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Abstract of the Dissertation

Quasisymmetries of the Feigenbaum Julia set and transcendental dynamics

by

Timothy Alland

Doctor of Philosophy

in

Mathematics

Stony Brook University

2023

We give an explicit description of the group of topologically extendable quasisymmetric

self-maps of the Feigenbaum quadratic Julia set. We also describe the transcendental dynamics

of the Feigenbaum renormalization fixed point whose structure plays an important role in

restricting what maps can belong to the group of quasisymmetries.
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Chapter 1

Introduction

In the last decade there has been a substantial increase in interest in the field of quasisymmetric

geometry. Perhaps the most natural invariant for this setting is the group of quasisymmetries

of a given space. One can coarsely classify sets as being either little quasisymmetric or

highly quasisymmetric depending on whether its group of quasisymmetries is finite or infinite,

respectively. In the world of Julia sets of rational maps, quasisymmetric groups have been

computed for Sierṕınski carpets in [BLM14] and for the basilica Julia set in [LM18]. The

Sierṕınski carpets from [BLM14] are examples of sets that are little quasisymmetric while in

[LM18], Lyubich and Merenkov show the basilica is highly quasisymmetric. The methods

from [LM18] also extend to every hyperbolic Julia set in the main molecule of the Mandelbrot

Figure 1.1: Julia set of the Feigenbaum quadratic, Jc
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set (i.e. maps reachable by a finite series of bifurcations from z2). The goal of this thesis is

to describe the group of quasisymmetries of the Julia set of the Feigenbaum quadratic, Jc,

(see Figure 1.1), thus giving the first example of the group of quasisymmetries of the Julia

set of an infinitely renormalizable map and, more generally, a non-hyperbolic quadratic.

The Feigenbaum quadratic’s lack of hyperbolicity prohibits us from applying the methods

of [LM18] in our setting. Instead, we rely heavily on the topology and geometry of the

transcendental dynamics of the quadratic-like renormalization fixed point from which we are

able to fully determine the group of extendable quasisymmetries of Jc. We give now some

quick definitions in order to state the main results and give better intuition as to the ideas of

the proofs.

Given a homeomorphism η : [0,∞) → [0,∞) and metric spaces (X, dX), (Y, dY ), a

homeomorphism φ : X → Y is said to be a quasisymmetry with distortion function η

(η-quasisymmetry or η-qs) if for all distinct triples x1, x2, x3 ∈ X,

dY (φ(x1), φ(x2))

dY (φ(x1), φ(x3))
≤ η

(
dX(x1, x2)

dX(x1, x3)

)
.

When X = Y , we call φ a quasisymmetry (or η-quasisymmetry if η is specified). As is done

for the basilica in [LM18] we restrict our scope to quasisymmetries of J that are topologically

extendable (to an orientation-preserving homeomorphism of C).

A quadratic-like map (ql map) is a degree 2 branched covering between topological disks

U b V . Let 0 ∈ U0 b V0 be suitable open topological disks and let f : U0 → V0 be the

period-doubling renormalization fixed point in the space of quadratic-like maps – for more on

this map and its existence, see [Buf97] or [McM96]. As such, f has the desirable property of

satisfying the functional equation

f(z) = −µf 2(µ−1z) (1.0.1)

where µ > 1. Define the Julia set of f , J ≡ J (f), to be the set of non-escaping points; that

is,

J := {z ∈ U0 | for all n ∈ N, fn(z) ∈ U0}. (1.0.2)
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By (1.0.1) and (1.0.2), for all k ∈ N,

µ−kJ ⊂ J (1.0.3)

and f 2k : µ−kJ → µ−kJ is a degree two mapping. We say a subset J ⊂ J is a little Julia

set of depth k if J is a pre-image of µ−kJ under fn for some n ∈ N0. For each little Julia set,

J , we define a “shift” map σJ : J → J (under which J is invariant) which acts as a shift on

the little Julia sets contained in J and of depth one more than that of J . Given the top-level

shift map on J , every other shift map is then defined canonically in terms of the dynamics

and scaling. See Section 5.1 for formal definitions and Figures 5.2 and 5.3 for drawings of

these maps. Let ρ : J → J be the symmetry given by ρ(z) = −z.

Let Xk be the collection of little Julia sets of depth less than k. From this, define

Yk := {ρ, σJ | J ∈ Xk} and Gk to be the group of maps generated by elements of Yk.

The following statement is the main result of this dissertation and the sentiment is that

any quasisymmetry of J is dynamical in nature for all sufficiently deep little Julia sets and

the action of a quasisymmetry on J can be fully described in terms of shift maps on little

Julia sets of shallow depth (where what is considered shallow depends on the distortion of

the quasisymmetry).

Theorem 1.0.1. For any distortion function η there exists a k ∈ N and distortion function

η′ such that for any topologically extendable η-quasisymmetry φ : J → J , there exists a

sequence of η′-quasisymmetries (gn)n∈N ⊂ Gk such that gn → φ uniformly.

As mentioned earlier, the proof of Theorem 1.0.1 relies heavily on the topology and

geometry of the transcendental dynamics of the renormalization fixed point, f . The following

set, J∞, is of particular importance. By (1.0.3),

J∞ :=
⋃
n∈N

µnJ (1.0.4)

is an increasing union and therefore well defined. By Proposition 4.1.1 it is dense in C. We

use J∞ to obtain rigidity in the quasisymmetric group of J . A primary example of how this
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is done is via Lemma 5.2.4 which lets us pass from a quasisymmetry of J that fixes 0 to

a limiting map which preserves “limb structures” in J∞ and via Propositions 4.8.8, 4.8.9,

and 4.8.10 which essentially say that if the closure of these “limb structures” in J∞ don’t

intersect then they are bounded away from each other relative to their diameters. Since the

“deep limb structures” in J approximate the “limb structures” of J∞ the quasisymmetric

property implies these deep “virtually touching” limbs must go to “virtually touching” limbs

under qs maps which gives rigidity to the quasisymmetric group of J .

In proving Theorem 1.0.1, we also obtain the following theorem:

Theorem 1.0.2. The uniform closure of the group of topologically extendable quasisymmetries

of J is properly contained in the group of topologically extendable homeomorphisms of J .

The fact that it is a proper subset highlights a key difference between the quasisymmetric

group of J versus that of the quasisymmetric groups for the basilica and other hyperbolic

Julia sets coming from the main molecule, for which the uniform closure is the entire group of

extendable homeomorphisms. In this way, the Feigenbaum Julia set is in some sense a middle

case between that of the Sierṕınski carpet Julia sets and the hyperbolic Julia sets of the

main molecule. Theorem 1.0.2 essentially follows from the fact that there exists topological

“rotations by 90 degrees” that rotate by 1 the 4 connected components of J \ {0} but that

any such map cannot be qs.

1.1 Organization of the chapters

Chapter 2 gives formal definitions, states some theorems from the literature, and proves some

lemmas that rely only on the general theory and tools from their respective areas.

Chapter 3 gives definitions and proves lemmas regarding geometry of J . For example,

that it is tetravalent and uniquely arc-wise connected (Lemmas 3.2.7 and 3.2.3.) This chapter

serves primarily as a preliminary to both chapters 4 and 5: defining objects and proving
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lemmas that will have analogs in the transcendental setting or will be of use for exploring

quasisymmetries of J .

Chapter 4 is the main chapter detailing transcendental dynamics of the renormalization

fixed point. Much of this chapter mirrors Section 5 of [DL18] by Dudko and Lyubich as

the structures are very similar. The recorded lecture [Dud20] by Dudko was a great help in

the writing of this chapter and it informed both the style and substance of much of what is

presented here. Detailed here are the concepts of limbs, lakes, and β-points (an analog of the

standard definition in the quadratic setting.) We show here that the escaping set consists of

quasi-arcs that are continuously parametrized by escaping time and that closed limbs are

uniform quasidisks. A key observation that is formally proved here is also the discrepancy

between real and imaginary limbs which, as we’ll see, prohibits the existence of qs “rotations

by 1/4”. (See Proposition 4.9.6.)

Chapter 5 is the main chapter that goes through the proof of Theorem 1.0.1. There are 5

steps to the proof, each with their own section. Section 5.2 shows that while rotations by

1/4 do exist topologically, by Proposition 4.9.6 they do not exist as qs maps. For this, a

limiting argument is used where we pass from the quadratic-like setting to the transcendental

setting. Section 5.3 greatly restricts what is allowable under a qs map and shows that every

qs map is k dynamical for some k, meaning that the action of a qs map on a deep Julia set is

given by the dynamics: as a unit, it maps forwards to the center via the dynamics, it maybe

rotates by 180 degrees, and then it maps backwards under the dynamics to an image little

Julia set of the same depth. Section 5.4 shows that the lift of any qs map of J to T via

the Böttcher coordinate is again a qs map – something that does not come for free. The

argument for this is by explicitly showing that the lift satisfies the qs property. This is done

by starting in simple cases and gradually working our way to the general setting. Section 5.5

shows that any topologically extendable qs map of J is qc extendable (to C). While this is

possible via cutting and pasting together qc maps and taking advantage of the result that

the Lebesgue measure of J is 0 (by [DS20]), we instead opt to show this via qc extension of
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tunings of the Basilica that limit on J . The last step is done in Section 5.6 in which, for any

quasisymmetry of J , φ, we construct an explicit sequence of shift maps with the property

that the n-th map of the sequence and φ have the same action on the spine children of the n

largest (extended) little Julia sets of depth less than k. This sequence converges uniformly to

φ because the diameters of the (extended) little Julia sets go to 0 and because, from Section

5.3, we know φ moves little Julia sets of depth k dynamically. That is, we are able to show

that on “large” (extended) little Julia sets of depth k the maps are equal, while on “small”

(extended) Julia sets of depth k, the maps differ by at most ε.
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Chapter 2

Background

2.1 qs and qc maps

Definition 2.1.1. We say a map φ : U → C where U ⊂ C is open is conformal if φ is

holomorphic and injective.

Definition 2.1.2. We say an orientation-preserving homeomorphism φ : U → C where

U ⊂ C is open is K-quasiconformal (K-qc) if φ has locally square-integrable distributional

derivatives satisfying

|∂zφ(z)| ≤ k|∂zφ(z)|

for a.e. z ∈ U where K =
1 + k

1− k
. A map φ is said to be quasiconformal (qc) if it is K-qc for

some K ≥ 1.

The following is a special case of the Koebe Distortion theorem (see e.g. [Lyu]).

Theorem 2.1.1 (Koebe Distortion). Let φ : D→ C be conformal. Then for any r < 1, φ|rD

is η-qs where η depends on r.

The following is Theorem 3.4 in the paper by Tukia and Väisälä [TV80].
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Theorem 2.1.2. Let X, Y be metric spaces, let M > 0, and let a, b ∈ X be distinct points.

If F is a family of η-qs maps from X to Y such that for each f ∈ F , dY (f(a), f(b)) ≤ M ,

then F is equicontinuous.

We define an η-quasi-arc to be an η-qs image of an interval I ⊂ R. Similarly, we define

an η-quasi-circle to be an η-qs image of T and we say a topological disk, D is an η-quasi-disk

if D is the image of D under an η-qs map. One remark is that if D is a topological disk and

∂D is an η-quasi-circle then D is an η′-quasi-disk where η′ depends only on η. Hence, to

show something is a quasi-disk, it suffices to show that its boundary is a quasi-circle. We

say something is a quasi-arc (quasi-circle, quasi-disk) if it is an η-quasi-arc (η-quasi-circle,

η-quasi-disk) for some distortion function η. We say a family of quasi-arcs (quasi-circles,

quasi-disks) is uniform if there exists a distortion function η such that each is an η-quasi-arc

(η-quasi-circle, η-quasi-disk).

We say an arc or topological circle A ⊂ C has c-bounded turning if for any a, b ∈ A,

diam([a, b]) ≤ c|a − b| where c ≥ 1 and [a, b] ⊂ A is a sub-arc connecting a and b whose

diameter is less than or equal to the complementary arc. An arc has bounded turning if it

has c-bounded turning for some c ≥ 1.

In Theorem 4.9 of the same paper by Tukia and Väisälä [TV80], they prove a generalization

of the following:

Theorem 2.1.3. Let γ ⊂ C be homeomorphic to [0, 1] or T. Then γ is qs if and only if γ

has bounded turning.

Lemma 2.1.4. Let λ ∈ D, and A,B disjoint closed quasi-arcs such that

• X = {0} ∪
⋃
n∈N0

λn(A ∪B) is an arc

• diam(A ∩ λA), diam(B ∩ λB) > 0.

Then X is a quasi-arc. (See Figure 2.1.)
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Figure 2.1: The set X and the subsets A,B, λA, λB ⊂ X from Lemma 2.1.4

Proof. By Theorem 2.1.3 it suffices to show that X is BT. Also by Theorem 2.1.3 there

exists c1 such that A,B are c1-BT. Let a, b ∈ X. Since scaling by λ has the same effect on

diam([a, b]) and |a− b|, we may assume WLOG that a ∈ X \ λX. With this assumption, a, b

satisfy one of the following cases.

(1) If a, b ∈ A or a, b ∈ B then |a− b| ≥ diam([a, b])/c1 since A,B are c1-BT.

(2) If we’re not in the first case, then either a ∈ A \ λX and b ∈ X \ A or a ∈ B \ λX

and b ∈ X \ B. Suppose that a ∈ A \ λX and b ∈ X \ A. Since X is an arc

and diam(A ∩ λA) > 0, A ∩ λA ⊂ X is a (non-singleton) closed sub-arc. Hence,

A \ λX ∩ λX \ A = ∅ as they are the closure of the connected components of X

after removing the sub-arc A ∩ λA. Therefore, d(A \ λX,X \ A) > 0 and so for

c2 := diam(X)/d(A \ λX,X \ A) we have that

diam([a, b]) ≤ diam(X) = c2d(A \ λX,X \ A) ≤ c2|a− b|.

(3) If the first two are not satisfied, then a ∈ B \ λB and b ∈ X \B (or vice-versa.) This

case is exactly analogous to the previous and so there exists c3 such that diam([a, b]) ≤

c3|a− b|.

Hence, X is c-BT where c = max{c1, c2, c3}.

Lemma 2.1.5. Let X be a topological circle, A,B quasi-arcs such that

9



Figure 2.2: Drawing to accompany Lemma 2.1.5.

Figure 2.3: Drawing to accompany Lemma 2.1.6 for the case n = 3.

1. A ∪B = X,

2. d(A \B,B \ A) > 0.

Then X is a quasi-circle. (See Figure 2.2.)

Proof. By Theorem 2.1.3, let c1 such that A,B are c1-BT. Let c2 = diam(X)/d(A \B,B \A).

Let a, b ∈ X. If a, b ∈ A or a, b ∈ B then diam([a, b]) ≤ c1|a− b| since A,B are c1-BT. If not,

then a ∈ A \B and b ∈ B \ A (or vice-versa). Therefore,

diam([a, b]) ≤ diam(X) = c2d(A \B,B \ A) ≤ c2|a− b|.

Let c = max{c1, c2}. Then X is c-BT.

We say a map χ : U → V where U ⊂ V is expanding if there exists a λ > 1 and ε > 01

such that if x, y ∈ U and d(x, y) < ε then d(χ(x), χ(y)) > λd(x, y).

Lemma 2.1.6. Let λ ∈ C, n ∈ N, and I, I1, I2, ..., In+1 be arcs such that the following hold:

1. In+1 = λI1 and for i = 1, 2, ..., n, Ii ⊂ I.

1If U is not compact, then ε may depend on x.

10



2. I ⊂ I1 ∪ I2 ∪ · · · ∪ In+1.

3. There exists an open set U ⊃ I such that for each i = 1, 2, ..., n, there exists an open

set Ui ⊃ Ii and an expanding, conformal or anti-conformal map χi : Ui → U such that

χi(Ii) = I.

4. For i = 1, 2, ..., n, Ii ∩ Ii+1 is an arc and for |i− j| ≥ 2, Ii ∩ Ij = ∅.

Then I is a quasiarc. (See Figure 2.3.)

Proof. For each i ∈ {1, 2, ..., n+ 1}, define

Ji := Ii \
⋃
j 6=i

Ij.

By the fourth assumption, the closures of the Ji are all disjoint. Hence, we have that

C := min
i 6=j
{d(Ji, Jj)} > 0.

Therefore, if z1, z2 ∈ I and d(z1, z2) < C then there exists an i ∈ {1, 2, ..., n+ 1} such that

Ii 3 z1, z2.

Let χ : I → I be defined as

χ(z) =


χi(z), z ∈ Ii \ Ii+1, i ∈ 1, 2, ..., n,

χ1(λ−1z), z ∈ In+1.

By Schwarz Lemma each χi is expanding. Therefore χ is also expanding. Let 0 < ε < C such

that for any a, b ∈ I there exists N ∈ N such that d(χN(a), χN(b)) > ε.

Let c = diam(I)/ε. Let a, b ∈ I and let N ∈ N0 be the smallest non-negative integer such

that d(χN(a), χN(b)) > ε. Observe that for 0 ≤ i < N , d(χi(a), χi(b)) < ε and so for each i,

χi(a), χi(b) belong to some common Ij, j ∈ 1, ..., n+ 1. In this way,

diam([χN(a), χN(b)]) ≤ diam(I) = cε < cd(χN(a), χN(b)).

11



Let χ−N represent the branch sending χN(a), χN(b) to a, b. Since this map is conformal

or anti-conformal on U , it is η-qs on I, where η is independent of a, b or the choice of branch.

Since

diam([χN(a), χN(b)]) ≤ cd(χN(a), χN(b)),

then for any z ∈ [a, b],

d(χN(z), χN(b)) ≤ cd(χN(a), χN(b)).

Therefore,

d(z, b) ≤ η(c)|a− b|.

And so

diam([a, b]) ≤ 2η(c)|a− b|.

Hence, I is BT and so by Theorem 2.1.3, I is a quasi-arc.

2.2 Quadratic-like maps

Recall from the introduction that a quadratic-like (ql) map is a degree 2 branched covering

g : U → V where U b V are (open) topological disks. We define the filled Julia set of g,

K(g) := {z ∈ U | fn(z) ∈ U for all n ∈ N},

to be the set of non-escaping points and we define the Julia set, J (g) := ∂K(g).

Definition 2.2.1. Two ql maps g : U → V , g′ : U ′ → V ′ are hybrid equivalent if they are

conjugate under a qc map φ on neighborhoods of their filled Julia sets such that φ|K(g) is

conformal.

The theory of quadratic-like maps, along with the following theorem were introduced and

proved in [DH85], (see also [Lyu] or [McM96].)

Theorem 2.2.1 (The Straightening Theorem). Any ql map g is hybrid equivalent to a

quadratic map fc : z 7→ z2 + c. Moreover, if K(g) is connected then fc is unique.

12



2.3 Tuning basilicas

It is well known that there exists a unique decreasing sequence (cn)n∈N0 ⊂ R such that the

critical orbit of fcn is periodic of period 2n and for c ∈ [cn, 0], if z 7→ z2 + c has an attracting

cycle then its period is at most 2n. For each n ∈ N, we define Bn := J (fcn) to be the n-th

tuning of the basilica where B1 is the basilica itself. This sequence (cn)n∈N0 is convergent, see

[McM96]. Define c∗ as the limiting value. Then the Feigenbaum quadratic is defined as the

map z 7→ z2 + c∗ and we denote it merely by fc. As the next proposition from [Dou94] shows,

as n→∞, Bn → Jc.

Proposition 2.3.1. If J (fc) = K(fc) then for any sequence cn → c, J (fcn)→ J (fc).

fc may be alternatively defined as the straightening of f to a quadratic. Therefore, by

The Straightening Theorem, f and fc are hybrid-equivalent and so J (f) and J (fc) are

qs-equivalent. Hence, they have canonically isomorphic quasisymmetric groups. Since f

satisfies (1.0.1), we prove most of our results using f instead of fc∗ as its scaling properties

make it easier to use.

2.4 Böttcher coordinate

Since fc is a quadratic, we have the following theorem which uniformizes C \ Jc, the basin of

infinity of fc, by conjugating it with the squaring map on the exterior of the closed disk. This

uniformization of the basin of ∞ by the exterior of the closed disk is known as the Böttcher

coordinate. For a proof, see [Lyu] or [Mil06].

Theorem 2.4.1. There exists a conformal map ψ : C \ D→ C \ Jc such that

fc(ψc(w)) = ψc(w
2). (2.4.1)

Since Jc is locally connected by Theorem 3.2.2, the map ψc extends continuously to a

continuous map ψc : T→ Jc satisfying (2.4.1). Since f and fc are hybrid conjugate, we can
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also define the Böttcher coordinate for J as the lift to T under ψ := h ◦ ψc where h is the qc

map conjugating f and fc.
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Chapter 3

Structures within J

3.1 Notation

• v := f(0) which is also known as the critical value.

