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Abstract of the Dissertation

Distortion Structure for Renormalization

by

Paul Frigge

Doctor of Philosophy

in

Mathematics

Stony Brook University

2023

The attractor of renormalization for the space of C3 circle maps with a break
point lies in the space of Mobius maps. In this thesis, we prove that maps
lying in the attractor have additional internal structure. Using the dynamical
partition, one can deconstruct a renormalization Rnf of a Mobius map into
its composite pieces and measure the distortion on each piece by means
of an atomic measure. Under iteration of renormalization, these measures
converge to continuous measures, which define Mobius flows through time.
We construct renormalization operators for such distortion measures and
use contraction techniques to prove that every map in the attractor has an
associated invariant limiting distortion measure. We then consider properties
of the limiting measures and present sufficient conditions for them to be
dyadic doubling.
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3.4.1 Definition of Möbius Measures . . . . . . . . . . . . . . 23
3.4.2 The Space of Distortion Measure Pairs . . . . . . . . . 24
3.4.3 The Renormalization Operators for Distortion Mea-

sure Pairs . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Contraction of Distortion Measure Fibers 26
4.1 Fiber Structure of Distortion Measures . . . . . . . . . . . . . 26
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Chapter 1

Introduction

One of the many subfields of mathematics concerns itself with the study
of dynamical systems. The original motivation for this branch comes from
physics, since it was quickly noted after the discovery of calculus by Newton
and Leibniz that systems of differential equations often governed the behavior
of models from Newtonian mechanics. Originally, mathematicians searched
for exact solutions of these equations in the hopes of solving questions such
as those concerning the stability of the Solar System. This changed in the
late 19th century due to the efforts of Poincaré. What he understood was
that it was more effective to try and understand qualitative properties of a
dynamical system such as asymptotics or existence of periodic orbits rather
than solve them explicitly. For his work on celestial mechanics concerning
the 3-body problem, which he showed was fundamentally chaotic, he received
King Oscar of Sweden’s prize in 1887.

The mathematical formulation of a dynamical system is based around a
phase space U , which is usually metrizable, and a time evolution law, which
can either be continuous in time, like the flows of differential equations stud-
ied in physical systems, or a discrete map f : U → U . Discrete maps occur
naturally when you take a flow on a higher dimensional surface and restrict it
to lower dimensional cross sections. The class of discrete dynamical systems
studied in this thesis will be that of circle homeomorphisms. Their simplest
classification was due to Poincaré [1], who discovered an invariant known
as the rotation number. If the rotation number is rational, orbits of points
converge to periodic orbits, while maps with irrational rotation numbers are
semiconjugate to rotations. Further developments of the theory sought to
answer the question of when a circle map with an irrational rotation num-
ber is conjugate to a rigid rotation, and how smooth the conjugating map
is. Denjoy [2] proved that a C2 diffeomorphism f : S1 → S1 with irrational
rotation number is topologically conjugate to a rotation, and constructed ex-
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amples of C1 diffeomorphisms for which the conjugacy fails to hold. Arnold
proved that even for smooth maps, the conjugacy need only be continuous,
and Herman [3] proved a general result, which, for example concludes that if
f is C3 and has rotation number ρ lying in the full measure set of Diophan-
tine rotation numbers (those which colloquially are badly approximated by
rational numbers), then it is C1 conjugate to a rotation. An interpretation
of such results is to say that at sufficiently small scales, these circle maps are
indistinguishable from rotations.

The proofs of these classic theorems involve studying the behavior of
high iterates of f over nested decreasing sequences of dynamically defined
intervals. A major innovation of modern times is the technique of renormal-
ization. The basic principles of renormalization are as follows: One begins
with a dynamical system defined by the set U and the mapping f : U → U .
Then, a subset V of U is chosen so that points in V eventually return under
iteration. Finally, the set V and the first return map f̃ : V → V are rescaled
in the hopes that one will obtain a new dynamical system of the same class
as the original. If that is the case, we say (U, f) is renormalizable and by
iterating this process, we consider renormalization as an operator on a space
of dynamical systems.

Renormalization was first introduced by Tresser, Coullet and Feigen-
baum to study the dynamics of unimodal maps such as the logistic family
fr : [0, 1] → [0, 1], fr(x) = rx(1 − x) for r ∈ [0, 4]. Those systems were
experimentally observed to exhibit universal properties associated to period
doubling bifurcations. Lanford [4] used a computer assisted proof to first
establish that the renormalization operator had a fixed point. Rigorous the-
oretical advances were due to Sullivan [5], who established contraction of
renormalization to the fixed point, and McMullen [6], who constructed the
unstable manifold of renormalization. Lyubich [7] then completed the pic-
ture by proving the renormalization operator was hyperbolic. With this in
mind, the interest in extending these techniques to the field of circle maps
can be well understood.

There are various conventions for renormalizing circle maps. In this the-
sis, the chosen method is to consider them as branched interval maps. These
can be obtained by lifting the circle to [0, 1] and taking appropriate images
of circle homeomorphisms f : S1 → S1 that are C2 everywhere except for
at one marked point and its preimage. For circle maps with aperiodic dy-
namics, this data can be encoded by two spatial coordinates c, v ∈ (0, 1) and
two C2 orientation preserving diffeomorphisms F−, F+ : [0, 1] → [0, 1]. Using
the spatial coordinates to define a first return interval I and then affinely
rescaling I to [0, 1], one obtains a new renormalized circle map.

An extensive analysis of renormalization of circle maps has been done by
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Sinai and Khanin [8], and also by Stark [9]. As anticipated by Herman, if
f is C3 with Diophantine rotation number, then the renormalizations of f
converge to rigid rotations. More interestingly, it was shown by Khanin and
Teplitsky [10] that if one allowed the derivative of f to have a break point
in a way quantified by a real invariant K ̸= 0, referred to here as the total
distortion, the renormalization operator is hyperbolic, and the renormaliza-
tions of f converge to an attractor homeomorphic to the product of R with a
Cantor set, for which the corresponding branches F−, F+ at every point are
Möbius. The main result of this thesis shows that the renormalization oper-
ator has additional internal structure when restricted to the space of Möbius
circle maps.

In its classical form, the definitions of renormalization for unimodal and
circle maps involve composition, which can be difficult to work with. Orig-
inally in the setting of unimodal maps, Martens approached this issue by
extending renormalization to the larger space of decompositions [11]. For
our purposes, a decomposition can be thought of as a function f from the
set of dyadic rationals T in (0, 1] into the space of C2 orientation preserving
diffeomorphisms of [0, 1], which can be viewed as a chain of diffeomorphisms
equipped with a time order of composition that respects the structure of the
dyadic rationals. As a substitute for composing, two decompositions f, g can
then be concatenated together into a new decomposition f ⋆ g such that

(f ⋆ g)τ =

{
f2τ if τ ≤ 1/2,

g2τ−1 if τ > 1/2.

By concatenating rather than composing, intrinsic information about the be-
havior of a map at small scales can be preserved and the past history of a
renormalized map can more easily be recovered.

The attractor for renormalization of C3 circle maps with a break point
lies in the space of Mobius circle maps, and these have additional prop-
erties associated to them that allows for fundamentally different analysis.
The orientation preserving Möbius diffeomorphisms that map the interval
[0, 1] to itself form a one-parameter family, characterized by the real number

ω(M) =
∫ 1

0
M ′′/M ′, which is referred to here as the weight. The Möbius dif-

feomorphisms (Mω)ω∈R form an additive group under composition, so we can
fully understand a decomposition M of Möbius diffeomorphisms in terms
of its weight decomposition ω, with ωτ = ω(Mτ ). From ω, one can then
construct an atomic signed Borel measure µω on (0, 1] by the definition
µω({τ}) = ωτ .

The action of renormalization reorders weight decompositions by cutting
them up and squeezing them into smaller time intervals. A result of this is
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that the associated atomic measures converge to continuous measures. This
noticeably differs from the situation for unimodal maps, where the decompo-
sitions bend and preserve distortion at small scales. This suggests a paradigm
shift, which is explored in this thesis. The key idea is to replace the branches
(M−,M+) of a Möbius circle map by signed measures (µ−, µ+), which we will
refer to as distortion measures. For reasons which will become clear, we will
endow these measures with the norm

||µ|| = sup
τ∈T

|µ(0, τ ]|.

The distortion measures generate a Möbius flow defined at dyadic timescales
(0, τ ] by transforming the unit interval by a Möbius diffeomorphism of weight
µ(0, τ ]. Due to the group structure of Möbius diffeomorphisms, this construc-
tion is well defined, and the norm ||µ|| encapsulates the displacement of orbits
of the flow.

Given the data (µ−, µ+), one can apply the canonical projection
π(µ−, µ+) = (Mµ−(0,1],Mµ+(0,1]) to obtain the branches of a Möbius circle
map. What is now needed is a means of renormalizing distortion measures
in a way that commutes with the canonical projection. The formulas for
doing this turn out to only require zooms and concatenations. Just like for
decompositions, one can concatenate two Möbius flows into a single flow by
applying one after the other in sequential time order. The zoom operator,
on the other hand, is analogous to restricting a Möbius flow to a smaller
subinterval I ⊆ [0, 1] of orbits and then rescaling the corresponding flow
back to unit size. At the level of distortion measures, one obtains from µ a
new measure ZIµ such that for τ ∈ T ,

(ZIµ)(0, τ ] =

∫
I

M ′′
µ(0,τ ]

M ′
µ(0,τ ]

.

The crucial analytical tool for studying the renormalization of distortion
measures is the Zoom Contraction Law. It states that if µ, ν are measures
such that ||µ||, ||ν|| < L, and I is a subinterval of [0, 1] with |I| < 1, then
there exists κ < 1 depending only on L and |I| such that

||ZIµ− ZIν|| < κ||µ− ν||.

The renormalization operators Rσ
z are quantified by a real number σ ∈ (0, 1),

referred to as the scaling ratio, and z ∈ {−,+} which selects the branch µz

to be acted upon by a zoom. One can then show that any sequence of renor-
malizations defined by a renormalization scheme (σ, z) ∈ (0, 1)N × {−,+}N
that satisfies a mild combinatorial condition referred to as δ-boundedness
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contracts distances between distortion measure pairs (µ−, µ+), (ν−, ν+) for
which π(µ−, µ+) = π(ν−, ν+). The essence of the proof goes as follows:
Firstly, the renormalization operator Rσn

zn acts on the space M×M of dis-
tortion measure pairs by cutting µzn into two pieces Z[0,σn]µzn , Z[σn,1]µzn and
concatenating one of the pieces onto the other branch.
Secondly, after a sequence of renormalizations, the branches of a distortion
measure pair look like concatenations of zooms of the original distortion mea-
sures. The δ-boundedness conditions guarantees that after the sign of the
sequence z changes three times, there comes a point where the pieces have
all been acted upon by zooms with subinterval sizes uniformly bounded in
terms of δ.
Thirdly, using the Zoom Contraction Law and a uniform bound on the norm
of renormalizations, the distance between the renormalized distortion mea-
sure pairs on each piece can be shown to contract by a uniform κ < 1.
Finally, as (µ−, µ+), (ν−, ν+) share the same canonical projection, the renor-
malizations have the same measure on every piece, so the net contribution of
any piece to the distance is zero. Hence, the overall distance contracts by κ.

