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Abstract of the Dissertation

Topological Quantum Field Theories in Dimension Four

by

Jin-Cheng Guu

Doctor of Philosophy

in

Mathematics

Stony Brook University

2023

Abstract

This thesis is compiled from the previous works of the author ([Guu22], [GT21],
[Guu21]). It examines the Crane-Yetter theory in three different contexts. The first
context involves proving its equivalence to the Turaev shadow state sum as a 4-manifold
invariant. In the second context, we focus on its values at 2-manifolds. The values are
linear categories. We describe the structures of the linear categories for all oriented
surfaces with at least one puncture. Lastly, an application of Crane-Yetter theory to a
problem in tensor categories is provided.
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1 Introduction

1.1 Invariants as data representations

When exploring a mathematical concept, one typically begins with its presentation,
which describes the object using simpler objects. However, this presentation merely
offers a distant image of the object’s true nature. For instance, a finite set of generators
and relations that present a finite group appears vastly different from the group itself.
Similarly, a finite set of triangles and gluing data presenting a manifold may fully
describe the space but obfuscate its topological structure with intricate details. Hence,
it is natural to strive for deeper comprehension. One common approach is to represent
the presented object in alternative forms.

When it comes to representing data, two primary concerns arise. The first is the
accuracy of the representation: does it lose any information, and if so, how much?
Secondly, as the representation becomes a mathematical object in its own right, it
is reasonable to ask how well we understand the represented object. Can we easily
characterize or compute it? In many cases, a balance must be struck between these
two considerations. A more precise representation may provide less insight into the
matter, as exemplified by the presentation itself, which accurately and tautologically
represents the object. Conversely, a less accurate representation simplifies the object
to a greater extent and may be more illuminating, as demonstrated by the size of a
finite set. Although it does not represent the set faithfully as a mathematical object,
it does provide significant information about the set.

Representations are also known as invariants. In topology, they are referred to as
topological invariants. The dimension is the simplest example of an integer-valued
invariant that assigns a positive integer to a given space. Another example is the
genus of a surface, which is also an integer-valued invariant. However, invariants need
not be restricted to numerical values. Although numbers are more straightforward
to understand, they have limited capacity to hold information. The homology functor
H(−;Q), on the other hand, represents topological spaces as vector spaces and provides
more information than just the dimension. More sophisticated examples represent the
objects as even more intricate algebraic objects, such as groups, algebras, Hopf algebras,
and so on. A concrete example of this is given below.

Theorem 1.1 [Man06] Finite type nilpotent spaces X and Y are weakly equivalent if
and only if the E∞-algebras C⋆(X) and C⋆(Y) are quasi-isomorphic. ⋄

The transition from numbers to more complex objects is a groundbreaking shift
in thinking. Not only does it permit more precise representations of objects, but it
also enables us to capture relationships between objects through the use of (higher)
functors. This ability to represent relationships is arguably even more important than
the accuracy of the representation itself.
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1.2 TQFTs as higher invariants

Another example of an invariant that takes vector spaces as its values is a topological
quantum field theory (TQFT), as developed by Michael Atiyah [Ati88]. TQFTs were
originally motivated by theoretical physics. In essence, a TQFT assigns a vector space
to a manifold, much like homology. However, it also assigns a linear transformation to
the manifold of one higher dimension that ‘bridges’ the lower manifolds in a compatible
manner. Interestingly, this results in a number-valued invariant for closed manifolds,
since each closed manifold ‘bridges’ the empty manifolds, which must be assigned the
trivial vector space.

This generalization from numbers to vector spaces does not stop here. By viewing
vector spaces as objects in a category, one can bring this process to assigning objects
in higher categories. An instance of such is called an extended topological quantum
field theory (extended TQFT) [Lur09].

Example 1.2 (Witten-Reshetikhin-Turaev model) One-dimensional and two-
dimensional manifolds have been completely classified. While a presentation for three-
dimensional manifolds exists through the use of knots and surgery theory (see [Lic12,
chap.12] and [Kir78]), this classification is dependent on the classification of knots,
which is a complicated and ongoing research field. Other presentations suffer from the
same issue. As a result,invariants of other types for 3-manifolds are of great interest.

In the 1980s, a new kind of invariant emerged from the intersection of mathematics
and physics, starting with Vaughan Jones’ groundbreaking Jones polynomials. These
invariants can be constructed using a variety of mathematical structures such as von
Neumann algebras, quantum groups, and rational conformal theories, as described in
[CY93b, sec.1]. It is natural to wonder if these different types of invariants can be
unified, and indeed they can. They all turn out to be special cases of the Witten-
Reshetikhin-Turaev (WRT) model, which takes as its input algebraic data a modular
tensor category, as discussed in [Bar+15].

As an extended TQFT, WRT model assigns a number to each closed 3-manifold, a
vector space to each closed 2-manifold, and a linear category to each closed 1-manifold.
However, it does not go on and assign a linear 2-category in the 0-th dimension. See
1.6 for more discussion. ⋄

Example 1.3 (Turaev-Viro model) The Turaev-Viro (TV) model was originally
introduced as an invariant for 3-manifolds using state sum construction [TV92]. It was
then realized that the TV model provides a 3-dimensional TQFT.

Later, it was established in [KB10] that the TV model is actually a fully extended
TQFT. This means that it assigns a number to each closed 3-manifold, a vector space
to each closed 2-manifold, a linear category to each closed 1-manifold, and a linear
2-category to each 0-manifold (i.e., the point) in a compatible manner. It was also
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demonstrated that
TVC(M) ≃WRTZ(C)(M)

where M is a closed manifold of dimension 2 or 3, C is a spherical category and Z(C)
is its Drinfeld categorical center ([Bal10] and [Bal11]). ⋄

Example 1.4 (Crane-Yetter model) As a 4-dimensional analogue of the TV model,
the Crane-Yetter (CY) model has premodular categories as its input algebraic data. It
is the main topic of this paper, and will be treated in its own section (1.3). ⋄

Theorem 1.5 (∂CY = WRT) The WRT model is the boundary theory of CY, while
the input algebraic data is a modular category. More precisely, for a modular category
C and a 4-dimensional manifold W possibly with boundary,

CYC(W) = κσ(W)WRTC(∂W),

where σ denotes the signature and κ denotes a constant based on the input algebraic
data (the modular category given in 2.15). This extends to manifolds with colored
graphs [BGM07, Theorem 2].

For a 3-dimensional manifoldM possibly with boundary, the vector spaces CYC(M)

(cf 4.9) and WRTC(∂M) are widely believed to be equivalent. However, to our best
knowledge a rigorous proof has not been provided. ⋄

Remark 1.6 In 1.2 we mentioned that the WRT model does not extend to the 0-th
dimension. There are two explanations for this fact.

1. From the Turaev-Viro model perspective [Bal10], for WRT to extend to a point,
one needs the input modular category C to be the Drinfeld center of a spherical
fusion category D, which is not always the case.

2. From the Crane-Yetter (CY) model perspective, the WRT model is a boundary
theory of CY (1.5). However, a single point is not the boundary of any 1-manifold:
one needs at least two points.

From the second point of view of 1.2, one sees that the WRT model, though successful
and fruitful, is a part of larger theory - the Crane-Yetter model, which is the main
TQFT we will focus on in this work. ⋄

1.3 The Crane-Yetter TQFT

Originated in [CY93b], the Crane-Yetter model was first defined as a state-sum. In
particular, for a triangulated 4-manifold M and a modular tensor category C, one
define

CY(M) = ΣcD
(n0−n1)Πσ dim c(σ)Πt dim c(t)Πξ15j(c, ξ),

10



where c runs through all “colorings”, ni is the number of simplices of dimension i in
the triangulation, σ runs through all triangles, t runs through all tetrahedra, ξ runs
through all 4-simplices, and 15j denotes the so called 15j-symbols. The upshot is
that the sum is independent of the triangularization, therefore defines an invariant of
4-manifolds. This holds even when the C is a premodular category.