• α refers to the fixed point which is the landing point of the 1/3, 2/3 external rays. β

refers to the fixed point which is the landing point of the 0 ray. By (1.0.1), for k ∈ N,

αk := (−µ)−kα is a periodic point of period 2k.

• An α-point, β-point, or αk-point is a pre-image of α, β, or αk, respectively, under fn

for some n ∈ N0.

• For A,B,C ∈ R>0 we say A ∼=C B if C−1B ≤ A ≤ CB.

• The set of pre-critical points is denoted

PCP := {c ∈ J | fn(c) = 0, some n ∈ N0}.

Note that for convenience, we include the critical point, 0, in the set of pre-critical

points.

• Throughout the paper, T ⊂ C denotes the unit circle and instead of writing e2πit where

t ∈ R for points in T, we adopt the more concise notation t ∈ [0, 1]/ ∼.
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3.2 First properties

For simplicity, we previously defined J as the set of non-escaping points of f : U → V . This

is, however, the traditional way of defining the filled Julia set, denoted K(f). In this way,

the Julia set would then be defined as J (f) := ∂K(f). We can get away with this simpler

definition of J because of the following proposition which is proved in [McM94].

Proposition 3.2.1. Since f is infinitely renormalizable, J (f) = K(f).

The following theorem is due to Jiang and Hu [JH93].

Theorem 3.2.2. J is locally connected.

A path between points z1, z2 is understood to be the image of a continuous mapping

p : [0, 1]→ C such that p(0) = z1 and p(1) = z2. We say a path between z1 and z2 is an arc

if the path is injective. We say a path connected set is uniquely arc-wise connected if for any

two points z1, z2 in the set, there is a unique arc connecting them.

Proposition 3.2.3. J is uniquely arc-wise connected.

Proof. J is arc-wise connected by Theorem 31.2 of [Wil70] which says that a compact,

connected, locally connected metric space is arc-wise connected. Since J = K, by the

maximum modulus principle J is simply connected. Therefore, since J has no interior, J is

uniquely arc-wise connected.

The following theorem is proven in [Mil06].

Theorem 3.2.4. Let p : C→ C be a polynomial of degree at least 2. For any z ∈ J (p) ⊂ C

and any neighborhood N 3 z, the union of forward images of N under p contains all but at

most 1 point (in C).

A point b ∈ X is said to be a branch point if X \ {b} has at least 3 connected components.

We say a branch point, b, is of degree d if X \ {b} has d connected components. A set X is

said to be tetravalent if for any branch point b, the degree of b is 4.
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Lemma 3.2.5. J \ {v} has exactly 2 connected components.

Proof. By Lemma 3.2.3, since v ∈ [−β, β] ⊂ R, J \ {v} has d ≥ 2 connected components.

We know there exists 2 distinct components: one containing [−β, v) and one containing

(v, β]. Suppose v is a branch point of degree d ≥ 3 and let X be one of the components

that does not intersect R. Since 0 is the unique critical point and is not periodic, for all

n ≥ 0, the degree of fn(v) is equal to the degree of v. Since J ∩ R is forward invariant, by

taking a sufficiently small neighborhood of v, we find that the two connected components of

J \ {fn(v)} containing J ∩ R \ {fn(v)} must correspond to the two components of J \ {v}

that intersected R. Hence, fn(X) ∩ R = ∅ for all n ≥ 0. Since X is a connected component

of J \ {v}, there exists an open set U ⊃ X such that U ∩ J \X = ∅. By the invariance of

J under f , U also satisfies the property that fn(U) ∩ (J ∩ R) = ∅ for all n ∈ N. This is a

contradiction by Theorem 3.2.4.

Corollary 3.2.6. J \ {0} has 4 connected components.

Proof. Since J \ {v} has 2 connected components, there are exactly 2 external rays that land

at v. Since v is the critical point, this means there are 4 rays that land at 0. These rays cut

the plane into 4 sectors. Hence, J \ ¶{0} has 4 connected components.

Lemma 3.2.7. J is tetravalent and the only branch points are pre-critical points.

Proof. Let b ∈ J be a branch point. By Corollary 3.2.6 if b is a pre-image of 0 then

degree(b) = 4. Suppose b is not a pre-image of 0. Then degree(b) = degree(fn(b)) for all

n ≥ 0. By Theorem 3.2.4 combined with invariance of J under f , every component of J \{b}

must eventually intersect R. Since f(R) ⊂ R this means that there exists an N ∈ N such

that for every component X of J \{b}, fN (X)∩R 6= ∅. Since for all n, J \{fn(b)} can have

at most two components that intersect R we have a contradiction. Hence, the only branch

points of J are 0 and pre-images of 0.

Lemma 3.2.8. Every x ∈ (−β, β) is a cut-point of J .
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Proof. We already know that if x is a pre-critical point then it is a degree 4 branch point,

and hence a cut-point.

Since ψ : T→ J is surjective, there exists an external ray Rθ that lands at x. Since J is

symmetric about R, R−θ also lands at x. Since the arc Rθ ∪ {x} ∪R−θ separates the plane

into two pieces and only intersects J at x, x is a cut-point.

Corollary 3.2.9. For any k > 0, any iterated pre-image of (−µ)−kβ is a non-branching

cut-point of J .

Proof. By Lemma 3.2.8, (−µ)−kβ is a cut-point. Since (−µ)−kβ is not in the post-critical

set, all pre-images of (−µ)−kβ are still cut-points.

3.3 Limbs

Let X be the component of J \ {0} that intersects iR+. Define L↑ := X ∪ {0}. We say a

subset L ⊂ J is a (quadratic) limb if L is an iterated pre-image of ±L↑ under f . The spine

of L↑ is

spine(L↑) := iR ∩ L↑

and more generally if L is any limb and n ∈ N0 is such that fn(L) = ±L↑ then

spine(L) := {z ∈ L | fn(z) ∈ iR}.

For both pre-critical points and limbs we use the term generation to describe their

dynamical distance to 0 or ±L↑. That is, for a limb L, Gen(L) = n if fn(L) = ±L↑ and for a

pre-critical point c, Gen(c) = n if fn(c) = 0.

The following lemma follows directly from the definition of a limb.

Corollary 3.3.1. For every pre-critical point, c ∈ PCP , c is the root of exactly two limbs:

Lc, L
′
c.
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Proof. This follows immediately from Lemma 3.2.7 and the definition of a limb.

Since J is tetravalent and uniquely arc-wise connected, for every point z ∈ J we may

define the level of z in the following inductive manner:

• If z ∈ J ∩ R, then level(z) = 0.

• If z 6∈ R and z ∈ spine(L) for some limb L that is rooted in R, then level(z) = 1.

• More generally, if z ∈ spine(Lc) \ {c} for some limb rooted at c and level(c) = n then

level(z) = n+ 1.

• If z does not belong to any spine in J then level(z) =∞.

We say that an arc p has a turn at a point c if:

1. c ∈ Int(p) is a pre-critical point, and

2. The two components of J \ {c} that p intersects are not opposite of each other. That

is, under a rotational ordering of the components of J \ {c}, the two components that

intersect p are adjacent.

This definition of levels coincides with the intuitive notion of the number of turns in the

unique path from 0 to z in J .

For L ⊂ J a limb rooted at c, define |L| := t2 − t1 where 0 < t1 < t2 < 1 ∈ T such that

ψ(t1) = ψ(t2) = c. In other words, |L| is the size of L in the Böttcher coordinate.

Lemma 3.3.2. Given two distinct limbs L1, L2 rooted at c1, c2 respectively such that c1 6= c2.

If L1 ∩ L2 6= ∅, then either L1 ⊂ L2 or L2 ⊂ L1.

Proof. If c2 ∈ L1 then c1 ∈ [0, c2]J . Since only one of the 4 components of J \ {c2} can

contain c1, the others are contained in L1. Since the component that contains c1 also intersects

R, it is not a limb. Hence, the limbs rooted at c2 are contained in L1.
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If instead c2 6∈ L1, then for z ∈ L1 ∩ L2, [c2, z] 3 c1 as any path going from outside the

limb to inside the limb must pass through the root. Hence, c1 ∈ L2. By the same argument

as in the previous case, this means that L1 ⊂ L2.

Lemma 3.3.3. There is a unique pre-critical point c1 ∈ L↑ \ {0} of generation 3. Every

other pre-critical point in L↑ \ {0} is of greater generation.

Proof. Let x1,−x1 be the two pre-images of 0 under f in J where x1 > 0. By Lemma 4.3.2,

it suffices to show that this is true along (0, β↑] := spine(L↑) \ {0}. That is, β↑ ∈ iR+ is

defined to be the tip of spine(L↑).

We can do this easily by observing the dynamics. f((0, β↑]) = [−β, v) 63 0. Since

f |[0,β] and f |[−β,0] are both injective, f([−β, v)) = (f(v), β]. Since v < −x1, 0 < f(v) < x1.

Hence, f 2((0, β↑]) = (f(v), β] 63 0. Therefore, f 3((0, β↑]) = f((f(v), β]) = (f 2(v), β]. Since

0 < f(v) < x1 and f(x1) = 0, by injectivity f 2(v) < 0. Hence, f 3((0, β↑]) = (f 2(v), β] 3 0

while for n = 0, 1, 2, fn((0, β↑]) 63 0.

Lemma 3.3.4. For any ε > 0 there are only finitely many limbs whose diameter is at least ε.

Proof. Let (Ln)n∈N be any sequence of limbs. Since J is compact, the limbs Ln converge on

a subsequence. Since there are only finitely many limbs

We prove this by contradiction. Suppose there exists an ε > 0 and infinitely many limbs

with diameter at least ε. Thus, there exists a sequence of limbs Ln such that diam(Ln) > ε

and the dynamical height of Ln is at least n. Since J is compact, there exists a subsequence

nk such that Lnk → Y such that Y is connected and diam(Y ) ≥ ε. However, ψ−1(Ln) ⊂ T is

an interval and diam(ψ−1(Ln)) ≤ C · 2−n for some C > 0 that doesn’t depend on n. Hence,

ψ−1(Lnk) goes to a singleton as nk →∞. But since ψ : T→ J is well-defined, this implies

Y is a singleton, a contradiction.

Corollary 3.3.5. If (Ln)n∈N is a sequence of limbs such that Ln ) Ln+1 then
⋂
n∈N is a

singleton.
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Proof. By Lemma 3.3.4, diam(Ln)→ 0 as n→∞. Hence, diam(
⋂
n∈N Ln) = 0. Furthermore,

since each Ln is compact and non-empty,
⋂
n∈N Ln is non-empty. Therefore, it is a singleton.

Let

Xs = (J ∩ R) ∪
⋃

c∈PCP

spine(Lc) ∪ spine(L′c)

where Lc, L
′
c denote the two limbs rooted at the pre-critical point c.

Proposition 3.3.6. J \Xs is totally disconnected.

Proof. Let {Ln}n∈N be a sequence of limbs such that Ln ) Ln+1. Then
⋂
n∈N Ln is compact

and non-empty. Let z ∈
⋂
n∈N Ln. Then z 6∈ spine(L) for any limb L because otherwise z

could only belong to finitely many limbs. Hence, z ∈ J \Xs and so J \Xs is non-empty.

Let z ∈ J \Xs and, by Proposition 3.2.3, let p be the unique arc from 0 to z in J . Since

z 6∈ Xs, p must have infinitely many turns. Otherwise z would lie in R or spine(L) for some

limb L. Hence, z lies in a decreasing nested sequence of limbs.

Let z1 6= z2 ∈ J \ Xs. Since z1, z2 belong to different decreasing nested sequences of

limbs, there exists a limb L1 3 z1 such that L1 63 z2 and let c1 denote the root of L1. Let

θ1, θ
′
1 ∈ T such that ψ−1(L1) = [θ1, θ

′
1]. Let Rθ1 , Rθ′1

be the corresponding external rays. Then

since Rθ1 ∪ {c1} ∪Rθ′1
∩ J = {c1}, it separates z1 from z2 in Xs, hence they lie in different

connected components

Corollary 3.3.7. J = Xs.

Proof. If w ∈ J \Xs then for all n, fn(w) ∈ J \Xs since spines of limbs map either to spines

of limbs or to J ∩ R. Therefore if z ∈ Xs and w ∈ J such that fn(w) = z then w ∈ Xs.

Since the set of all iterated pre-images of z is dense in J , Xs is dense in J .
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3.4 Important Points

There are some points in J (or in µ2J ) that will be of use in later sections which we will

define here. To see these points drawn on J∞, see Figure 4.3.

• x1 is defined to be the unique positive pre-image of 0 under f and will be particularly

relevant throughout Chapters 4 and 5.

• By Lemma 3.3.3 there is a unique point, c1, of generation 3 in L↑. For convenience,

define y1 := µ2c1.

• By an analogous argument to that of Lemma 3.3.3 there is a unique pre-critical point

of generation 5 separating 0 and c1. Define y2 := µ2c2.

3.5 Little Julia sets

Within J are little copies of itself. Recall from the introducation that a little Julia set of

depth k ≥ 0, J ⊂ J , is a pre-image of µ−kJ under fn for some n ≥ 0. As we will see, these

little Julia sets – and the variations of them which we are about to define – play an important

role in understanding the group of quasisymmetries of J .

Let J be a little Julia set of depth k and let n ∈ N0 such that fn(J) = µ−kJ . The spine

of J , denoted spine(J), is the set I ⊂ J such that fn(I) = µ−k[−β, β]. We say a set I ⊂ J is

a 1-dimensional (1d) little Julia set of depth k if I = spine(J) for some little Julia set, J , of

depth k. A 1d little Julia set is called a patriarch if it is not contained in any other 1d little

Julia set. The term patriarch would have little meaning for regular little Julia sets because

the only little Julia set not contained in any other is J itself.

Given J , the extended little Julia set containing J is

Ĵ := spine(J) ∪
⋃

c∈PCP∩spine(J)

(Lc ∪ L′c)
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Figure 3.1: For the little Julia set, J := µ−1J . Depicted is Ĵ ⊃ J ⊃ spine(J) in red, blue,
and green, respectively.

Figure 3.2: The spine of every limb consists of the root, the tip, and a countable union of
patriarchal 1d little Julia sets. Ii,j is the j-th patriarchal 1d little Julia set of depth i from
the root.

(i.e. Ĵ extends J by taking the full limbs rooted in spine(J), as opposed to trimming off the

“decorations” as would be done to achieve J .)

Given a little Julia set, J , of depth k. A child of J is a little Julia set, Jc ⊂ J of depth

k + 1. Similarly, a spine child of J , is a child of J , Jc, such that spine(Jc) ⊂ spine(J).

Analogously, a child of a 1d little Julia set, I, of depth k is a 1d little Julia set, Ic of depth

k + 1, such that Ic ⊂ I. It is worth noting that there is a natural indexing by Z of the spine

children of any little Julia set. This indexing corresponds to the ordering of the real bounded

Fatou components of the Basilica from left to right, such that the 0-th component contains 0.

Lemma 3.5.1. For any limb Lc rooted at c,

spine(Lc) = {c} ∪
⋃
i,j∈N

Ii,j

where Ii,j is the j-th closest 1d little Julia set of depth i to the root of L. Furthermore, Ii,j is

a patriarch 1d little Julia set. (See Figure 3.2.)
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Proof. Since every limb is a pre-image of ±L↑, it suffices to show that this is the case for L↑.

µ−1β(L↑) is the α-point in spine(L↑) closest to 0. Since two consecutive α-points in

spine(L↑) form the endpoints of a 1d little Julia set of depth 1, the α-point in spine(L↑)

closest to 0 is also the closer to 0 of the two endpoints of I1,1. Since α-points accumulate on

β(L↑) in spine(L↑), it follows that

⋃
j∈N

I1,j = [µ−1β(L↑), β(L↑)).

Since µ−i+1I1,j is the j-th closest 1d little Julia set of depth i to µ−iβ(L↑) in spine(L↑), it

follows that it is also the closest one to 0 as there can be no 1d little Julia sets of depth i in

spine(L↑) ∩ µ−iJ = (0, µ−iβ(L↑)]J . Hence, Ii,j = µ−i+1I1,j. As such,

⋃
i∈N

⋃
j∈N

Ii,j =
⋃
i∈N

⋃
j∈N

µ−i+1I1,j (3.5.1)

=
⋃
i∈N

µ−i+1[µ−1β(L↑), β(L↑)) (3.5.2)

= (0, β(L↑)). (3.5.3)

Since [−β, β] is the unique 1d little Julia set of depth 0, any 1d little Julia set not

contained in R is a patriarch 1d little Julia set. Hence, I1,j is a patriarch 1d little Julia set

for all j. Similarly, µ−i[−β, β] is the unique 1d little Julia set of depth i in µ−iJ . Since Ii,j

lies closer to 0 than any 1d little Julia set of depth i− 1, for any i > 1, Ii,j is also a patriarch

1d little Julia set.

Corollary 3.5.2. If I is a patriarch 1d little Julia set then I = [−β, β] or I ⊂ spine(L) for

some limb L in which case it can be characterized as the j-th closest 1d little Julia set of

depth i to the root of L among those in spine(L).

Proof. By Proposition 3.3.6, there are no 1d little Julia sets outside of J ∩ R and the spines

of limbs. If I 6= [−β, β] then by Lemma 3.5.1, I ⊂ spine(L) = {c} ∪
⋃
i,j∈N Ii,j where Ii,j is
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the j-th closest 1d little Julia set of depth i to the root of L. Since I is a patriarch 1d little

Julia set, I = Ii,j ⊂ spine(L) for some i, j ∈ N.

Corollary 3.5.3. If c is a pre-critical point and I 3 c is a 1d little Julia set then for Lc a

limb rooted at c, I ∩ Lc = {c}.

Proof. Suppose I 3 c is a 1d little Julia set. Let Ip ⊃ I be the patriarch 1d little Julia set

containing I. Let X 3 c be a spine. By Corollary 3.5.2, Ip ⊂ X. Hence, Ip ∩Lc = {c} and so

I ∩ Lc = {c}.

Lemma 3.5.4. I is a 1d little Julia set if and only if it is the closure of the union of a unique

2-sided sequence of distinct 1d little Julia sets such that consecutive elements overlap at an

end-point.

Proof. We begin by proving the forward direction. Consider first the depth 0 1d little Julia

set, I0 = [−β, β]. For j ≥ 0, define Ij,0 := f−j([α,−α]) where the branch of f−j is chosen

such that it fixes β. For j < 0, define Ij,0 := f−j([α,−α]) where the branch of f−j is chosen

such that it sends β to −β. In this setting
⋃
j∈Z Ij,0 = (−β, β), I0 is the closure of the union

and consecutive elements overlap at a point.

Now consider the general case where I is a 1d little Julia set of depth k. Let n such

that fn(I) = µ−k[−β, β]. Let f−n be the branch such that f−n(µ−kI0) = I. Define Ij :=

f−n(µ−kIj,0). This sequence satisfies both desired properties: its union is a dense subset of I

and consecutive elements overlap at a point.

For the backwards direction, suppose (I ′j)j∈Z is a 2-sided sequence of distinct 1d little Julia

sets such that consecutive elements overlap at a point. Since the end-points of a 1d little Julia

set of depth k are pre-images of (−µ)−kβ, the assumption that consecutive elements overlap

at an end-point implies that each 1d little Julia set is of the same depth. Let k := depth(I ′j)

for all j ∈ Z. By Corollary 3.5.2, the elements of this sequence are not patriarch 1d little

Julia sets. Therefore, let Ip ) I ′0 be a 1d little Julia set of depth 1 less than I ′0. Let n be the
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dynamical height of Ip. Then fn(I ′0) = µ−kIi,0 for some i ∈ Z. Therefore, fn(I ′j) = µ−kIi+j,0

for all j ∈ Z or fn(I ′j) = µ−kIi−j,0 for all j ∈ Z. Hence,
⋃
j∈Z I

′
j = Ip.

Corollary 3.5.5. Every 1d little Julia set is uniquely determined by the patriarch 1d little

Julia set it is contained in as well as an element of Zn for some n ∈ N0 describing where

amongst the descendants of the patriarch it is located.

Proof. By Lemma 3.5.4, the children of a 1d little Julia set are indexed by Z. Since each of

their children are also indexed by Z, and so on, an element of Zn for some n ∈ N0 can specify

where amongst a patriarch 1d little Julia set’s descendants a given 1d little Julia set lies.

3.6 More properties of J

Note that the term spine is used to refer to subsets of both little Julia sets and limbs. We

say a spine is maximal if it is not contained in any other spine.