Our main goal is to apply this contraction theorem in the setting of
Möbius circle maps. The main theorem is the following:

Convergence Theorem. Let f be a Möbius circle map in the attractor for
renormalization, of total distortion K ̸= 0. Then f has a unique R-invariant
limiting distortion measure pair (µ−, µ+) associated to it.

To do this, we consider sequences of preimages of Möbius circle maps for
which the weights remain uniformly bounded. If the weights of f have the
same sign, this can be done in a unique way. We define the set WK,δ to be
those sequences for which the total distortion equals K, and the renormal-
ization scheme for the sequence is δ-bounded. It is possible to show that
every point in the attractor for renormalization satisfies these conditions.
We then consider the space ΓK,δ of bounded graphs from WK,δ into M×M
that respect the canonical projection. Using the completeness of M × M
and the renormalization schemes associated to every point in WK,δ, which
are all δ-bounded by assumption, one defines a graph transform operator on
ΓK,δ and shows that it is a contraction on a complete space, hence it has a
unique fixed point. Extending this result over the union of all WK,δ provides
renormalization invariant distortion measure pairs for any Möbius circle map
with a combinatorially bounded history.

Now that one has constructed invariant distortion measure pairs, it is nat-
ural to try and understand their properties. This thesis presents two partial
and relatively straightforward results in that direction. First of all, if K = 0,
then the invariant measures are identically zero, and if K ̸= 0, it is possible
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to show that the distortion measure pairs associated to a sequence f ∈ WK,δ

are either both strictly positive or both strictly negative, the choice of which
agrees with the sign of K. Additionally, if the renormalization scheme of f
satisfies a stronger condition satisfied by Möbius circle maps with bounded
combinatorics, then its invariant distortion measure pairs are dyadic dou-
bling, i.e., the measures on any pair of standard dyadic intervals of level n
that share a dyadic ancestor at level n − 1 are proportional by a uniform
constant which is independent of n.
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Chapter 2

Renormalization of Möbius
Circle Maps

2.1 Renormalization of Circle Maps

2.1.1 Definition of Circle Maps

Definition 1. A circle map is a branched interval map of [a, b] ⊆ R to
itself, parametrized by two marked points c, v ∈ (a, b) and two orientation
preserving homeomorphisms f− : [a, c] → [v, b] and f+ : [c, b] → [a, v]. We
refer to [a, b] as the domain of definition, and f−, f+ as the branches of
a circle map f = (a, b, c, v, f−, f+).

Consider an orientation preserving homeomorphism f of S1 with one
marked point x0. We can then choose any interval [a, b] and take a lift F of f
onto [a, b] by identifying x0 with the endpoints of the interval. Then, one can
define c and v as the images of f−1(x0) and f(x0), respectively, under the cir-
cle identification. Note that F is a branched interval map on [a, b] with a point
of discontinuity at c. By definition, F is a homeomorphism when restricted
to [a, c) and [c, b), so we can define f− : [a, c] → [v, b], f+ : [c, b] → [a, v] that
agree with F on their common domain of definition and extend naturally to
the closure via f−(c) = b, f+(b) = v. From this process, we can embed f as
a circle map (a, b, c, v, f−, f+), which justifies our definition.

If we place stronger conditions on the branches f−, f+, for instance, that
they are diffeomorphisms, then a circle map f as we have defined them can
only correspond to maps of S1 with at most two nonsmooth points.
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2.1.2 Classical Renormalization of Circle Maps

Definition 2. Let f : [a, b] → [a, b] be an interval map. If [c, d] ⊆ [a, b], then
we define the first return map of f to [c, d] to be the map ffr : [c, d] → [c, d]
such that ffr(x) = fn(x), where n is the minimal integer such that fn(x) ∈
[c, d], if it exists.

Definition 3. Let f = (a, b, c, v, f−, f+) be a circle map. If c ̸= v, we say
that f is renormalizable. We define the prerenormalization of f as the
circle map pRf corresponding to the first return map of f to the interval
[v, b], if c > v, or [a, v], if c < v.

Lemma 1.

pRf =

{
(v, b, c, f−(v), f−, f− ◦ f+) if c > v,

(a, v, c, f+(v), f+ ◦ f−, f+) if v > c.

Proof. We will prove the statement for the case c > v. The case c < v will
follow by a similar argument. So suppose c > v. Then by definition, prerenor-
malization acts as the first return map to the interval [v, 1], which gives us the
domain of definition. The point of discontinuity remains inside [v, 1], so its
position does not change. As a result, the − branch is defined on [v, c] and the
+ branch on [c, 1]. The image of (f−)|[v,c] is [f−(v), 1], so we observe that the
point corresponding to v in pRf will be f−(v). Finally, f+ maps the interval
[c, 1] outside the domain of definition, so to obtain a first return map, we fur-
ther iterate by f−. That makes the prerenormalized + branch equal to f−◦f+,
which completes the argument that pRf = (v, 1, c, f−(v), f−, f− ◦ f+).

Although circle maps can be defined for any domain of definition [a, b],
in practice, we want to keep track of their internal structure. Thus, we will
utilize the normalizing convention that [a, b] = [0, 1] and in this way, we
can omit reference to a and b in the definition. As the prerenormalization
of a circle map will violate this condition, its domain of definition needs to
be rescaled back to unit size. The resulting map will be referred to as the
renormalization.

Definition 4. Let f = (c, v, f−, f+) be a circle map. If f is renormalizable,
we define the renormalization of f to be the circle map Rf whose coordi-
nates are obtained by applying the affine orientation preserving conjugation
to the coordinates of pRf that maps its domain of definition onto [0, 1].

Remark. Rf is a circle map.

At this point, we do not have the machinery necessary to define R as an
operator, since for example we have not endowed the space of circle maps with
a Banach space structure. This will be rectified in the upcoming sections.
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2.2 Nonlinearities and Renormalization

2.2.1 Introduction

Definition 5. If f : [a, b] → [c, d] is an orientation preserving homeomor-
phism, we define the normalization of f to be the orientation preserving
homeomorphism Nf : [0, 1] → [0, 1] given by the formula

Nf(x) =
f(a+ (b− a)x)− c

d− c
.

An orientation preserving homeomorphism f is determined uniquely by
its domain, range and normalization. Thus, since the domain and ranges of
f−, f+ are predefined, we can use Nf−, Nf+ instead as coordinates of f . To
simplify notation, we will refer to the normalized branches of a circle map as
F−, F+.

2.2.2 Definition of the Nonlinearity

Definition 6. Let f : [a, b] → [c, d] be a C2 orientation preserving diffeo-
morphism. The nonlinearity of f is the C0 function ηf : [a, b] → R given
by

ηf (x) =
f ′′(x)

f ′(x)
.

We denote by Diffk([0, 1]) the Banach space of orientation preserving Ck

diffeomorphisms of [0, 1], k ≥ 2, with norm given by ||F || = ||ηF ||0. For η ∈
C0([0, 1]), we define Fη ∈ Diff2([0, 1]) to be the unique orientation preserving
diffeomorphism of [0, 1] such that ηFη = η.

It is important to remark that the vector space structure of Diff2([0, 1])
corresponds to addition of nonlinearities rather than compositions of diffeo-
morphisms. However, as will be shown in the next section, the nonlinearity
ηF − ηG is intimitely related to ηF◦G−1 .

Definition 7. Let F ∈ Diff2([0, 1]). The weight of F is the quantity

ωF :=

∫ 1

0

ηF .

2.2.3 The Chain Rule of Nonlinearity

Lemma 2 (Chain Rule of Nonlinearity). Let F,G ∈ Diff2([0, 1]). Then

ηF◦G(x) = ηF (G(x))G′(x) + ηG(x).

9



Proof. Suppose that F,G ∈ Diff2([0, 1]). Then by the Chain Rule,
(F ◦G)′(x) = F ′(G(X))G′(x). Further applying the Chain Rule, we observe
that (F ◦G)′′(x) = F ′′(G(x))[G′(x)]2 + F ′(G(x))G′′(x). Hence,

ηF◦G(x) =
(F ◦G)′′(x)

(F ◦G)′(x)
=

F ′′(G(x))

F ′(G(x))
G′(x)+

G′′(x)

G′(x)
= ηF (G(x))G′(x)+ηG(x).

Proposition 1. Let L > 0. If F,G ∈ Diff2([0, 1]) satisfy ||ηF ||, ||ηG|| < L,
then there exists a constant C depending on L such that

|F −G|, |F ′ −G′| < C||ηF − ηG||.

Proof. First, observe that by the Chain Rule of Nonlinearities, ηF (x) −
ηG(x) = ηF◦G−1(G(x))G′(x), so it will suffice to write |F − G|, |F ′ − G′|
in terms of ηF◦G−1 . Since F (x) = F (G−1(G(x))),

|(F −G)(x)| = |(F ◦G−1 − Id)(G(x))| ≤ |F ◦G−1 − Id| < |(F ◦G−1 − Id)′|.

As

(F ◦G−1)′(G(x)) = (F ◦G−1)′(0)e
∫G(x)
0 ηF◦G−1 = (F ◦G−1)′(0)e

∫ x
0 ηF−ηG ,

we obtain that |F −G| is bounded by a constant times ||ηF − ηG||.
Similarly, |(F ′−G′)(x)| = G′(x)|(F ◦G−1)′(G(x))−1|, which is also bounded
by a constant times ||ηF − ηG||, with the constant depending on L. This
completes the proof.

2.2.4 Definition of the Zoom Operator

Definition 8. Let I ⊆ [0, 1]. We define the zoom operator
ZI : Diff

2([0, 1]) → Diff2([0, 1]) as the normalization of the restriction opera-
tion F |I : I → F (I), i.e.,

ZIF = N(F |I).

Lemma 3. If I = [a, b] ⊆ [0, 1] and F ∈ Diff2([0, 1]), then

ηZIF (x) = |I|ηF (a+ (b− a)x).

In particular, ||ZIF || ≤ |I|||F ||.

10



Proof. Suppose that I = [a, b] ⊆ [0, 1] and F ∈ Diff2([0, 1]). Then

ZIF (x) = N(F|I)(x) =
F (a+ (b− a)x)− F (a)

F (b)− F (a)
,

so (ZIF )′(x) =
(b− a)F ′(a+ (b− a)x)

F (b)− F (a)
and

(ZIF )′′(x) =
(b− a)2F ′′(a+ (b− a)x)

F (b)− F (a)
. Therefore,

ηZIF (x) = (b− a)ηF (a+ (b− a)x) = |I|η(a+ (b− a)x).