Later in [CKY97], it was known that this seemingly complicated sum can be ex-
pressed in terms of the Euler characteristic and the signature, both being old and
well-known topological invariants. While this provides a combinatorial formula for the
signature of 4-folds, it also means that the CY model with the input data being a
modular tensor category C somehow trivializes. A reason why it trivializes is that the
WRT model is the boundary theory of the CY model (1.5). Indeed, the input alge-
braic data for 3-manifolds (modular tensor categories) are too ‘ideal’ for 4-manifolds.
Other types of algebraic data should be considered. Premodular categories are such
examples, on which we focus in this paper.

On the other hand, the CY model is expected to be a fully extended TQFT. In
particular, it gives a number to each closed 4-manifold, a vector space to each closed 3-
manifold, a linear category to each closed 2-manifold (or a 2-manifold with boundary
but with empty boundary condition) [AT22] [Tha21], and conjecturally a linear 2-
category to each closed 1-manifold (the circle), and conjecturally a linear 3-category
to each closed 0-manifold (the point).

1.4 Summary of each section

In this work, we focus on the Crane-Yetter theory. We examine it in three different
contexts. The first context involves proving its equivalence to the Turaev shadow state
sum as a 4-manifold invariant (see section 3). In the second context, we focus on its
values at 2-manifolds. The values are linear categories. We describe the structures of
the linear categories for all oriented surfaces with at least one puncture (see section
4). Lastly, an application of Crane-Yetter theory to a problem in tensor categories is
provided (see section 5).
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2 Preliminaries

Convention 2.1 (manifold, field) Throughout this paper, by a manifold of dimen-
sion n we mean an oriented smooth manifold without boundary of real-dimension n;
we also work over a fixed field k that is algebraically closed and with characteristic 0.

⋄

2.1 Algebra

2.1.1 Premodular categories

We will define (pre)modular categories assuming familiarity with a fusion category, a
braided category, ribbon structure, and the (Drinfeld) categorical center. A complete
and recommended source is [Eti+15]. For definitions written in a dictionary-style
starting from “scratch” (additive categories and abelian categories), please refer to
section 6.3. Other useful sources are [BK02], [Kas12], [Tur10]. Examples can be found
in section 2.1.2.

Definition 2.2 (Braided Fusion Category) A braided fusion category is a braided
category whose underlying monoidal category is a fusion category. ⋄

Definition 2.3 (Muger center) Given a braided fusion category C with braided
structure c−,⋆, we say an object X in C is transparent (and otherwise opaque) if

c−,X ◦ cX,− = idX,−.

We define the Muger center Mu(C) of C to be the full tensor subcategory of C
consisting of transparent objects. Note that in some other literature, the Muger center
is also called a Muger centralizer or an E2-center. ⋄

Recall that if c−,⋆ is a braided structure of a braided fusion category C, then c-1⋆,− is
also a braided structure for the underlying fusion category. This produces an opposite
braided fusion category, which we denote by Cbop. Directly by the definition of a
(Drinfeld) categorical center, there is a tautological functor from C⊠ Cbop to Z(C).

Definition 2.4 (Tautological functor F) Given a braided fusion category C, there is
a natural functor C⊠Cbop F−→ Z(C) that maps each object X⊠Y to (X⊗Y, c−,X⊗c−1Y,−)
and each morphism (f⊠ g) to (f⊗ g). ⋄

Definition 2.5 (Factorizable category) Given a braided fusion category C, if its
tautological functor F is an equivalence of categories, we say that C is factorizable,
and call any of its inverse functor a factorization of the Drinfeld center Z(C). ⋄
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Notice that the structure of Z(C) is in general opaque. For example, even the fusion
ring of Z(C) is hard to identify. Factorizability reduces the complexity of Z(C) to that
of C.

Definition 2.6 (Premodular Category (6.68, 6.72)) A premodular category is
a ribbon fusion category (equivalently, a braided fusion category equipped with a
spherical structure). ⋄

Definition 2.7 (Complete set of simple objects) Let C be a premodular category.
By a complete set of simple objects O(C) we mean a set O(C) = {i, j, . . .} of simple
objects in C that exhausts all simple types and that satisfies (i ̸= j)⇒ (i ̸≃ j). Define
its dual set to be

O(C)⋆ = {i⋆ | i ∈ O(C)},

where i⋆ denotes the (left) dual object of i. ⋄

Notice that by the axiom of premodular category, any O(C) is a finite set. From now
on, we assume that any premodular category C comes with a fixed complete set of
simple objects O(C).

Definition 2.8 (S-matrix) Let C be a premodular category with the braided structure
c. The S-matrix of C is defined by

S := (sXY)X,Y∈O(C)

where sXY = Tr(cY,XcX,Y) ∈ k, where Tr denotes the (left) quantum trace that depends
on the spherical structure of C. ⋄

Definition 2.9 (Modular Category) [Eti+15, p. 8.13.14] A modular category is a
premodular category C whose S-matrix is non-degenerate. ⋄

Fact 2.10 (Characterization of Modularity) [Eti+15, 8.20.12 and 8.19.3] The fol-
lowing conditions are equivalent for a premodular category C:

1. C is modular.

2. Mu(C) ≃ (Vect.)

3. C is factorizable.

⋄

Surprisingly, the fact indicates that modularity and factorizability are equivalent
for premodular categories, so as a consequence modularity reduces the complexity of
Z(C). While this is desirable from the algebraic point of view, it is not the case from
the topological point of view: The power of the topological quantum field theory is
largely reduced by modularity exactly due to this fact.
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2.1.2 Examples

Example 2.11 (Finite group) Let G be a finite group. Then the category Rep(G)
of finite-dimensional linear representations of G over k has a natural structure of a
premodular category. ⋄

Example 2.12 (Drinfeld double) Let G be a finite group and D(G) its Drinfeld dou-
ble over k. Then the category Rep(D(G)) of finite-dimensional linear representations
of D(G) over k has a natural structure of a premodular category. ⋄

Example 2.13 (Crossed module) Let X be a finite 2-group (or called a finite crossed-
module) [Ban10]. Then the category Rep(X) of finite-dimensional linear representa-
tions of X over k has a natural structure of a premodular category. ⋄

Remark 2.14 Let G be a finite group. Both G and D(G) can be viewed as special
cases of finite crossed modules. Hence, 2.13 generalizes 2.11 and 2.12. ⋄

Example 2.15 (Quantum group) In the case k = C, let g be a semisimple Lie algebra
and q a root of unity. The semisimplified category Rep(Uq(g)) of the category of finite-
dimensional representations of the quantum group Uq(g) has a natural structure of a
premodular category. For explicit constructions, see [Kas12] and [BK02]. ⋄

Example 2.16 (Even part of the quantum sl2) In the case k = C, let q be a
root of unity. The semisimplified category C = Rep(Uq(sl2)) of the category of finite-
dimensional representations of the quantum group Uq(sl2) has a structure of a modular
category. The even part C0 of C has a structure of a premodular category [KO01]. ⋄

2.1.3 Graphical calculus

We will use the technique of graphical calculus ([BK02] and [Kas12]) while dealing
with premodular categories.

14



An advantage of this is that many equalities among morphisms can be proved graphi-
cally, thanks to the work of Reshetikhin and Turaev [Res90] [BK02, Theorem 2.3.10].
For example, to prove

evalY ◦ cX,Y ◦ cX,Y⋆ ◦ cX,Y ◦ coevY = cX,Y ,

it suffices to establish an isotopy of ribbon tangles, which is a trivial task, and trans-
late the procedure back into the equations in the syntactic equations. Such feature of
graphical calculus provides sophisticated quantum link invariants (e.g. Jones polyno-
mials). An interesting exercise left for the unconvinced reader is to turn all graphical
equations in this paper into syntactic equations.

In the rest of the section, we provide some useful lemmas and notations for graphical
calculus.

Lemma 2.17 Let C be a premodular category with spherical structure a. Let X, Y be
C-objects. Define a pairing of k-linear spaces

HomC(X, Y)⊗HomC(Y,X)
(,)−→ k

that sends ϕ⊗ψ to

Tr(ψ ◦ ϕ) = evalX ◦ ((aX ◦ψ ◦ ϕ)⊗ 1X⋆) ◦ coevX ∈ EndC(1) ≃ k.