Lemma 3.6.1. If X is a maximal spine then X = J ∩R or X = spine(L) for some limb L.

Proof. If X = J ∩R or X = spine(L) for some limb L then X is maximal. If X is any other

spine then X is the spine of a little Julia set of depth at least 1 and so is a 1d little Julia set.

If X is not a patriarchal 1d little Julia set then X is not a maximal spine. If it is a patriarch

1d little Julia set then by Corollary 3.5.2 X ⊂ spine(L) for some limb L.

Lemma 3.6.2. Let X be a maximal spine. Then the set of pre-critical points in X is dense

in X.

Proof. We prove this by contradiction in the context of (fc,Jc) using the fact that pre-critical

points are dense in Jc, (see Corollary 4.13 of [Mil06]). By the conjugacy of (f,J ) and (fc,Jc)

the result also holds for J .

Suppose there is some open interval I ⊂ X such that I contains no pre-critical points.

Since we may further restrict I if necessary, we assume WLOG that the end-points of I are
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also not pre-critical points and that neither are endpoints of X. By Lemma 3.2.8, every

point in X other than its end-points are cut-points of Jc. By Lemma 3.2.7, the only branch

points of Jc are pre-critical points. Therefore, every point in I is a non-branching cut-point.

Since I is an open interval and since its end-points are non-branching cut-points, Jc \ I

has 2 connected components, both of which are closed in C. Hence, C \ (Jc \ I) is an open

neighborhood of I that contains no pre-critical points: a contradiction.
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Chapter 4

Transcendental dynamics of the

renormalization fixed point

4.1 Definition of f as a transcendental map onto C

Recall f : U0 → V0 is the period-doubling renormalization fixed point which satisfies both

(1.0.1) and µ−1J ⊂ J .

By (1.0.1), we may define f 1/2(z) := µf(µ−1z) where f 1/2 : µU0 → µV0 is a rescaled

quadratic-like map. (See Figure 4.2.) Letting U1 := f−2·1/2(µV0) we get a degree 4 branched

covering f : U1 → µV0. Similarly, for n ∈ N, we may define the ql map f 1/2n : µnU0 → µnV0

by f 1/2n(z) := µnf(µ−nz). Letting Un := f−2n·1/2n(µnV0), we get that f : Un → µnV0 is a

degree 2n branched covering. Defining Ω1 :=
⋃
n∈N Un, we get a (σ-proper) transcendental

map f : Ω1 → C. This construction can be extended to find the maximal domain of f s for

any dyadic s > 0, which will be denoted Ωs.

Two useful objects of study are

J∞ :=
⋃
n∈N

µnJ
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Figure 4.1: Drawn is a zoomed in picture of Jc, which gives a close approximation of the
structure of J∞

Figure 4.2: Re-scalings of the quadratic-like map f used to build the transcendental dynamics
of f : Ω1 → C
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and

Esc =
⋃
t>0

Esct

where t is dyadic and Esct := C \Dom(f t).

A proof of the following proposition can be found in [McM96]:

Proposition 4.1.1. J∞ is dense in C.

Corollary 4.1.2. Each component of Esc is simply connected and has empty interior. Fur-

thermore, for any two points z1, z2 ∈ Esc, there exists at most 1 arc connecting them.

Proof. Since J∞ is dense by Proposition 4.1.1 and since Esc ⊂ C \ J∞, Esc has empty

interior. Since J∞ is also connected, Esc cannot contain any non-contractible loops. That

is, if p1, p2 ⊂ Esc are two arcs with the same starting and ending point, then p1 = p2 since

otherwise they would bound some open region that would be disjoint from J∞.

Since f is an even function, we can define F to be the function satisfying f(z) = F (z2).

The following proposition is due to Henri Epstein, see [Eps92] or [Buf97].

Proposition 4.1.3. There exists a real-symmetric bounded domain W 3 0 such that

• F |W is univalent

• F (W ) = C \ ((−∞, v] ∪ [−µv,+∞)).

4.2 First properties of J∞

Lemma 4.2.1. J∞ has empty interior.

Proof. Since J has empty interior, this follows as a direct consequence of Baire Category

Theorem.

The following is a corollary of Lemma 3.2.3
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Corollary 4.2.2. J∞ is uniquely arc-wise connected.

Proof. Let z1, z2 ∈ J∞. There exists an N such that z1, z2 ∈ µNJ . By Lemma 3.2.3, there

exists a unique arc γ = [z1, z2]µNJ ⊂ µNJ between z1 and z2. Let γ′ be any arc between

z1 and z2 in J∞. If γ 6= γ′ then these paths will bound a planar region, U , which by

maximum modulus principle must be contained in J∞. However, by Lemma 4.2.1 this is a

contradiction.

Lemma 4.2.3. Removing any pre-critical point separates J∞ into 4 path connected compo-

nents. Moreover, any point c such that J∞ \ {c} has at least 3 path connected components is

a branch point of µNJ for some N ∈ N.

Proof. Let N ∈ N such that c is a branch point of µNJ . By Lemma 3.2.7, for any M ≥ N ,

µMJ \ {c} has 4 connected components since c is also a branch point of µMJ . For z1, z2 ∈

µMJ , being in the same component of µMJ \ {c} is equivalent to the path [z1, z2]µMJ 63 c.

Therefore, by Corollary 4.2.2, if z1, z2 ∈ µMJ then they are in different path connected

components of µMJ \ {c} if and only if they are in different path components of J∞ \ {c}.

Hence, J∞ \ {c} has 4 path connected components.

Let b ∈ J∞ such that J∞ \ {b} has at least 3 path connected components. For sake of

contradiction, suppose b is not a branch point for µnJ for any n. Let z1, z2, z3 ∈ J∞ \ {b}

belong to different path connected components. Let M such that z1, z2, z3, b ∈ µMJ . Since b

is not a branch point of µMJ we may assume WLOG that z1, z2 are in the same connected

component of µMJ \ {b}. Hence, [z1, z2]µMJ 63 b. However, since z1, z2 are in different

components of J∞ \ {b} any path between them in J∞ must pass through b. This contradicts

the fact that [z1, z2]µMJ = [z1, z2]J∞ . Hence, each branch point of J∞ is a branch point of

µnJ for some n.

Hence, as in the case for J , every such point b ∈ J∞ is a pre-image of 0, and so its

removal separates J∞ into 4 path connected components.
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Figure 4.3: Seen is a computer drawing of an approximation of J∞ with the boundaries of
the closures of limbs rooted at µ−1x1, x1, µx1, µ

−1y1, y2, and y1 added by hand for emphasis.

Remark 4.2.4. Actually, Lemma 4.2.3 can be strengthened to the stronger result that J∞ is

tetravalent. This can be done by identifying certain arcs in Esc landing at a given pre-critical

point c such that removing these arcs and c cuts the plane into 4 open sets.

4.3 Limbs

Let X be the connected component of J∞ \ {0} containing iR>0. Define L↑ := X ∪ {0}. We

say L is a limb (of generation t) if it is a pre-image of ±L↑ under f t for some dyadic t ≥ 0. A

limb of generation t, L, is said to be rooted at c if c ∈ L and f t(c) = 0. Two (disjoint) limbs

L1,L2 are said to touch if L1 ∩ L2 6= ∅. We define the spine of L↑ to be

spine(L↑) := iR≥0 ⊂ L↑.

The spine of a general limb is defined in the natural way in terms of pre-images of spine(L↑).

More generally, we say a set X ⊂ J∞ is a spine if X = R or if X = spine(L) for some limb

L. The spines in J∞ are analogous to the maximal spines of J . For examples of some limbs,

see Figure 4.3.
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Proposition 4.3.1. ±L↑ are the only unbounded limbs.

Proof. Let W be the bounded domain from Proposition 4.1.3 such that F |W is univalent

onto C \ ((−∞, v] ∪ [−µv,+∞)). Let c 6= 0 be a pre-critical point. By rescaling if necessary

we may assume WLOG that c2 ∈ W . Therefore, f(c) ∈ C \ ((−∞, v] ∪ [−µv,+∞)). Since

the branch of f−1 that sends f(c) to c maps C \ ((−∞, v]∪ [−µv,+∞)) to a bounded set (by

Proposition 4.1.3), the branch of f−1 maps the (transcendental) limbs at f(c) to the limbs at

c. Hence, we get that the limbs rooted at c are bounded.

Lemma 4.3.2. Let c 6= c′ be pre-critical points such that c′ ∈ Lc where Lc is a limb rooted

at c. Then Gen(c′) > Gen(c).

Proof. Let s = Gen(c). Then f s(c′) ∈ f s(Lc) = ±L↑. Since the post-critical set is contained

in R, f s(c′) is not in the post-critical set. Hence, Gen(c′) > s.

Lemma 4.3.3. Let L1,L2 be limbs of generation at least s. If L1 and L2 are touching then

f s(L1), f s(L2) are touching.

Proof. This is a direct consequence of continuity of f s on its domain.

Corollary 4.3.4. If L1,L2 are limbs of the same generation, then L1,L2 do not touch.

Proof. This follows from Lemma 4.3.3 because ±L↑ are the only limbs of generation 0 and

they do not touch.

Lemma 4.3.5. For any limb L rooted at c, J∞ \ {c} has 4 connected components, one of

which is L \ {c}.

Proof. Let s = Gen(c). Since J∞ is connected and c is a pre-image of 0, which is not in the

post-critical set, there exists a neighborhood of c, Uc, such that f s|Uc is conformal. Since 0 is

a branch point of degree 4, c is also a branch point of degree 4.

Corollary 4.3.6. Let L be a limb. Any path in J∞ between a pair of points z1 ∈ J∞ \ L

and z2 ∈ L must pass through the root of L.
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Proposition 4.3.7. Given two limbs L1,L2. If L1 ∩ L2 6= ∅ then L1 ⊂ L2, L2 ⊂ L1, or

L1 ∩ L2 = {c} where c is their common root.

Proof. The proof is the same as for Lemma 3.3.2.

Corollary 4.3.8. If X1 6= X2 are spines, then X1, X2 are either disjoint or overlap on one

of their endpoints.

Proof. Since X1 6= X2, we may assume WLOG that X2 = spine(L2) for some limb L2. If

X1 = R then X1 ∩X2 = {c2} where c2 is the root of L2 if and only if c2 ∈ R. If X1 6= R then

X1 = spine(L1) for some limb L1 rooted at c1. If L1 ∩L2 = ∅ then X1 ∩X2 = ∅. If not, then

by Proposition 4.3.7, L1 ⊃ L2 or vice-versa. For concreteness, assume L1 ⊃ L2. Then L2 is

rooted in X1 if and only if X1 ∩X2 = {c2}. If L2 is not rooted in X1 then X1 ∩X2 = ∅.

Corollary 4.3.9. For every pre-critical point c, there is a unique maximal spine Xc such

that c ∈ Int(Xc).

Proof. If X is a maximal spine and c ∈ Int(X) then by Corollary 4.3.8, X is unique. Let

N ∈ N such that c ∈ µNJ . Since the number of turns away from R is bounded by 2N Gen(c),

since each turn occurs at a pre-critical point, and since each pre-critical point is the root of a

limb, and hence the endpoint of a spine, it follows that c belongs to a spine.

Lemma 4.3.10. If X is a spine and c ∈ Int(X) is a pre-critical point of generation s > 0

then there exists c1, c2 ∈ X such that Gen(c1),Gen(c2) < s and [c1, c2]J∞ 3 c.

Proof. If X = R, then we may choose c1, c2 = 0, µc. If X = iR≥0 or iR≤0 then we may again

choose c1, c2 = 0, µc. If not, then X is some pre-image of iR≥0 or iR≤0 and so the result also

holds for general X.

Lemma 4.3.11. For any bounded limb, L, there exists s dyadic and k ∈ Z such that f s(L)

is a limb rooted at ±µkx1.

35



Proof. Recall that ±x1 are the only two points in J that map to 0 under f . Let c be the

root of L. Since c ∈ J∞, c ∈ µkJ for some k ∈ Z. Hence, for some s, f s(c) = ±µkx1. The

statement of the lemma follows.

Recall the points x1, y1, and y2 from Section 3.4.

Lemma 4.3.12. For any k ∈ Z,

1. µkx1 is the unique point of least generation in (0, µk+1x1) ⊂ R.

2. µky1 is the unique point of least generation in (0, µk+1y2) ⊂ iR.

3. µky2 is the unique point of least generation in (0, µky1) ⊂ iR.

Proof. By (1.0.1) it suffices to prove each for a single choice of k.

1. We want to show that µ−1x1 is the point of least generation in (0, x1). By (1.0.1),

Gen(µ−1x1) = 2 Gen(x1) = 2. Since (0, x1) ⊂ J and there are only 7 points of

generation less than or equal to 2 in J – 0,±x1,±µ−1x1,±f−1(x1) – we see the

statement holds by examining where each of them lies.

2. For the case k = −3. µ−3y1, µ
−2y2 ∈ J and it is simple to verify that there is no

point of generation less than or equal to 6 = Gen(µ−3y1) in (0, µ−2y2). This has been

partially done already in Lemma 3.3.3 where it is shown that µ−2y1 is the point of least

generation in iR+ ∩ J .

3. For this one, it is similarly simple to verify for the case k = −2.

We have the following immediate corollary.

Corollary 4.3.13. 1. The points {±µkx1 | k ∈ Z} are exactly the points in R that cannot

be separated from 0 by a point of lesser generation.

36



Figure 4.4: We see in blue ∂cO(Lx1), the coast of the lake associated to Lx1 , and in red
∂Oρ(Ly1), the boundary of the right half-lake associated to Ly1

2. The points {±µky1,±µky2 | k ∈ Z} are exactly the points in iR that cannot be separated

from 0 by a point of lesser generation.

4.4 Lakes

For any s, Dom(f s) has a certain “chessboard” type structure, as introduced in [Buf97]. We

use here a slightly more general approach to demonstrate this structure via the following

lemma, which is taken from [DL18].

Lemma 4.4.1. Let g : Dom g → C be a σ-proper map, where Dom g is either D or C.

Suppose that the set of critical values CV(g) of g is discrete and assume that l : R→ C is a

simple properly embedded arc such that

1. l(R) ⊃ CV(g), and

2. l splits C into two open half-planes V and W .

Then
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• g−1(l) is a tree in Dom g; in particular, if U is a connected component of Dom g \ g1(l),

then U has a single access to infinity; and

• there is a “chess-board rule”: if U1 and U2 are two different components of g1(V ), then

∂U1 ∩ ∂U2 ∩Dom g is either empty or a single critical point of g.

The “squares” of the chess board cut out by f−s(R) are what we call lakes. That is, a

lake of generation s is a pre-image of H+ or H− under f s. There is a natural correspondence

between limbs and lakes. Let L be a limb of generation s. Then O(L) is defined to be the

unique lake of generation s containing L. Given a lake O of generation s, its coast is

∂cO := ∂O ∩Dom(f s).

The following proposition is also from [DL18] and follows from Lemma 4.4.1. Using

slightly different language, it was also known by Epstein, see [Eps92] or [Buf97].

Proposition 4.4.2. Let O be a lake of generation s.

• O has a single access to Esc (i.e. after identifying C \ Escs ∼= D)

• f s : O→ H is conformal

• ∂cO is an arc in f−s(R)

• f s : ∂cO→ R is a homeomorphism

Corollary 4.4.3. Let O be a lake of generation s. Then there is a unique c ∈ ∂cO of

generation s.

Proof. By Proposition 4.4.2, f s|∂cO is a homeomorphism and 0 is the unique point of generation

0 in J∞ (and hence, in R.) Therefore c is the unique point in ∂cO of generation s.

Corollary 4.4.4. Let O = O(Lc) be a lake of generation s > 0. ∂cλO, ∂cρO are two paths in

J∞ from c that limit on β(Lc) with infinitely many turns such that each turn is the first

encountered pre-critical point c′ such that Gen(c′) < s.
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Proof. There are two parts to the above statement: first, that following the coast from c

in either direction has infinitely many turns, and second, that these paths limit on a single

point.

By 4.3.9, let X0 be the unique spine containing c in its interior. By Lemma 4.3.10 there

exist points c′0, c
′
1 of generation less than s on either side of c in X0. Since [c′0, c

′
1] ⊂ µNJ for

some N and since points of generation less than s are discrete in µNJ , we can define c0, c1

to be the closest pre-critical points of generation less than s in X0 that are separated by c.

It follows that ∂cO(Lc) ∩X0 = [c0, c1]J∞ .

Since c1 is a critical point of f s, ∂cO has a turn at c1. Let X1 3 c1 be the spine that ∂cO

turns on to when traveling away from c. If c1 ∈ Int(X1) then by the same argument as for X0,

there exists a closest point of generation less than s in X1, c2, for which ∂cO∩X1 = [c1, c2]J∞ .

If instead, c1 is the root of X1, then there exist points in X1 of generation arbitrarily close to

Gen(c1). Since Gen(c1) < s, there exist points in X1 of generation less than s. In particular,

there is a closest point (to c1) of generation less than s, c2, for which ∂cO ∩X1 = [c1, c2]J∞ .

Continuing in this way, we find that the path from c starting in the direction of c1 and

going along ∂cO has infinitely many turns. Since the path in the direction of c0 is analogous,

it also has infinitely many turns.

Within a lake O of generation s, we define the right and left half-lakes of generation

s, denoted, Oρ,Oλ, to be the subsets of O such that f s(Oρ) equals QI or QIII and f s(Oλ)

equals QII or QIV . That is, while lakes are pre-images of the upper or lower half-planes,

half-lakes are pre-images of quadrants. The definition of right and left half-lakes is such that

if O = O(L) then the right half-lake of O is the portion of O lying to the right of spine(L)

– when viewing spine(L) as an oriented path from the root of L to β(L) – while the left

half-lake lies to the left.

By Proposition 4.4.2, we may define simple paths

∂cλO := ∂cO ∩ ∂Oλ,
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∂cρO := ∂cO ∩ ∂Oρ.

From these definitions, it follows that

∂cλO ∪ ∂cρO = ∂cO

and

∂cλO ∩ ∂cρO = {c}.

Lemma 4.4.5. Every lake is contained in either the upper or lower half-plane.

Proof. Since R is forward-invariant, C \ R is backwards invariant. Since every lake is defined

as a pre-image of H+ or H−, every lake is disjoint from R and so by connectedness is contained

in either H+ or H−.

Lemma 4.4.6. If O1,O2 are lakes such that O1 ∩O2 6= ∅ then O1 ⊂ O2 or O2 ⊂ O1.

Proof. Let s1 = Gen(O1) and s2 = Gen(O2). WLOG, suppose s1 ≤ s2. Then H = f s1(O1) is

the upper or lower half-plane and f s1(O2) is a lake of generation s2−s1. Since f s1(O2)∩H 6= ∅,

by Lemma 4.4.5, f s1(O2) ⊂ H. Hence, O2 ⊂ O1.

Lemma 4.4.7. Let s > t > 0. For any limb, L, of generation s, there is a unique lake of

generation t, Ot such that Ot ⊃ L.

Proof. Since all the lakes of generation t are disjoint, it suffices to show that there exists one

that contains L. Since s > t, f t(L) is a bounded limb contained in H+ or H−. Hence, there

is a lake of generation t containing L.

Lemma 4.4.8. Let L be a limb rooted at c such that Gen(c) = s > 0. If c ∈ R, let X := R.

Otherwise, let X := spine(Lp) such that Int(X) 3 c1. Then

∂cO(L) ∩X = [c1, c2]J∞

where c1, c2 are the closest pre-critical points of generation less than s in X.

1

1Int(X) refers to the 1-dimensional interior.
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Proof. By Proposition 4.4.2, f s : ∂cO(L) → R is a homeomorphism. Since f s|(c1,c2)J∞
has

no critical points ∂cO(L) cannot leave X before leaving (c1, c2)J∞ . On the other hand, since

c1, c2 are critical points of f s, ∂cO(L) cannot extend past c1, c2 in X because this would

break injectivity of f s|∂cO(L).

4.5 β-points

In the quadratic setting, β-points are pre-images of the β-fixed point and are also the ends

of the spines of quadratic limbs. We now define an analog for the transcendental setting

in which β-points here are again the ends of the spines of limbs and can also be viewed as

pre-images of ∞.