From this, it follows that ||ZIF || ≤ |I|||ηF ||0 = |I|||F ||.
Remark. For any I = [a, b] ⊆ [0, 1], ZI : C

0([0, 1]) → C0([0, 1]),

ZIη(x) = |I|η(a+ (b− a)x)

defines an operator on the space of C0 nonlinearities, with
∫ 1

0
ZIη =

∫
I
η.

2.2.5 Extension of Renormalization

Definition 9. Let f = (c, v, F−, F+) denote a circle map. We refer to (c, v)
as the spatial coordinates of f and the C0 functions (ηF− , ηF+) as the
nonlinearity coordinates of f . By identification of f with its spatial and
nonlinearity coordinates, we let X = (0, 1)2 × C0([0, 1])2 denote the space of
circle maps, endowed with the product distance.

By convention, we will refer to η± as the nonlinearity of F±.

Definition 10. Let f = (c, v, η−, η+) ∈ X. We define X− := {f ∈ X : c >
v} and X+ := {f ∈ X : c < v}. If c ̸= v, we say that f is renormalizable,
and for such f , we define the renormalization operator R : X−⊔X+ → X
as follows:

Rf =


(
c− v

1− v
, Fη−(

v

c
), Z[v/c,1]η−, ηZ[0,v/c]F−◦F+) if f ∈ X−,

(
c

v
, Fη+(

v − c

1− c
), ηZ[(v−c)/(1−c),1]F+◦F− , Z[0,(v−c)/(1−c)]η+) if f ∈ X+.

2.3 Möbius Diffeomorphisms and their Prop-

erties

2.3.1 Definition of Möbius Diffeomorphisms

When analyzing spaces of dynamical systems and their evolution under the
renormalization operator, it is useful to search for invariant subsets, since

11



they may be characterized by dynamically relevant data. For example, one
could consider the class of affine circle maps

XAff := {f ∈ X : η−, η+ = 0}.

It is clear that XAff is preserved by renormalization, but the weights of affine
circle maps sum to 0, which is a very special property. To encapsulate the
essential dynamics of a general circle map with break point, we would need
to find a larger invariant set. As it turns out, the space of Möbius circle maps
is the natural extension.

Definition 11. We define the Möbius diffeomorphism of weight ω ∈ R
to be the linear fractional transformation Mω ∈ Diff2([0, 1]) given by

Mω(x) =
x

(1− eω/2)x+ eω/2
.

Remark. The Möbius diffeomorphisms form the union of all orientation
preserving linear fractional transformations that map [0, 1] onto itself.

Lemma 4. 1) The nonlinearity ηω ∈ C0([0, 1]) of Mω is given by the formula

ηω(x) =
2(eω/2 − 1)

(1− eω/2)x+ eω/2
.

2)
∫ 1

0
ηω = ω.

Proof. 1) Observe that M ′
ω(x) =

eω/2

((1− eω/2)x+ eω/2)2
,

and M ′′
ω(x) =

−2eω/2(1− eω/2)

((1− eω/2)x+ eω/2)3
, making

ηω(x) =
2(eω/2 − 1)

(1− eω/2)x+ eω/2
.

2) By direct integration of ηω,∫ 1

0

ηω = [−2 ln((1− eω/2)x+ eω/2)]10 = 0− 2
ω

2
= ω.
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2.3.2 General Properties of Möbius Diffeomorphisms

Lemma 5. Let ω1, ω2 ∈ R, and let [a, b] ⊆ [0, 1]. Then:
1)

Mω1+ω2 = Mω1 ◦Mω2 .

2) ∫ b

a

ηω1 − ηω2 =

∫ Mω2 (b)

Mω2 (a)

ηω1−ω2 .

Proof. 1) Note first that the product of two Möbius diffeomorphisms is itself
a Möbius diffeomorphism, since they all are orientation preserving linear
fractional transformations that fix 0 and 1. It remains to determine the
weight of Mω1 ◦Mω2 , which by the Chain Rule of Nonlinearity and a change
of variables equals∫ 1

0

ηω1(Mω2)M
′
ω2

+ ηω2 =

∫ 1

0

ηω1 +

∫ 1

0

ηω2 = ω1 + ω2.

2) Let [a, b] ⊆ [0, 1]. Then by part 1), the Chain Rule of Nonlinearity and a
change of variables,∫ b

a

ηω1 − ηω2 =

∫ b

a

ηMω1−ω2◦Mω2
− ηω2 =

∫ b

a

ηω1−ω2(Mω2)M
′
ω2

=

∫ Mω2 (b)

Mω2 (a)

ηω1−ω2 .

2.3.3 Useful Formulas

Lemma 6.

Mω(x) =
x

e(
∫ 1
x ηω)/2

=
e(

∫ x
0 ηω)/2 − 1

eω/2 − 1
.

Proof. Observe that by integration,
∫ 1

x
ηω = 2 ln((1− eω/2)x+ eω/2), so

e
∫ 1
x ηω/2 = (1− eω/2)x+ eω/2 =

x

Mω(x)
,

which proves the first equality. For the second equality, note that

e
∫ x
0 ηω/2 =

eω/2

e
∫ 1
x ηω/2

, so

e
∫ x
0 ηω/2 − 1 =

eω/2 − ((1− eω/2)x+ eω/2)

(1− eω/2)x+ eω/2
=

x(eω/2 − 1)

(1− eω/2)x+ eω/2

= (eω/2 − 1)Mω(x),
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which after dividing by eω/2 − 1 completes the proof.

Remark. Dηω(x) =
η2ω(x)

2
, as linear fractional transformations are char-

acterized by having Schwarzian derivative 0, and the Schwarzian derivative
associated to a C1 nonlinearity η is given by the operator
S : C1([0, 1]) → C0([0, 1]), Sη(x) = Dη(x)− η2(x)/2.

2.4 Hyperbolicity of Möbius Circle Maps

2.4.1 Definition and Invariance of the Total Distortion

Definition 12. Let f = (c, v, η−, η+) ∈ X. We define the total distortion

of f to be the quantity K(f) :=
∫ 1

0
η− +

∫ 1

0
η+.

Proposition 2. Suppose that f ∈ X is renormalizable. Then K(Rf) =
K(f).

Proof. We will prove this when c > v. We calculate:

K(Rf) =

∫ 1

0

η−(Rf) +

∫ 1

0

η+(Rf) =

∫ 1

0

Z[v/c,1]η− +

∫ 1

0

ηZ[0,v/c]F−◦F+

=

∫ 1

v/c

η− +

∫ v/c

0

η− +

∫ 1

0

η+ =

∫ 1

0

η− +

∫ 1

0

η+ = K(f).

The proof for c < v is similar.

2.4.2 The Hyperbolicity Theorem

A summary of important preexisting results about the attractor follows be-
low, see [8], [9], [10] for specific details.

Definition 13. Let K ∈ R. We let XK denote the space of f ∈ X such that
K(f) = K. We further define ΩK ⊂ XK to be the subset of circle maps with
Möbius nonlinearities in XK. Finally, we let Ω = ⊔KΩK.

The Möbius nonlinearities are not a subspace of C0([0, 1]) since they
are not closed under addition. However, by the bijection (ηω− , ηω+) 7→
(ω−, ω+) ∈ R2, they can be endowed with a Banach space structure. For
this reason, we will reference points in Ω by the weight of their branches, i.e.,
f = (c, v, ω−, ω+) ∈ Ω.

C3 Convergence Theorem. Let X1
K consist of those circle maps in XK

with C1 nonlinearities. Then as n → ∞, Rn(X1
K) → ΩK.
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Hyperbolicity Theorem. 1) As n → ∞,Rn(Ω0) converges to the space

Xρ := {(ρ, 1− ρ, 0, 0) : ρ ∈ (0, 1)}

of rigid rotations.
2) If K ̸= 0, then R is a hyperbolic operator on ΩK. The unstable manifolds
of R form a lamination of dimension 1 curves homeomorphic to the product
of R with a Cantor set.
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Chapter 3

Distortion Measures and their
Renormalization

3.1 Introduction to Distortion

3.1.1 Weight Structure of Distortion

By the C3 Convergence Theorem, the essential dynamics of renormalization
play out on the spaces ΩK . We will analyze these spaces better and consider
ways in which we can extend renormalization to even larger spaces.

Definition 14. Let K ∈ R. We define ΩK,− := {f ∈ ΩK : c > v} and
ΩK,+ := {f ∈ ΩK : c < v}.

Note that renormalization acts as an operator R : XK,− ⊔XK,+ → XK .

Lemma 7. Let f = (c, v, ω−, ω+) ∈ ΩK. Then,

(ω−(Rf), ω+(Rf)) =


(
∫ 1

v/c
ηω− , ω+ +

∫ v/c

0
ηω−) if f ∈ ΩK,−,

(ω− +
∫ 1
v − c

1− c

ηω+ ,
∫ v − c

1− c
0 ηω+) if f ∈ ΩK,+.

Proof. The proof follows from the fact that
∫ 1

0
ZIηω =

∫
I
ηω.

3.1.2 Scaling Ratios and Related Coordinates

Definition 15. Let c, v ∈ (0, 1). We define the scaling ratios of c and v

as σ− =
v

c
, σ+ =

v − c

1− c
.
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Remark.
c =

σ+

σ− + σ+ − 1
, v =

σ−σ+

σ− + σ+ − 1
.

Lemma 8. Let f = (c, v, η−, η+) ∈ XK. Then

(σ−(Rf), σ+(Rf)) =


(
F−(σ−)

−σ+

(1− σ+), σ+ + (1− σ+)F−(σ−)) if σ− < 1,

(F+(σ+)σ−,
σ−F+(σ+)− 1

σ− − 1
) if σ− > 1.

Proof. As auxiliary calculations, note that 1− v =
(1− σ−)(σ+ − 1)

σ− + σ+ − 1

and 1−c =
σ− − 1

σ− + σ+ − 1
Now we split the proof into two cases. First, assume

that σ− < 1, and note that this implies c > v. Then

σ−(Rf) =
v(Rf)

c(Rf)
=

F−(σ−)

(c− v)/(1− v)
=

F−(σ−)(1− σ−)(σ+ − 1)

σ+(1− σ−)

= F−(σ−)
σ+ − 1

σ+

,

σ+(Rf) =
v(Rf)− c(Rf)

1− c(Rf)
=

F−(σ−)(1− v)− (c− v)

1− c

=
(σ− − 1)(σ+ + (1− σ+)F−(σ−))

σ− − 1
= σ+ + F−(σ−)(1− σ+).

Next, assume that σ− > 1 and note that this implies c < v. Then

σ−(Rf) =
v(Rf)

c(Rf)
= F+(σ+)

v

c
= F+(σ+)

σ−σ+

σ+

= σ−F+(σ+),

σ+(Rf) =
v(Rf)− c(Rf)

1− c(Rf)
=

vF+(σ+)− c

v − c
=

σ+(σ−F+(σ+)− 1)

σ+(σ− − 1)

=
σ−F+(σ+)− 1

σ− − 1
.

