N → S × [0, 1]2 ×N , (s, t, x) 7→ (s, t, t, x).

Secondly, for k, k′ ∈ Z≥0, we claim that [ ˜̂φk, ˜̂φ
′
k′ ] is the smooth extension of

{φk, φ′
k′} :=

∑
1≤j≤k′

φk◦̃jφ′
k′ − (−1)|φk|′|φ′

k′ |
′ ∑
1≤j≤k

φ′
k′ ◦̃jφk.

It suffices to check that for any η1, . . . , ηk+k′−1 ∈ Ω([0, 1]×N), j ∈ {1, . . . , k},

φ̃k(η1 ⊗ · · · ⊗ φ̃′
k′(ηj ⊗ · · · )⊗ · · · )(t, x) = (−1)|φ′

k′ |
′ ∑j−1

l=1 |ηl|′(φk◦̃jφ′
k′ )̃(η1 ⊗ · · · ⊗ ηk+k′−1)(t, x).
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Since both sides are R[dt]-linear, we may assume p1η1 = · · · = p1ηk+k′−1 = 0. But then

φ̃k(η1 ⊗ · · · ⊗ φ̃′
k′(ηj ⊗ · · · )⊗ · · · ⊗ ηk+k′−1)(t, x)

= φk(i
∗
tp

0η1 ⊗ · · · ⊗ i∗tp0φ̃′
k′(ηj ⊗ · · · )⊗ · · · ⊗ i∗tp0ηk+k′−1)(t, x)

+ dt ∧ (−1)|φk|′+
∑j−1

l=1 |p0ηl|′φk(i
∗
tp

0η1 ⊗ · · · ⊗ i∗tp1φ̃′
k′(ηj ⊗ · · · )⊗ · · · ⊗ i∗tp0ηk+k′−1)(t, x)

= φk(i
∗
tp

0η1 ⊗ · · · ⊗ i∗tp0φ′
k′(i

∗
tp

0ηj ⊗ · · · )⊗ · · · ⊗ i∗tp0ηk+k′−1)(t, x)

+ dt ∧ (−1)|φk|′+
∑j−1

l=1 |p0ηl|′φk(i
∗
tp

0η1 ⊗ · · · ⊗ i∗tp1φ′
k′(i

∗
tp

0ηj ⊗ · · · )⊗ · · · ⊗ i∗tp0ηk+k′−1)(t, x)

= (−1)|φ′
k′ |

′ ∑j−1
l=1 |ηl|′(φk◦̃jφ′

k′ )̃(η1 ⊗ · · · ⊗ ηk+k′−1)(t, x).

We have thus proved the image of Ext⋄ is a Lie subalgebra of Coder(T (Ω([0, 1]×N)[1])).

Next we need to show Ext⋄ is a (δm,m̃, ad ˆ̃
m
)-cochain map. It suffices to prove a counterpart

of (3.5.4), which is even easier, since here we are dealing with R[dt]-linearity instead of

A([0, 1])-linearity, and dg algebras instead of A∞ algebras. Therefore we omit the details.

It remains to show CH⋄(Ω(N),Ω([0, 1]×N)) is a model of [0, 1]×CH⋄(Ω(N),Ω(N)). For

t0 = 0, 1, because of Remark 3.3.10(i)(ii), we can define

Incl : Coder⋄(T (Ω(N)[1]))→ Coder⋄(T (Ω(N)[1]), T (Ω([0, 1]×N)[1]); p̂r∗N)

ψ̂ 7→ p̂r∗N ◦ ψ̂,

Evalt=t0 : Coder⋄(T (Ω(N)[1]), T (Ω([0, 1]×N)[1]); p̂r∗N)→ Coder⋄(T (Ω(N)[1]))

φ̂ 7→ î∗t0 ◦ φ̂.

Most of the rest is literally the same as part (i), except for the following two things.

First, we need to prove that for each k ≥ 0, the map

Hom⋄(Ω(N)⊗k,Ω([0, 1]×N))→ Hom⋄(Ω(N)⊗k,Ω(N))⊕2, φk 7→ (i∗0 ◦ φk, i∗1 ◦ φk).

is surjective. If ψk, ψ
′
k ∈ Hom⋄(Ω(N)⊗k,Ω(N)), define φk ∈ Hom(Ω(N)⊗k,Ω([0, 1]×N)) by

φk(η1⊗· · ·⊗ ηk)(t, x) := (1− t) ·pr∗N(ψk(η1⊗· · ·⊗ ηk))(t, x)+ t ·pr∗N(ψ′
k(η1⊗· · ·⊗ ηk))(t, x).

Then φk is clearly smoothly extendable and i∗0 ◦ φk = ψk, i
∗
1 ◦ φk = ψ′

k.
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It remains to prove Incl is a quasi-isomorphism. Since Evalt=0◦Incl = idCoder⋄(T (Ω(N)[1])),

the induced map Incl∗ between cohomology groups is injective, so it suffices to prove its

surjectivity. Recall the differential δm,m̃ on Hom⋄(T (Ω(N)[1]),Ω([0, 1]×N)[1]) is defined by

δm,m̃(φ) = m̃ ◦ φ̂− (−1)|φ|′φ ◦ m̂ . Write

δ1(φ) := δm1,m̃1
(φ) = m̃1 ◦ φ− (−1)|φ|′φ ◦ m̂1.