Lemma 4.5.1. For any bounded limb, Lc, β(Lc) := spine(L) \ spine(L) is a singleton.2

Proof. By Lemma 4.3.11 and by the self-similarity of J∞ under scaling by µ, it suffices to

show this is true for L−x1 ⊂ H+. By Lemma 4.4.7, let O3/4 be the lake of generation 3/4

containing L−x1 . We use the following map

χ−x1 = f 3 ◦ µ−2 : O3/4 → H+. (4.5.1)

Note that by (1.0.1), scaling by µ−2 sends the lake of generation 3/4, to a lake of generation

3. It is a simple matter of verifying that f 3(−µ−2x1) = −x1 and that the image is H+ as

opposed to H−. Therefore this map is conformal. Since O3/4 ⊂ H+, it is expanding in the

hyperbolic metric on H+. Since χ−x1(L−x1) = L−x1 the set β(L−x1) is invariant under χ−x1 ,

an expanding map. Hence, it is a singleton.

2Without using this language, this lemma follows from work of Epstein, see [Eps92], who knew that as
z →∞ in H+, F

−1(z) tended to a single point.
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4.6 Tree order on Esc

Borrowing notation from [DL18], we define the partial order “�” as the tree order on β-

points. We write βv � βw and βw = βv ∧ βw if βv ∈ O(βw). Note that βv � βw implies

Gen(βv) > Gen(βw). Whenever βv � βw, we may define the external chain as

[βw, βv] := EscGen(βv) ∩O(βw) \
⋃

Oι(βs)63βv

Oι(βs)

where ι ∈ {ρ, λ} and βs is any β-point. In other words we remove any pieces of Esc not lying

between βv and βw. From the definition, it is clear that for βv ≺ βw, [βv, βw] is connected.

We will see in the next section that it is an arc parametrized by escaping time.

If βv ∈ O+(βx) and βw ∈ O−(βx) then we say that βv and βw are ≺-separated by βx and

write βx = βv ∧ βw.

Lemma 4.6.1. For any βv � βw � βs,

• [βs, βw] ∩ [βw, βv] = {βw},

• [βs, βw] ∪ [βw, βv] = [βs, βv].

Proof. Since βw is a branch point of Esc it is a cut-point of [βs, βv]. Hence, [βs, βw]∩ [βw, βv] =

{βw}.

For the second part, let t = Gen(βv). Then

[βs, βw] = Esct ∩O(βs) \
⋃

Oι(βu)63βw

Oι(βu)

because all the half-lakes of generation at least Gen(βw) are removed because they do not

contain βw. Hence, [βs, βw]∪ [βw, βv] ⊆ [βs, βv]. This argument also shows the other direction

because it shows that if z ∈ [βs, βv] \ [βw, βv] then z ∈ [βs, βw].

4.7 qs structure in Esc and J∞

Define β0 := β(Lx1) ∈ QI . For k ∈ Z, define βk := µ−kβ0. This notation is such that

Gen(βk) = 2k.
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Figure 4.5: Drawn in black is the ray R0
I , with the points β0, β1, β2 labeled in red, and the

level 1 tiles I1, I2, I3 in blue and green.

Lemma 4.7.1. For k < l, βk ≺ βl.

Proof. By Lemma 4.4.8,

∂cO(βk) ∩ R = [0, µ−k+1x1] 3 µ−lx1.

Hence, Lµ−lx1 ⊂ O(βk) and so

β(Lµ−lx1) = βl ∈ O(βk).

By Lemma 4.7.1, we may define R0
I in the following way:

R0
I := · · · ∪ [β−1, β0] ∪ [β0, β1] ∪ [β1, β2] ∪ · · · .

For j ∈ {II, III, IV } define R0
j ⊂ Q0

j accordingly by reflections of R0
I across R and iR.

Lemma 4.7.2. For any βv ≺ βw with Gen(βv) = s > 0. Then the following hold:

1. Gen(µkβw)−Gen(µkβv) = 2−k(Gen(βw)−Gen(βv))
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2. For t < s, Gen(f t(βw))−Gen(f t(βv)) = Gen(βw)−Gen(βv)

Proof. The first property is a direct consequence of (1.0.1). The second property is also

straightforward since for any point z with escaping time s, then for t < s, f t(z) has escaping

time s− t.

Lemma 4.7.3. For j ∈ {I, II, III, IV }, R0
j is an arc, continuously parametrized by escaping

time. That is, for each j, there is a homeomorphism hj : (0,∞)→ R0
j such that Gen(hj(t)) =

t.

Proof. By (1.0.1) and Lemma 4.7.2, it suffices to show that I := [β0, β1] is continuously

parametrized by escaping time. To achieve this, we will define a Markov partitioning

I = I1 ∪ I2 ∪ I3 and a map χ : I → I such that χ(Ii) = I for i = 1, 2, 3 such that for any two

points a, b ∈ I and any branch of the three branches of χ−1,

|Gen(χ−1(a))−Gen(χ−1(b))| ≤ 2−1|Gen(a)−Gen(b)|.

The maps we’ll use are as follows:

χ1 := µ−1 ◦ −f : O(Lx1)→ H+ (4.7.1)

χ2 := µ−2 ◦ −f : O(Lx1)→ H+ (4.7.2)

χ3 := −f 3 ◦ µ−2 : O(Lµ2y1)→ H+ (4.7.3)

We now explain how for each i = 1, 2, 3, the maps χi can be joined together to define the

map χ : I → I with the aforementioned desired properties.

It is easy to verify that χ1(µ−1x1) = µ−1x1. Therefore, since χ1 maps into H+, χ1(β1) = β1.

Let L′ := χ−1
1 (Lx1). Since β1 ∈ O(Lx1) and χ−1

1 (β1) = β1, β1 ∈ O(L′). Therefore, for

β′ := β(L′), β′ ≺ β1. By Lemma 4.7.2, Gen(β1)−Gen(β′) = 2−1(Gen(β0)−Gen(β1)). Hence,

Gen(β′) = 1.5. Since β′ ≺ β1, β0 ≺ β1 and Gen(β′) > Gen(β0), β0 ≺ β′ ≺ β1.
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Since χ1(β
′) = β0 and χ2 = µ−1 ◦ χ1, we have that χ2(β

′) = β1. Let L′′ := χ−1
2 (Lx1)

and let β′′ := β(L′′) = χ−1
2 (β0). Since β0 ≺ β1, χ(β′′) = β0, and χ(β′) = β1, it follows that

β′′ ≺ β′. Using the same argument for finding Gen(β′), we can conclude Gen(β′′) = 1.25.

It is easy to verify that χ3(x1) = x1. This, combined with the fact that χ3 maps

onto H+ implies that χ3(β0) = β0. Therefore χ3(O(Lx1)) = O(Lx1). By Lemma 4.7.2,

Gen(χ−1
3 (β1)) = 1.25. One can verify by the real dynamics of f that

χ3([0, x1]) = [−f 3(0), x1] ⊂ (µ−1x1, x1].

By Lemma 4.4.4, [0, x1] = ∂cO(Lµ−1x1). Hence, χ3(β1) ∈ O(Lµ−1x1). Since χ3 sends

lakes to lakes, this in turn implies that β1 ∈ O(χ−1
3 (Lµ−1x1)) and so χ−1

3 (β1) ≺ β1. Since

Gen(β′′) = Gen(χ−1
3 (β1)) and since their lakes intersect – as they both contain β1 – they

must be the same point by Lemma 4.4.7.

In summary, β0 ≺ β′′ ≺ β′ ≺ β1, so we have the following tiling:

I1 := [β′, β1], (4.7.4)

I2 := [β′′, β′], (4.7.5)

I3 := [β0, β
′′], (4.7.6)

satisfying χi(Ii) = I. Let χ : I → I be defined piece-wise by the maps χi. By Lemma 4.7.2,

for any branch of χ−n, Gen(χ−n(β1))−Gen(χ−n(β0)) ≤ 2−n. Since each χi is expanding by

Schwarz Lemma, we also have that the pre-images of I under χn shrink to points as n goes

to ∞. Hence, I is an arc which is continuously parametrized by escaping time.

Proposition 4.7.4. R0
I ∪ {0} ∪R0

II and R0
III ∪ {0} ∪R0

IV are quasiarcs.

Proof. By symmetry and self-similarity under scaling by µ, it suffices to show that

J = R0
I ∪ {0} ∪R0

II ∩ (O(Lx1) ∪O(L−x1))

is a quasiarc.
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Let β′ ∈ R0
I be the β-point of generation 1.5. (This corresponds with the definition of β′

from the proof of Lemma 4.7.3.) Let I ′ := [µβ′, β1] ⊃ [β0, β1]. For i = 1, 2, 3, let I ′i := χ−1
i (I ′).

By Lemma 2.1.6 applied to χi and I ′i for i = 1, 2, 3 and I ′4 := µI ′1, I ′ is a quasiarc.

Let A := I ′ and let B be the reflection of A about the imaginary axis. Then by Lemma

2.1.4, J is a quasi-arc.

Corollary 4.7.5. R0
I ∪ {0} ∪R0

II = ∂L↑.

Proof. By Lemma 4.7.3, B = R0
I ∪ {0} ∪R0

II is an arc. Since R0
I tends to ∞ in quadrant I

and R0
II is the reflection of R0

I about the imaginary axis, B separates C into two regions.

Let U be the connected component of C \ B containing iR+. Since B ∩ J∞ = {0} and

U ⊇ iR+, L↑ ⊆ U . Since U ∩ (R∪ iR−) = ∅, U does not contain any of the 3 other connected

components of J∞ \ {0}. Hence, (J∞ \L↑)∩U = ∅. Since J∞ is dense (by Proposition 4.1.1),

L↑ = U .

Corollary 4.7.6. For any limb Lc rooted at c, ∂Lc \ {c} ⊂ Esc.

Proof. Let s ≥ 0 such that f s(Lc) = ±L↑. To ease notation, assume f s(Lc) = L↑. Since

f s(∂Lc \ {β(Lc)}) = ∂L↑, the statement follows from Corollary 4.7.5.

Lemma 4.7.7. For any two disjoint limbs L1,L2,

L1 ∩ L2 = ∂L1 ∩ ∂L2.

Proof. It suffices to show that L1 ∩ L2 ⊆ ∂L1 ∩ ∂L2 since the other direction is immediate.

If z ∈ Int(L1) then there exists a neighborhood N(z) ⊆ Int(L1). By Corollary 4.7.6,

N(z)∩L2 = ∅. Hence, Int(L1)∩L2 = ∅. Since the same argument works to show Int(L2)∩L1 =

∅, it follows that

L1 ∩ L2 = (L1 ∩ L2) \ (Int(L1) ∪ Int(L2)) = ∂L1 ∩ ∂L2.
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Figure 4.6: Depicted are two limbs, L1,L2, satisfying A(L1,L2) and mapping to L↑,Lµkx1
for some k ∈ Z under f s. Shaded in blue is the region from Corollary 4.7.10 on which f s has
qs bounds.

Definition 4.7.1. For two limbs, L1,L2, say A(L1,L2) is satisfied if

1. L1,L2 are rooted in the same spine or are both rooted in R

2. L1,L2 touch

3. Gen(L1) < Gen(L2).

Lemma 4.7.8. For any limb L1, there exists a limb L0 such that A(L0,L1) is satisfied.

Proof. By Corollary 4.3.9 let X be the unique spine such that c ∈ Int(X). By Lemma

4.4.8, ∂cO(L1) ∩ X = [ca, cb] where Gen(ca),Gen(cb) < Gen(c1) and for any c ∈ (ca, cb)J∞ ,

Gen(c) > Gen(c1). If X = R then both ca, cb ∈ Int(X). If instead X is the spine of a limb,

then X contains only one endpoint (as the other end is a β-point. Hence, at least one of ca, cb

belongs to Int(X). Therefore, we can define c0 to be one of ca, cb such that c0 ∈ Int(X) and

we can define L0 as the limb rooted at c0 and lying on the same side of X as L1. Since one

of the two connected components of ∂cO(L1) \X is contained in L0, β(L1) ∈ L0. Therefore,

L0 and L1 touch and so A(L0,L1) is satisfied.
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Figure 4.7: A double lake at some c 6= 0.

For any pre-critical point c of generation s, by Corollary 4.3.9, let X be the unique spine

such that c ∈ Int(X). Let Lc,L′c be the two limbs rooted at c. By Corollary 4.4.4,

∂cO(Lc) ∩X = ∂cO(L′c) ∩X = [c1, c2],

where c1, c2 ∈ X are the closest pre-critical points on opposite sides of c of generation less

than s. Therefore, we may define the double lake at c to be

O(Lc) ∪O(L′c) ∪ (c1, c2).

In this way, a double lake is the union of two lakes and the interior of their shared boundary

and is a topological disk (when c 6= 0). (See Figure 4.7.)

Lemma 4.7.9. For any pre-critical point c, let Vc denote the double lake at c. Then Vc is

open and f s(Vc) = C \ ((−∞, a] ∪ [b,+∞)) where a, b belong to a finite set of points up to

scaling by µ.

Proof. Let c be pre-critical point of generation s > 0 and let L,L′ be the two limbs rooted

at c. By Corollary 4.3.9, let X be the unique spine such that Int(X) 3 c. By Lemma 4.4.8,

∂cO(L)∩X = ∂cO(L′)∩X = [c1, c2] where c1, c2 are the closest pre-critical points to c in X of
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smaller generation. Since f s(O(L))∪ f s(O(L′) = H+ ∪H−, f s(Vc) = C \ ((−∞, a]∪ [b,+∞))

for some a < 0 < b ∈ R. Since f s(Vc) is open, Vc is also open.

We now show that there exists a finite set of points, P ⊂ (x1, µx1), such that for some

ka, kb ∈ Z, µk|a|, µkb ∈ P . Let s1 be the minimum of the generations of c1, c2. Let I0 := [c1, c2].

Then I1 := f s1(I0) has 0 as an endpoint, is contained in R or iR, and by the definition of

I0, the other endpoint of I1 is such that there is no point of smaller generation between

it and 0. Therefore, by Corollary 4.3.13 I1 is one of the three possible types of intervals:

±[0, µkx1],±[0, µky1],±[0, µky2] for some k ∈ Z. Since f is even, and since scaling by µ does

not affect distortion, we may assume WLOG that I1 is one of [0, µx1], [0, y1], or [0, µy2].

Case 1: I1 = [0, µx1]. By Lemma 4.3.12, f s1(c) = x1. Since Gen(x1) = 1, applying f sends x1

to 0, and the double lake at x1 to C \ ((−∞, v] ∪ [−µv,+∞)).

Case 2: I1 = [0, y1]. By Lemma 4.3.12, f s1(c) = y2. Since Gen(y2) = 5, and f 5([0, y1]) =

[f 5(0), f 2(0)] = [f 5(0),−µ−1v], applying f 5 sends the double lake at y2 to C\((−∞, f 5(0)]∪

[−µ−1v,+∞)).

Case 3: I1 = [0, µy2]. By Lemma 4.3.12, f s1(c) = y1. Since Gen(y1) = 3, and f 3([0, µy2]) =

[f 3(0), f 1/2(0)] = [f 3(0),−µv].

Combining these three cases, rescaling, and taking the absolute value, we find our set of

finite set of points is P = {|v|, µ|f 3(0)|, |f 5(0)|}.

Corollary 4.7.10. Every bounded limb is uniformly qs-equivalent to Lx1. More generally,

there exists a distortion function η1, such that for any pair of bounded limbs L1,L2 of

generations s1, s2 satisfying A(L1,L2), f s1|U is η1-qs where U is an open set containing L2

and the half-lake of generation s2 intersecting both L2 and L1. (See Figure 4.6.)

Proof. Let L1,L2 be bounded limbs rooted at c1, c2, as in the statement of the corollary. By

Lemma 4.7.9, the double lake at c1 maps conformally under f s1 to C \ ((−∞, a] ∪ [b,+∞))

where for some ka, kb ∈ Z, µka |a|, µkbb ∈ P ⊂ (x1, µx1) by Lemma 4.7.9 where P is a finite
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set. Furthermore, f s1(c1) = 0 and f s1(c2) = ±µkx1 ∈ (a, b) for some k ∈ Z. By rotation 180

degrees if necessary and rescaling by µ−k, we may assume WLOG that f s1(c2) = x1. Let

p ∈ P be the point of minimal distance to x1. Since U is the smallest open set containing L2

and the half-lake of generation s2 intersecting both L2 and L1, U ′ := f s1(U) is the smallest

open set containing Lx1 := f s1(L2) and the half-lake of generation 1 intersecting Lx1 and

±L↑. Since U is compact and U ∩ R = [0, x1] the modulus of C \ ((−∞, a] ∪ [b,+∞)) \ U ′ is

bounded. Hence, by Koebe distortion, the result follows.

Proposition 4.7.11. The closure of every bounded limb is a uniform quasidisk.

Proof. By Corollary 4.7.10, it suffices to show that X = ∂L−x1 is a quasicircle. Recall the

map χ−1 (see (4.5.1).) Since χ−x1(L−x1) = L−x1 , fixes β(L−x1), and |χ′−x1(β(L−x1))| > 1,

χ−1
−x1(X) = X and is locally linearizable in a neighborhood of β(L−x1) to the map z 7→ λz

where λ = (χ−1
−x1)

′(β(L−x1)) ∈ D.

Let N be a neighborhood of β(L−x1) on which χ−1
−x1 is linearizable. Let N ′ = χ−2

−x1(N) ⊂ N .

Let U be the double lake at −x1. f(L−x1) = −L↑, f(U) = V = C \ ((−∞, a] ∪ [b,+∞)) for

some a < 0 < b, and f |U is conformal. Since f(X \N ′) ⊂ K b V where K is compact, f−1|K

is qs by Koebe distortion. Therefore, since (R0
III ∪R0

IV ) is a quasiarc by Proposition 4.7.4,

X \N ′ is a quasiarc.

This means that, in particular, the two connected components of X ∩ (N \N2) are quasi-

arcs. By Lemma 2.1.4 applied to X ∩ (N \N2) and χ−1
−x1 , we have that X ∩N is a quasiarc.

Finally, applying Lemma 2.1.5 to X \N2 and X ∩N , we get that X is a quasicircle.

4.8 More properties of limbs

Lemma 4.8.1. [β0, β1] = L↑ ∩ Lx1 .

Proof. By Corollary 4.7.5, [β0, β1] ⊆ L↑. Therefore, it suffices to show [β0, β1] ⊆ Lx1 . Since
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we already know β0 := β(Lx1) ∈ Lx1 and since, by Corollary 4.1.2, there is at most 1 arc

between any two points in Esc, it suffices to show β1 ∈ Lx1 .

By Lemma 4.7.1, β0 ≺ β1. Since f(β1) = β(L−x1) ∈ R0
II and since the branch f−1 : H+ →

O(Lx1) satisfies f−1(R0
II) ⊂ ∂Lx1 , it follows that β1 ∈ ∂Lx1 . Since ∂Lx1 is a quasi-circle

(Proposition 4.7.11), and ∂Lx1 \ {x1} ⊂ Esc, there is an arc between β1 and β0 contained in

∂Lx1 ∩ Esc. By Corollary 4.1.2 this is the unique arc from β1 to β0. Hence, [β0, β1] ⊆ ∂Lx1 .

We now show the other direction, namely, that [β0, β1] ⊇ L↑ ∩ Lx1 . By Lemma 4.7.7,

L↑ ∩ Lx1 = ∂L↑ ∩ ∂Lx1 = R0
I ∩ ∂Lx1 .

By Lemma 4.7.3 and since β0 ≺ β1 ∈ Oλ(Lx1),

R0
I ∩O(Lx1) = R0

I ∩Oλ(Lx1).

Therefore, by scaling,

R0
I ∩O(Lµ−1x1) = R0

I ∩Oλ(Lµ−1x1).

Therefore,

z ∈ R0
I ∩ ∂Lx1 =⇒ z ∈ {β0} ∪ ∂λLx1 \Oρ(Lµ−1x1)

=⇒ Gen(z) ∈ [1, 2]

=⇒ z ∈ [β0, β1].

Lemma 4.8.2. For x ∈ (µ−1x1, x1) a pre-critical point, Lx,L↑ do not touch.

Proof. By Lemma 4.8.1 and symmetry across iR, L↑ and L−x1 intersect on an interval.

Pulling back by f−1, we find that Lµ−1x1 ∩ Lx1 = [β1, β
′] where β1 ≺ β′. This interval blocks

any limb Lx, x ∈ (µ−1x1, x1) from reaching L↑. For a picture, see Figure 4.3.

From the previous lemma, we get the following immediate corollary:
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Corollary 4.8.3. A real limb touches L↑ if and only if it is rooted at ±µkx1 for some k ∈ Z

and contained in the closed upper half-plane.

Lemma 4.8.4. If c1, c2 belong to the interior of a common spine and there is no pre-critical

point of order less than max{Gen(c1),Gen(c2)} between them, then the limbs rooted at c1, c2

touch.