3.1.3 Injectivity of Renormalization Branches

Lemma 9. Let f ∈ ΩK. Then there exist at most two f−, f+ ∈ ΩK such that
f− ∈ ΩK,−, f+ ∈ ΩK,+ and Rf− = f = Rf+.
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Proof. Let f = (c, v, ω−, ω+) ∈ ΩK and let σ−, σ+ be its associated scaling
ratios. We will first prove uniqueness of f−. To prove that R is injective
on that branch, we assume there exist c−, v− ∈ (0, 1), ω1,− ∈ R such that
c− > v−,
c = (c− − v−)/(1− v−), v = Mω1,−(v−/c−) and ω− =

∫ 1

σ−
ηω1,− . Let

σ1,− = v−/c−. By Lemma 6,

v =
σ1,−

eω−/2
,

so σ1,− is fixed, and therefore, so is ω1,−. Note that by assumption, σ1,− ∈

(0, 1). Thus, this implies v− = σ1,−c−, so we obtain that c =
c−(1− σ1,−)

1− σ1,−c−
,

which gives

c− =
c

1− (1− c)σ1,−
∈ (0, 1),

also fixing v−. Finally, we select ω1,+ such that ω1,+ + ω1,− = K, since the
total distortion is preserved by renormalization. Hence, we have found a
unique f− = (c−, v−, ω1,−, ω1,+) ∈ ΩK such that Rf− = f and
σ−(f−) < 1.
Next, we want to prove uniqueness of f+. So, we first suppose there exist

c+, v+ ∈ (0, 1), ω2,+ ∈ R such that c+ < v+, c =
c+
v+

, and for σ2,+ =
v+ − c+
1− c+

,

we additionally obtain that v = Mω2,+(σ2,+), ω+ =
∫ σ2,+

0
ηω2,+ . As a conse-

quence of Lemma 6,

v =
eω+/2 − 1

eω2,+/2 − 1
,

which fixes ω2,+, and therefore also σ2,+. By assumption, ω2,+ is assumed to
exist, so eω2,+/2 − 1 > −1. Solving the equations

c =
c+
v+

,
v+ − c+
1− c+

= σ2,+

simultaneously for c+ and v+ gives

v+ =
σ2,+

1− (1− σ2,+)c
∈ (0, 1), c+ = cv+.

Finally, we let f+ = (c+, v+, ω2,−, ω2,+) ∈ ΩK by setting ω2,−+ω2,+ = K. By
the preservation of the total distortion, Rf+ = f , and since f+ is uniquely
defined, the proof is complete.

Note that we restrict ourself to the Möbius case for this argument, since
the proof depends on the precise formulas for Möbius diffeomorphisms.
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Lemma 10. Let f = (c, v, ω−, ω+) ∈ ΩK. Then
1) There exists f− ∈ ΩK,− such that Rf− = f and σ−(f−) < 1 if and only if
veω−/2 < 1.
2) There exists f+ ∈ ΩK,+ such that Rf+ = f and σ−(f+) > 1 if and only if
eω+/2 > 1− v.

Proof. 1) Assume that f− = (c−, v−, ω1,−, ω1,+) has scaling ratio σ1,− and
satisfies Rf− = f . Then, by the proof of the previous lemma, if c− > v−,
it follows that σ1,− = veω−/2. Thus, σ1,− ∈ (0, 1) if and only if veω−/2 < 1,
which was what we wanted.
2) Assume that f+ = (c,+, v+, ω2,−, ω2,+) has scaling ratios σ2,−, σ2,+. By
the proof of the previous lemma, if σ2,− > 1, it follows that Rf+ = f if and

only if −1 < eω2,+/2 − 1 =
eω+/2 − 1

v
, i.e., eω+/2 > 1− v. This completes the

proof.

Remark. If ω− and ω+ have the same sign, then any f ∈ Ω with weights
(ω−, ω+) has a preimage in Ω. The same holds true if ω− ≤ 0, ω+ ≥ 0.

Möbius Symmetry. Let K > 0. Then ΩK is isomorphic to Ω−K.

Proof. The idea of Möbius symmetry involves reversing the roles of 0 and
1 via the involution j : x 7→ 1 − x. Using this blueprint, we obtain a map
α : ΩK → Ω−K such that

α(c, v, ω−, ω+) = (1− c, 1− v,−ω+,−ω−).

The sign change of the weights comes about because under conjugation by
j,

j ◦Mω ◦ j(x) = 1−Mω(1− x) = M−ω(x).

By Möbius symmetry, we can often restrict proofs to the case when K >
0. It also reverses the roles of the branches, so it is also clear that the
renormalization operators on ΩK,− and ΩK,+ also exhibit symmetry.

3.2 Temporal Structure of Distortion

3.2.1 Introduction to Decompositions

We now consider potential extensions of renormalization. One way of do-
ing this is by consider spaces of decompositions, first developed by Martens
[11] in the setting of unimodal maps. By using decompositions, extra data
associated to the dynamical partition of f can be preserved.
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Definition 16. Let T denote the set of dyadic rationals in (0, 1]. A non-
linearity decomposition is a function η = (ητ )τ∈T into the space of C0

nonlinearities such that
∑

τ∈T ||ητ ||0 < ∞. For every n ∈ N, define

Fn(η) = F1 ◦ F(2n−1)/2n ◦ ... ◦ F2−n ∈ Diff2([0, 1]),

where Fτ = Fητ , and let F (η) = limn→∞ Fn(η) ∈ Diff2([0, 1]), if the limit
exists.

Definition 17. If η1, η2 are nonlinearity decompositions, then we define
η1⋆η2 = (ητ )τ∈T to be the nonlinearity decomposition given by the formula

ητ =

{
η1,2τ if τ ≤ 1/2,

η2,2τ−1 if τ > 1/2.

Remark. For all n ∈ N,

Fn(η1 ⋆ η2) = Fn−1(η2) ◦ Fn−1(η1).

3.2.2 Decomposition of Weights

Definition 18. A weight decomposition is a function ω = (ωτ )τ∈T into
the space of real numbers such that

∑
τ∈T |ωτ | < ∞.

Remark. If ω is a weight decomposition, we associate to it the nonlinearity
decomposition η such that ητ = ηωτ is Möbius.

Definition 19. For any τ0 ∈ T and any weight decomposition ω, we define
ω(0,τ0] to be the restriction ω̃ such that

ω̃τ =

{
ωτ if τ ≤ τ0,

0 if τ > τ0.

Definition 20. Let A denote the sigma-algebra on (0, 1] generated by the
half open intervals (0, τ ] with τ ∈ T . For any weight decomposition ω, we
define µω as the signed atomic Borel measure on A such that for all τ ∈ T ,

µω({τ}) = ωτ .

Remark. µω(0, τ0] =
∑

τ≤τ0
ωτ .
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For any I ⊆ [0, 1] and any nonlinearity decomposition η, we can define
the zoom decomposition ZIη in a manner that preserves the property

F (ZIη) = ZIF (η).

Pointwise, (ZIη)τ0 = ZI(τ0)ητ0 , where I(τ0) depends on |I| and
∑

τ<τ0
||ητ ||0.

Using zoom decompositions and concatenations, one can define renormaliza-
tion on a lift of X where the nonlinearity coordinates η+, η− are replaced by
nonlinearity decompositions η−, η+ that satisfy

F± = F (η±).

In an analogous manner, we can define renormalization on a lift of Ω where
the weights ω− and ω+ are replaced by weight decompositions ω−, ω+ such
that ∑

τ∈T

ω±,τ = ω±.

Because of the additivity of weights under composition, it turns out that it
is natural in this setting to analyze the measures µω± , since for any τ ∈ T
and any I ⊆ [0, 1],

(µZIω)(0, τ ] =

∫
I

ηµω(0,τ ].

Since renormalization acts by zooming and concatenating, and zooming con-
tracts supτ∈T |ωτ | it can be shown that in the lift of Ω, the measures µω±

converge under renormalization to non-atomic measures. This motivates us
to try and extend the definitions of renormalization to this larger measure
space.

3.3 Distortion Measures

3.3.1 Definition of Distortion and Spacetime Measures

Definition 21. A distortion measure is a signed Borel measure on A,
equipped with the distortion norm

||µ|| = sup
τ∈T

|µ(0, τ ]|.

Let M = {µ : ||µ|| < ∞} denote the space of distortion measures, equipped
with the distortion norm.
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The distortion norm is different from the usual total variation norm for
signed measures, since its magnitude is only taken over the generating in-
tervals for the sigma algebra A. However, it still defines a norm, since the
scaling property and triangle inequality are easily seen to be satisfied, while
||µ|| = 0 implies that µ(0, τ ] = 0 for all τ ∈ T , from which it follows that the
same property holds for all intervals (τ1, τ2] with endpoints in T , and thus
µ(A) = 0 on any countable union or countable intersection A of such sets.

Definition 22. A spacetime measure is a pair (µ, (ητ )τ∈T ) composed of
a distortion measure µ and a function (ητ )τ∈T into the space of L1 nonlin-
earities such that ∫ 1

0

ητ = µ(0, τ ], sup
τ∈T

∫ 1

0

|ητ | < ∞.

We refer to ||(µ, (ητ )τ∈T )|| = supτ∈T
∫ 1

0
|ητ | as the spacetime norm. We

will denote the space of spacetime measures endowed with the spacetime norm
by M.

The nonlinearities which make up a spacetime measure do not form a
nonlinearity decomposition, since for example

∑
τ∈T ||ητ ||0 could be infinite.

However, when it makes sense, for a nonlinearity decomposition η0, one could
define a spacetime measure (µ, (ητ )τ∈T ) such that ητ = ηF (η0,(0,τ ]), where η(0,τ ]
is defined analogously to the weight decomposition case. In this case,

η1 = ηF (η0).

Remark. If (µ, (ητ )τ∈T ) ∈ M, then

||(µ, (ητ )τ∈T )|| ≥ ||µ||.

3.3.2 Operations on Spacetime Measures

Definition 23. Let (µ, (ητ )τ∈T ) ∈ M. For any I ⊆ [0, 1], we define the
zoom operator ZI : M → M by the definition

(ZI(µ, (ητ )τ∈T )) = (ZIµ, (ZIητ )τ∈T ),

where ZI denotes the zoom operator on nonlinearities, and

(ZIµ)(0, τ ] =

∫
I

ητ .
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Definition 24. Let (µ1, (η1,τ )τ∈T ), (µ2, (η2,τ )τ∈T ) be spacetime measures. We
define the concatenation operator ⋆ : M×M → M as follows:

(µ1, (η1,τ )τ∈T ) ⋆ (µ2, (η2,τ )τ∈T ) = (µ1 ⋆ µ2, ((η1 ⋆ η2)τ )τ∈T ),

where

(η1 ⋆ η2)τ =

{
η1,2τ if τ ≤ 1/2,

ηFη2,2τ−1◦Fη1,1
if τ > 1/2,

(µ1 ⋆ µ2)(0, τ ] =

{
µ1(0, 2τ ] if τ ≤ 1/2,

µ1(0, 1] + µ2(0, 2τ − 1] if τ > 1/2.