Notice that pr∗N ◦ i∗0 is m̃1-cochain homotopic to identity:

idΩ([0,1]×N) − pr∗N ◦ i∗0 = d ◦ h+ h ◦ d, h(η) :=

∫ t

0

dt ∧ p1η. (3.5.6)

Moreover,

δm,m̃(pr
∗
N ◦ i∗0 ◦ φ) = pr∗N ◦ i∗0 ◦ δm,m̃(φ). (3.5.7)

Let φ ∈ Hom⋄(T (Ω(N)[1]),Ω([0, 1]×N)[1]) be a δm,m̃-cocycle. Define a sequence {φ(i)}i∈Z≥0

in Hom⋄(T (Ω(N)[1]),Ω([0, 1]×N)[1]) by

φ(0) := φ, φ(i+1) := φ(i) − pr∗N ◦ i∗0 ◦ φ(i) − δm,m̃(h ◦ φ
(i)
i ). (3.5.8)

We shall prove by induction that for any i,

δm,m̃(φ
(i)) = 0, φ

(i)
k = 0 (∀k < i). (3.5.9)

The case i = 0 is obvious. If (3.5.9) holds for i, then by (3.5.8) and (3.5.7), we have

δm,m̃(φ
(i+1)) = 0 and φ

(i+1)
k = 0 (∀k < i). Moreover,

δ1(φ
(i)
i ) = m̃1 ◦ φ(i)

i − (−1)|φ|′φ(i)
i ◦ m̂1 = δm,m̃(φ

(i))
∣∣
Ω(N)[1]⊗i = 0.

It follows that

φ
(i+1)
i = φ

(i)
i − pr∗N ◦ i∗0 ◦ φ

(i)
i − δ1(h ◦ φ

(i)
i )

(3.5.6)
==== m̃1 ◦ h ◦ φ(i)

i + h ◦ m̃1 ◦ φ(i)
i − δ1(h ◦ φ

(i)
i )

= m̃1 ◦ h ◦ φ(i)
i + (−1)|φ|′h ◦ φ(i)

i ◦ m̂1 − δ1(h ◦ φ(i)
i ) = 0.
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So (3.5.9) holds for i + 1. Thus (3.5.9) holds for all i. Now we set φ′ :=
∑

i≥0 φ
(i) and

φ′′ :=
∑

i≥0 h◦φ
(i)
i . By construction, φ′, φ′′ are elements in Hom⋄(T (Ω(N)[1]),Ω([0, 1]×N)[1]),

satisfying

φ = pr∗N ◦ i∗0 ◦ φ′ + δm,m̃(φ
′′) = Incl(Evalt=0(φ

′)) + δm,m̃(φ
′′).

This shows Incl∗ is surjective.

Next, we discuss cyclic A∞ algebras.

Definition 3.5.21. Let (C,m, ⟨, ⟩) be an unfiltered cyclic A∞ algebra.

(i) If C̃ = A([0, 1]) ⊗ C, then ⟨, ⟩ extends A([0, 1])-linearly to a A([0, 1])-valued graded

symmetric bilinear form on C̃. We say φk ∈ Hom(C[1]⊗k, C̃[1]) is cyclic, if for any

x1, . . . , xk, x0 ∈ C̃[1], there holds

⟨φ̃k(x1 ⊗ · · · ⊗ xk), x0⟩′ = −(−1)|x0|
′(|x1|′+···+|xk|′)⟨φ̃k(x0 ⊗ x1 ⊗ · · · ⊗ xk−1), xk⟩′,

where φ̃k is the A([0, 1])-linear extension of φk.

(ii) If (C,m, ⟨, ⟩) = (Ω(N), d,∧, ⟨, ⟩N) where N is a closed oriented smooth manifold, and

C̃ = Ω([0, 1]×N). Then ⟨, ⟩N extends to a Ω([0, 1])-valued graded symmetric bilinear

form on Ω([0, 1]×N) by

⟨α1 + dt ∧ γ1, α2 + dt ∧ γ2⟩N :=

∫
N

α1 ∧ α2 + dt

∫
N

(−1)|α1|α1 ∧ γ2 + γ1 ∧ α2,

where αi, γi ∈ Γ([0, 1]×N, pr∗NΩN). We say φk ∈ Hom⋄(Ω(N)[1]⊗k,Ω([0, 1]×N)[1]) is

cyclic, if for any η1, . . . , ηk, η0 ∈ Ω([0, 1]×N)[1], there holds

⟨φ̃k(η1 ⊗ · · · ⊗ ηk), v0⟩′N = −(−1)|η0|′(|η1|′+···+|ηk|′)⟨φ̃k(η0 ⊗ η1 ⊗ · · · ⊗ ηk−1), ηk⟩′N ,

where φ̃k = Ext⋄(φk) (3.5.5).

Lemma-Definition 3.5.22. (dg Lie algebra model of [0, 1]× Codercyc(T (C[1]))).
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(i) For (C,m, ⟨, ⟩), the subspace of cyclic elements in CH(C, C̃) is a dg Lie subalgebra, and

is a model of [0, 1]× Codercyc(T (C[1])), where Incl, Evalt=0, Evalt=1 are restrictions

of those of CH(C, C̃).

(ii) For (Ω(N), d,∧, ⟨, ⟩N ), the subspace of cyclic elements in CH⋄(Ω(N),Ω([0, 1]×N)) is a

dg Lie subalgebra, and is a model of [0, 1]×CH⋄,cyc(Ω(N),Ω(N)), where Incl, Evalt=0,

Evalt=1 are restrictions of those of CH⋄(Ω(N),Ω([0, 1]×N)).

Here, cyclic elements are defined in Definition 3.5.21, CH(C, C̃), CH⋄(Ω(N),Ω([0, 1]×N))

are defined in Lemma-Definition 3.5.20.