Then the pairing is nondegenerate by the semisimplicity of C, identifying the linear
space with its linear dual HomC(Y,X) ≃ HomC(X, Y)⋆ ⋄

Define the Casimir element

ωX,Y := Σiϕi ⊗ ϕi ∈ HomC(X, Y)⊗HomC(Y,X)

where the ϕi’s is any basis of the former multiplicand and the ϕi’s is its dual basis
under the identification given in 2.17. Graphically, we use dummy variables ϕ and ϕ⋆

as a short-hand notation:
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Lemma 2.18 Let C be a premodular category and W be a C-object. Then

1W = Σi∈O(C)Σldim(i)ϕl ◦ ϕl,

where the ϕl’s and the ϕl’s form a pair of dual bases for the vector spaces HomC(X, Y)
and HomC(Y,X) respectively, and dim(i) denotes the (left) quantum trace of idi. ⋄

Notation 2.19 (regular color) Let C be a premodular category and O(C) a complete
(up to isomorphism) set of simple objects of C. We use Ω in the graphics to represent
the regular color ⊕i∈O(C)dim(i)idi : i→ i. We also denote dim(Ω) by Σi∈O(C)dim(i)2,
which is nonzero [ENO09]. ⋄

With this shorthand notation Ω, we can present the lemma graphically by

We recall the sliding lemma (lemma 4.28) above.

Lemma 2.20 (Sliding lemma) Let C be a premodular category. Then the following
morphisms are all equal, where Ω is the shorthand notation given in 2.19.

⋄

Heuristically, the moral of this lemma is that Ω protects everything “inside” it by
making it transparent.

Lemma 2.21 (Censorship of Opacity) [Mue03, Lemma 2.13] Let C be a premodular
category, Mu(C) its Muger center, i a simple C-object, and λ = dim(Ω)δi∈Mu(C), we
have the following equality.

16



⋄

Heuristically, Ω only allows transparent objects to pass. Note that by the charac-
terization of modularity (2.10), only the identity object is allowed to pass when C is
modular.

2.1.4 Coordinates

Recall that a premodular category C is semisimple, k-linear, and fusion. Define its set
of simple objects to be the set I of simple C-objects up to isomorphism. Denote 0 ∈ I
so that the monoidal identity 1 ∈ 0. As taking monoidal dual preserves simplicity, for
each i ∈ I there is a unique element i⋆ in I such that V⋆

i ∈ i⋆ whenever Vi ∈ i. Thus
the set I is finite and it has an involution I ⋆−→ I. Using the spherical structure, we
can define for each i ∈ I the number dimC(i) = dim(i) ∈ k as the trace of idVi and
the number νi ∈ k⋆ as the twisting coefficient tr(θVi)/tr(idVi), where θVi denotes the
endomorphism of Vi depicted in the following graph.

We further define the Gauss sum of C to be

∆C =
∑
i∈I
ν−1i dim(i)2.

In order to do computations with a premodular category we need to choose and fix
some extra data (called a coordinate). All intrinsic results are independent of the
choice (except the square root D of the global dimension).

Definition 2.22 (coordinated premodular category) Let C be a premodular cat-
egory and I its set of simple objects. Choose and fix the following:

• A number D ∈ k such that D2 =
∑
i∈I dimC(i)

2 (the global dimension of C).

• A set of C-objects {Vi}i∈I such that Vi ∈ i and that V0 = 1.

• A set of isomorphisms [Tur10, p.313] {ωi : Vi → (Vi⋆)
⋆}i∈I.

• A set of numbers {dim ′
C(i) = dim

′(i) ∈ k}i∈I such that dim ′
C(0) = 1, dim

′
C(i)

2 =

dimC(i), and dim ′
C(i

⋆) = dim ′
C(i).

• A set of numbers {ν ′
i ∈ k}i∈I such that ν ′

0 = 1, (ν ′
i)
2 = νi, and ν ′

i⋆ = ν ′
i [Tur10,

p.313].

Such a 5-tuple d⃗ = (D, {Vi}, {ωi}, {dim ′(i)}, {ν ′
i }) is called a coordinate of the pre-

modular category C. Such a pair (C, d⃗) is called a coordinated premodular category.
⋄
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We will often confuse a premodular category with a coordinated premodular category.

Definition 2.23 (multiplicity module) Let C be a coordinated premodular category
and I its set of simple objects. Respectively, define Hijk, Hijk , and Hkij to be the k-
modules HomC(1,Vi ⊗ Vj ⊗ Vk), HomC(Vk,Vi ⊗ Vj), and HomC(Vi ⊗ Vj,Vk). ⋄

We identify Hijk with Hijk
⋆

and Hkij with Hkj
⋆i⋆ by the linear maps induced by the

following graph and call them the canonical identifications:

Recall that the natural pairing

H
ij
k ⊗k H

k
ij → HomC(Vk,Vk)

tr−→ k)

is nondegenerate by the semisimplicity of C. The braided structure of C guarantees that
the k-modules Hijk, Hikj, Hjik, Hjki, Hkij, Hkji are all isomorphic. In category theory,
we must carefully distinguish equalities from isomorphicities, hence we introduce a way
to keep track of the isomorphisms among the Hijk’s.

Definition 2.24 (canonical isomorphisms) Let C be a premodular category, c its
braided structure, I its set of simple objects, and i, j,k ∈ I. Define the canonical

isomorphisms Hijk
σ1(ijk)−−−−→ Hjik and Hijk

σ2(ijk)−−−−→ Hikj by

σ1(ijk) : ϕ 7→ ν ′
iν

′
j (ν

′
k)

−1(cVi,Vj ⊗ idVk)ϕ,

σ2(ijk) : ϕ 7→ ν ′
jν

′
k(ν

′
i)

−1(idVi ⊗ cVj,Vk)ϕ.

⋄

It is a simple exercise in the theory of tensor categories to check that

σ1(jik)σ1(ijk) = id,

σ2(ikj)σ2(ijk) = id,

σ1(jki)σ2(jik)σ1(ijk) = σ2(kij)σ1(ikj)σ2(ijk)

(2.25)

so σ1 and σ2 specify the isomorphisms among the six k-modules.
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Definition 2.26 (symmetrized multiplicity module) Let C be a premodular cat-
egory, I its set of simple objects, and i, j,k ∈ I. Define the symmetrized multiplicity
module H(i, j,k) to be the k-module consisting of functions ϕ that assign an element
ϕi1i2i3 ∈ Hi1i2i3 to each ordering (i1, i2, i3) of the set {i, j,k}. ⋄

The point is that all the symmetrized modules H(i, j,k), H(i,k, j), H(j, i,k), H(j,k, i),
H(k, i, j), H(k, j, i) are equal as sets. By definition, there is a canonical identification
between H(i, j,k) and Hijk.

Definition 2.27 (contraction) Let C be a coordinated premodular category, I its set
of simple objects, and i, j,k ∈ I. Define the contraction map Hijk⊗Hk⋆j⋆i⋆ → k by the
following diagram [Tur10, figure VI.3.5]

Denote the canonically induced contraction map on the symmetrized modules to be
([Tur10, p.334])

∗ijk : H(i, j,k)⊗k H(i
⋆, j⋆,k⋆)→ k.

This defines a nondegenerate pairing and thus induces a canonical element Id(i, j,k)
in the domain of ∗ijk ([Tur10, p.333]). ⋄

We will abuse notation by denoting natural contractions from the non-ordered tensor
products V ⊗k H(i, j,k)⊗k H(i

⋆, j⋆,k⋆) to k by ∗ijk for any k-module V.