3.4 Renormalization of Distortion Measures

3.4.1 Definition of Möbius Measures

Definition 25. The spacetime measure (µ, (ητ )τ∈T ) is Möbius if for every
τ ∈ T , ητ is a Möbius nonlinearity.

Proposition 3 (Möbius Identification). If (µ, (ητ )τ∈T ) is Möbius, then

||(µ, (ητ )τ∈T )|| = ||µ||,

and we can identify M with the space of Möbius measures.

Proof. Suppose that (µ, (ητ )τ∈T ) is Möbius. As Möbius nonlinearities are

either strictly positive or strictly negative,
∫ 1

0
|ητ | = |

∫ 1

0
ητ | = |µ(0, τ ]|. Thus,

||(µ, (ητ )τ∈T )|| = sup
τ∈T

∫ 1

0

|ητ | = sup
τ∈T

|µ(0, τ ]| = ||µ||.

It follows that we can embed M into the space of spacetime measures via
the identification µ 7→ (µ, (ηµ(0,τ ])τ∈T ).

Lemma 11. ZI : M → M and ⋆ : M×M → M extend as operators via
the Möbius Identification, with

(ZIµ)(0, τ ] =

∫
I

ηµ(0,τ ], (µ1⋆µ2)(0, τ ] =

{
µ1(0, 2τ ] if τ ≤ 1/2,

µ1(0, 1] + µ2(0, 2τ − 1] if τ > 1/2.

Proof. This is a direct consequence of the definition of ZI and ⋆ on M.
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Note that the Möbius Identification allows us to view distortion measures
as generating Möbius flows on [0, 1], since for any distortion measure µ we
can define Fµ : T × [0, 1] → [0, 1],

Fµ(τ, x) = Mµ(0,τ ](x).

From the perspective of measures, the Möbius flows form the completion of
the space of Möbius decompositions.

3.4.2 The Space of Distortion Measure Pairs

Definition 26. Let M × M denote the space of distortion measure pairs,
endowed with the norm ||(µ−, µ+)|| = max{||µ−||, ||µ+||}.

Lemma 12. M×M is a Banach space.

Proof. It suffices to prove completeness of M × M. Let (µn,−, µn,+) be a
Cauchy sequence of distortion measure pairs. Then for any τ ∈ T ,
(µn,−(0, τ ]), (µn,+(0, τ ]) are Cauchy sequences of real numbers, so they con-
verge in R. We then define the measures µ−, µ+ on A via the definition

µ−(0, τ ] = lim
n→∞

µn,−(0, τ ], µ+(0, τ ] = lim
n→∞

µn,+(0, τ ].

Then for any ϵ > 0, there exists n ∈ N sufficiently large so that for all
τ ∈ T , |(µ− − µn,−)(0, τ ]|, |(µ+ − µn,+)(0, τ ]| < ϵ, so ||(µ−, µ+)|| is uniformly
bounded. Therefore, (µ−, µ+) ∈ M × M, which completes the proof of
completeness.

3.4.3 The Renormalization Operators for Distortion
Measure Pairs

Now we have constructed a space M×M of distortion measure pairs, and we
understand how to act on it, via zooming and concatenation. What remains
is to define renormalization in a way that is consistent with its definition on
Ω. The first step is to define a projection operator that will allow us to build
the lift of Ω.

Definition 27. Let π : M×M → R2 denote the canonical projection

π(µ−, µ+) = (µ−(0, 1], µ+(0, 1]).
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Next we need to check that the canonical projection commutes with
the zoom and concatenation operators on M × M, but that follows di-
rectly from their definition. As a result, we can look at the formulas for
(ω−(Rf), ω+(Rf)) and use them as a blueprint. Note that the choice of
renormalization for f ∈ Ω depends only on the sign of ln(σ−) and one scaling
ratio, so we will have to define two separate operators which both depend on
σ ∈ (0, 1). Recalling that

(ω−(Rf), ω+(Rf)) =

{
(
∫ 1

σ−
ηω− , ω+ +

∫ σ−
0

ηω−) if σ− < 1,

(ω− +
∫ 1

σ+
ηω+ ,

∫ σ+

0
ηω+) if σ− > 1,

we define:

Definition 28. Let σ ∈ (0, 1) and let (µ−, µ+) ∈ M × M. We define the
renormalization operators Rσ

± : M×M ⟳ by

Rσ
−(µ−, µ+) = (Z[σ,1]µ−, µ+ ⋆ Z[0,σ]µ−),

Rσ
+(µ−, µ+) = (µ− ⋆ Z[σ,1]µ+, Z[0,σ]µ+).
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Chapter 4

Contraction of Distortion
Measure Fibers

4.1 Fiber Structure of Distortion Measures

Definition 29. For any p = (p−, p+) ∈ R2 we define the slice (M ×
M)p ∈ M × M to be the set of distortion measure pairs (µ−, µ+) such
that π(µ−, µ+) = p. For K ∈ R, we define

(M×M)K = {(M×M)p : p− + p+ = K}.

Remark. The slices (M×M)p, p ∈ R2 form a fibration of M×M. Any
renormalization operator Rσ

z preserves this fibration, as well as (M×M)K.

Definition 30. Let f ∈ Ω. We define z(f) = sign(ln(σ−(f))). We let
s : Ω → (0, 1)× {+,−} denote the mapping

s(f) = (σz(f)(f), z(f)).

Remark. Let Y = (0, 1)×{−,+}×M×M. Then we have a commutative
diagram

Y Y

Ω Ω

Rσ
z

ππ−1

s

R
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4.2 Distortion of Renormalized Möbius Mea-

sure Fibers

4.2.1 The Zoom Contraction Law

Proposition 4 (Zoom Contraction Law). Let L > 0 and suppose that µ, ν ∈
M satisfy ||µ||, ||ν|| < L. Then for any I compactly contained in [0, 1], there
exists κ < 1 depending only on L and |I| such that

||ZIµ− ZIν|| < κ||µ− ν||.

Proof. Assume that L > 0 and that µ, ν ∈ M satisfy ||µ||, ||ν|| < L. Let
I ⊆ [0, 1], I ̸= [0, 1]. For any τ ∈ T , note that by part 2) of Lemma 5,

(ZIµ− ZIν)(0, τ ] =

∫
I

ηµ(0,τ ] − ην(0,τ ] =

∫
Mν(0,τ ](I)

η(µ−ν)(0,τ ],

where Mν(0,τ ](I) has uniformly bounded size depending on |I| and L. Now
observe that for any x, y ∈ (0, 1) and any ω ∈ R, | ln(ηω(x)/ηω(y))| ≤ |ω|/2.
Since |(µ− ν)(0, τ ]| < 2L, it follows that∫

Mν(0,τ ](I)
η(µ−ν)(0,τ ]∫ 1

0
η(µ−ν)(0,τ ]

<
eL|Mν(0,τ ](I)|

eL|Mν(0,τ ](I)|+ (1− |Mν(0,τ ](I)|)
:= κ,

independent of τ . Thus, there exists κ < 1 depending only on L, |I| such
that

||ZIµ− ZIν|| < κ||µ− ν||.

4.2.2 The Concatenation Lemma

Lemma 13 (Concatenation Lemma). Let µ, ν ∈ M. Then

||µ ⋆ ν|| ≤ max{||µ||, |µ(0, 1]|+ ||ν||}.

Proof. Assume that µ, ν ∈ M. Then by definition, for any τ ∈ T ,

(µ ⋆ ν)(0, τ ] =

{
µ(0, 2τ ] if τ ≤ 1/2,

µ(0, 1] + ν(0, 2τ − 1] if τ > 1/2.
.

In either case, it is apparent that |(µ ⋆ ν)(0, τ ]| ≤ max{||µ||, |µ(0, 1]|+ ||ν||},
which after taking a supremum over τ ∈ T completes the proof.
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4.2.3 Basic Contraction Principle

Proposition 5. Let L > 0 and suppose that (µ−, µ+), (ν−, ν+) ∈ M × M
satisfy ||(µ−, µ+)||, ||(ν−, ν+)|| < L, (µ−, µ+), (ν−, ν+) ∈ (M × M)p for p ∈
R2. Then, for any renormalization operator Rσ

z ,

||Rσ
z (µ−, µ+)−Rσ

z (ν−, ν+)|| ≤ ||(µ−, µ+)− (ν−, ν+)||,

and additionally, if z1, z2 have opposite sign, and δ ∈ (0, 1/2) exists such that
σ1, σ2 ∈ (δ, 1 − δ), then there exists κ < 1 depending only on L and δ such
that

||(Rσ2
z2

◦ Rσ1
z1
)(µ−, µ+)− (Rσ2

z2
◦ Rσ1

z1
)(ν−, ν+)|| < κ||(µ−, µ+)− (ν−, ν+)||.

Proof. Let L > 0, (µ−, µ+), (ν−, ν+) ∈ M×M satisfy

||(µ−, µ+)||, ||(ν−, ν+)|| < L, π(µ−, µ+) = π(ν−, ν+).

Let Rσ
z be a renormalization operator. Without loss of generality, suppose

that z = −. We will consider both branches of Rσ
−(µ−, µ+) − Rσ

−(ν−, ν+)
separately. On the − branch, Rσ

− acts by Z[σ,1], so by the Zoom Contraction
Law, there exists κ− depending only on 1− σ and L such that the distance
between the − branches of Rσ

−(µ−, µ+) and Rσ
−(ν−, ν+) is contracted by a

factor of κ−. For the + branch, we can exploit that

(µ+ ⋆ Z[0,σ]µ−)− (ν+ ⋆ Z[0,σ]ν−) = (µ+ − ν+) ⋆ (Z[0,σ]µ− − Z[0,σ]ν−),

so as π(µ−, µ+) = π(ν−, ν+), (µ+ − ν+)(0, 1] = 0, it follows from the Con-
catenation Lemma and the Zoom Contraction Law that there exists κ+ < 1
depending only on L and σ such that
||(µ+ − ν+) ⋆ (Z[0,σ]µ− − Z[0,σ]ν−)|| ≤ max{||µ+ − ν+||, κ+||µ− − ν−||}. By
setting κ = max{κ−, κ+}, we obtain that

||Rσ
−(µ−, µ+)−Rσ

−(ν−, ν+)|| ≤ max{||µ+ − ν+||, κ||µ− − ν−||},

where κ depends on σ and L. By symmetry,

||Rσ
+(µ−, µ+)−Rσ

+(ν−, ν+)|| ≤ max{||µ− − ν−||, κ||µ+ − ν+||}

for the same κ < 1. This completes the proof of the first statement. Now
suppose that that δ ∈ (0, 1/2) exists such that σ1, σ2 ∈ (δ, 1− δ). Note that
||Rσ1

− (µ−, µ+)||, ||Rσ1
− (ν−, ν+)|| < 2L and π(Rσ1

− (µ−, µ+)) = π(Rσ1
− (ν−, ν+)).