Proof. It is easy to see the proof of Lemma-Definition 3.5.20 also works for cyclic elements.

Proof of Proposition 3.5.18. The proofs of (i)(ii) are literally the same, so we only write the

proof of (i). Let (C̃ = A([0, 1])⊗ C, m̃) be the model of [0, 1]× (C,m) (Example 3.5.8). We

will show that there is a bijection between:

• Algebraic G-gapped (cyclic) pseudo-isotopies {mt
k,β, c

t
k,β}

t∈[0,1]
k∈Z≥0,β∈G of G-gapped filtered

A∞ deformations of (C,m) between m0,m1;

• G-gapped (cyclic) Maurer-Carten elements {N = Nk,β}β∈G\{(0,0)}
k∈Z≥0 in CH(C, C̃)⊗̂Λ0,nov

(CHcyc(C, C̃)⊗̂Λ0,nov in the cyclic setting) satisfying Evalt=t0(N̂) = m̂− m̂t0 (t0 = 0, 1).

In the following, Conditions (a)(b)(c)(d) refer to the conditions in Definition 3.5.15. For

the sake of convenience, we divide Condition (b) into two parts: (b1) mt
k,(0,0) = mk for all

k ∈ Z≥0, t ∈ [0, 1], and (b2) mt satisfies A∞ relations ∀t ∈ [0, 1].

First, if
{
mt
k,β ∈ Hom1−µ(β)(C[1]⊗k, C[1]), ctk,β ∈ Hom−µ(β)(C[1]⊗k, C[1])

}t∈[0,1]
k∈Z≥0,β∈G

satisfy

Conditions (a)(c), then they determine
{
Nk,β ∈ Hom1−µ(β)(C[1]⊗k, C̃[1])

}
k∈Z≥0,β∈G\{(0,0)} by

mt
k,β + dt ∧ ctk,β = −Nk,β (β ̸= (0, 0)), (3.5.10)

and vice versa. Moreover, if mt
k,β is cyclic ∀t ∈ [0, 1], then ctk,β is cyclic ∀t ∈ [0, 1] iff Nk,β is

cyclic. Next, (3.5.10) implies Evalt=t0(Nk,β) = −mt0
k,β (β ̸= (0, 0)), so Condition (b1) just says
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Evalt=t0(N̂) = m̂−m̂t0 =: n̂t0 . It remains to show that {mt
k,β, c

t
k,β}

t∈[0,1]
k∈Z≥0,β∈G satisfy Conditions

(b2)(d) iff N̂ =
∑

β T
E(β)e

µ(β)
2 (N̂k,β)k is Maurer-Cartan in CH(C, C̃)⊗̂Λ0,nov, namely

δm,m̃N−
1

2
{N,N} = m̃ ◦ N̂+N ◦ m̂+ Ñ ◦ N̂ = 0 ∈ Hom(T (C[1]), C̃)⊗̂Λ0,nov, (3.5.11)

where Ñ is the A([0, 1])-linear extension of N. By (3.5.10), that N̂ satisfies (3.5.11) means

for each k ∈ Z≥0, β ∈ G \ {(0, 0)}, x1, . . . , xk ∈ C[1], the following summation is zero (here

εi := |x1|′ + · · ·+ |xi−1|′):∑
k1+k2=k+1

1≤i≤k1

(
(−1)εim̃k1(x1 ⊗ · · · ⊗mt

k2,β
(xi ⊗ · · · )⊗ · · · ⊗ xk) (3.5.12a)

+ dt ∧ m̃k1(x1 ⊗ · · · ⊗ ctk2,β(xi ⊗ · · · )⊗ · · · ⊗ xk) (3.5.12b)

+ (−1)εimt
k1,β

(x1 ⊗ · · · ⊗mk2(xi ⊗ · · · )⊗ · · · ⊗ xk) (3.5.12c)

+ (−1)εidt ∧ ctk1,β(x1 ⊗ · · · ⊗mk2(xi ⊗ · · · )⊗ · · · ⊗ xk)
)

(3.5.12d)

+
∑

k1+k2=k+1
1≤i≤k1

∑
β1+β2=β
β1,β2 ̸=(0,0)

(
(−1)εimt

k1,β1
(x1 ⊗ · · · ⊗mt

k2,β2
(xi ⊗ · · · )⊗ · · · ⊗ xk) (3.5.12e)

+ dt ∧mt
k1,β1

(x1 ⊗ · · · ⊗ ctk2,β2(xi ⊗ · · · )⊗ · · · ⊗ xk) (3.5.12f)

+ (−1)εidt ∧ ctk1,β1(x1 ⊗ · · · ⊗mt
k2,β2

(xi ⊗ · · · )⊗ · · · ⊗ xk)
)
.

(3.5.12g)

Since m̃1 = dA([0,1]) ⊗ idC[1] + idA([0,1]) ⊗m1 and m̃k = (Incl1 ◦mk )̃ (k ≥ 2),

(3.5.12a) + (3.5.12c) + (3.5.12e)

= dt ∧ d

dt
(mt

k,β(x1 ⊗ · · · )) +
∑

k1+k2=k+1
1≤i≤k1

∑
β1+β2=β

(−1)εimt
k1,β1

(x1 ⊗ · · · ⊗mt
k2,β2

(xi ⊗ · · · )⊗ · · · ),

(3.5.12b) + (3.5.12f) =
∑

k1+k2=k+1
1≤i≤k1

∑
β1+β2=β
β2 ̸=(0,0)

dt ∧mt
k1,β1

(x1 ⊗ · · · ⊗ ctk2,β2(xi ⊗ · · · )⊗ · · · ),

(3.5.12d) + (3.5.12g) =
∑

k1+k2=k+1
1≤i≤k1

∑
β1+β2=β
β1 ̸=(0,0)

(−1)εidt ∧ ctk1,β1(x1 ⊗ · · · ⊗mt
k2,β2

(xi ⊗ · · · )⊗ · · · ).