2.1.5 6j-symbols, 10j-symbols, and 15j-symbols

Definition 2.28 (6j-symbol) For each i, j,k, l,m,n ∈ I, we define the 6j-symbol[
i j k

l m n

]
: Hijk ⊗Hklm ⊗Hnjl ⊗Hmin → k

to be the linear map induced by the partial tensor network on the 2-sphere S2:
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Using the canonical identifications, we define the induced map∣∣∣∣i j k

l m n

∣∣∣∣ : H(i, j,k⋆)⊗H(k, l,m⋆)⊗H(n, l⋆, j⋆)⊗H(m,n⋆, i⋆)→ k

to be the normalized 6j-symbol. ⋄

Proposition 2.29 (basic equalities of 6j symbols) Let C be a coordinated pre-
modular category, I its set of simple objects, i, j,k,k ′, l,m ∈ I, j0, j1, . . . , j8 ∈ I, and δ
be the Kronecker delta. Then we have the degenerated 6j symbol∣∣∣∣i j k

l m 0

∣∣∣∣ = δm,iδl,j⋆dim
′(i)−1dim ′(j)−1Id(i, j,k⋆) ∈ H(i, j,k⋆)⊗kH(i

⋆, j⋆,k). (2.30)

We also have the so called Biedenharn-Elliott identity as an equality in the non-ordered
tensor product of the k-modules

H(j⋆3, j
⋆
5, j6)⊗H(j⋆1, j⋆2, j5)⊗H(j⋆4, j⋆6, j0)⊗H(j⋆0, j1, j7)⊗H(j⋆7, j2, j8)⊗H(j⋆8, j3, j4)

(in the context of state sum over a triangulation, this corresponds to the Pachner
(2, 3)-move):

∗j⋆0j5j8
(∣∣∣∣j5 j3 j6
j4 j0 j8

∣∣∣∣⊗ ∣∣∣∣j1 j2 j5
j8 j0 j7

∣∣∣∣) =
∑
j∈I
dim(j)∗j⋆j2j3∗jj4j⋆7∗jj1j⋆6

(∣∣∣∣j1 j2 j5
j3 j6 j

∣∣∣∣⊗ ∣∣∣∣j1 j j6
j4 j0 j7

∣∣∣∣⊗ ∣∣∣∣j2 j3 j

j4 j7 j8

∣∣∣∣) .

(2.31)
We also have the orthonormality relation

δk,k ′Id(i, j,k⋆)⊗Id(k, l,m⋆) = dim(k)
∑
n∈I

dim(n)∗im⋆n∗jln⋆

(∣∣∣∣i⋆ j⋆ k⋆

l⋆ m⋆ n⋆

∣∣∣∣⊗ ∣∣∣∣i j k ′

l m n

∣∣∣∣) .

(2.32)
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Finally, we have the Racah identity

ν ′
j3
ν ′
j6
(ν ′
j1
ν ′
j2
ν ′
j4
ν ′
j5
)−1

∣∣∣∣j1 j2 j3
j4 j5 j6

∣∣∣∣ =∑
j∈I

(ν ′
j )

−1dim(j)∗j⋆j1j4∗jj2j⋆5

(∣∣∣∣j1 j4 j

j2 j5 j6

∣∣∣∣⊗ ∣∣∣∣j2 j1 j3
j4 j5 j

∣∣∣∣)
(2.33)

⋄

Proof. Proofs and references for the modular case can be found in [Tur10, section
VI.5.4]. The proof does not use modularity at all, so it carries through for the pre-
modular case verbatim. ■

Definition 2.34 (10j-symbol) Let C be a coordinated premodular category, I its set
of simple objects, and jab ∈ I with jab = j⋆ba for 0 ⩽ a,b ⩽ 4. Denote [x,y, z,w] to be
the vector space HomC(V0,Vjx ⊗Vjy ⊗Vjz ⊗Vjw). Then define the 10j symbol (and its
mirror, resp.) ∣∣∣∣∣∣∣∣∣

j01 j02 j03 j04
. j12 j13 j14
. . j23 j24
. . . j34

∣∣∣∣∣∣∣∣∣
10j


∣∣∣∣∣∣∣∣∣
j01 j02 j03 j04
. j12 j13 j14
. . j23 j24
. . . j34

∣∣∣∣∣∣∣∣∣
10j

, resp.


to be the k-linear map from the non-ordered tensor product of k-modules

[01, 02, 03, 04]⊗ [12, 13, 14, 10]⊗ [23, 24, 20, 21]⊗ [34, 30, 31, 32]⊗ [40, 41, 42, 43]

to k induced by the following (equivalent) C-colored graphs (resp., the same gadget
but with the underlying graph mirrored and all arrows reversed).
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⋄

Remark 2.35 (15j-symbol) A 15j-symbol is an equivalent variant of a 10j-symbol. It
was used in the older literature to make sure the morphism spaces are 1-dimensional.
The 10j-symbols are more intrinsic, so we use them instead of the 15j-symbols. ⋄

2.2 Topology

2.2.1 4-manifolds

Manifolds in real dimension 4 are interesting because of their wildness, witnessed in
the following examples:

1. Real dimension 4 is the smallest dimension where the topological structures and
the smooth structures disagree.

2. For n ∈ N \ {4}, the euclidean space Rn as a topological space admits exactly one
diffeomorphism type, while R4 admits infinitely many [Sco05][Mil62, p.2].

3. The (smooth) Poincare conjecture for the n-dimensional sphere Sn has been re-
solved except for n = 4, which remains widely open to date despite several
attempts.

4. The Universe where we live seems to be best-modeled by a 4-manifold.

Despite its wildness, in dimension 4 the notion of smooth manifolds coincides with the
notion of piecewise-linear (PL) manifolds [Tur10, sec.IX.1.1]. The data of the later can
be made combinatorial and concrete.
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2.2.2 Triangulations

This section is standard [RS72, chap.1] [Man16, sec.2] but included for completeness.

Definition 2.36 (simplicial complex) An abstract simplicial complex is a pair K =

(V,S) of finite sets V and S ⊂ 2V , such that τ ∈ S whenever σ ∈ S and τ ⊂ σ. For a
subset S ′ ⊂ S, its closure is

S ′ = {τ ∈ S | τ ⊂ σ ∈ S ′}.

Given a simplex τ, its star and its link are

Star(τ) := {σ ∈ S | τ ⊂ σ}, Link(τ) := {σ ∈ Star(τ) | τ ∩ σ = ϕ}.

We say that K is an abstract combinatorial manifold (possibly with boundary) of
dimension n if the link of each of its simplices (or equivalently each of its vertices) is
PL homeomorphic to either a sphere or a disk, and if top cell has dimension n. The
geometric realization |K| of K is defined as usual by gluing k-dimensional simplices
inducively on k ⩾ 0.

An orientation of a combinatorial manifold is an ordering of the vertices up to
even permutations. We define the standard n-simplex to be ∆n = {0, 1, 2, . . . ,n}, with
[0 < 1 < . . . < n] being its standard orientation. Its kth face is defined to be

∆n(k̂) = (-1)k∆(012 . . . k̂ . . .n).

For example, the standard oriented 4-simplex ∆4(01234) has a 3-dimensional face being
∆4(1̂) = -∆4(0234) = ∆4(2034) = . . .. This face, in turn, has another 2-dimensional
face ∆4(1̂2) = ∆4(034). In general, for i < j, denote ∆(îj) = (-1)i+j-1(0 . . . î . . . ĵ . . . 4).
⋄

Definition 2.37 (Pachner move) Let an abstract combinatorial manifold K = (V,S)
of dimension n. A Pachner (1,n+ 1)-move along a top-simplex τ ∈ S is defined to be
K⇝ K ′, where

K ′ =

(
V
∐

{⋆}, (S \ {τ})
∐

(
∐
f

(f ∪ {⋆}))

)
,

where f funs through each face of τ. A Pachner (2,n)-move along two top-simplices
τ, τ ′ ∈ S that share a face f ∈ S is defined to be K⇝ K ′, where

K ′ =

(
V, (S \ {τ, τ ′})

∐
(
∐
g

(g ∪ {⋆, ⋆ ′}))

)
,

where g runs through each face of f, and ⋆ (⋆ ′, resp.) denotes the opposite vertex of
f in τ (τ ′, resp.). We say the inverses are Pachner (n, 2)-moves and (n + 1, 1)-moves
respectively. Denote K ∼ K ′ if K ′ can be obtained by K via a finite sequence of Pachner
moves.
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⋄

Notice that a Pachner move K⇝ K ′ induces naturally a PL homeomorphism K
∼−→ K ′.