Proof. WLOG, suppose s1 = Gen(c1) ≤ Gen(c2) = s2. If there is no pre-critical point of

generation less than s2 in (c1, c2)J then by Lemma 4.4.8, c2 ∈ ∂cO(Lc1). Since there is no

pre-critical point of lesser generation between f s1(c1) = 0 and f s1(c2) ∈ R, then by Corollary

4.3.13, f s1(c2) = ±µ−kx1 for some k ∈ N0. Since the limbs at f s1(c1), f s1(c2) map backwards

to the limbs at c1 and c2 along the same branch of f−s1 , the limbs at c1 and c2 must also

touch.

Lemma 4.8.5. If c1 6= c2 belong to the interior of a common spine then there exists a unique

pre-critical point c3 ∈ (c1, c2)J∞ of minimal generation. Furthermore, Gen(c3) 6= Gen(c1) and

Gen(c3) 6= Gen(c2).

Proof. WLOG, assume that Gen(c1) ≤ Gen(c2). Since c1, c2 ∈ µnJ for some n ∈ N,

[c1, c2]J∞ ⊂ µnJ . Therefore, since µnJ has only finitely many pre-critical points of generation

less than s, for any s > 0, there exists a point of minimal generation in (c1, c2)J∞ . By Corollary

4.3.4 any two limbs of the same generation cannot touch. Therefore, by Lemma 4.8.4, the

pre-critical point of minimal generation must be unique and cannot be the same generation

as that of either c1 or c2.

Corollary 4.8.6. Let c1, c2 be pre-critical points belonging to the interior of a common spine

with Gen(c1) ≤ Gen(c2) and let c3 be the unique pre-critical point of least generation strictly

between them. Let L1,L2, and L3 be limbs rooted at c1, c2, and c3, respectively such that all

are lying on the same side of their common spine. If L1 and L2 do not touch, then

• β(L1) ≺ β(L3) ≺ β(L2), or
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Figure 4.8: This figure is meant to accompany Corollary 4.8.6 and shows the unique limb
L3 of minimal generation that lies between any two non-touching limbs L1 and L2 that are
rooted in a common spine and lie on the same side of said spine.

• β(L3) = β(L1) ∧ β(L2).

Proof. By Lemma 4.8.5, let c3 be the unique point of minimal generation lying strictly

between c1 and c2. If L1 and L2 do not touch then by Lemma 4.8.4,

Gen(c3) < max{Gen(c1),Gen(c2)}.

Hence, either

Gen(c1) < Gen(c3) < Gen(c2) or Gen(c3) < Gen(c1) ≤ Gen(c2).

Case 1: Suppose Gen(c1) < Gen(c3) < Gen(c2). Since c3 is the point of minimal generation

in (c1, c2), there are no points of lesser generation in [c1, c2]. Therefore, by Lemma

4.4.8, c2, c3 ∈ ∂cO(L1) and β(L2), β(L3) ∈ O(L1). Similarly, since there is no point of

generation less than Gen(c3) in [c3, c2]J∞ , c2 ∈ ∂cO(L3) and β(L2) ∈ O(L3).

Case 2: Suppose instead that Gen(c3) < Gen(L1) ≤ Gen(L2). Since there are no points of

lesser generation between c3 and c1 or between c3 and c2, they each belong to ∂cO(L3).

Since c3 lies between them, their limbs belong to different half-lakes of O(L3). Hence,

β(L3) = β(L1) ∧ β(L2).
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Figure 4.9: Depicted here is the definite gap between the collection of limbs rooted in
(−x1,−µ−1x1) and L↑. By invariance of J∞ under scaling by µ, all bounded limbs rooted in
R that don’t touch L↑ cannot be too close to L↑ relative to their diameter.

Let La,Lb be limbs rooted at a, b such that A(La,Lb) is satisfied and let Lc be the unique

limb lying between them that touches both of them. Then define Ra,b as the closed region

bounded by [a, b]J∞ , ∂La ∩O(Lc), and ∂Lb ∩O(Lc).

By density of pre-critical points in [a, b]J∞ and density of J∞ in C, it follows that Ra,b is

equal to the closure of all the limbs rooted in (a, b)J and lying on the same side as La and Lb.

Lemma 4.8.7. There exists a constant C > 0 such that if Lc ⊂ H+ and does not touch L↑

then

d(Lc,L↑)
diam(Lc)

≥ C.

Proof. By Lemma 4.8.2, Lc is not rooted at ±µkx1 for any k ∈ Z. By scaling invariance under

µ and symmetry of J∞ about iR, we may assume WLOG that Lc is rooted at c ∈ (µ−1x1, x1).

Let Rµ−1x1,x1 be the closure of all such limbs in that interval. Since Rµ−1x1,x1 and L↑ are

disjoint, we have that

d(Lc,L↑)
diam(Lc)

≥
d(Rµ−1x1,x1 ,L↑)

Rµ−1x1,x1

> 0.
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Figure 4.10: Drawn is a δ-neighborhood of Lx1 which is made to be disjoint from the limbs
shaded in green where we cannot guarantee good distortion bounds under the dynamics being
applied in the proof of Proposition 4.8.8.

Proposition 4.8.8. If L1,L2 are rooted in, and laying on the same side of, a common spine

and do not touch, then

d(L1,L2)

min{diam(L1), diam(L2)}
≥ C

for some C > 0 that does not depend on L1 or L2.

Proof. Let L1,L2 be rooted at c1, c2, respectively. By Lemma 4.8.4, if L1 and L2 don’t touch

then there exists a limb L3 rooted at c3 ∈ (c1, c2)J∞ such that Gen(c3) < max{Gen(c1),Gen(c2)}.

By Corollary 4.8.6, there are two cases to consider corresponding to whether β(L1) ≺ β(L3)

or vice-versa. In each case, we show the desired property by mapping the larger limb – L1 or

L3 – up to Lx1 or L↑ with bounded distortion and showing that the property holds there.

The main strategy of this proof is to argue the existence of a δ-neighborhood of either Lx1 or

of a compact set containing f s(L1) or f s(L2) that is disjoint from the other limb which we

can then pull back under a map with good distortion to bound L1 away from L2 relative to

its diameter or vice-versa.
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Case 1: Suppose that Gen(L1) < Gen(L3). Then by Corollary 4.8.6, β(L1) ≺ β(L2). By

Lemma 4.7.8, let L0 be a limb such that A(L0,L1) is satisfied. Let s = Gen(L0).

Assume WLOG that f s(L1) = Lx1 ⊂ QI since otherwise we may post-compose f s with

a symmetry of C and scaling by µn for some n ∈ Z so that this is the case. Then

by Corollary 4.7.10, f−s is η′-qs on an open set U ⊃ Lx1 . Also by Corollary 4.7.10,

there are only finitely many points in (x1, µx1) that can be critical values of the map

f s : ∂cO(L0)→ R. Let xb be the greatest pre-critical point in (x1, µx1) such that Lxb

touches Lx1 and (x1, xb) is guaranteed to be without critical values under our map and

every limb rooted in (x1, xb) is contained in U . Let B be the closure of the collection of

limbs that are lying in QI , are rooted in (0, µ−1x1) ∪ (xb, µx1), and do not touch Lx1 .

Since B ∩ Lx1 = ∅, there exists a constant δ > 0 such that Nδ, the δ-neighborhood of

Lx1 satisfies Nδ ⊂ U and Nδ ∩B = ∅.

If f s(L2) ⊂ B then d(L1,L2)/ diam(L1) ≥ C1 since f s(L2) ∩ Nδ = ∅ and f−s|Nδ has

good distortion, where f−s is an appropriately chosen branch. If instead, f s(L2) 6⊂ B,

then f s(L2) is rooted in (µ−1x1, xb). Since we may map f s(L2) and Lx1 by f to f s+1(L2)

and L↑ with good distortion, we get that d(L1,L2)/ diam(L2) ≥ C2 by Lemma 4.8.7.

Case 2: Suppose instead that Gen(L3) < Gen(L1). Then by Corollary 4.8.6, β(L3) = β(L1) ∧

β(L2). Similarly to Case 1, let L0 be a limb such that A(L0,L3) is satisfied. Let

s = Gen(L0) and WLOG, assume as before that f s(L3) = Lx1 . In this instance, define

BL as the closure of the limbs rooted in (0, µ−1x1] and define BR as the closure of

the limbs rooted in [xb, µx1) where xb is as defined in Case 1. If f s(L1) and f s(L2)

are both in BL ∪ BR then at least one of them is rooted in (0, µ−1x1]. Observe that

by Corollary 4.7.10, BL ⊂ U where U ⊃ Lx1 is an open set on which f−s has good

distortion bounds. Since BL ∩BR = ∅, and U ⊃ BL is open, there exists a δ > 0 such

that the δ-neighborhood of BL, is both contained in U and disjoint from BR. WLOG,

suppose f s(L1) ⊂ BL (as opposed to f s(L2).) Pulling this δ-neighborhood back by f s,

we find that d(L1,L2)/ diam(L1) ≥ C3.
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If f s(L1), f s(L2) are not both contained in BL ∪BR then at least one of them is rooted

in (µ−1x1, xb). Mapping this forward by f sends it to (−x1, f(xb)) where f(xb) ∈ (0, x1).

WLOG, suppose f s+1(L1) is rooted in (−x1, 0). By Corollary 4.7.10, any suitably

chosen branch f−s−1 sending f s+1(L1) to L1 has good distortion on a neighborhood

U ⊃ O+(L−x1). Let G be the closure of all the limbs rooted in (−x1,−µ−1x1]. Since

G is contained in the (open) left half-plane and G ⊂ U , there exists a δ-neighborhood

G ⊂ Nδ ⊂ U such that Nδ is still contained in the left half-plane. Scaling down G by

µ−k so that it contains f s+1(L1) and then pulling µ−kNδ back by f s+1, we find that

d(L1,L2)/ diam(L1) ≥ C4.

Taking C := min{C1, C2, C3, C4}, we obtain the desired result for any such limbs L1,L2.

Proposition 4.8.9. If L1,L2 are limbs such that A(L2,L1) is satisfied, then

d(β(L2),L1)

min{diam(L1), diam(L2)}
≥ C

for some C > 0 that does not depend on L1 or L2.

Proof. If L2 = ±L↑ then this is immediate as d(β(L2),L1) = ∞. If L2 = Lx1 then the

inequality also holds for some C > 0 since all the real limbs of greater generation that touch

Lx1 are bounded away from β(Lx1). All other cases follow from Koebe distortion, symmetry,

and scaling since we may map L2,L1 up to Lx1 ,L′1 with bounded distortion where A(Lx1 ,L′1)

is satisfied.

Proposition 4.8.10. If L1,L2 are limbs satisfying A(L1,L2) and L1,s ⊂ L1 is a limb rooted

in spine(L1) that does not touch L2, then

d(L1,s,L2)

min{diam(L1,s), diam(L2)}
≥ C

for some C > 0 that does not depend on L1,L2, or L1,s.

Proof. The proof is similar to that of Proposition 4.8.8. We may map L1,s,L2 with bounded

distortion by Koebe under the dynamics and scaling to L′1,s,L′2 where L′1,s is an imaginary
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limb and L′2 is rooted at ±x1. From there, the problem can be reduced to finally many cases

such that for each, the distance between the limbs relative to their diameters is bounded

from below.

4.9 Contrast between layouts of real limbs and

imaginary limbs

A limb rooted at c is said to be real if c ∈ R. Similarly, a limb rooted at c is said to be

imaginary if c ∈ iR \ {0}.

Corollary 4.9.1. Every pair of touching limbs touch on an interval and there is a unique

limb in between them that touches both. That is, let L1,L2 be touching limbs rooted at c1, c2

such that Gen(L1) < Gen(L2), then

L1 ∩ L2 = [βv, βw] ⊆ Esc

where βv = β(L2) and βw = β(L3) where L3 is the unique limb rooted in [c1, c2]J∞ such that

L3 touches both L1 and L2.

Proof. We first observe that this statement holds for L↑ and Lx1 . By Lemma 4.8.1 we

already know their closures intersect on an interval, namely the quasi-arc [β0, β1]. By scaling,

L↑ ∩ Lµ−1x1 = [β1, β2]. Since f maps Lµ−1x1 ,Lx1 to L−x1 ,L↑ whose closures intersect on a

quasi-arc, namely the reflection of [β0, β1] about iR, it follows that Lµ−1x1 ,Lx1 must also

intersect on a quasi-arc. Since Lµ−1x1 touches both L↑ on an interval every limb rooted in

(0, µ−1x1) is bounded away from Lx1 and so cannot touch it. Similarly, since Lµ−1x1 touches

Lx1 on an arc, any limb rooted in (µ−1x1, x1) is bounded away from L↑ and so cannot touch

it. Hence, Lµ−1x1 is the unique limb rooted in [0, x1] that touches both L↑ and Lx1 . By

invariance of J∞ under scaling and symmetry this immediately generalizes to the case when

L1 = ±L↑ and L2 a limb rooted at ±µkx1 for any k ∈ Z.
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For the general case, suppose L1,L2 are touching limbs such that Gen(L1) < Gen(L2).

Let z be in the intersection of the closed limbs. By Lemma 4.7.7, z belongs to the shared

boundaries of the closed limbs and so by Corollary 4.7.6, z ∈ Esc and Gen(z) ≥ Gen(β(L2)).

Hence β1 ≺ z and so z ∈ O(L1). Furthermore, z = β2 or β2 ≺ z. Therefore, by Lemma 4.4.6,

O(L1) ⊃ O(L2). We can then reduce to the case when L1 = ±L↑ by mapping O(L1) to the

upper or lower half-plane under the dynamics.

Corollary 4.9.2. If L1 and L2 are touching limbs such that Gen(L1) < Gen(L2) then

O(L1) ⊃ O(L2).

Proof. By Corollary 4.9.1, β(L1) ≺ β(L2) since β(L2) ∈ ∂L1. Hence, if β(L2) ≺ z then

β(L1) ≺ z. This means that if z ∈ O(L2) ∩ Esc then z ∈ O(L1) ∩ Esc. Therefore, by Lemma

4.4.6 O(L1) ⊃ O(L2).

Lemma 4.9.3. Consider Lµ−1y1 ,Ly2 ,Ly1 ⊂ QI . L−1
µ y1,Ly2 touch and Ly2 ,Ly1 touch.

Proof. This follows from Lemma 4.3.12. Since y2 is the point of smallest generation in (0, y1),

mapping forward by f 3/4 sends y2 to a point of smallest generation in (f 3/4(0), 0) and so

f 3/4(y2) = −µkx1 for some k ∈ Z. Since f 3/4(Ly2), f 3/4(Ly1) touch, so do Ly2 ,Ly1 . The

argument is analogous for Lµ−1y1 ,Ly2 .

Lemma 4.9.4. Lµ−1y1 ,Ly2 ,Ly1 ⊂ QI all touch Lx1.

Proof. Recall β′, β′′ from (4.7.5). By Lemma 4.8.1, Lemma 4.9.3 and Corollary 4.9.1, it

suffices to show β(Lµ−1y1) = β′ and β(Ly2) = β′′.

By Corollary 4.4.4 and Lemma 4.3.12 β(Lµ−1y1) ≺ β1 and β(Ly2) ≺ β1. Since Gen(β(Lµ−1y1) =

Gen(β′) = 3/2 and Gen(β(Ly2)) = Gen(β′′) = 5/4 and since the lake of any given generation

containing β1 is unique, it follows that β(Lµ−1y1) = β′ and β(Ly2) = β′′.

Corollary 4.9.5. For any pre-critical point y ∈ iR+ \ {µky1, µ
ky2 | k ∈ Z}, Ly does not

touch any real limbs.

59



Proof. This follows immediately from Corollary 4.9.1 and Lemma 4.9.3. The idea is the same

as for Lemma 4.8.2.

Proposition 4.9.6. Real limbs touch 0 or 3 imaginary limbs. Imaginary limbs touch 0, 1,

or 2 real limbs. All of the above cases are realized.

Proof. This follows immediately from Corollary 4.8.3 and Lemmas 4.9.4 and 4.9.5.

See Figure 4.3 for a picture demonstrating Proposition 4.9.6.
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Chapter 5

Quasisymmetries of J

5.1 Defining the maps of the generating set

The most important homeomorphisms of J to itself are a collection of “shift” maps. For any

little Julia set, J , there is a shift map and they are named as such because they shift the

little Julia sets centered along the spine of J . In order to define these maps, we first define

the involution ι : J∞ → J∞ as follows:

ι(z) =


f(z), z ∈ [−β, α] ∪

⋃
c∈PCP∩(−β,α) Lc ∪ L′c

f−1(z), z ∈ (α, β] ∪
⋃
c∈PCP∩(α,β) Lc ∪ L′c

−z, otherwise.

The branch of f−1 is chosen such

that it fixes α. See Figure 5.1 for a picture of the different regions of the map corresponding

to each case in the definition of ι. The following proposition gives an important remark about

ι.

Proposition 5.1.1. ι does not extend continuously to C = J∞.

Proof. It suffices to show that ι does not extend continuously to β(L−x1). Indeed, as z →

β(L−x1) along spine(L−x1), ι(z)→∞ since Gen(β(L−x1)) = 1. However, as z → β(L−x1) in

L↑, ι(z)→ f−1(β(L−x1)) ∈ C where the branch of f−1 is the one from the definition of ι.
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Recall from the introduction, the map ρ : J → J is defined as ρ(z) = −z. Abusing

notation, we also will use ρ as the negation map for any point z ∈ C. Before we define shift

maps for general little Julia sets, we start by defining one for the central little Julia set of

depth k, µ−kJ for each k ∈ N0. For k ∈ N0, define σk : J → J by

σk = µ−k ◦ ρ ◦ ι ◦ µk|J . (5.1.1)

See Figure 5.2 for a drawing of the map σ0. By looking at the definition of σ0 one can see

that to the right of α, σ0 acts as f−1 where the branch is chosen such that it fixes β. In this

way, σ0 shifts all the little Julia sets of depth one that are to the right of α and centered

on R to the right by one. To the left of α, σ0 acts as −f and in so doing shifts all of the

little Julia sets on that side to the right by one. While not necessary, it may be easier to

first picture this map acting on the Basilica Julia set by replacing f with z 7→ z2 − 1 in the

definition of σ0.

Proposition 5.1.2. σk acts as identity outside of the extended little Julia set µ̂−kJ .

Proof. This follows from the definitions of σk and ι. For z 6∈ µ̂−kJ , ι(µkz) = −µkz. Hence,

µ−kριµk(z) = z.

Proposition 5.1.3. For each k, σk is ηk-qs where ηk depends only on k. However, these

distortion bounds deteriorate as k →∞. Moreover, the maps σk converge pointwise to a map

that is identity outside of ±L↑ and maps ±L↑ to 0.

Proof. The fact that each σk is ηk-qs follows from Proposition 5.5.2 which we prove later in

this chapter.

As k →∞, spine(µ−kJ ) = µ−k[−β, β]→ {0}. Therefore µ̂−kJ → L↑ ∪ −L↑ as k →∞.

Therefore, for z ∈ J \ (L↑ ∪−L↑) there exists kz such that for k ≥ kz, σk(z) = z. For z ∈ L↑,

σk(z) ∈ Lµ−kx1 ⊂ µ−kLx1 . Since µ−kLx1 → {0} as k →∞, the maps σ∞ converge pointwise

to a map that is identity off of L↑ ∪−L↑ and projects L↑ ∪−L↑ to {0}. Hence, because each

σk is normalized in that it fixes 0, β,−β, there can be no uniform distortion bound ηunif such

that σk is ηunif for all k.
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Using the maps σk, we can define a shift map for each little Julia set. Let J be a little

Julia set of depth k and let n be the smallest number such that fn(J) = µ−kJ . Define

σJ : J → J by σJ(z) =


f−n ◦ σk ◦ fn(z), z ∈ Ĵ

z, otherwise.

where f−n is the well-defined branch

that sends µ−kJ to J . Since σk fixes ±µ−kβ, the above map is continuous.

Proposition 5.1.4. For J = µ−kJ , σJ = σk.

Proof. This follows immediately from Proposition 5.1.2 and the definitions of σJ and σk.

We call the maps σJ , where J is a little Julia set, shift maps because it shifts the little

Julia sets centered along the spine of J of depth one greater than depth(J). Figure 5.3 depicts

σJ for a seemingly random choice of J .

Figure 5.1: Depicted is ι : J∞ → J∞. ι|R1 = f : R1 → R2, ι|R2 = f−1 : R2 → R1, ι|R3 = ρ.

5.2 No qs rotations by 1/4

Since f is even, it is immediate that ρ = z 7→ −z, the rotation of J by 1/2 is an isometry of

J . A natural question is: Is there an analog of ρ that rotates the 4 connected components of
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Figure 5.2: Depicted is the map σ0 : J → J . Blue dashes mark the real α-points, which
each shift one to the right under σ0.