By looking at the terms containing dt or not separately, we conclude that N̂ is a Maurer-Cartan

element iff Conditions (b2)(d) are satisfied.
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3.6 Homological algebra of L∞ algebras

The theory of L∞ algebras ia parallel to that of A∞ algebras. It is sufficient for us to deal

with filtered L∞ algebras that are filtered in the simplest way, i.e. the (completed) tensor

product of an unfiltered L∞ algebra with Λ0,nov. So we restrict discussion to this special case.

3.6.1 Coderivations on the reduced symmetric coalgebra

Let V be a graded vector space, the reduced symmetric algebra of V , denoted by S+(V ), is

the quotient of the reduced tensor algebra T+(V ) by the homogeneous ideal generated by

elements of the form

u⊗ v − (−1)|u||v|v ⊗ v, u, v ∈ V homogeneous.

Equivalently, S+(V ) =
⊕

k≥1(V
⊗k/Sk), where the symmetric group Sk acts on V ⊗k by

σ(v1 ⊗ · · · ⊗ vk) := ϵ(σ; v1, . . . , vk) vσ(1) ⊗ · · · ⊗ vσ(k), σ ∈ Sk,

where ϵ(σ; v1, . . . , vk) is Koszul sign:

ϵ(σ; v1, . . . , vk) := (−1)
∑

i<j,σ(i)>σ(j) |vi||vj |.

There is a natural identification between V ⊗k/Sk and the fixed point set (V ⊗k)Sk
, say

[v1 ⊗ · · · ⊗ vk] 7→
1

k!

∑
σ∈Sk

σ(v1 ⊗ · · · ⊗ vk) =: v1 ⊙ · · · ⊙ vk.

v1⊙ · · · ⊙ vk is the symmetric product of v1, . . . , vn. Let us write V
⊙k := V ⊗k/Sk

∼= (V ⊗k)Sk
.

Before defining a graded coalgebra structure on S+(V ), we recall the notion of (un)shuffles.

Definition 3.6.1. Let r ∈ Z≥1, k1, . . . , kr ∈ Z≥0 and k = k1 + · · · + kr ≥ 1. The set of

r-unshuffles of type (k1, . . . , kr), denoted by Sh(k1, . . . , kr), consists of permutations σ ∈ Sk

such that

σ(i) < σ(i+ 1) ∀i ∈ {1, . . . , k} \ {k1, k1 + k2, . . . , k1 + k2 + · · ·+ kr−1}.
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Since an r-unshuffle of type (k1, . . . , kr) is uniquely determined by successive choices

of k1, . . . , kr elements out of {1, . . . , k1 + · · · + kr}, the cardinality of Sh(k1, . . . , kr) is

(k1 + · · ·+ kr)!/(k1! · · · kr!).

We are now ready to define a degree 0 linear map ∆ : S+(V )→ S+(V )⊗ S+(V ) by

∆(v1 ⊙ · · · ⊙ vn) :=
∑

1≤k≤n−1
σ∈Sh(k,n−k)

ϵ(σ; v1...n) (vσ(1) ⊙ · · · ⊙ vσ(k))⊗ (vσ(k+1) ⊙ · · · ⊙ vσ(n)),

where ϵ(σ; v1...n) is abbreviation for ϵ(σ; v1, . . . , vn). Then

(1⊗∆)(∆(v1 ⊙ · · · ⊙ vn)) = (∆⊗ 1)(∆(v1 ⊙ · · · ⊙ vn))

=
∑

k1+k2+k3=n
σ∈Sh(k1,k2,k3)

ϵ(σ; v1...n) (vσ1 ⊙ · · · ⊙ vσk1 )⊗ (vσk1+1
⊙ · · · ⊙ vσk1+k2

)⊗ (vσk1+k2+1
⊙ · · · ⊙ vσn),

so (S+(V ),∆) is a graded coalgebra (without counit). Moreover, there is a natural correspon-

dence between Hom(S+(V ), V ) and Coder(S+(V )) as follows.

• For any k ≥ 1, a graded linear map φk : V
⊙k → V extends to a coderivation φ̂k:

– If n ≥ k, φ̂k(v1 ⊙ · · · ⊙ vn) :=∑
σ∈Sh(k,n−k)

ϵ(σ; v1...n) φk(vσ(1)⊙· · ·⊙vσ(k))⊙vσ(k+1)⊙· · ·⊙vσ(n).

– If n < k, φ̂k(v1 ⊙ · · · ⊙ vn) := 0.

• For any coderivation φ̂ on S+(V ), denote its Hom(V ⊙k, V ) component by φk, then φ̂

can be recovered as φ̂ =
∑

k≥1 φ̂k. This is a finite sum when evaluating on S+(V ).

If we include φ0 = 0 ∈ Hom(R, V ) into (φk)k≥1, then φ(1) = φ0(1) = 0, φ̂(1) = φ̂0(1) = 0.