Definition 2.38 (triangulation of PL-manifolds) Let X be a piecewise-linear man-

ifold. A triangulation of X is a PL-homeomorphism X
ϕ−→ |K| for some combinatorial

manifold K. ⋄

Fact 2.39 [Pac87] Any piecewise-linear manifold X has a triangulation ϕ : X ≃ |K|.
Any other triangulation ϕ ′ : X ≃ |K ′| satisfies K ∼ K ′. Finally, an orientation of X
restricts to a coherent orientation for each top cell of K. ⋄

2.2.3 Handle decompositions

By Morse’s theory of extremal points, any smooth manifold admits a handle decompo-
sition. By Cerf theory, two handle decompositions present the same manifold (up to
diffeomorphism) if and only if both decomposition data are related by a finite sequence
of handle creations, handle annihilations, and handle slides [GS01]. A triangulation of
a manifold admits a natural handle decomposition by taking dual (each k-dimensional
simplex corresponds to a (4 − k)-handle; each (co)face relation corresponds to an at-
tachment). The correct state sum based on this datum is the universal state sum
[Wal21]; it transforms a handle decomposition into a number. A useful fact to notice
is that closed 4-manifolds are reconstructible from their handles of indices 0, 1, and 2
(3.19).

2.3 Crane-Yetter state sum

Throughout this section, let C to be a coordinated premodular category and I be the
set of simple C-objects.

Definition 2.40 (colored combinatorial manifold) A C-coloring of a combinatorial
manifold X is a map β : X2 → I, where X2 denotes the set of oriented 2-simplices of X,
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such that β(-x) = β(x)⋆ for all x ∈ X2. A C-colored combinatorial manifold is a pair
of a combinatorial manifold and a C-coloring of X. ⋄

Definition 2.41 (10j symbol for a colored simplex) Let ∆ be a 4-simplex with
a total ordering on the set of vertices, and let β to be a C-coloring for ∆. C-colored
simplex. Denote β

âb
to be the color β(∆4(âb)) ∈ I assigned to the oriented 2-cell

∆4(âb). We define the 10j symbols for (∆,β) to be the 10j-symbols (2.34)

10j(∆) =

∣∣∣∣∣∣∣∣∣
β
0̂1

β
0̂2

β
0̂3

β
0̂4

. β
1̂2

β
1̂3

β
1̂4

. . β
2̂3

β
2̂4

. . . β
3̂4

∣∣∣∣∣∣∣∣∣
10j

, 10j(∆) =

∣∣∣∣∣∣∣∣∣
β
0̂1

β
0̂2

β
0̂3

β
0̂4

. β
1̂2

β
1̂3

β
1̂4

. . β
2̂3

β
2̂4

. . . β
3̂4

∣∣∣∣∣∣∣∣∣
10j

.

⋄

Definition 2.42 (Crane-Yetter state sum for a closed 4-manifold) Let X be
an connected, oriented, closed piecewise-linear manifold, ϕ : X

∼−→ |K| a triangulation,
β : K2 → I a C-coloring of K, and τ a total ordering on the set of vertices of K.

For each 4-simplex ∆ of K, we assign a 10j-symbol 10J(β,∆) as follows. If the
orientation restricted from X agrees with that from τ (i.e. [X]|∆ = τ|∆, or say of coherent
orientation), then we assign 10J(β,∆) = 10j(∆,β|∆); otherwise, if [X]|∆ = −τ|∆ (or say
decoherent orientation), then we assign 10J(β,∆) = 10j(∆,β∆).

Now each 4-simplex has a 10j-symbol, which is just a linear map. Recall that the
oriented 3-simplices correspond to morphism spaces. We will contract the linear maps
(taking a huge trace) using the fact that each 3-simplex ∆ ′ is the face of exactly two
4-simplices. More concretely, observe that there are two cases.

• Both of them have coherent (or decoherent) orientations.

• One of them has coherent orientation, while the other has decoherent orientation.

In the first case, the corresponding vertices (2.34) of the C-colored graphs that underly
the assigned 10j-symbols have the incoming and outgoing arrows exchanged. In the
second case, the orientations of the arrows are the same but the colors are dual. Hence
in both cases, we can contract the 10j-symbols along ∆ ′ as usual (2.27). Since X is a
closed 4-manifold, the final result is an element in the underlying field (i.e. a number).

Finally, we define the Crane-Yetter state sum of X to be the number∫CY
X

C := D2(n0-n1)
∑
β

∏
f

dim(β(f))

(
∗
⊗
∆

10J(β;∆)

)
,

where D2 denotes the global dimension of C, n0 denotes the amount of vertices, n1
denotes the amount of edges, the sum runs over all possible C-colorings β of K, the
product runs through all faces f of K (recall dim(x) = dim(x⋆) for all x in C), the
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tensor product runs through all 4-simplices of K, and ∗ denotes the large contraction
specified above.

The result only depends on the PL-homeomorphism type of X due to the invariance
under Pachner moves. We refer the curious readers to the original paper [CY93a]
[CKY97]. ⋄

The original state sum uses 15j-symbols and therefore involves a product running
through the 3-simplices. The term is absent here because it is absorbed into the 10j
symbols. The state sum is expected to be extended to a fully extended topological
quantum field theory ([BJS21, section 1.5] [Coo23] [BBJ18] [AT22]). For explicit eval-
uations of the Crane-Yetter model see [Bär21] (for numerical values on 4-folds) and
[Guu21] (for categorical values on 2-folds).
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3 Crane-Yetter Theory and Turaev Shadow

3.1 Introduction

Topology is the wildest in dimension 4. For example, the smooth Poincare conjec-
ture remains far from proven only for n = 4, and the topological Rn admits exactly
one diffeomorphism type unless n = 4, in which case uncountably many are available.
There are gauge-theoretic tools which, to some extent, are sensitive to exotic smooth
phenomena, such as the Donaldson and Seiberg-Witten invariants. Despite their suc-
cesses, they are unable to tackle a large class of problems including the smooth Poincare
conjecture for n = 4.

In the 90s, a simpler invariant of smooth 4-manifolds was proposed by Crane and
Yetter (CY). The original CY invariant could only detect homotopy type but its sim-
plicity leaves room for modifications. Despite several attempts at modification (e.g.
[Bär21]), to date, there has not been much success at detecting exotic smooth phe-
nomena. A recent work by Reutter [Reu20] explains the failure, and suggests the need
for a non-semisimple or derived variant of the CY model.

Before moving into that direction, the author aims to settle another issue first.
There is another invariant of 4-dimensional smooth manifolds, the shadow model a
la V. Turaev [Tur91] [Tur10], from statistical mechanics. Moreover, it was known
that the shadow model coincides with the CY model when both degenerate [Tur10,
X.3.2 & theorem X.3.3] [BGM07] to the 3D Witten-Reshetikhin-Turaev model (also
known as the quantized Chern-Simons theory). It is thus necessary to clarify their
relationship in the general semisimple case. Despite the difference of their origins and
formal definitions, this paper shows them equal, suggesting once again that semisimple
models have reached their limit in terms of detecting exotic smooth phenomena.

Along proving the equivalence of the two models, we make heavy use of the con-
struction of the shadow model given in [Tur10]. We include the essential details of the
construction in this paper which serve as a digestible survey of the shadow model.

3.2 Turaev shadows

A shadow is another type of structure that encodes closed 4-manifolds. Roughly speak-
ing, a shadow is a 2-polyhedron with extra decorations (called gleams) that remember
the twisting data. A 2-polyhedron is a topological and combinatorial object that
encodes 3-dimensional manifolds [Mat]. It is called a pre-foam in the literature of
Khovanov homology (from foams) [KR21].