J \ {0} by 1?

Definition 5.2.1. A rotation by 1/4 of J , θ1/4 : J → J , is a topologically extendable

homeomorphism (onto its image) such that θ1/4(0) = 0 and θ1/4(R+ ∩J ) ⊂ iR+ ∩J (i.e. the

map “rotates” the 4 connected components of J \ {0} sending each to the adjacent one in

the counter-clockwise direction). For technical reasons, we allow for rotations by 1/4 to map
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Figure 5.3: Depicted is σJ : J → J where J is a little Julia set of depth k. σJ acts as identity
outside of Ĵ , which is bounded by the red external rays in the middle and left sketches.
σJ |Ĵ = f−n ◦ σk ◦ fn|Ĵ .

strictly inside J .

Proposition 5.2.1. (Topological) rotations by 1/4 exist.

Proposition 5.2.1 is shown in three steps:

1. defining an explicit map, ρ1/4, that rotates the 4 connected components of J \ {0}

counter-clockwise,

2. showing ρ1/4 is a homeomorphism, and

3. showing ρ1/4 is topologically extendable.

Let UN , US, UE, and UW correspond to the “north”, “south”, “east”, and “west” components

of J \ {0}. In this way UN = L↑ \ {0}. Once ρ1/4 has been defined on UN , we can define ρ1/4

on the other three components in the following way:

• ρ1/4|UW = ρ ◦ ρ−1
1/4.

• ρ1/4|US = ρ ◦ ρ1/4 ◦ ρ.

• ρ1/4|UE = ρ ◦ ρ1/4 ◦ ρ.

In this way, ρ1/4 will have the additional desirable property that ρ2
1/4 = ρ and so ρ4

1/4 = id.

We also define ρ1/4(0) := 0.
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Figure 5.4: Shown here is J with the strips S0, S1, S
′
0, S

′
1 marked. ρ1/4 rotates the 4 connected

components of J \ {0} and is defined such that ρ1/4(Sk) = S ′k for k ∈ N0.

We now lay the foundation for defining ρ1/4 on UN . Let β↑ := β(L↑). For k ∈ N0, define

Ik := µ−k(µ−1β↑, β↑] ⊂ iR+.

Using the intervals Ik we define the “strips” of UN :

Sk := Ik ∪
⋃

c∈PCP∩Ik

Lc ∪ L′c.

Define

ρ1/4|Sk := µ−k ◦ −f 2 ◦ µk|Sk . (5.2.1)

Since
⋃
k∈N0

Sk = UN , this fully defines ρ1/4 on UN and therefore is enough to fully define

ρ1/4 on J . See Figure 5.4.

Lemma 5.2.2. ρ1/4 : J → J is a homeomorphism.

Proof. We first show that ρ1/4|UN is a homeomorphism onto UW .

Observe that f(β↑) = −β. Therefore, by (1.0.1),

−f 2(µ−1β↑) = µ−1f(β↑) = µ−1(−β) = α.

The last equation is due to the fact that the α fixed point of f is equal to the β fixed point

of the pre-renormalization of f . Hence, because f 2 does not have critical points in I0,

− f 2(I0) = [−β, α). (5.2.2)
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Since every pre-critical point in I0 is of order at least 3, Lemma 4.3.2 tells us that every

pre-critical point in a transcendental limb rooted in I0 is also of order at least 3. Hence, −f 2

moves every transcendental limb rooted in I0 homeomorphically. Therefore, since the limbs

in µkS0 are contained in the transcendental limbs rooted in I0, −f 2|µkSk is homeomorphic

onto its image for all k ∈ N0.

Define I ′k := µ−k[−β, α) and define the strips

S ′k := I ′k ∪
⋃

c∈PCP∩I′k

Lc ∪ L′c.

These new strips, which are analogs of Sk ⊂ UN , similarly satisfy
⋃
k∈N0

S ′k = UW . Further-

more, by (5.2.2), the definition of ρ1/4 is such that ρ1/4(Sk) = S ′k. Since the endpoints of

Ik, I
′
k are related under scaling by µ, the definition of ρ1/4 guarantees continuity at these

endpoints, which are the points where the closures of consecutive strips intersect.

Hence, ρ1/4 is continuous within each connected component of J \ {0}. Therefore, the

only potential for discontinuity in ρ1/4 is at 0. However, by the self-similarity of J∞ under

scaling by µ, the size of transcendental limbs rooted at z goes to 0 as z → 0. Since limbs in

J are contained in transcendental limbs, their diameter, too, must go to 0, as z → 0. Since

Ik, I
′
k → 0 as k → ∞, it follows that Sk, S

′
k → 0 as k → ∞. Hence, as z → 0, ρ1/4(z) → 0

and so we have continuity at 0. This proves ρ1/4 : J → J is a homeomorphism.

Lemma 5.2.3. ρ1/4 is topologically extendable.

Proof. We do this by showing that there exists an orientation-preserving homeomorphism

ρ̃1/4 such that the following diagram commutes:

T T

J J

ρ̃1/4

ψ ψ

ρ1/4

Recall the strips Sk ⊂ UN from the proof of Lemma 5.2.2 and β↑ = β(L↑). By Corollary

3.2.9, for all k ∈ N, µ−kβ↑ is a non-branching cut-point. Hence, for each k ∈ N there are two
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points θk < θ′k ∈ T such that

ψ(θk) = ψ(θ′k) = µ−kβ↑.

Since the only branch points of J are pre-critical points (see Lemma 3.2.7), for each k ∈ N0,

Sk \ {µ−kβ↑} is the connected component of J \ {µ−kβ↑, µ−k−1β↑} containing Ik \ {µ−kβ↑}.

Hence,

ψ−1(S0) = (θ1, θ
′
1)

and for k > 0

ψ−1(Sk) = (θk+1, θk] ∪ [θ′k, θ
′
k+1).

By (1.0.1), ρ1/4|Sk as defined in (5.2.1) can be rewritten as

ρ1/4|Sk = (−1)k+1f 2k+1

. (5.2.3)

By symmetry of J about 0, multiplying by −1 in the dynamical plane corresponds to adding

1/2 mod 1 in the Böttcher coordinate of T. Let g be the doubling map on T. Therefore, if

we define

ρ̃1/4|Ak := −1

4
+

1

4
(−1)k+1 + g2k+1

then by (2.4.1), the diagram commutes.

Since ρ1/4 is continuous where the closures of consecutive strips intersect, so is ρ̃1/4.

Piecing together all of the strips, we have that the diagram commutes on all of ψ−1(UN).

We can extend ρ̃1/4 in the same way to the other components. By continuity, the 4 rays

landing at 0 are invariant under ρ̃+1/4 and rotates them by one counter-clockwise in the

same way it does the intervals corresponding to the connected components of J \ {0}. Hence,

ρ̃1/4 : T→ T is a homeomorphism on which the diagram commutes.

By Proposition 4.9.6 there exists real limbs – limbs rooted in R – that touch 3 imaginary

limbs while an imaginary limb – a limb rooted in iR – can touch at most 2 real limbs. The

following proposition implies that this is an immediate obstruction to any rotations by 1/4

about 0.
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Lemma 5.2.4. Let φ : J → J be an η-qs map such that φ(0) = 0. Then φ induces an η-qs

map φ∞ : C→ C such that for any limb Lc rooted at c, φ∞(Lc) ⊆ Lφ∞(c).

Proof. We first begin by defining φ∞ as a limit of scalings of φ and showing that it has the

desired properties.

Let m(n) ∈ Z such that |µm(n)φ(µ−nx1)| ∈ [x1, µx1). Define φn : µnJ → µm(n)J by

φn(z) := µm(n)φ(µ−nz). Each φn is η-qs. For n ≥ k define φn,k = φn|µkJ . The normalization

of φn at x1 implies the family {φn|µkJ }n≥k is pointwise bounded. Since 0 is fixed and φn is

normalized at x1, then by Theorem 2.1.2, the sequence (φn|µkJ )n≥k is equicontinuous for each

k ∈ N. Therefore, by Arzela-Ascoli for all k ∈ N, there is an η-qs map φ∞,k : µkJ → C such

that on a subsequence nk, which is chosen to be a further subsequence of nk−1, φnk,k → φ∞,k

uniformly as nk →∞. Since the domains µkJ are increasing with respect to k, by taking

further subsequences each time we get the property that for l > k, φ∞,l|µkJ = φ∞,k. Therefore,

by letting k →∞ we get an η-qs map φ∞ : J∞ → C. Since J∞ is dense by Proposition 4.1.1

and since qs maps may always be extended to the closure, φ∞ can be extended to a map

φ∞ : C→ C.

We now show that for a limb Lc rooted at c, φ∞(Lc) ⊆ Lφ∞(c). Let c ∈ J∞ be a

branch point, let β(c) be the tip of the spine of the (relevant) transcendental limb rooted

at c, and let βn(c) be the tip of the spine of the (relevant) limb of µnJ rooted at c.

Since these limbs exhaust the transcendental limb rooted at c, then for n ≥ N and N

sufficiently large, |βn(c)− c| ≥ |β(c)− c|/2. Let nk be a subsequence such that φnk → φ∞

uniformly on µNJ . Since each φnk is η-qs, fixes 0, and is normalized at x1, it follows that

φnk(Lc ∩ µNJ ) ⊂ K = K(c, η), where K is compact. In addition, by the qs property,

∣∣∣∣φnk(βN(c))− φnk(c)
φnk(c)− φnk(0)

∣∣∣∣ ≥ 1

η
(∣∣∣ c−0

βN (c)−c

∣∣∣) .
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Hence,

diam(Lφnk (c)) ≥ |φnk(βN(c))− φnk(c)|

≥ C0|c|

η
(∣∣∣ c

βN (c)−c

∣∣∣) = C1 = C1(c, η).

Since the closure of transcendental limbs are uniform quasidisks (Proposition 4.7.11,) it

follows that for all n ≥ N , area(Lφnk (c)) ≥ C2 for some C2 > 0 that depends on C1. Since a

compact set can contain only finitely many limbs whose closure has area greater than C2, the

set {φnk(c)} must be finite. Since φnk(c)→ φ∞(c), it follows from discreteness of the roots

that for some N1 >> 1 and for all nk ≥ N1, φnk(c) = φN1(c). Hence, φ∞(Lc) ⊂ Lφ∞(c).

Proposition 5.2.5. If θ1/4 : J → J is a rotation by 1/4 then θ1/4 is not quasisymmetric.

Proof. Suppose θ1/4 is a qs rotation by 1/4. By Lemma 5.2.4, there is a sequence of normalized

scalings of θ1/4 that uniformly converges to a qs map θ1/4,∞ : C→ C which sends limbs to

limbs. However, by Proposition 4.9.6 θ1/4 cannot be continuous because of the combinatorial

difference between real and imaginary limbs.

Lemma 5.2.6. If φ : J → J is topologically extendable then φ preserves the rotational

ordering at every branch point.

Proof. By Lemma 3.2.7, J is tetravalent and all the branch points are pre-critical points. Let

c be a pre-critical point. Since J \ {c} has 4 connected components, there are 4 external rays

that land at c. Hence, ψ−1(J \ {c}) consists of 4 open intervals in T. Let φ̂ : T→ T be the

lift of φ to the Böttcher coordinate. Since φ̂ is continuous and orientation preserving, φ̂ sends

these 4 open intervals to another 4 open intervals while preserving their rotational ordering.

Hence, when φ maps the connected components of J \ {c} to the connected components of

J \ {φ(c)} it preserves their rotational ordering.

Recall the definition of levels of J from Section 3.2.
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Corollary 5.2.7. If φ : J → J is a topologically extendable quasisymmetry, then φ preserves

the levels of J . In particular, φ(J ∩ R) = J ∩ R.

Proof. It suffices to show that φ(J ∩ R) = J ∩ R. Since φ is topologically extendable, all

the other levels will be preserved.

By Lemma 5.2.6, if b ∈ J ∩ R, φ(b) = 0, and φ(R ∩ J ) 6= R ∩ J then it follows that

φ(J ∩R) = J ∩ iR. For n such that fn(b) = 0, we have that φ◦ f−n(0) = 0 where the branch

of f−n is chosen such that it is defined on a neighborhood of 0 and sends 0 to b. Hence, if

b ∈ J ∩R and φ(R ∩ J ) 6= R ∩ J then locally this composition will be a rotation by 1/4 (or

by −1/4) which, by Proposition 5.2.5, contradicts the assumption that φ is qs.

Suppose instead that b ∈ J \ R is a branch point and φ(b) = 0. There are two cases to

consider (see Figure 5.5):

Case 1: φ maps the limbs of b to L↑, L↓. This is the same as would happen under locally

mapping b up to 0. However, in this case, the path from b to 0 is mapped to a path

from 0 to φ(0) with the same number and order of turns. Since each turn in a path

from 0 results in an increase in level, it is then the case that for z ∈ J ∩ R \ {0},

level(φ(z)) = level(φ(0)) + 1. What this means is that J ∩ R is mapped to the union

of the spines of the limbs rooted at φ(0). If we locally map φ(0) back to 0 under fn,

then we get that in a neighborhood of 0, fn ◦ φ is locally a rotation by 1/4. This can

be put into a precise form to directly apply Proposition 5.2.5 by taking a large enough

k such that fn|φ(µ−kJ ) is univalent. Thus the map fn ◦ φ ◦ µ−k : J → J is a rotation

by 1/4. This contradicts the assumption that φ is quasisymmetric.

Case 2: The alternative to Case 1 is that φ maps the spines of the limbs at b to J ∩ R \ {0}.

This is contrary to what would happen when mapping b to 0 under the dynamics.

In a similar spirit to case 1, we would get that for some k, n that the composition

φ ◦ f−n ◦ µ−k : J → J is a rotation by 1/4 mapping into J , a contradiction to the

assumption that φ is quasisymmetric.
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Figure 5.5: Case 1 (upper) and Case 2 (lower) for the proof of Corollary 5.2.7.

We are now ready to Prove Theorem 1.0.2.

Proof of Theorem 1.0.2. By Propositions 5.2.1 and 5.2.5, topological rotations by 1/4 exist

while qs rotations by 1/4 do not. By Corollary 5.2.7, R is invariant under extendable

quasisymmetries. Therefore, if φ : J → J is an extendable quasisymmetry such that φ(0) is

close to 0 then φ(β(L↑)) must map to the tip of a limb whose root is close to 0 and so cannot

be close to ±β. Hence, ρ1/4 (and more generally any topological rotation by 1/4) does not

belong to the uniform closure of the group of (extendable) quasisymmetries.
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5.3 Deep little Julia sets move dynamically

Definition 5.3.1. We say a little Julia set J ⊂ J (of depth k ∈ N) moves dynamically with

scaling under a homeomorphism φ : J → J if

φ|J = f−m ◦ µl ◦ ρi ◦ fn|J

where n is the number required to map J injectively to the center, (i.e. fn(J) = µ−kJ ),

i ∈ {0, 1}, l ∈ Z, and f−m is a well-defined branch. For I ⊂ J a 1d little Julia set, the

definition for moving dynamically with scaling is analogous.

We say a little Julia set (resp. 1d little Julia set) J ⊂ J (resp. I ⊂ J) moves dynamically

under a homeomorphism φ if under the above definition, l = 0. Note that if J or I moves

dynamically, then its image is another little Julia set (resp. 1d little Julia set) of the same

depth.

We say a homeomorphism φ : J → J is k-dynamical if every little Julia set of depth k

moves dynamically.

Lemma 5.3.1. If φ : J → J is k-dynamical then φ sends little Julia sets (of all depths) to

little Julia sets of the same depth.

Proof. If J is a little Julia set of depth kJ ≥ k then J is contained in a little Julia set of

depth k. Hence, J moves dynamically and so its image is a little Julia set of the same depth.

If J is a little Julia set of depth k − 1 then J is the closure of a countable union of little

Julia sets of depth k. Let J0 ⊂ J be the central little Julia set of depth k – that is, for n

such that fn(J) = µ−k+1J , fn(J0) = µ−kJ .

Let J = µ−k+1J and let J0 = µ−kJ . Let J̃ be the little Julia set of depth k− 1 such that

J̃ ⊃ φ(J0). We will show that J̃ = φ(J). By Corollary 5.2.7, spine(J̃) ⊂ R. Hence, for some

l1, ..., lk ∈ Z, σlkk−1 ◦ · · · ◦ σl1(J̃) = J since we may post-compose φ by ρ, we assume WLOG

that φ(β) = β.

This section is devoted to proving the following proposition:
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Proposition 5.3.2. If φ : J → J is η-qs then φ is k-dynamical for some k that depends

only on η.

Any quadratic limb, Lc, rooted at c has an extension to a unique transcendental limb

Lc ⊃ Lc that is rooted at c as well. Two limbs, L1, L2, are said to virtually touch if their

extensions to transcendental limbs touch.

Define the property A(L1, L2) for quadratic limbs analogously for how it was defined for

transcendental limbs, (see Definition 4.7.1.) If A(L1, L2) is satisfied, define depth(L1, L2)

in the following way: for n satisfying fn(L1) = ±L↑, we have fn(L2) is rooted at ±µ−kx1

for some k := depth(L1, L2) ∈ N0. The following lemma says that when the depth is large,

Property A is preserved under qs maps.

Lemma 5.3.3. Suppose φ : J → J is η-qs and L1, L2 are limbs such that A(L1, L2) is

satisfied and depth(L1, L2) ≥ k = k(η). Then A(φ(L1), φ(L2)) is satisfied.

Proof. Since J∞ :=
⋃
n∈N µ

nJ and since L↑ and Lx1 are touching limbs, then for any ε > 0,

there exists an N ∈ N such that for n ≥ N ,

d(L↑, Lµ−nx1)

diam(Lµ−nx1)
=
d(L↑ ∩ µnJ ,Lx1 ∩ µnJ )

diam(Lx1 ∩ µnJ )
< ε.

By Corollary 4.7.10, we can map L1 and L2 to ±L↑ and one of the limbs rooted at ±µ−nx1

with good distortion on a neighborhood of L2. Since the ratio

d(L1, L2)

min{diam(L1), diam(L2)}
(5.3.1)

is quasi-preserved under qs maps, (5.3.1) is small when depth(L1, L2) is large.

Let L′1,L′2 be the extensions of φ(L1), φ(L2) to transcendental limbs. Since φ(L1) ⊂ L′1

and φ(L2) ⊂ L′2, observe that for i ∈ {1, 2}

d(φ(L1), φ(L2))

diam(φ(Li))
≥ d(L′1,L′2)

diam(L′i)
(5.3.2)

Since φ is topologically extendable, φ(L1), φ(L2) must still be rooted in the same spine.

Therefore, if A(φ(L1), φ(L2)) is not satisfied then either φ(L1), φ(L2) don’t virtually touch
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or Gen(φ(L2)) < Gen(φ(L1)). If φ(L1), φ(L2) don’t virtually touch then by Proposition

4.8.8 then the right side of (5.3.2) is large, a contradiction. If instead, they do touch, but

Gen(φ(L2)) < Gen(φ(L1)) then by Proposition 4.8.9, then by a similar argument we again

arrive at a contradiction. Hence, A(φ(L1), φ(L2)) must be satisfied when depth(L1, L2) ≥

k = k(η).

We also need the following property, which extends Lemma 5.3.3 to secondary limbs as

well.

Lemma 5.3.4. For L1, L2 satisfying A(L1, L2), there exists a kη = kη(η) such that if

depth(L1, L2) ≥ kη then the secondary limbs of L1 that virtually touch L2 must be sent under

φ to the secondary limbs of φ(L1) that virtually touch φ(L2). (See Figure 5.6.)

Proof. By Lemma 5.3.3, there exists kη ∈ N such that when A(L1, L2) is satisfied and

depth(L1, L2) ≥ kη then A(φ(L1), φ(L2)) must also be satisfied. Therefore, by Proposition

4.8.10 and by the same logic as in the proof of Lemma 5.3.3, then for kη sufficiently large, φ

must send the secondary limbs of L1 that virtually touch L2 to the secondary limbs of φ(L1)

that virtually touch φ(L2).

Corollary 5.3.5. Let φ, L1, L2 be as in Lemma 5.3.4. If L3 is another limb rooted in

the same spine as L1, L2 such that L3 virtually touches L1 and Gen(L3) = Gen(L2), then

Gen(φ(L3)) = Gen(φ(L2)). (See Figure 5.6.)