Let V,W be two graded vector spaces, there is a natural correspondence between

Hom(S+(V ),W ) and Hom((S+(V ),∆), (S+(W ),∆)): Any f = (fk)k≥1 ∈
∏

k≥1Hom(V ⊙k,W )

can be uniquely extended to a coalgebra homomorphism f̂ : S+(V )→ S+(W ) by

f̂(v1 ⊙ · · · ⊙ vn) :=
∑

m≥1, k1+···+km=n
σ∈Sh(k1,...,km)

ϵ(σ; v1...n)

m!
fk1(⊙k1j1=1vσ(j1))⊙ · · · ⊙ fkm(⊙njm=n−km+1vσ(jm)).
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If we include f0 = 0 ∈ Hom(R,W ) into (fk)k≥1, then f(1) = f0(1) = 0, f̂(1) = f̂0(1) = 1.

For m1 ∈ Z≥1, m2 ∈ Z≥1 ∪ {∞}, m1 ≤ m2, denote S
m2
m1

(V ) :=
⊕m2

k=m1
V ⊙k, then Sm2

1 (V )

is a subcoalgebra of S+(V ), and Sm2
m1

(V ) ∼= Sm2
1 (V )/Sm1−1

1 (V ) is a quotient coalgebra of

Sm2
1 (V ). Moreover:

• Every φ̂ =
∑

k≥1 φ̂k ∈ Coder(S+(V )) restricts to a coderivation on Sm2
m1

(V ), which is

determined by φ1, . . . , φm2−m1+1. We denote it by φ̂|Sm2
m1

(V )→S
m2
m1

(V ).

• Every f̂ ∈ Hom((S+(V ),∆), (S+(W ),∆)) restricts to a coalgebra homomorphism

from Sm2
m1

(V ) to Sm2
m1

(W ), which is determined by f1, . . . , fm2−m1+1. We denote it by

f̂ |Sm2
m1

(V )→S
m2
m1

(W ).

All discussion above extends to filtered Λ0,nov-modules.

Definition 3.6.2. Let C be a graded vector space and C = C⊗̂Λ0,nov.

(i) A structure of (unfiltered) L∞ algebra on C is a sequence of linear maps {lk : C[1]⊙k →

C[1]}k≥1 of degree 1 such that the coderivation l̂ =
∑

k≥1 l̂k on (S+(C[1]),∆) is a

codifferential, i.e. l̂ ◦ l̂ = 0.

(ii) A structure of (trivially filtered) L∞ algebra on C is a sequence of degree 1 filtered

homomorphisms {lk : C[1]⊙Λ0,nov
k → C[1]}k≥1 such that l̂ = l̂⊗ idΛ0,nov for an L∞ algebra

structure {lk}k≥1 on C. By abuse of notation we also write such (C, l) as (C, l).

The condition l̂ ◦ l̂ = 0 (L∞ relation) is equivalent to l ◦ l̂ = (̂l ◦ l̂)|S+(C[1])→C[1] = 0, which

explicitly says that for each n ≥ 1 and x1, . . . , xn ∈ C[1],∑
1≤k≤n

σ∈Sh(k,n−k)

ϵ(σ;x1...n) ln−k+1(lk(xσ(1) ⊙ · · · ⊙ xσ(k))⊙ xσ(k+1) ⊙ · · · ⊙ xσ(n)) = 0.

In particular l1 ◦ l1 = 0, so one can discuss cohomology of (C, l1).

Definition 3.6.3. Let (C, l), (C
′
, l

′
) be L∞ algebras. An L∞ homomorphism from (C, l) to

(C
′
, l

′
) is a degree 0 coalgebra homomorphism f̂ : S+(C[1])→ S+(C

′
[1]) such that l̂

′ ◦ f̂ = f̂ ◦ l̂.
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The condition l̂
′ ◦ f̂ = f̂ ◦ l̂ is equivalent to l

′ ◦ f̂ = f ◦ l̂. Thus an L∞ homomorphism is

given by a sequence of linear maps (or filtered homomorphisms) {fk : C[1]⊙k → C
′
[1]}k≥1 of

degree 0 such that for each n ≥ 1 and x1, . . . , xn ∈ C[1],∑
r≥1, k1+···+kr=n
σ∈Sh(k1,...,kr)

ϵ(σ;x1...n) l
′
r(fk1(xσ(1) ⊙ · · · ⊙ xσ(k1))⊙ · · · ⊙ fkr(xσ(n−kr+1) ⊙ · · · ⊙ xσ(n)))

=
∑

m1+m2=n+1
τ∈Sh(m2,n−m2)

ϵ(τ ;x1...n) fm1
(lm2(xτ(1) ⊙ · · · ⊙ xτ(m2))⊙ xτ(m2+1) ⊙ · · · ⊙ xτ(n)).

An L∞ homomorphism {fk} is said to be linear if fk = 0 for all k ̸= 1.

The L∞ composition f
2◦f1 =

(
(f

2◦f1)k
)
of L∞ homomorphisms f

1
, f

2
is given by composition

of corresponding coalgebra homomorphisms.

Example 3.6.4. Let (B, d, {, }) be a dg Lie algebra. In view of sign change rule (1.8.1), let

us set (lk)k≥1 as

l1(x) = dx, l2(x⊙ y) = (−1)|x|{x, y},

and lk = 0 for k ≥ 3. Here x ⊙ y respects grading in B[1]. Then L∞ relations for l

are equivalent to the defining relations of a dg Lie algebra. Likewise, a dg Lie algebra

homomorphism is exactly an L∞ homomorphism that is linear.

3.6.2 Homotopy equivalence of L∞ algebras

In this subsection, let (C, l), (C
′
, l

′
) be L∞ algebras, and C = C⊗̂Λ0,nov, C

′ = C
′⊗̂Λ0,nov.