Definition 3.1 (tripod) Define the standard tripod to be the topological subspace of
R3 consisting of the points (x,y, z) such that at least two of the entries are zero, and the
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last entry belongs to [0, 1). Define a tripod to be any topological space homeomorphic
to the standard tripod. ⋄

Definition 3.2 (cone) For each topological space X, define its standard open cone
cone(X) to be the quotient space (X × R⩾0)/((x, 0) ∼ (x ′, 0)). Define an open cone of
X to be any topological space homeomorphic to cone(X). ⋄

Definition 3.3 (local shape) Let X be a topological space and x ∈ X. Denote by T
the standard tripod and S the 1-skeleton of the boundary of the standard tetrahedron
(a trivalent graph with 4 vertices and 6 edges). Respectively, we say that x is a smooth
point, a line point, a tetrahedral point, a boundary smooth point, or a boundary line
point of X if it has a relative neighborhood homeomorphic to (R2, 0), (T × R, (0, 0)),
(cone(S), (∗, 0)), (R × R⩾0, (0, 0)), or (T × R⩾0, (0, 0)). ⋄

Definition 3.4 (simple 2-polyhedron) A simple 2-polyhedron with boundary is
defined to be a piecewise-linear compact CW-complex P of real dimension two, such
that each of its point p is either a smooth point, a line point, a tetrahedral point, a
boundary smooth point, or a boundary line point. If only the first three types are
involved, we call P a simple 2-polyhedron without boundary. ⋄

Definition 3.5 (components of a simple 2-polyhedron) Let P be a simple 2-
polyhedron with boundary. Define the set of smooth points (or called interior points)
of P to be Int(P). Define the set of line points, tetrahedral points, and boundary line
points to be sing(P). Define the set of boundary line points and boundary smooth
points to be ∂P. Call a connected component of Int(P) to be a region of P; define
the set of regions to be Region(P). P is said to be orientable if each region of P is
orientable. An orientation of P is an assignment of orientations to each of the region.
⋄

Figure 1: The graphic is taken from [KR21].

Definition 3.6 (shadowed 2-polyhedron) Let P be a simple 2-polyhedron, and A
an abelian group with a distinguished element ω ∈ A. We define a shadow to be a
pair of an orientable 2-polyhedron P and a map (called gleam) gl : Region(P) → A.
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Unless specified further, we assume that A = Z
[
1
2

]
and ω = 1

2 . We denote −P to be
the same simple 2-polyhedron but with all gleams flipped by (a 7→ −a). ⋄

For each connected oriented closed surface Σ and each a ∈ A, there is a shadowed
2-polyhedron Σa which consists of Σ with the gleam a assigned to the only region. For
example, S20 denotes the 0-gleamed 2-sphere.

Definition 3.7 (nullity of a shadowed 2-polyhedron) [Tur10, section VIII.5.1] Let
P be an oriented shadowed 2-polyhedron. For each region Y of P, the contraction map
(P/∂P)→ P/(P \ Y) and the orientation of Y induces a map

H2(P;∂P)→ Z;h 7→ ⟨h|Y⟩.

Define the symmetric bilinear form Q̃P on H2(P;∂P) by summing over all regions of Y

Q̃P(h1,h2) =
∑
Y

⟨h1|Y⟩⟨h2|Y⟩gl(Y) ∈ A

and restrict it to QP along the natural map H2(P)→ H2(P;∂P) (which is injective by
a usual argument using long exact sequence). H2(P) is a free abelian group, and so is
Ann(QP). Finally, define the nullity of P to be null(P) = rank(Ann(QP)). ⋄

We remark that if the shadowed polyhedron comes from a 4-manifold X, then the
bilinear form defined in the previous definition coincide with the intersection form of
X [Tur10, section IX.5].

Definition 3.8 (shadow moves) [Tur10, section VIII.1.3, p.369]
The basic shadow moves P1,P2,P3 are given in the following graphics (taken from
[Tur10]). A shadow move is a finite composition of the P±1i ’s.
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⋄

Definition 3.9 (shadow) A shadow is an equivalence class of shadowed 2-polyhedron
P up to a shadow move. We denote the shadow by [P], and say that P represents the
shadow [P] [Tur10, p.370]. ⋄

For two connected shadow [P] and [P ′], we construct the shadow [P] + [P ′] as follows.
Arbitrarily identify two arbitrarily chosen closed disks D ⊂ Int(P) and D ′ ⊂ Int(P ′)

in P
∐
P ′, and equip the interior of D (a new region) with gleam 0. So defines a simple

2-polyhedron and we say that it represents [P] + [P ′]. It is well-defined by [Tur10,
lemma VIII.2.1.1]. For an integer m ∈ Z⩾0, we define m[P] as the sum of m-many [P].

Definition 3.10 (stable shadow) Two connected shadowed polyhedra P, P ′ are called
stably shadow equivalent if there exists n,n ′ ∈ Z⩾0 such that [P]+m[S20] = [P ′]+m ′[S20].
Extend the definition to non-connected ones in an obvious fashion. A stable shadow
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is defined to be a shadowed polyhedron up to stable shadow equivalence. Denote the
stable shadow of [P] to be stab([P]). ⋄

We are ready to present a closed 4-manifold in terms of shadows.

Definition 3.11 (locally flat 2-polyhedron in a 4-manifold) Let X be a closed 4-
manifold. A 2-polyhedron P in X is flat at a point p ∈ P if there exists a neighborhood
U of p in X such that U ∩ P lies in a 3-dimensional submanifold of X. We say that P
is locally flat if it is flat at all p ∈ P ([Tur10, p.394]). ⋄

Definition 3.12 (skeleton of a 4-manifold) Let X be a closed 4-manifold. A skeleton
[Tur10, p.395] of X is a locally flat orientable simple 2-polyhedron without boundary
P such that a closed regular neighborhood of it with some 3- and 4-handles form X. ⋄

For example, CP1 = {[x : y : 0]} is a skeleton of CP2 = {[x : y : z]}. By [Tur10, theorem
IX.1.5], every 4-manifold has a skeleton (by compressing the (0, 1, 2)-handles in an
arbitrary handle decomposition).

Definition 3.13 (stable shadow of a 4-manifold) Let X be a closed 4-manifold.
Take a skeleton P of X and construct a shadowed simple 2-polyhedron by assigning
gleams to the regions Σ in the following way.

1. If Σ is homeomorphic to a closed surface, define the gleam to be the self-intersection
(which is independent of the orientation of Σ)

([Σ] · [Σ]) ∈ H0(X;Z) = Z ⊂ Z [1/2] .

2. Otherwise, Σ is non-compact. Deformation retract it to a compact subsurface Σ0.
Denote N to be the normal bundle of Σ0 in X. Consider the line bundle l over
∂Σ0 by [Tur10, section VIII.6.2, p.397], which may be regarded as a sub-bundle
of N|∂Σ0 . The circle bundle P(N) is trivial over Σ0 since the later is a homotopy
1-type. With a choice of an orientation of Σ0 and X, l induces a section of
P(N)|∂. The obstruction class of this section to the whole P(N) is an element of
H2(Σ0,∂Σ0;π1(S1)) = Z. Finally, define the gleam to be the half of the resulting
integer (which is independent to the choice of Σ0).