Hence, by taking a larger κ if necessary to account for the 2L discrepancy,
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we apply the proof of the previous statement twice to show that there exists
κ < 1 depending only on δ and L such that

||(Rσ2
+ ◦ Rσ1

− )(µ−, µ+)− (Rσ2
+ ◦ Rσ1

− )(ν−, ν+)|| ≤
max{||Z[σ1,1]µ− − Z[σ1,1]ν−||, κ||(µ+ − ν+) ⋆ (Z[0,σ1]µ− − Z[0,σ1]ν−)||}

≤ κ||(µ−, µ+)− (ν−, ν+)||.

By symmetry, the same inequality holds for Rσ2
− ◦Rσ1

+ , completing the proof.

4.3 Asymptotics of Renormalization

4.3.1 Definition of Renormalization Schemes

Definition 31. Let (σ, z) ∈ (0, 1)N × {+,−}N. Such sequence pairs shall be
referred to as renormalization schemes. For any n ∈ N, we define the
operator Rn(σ, z) : M×M ⟳ to be

Rn(σ, z) = Rσ1
z1

◦ ... ◦ Rσn
zn .

4.3.2 The Fast Renormalization Subsequence

Definition 32. For any renormalization scheme (σ, z) we define the fast
renormalization subsequence of (σ, z) to be the maximal subsequence
(σnk

, znk
) of (σ, z) such that znk

̸= znk+1. For every k ∈ N, we define the
operator Rk

fast(σ, z) = Rnk(σ, z) to be the k-th fast renormalization op-
erator associated to (σ, z).

4.3.3 δ-bounded Schemes and their Meaning

Definition 33. For any δ ∈ (0, 1/2), we say that a renormalization scheme
(σ, z) is δ-bounded if the following three conditions are satisfied:
1) For the fast renormalization subsequence (σnk

, znk
),

znk
= − ⇒ σnk+1 < 1− δ,

znk
= + ⇒ σnk+1 > δ.

2)

zn = − and σn > 1− δ ⇒ σn−1 > 1− δ or zn−1 = +,

zn = + and σn < δ ⇒ σn−1 < δ or zn−1 = −.

3) For every i, j ∈ N such that σi < δ, σj > 1− δ, there exists k ∈ N between
i and j such that σk ∈ (δ, 1− δ).
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To understand the basic idea behind δ-bounded schemes, keep in mind
that the Basic Contraction Principle is being extended to account for un-
bounded σ. Note that renormalization acts by a series of concatenations
and zooms. In order to create a contraction, each piece of a renormalized
distortion measure pair must be acted upon by a uniformly bounded zoom
operator. Condition 1) guarantees that when you apply a fast renormal-
ization operator to a distortion measure pair (µ−, µ+), the branch that is
cut is acted upon by a bounded zoom operator. The other conditions make
sure that when an unbounded proportion of mass is transferred from one
branch to the other (which happens when σ < δ or σ > 1 − δ, depending
on the sign of the operator), the resulting piece is cut during the next fast
renormalization by a zoom operator of bounded size. As it takes two fast
renormalizations to cut both distortion measures, one observes contraction
in at most three steps of fast renormalization.

4.3.4 Contraction Theorem for δ-bounded Schemes

Lemma 14. Let L > 0, and let (σ, z) be a renormalization scheme. Then if
||(µ−, µ+)|| < L, it follows that ||Rn(σ, z)(µ−, µ+)|| < 2L for every n ∈ N.

Proof. Let L > 0, and let Rσ
z be any signed renormalization operator. Let

(µ−, µ+) ∈ M × M and suppose that ||(µ−, µ+)|| < L. We define a new
norm || · ||S such that

||(µ−, µ+)||S = max{||µ−||− + ||µ+||−, ||µ−||+ + ||µ+||+},

where ||µ||− = max{0,− infτ∈T µ(0, τ ]}, ||µ||+ = max{0, supτ∈T µ(0, τ ]}.
First, observe that ||(µ−, µ+)|| ≤ ||(µ−, µ+)||S, since

||µ|| = max{||µ||−, ||µ||+}.

Now, we claim that ||Rσ
z (µ−, µ+)||S ≤ ||(µ−, µ+)||S. We start by observing

that for either choice z of sign and any I ⊆ [0, 1], ||ZIµ||z = |
∫
I
η||µ||z |. Thus,

for any σ ∈ (0, 1), ||Z[0,σ]µ||z + ||Z[σ,1]µ||z = ||µ||z. Additionally,
||µ ⋆ ν||z ≤ ||µ||z + ||ν||z. As all signed renormalization operators consist
of concatenations and complementary zooms, it follows that Rσ

z cannot ex-
pand || · ||S. Since ||(µ−, µ+)||S < 2L, and this quantity is not expanded by
Rn(σ, z), we obtain that

||Rn(σ, z)(µ−, µ+)|| ≤ ||Rn(σ, z)(µ−, µ+)||S ≤ ||(µ−, µ+)||S < 2L,

which was what we wanted.
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Theorem 1 (Contraction Theorem). Let (σ, z) be a δ-bounded sequence.
Then for any L > 0, there exists κ < 1 depending only on δ and L such that
for every (µ−, µ+), (ν−, ν+) ∈ M×M that satisfies

||(µ−, µ+)||, ||(ν−, ν+)|| < L, (µ−, µ+), (ν−, ν+) ∈ (M×M)p

for p ∈ R2,

||R3
fast(µ−, µ+)−R3

fast(ν−, ν+)|| < κ||(µ−, µ+)− (ν−, ν+)||.

Proof. Suppose that (σ, z) is δ-bounded and let L > 0. Now let
(µ−, µ+), (ν−, ν+) be distortion measure pairs such that

||(µ−, µ+)||, (ν−, ν+)|| < L

and π(µ−, µ+) = π(ν−, ν+) = p ∈ R2. Let (σnk
, znk

) be the fast renor-
malization subsequence of (σ, z). Without loss of generality, assume that
zn1 = −, zn2 = +, zn3 = −. For k ∈ [1, 3], let (µk,−, µk+), (νk,−, νk,+) denote
the distortion measure pairs attained by applying the operators composing
R3

fast(σ, z) in their correct order, i.e.,

(µ3,−, µ3,+) = R3
fast(σ, z)(µ−, µ+) = Rk

fast(σ, z)(µk,−, µk,+),

(ν3,−, ν3,+) = R3
fast(σ, z)(ν−, ν+) = Rk

fast(σ, z)(νk,−, νk,+).

Our goal is to prove that there exists κ < 1 depending only on L and δ
such that ||(µ3,− − ν3,−, µ3,+ − ν3,+)|| < κ||(µ− − ν−, µ+ − ν+)||. By Lemma
14, we know that ||(µk,−, µk,+)||, ||(νk,−, νk,+)|| < 2L for all k ∈ [1, 3]. We
begin by estimating ||(µ2,− − ν2,−, µ2,+ − ν2,+)||. Consider the scaling ratios
σn2+1, ..., σn3 , for which the corresponding z are all negative by assumption.
From the definition of δ-boundedness, σn2+1 ≥ δ, since zn2 = + and none of
σn2+2, ..., σn3 lie in (1−δ, 1). Now we split the proof into two cases, depending
on whether σn2+1 > 1− δ.

First, suppose that σn2+1 > 1 − δ. By repeated application of the first
statement of the Basic Contraction Principle and the Zoom Contraction Law,
there exists κ2 < 1 depending only on 1 − δ such that ||µ2,− − ν2,−|| <
κ2||µ−−ν−|| and ||µ2,+−ν2,+|| < max{||µ+−ν+||, ||µ−−ν−||}. Now consider
the scaling ratios σn1+1, ..., σn2 , for which the corresponding z are all positive.
Since σn2+1 > 1 − δ, by the definition of δ-boundedness, there exists k ∈
[n1 + 1, n2] such that σk ∈ (δ, 1 − δ) and σi > δ for i ∈ [k, n2]. Now we
apply the renormalization operator Rσk

+ ◦ ...◦Rσn2
+ to (µ2,−, µ2,+), (ν2,−, ν2,+).

Observe that this operator acts as a composition of zooms on the + branch
and applies concatenations to the − branch by pieces of the old + branch
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acted upon by the zoom operators Z[σi,1] for i ∈ [k, n2]. We claim there exists
κ1 < 1 depending only on δ and L such that

||(Rσk
+ ◦ ... ◦ Rσn2

+ )(µ2,−, µ2,+)− (Rσk
+ ◦ ... ◦ Rσn2

+ )(ν2,−, ν2,+)|| <
max{κ1||µ2,+ − ν2,+||, ||µ2,− − ν2,−||}.

The claim holds true for the + branch because σk ∈ (δ, 1 − δ) while as
the pieces concatenated to the − branch are acted upon by zoom operators
with zoom interval sizes bounded by 1 − δ, they also contract by a definite
factor depending only on δ and L. Moreover, since renormalization operators
maps slices to slices, we can utilize that the distortion norm of a measure
composed of concatenations of measures whose mass over (0, 1] is 0 is the
max of the distortion norms of its pieces. This completes the proof of the
claim. Now, we apply the first statement of the Basic Contraction Principle
repeatedly to Rσn1+1

+ ◦ ...◦Rσi−1

+ to obtain via nonexpansion of the distortion
norm that

||(µ1,− − ν1,−, µ1,+ − ν1,+)|| < max{||µ2,− − ν2,−||, κ1||µ2,+ − ν2,+||}
< max{κ1, κ2}||(µ− − ν−, µ+ − ν+)||.

Since Rfast(σ, z) does not expand the distortion norm, it follows by taking
κ = max{κ1, κ2} that

||(µ3,− − ν3,−, µ3,+ − ν3,+)|| ≤ ||(µ1,− − ν1,−, µ1,+ − ν1,+)||
< κ||(µ− − ν−, µ+ − ν+)||,

which was what we wanted.
Note that the argument actually shows that if zn3 = − and σn2+1 > 1−δ,

then we observe contraction in two fast steps. By symmetry, the same holds
for the same κ < 1 if zn3 = + and σn2+1 < δ. Now we assume σn2+1 ∈
(δ, 1− δ). Again, we can choose κ2 < 1 depending only on δ and L so that

||µ2,− − ν2,−|| < κ2||µ− − ν−||, ||µ2,+ − ν2,+|| ≤ ||(µ− − ν−, µ+ − ν+)||.

Now consider the scaling ratios σn1+1, ..., σn2 . If there exists k ∈ [n1 + 1, n2]
such that σk ∈ (δ, 1 − δ), we apply the proof of the previous case to show
that ||(µ1,−− ν1,−, µ1,+− ν1,+)|| < κ||(µ−− ν−, µ+− ν+)|| for the same κ < 1
as before. Otherwise, σn1+1 < δ, which by symmetry implies that R2

fast(σ, z)
acts as a contraction, since our argument could then be shown to work in
two fast steps. Hence,

||R3
fast(µ−, µ+)−R3

fast(ν−, ν+)|| < κ||(µ−, µ+)− (ν−, ν+)||.