Definition 3.6.5. An L∞ algebra (C̃, l̃) together with L∞ homomorphisms

Incl : (C, l)→ (C̃, l̃), Evalt=0 : (C̃, l̃)→ (C, l), Evalt=1 : (C̃, l̃)→ (C, l)

is said to be an (L∞ algebra) model of [0, 1]× C if the following holds:

• Incl, Evalt=0, Evalt=1 are linear L∞ homomorphisms;

• Evalt=0 ◦ Incl = Evalt=1 ◦ Incl = idC , the identity on C;
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• Incl1, (Evalt=0)1, (Evalt=1)1 are quasi-isomorphisms between the cochain complexes

(C, l1), (C̃, l̃1);

• (Evalt=0)1 ⊕ (Evalt=1)1 : C̃ → C ⊕ C is surjective.

Example 3.6.6. Let
(
A([0, 1]), d,∧

)
be the commutative dg algebra introduced in Example

3.5.8, then A([0, 1]) ⊗ C is a model of [0, 1] × C, where l̃1 = d ⊗ idC[1] + idA([0,1]) ⊗ l1,

l̃k = A([0, 1])-linear extension of lk for k ≥ 2, and Incl1, (Evalt=0)1, (Evalt=1)1 are obtained

by tensoring idC[1] with obvious maps between R and A([0, 1]). Let us check l̃ satisfies L∞

relations. First, denote dt = d⊗ idC[1], l̃
′
1 = idA([0,1]) ⊗ l1 and l̃

′
k = l̃k for k ≥ 2, then

ˆ̃
l
′ ◦

ˆ̃
l
′
= 0

on S+(C̃) since it is the A([0, 1])-linear extension of l̂ ◦ l̂. Notice that the commutativity of

∧ on A([0, 1]) is required here. Second, as in the proof of Lemma-Definition 3.5.20, we can

show [d̂t,
ˆ̃
l
′
] is A([0, 1])-linear on SA([0,1]),+(C̃). Then [d̂t,

ˆ̃
l
′
] = 0 since [d̂t,

ˆ̃
l
′
]
∣∣
S+(C)

= 0. This

verifies
ˆ̃
l ◦

ˆ̃
l = 0. We finally remark that if C is a dg Lie algebra as in Example 3.6.4, then

A([0, 1])⊗ C is also a dg Lie algebra.

Definition 3.6.7. Let f, g : C → C
′
be L∞ homomorphisms, and let C̃

′
be a model of

[0, 1] × C
′
. We say f is homotopic to g in C̃

′
and write f ≃

C̃
′ g, if there exists an L∞

homomorphism h : C → C̃
′
such that Evalt=0 ◦ h = f, Evalt=1 ◦ h = g. Such an h is called an

homotopy between f and g in C̃
′
.

Lemma-Definition 3.6.8. ≃
C̃

′ is independent of choices of the model C̃
′
of [0, 1]× C ′

, and

gives an equivalence relation ≃ on the set of L∞ homomorphisms from C to C
′
.

The proof of Lemma-Definition 3.6.8 relies on the following lifting result.

Theorem 3.6.9. Let C̃, C̃
′
be any L∞ algebra models of [0, 1]× C, [0, 1]× C ′

, respectively,

and let f : C → C
′
be an L∞ homomorphism. Then there exists an L∞ homomorphism

f̃ : C̃ → C̃
′
which lifts f, in the sense that

Incl
′ ◦ f = f̃ ◦ Incl, Eval

′
t=t0
◦ f̃ = f ◦ Evalt=t0 (t0 = 0, 1).
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For the proof of Theorem 3.6.9, see Remark 3.6.13.

Proof of Lemma-Definition 3.6.8. Let C̃
′

1, C̃
′

2 be two models of [0, 1] × C
′
, and suppose

f ≃
C̃

′
1

g : C → C
′
. Let h : C → C̃

′

1 be a homotopy between f, g in C̃
′

1. By Theorem 3.6.9,

there is an L∞ homomorphism ĩd : C̃
′

1 → C̃
′

2 which lifts the identity on C
′
. Then ĩd ◦ h is a

homotopy between f, g in C̃
′

2, so f ≃
C̃

′
2

g. This proves ≃
C̃

′ does not depend on the choice of

C̃
′
. Next we show ≃ is an equivalence relation.

• To see ≃ is reflexive, simply notice that Incl
′ ◦ f is a homotopy between f and f.

• To see ≃ is symmetric, notice that if f ≃ g in C̃
′
, then g ≃ f in C̃

′

op where

(
C̃

′

op, l̃
′
, Incl

′
, Eval

′
t=0, Eval

′
t=1

)
=
(
C̃

′
, l̃

′
, Incl

′
, Eval

′
t=1, Eval

′
t=0

)
.

• To see ≃ is transitive, choose a specific model A([0, 1]) ⊗ C
′
of [0, 1] × C

′
as in

Example 3.6.6, and choose A([0, 1]) as the space of piecewise smooth differential

forms on [0, 1]. Notice that [0, 1] can be replaced by any other closed interval [a, b]

(a < b), with Eval
[a,b]
t=a , Eval

[a,b]
t=b instead of Evalt=0, Evalt=1. For i = 0, 1, suppose

h
(i)

: C → A([i, i+1])⊗C ′
is a homotopy between f

(i)
, f

(i+1)
: C → C

′
, then h = (h

(0)
, h

(1)
)

is an L∞ homomorphism from C to

{
(x, y) ∈ (A([0, 1])⊕A([1, 2]))⊗ C ′ | Eval′[0,1]t=1 (x) = Eval

′[1,2]
t=1 (y)

}
= A([0, 2])⊗ C ′

,

such that Eval
′[0,2]
t=0 ◦ h = f

(0)
, Eval

′[0,2]
t=2 ◦ h = f

(2)
. This shows f

(0) ≃ f
(2)
.