It is the main theorem of [Tur10, section IX.1.7] that all shadowed polyhedra chosen
in such fashion above are all stably shadow equivalent. Therefore, it defines the stable
shadow sh(X) of the closed 4-manifold X. ⋄

Example 3.14 sh(±CP2) = stab([S2±1]) and sh(S4) = stab([S20]). ⋄

A handle decomposition of a closed 4-manifold X gives rise to a shadow of X [Tur10,
section IX.4]. The explicit construction will be recalled below in 3.17, which will be
used to prove our main theorem.
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Definition 3.15 (skeleton of a 3-manifold) Let Y be a closed 3-manifold. A skeleton
of Y is an orientable simple 2-polyhedron without boundary P ⊂ Y such that Y \ P is
a disjoint union of open 3-balls [Tur10, p. 400]. ⋄

Definition 3.16 (shadow cone of a framed link in a 3-manifold) Every compact
3-manifold Y has a skeleton [Tur10, theorem IX 2.1.1]. For example, the equator S2

of S3 is a skeleton. Let P be a skeleton of Y and l be a framed link in Y. Projecting
l generically onto P induces a shadow projection. Assign gleams around each crossing
point as in [Tur10, figure IX.3.4]. Then construct the shadow by naturally attaching a
disk along each projected component on P (as a new region) endowed with zero gleam.
Denote the resulting shadow to be CO(Y, l) (well-defined up to stable shadow moves
[Tur10, section IX.3.3]). ⋄

Definition 3.17 (shadow of a 4-manifold from a handle decomposition) Let
X be an oriented 4-manifold and H =

⋃4
i=0Hi be a handle decomposition, where Hi

denotes the union of the handles of index i. Define Y to be the closed 3-manifold
∂(H0 ∪ H1). By the definition of handle decomposition, the gluing datum of H2 onto
the handles with lower indices is encoded as a link l in Y. Define the stable shadow
sh ′(X,H) to be CO(Y, l). ⋄

Remark 3.18 It is a theorem of [Tur10, sec.IX.4.2] that sh ′(X,H) does not depend on
the choice of H as a stable shadow. In fact, sh ′(X,H) equals the stable shadow sh(X)

[Tur10, sec. IX.7]. ⋄

Remark 3.19 [GS01, section 4.4] The handles of indices ⩽ 2 are enough to reconstruct
the whole closed 4-manifold. ⋄

3.3 Shadow state sum

Throughout this subsection (3.3), we fix an orientable shadowed 2-polyhedron P (over
Z[ 12 ], with boundary), a coordinated premodular category C, and its set of simple
objects I. Our goal is to define the shadow state sum

∫sh
P C.

Definition 3.20 (module of a trivalent graph) Let K0 be the empty graph andγ
be a trivalent graph. A C-coloring of γ is a map

{oriented edge of γ} λ−→ I, with λ(e) = λ(−e)⋆.

Define a k-module
H(λ) =

⊗
x

H(λx, λ ′x, λ
′′
x ),

where H denotes the symmetrized modules (2.26), x runs through all vertices of γ
and the λx’s denote the colors assigned to the nearby edges oriented toward x. Define
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k-modules
H(γ) =

⊕
λ∈color(γ;C)

H(λ), H(K0) = k,

where color(γ;C) denotes the set of C-colorings of γ. ⋄

By a C-coloring of P we mean a map ϕ from the set of oriented regions of P to
I such that ϕ(Σ) = ϕ(−Σ)⋆. Denote by color(P;C) the set of all C-colorings of P.
An orientation of a 2D region induces an orientation on its edges by (n⃗ ∧ -), where
n⃗ denotes a vector pointing outward from the region. Therefore, a C-coloring ϕ of P
induces a C-coloring ∂ϕ of its boundary ∂P, a trivalent graph.

Definition 3.21 (shadow state sum) [Tur10, section X.1.2]
Every C-coloring on ∂P extends to some C-coloring on P, soH(∂P) =

∑
ϕ∈color(P;C)H(∂ϕ).

Fix a ϕ ∈ color(P;C), and define the following k-modules and vectors.

• For each oriented edge e⃗ in P \ ∂P, define Hϕ(e⃗) to be H(i, i ′, i ′′) where the i’s
are the colors assigned to the three adjacent regions compatibly oriented with e⃗.

• For each (unoriented) edge e in P \∂P, define Hϕ(e) to be the non-ordered tensor
productHϕ(e⃗)⊗Hϕ(-e⃗) with an arbitrary orientation e⃗. The pairing (2.27) defines
a canonical vector |e|ϕ ∈ Hϕ(e).

• For each tetrahedral point x ∈ P, pick a small enough neighborhood U of x in
P homeomorphic to the cone of the 1-skeleton of the boundary of some tetrahe-
dron. The closure U a C-colored 2-polyhedron with four boundary line points
x0, x1, x2, x3 and six C-colored regions. Denote by ϕij the color for the oriented
region −−−→xxixj (clearly, ϕij = ϕ⋆

ji). Finally, define a vector and a k-module

|x|ϕ :=

∣∣∣∣ϕ01 ϕ02 ϕ30
ϕ32 ϕ13 ϕ21

∣∣∣∣ ∈ 3⊗
i=0

Hϕ(
−→xix) =: Hϕ(x),

where ⊗ denotes the unordered tensor product of k-modules. The result is inde-
pendent to the labeling 0, 1, 2, 3.

The procedure above defines a vector in the k-module

(⊗x|x|ϕ)⊗ (⊗e|e|ϕ) ∈

(⊗
x

Hϕ(x)

)
⊗

(⊗
e

Hϕ(e)

)
where x runs over all tetrahedral points of P, and e runs over all (nonoriented) edges of
P \ ∂P. By contracting the vector along all tetrahedral points x and all edges e whose
boundary points are not both in ∂P, we obtain a vector in |ϕ| ∈ H(∂ϕ). Finally, we
define the shadow state sum to be(∫ sh

P

C

)
=

D-b2(P)-null(P)
∑

ϕ∈color(P)

σϕ |ϕ|

 ∈
∑
ϕ

H(∂ϕ) = H(∂P),
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where D denotes the global dimension, b2 denotes the second betti number, null
denotes the nullity (3.7), and σϕ ∈ k is a normalizing constant defined as

σϕ =
∏
e

dim ′
C(∂ϕ(e))

−1
∏
Y

dimC(ϕ(Y))
χ(Y)ν ′

ϕ(Y)
2gl(Y)

∏
g

dimk(HomC(V0,Vi⊗Vj⊗Vk)),

where e runs over edges of ∂P (but not circle 1-strata), Y runs over regions of X, g runs
over circle 1-strata of sing(X), and χ denotes the Euler characteristics. ⋄

Proposition 3.22 (shadow state sum is invariant under stable shadow move)
Let C be a premodular category and P,P ′ be 2-polyhedra that are equal as stable
shadows. Then ∫ sh

P

C =

∫ sh
P ′
C.

Namely, shadow state sum is invariant under stable shadow move. ⋄

Proof. We start with the special case where C is a modular category. For invariance
under basic shadow moves, the essential ingredients are the orthonormality relation,
the Racah identity, and the Biedenharn-Elliott identity (2.29); see [Tur10, theorem
X.2.1] for a proof. For invariance under addition of S20, it boils down to proving the
addition formula

|P1 + P2| = |P1|⊗ |P2|

[Tur10, theorem X.2.2] and using the equality |S20| = D-2∑
i∈I dim(i)2 = 1. Both

proofs carry through verbatim to the premodular case. ■

Definition 3.23 (shadow state sum of a 4-manifold) Let X be a closed 4-manifold,
C a coordinated premodular category, stab([P]) a stable shadow of X represented by a
shadowed 2-polyhedron P. Define the shadow state sum

∫sh
X C of X to be

∫sh
P C, which

is well-defined by 3.18 and 3.22. ⋄

3.4 Main result: equivalence of state sums

Theorem 3.24 (equivalence of state sums) Let X be a closed 4-manifold and C be
a coordinated premodular category. Then∫CY

X

C =

∫ sh
X

C.

Namely, their Crane-Yetter state sum and shadow state sum are equal. ⋄

Remark 3.25 The Witten-Reshetikhin-Turaev (quantum Chern-Simons) model is
known to be the boundary theory of Crane-Yetter model [BGM07] [Tha21]. It is
also shown that the former is the boundary theory of the shadow TQFT [Tur10, X.3.2
& theorem X.3.3]. Therefore, theorem 3.24 provides another proof for the first fact. ⋄
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Proof. Fix a small ϵ > 0.
We begin by computing the shadow state sum for X. First, fix a triangulation T

for X. Denote by Ti to be the set of i-cells of T , and fix a total ordering on T0. Recall
that the ordering induces an orientation of each 4-cell. If it agrees with the orientation
from X, we call it an coherently oriented cell; otherwise a decoherently oriented cell.
From T we will construct a shadow of a similar “shape”. Indeed, the dual of the any
triangulation provides a handle decomposition H, in which each k-cell corresponds to
an (n− k)-handle. The construction in (3.17) constructs a shadow for X, as follows.