By symmetry, the same argument holds if zn3 = + and σn2+1 ∈ (δ, 1 − δ),
which completes the proof.
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Chapter 5

Distortion Measures for the
Renormalization Attractor

5.1 Introduction

To summarize what we know, we have constructed the space of distortion
measure pairs M×M and have defined renormalization on them in such a
way that it commutes with the canonical projection. Now, the main task is to
lift Ω by replacing the weights (ω−, ω+) by distortion measure pairs (µ−, µ+).
If f ∈ ΩK is one such point, then there exists a slice of (M×M)K lying above
it. Moreover, the spatial coordinates of f define a unique renormalization
operator Rσ

z which acts on the slice above f . If AK denotes the attractor for
renormalization on ΩK , then we want to construct an embedding
i : AK → M×M which is R-invariant.

5.2 Bounded Renormalization Schemes

5.2.1 Definition of Backwards Sequences and their As-
sociated Schemes

Definition 34. Let f ∈ ΩK, and suppose that ω−(f), ω+(f) both have the
same sign as K. For each z ∈ {+,−}N, we define the sequence f

z
to

be the unique backwards sequence (fn)n∈N of preimages of f in ΩK such
that sign(ln(σ−(fn))) = zn, and Rfn = fn−1, if it exists. We refer to
(σzn(fn), zn)n∈N as the renormalization scheme of f

z
.

Proposition 6. Let f = (c, v, ω−, ω+) ∈ ΩK for K ̸= 0. If ω−, ω+ have the
same sign, then there exists a unique word z for which the weights of f

z
all
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have the same sign.

Proof. Assume without loss of generality that K > 0 and suppose that the
weights of f = (c, v, ω−, ω+) ∈ ΩK are both positive. It will suffice to show
that f has a unique inverse for which the weights are bounded in magnitude
by K. First, suppose that f has no inverse in Ω−, i.e., ve

ω−/2 > 1. Let ω̃+

denote the + weight of the preimage of f in Ω+. By Lemma 6,

eω+/2 − 1 ≥ e−ω−/2(eω̃+/2 − 1),

hence ω̃+ − ω− ≤ ω+, i.e., ω̃+ < K, which proves that the weights of the
inverse of f in Ω+ are both positive.
Next, suppose that ω̃+ > K. This implies by our previous statement that f
has an inverse in Ω−. Let σ̃− denote the scaling ratio for this inverse. Since

v =
σ̃−

eω−/2
by Lemma 6, we obtain that

eω+/2 − 1

v
> eK/2 − 1

⇔ eK/2 − eω−/2 > σ̃−(e
K/2 − 1)

⇔ eK/2(1− σ̃−) > eω−/2 − σ̃−

⇔ eK/2(1− σ̃−) + σ̃− > eω−/2.

But if ω̃− denotes the − weight of the preimage of f in Ω−, then we know
from Lemma 6 that eω−/2 = eω̃−/2(1− σ̃−) + σ̃−,so it follows that

ω̃+ > K ⇔ ω̃− < K.

By flipping the inequality, we obtain in a similar manner that

ω̃− > K ⇔ ω̃+ < K.

This completes the proof for K > 0, while if K < 0, the argument follows
from the previous case by Möbius symmetry.

As a result of this proposition, for bounded sequences of preimages, the
sequence f is uniquely defined and can be referred to without reference to z.

Remark. If f ∈ ΩK has a renormalization scheme, then it extends to M×M
for the same (σ, z).
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5.2.2 Hierarchy of Bounded Sequence Spaces and their
Properties

Definition 35. For each K ∈ R and each δ ∈ (0, 1/2), we define WK,δ to
be the set of all backwards sequences f

z
∈ ΩN

K such that firstly, the weights

ω−(fn), ω+(fn) remain uniformly bounded for all n ∈ N, and secondly, the
renormalization scheme of f

z
is δ-bounded. We then define

WK = ∪δ∈(0,1/2)WK,δ, and W = ⊔K∈RWK.

Proposition 7. Let K ̸= 0. For each f ∈ ΩK contained in the attractor of
renormalization, there exists a backwards sequence f

z
∈ WK.

Proof. Let K ̸= 0, and suppose without loss of generality that K > 0. Sup-
pose that f ∈ ΩK lies in the attractor of renormalization. Then the weights
ω−(f), ω+(f) are both positive, so by Proposition 6 there exists a unique
sequence f of preimages of f whose weights are all uniformly bounded. Let
(σ, z) be the renormalization scheme associated to f . Using a well known fact
from one-dimensional dynamics, we claim that the fast renormalizations fnk

associated to the fast renormalization subsequence have bounded distortion.
We will now clarify what that entails.

Recall that the branches M−,M+ of a Möbius circle map f are normal-
ized maps. The original maps are linear fractional transformations f−, f+
whose domains and ranges depend on the spatial coordinates of f . For any

C1 diffeomorphism g : I → g(I), one can define its slope s(g) =
|g(I)|
|I|

, and

with the slope, one obtains the formula

g′(y) = s(g)Ng′(
y − a

b− a
),

where I = [a, b]. The slopes of f−, f+ are given by the formulas

s− =
1− v

c
=

(1− σ+)(σ− − 1)

σ+

, s+ =
v

1− c
=

σ−σ+

σ− − 1
.

As a consequence of bounded distortion, there exists a constant C > 1 such
that the derivatives f ′

nk,−, f
′
nk,+

are bounded between 1/C and C. As the
weights ω±(fnk

) are uniformly bounded by K, this entails that the slopes
s−(fnk

), s+(fnk
) are uniformly bounded.

We will now present the formulas for the renormalization of slopes:

(Rs−,Rs+) =


(s−

1−Mω−(σ−)

1− σ−
, s+s−

Mω−(σ−)

σ−
) if σ− < 1,

(s−s+
1−Mω+(σ+)

1− σ+

, s+
Mω+(σ+)

σ+

) if σ− > 1.
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Since for ω > 0, Mω(σ) ≤ σ, we see that under every renormalization, s− is
multiplied by a term greater than 1, and s+ is multiplied by a term less than
1. This can be expanded upon. If zn = −, then we can tell that s−(fn) is
uniformly bounded, while if zn = +, then the same holds true for s+(fn).
Thus, assume that there exists a uniform C > 1 such that the slopes s±(fnk

)
are bounded between 1/C and C. We will now construct a sufficiently small
δ > 0 so that (σ, z) is δ-bounded.

1) Suppose that zn = −. Then s−(fn) < C, i.e., (σn − 1)
1− σ+(fn)

σ+(fn)
< C.

Then by Lemma 8,

σ−(fn−1) = Mω−(fn)(σn)
1− σ+(fn)

−σ+(fn)
.

It follows since ω−(fn) > 0 that one can find δ1 > 0 small enough that if
σn < δ1, then

σ−(fn−1) <
δ1C

1− δ1
< 1− δ1.

Using in addition that s−(fn) > 1/C and ω−(fn) < K, we can find δ2 > 0
sufficiently small that if σn > 1− δ2, then

σ−(fn−1) >
1− δ2

Cδ2(δ2eK/2 + 1− δ2)
> 1.

In this case, by making δ2 even smaller, we obtain by Lemma 8,

σ+(fn−1) = σ+(fn) + (1− σ+)Mω−(fn)(σn))

> (1− σ+(fn))(−Cδ2 +
1− δ2

δ2eK/2 + 1− δ2
)

> δ2.

For δ− = min{δ1, δ2}, we obtain that δ−-boundedness cannot be broken for
all n such that zn = −.
2) Suppose that zn = +. Then s+(fn) is uniformly bounded, i.e.,

1/C < σn
σ−(fn)

σ−(fn)− 1
< C.

Our first goal is to find δ3 > 0 sufficiently small that σn > 1 − δ3 implies
σ+(fn−1) > δ3. By Lemma 8,

σ+(fn−1) =
σ−(fn)Mω+(fn)(σn)− 1

σ−(fn)− 1
= 1−

σ−(fn)(1−Mω+(fn)(σn)

σ−(fn)− 1

> 1−
(1−Mω+(fn)(σn))C

σn

.
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As ω+(fn) < K, then the claim follows from the final inequality.
Next, we find δ4 > 0 sufficiently small that σn < δ4 implies σ+(fn−1) < δ4 or
σ−(fn−1) < 1− δ4. Note that since ω+(fn) > 0,

σ+(fn−1) = 1−
(1−Mω+(fn)(σn))σ−(fn))

σ−(fn)− 1
< σn,

which proves our first claim. For the second claim, note that

σ−(fn−1) < Cσn(σ−(fn)− 1),

so it suffices to check that for σn sufficiently small, σ−(fn) is uniformly
bounded. Note that s−(fn−1) < C, so as ω+(fn) > 0, by the renormalization
formulas for slopes,

C > s−(fn−1) > s−(fn)s+(fn) = σ−(fn)(1− σn).

Hence, there exists δ4 sufficiently small that σ−(fn) is uniformly bounded, in
which case σ−(fn−1) is bounded by a uniform multiple of δ4, which was what
we wanted. Once we set δ+ = min{δ3, δ4} and δ = min{δ−, δ+}, we see that
the sequence (σ, z) is δ-bounded. By Möbius symmetry, the same conclusion
holds when K < 0.

Lemma 15. Let S denote the right shift operator. Then S preserves WK,δ.
Moreover, on WK, S is the inverse of renormalization.

Proof. Since all weights in Sf appear in f , then it is apparent that they
are uniformly bounded. It remains to check that the right shift of a δ-
bounded renormalization scheme is δ-bounded. As both of the conditions for
δ-boundedness depend only on the order of the renormalization scheme, and
the order is preserved by S, the claim follows.

Now suppose that f ∈ WK . Recalling that Rfn = fn−1, it is evident that
R(Sf) = f . In addition, if f is renormalizable, then one can construct the
sequence (Rf)z for which Rfn = fn−1 and zn = sign(ln(σ−(fn−1))). Note
that as there are no restrictions on σz(f), it is only certain that Rf

z
lies in

WK , but when it exists, it is also evident that S(Rf)z = f . This completes
the proof.

From the way we have defined WK , it doesn’t follow that every sequence
in WK is renormalizable.
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5.3 Distortion Graphs and their Metric

Definition 36. We let Γ denote the space of distortion graphs γ : W →
M × M such that π(γ(f)) = (ω−(f), ω+(f)) and ||γ(WK)|| is uniformly
bounded for all K ∈ R. We endow Γ with the metric

||γ1 − γ2|| = sup
f∈W

||γ1(f)− γ2(f)||.

Lemma 16. Γ is a Banach space.