The proof is complete.

Corollary 3.6.10. If f ≃ g : C → C
′
and f

′ ≃ g′ : C
′ → C

′′
, then f

′ ◦ f ≃ g′ ◦ g : C → C
′′
.

Proof. It follows easily from Theorem 3.6.9.

Definition 3.6.11. Let f : C → C
′
be an L∞ homomorphism.

(i) f is called a homotopy equivalence if there exists an L∞ homomorphism g : C
′ → C

such that f ◦ g and g ◦ f are homotopic to identity.
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(ii) f is called a weak homotopy equivalence if f1 : (C, l1)→ (C
′
, l

′
1) is a quasi-isomorphism.

Theorem 3.6.12 (Whitehead Theorem for L∞ algebras). A weak homotopy equivalence

between L∞ algebras is a homotopy equivalence.

Remark 3.6.13. Lifting theorem (Theorem 3.6.9) and Whitehead theorem (Theorem 3.6.12)

for L∞ algebras can be proved in the same way as [18, Theorem 4.2.34, Theorem 4.2.45] for

A∞ algebras, where the proofs are written in an inductive, obstruction-theoretic way. The

only difference is to replace tensor coalgebra (for A∞ algebras) by symmetric coalgebra (for

L∞ algebras). What is more, we only need the unfiltered version. Therefore we omit the

proofs of Theorem 3.6.9 and Theorem 3.6.12. Nonetheless, we prove the following lemma,

which is useful in inductive proof of these theorems, as well as Theorem ??.

Lemma 3.6.14. (Compare [18, Lemma 4.4.9, Lemma 4.4.10]). Let C,C
′
be graded vector

spaces, m1,m2, K ∈ Z≥1, 0 ≤ m2 −m1 < K. Consider l = (lk)
K
k=1 ∈ Hom(SK1 (C[1]), C[1]),

l
′
= (l

′
k)
K
k=1 ∈ Hom(SK1 (C

′
[1]), C

′
[1]), f = (fk)

K
k=1 ∈ Hom(SK1 (C[1]), C

′
[1]).

(i) If l̂ ◦ l̂ = 0 on SK1 (C[1]), then l̂ ◦ l̂ = 0 on Sm2
m1

(C[1])→ Sm2
m1

(C[1]).

(ii) If f̂ ◦ l̂ = l̂
′ ◦ f̂ on SK1 (C[1]), then f̂ ◦ l̂ = l̂

′ ◦ f̂ on Sm2
m1

(C[1])→ Sm2
m1

(C
′
[1]).

Proof. We prove by induction onK ≥ 1. The caseK = 1 is obvious. To perform the induction,

observe that ⊙ : S+(V )⊗S+(V )→ S+(V ), (v1⊙· · ·⊙vk)⊗(vk+1⊙· · ·⊙vk+l) 7→ v1⊙· · ·⊙vk+l

is left inverse to ∆ : S∞
2 (V )→ S+(V )⊗ S+(V ) up to constant multiples, namely they satisfy

⊙ ◦∆ =
⊕
k≥2

(2k − 2)idV ⊙k .

Therefore, to prove (i), it suffices to assume m1 ≥ 2 and prove ∆◦ (̂l◦ l̂)|Sm2
m1

(C[1])→S
m2
m1

(C[1]) = 0

provided l̂ ◦ l̂ = 0 on SK1 (V ). Since l̂ is a coderivation, on S+(V ) we have

∆◦ l̂◦ l̂ = (id⊗ l̂+ l̂⊗ id)◦∆◦ l̂ = (id⊗ l̂+ l̂⊗ id)2 ◦∆ =
(
id⊗ (̂l◦ l̂)+ (̂l◦ l̂)⊗ id

)
◦∆. (3.6.1)
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Inductive assumption says l̂ ◦ l̂ = 0 on Sm2
m1

(C[1])→ Sm2
m1

(C[1]) whenever m2 −m1 < K. In

case m2−m1 < K + 1, Since ∆ maps Sm2
m1

(C[1]) into Sm2−1
1 (C[1])⊗ Sm2−1

1 (C[1]), we have by

(3.6.1) that ∆ ◦ l̂ ◦ l̂ = 0 on Sm2
m1

(C[1])→ Sm2
m1

(C[1]). The proof of (ii) is similar.

3.6.3 Maurer-Cartan elements in L∞ algebras

Definition 3.6.15. The set of Maurer-Cartan elements in an L∞ algebra (C, l) is

MC(C) :=
{
x ∈ C[1]0 = C1 | ∥x∥ < 1, l(exp(x)) = 0

}
,

where

exp(x) :=
∑
k≥0

x⊙k

k!
= 1 +

x

1!
+
x⊙ x
2!

+ · · · , l(exp(x)) =
∑
k≥1

1

k!
lk(x

⊙k). (3.6.2)

Let G ⊂ R≥0 × 2Z be a discrete submonoid. The set of G-gapped Maurer Cartan elements in

(C, l), deonted by MCG(C), consists of those x ∈ MC(C) of the form x =
∑

β∈G T
E(β)e

µ(β)
2 xβ

where each xβ ∈ C[1]−µ(β).

Note that (3.6.2) converges in C since ∥x∥ < 1 i.e. x ∈ C[1]⊗̂Λ+
0,nov. If x is G-gapped,

then x(0,0) = 0.