Proof. Let n1 = Gen(L1). Then fn1(L1) = ±L↑ and fn1(L2), fn1(L3) are rooted at ±µ−kx1

for some common k ∈ N. By symmetry of J about iR, the secondary limbs of ±L↑ that

virtually touch fn1(L2) share the same roots as the secondary limbs that virtually touch

fn1(L3). Hence, the secondary limbs of L1 that virtually touch L2 have the same roots as

the secondary limbs that virtually touch L3. Therefore, by Lemma 5.3.4, the mapping of the

secondary limbs dictates that Gen(φ(L3)) = Gen(φ(L2)).
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Given two limbs L1, L2 that virtually touch and are rooted at c1, c2, respectively, then

by Corollary 4.9.1 there is a unique pre-critical point c3 ∈ (c1, c2)J such that one of the two

limbs at c3 virtually touches both L1 and L2. Call c3 the step down from c1 and c2. We then

inductively define a point c ∈ (c1, c2) to be n steps down from c1 and c2 if it is n− 1 steps

down from either c1 and c3 or c2 and c3. Note that in this way, for each n ∈ N there are 2n−1

pre-critical points that are n steps down from c1 and c2. We say c1 and c2 are each 0 steps

down from c1 and c2. See Figure 4.9 for a picture where one can clearly see from looking at

the limbs the pre-critical points that are 1 or 2 steps down from −x1 and −µ−1x1 (as well as

one of the pre-critical points that is 3 steps down.)

Lemma 5.3.6. Let c1, c2 ∈ J be the roots of virtually touching limbs rooted in the same

spine. Then for any pre-critical point c ∈ (c1, c2)J ,

Gen(c) > max{Gen(c1),Gen(c2)}.

Furthermore, there is a unique pre-critical point c ∈ (c1, c2)J of least generation and this

point is the step down from c1 and c2.

Proof. Suppose WLOG that Gen(c2) > Gen(c1) = n1. By Lemma 4.3.3, fn1(c1), f
n1(c2)

are again the roots of virtually touching limbs. By Corollary 4.8.3, since fn1(c1) = 0,

c′2 := fn1(c2) = ±µ−kx1 for some k ∈ N0. By Lemma 4.3.12, c′3 := µ−1fn1(c2) is the unique

point of least generation in (0, c′2)J and is of greater generation than that of either 0 or c′2.

By Corollary 4.9.1, it is also the step down from 0 and c′2. Applying the branch of f−n1 that

sends [0, c′2]J to [c1, c2]J we obtain the result with c3 := f−n1(c′3) being the unique point of

least generation in (c1, c2)J and the step down from c1 and c2.

Lemma 5.3.7. If c1, c2 ∈ J are the roots of virtually touching limbs rooted in the same

spine, then every pre-critical point c ∈ (c1, c2)J is finitely many steps down from c1 and c2.

Proof. Let n = max{Gen(c1),Gen(c2)}, let c ∈ (c1, c2)J and let m = Gen(c)−n. By Lemma

5.3.6, m > 0.
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Let I0 = (c1, c2)J . By Lemma 4.9.1, there exists unique c3 ∈ (c1, c2)J such that the limbs

rooted at c3 virtually touch the limbs rooted at c1 and at c2. By Lemma 5.3.6 Gen(c3) > n

and for every c ∈ I1 := (c1, c3)J ∪ (c3, c2)J , Gen(c) > n+ 1. In other words, I1 is equal to I0

minus the unique pre-critical point that is 1 step down from c1 and c2. Define Ij to be I0

minus the 2j−1 pre-critical points that are j steps down from c1 and c2.

Since every pre-critical point in Im has generation greater than m + n, c is at most m

steps down from c1 and c2.

Lemma 5.3.8. Let L1, L2 be limbs satisfying A(L1, L2) and let L3 be the unique limb of greater

generation that virtually touches both L1 and L2. Then depth(L1, L3) and depth(L2, L3) are

both greater than or equal to depth(L1, L2).

Proof. Let k ∈ N0 denote depth(L1, L2) and let n1 = Gen(L1). Then, by definition, fn1(L1) =

±L↑ and fn1(L2) is rooted at ±µ−kx1. By continuity in the setting of J∞, fn1(L3) is the

unique limb of greater generation that virtually touches both fn1(L1) and fn1(L2). Therefore,

fn1(L3) is rooted at ±µ−k−1x1. Hence, depth(L1, L3) = k + 1. Since f 2k sends µ−kx1 to 0

and µ−k−1x1 to (−1)k+1µ−kx1, depth(L2, L3) = k.

Corollary 5.3.9. Let φ, L1, L2 as in Lemma 5.3.4. Then the action of φ on L1 and L2

determines the action on all the limbs in between (rooted in the same spine). That is, for

c1, c2 the roots of L1, L2, respectively,

φ|[c1,c2]J = f−m ◦ (−1)i ◦ µl ◦ fn|[c1,c2]J

for some m,n ∈ N0, i ∈ {0, 1}, and l ∈ Z and well-defined branch of f−m.

Proof. Let n = Gen(L1). Since A(L1, L2) is satisfied, fn(L1) = ±L↑ and fn(L2) is rooted

at ±µ−kx1 for some k ≥ kη. Since k ≥ kη, Lemma 5.3.3 tells us that A(φ(L1), φ(L2)) is

satisfied. Then for m = Gen(φ(L1)), fm(φ(L1)) = ±L↑ and fm(φ(L2)) is rooted at ±µl−kx1

for some l ≤ k. By topological extendability of φ, L2 lies to the right of L1 along their spine
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if and only if φ(L2) lies to the right of φ(L1) along their spine (oriented with respect to

spine(L1), spine(φ(L1)), respectively.) Let X0 = {c1, c2}. Hence, for i = 0 or 1 and

τ := f−m ◦ (−1)i ◦ µl ◦ fn

where f−m is the well-defined branch such that τ(c1) = φ(c1) and τ(c2) = φ(c2).

Let Xn (resp. X ′n) denote the set of pre-critical points in [c1, c2]J (resp. [φ(c1), φ(c2)]J )

that are at most n steps down from c1 and c2 (resp. φ(c1) and φ(c2).) We will show using

induction that for all n ∈ N, φ|Xn = τ |Xn .

The definition of τ requires it to send the point of least generation in a sub-interval of

[c1, c2]J to the point of least generation in the image (of the sub-interval.) Therefore, by

applying induction to Lemma 5.3.6, we have that τ(Xn) = X ′n and preserves their relative

ordering within their spine.

Suppose that for some n, φ(Xn) = X ′n and that φ preserves the relative ordering of Xn, X
′
n

within their spines. Let c ∈ Xn+1 \ Xn. By definition, c is a step down from two points

ca, cb ∈ Xn. Let Lc, Lca , and Lcb be limbs rooted at their respective points such that they

all (pairwise) virtually touch. By Lemma 5.3.8, the depth of each pair of limbs is at least k.

WLOG, assume that Gen(ca) < Gen(cb) and so A(Lca , Lcb) is satisfied. Since ca, cb ∈ Xn, we

have by assumption that A(φ(Lca), φ(Lcb)) is also satisfied. Applying Lemma 5.3.3, we have

that A(φ(Lca), φ(Lc)) and A(φ(Lcb), φ(Lc)) must also be satisfied. Hence, φ(c) is the unique

step down from φ(ca) and φ(cb). Hence, φ(Xn+1) = X ′n+1 and φ preserves their relative order.

Therefore, by induction φ|⋃
n∈NXn

= τ |⋃
n∈NXn

. Since
⋃
n∈NXn is equal to all pre-critical

points in [c1, c2] by Lemma 5.3.7 and since the set of pre-critical points in [c1, c2] is dense in

[c1, c2] by Lemma 3.6.2, then by continuity we have that φ|[c1,c2] = τ |[c1,c2].

Let I be a 1-dimensional little Julia set of depth k ∈ N, and let n ∈ N0 such that

fn(I) = µ−k[−β, β] for some k ∈ N. Given I, define the center to be the point in I that

maps up to 0 under fn. Similarly, define the eldest children to be the points in I that map

up to ±µ−kx1 under fn.
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Figure 5.6: For depth(L1, L2) ≥ kη from Lemma 5.3.4. The overall picture is preserved under
φ.

Corollary 5.3.10. 1d little Julia sets of depth k ≥ kη move dynamically with scaling.

Proof. Since any little Julia set, J , of depth k can be mapped forward to µ−kJ on a

neighborhood of J with uniformly bounded distortion, it suffices to prove the corollary for

the case when I = µ−k[−β, β], Ĩ = µ−k̃[−β, β].

If φ(0) = 0 and φ(µ−kx1) = µ−k̃x1 then by Corollary 5.3.5, φ(−µ−kx1) = −µ−k̃x1. Hence,

by Corollary 5.3.9, φ|[−µ−kx1,µ−kx1] = x 7→ µlx. Define xn := f−n(0) where the branch of f−n

is chosen to fix β. We show that for all n, φ|µ−k[−xn,xn] = x 7→ µlx.

Since x2 and µ−1x1 have the same generation, and their limbs both virtually touch Lx1 ,

then by Corollary 5.3.9 φ|µ−k[−x1,x2] = x 7→ µlx. By symmetry, this can be extended further

to µ−k[−x2, x2]. One can continue in this manner to extend to all of I.

Lemma 5.3.11. If for some k ∈ N, φ : J → J is a qs map that sends 1d little Julia sets of

depth at least k to 1d little Julia sets (of any depth) then φ sends 1d little Julia sets of all

depths to 1d little Julia sets and further, φ preserves the depth of any 1d little Julia set.

Proof. Let k ∈ N be such that φ sends 1d little Julia sets of depth at least k to 1d little Julia

sets. Let I be a little Julia set of depth k− 1. By Lemma 3.5.4, there exists sequence (Ij)j∈Z,

such that for each j ∈ Z Ij ⊂ I is a 1d little Julia set of depth k and such that for any j ∈ Z,

79



Ij ∩ Ij+1 is a point. Furthermore, Lemma 3.5.4 tells us that I =
⋃
j∈Z Ij. By assumption,

φ(Ij), φ(Ij+1) must be 1d little Julia sets. Since Ij, Ij+1 share an endpoint, φ(Ij), φ(Ij+1)

must also share an endpoint and so must be of the same depth. Hence,

φ(I) = φ(
⋃
j∈Z

Ij) =
⋃
j∈Z

φ(Ij)

is a 1d little Julia set. Hence, 1d little Julia sets of depth k − 1 go to 1d little Julia sets.

Continuing in this way, we see that if 1d little Julia sets of depth at least k go to 1d little

Julia sets then 1d little Julia sets of every depth go to 1d little Julia sets.

We now show that the depth of a 1d little Julia set must be preserved. Since every 1d little

Julia set is contained in a patriarchal 1d little Julia set, it suffices to show that patriarchal

1d little Julia sets go to patriarchal 1d little Julia sets of the same depth.

By Corollary 5.2.7 we already know that [−β, β] maps to itself under any qs map. For I

any other patriarch 1d little Julia set, I is uniquely identified by 3 things: a depth k, a limb

L such that I ⊂ spine(L), and a number l ∈ N for which it is the l-th closest 1d little Julia

set of depth k to the root of L amongst the 1d little Julia sets in spine(L). In this way, every

patriarch 1d little Julia set other than [−β, β] is part of a 1-sided sequence of 1d little Julia

sets of the same depth with adjacent elements of the sequence sharing an endpoint. Other 1d

little Julia sets, however, are part of a 2-sided sequence. Assuming 1d little Julia sets go to

1d little Julia sets, this distinction implies that patriarch 1d little Julia sets go to patriarch

1d little Julia sets. Within the spine of any limb, it is the patriarch 1d little Julia sets of

depth 1 that limit on the tip of the spine. Hence, patriarch 1d little Julia sets of depth 1

must map to patriarch 1d little Julia sets of depth 1. One may then use induction to show

that the depth of every patriarch 1d little Julia set must be preserved as well as its position,

l, in the one-sided sequence in which it lies. In summary, if 1d little Julia sets go to 1d little

Julia sets, then they must also go to 1d little Julia sets of the same depth.

The following is an immediate corollary of Corollary 5.3.10 and Lemma 5.3.11.
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Corollary 5.3.12. 1d little Julia sets of depth k ≥ kη move dynamically under extendable

η-quasisymmetries of J .

Lemma 5.3.13. If 1d little Julia sets of depth at least k move dynamically, then (full) little

Julia sets of depth k move dynamically.

Proof. Suppose 1d little Julia sets of depth at least k move dynamically under φ. Let J be

a little Julia set of depth k and let I = spine(J). By assumption φ|I = f−ñ ◦ ρl ◦ fn. We

want to show that φ|J = f−ñ ◦ ρl ◦ fn. Let L be any limb rooted in I. spine(L) ∩ J is a

countable union of patriarchal 1d little Julia sets of depth greater than K. Hence, each must

move dynamically and go to the corresponding patriarchal 1d little Julia set of the same

depth and position in spine(φ(L)). Hence, φ|spine(L)∩J = f−ñ ◦ ρl ◦ fn. This argument may

be repeated for any limb L′ rooted in spine(L) ∩ J . Since L,L′ were arbitrary, we can induct

on the number of turns necessary to reach a point z ∈ J from spine(J). This results in a

dense subset X ⊂ J on which φ|X = f−ñ ◦ ρl ◦ fn. Extending to the closure, we have that all

of J moves dynamically.

Corollary 5.3.12 and Lemma 5.3.13 together imply Proposition 5.3.2.

5.4 qs Lift to T

Let φ : J → J be an η-quasisymmetry. By Proposition 5.3.2, let k ∈ N be such that it is

k-dynamical. Let J be any little Julia set of depth i < k and let J̃ = φ(J). Let n, ñ ∈ N0 be

the dynamical distances of J, J̃ to µ−iJ . Then we have the following commutative diagram:

(by Proposition 5.3.2)

J J̃

µ−iJ µ−iJ

φ

fn f ñ

Since φ is η-qs and fn|J , f ñ|J̃ are η′-qs by Koebe, the induced map on µ−iJ must be

η′′-qs. By Lemma 5.3.1 and Proposition 5.3.2 the induced map sends little Julia sets in µ−1J
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to little Julia sets in µ−1J of the same depth. Therefore, by Corollary 5.2.7, the little Julia

sets of depth i+ 1 intersecting µ−1J ∩R form an invariant collection under the induced map.

By Lemma 3.5.4, this collection is naturally indexed by Z such that consecutive elements

overlap at a point. Therefore, by continuity, there exists l ∈ Z and ε ∈ {0, 1} such that

σli ◦ ρε and the induced map from the diagram have the same action on the spine children of

µ−iJ . However, since the induced map is η′′-qs, it follows that |l| ≤ N for some N ∈ N that

depends only on η′′ which, in turn, depends only on η – not on i or J . We say such a map –

one that is k-dynamical and can shift the spine children of any given little Julia set at most

N times – is of type (k,N). For the rest of this section, φ : J → J will be any (topologically

extendable) homeomorphism of type (k,N).

The following lemma is immediate from the preceding paragraph.

Lemma 5.4.1. If φ : J → J is a topologically extendable η-quasisymmetry then it is of type

(k,N) where k,N depend only on η.

The rest of this section is devoted to proving the following proposition:

Proposition 5.4.2. For φ : J → J of type (k,N). The lift of φ to the Böttcher coordinate

φ̂ : T→ T is η′-qs where η′ depends only on k,N .

Lemma 5.4.3. If J is a little Julia set of depth l ∈ N0, then σ̃J , (the lift of σJ to T), is

22l–bi-Lipschitz.

Proof. Since σJ is defined as identity outside of Ĵ and by conjugating σl under the dynamics

so that it acts on Ĵ , it suffices to show that the lift of σl to T, σ̃l is 22l–bi-Lipschitz. By

(1.0.1) and (5.1.1), σl is piecewise dynamical and on each segment is identity, f 2l , or a branch

of f−2l . It therefore follows that σ̃l is piecewise dynamical under the doubling map on T, g,

and on each segment is identity, g2l , or a branch of g−2l . Hence, σ̃l is piecewise linear and

22l–bi-Lipschitz.

82



Lemma 5.4.4. For every l ∈ N there exists a correspondence between Zl and the real little

Julia sets of depth l.

Proof. We define the correspondence inductively such that J(i1,i2,...,il) is the il-th spine child

of Ji1,i2,...,il−1
where the ordering is from left to right and the 0-th spine child is the central

one.

For l = 1 the real little Julia sets of depth 1 are naturally indexed by Z with the integer 0

corresponding to µ−1J . If l > 1 and the correspondence is well-defined for j < l, then we

can extend it to a correspondence between Zl and the little Julia sets of depth l by attaching

the correspondence between Z and the spine children of each real little Julia set of depth

l − 1 onto the existing correspondence between Zl−1 and the real little Julia sets of depth

l − 1.

Let J be a real little Julia set of depth l < k. Since σJ is defined by bringing J to µ−lJ

under the dynamics, σJ either shifts the spine children of J to the left or the right. To remove

this technicality, we will define a new collection of shift maps that always shift real little

Julia sets to the right in the following way.

For l ∈ {1, ..., k− 1}, using the correspondence between real little Julia sets of depth l and

Zl, for each (i1, i2, ..., il) ∈ Zl, define σ(i1,i2,...,il) := σεJ where J and (i1, i2, ..., il) are identified

under the correspondence and ε ∈ {1,−1} is such that σ(i1,i2,...,il) shifts the spine children of

J to the right.

Lemma 5.4.5. If J, J̃ correspond to (i1, i2, ..., ik), (̃i1, ĩ2, ..., ĩk), respectively then for lj :=

ĩj − ij, the map σl10 σ
l2
(i1) · · ·σ

lk
(i1,i2,...,ik−1) sends J to J̃ .
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Proof. Let J(j1,j2,...,jl) be the real little Julia set that corresponds to (j1, j2, ..., jl).

σl10 σ
l2
(i1) · · ·σ

lk−1

(i1,i2,...,ik−2)σ
lk
(i1,i2,...,ik−1)(J(i1,i2,...,ik)) = σl10 σ

l2
(i1) · · ·σ

lk−1

(i1,i2,...,ik−2)(J(i1,i2,...,ik+lk))

= σl10 σ
l2
(i1) · · ·σ

lk−1

(i1,i2,...,ik−2)(J(i1,i2,...,̃ik))

...

= σl10 σ
l2
(i1)(J(i1,i2 ,̃i3,...,̃ik))

= σl10 (J(i1 ,̃i2 ,̃i3,...,̃ik))

= J(̃i1 ,̃i2 ,̃i3,...,̃ik)

Lemma 5.4.6. Let Λ = ψ−1(J ∩ R) ⊂ T. Then φ̂|Λ is M–bi-Lipschitz where

M := 2(2k−1)N . (5.4.1)

Proof. Let J be a real little Julia set of depth k and let J̃ = φ(J). Since φ is k-dynamical

then by Lemma 5.3.1 and Corollary 5.2.7 J̃ is a real little Julia set of depth k. Let J, J̃

correspond to (i1, i2, ..., ik), (̃i1, ĩ2, ..., ĩk), respectively. By Lemma 5.4.5,

φ|J = σl10 σ
l2
(i1) · · ·σ

lk
(i1,i2,...,ik−1)|J

where lj := ĩj − ij. However, since φ is of type (k,N), |lj| ≤ N for all j ∈ {1, 2, ..., k}. By

Lemma 5.4.3, σ̃(i1,...,ij) is 22l–bi-Lipschitz. Hence, σ̃
lj+1

(i1,...,ij)
is 22lN–bi-Lipschitz. Letting j run

over 0, 1, ..., k − 1, we get that for

M := 220N · 221N · · · 22k−1N = 2(2k−1)N

φ̂|J is M–bi-Lipschitz. Since φ is k-dynamical it is therefore affine with slope in [M−1,M ].

Since the dynamics of the limbs of J are determined by the dynamics of their roots, we

may extend linearly the definition of φ̂|J to all of Ĵ , the extended little Julia set. Let φ̂R

denote the map that agrees with φ̂ on (the lift under the Böttcher coordinate of) real little

Julia sets of depth k and is defined on the rest of J by extending linearly each real little
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Julia set of depth k to its extended little Julia set. Then φ̂R is a piecewise linear map of

T to itself (with countably many breakpoints) and such that the slope of each segment of

linearity lies in [M−1,M ]. Hence, φ̂R is M–bi-Lipschitz. Therefore, since φ̂R|Λ = φ̂|Λ, φ̂|Λ is

M–bi-Lipschitz.

We now begin gradually expanding the scope of points in T over which we are able to

control the regularity of φ̃.

Lemma 5.4.7. Let L ⊂ J be a limb, t1, t2 ∈ T such that ψ(ti) ∈ spine(L), and M as above.