Proof. Note that Γ is the space of maps into the Banach space M × M,
endowed with the uniform distance, so it is itself complete, hence a Banach
space.

5.4 Graph Transforms of Distortion Graphs

Definition 37. Let γ ∈ Γ. We define the graph transform to be the
operator G : Γ → Γ given by

Gγ(f
z
) = R(σ, z)γ(Sf

z
),

where (σ, z) denotes the renormalization scheme of f
z
. Furthermore, we

define the fast graph transform to be the operator Gfast : Γ → Γ given by

Gfastγ(f z
) = Rfast(σ, z)γ(Sn1(f

z
)),

where n1 is the first index of the fast renormalization subsequence of (σ, z).

Remark.

Gkγ(f
z
) = Rk(σ, z)γ(Sk(f

z
)),

Gk
fastγ(f z

) = Rk
fast(σ, z)γ(Snk(f

z
)).

5.5 Contraction of the Fast Graph Transform

on WK,δ

Definition 38. Let ΓK,δ, ΓK denote the spaces of graphs in Γ restricted to
WK,δ and WK, respectively.

Remark. G,Gfast preserve ΓK,δ.
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Lemma 17. G3
fast is a contraction on the space of uniformly bounded graphs

in ΓK,δ.

Proof. Fix ΓK,δ. Let γ1, γ2 ∈ ΓK,δ be uniformly bounded by L > 0. Then,
by the Contraction Theorem, there exists κ < 1 depending only on L and δ
such that for any f ∈ WK,δ with renormalization scheme (σ, z),

||G3
fastγ1(f)− G3

fastγ2(f)|| = ||R3
fast(σ, z)γ1(Sn3f)−R3

fast(σ, z)γ2(Sn3f)||
< κ||γ1(Sn3f)− γ2(Sn3f)|| < κ||γ2 − γ1||,

since γ1(Sn3f), γ2(Sn3f) are in the same slice of M×M. Thus,
||G3

fastγ1 − G3
fastγ2|| < κ||γ1 − γ2||, which was what we wanted.

5.6 Convergence Theorem

Theorem 2 (Convergence Theorem). There exists a G-invariant graph in
Γ, i.e., over every f in the attractor of renormalization lies an R-invariant
distortion measure.

Proof. Note that for any choice of K, δ, ΓK,δ is a complete space, upon which
by Lemma 17 the fast graph transform acts as a contraction in three steps.
Moreover, by Lemma 14, the distortion measure pairs γ(f) remain uniformly
bounded after application of the fast graph transform, so there is a uniform
rate κ of contraction for uniformly bounded γ. Hence, being a contraction
on a complete space, there exists a unique fixed point of Gfast in ΓK,δ. Letting
δ range over (0, 1/2), we obtain a fixed point on ΓK . And finally, since Γ is
the disjoint union of the spaces ΓK , we obtain a unique fixed point for Γ.
Finally, we can use that G doesn’t expand distances to prove that the fixed
point for Gfast is also a fixed point for G. As the attractor of renormalization
for Ω can be embedded into W , it follows that maps in the attractor have an
associated R-invariant distortion measure pair.
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Chapter 6

Properties of Limiting
Distortion Measures

6.1 Monotonicity Properties

Lemma 18. Let (µ−, µ+) be the R-invariant measure associated to f ∈ WK,δ.
Then:
1) If K = 0, then (µ−, µ+) is the zero measure.
2) If K ̸= 0, then (µ−, µ+) is either strictly negative, or strictly positive, with
the same sign as K.

Proof. 1) Note that all renormalization operators preserve the zero measure
pair (0, 0), so by uniqueness of he G fixed point of Γ0, (µ−, µ+) = (0, 0).
2) Suppose that K ̸= 0. Observe that if (ν−, ν+) are either both strictly
positive or both strictly negative, then that property is preserved by any
renormalization operator Rσ

z . Hence, this property is also preserved by G,
so the G fixed point of ΓK , which can be attained as the limit of G on
such strictly monotone distortion measure pairs, must share that monotone
property. It just remains to remark that if (µ−, µ+) are either both strictly
positive, or both strictly negative, and lie in (M×M)K , then µ−, µ+ share
the same sign as K.

6.2 Results for Bounded Combinatorics

6.2.1 Definition of (N, δ)-bounded Combinatorics

Definition 39. For N ∈ N and δ ∈ (0, 1/2), a renormalization scheme (σ, z)
is said to be (N, δ)-bounded if the sign of zn changes at most in every N + 1
steps and σn ∈ (δ, 1− δ) for all n ∈ N.
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Remark. (N, δ)-bounded renormalization schemes correspond to bounded
combinatorics of Möbius circle maps.

6.2.2 Dyadic Doubling Property

Definition 40. A measure µ defined on A is said to be dyadic doubling
if the measure of any two standard dyadic intervals of scale n that share
a common dyadic ancestor at scale n − 1 are proportional by a constant
independent of n.

Remark. If µ is dyadic doubling, then µ is also bi-Hölder.

Proposition 8. Suppose that the renormalization scheme (σ, z) is (N, δ)-
bounded. Then for any f ∈ WK with the same renormalization scheme, the
corresponding R-invariant distortion measure pair of f is composed of dyadic
doubling measures.

Proof. Let (σ, z) be an (N, δ)-bounded renormalization scheme associated to
f ∈ WK,δ. Since σn ∈ (δ, 1 − δ) for all n ∈ N, it is trivial to check that
an (N, δ)-bounded renormalization scheme is δ-bounded. Let (µ−, µ+) be
the invariant distortion measure pair associated to f . Note that Snf also
has an associated invariant distortion measure pair with an (N, δ)-bounded
renormalization scheme for all n ∈ N. We will first find a lower bound for
µ±(0, 1], which will provide us with the first proportional estimates. As an
upper bound, by Lemma 18, |µ−(0, 1]|, |µ+(0, 1]| ≤ |K|. Without loss of
generality, suppose that z1 = −. By the Zoom Contraction Law, there exists
κ < 1 depending only on δ and |K| such that |µ−(0, 1]| < κ|K|, so |µ+(0, 1]| >
(1− κ)|K|. Now suppose that n1 ≤ N (because the renormalization scheme
is (N, δ)-bounded) is the first index of the fast renormalization subsequence
of (σ, z). Assume that (µ1,−, µ1,+) are the associated invariant measures of
Sn1f . By symmetry, as zn1+1 = +, we obtain that |µ1,−(0, 1]| > (1− κ)|K|.
To get back to (µ−, µ+), we apply the operator sequence Rσ1

− ◦ ... ◦ Rσn1
− ,

which acts on µ1,− as a zoom to an interval of length σ1σ2...σn1 , which has
size bounded above by δN . By the Zoom Contraction Law applied to the
complementary interval, there exists κ̃ < 1 depending only on |K|, 1−δN such
that µ−(0, 1] > (1− κ̃)(1−κ)|K|, which was what we wanted. By symmetry,
if z1 = +, then |µ−(0, 1]| > (1 − κ)|K|, |µ+(0, 1]| > (1 − κ̃)(1 − κ)|K|. This
proves the desired lower bounds.

The next step is a technical result. It claims that if ω2 = Cω1 for C >
1, |ω2| < 4 and if I ⊆ [0, 1] is a subinterval, then∫

I
ηω2∫

I
ηω1

<
C

1− |ω2|/4
.
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To prove this, note that the ratio
ηω2(x)

ηω1(x)
is bounded above by

η|ω2|(1)

η|ω1|(1)
, since

the derivative Dηω(x) equals [ηω(x)]
2/2, which is strictly monotone and in-

creases with |ηω(x)|. Hence, by using power series expansions,∫
I
ηω2∫

I
ηω1

<
e|ω2|/2 − 1

e|ω1|/2 − 1
<

C|ω1|/2 + (C|ω1|/2)2/2! + ...

|ω1|/2

<
∞∑
i=0

C(|ω2|/4)i =
C

1− |ω2|/4
,

where we utilized that |ω2|/4 < 1 to write the geometric sequence in closed
form. This completes the proof of the claim.

By the Zoom Contraction Law, any time a distortion measure is cut by
a zoom operator, its size shrinks at least by a factor of κ < 1, where κ
depends on |K| and δ. Thus, for some finite integer k depending on |K|
and κ, if the mass µ±(τ1, τ2] was obtained by applying k zoom operators
to one of the invariant measures associated to Smf , then µ±(τ1, τ2] < 1.
Keep in mind that for any pair (z, (τ1, τ2]) of a sign with a standard dyadic
interval of scale n ≥ 1 (corresponding to µz(τ1, τ2]), there exists a unique
pair (z̃, (τ̃1, τ̃2]), where (τ̃1, τ̃2] is a standard dyadic interval of scale either n
or n − 1, for which µz(τ1, τ2] either equals, or was obtained as a zoom from
µ1,z̃(τ̃1, τ̃2], where µ1,± are the invariant measures associated to Sf . This
process of selecting ancestors can be iterated backwards in time, until an
interval of unit size is obtained. As the sign of the renormalization operator
changes at most every N+1 steps, it follows that an interval must have been
zoomed at least once every N + 1 steps during this sequence. Consequently,
any sufficiently small standard dyadic interval, say of size 2−m, has measure
bounded by 1, and this holds true for any of the invariant distortion measures
µk,± associated to Skf . Note that the selection of ancestors sends pairs of
standard dyadic intervals of scale n > 1 with common ancestors to pairs that
satisfy the same property. As a result, the proportions between measures
of standard dyadic intervals sharing the same ancestor can only change by
means of a zoom operation. We observe that if Tn−1 is the ancestor of the
standard dyadic interval Tn, and µ±(Tn−1) = Cµ±(Tn) for C > 1, then if
1 > |I| > δ > 0, it follows that

ZIµ±(Tn−1)

ZIµ±(Tn)
<

C

1− κ
,

because ZI must preserve at least 1− κ of the original mass of Tn and
|ZIµ±(Tn−1)| < µ±(Tn−1). Applying this claim for the first k zooms back-
wards in time, and the previous claim for all zooms afterwards, it would
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suffice to show that if T̃ is the dyadic ancestor of a standard dyadic inter-
val T , then µ±(T ) is uniformly proportional to µ±(T̃ ). Since the measure
of intervals decays exponentially to 0, and it takes only k zooms to get to
intervals of scale m, for which the proportion decays at most by (1 − κ), it
follows that the claim holds true whenever the sequence of ancestors share
left endpoints, since then the zoom operators are always the same, and the
proportion of weights can only shrink from that point by the exponentially
decaying factors 1 − µ±(T̃ )/4 > 3/4. If T̃ and T share a right endpoint,
then the zoom interval is transformed by a Möbius transformation of weight
µ±(T1), where T1 is the standard dyadic interval complementary to T whose
ancestor is T̃ . When T1 is of of sufficiently bounded scale, the interval shrinks
by at most a factor of 1−|µ±(T1)| which exponentially decays to 1. Thus, the
claim holds for all dyadic successors T of T̃ , which was what we wanted.
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