Lemma-Definition 3.6.16. If f : (C, l)→ (C
′
, l

′
) is an L∞ homomorphism, then f induces

a map

f∗ : MC(C)→ MC(C ′), f∗(x) := f(exp(x)) =
∑
k≥1

fk(x
⊙k)

k!
.

The assignment f 7→ f∗ is covariant. Moreover, f∗ maps MCG(C) into MCG(C
′).

Proof. First, for any x ∈ C[1]0, ∥x∥ < 1,

l̂(exp(x)) =

(∑
k≥1

l̂k

)(∑
n≥0

x⊙n

n!

)
=
∑
n≥k≥1

∑
Sh(k,n−k)

1

n!
lk(x

⊙k)⊙ x⊙n−k

=
∑
n≥k≥1

lk(x
⊙k)

k!
⊙ x⊙n−k

(n− k)!
= l(exp(x))⊙ exp(x).
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It follows easily that l(exp(x)) = 0 iff l̂(exp(x)) = 0. Next,

exp(f∗(x)) =
∑
l≥0

1

l!

(∑
k≥1

1

k!
fk(x

⊙k)

)⊙l

=
∑
l≥0

∑
k1,...,kl≥1

1

l!

fk1(x
⊙k1)

k1!
⊙ · · · ⊙

fkl(x
⊙kl)

kl!
(3.6.3)

=
∑
k≥0
l≥0

∑
k1+···+kl=k
Sh(k1,...,kl)

1

k!l!
fk1(x

⊙k1)⊙ · · · ⊙ fkl(x
⊙kl) =

∑
k≥0

f̂(x⊙k)

k!
= f̂(exp(x)).

Therefore if x ∈ MC(C), then l̂(exp(f∗(x))) = l̂(̂f(exp(x))) = f̂(̂l(exp(x))) = 0, and so

f∗(x) ∈ MC(C). It also follows from (3.6.3) that g∗(f∗(x)) = g(exp(f∗(x))) = g(̂f(exp(x))) =

(g ◦ f)(exp(x)) = (g ◦ f)∗(x), so f 7→ f∗ is covariant. Finally, if x =
∑

β∈G T
E(β)e

µ(β)
2 xβ ∈

MCG(C), then f∗(x) is also G-gapped:

f∗(x) =
∑
β∈G

TE(β)e
µ(β)
2 f∗(x)β, f∗(x)β =

∑
k≥1

∑
β1+···+βk=β

fk(xβ1 ⊙ · · · ⊙ xβk)
k!

, (3.6.4)

where each f∗(x)β is a finite sum because x(0,0) = 0 and G is a discrete submonoid.

Example 3.6.17. Let (C, l1, l2), (C
′
, l

′
1, l

′
2) be dg Lie algebras as in Example 3.6.4, then

the the notion of (gapped) Maurer-Cartan elements coincides with Definition 3.4.11. Let

f : C → C
′
be an L∞ homomorphism. If f is linear, then f∗ : MC(C)→ MC(C ′) is the same

as that for dg Lie algebras.

Definition 3.6.18. Suppose x0, x1 ∈ MC(C) and C̃ is a model of [0, 1]× C. We say x0 is

gauge equivalent to x1 in C̃ (via x̃) and write x0 ∼C̃ x1, if there exists x̃ ∈ MC(C̃) such that

Evalt=0(x̃) = x0, Evalt=1(x̃) = x0. If x0, x1 ∈ MCG(C) for some discrete submonoid G, we

also require x̃ ∈ MCG(C̃).

Lemma-Definition 3.6.19. ∼
C̃
is independent of choices of the model C̃ of [0, 1]× C̃, and

thus induces an equivalence relation ∼, called gauge equivalence, on MC(C). The same result

holds for MCG(C).

Proof. The proof is similar to that of Lemma-Definition 3.6.8. To see ∼
C̃
does not depend on

the choice of C̃, suppose C̃1, C̃2 are two models of [0, 1]×C, and x0 ∼C̃1
x1 via x̃ ∈ MC(C̃1).
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By Theorem 3.6.9, there is an L∞ homomorphism ĩd : C̃1 → C̃2 lifting the identity on C.

Then x0 ∼C̃2
x1 via ĩd∗(x̃) ∈ MC(C̃2) by Lemma-Definition 3.6.16. The rest of the proof is

also a copy of the proof of Lemma-Definition 3.6.8.

Corollary 3.6.20. Suppose f, g : C → C
′
are L∞ homomorphisms and x, y ∈ MC(C). If

f ≃ g and x0 ∼ x1, then f∗(x0) ∼ g∗(x1). Then same holds if x, y ∈ MCG(C).

Proof. Choose specific models of [0, 1] × C, [0, 1] × C ′
as in Example 3.6.6. Let h : C →

A([0, 1])⊗C ′
be a homotopy between f, g, which extendsA([0, 1])-linearly to h̃ : A([0, 1])⊗C →

A([0, 1])⊗C ′
. Then one checks h̃ is an L∞ homomorphism by similar arguments as in Example

3.6.6. It is easy to see Eval
′
t=t0
◦ h̃ = Eval

′
t=t0
◦ h ◦ Evalt=t0 , so Eval

′
t=0 ◦ h̃ = f ◦ Evalt=0,

Eval
′
t=1 ◦ h̃ = g ◦ Evalt=1. Suppose x0 ∼ x1 via x̃ ∈ MC(C), then clearly f∗(x0) ∼ g∗(x1) via

h̃∗(x̃) ∈ MC((A([0, 1])⊗ C ′)⊗̂Λ0,nov).
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