Then

|φ̂(t1)− φ̂(t2)| ∼=M
|φ(L)|
|L|

· |t1 − t2|.

Proof. To begin, consider first a single little Julia set, J , of depth k whose spine is contained

in spine(L). As a corollary of No Rotations, φ(spine(L)) = spine(φ(L)). The location of J

within spine(L) can be effectively described in terms of the maximal little Julia set, Jmax,

which is the largest little Julia set satisfying spine(J) ⊂ spine(Jmax) ⊂ spine(L). The location

of Jmax within spine(L) cannot change under φ, hence

|φ(Jmax)| = |φ(L)|
|L|

· |Jmax|.

Within Jmax, the location of J can be given by a finite sequence (aj+1, aj+2, ..., ak) where

j is the depth of Jmax. Let J̃max = φ(Jmax) and let (ãj+1, ãj+2, ..., ãk) give the location of

J̃ = φ(J). Since φ is of type (k,N), it follows that |ai − ãi| ≤ N for each i ∈ {j + 1, ..., k}.

From this, we have that |J̃ |/|J̃max| ∼=M |J |/|Jmax|. Combining this with the above equation,

we get

|J̃ | ∼=M
|φ̂(L)|
|L|

· |J |.

Given the last equation, we can now apply the argument used in the proof of the previous

lemma for arbitrary, t1, t2 satisfying ψ(t1), ψ(t2) ∈ spine(L).

Let t0, tk ∈ T∩ [0, 1/4] such that ψ(t0) = 0, ψ(tk) equal to the αk-point in spine(L↑) closest

to 0. Let Ck = |L↑|/|tk − t0|. It then follows that for any limb L = ψ([ta, tb]), if t ∈ (ta, tb)
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such that ψ(t) lies outside the little Julia set of depth k containing the root of L, then

|ta − t|, |tb − t| ∼=Ck |tb − ta| = |L|.

Lemma 5.4.8. Let t1 < t2 ∈ T and define zi = ψ(ti) for i = 1, 2.

1. If there exists a limb L such that L 3 z1, z2 then

|φ̂(t1)− φ̂(t2)| ∼=C2
kM

|φ(L1,2)|
|L1,2|

· |t1 − t2|

where L1,2 is the smallest limb containing both z1, z2.

2. If no such limb L exists, then

|φ̂(t1)− φ̂(t2)| ∼=C2
kM
|t1 − t2|.

Proof. We prove the first of the two statements. The proof of the second is analogous. The

idea of the proof is as follows: divide [t1, t2] into three sub-intervals [t1, γ1,1], [γ1,1, γ2,1], [γ2,1, t2]

where the ray Rγi,1 lands at a pre-critical point, ci,1 ∈ spine(L1,2) such that ψ(ti) ∈ Lci,1 .

Since by Lemma 5.4.7, we already have expansion along the spine of a limb controlled, the

problem is reduced to showing that expansion in these sub-limbs is controlled. This is done

by considering the first turn in [ci,1, zi]J that leaves the little Julia set of depth k containing

ci,1. Before that turn, there can be no added expansion. The

Then [t1, t2] is contained in the lift of L to the Böttcher coordinate. For i = 1, 2, define

ni ∈ N ∪ {∞} to be the level of zi minus the level of spine(L1,2) (i.e. ni is the number of

turns needed to reach zi from spine(L1,2).) Let Ai = {l ∈ N | l ≤ ni}. There is a sequence of

pre-critical points (ci,j)j∈Ai corresponding to a sequence of nested limbs such that

1. ci,1 ∈ spine(L1,2)

2. for j, j + 1 ∈ Ai, ci,j+1 ∈ spine(Lci,j).

For every such ci,j (except for possibly when ni <∞, j = ni, and ci,ni = zi) there is a unique

point γi,j ∈ [t1, t2] such that ψ(γi,j) = ci,j.
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We have the following two equations.

|γi,1 − ti| =

(
ni−1∑
j=1

|γi,j − γi,j+1|

)
+ |γi,ni − ti|,

|φ̂(γi,1)− φ̂(ti)| =

(
ni−1∑
j=1

|φ̂(γi,j)− φ̂(γi,j+1)|

)
+ |φ̂(γi,ni)− φ̂(ti)|.

For each j ∈ Ai, define αk(γi,j) ∈ T to be the closer to γi,j of the 2 points in T that

descend to the αk-point in spine(Lci,j) closest to ci,j. Suppose for now that there exists an

index jmin which is the smallest index such that the arc between γi,jmin
and γi,jmin +1 contains

the arc between γi,jmin
and αk(γi,jmin

). Then for each j ∈ Ai, j < jmin , we have that

|φ̂(γi,j)− φ̂(γi,j+1)| =
|φ(Lci,j)|
|Lci,j |

· |γi,j − γi,j+1|

and also that

|φ(Lci,j)|
|Lci,j |

=
|φ(Lci,j+1

)|
|Lci,j+1

|
.

Therefore, we have that

|φ̂(γi,1)− φ̂(γi,jmin
)| =

jmin−1∑
l=1

|φ̂(γi,l)− φ̂(γi,l+1)|

=

jmin−1∑
l=1

|φ(Lci,l)|
|Lci,l |

|γi,l − γi,l+1|

=
|φ(Lci,1)|
|Lci,1|

jmin−1∑
l=1

|γi,l − γi,l+1|

=
|φ(Lci,1)|
|Lci,1|

· |γi,1 − γi,jmin
|

∼=M
|φ(L1,2)|
|L1,2|

· |γi,1 − γi,jmin
|.

Beyond jmin, we have that

|Lci,jmin
| ≥ |ti − γi,jmin

| ≥ |αk(γi,jmin
)− γi,jmin

| = C−1
k |Lci,jmin

|.

Moreover, since φ̂(αk(γi,jmin
)) = αk(φ̂(γi,jmin

)), the same thing can be said in the image. That

is,

|φ(Lci,jmin
)| ≥ |φ̂(ti)− φ̂(γi,jmin

)| ≥ |φ̂(αk(γi,jmin
))− φ̂(γi,jmin

)| = C−1
k |φ(Lci,jmin

)|.
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Putting this together, we have the following chain of equations (up to marked constant

factors):

|φ̂(γi,1)− φ̂(ti)| = |φ̂(γi,1)− φ̂(γi,jmin
)|+ |φ̂(γi,jmin

)− φ̂(ti)|

∼=Ck |φ̂(γi,1)− φ̂(γi,jmin
)|+ |Lφ(ci,jmin

)|

=
|φ(Lci,1)|
|Lci,1|

·
(
|γi,1 − γi,jmin

|+ |Lci,jmin
|
)

∼=M
|φ(L1,2)|
|L1,2|

·
(
|γi,1 − γi,jmin

|+ |Lci,jmin
|
)

∼=Ck

|φ(L1,2)|
|L1,2|

· (|γi,1 − γi,jmin
|+ |γi,jmin

− ti|)

=
|φ(L1,2)|
|L1,2|

· |γi,1 − ti|.

Hence, |φ̂(γi,1)− φ̂(ti)| ∼=C2
kM

|φ(L1,2)|
|L1,2|

· |γi,1 − ti|.

If no such index jmin exists, then we obtain the stronger statement:

|φ̂(γi,1)− φ̂(ti)| ∼=M
|φ(L1,2)|
|L1,2|

· |γi,1 − ti|.

By Lemma 5.4.7, we have that

|φ̂(γ1,1)− φ̂(γ2,1)| ∼=M
|φ(L1,2)|
|L1,2|

· |γ1,1 − γ2,1|.

Combining this with the above argument proves the statement.

Lemma 5.4.9. Let t1, t2, t3 ∈ T such that |t1 − t2| = |t1 − t3| 6= 0. Suppose also that there

is a limb containing 2 of the 3 points. Let Ls be the smallest such limb. There is a number

n ∈ N depending only on k,N such that the following hold:

1. If there is a limb containing all 3 points, let Lb be the smallest such limb. Then

|φ(Ls)|
|Ls|

∼=MN

|φ(Lb)|
|Lb|

.
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Figure 5.7: Case 1 (left) and Case 2 (right). Shown are the external rays corresponding to
t1, t2, t3 ∈ T. In the drawn example of Case 1, there is only one limb, L such that Ls ( L ( Lb,
however in general there can be arbitrarily many.

2. If not, then

|φ(Ls)|
|Ls|

∼=MN 1.

(See Figure 5.7.)

Proof. Let I1,2, I1,3 ⊂ T be the intervals of equal length between t1 and t2, and between t1

and t3, respectively. Let zi = ψ(ti). Since t1 lies between t2 and t3 it follows that z1 ∈ Ls.

WLOG assume that z2 ∈ Ls. Hence, |t3 − t1| ≤ |Ls|. If z3 ∈ Ls then Lb = Ls and so there

is nothing to prove. Let m ∈ N be the number of limbs strictly containing Ls and strictly

contained in Lb, if it exists. Name them Lm ) Lm−1 ) · · · ) L1 ) Ls. For i = 1, 2, ...,m

let ci be the root of Li and let γi ∈ T such that γi ∈ I1,3 and ψ(γi) = ci. In this way, if Lb

exists then cm ∈ spine(Lb); otherwise, cm ∈ R. Furthermore, ci ∈ spine(Li+1). Under this

construction, we have that

|t1 − t3| = |t1 − γ1|+ |γ1 − γ2|+ · · ·+ |γn−1 − γn|+ |γn − t3|.

Let n be the smallest positive integer satisfying 23(n−1) > Ck. Since Ck depends only on k

which depends only on η, n depends only on η. Observe that since every pre-critical point in

iR+ ∩ J has dynamical distance at least 3, it follows that if Ls ⊂ Lt then |Lt| ≥ 23|Ls|.

If 1 < l ≤ m and cl−1 lies beyond αk(cl) in spine(Lcl) then we have that

|t1 − t3| ≥ |γl − γl−1| ≥ C−1
k |Ll| ≥ C−1

k 23l|Ls| ≥ C−1
k 23l|t1 − t2|.
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Since |t1 − t3| = |t1 − t2|, it follows that l must be less than n. Hence, for all n ≤ l ≤ m,

|φ(Ll)|/||Ll| = |φ(Ln)|/|Ln| as they must all lie in the same little Julia set of depth k.

Additional expansion/contraction can occur at cm even when m > n− 1 since |t3 − γn| can

be arbitrarily small relative to |t3 − t1|. Hence, for R = |φ(Lb)|/|Lb| if Lb exists and R = 1

otherwise, we have

R ∼=M
|φ(Lm)|
|Lm|

=
|φ(Lm−1)|
|Lm−1|

= · · · = |φ(Ln)|
|Ln|

=
|φ(Ln−1)|
|Ln−1|

∼=M
|φ(Ln−2)|
|Ln−2|

∼=M · · · ∼=M
|φ(L1)|
|L1|

∼=M
|φ(Ls)|
|Ls|

.

Since the above chain of similarities and equalities has at most n instances where two sides

are equal up to a factor of M , this completes the proof.

Proof of Proposition 5.4.2. We show that for some C1 = C1(k,N), we have that for any

t1, t2, t3 ∈ T distinct with |t1 − t2| = |t1 − t3|, that

|φ̂(t1)− φ̂(t2)|
|φ̂(t1)− φ̂(t3)|

≤ C1.

For i = 1, 2, 3, define zi = ψ(ti). If z1, z2 share a common limb, let L1,2 be the smallest

such limb and define R1,2 = |φ(L1,2)|/|L1,2|. If not, define R1,2 = 1. Define R1,3 in the same

way, depending on whether z1, z3 share a limb or not. By Lemma 5.4.8,

|φ̂(t1)− φ̂(t2)| ∼=C2M R1,2|t1 − t2|,

|φ̂(t1)− φ̂(t3)| ∼=C2M R1,3|t1 − t3|.

By Lemma 5.4.9, R1,2/R1,3
∼=Mn 1. Putting those together, we have

|φ̂(t1)− φ̂(t2)|
|φ̂(t1)− φ̂(t3)|

≤ C4M2R1,2|t1 − t2|
R1,3|t1 − t3|

≤ C4Mn+2.

Since C,M, n only depend on k,N , this completes the proof.
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5.5 qc extension to C

Lemma 5.5.1. If φ : J → J is of type (k,N), then for all n ≥ k the lift of φ to the Böttcher

coordinate descends to an η′-qs φn : Bn → Bn that moves dynamically every little copy of

Bn−k. Furthermore, there exists a K-qc map Φn : C→ C such that φn = Φn|Bn. K, η′ depend

only on k,N .

Proof. By Proposition 5.4.2, φ̂ : T→ T is η′′-qs.

Let ψk : T→ Bk be the Böttcher coordinate map for Bk and ψ : T→ J be the Böttcher

coordinate map for J . The correspondence is such that if J is a little Julia set of depth k

then ψk ◦ ψ−1(J) is a bounded Fatou component of Bk.

Since there is a one-to-one correspondence between little Julia sets of depth k and little

copies of Bn−k in Bn given by ψn◦ψ−1 and since this correspondence agrees with the dynamics

of little Julia sets of depth k under the functional equations ψ ◦ g = f ◦ ψ, ψk ◦ g = fk ◦ ψk,

we get that any k-dynamical homeomorphism of J corresponds to a homeomorphism of Bn

for all n ≥ k. This correspondence is such that both maps share the same lift to T under

their Böttcher coordinate. For φ : J → J k-dynamical, we define φn : Bn → Bn with n ≥ k

such that the following diagram is commutative.

J J

T T

Bn Bn

φ

ψ

φ̂

ψk

ψ

ψk

φn

Let K such that the Ahlfors-Beurling extension of φ̂ to C \D is K-qc on C \D. This can

then be brought down to an extension of φ into the basin of ∞. Since φ is k-dynamical, φk

can be extended conformally into every bounded Fatou component. Since Bn is qc-removable,

we get that the extension of φn, Φn : C → C is K-qc. Therefore, Φn is η′-qs and so φn is

η′-qs.
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Proposition 5.5.2. If φ : J → J is of type (k,N), then φ is K-qc extendable to C and so

is η′-qs where η′ depends only on k,N .

Proof. By 2.3.1 Bn → J as n → ∞. Since Φn(±β(Bn)) = ±β(Bn), the maps Φn are

normalized. Hence, Φn converge uniformly on a subsequence to a K-qc map Φ : C→ C such

that Φ|J = φ.

Since η-qs maps are of type (k,N) where k,N depend only on η, we have the following

immediate consequence.

Proposition 5.5.3. If φ : J → J is η-qs, then φ is K-qc extendable to C where K depends

only on η.

5.6 Uniform Approx of φ by Gk

Index Xk, the collection of little Julia sets of depth less than k, by N such that if i < j then

1. diam(Ĵi) ≥ diam(Ĵj)

2. Ĵi 6⊂ Ĵj

Furthermore, since diam(Jn)→ 0 as n→∞ and since there are only finitely many limbs of

diameter at least ε for any choice of ε > 0, diam(Ĵn)→ 0 as n→∞.

Lemma 5.6.1. For any η-quasisymmetry φ : J → J there exists a sequence {mn}n∈N with

|mn| ≤ L for some L ∈ N such that for

τn = σm1
J1
σm2
J2
· · ·σmnJn ∈ Gk,

satisfying τn(Ĵi,c) = φ(Ĵi,c) for any i ≤ n and any spine child Ji,c ⊂ Ji,

Proof. By Corollary 5.2.7, φ([−β, β]) = [−β, β]. By post-composing with ρ, if necessary, we

may assume WLOG that φ(β) = β.
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We prove this by induction. J1 = J . By Corollary 5.2.7 and Lemma 5.3.1, there exists

an m1 such that σm1(µ−1J ) = φ(µ−1J ). Hence, for any spine child of J , Jc, σ
m1
J1

(Ĵc) =

σm1(Ĵc) = φ(Ĵc). Suppose for some n ∈ N, that τn = σm1
J1
σm2
J2
· · ·σmnJn satisfies τn(Ji,c) = φ(Ji,c)

for any i < n and any spine child Ji,c ⊂ Ji. We now show that τn(Ĵn+1) = φ(Ĵn+1).

Case 1: If Jn+1 is the spine child of some little Julia set, Jp, then Jp = Ji for some i ≤ n. Hence,

τn(Ĵn+1) = φ(Ĵn+1).

Case 2: If not, then spine(Jn+1) is a patriarchal 1d little Julia set contained in spine(L) for

some limb L. Let J be the little Julia set of depth k − 1 such that L is rooted

in spine(J). Since Ĵn+1 ⊂ Ĵ , J = Ji for some i ≤ n. Therefore, since φ is k-

dynamical, for Ji,c the spine child of Ji containing the root of L, τn|Ji,c = φ|Ji,c . Hence,

τn(L) = φ(L). Since patriarchal 1d little Julia sets go to patriarchal 1d little Julia sets,

τn(spine(Jn+1)) = φ(spine(Jn+1)). Hence, τn(Ĵn+1) = φ(Ĵn+1).

Knowing this, we can move on to mapping the spine children of Ĵn+1 to the same place under

both φ and τn+1. We now know that τn, φ both send the spine children of Ĵn+1 to the spine

children of φ(Ĵn+1). φ, however, will shift them by some mn+1 ∈ Z while τn doesn’t shift

them. (If mn+1 = 0, this corresponds to no shift.) Define τn+1 := τn ◦ σmn+1

Jn+1
. In this way,

for every spine child Jn+1,c ⊂ Jn+1, τn+1(Jn+1,c) = φ(Jn+1,c). Since σJn+1|J\Ĵn+1
= id, τn+1

maintains the same behavior as τn on each Ji, i ≤ n. This completes the proof.

Lemma 5.6.2. Let φ : J → J be η-qs. For all n ∈ N, let τn = σm1
J1
σm2
J2
· · ·σmnJn ∈ Gk be the

maps that satisfy the statement of Lemma 5.6.1. τn → φ uniformly as n→∞.

Proof. Let ε > 0. Let δ > 0 such that if X ⊂ J and diam(X) < δ then diam(φ(X)) < ε. Let

n ∈ N such that if Ji ∈ Xk satisfies diam(Ĵi) ≥ δ then i ≤ n. The argument is as follows:

we show that for every z ∈ J , either there exists a little Julia set, J , such that z ∈ Ĵ ,

diam(Ĵ) < δ and τn(Ĵ) = φ(Ĵ) (Case 1) or, if not, then τn(z) = φ(z) (Case 2).
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Case 1: Suppose there exists an extended little Julia set, Ĵ 3 z, such that depth(Ĵ) ≤ k and

diam(Ĵ) < δ. Given this, we may further suppose that Ĵ is the largest such extended

little Julia set satisfying these conditions. Let Ĵp be the smallest extended little Julia set

such that depth(Ĵp) < k and Ĵp ) Ĵ . By our assumption, it follows that diam(Ĵp) ≥ δ.

Hence, τn(Ĵc) = φ(Ĵc) for every spine child Ĵc of Ĵp. If Ĵ is not patriarchal, then Ĵ

is one of these spine children. If instead, Ĵ is patriarchal, then for L the limb such

that spine(Ĵ) ⊂ spine(L), we have that Ĵp is the unique extended little Julia set of

depth k − 1 such that its spine contains the root of L. Since φ is k-dynamical and

diam(Ĵp) ≥ δ, it follows that τn(L) = φ(L). And so τn(Ĵ) = φ(Ĵ) since patriarchal

little Julia sets go to patriarchal little Julia sets.

Case 2: If Case 1 is not satisfied, then every extended little Julia set, Ĵ 3 z with depth(Ĵ) ≤ k

satisfies diam(Ĵ) ≥ δ. Let Ĵ 3 z be of depth k−1. Observe that Ĵ minus the endpoints

of its spine is equal to the union of each of its extended spine children. Hence, if z is

not in a smaller extended little Julia set of any depth, then z is one of the endpoints

of spine(Ĵ) in which case τn(z) = φ(z). If instead, z belongs to smaller extended little

Julia sets but none that have depth less than k, then it must be that depth(Ĵ) = k − 1.

Furthermore, we can say that in this case z ∈ J or z is the β-point of a limb L rooted

in J – if z is anything else, then it would belong to a strictly smaller extended little

Julia set of depth less than k. Because diam(Ĵ) ≥ δ and depth(Ĵ) = k− 1, τn|Jc = φ|Jc

for every spine child of J . This, however, further implies that τn|Js = φ|Js for every

little Julia set of depth k contained in J . Since J is equal to the closure of a countable

union of little Julia sets of depth k we have that τn|J = φ|J . Hence, we also have that

for any limb L rooted in J , τn(β(L)) = φ(β(L)).

By Proposition 5.5.2, the maps τn are all η′-qs. Hence, Lemmas 5.6.1 and 5.6.2 prove

Theorem 1.0.1.
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