Take the union of the 0-handles and the 1-handles. Its boundary Y is a connected
sum of |T0| 3-spheres. By (3.17 and 3.16), we need to pick a skeleton of Y. We will
construct a very concrete one as follows. Within each 4-simplex ∆, Y∩∆ is S3\(5×B3).
Think of this as R3 \

⋃
v⃗ Bϵ(⃗v), where Br(x) denotes the ball of radius r centered at

x, and v⃗ runs through the set {(1, 0, 0), (0, 1, 0), (-1, 0, 0), (0, -1, 0)}. Denote S1(⃗v) to
be the equator dual to v⃗ of each 2-sphere S2(⃗v) := ∂Bϵ(⃗v). The largest component
of B0(1) \

(⋃
v⃗ S

1(⃗v)
)

is a 4-punctured 2-sphere. Finally, remove an ϵ-disk centered
at (0, 0, 1) from it, and let the boundary straightly stretch to (0, 0,+∞); this is a
5-punctured 2-sphere Σ, which is a local skeleton for Y.

To continue following (3.17), we need to project to the links (the gluing data of the
2-handles in Y) to Σ. It is a geometric exercise to construct a projection so that the
projected diagrams look as follows

depending on whether the 4-cell is coherently oriented or not. The construction then
cones the projected links, and assigns gleams around each intersection of links on Σ.
This encodes a local piece of the complete shadow, which is a gleamed 2-polyhedron P
without boundary. However, P also looks the same locally within each 4-simplex (up
to mirror), so for simplicity we will keep working locally.

The shadow state sum, locally, is represented by the following diagram and its
mirrored image.
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where each of the 5 tetrahedral graphs is obtained by the 6j-symbol twisted with the
4 gleams around the corresponding tetrahedral point. The vertices in the graph are
paired (indicated by the colors), and paired vertices are actually labeled by elements
of the bases and dual bases of the morphism spaces. We contract them and obtain the
following diagram using the techniques given in [KB10, Lemma 1.1, 1.3].
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We can further contract each theta graph to the central component using the following
procedure.
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Repeat for five times, and the result is the following
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This is almost the 10j-symbol involved in the definition of the
∫CY
X C, except the extra

edges labeled by b,d, f,h, j, l. However, after contracting the local pieces together,
the extra edges form unlinks (colored by the regular coloring Ω =

∑
i∈I dim(i)i) and

therefore can be viewed as a factor D2 and removed from the diagram. The rest of the
proof is by counting. ■

39



4 Categorical Center of Higher Genera

4.1 Overview

Recall that the Crane-Yetter theory is extended to (co)dimension 2 (sec 1.3). So given
a premodular category C and an oriented 2-manifold Sigma, its value CYC(Sigma)
is a linear category. In this section, we compute and describe these the values for all
surfaces with at least one puncture.

4.1.1 Previous work of CY in (co)dimension two

Recent developments of the CY model include its Hamiltonian formulation and its
higher-codimensional aspect. The former is called the Walker-Wang model (cf [WW12]
and [Wal15]). However, while the relation between CY and the Walker-Wang model
are commonly believed, to the best knowledge of the author, it has not been explicitly
proved.

The later, on the other hand, is currently studied by A. Kirillov’s school start-
ing around 2018. In particular, Tham and Kirillov correctly defined CY model in
(co)dimension 2, computed some examples, and proved the excision property. This
in turn showed that the CY model coincides with the factorization homology in the
special case that the input category is premodular.

Remark 4.1 In a recent paper [AT22], it is stated in Corollary 7.6 that the Crane-
Yetter theory in (co)dimension 2 coincides with the factorization homology given in
[BBJ18] for certain algebraic input data. Therefore, we expect that both approaches
actually study the same theory. Please note that [BBJ18] wrote their work earlier
than [AT22]. However, we will still quote the results from [AT22] as the author is
more familiar with it. ⋄

In the rest of this section, we recall the results from Kirillov and Tham. The main
statement of this paper will follow in the next section.

Σ Disk Cylinder Sphere 1-punctured torus General
CYC(Σ) C Z(C) Mu(C) Zel(C) Zσ(C)

Drinfeld center Muger center Elliptic center
Categorical center
of higher genera

Theorem 4.2 [AT22, Section 5] Let C be a premodular category, and Σ = D2 be the
open disk. Then as abelian categories

CYΣ(C) ≃ C.

⋄
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Theorem 4.3 (Drinfeld center) [AT22, Example 8.2] Let C be a premodular cate-
gory, Z(C) its Drinfeld categorical center, and Σ = S1× I = S1× (0, 1) be the cylinder.
Then as abelian categories

CYΣ(C) ≃ Z(C).

Moreover, as multifusion categories, the topological nature of Σ induces a so called
reduced tensor product ⊗ ([Tha22], [Was19]) for Z(C). Indeed, stacking two cylinders
together produces another cylinder S1 × (0, 2) ≃ S1 × I. ⋄

Notice that the reduced tensor product is in general different from the usual tensor
product of the Drinfeld center.

Theorem 4.4 (Excision principle) [AT22, Theorem 2.3]
Denote the Deligne tensor product by ⊠. Let Σ be an open surface with n punc-

tures. Then the category CYΣ(C) has a structure of module category over CYΣ(S1 ×
I)⊠n, which is (Z(C),⊗)⊠n by 4.3.

Let Σ1 and Σ2 be smooth oriented surfaces possibly with punctures. And let CY
be Crane-Yetter theory in dimension two. Then we have an equivalence of abelian
categories.

CY(Σ1∪Σ2) ≃ CYΣ1 ⊠CY(Σ1∩Σ2)
CYΣ2 ,

where ⊠D denotes the balanced (Deligne) tensor product over D [DSS19]. ⋄

Remark 4.5 For a related result on the excision principle, see [Coo23] and [BBJ18]. In
particular, we mentioned above that the CY model is a special case of the factorization
homology. In [Coo23], it is further shown that a factorization homology coincides with
the skein category for ribbon categories, which are more general than premodular
categories; it is also shown that the ribbon categories satisfy the excision principle,
providing a more general result than the theorem above. Notice that in [BJS21], a fully-
extended 4-dimensional TQFT (based on a braided fusion category) is constructed, and
is expected to be an extension of the CY model. Please see discussions in section 1.5.2
and 1.5.3 therein. ⋄

Theorem 4.6 (Muger centralizer) [AT22, Corollary 8.5] Let C be a premodular
category, Z ′(C) its Muger centralizer, and Σ = S2 be the 2-sphere. Then as abelian
categories

CYΣ(C) ≃ Z ′(C).

In particular, if C is modular, then the result trivializes as in

CYΣ(C) ≃ (Vect).

⋄
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Tham defined for a premodular category C an associated category Zel(C), coined
the elliptic Drinfeld center. Its objects are the triples (X,γ1,γ2), where X is an object
of C and the γi’s are half-braidings of X that satisfy certain relations. See [Tha19] for
a full definition. The name is justified by the following theorem.

Theorem 4.7 (elliptic Drinfeld center) [AT22, Corollary 9.5+6] Let C be a pre-
modular category, Zel(C) its elliptic Drinfeld center, and Σ = Σ1,0 be a once-punctured
torus. Then as abelian categories

CYΣ(C) ≃ Zel(C).

In particular, if C is modular, then there is an equivalence of left CYS1×I(C)-modules

C ≃ CYD2(C) ≃ CYΣ(C).

⋄

Theorem 4.8 [Tha22, Corollary 4.5] Let C be a premodular category, Z the Drinfeld
center construction, ⊗ the stacking tensor product, and Σ = S1 × S1 be the standard
torus. Then

CYΣ(C) ≃ Z((Z(C),⊗)).

⋄

One of the main theorem of [AT22] is that Crane-Yetter theorem in dimension two
also trivializes when the input data is modular.

Theorem 4.9 [AT22, Remark 9.8] Let C be a modular category, and Σ an n-punctured
surface of genus g. Then up to equivalence CYΣ(C) is independent of g. In fact, we
have an equivalence of module categories over (Z(C),⊗)⊠n

CYΣ(C) ≃ C⊠n.

Notice that when n = 0 the power is the category of finite dimensional vector spaces.
⋄

An easy proof of this fact due to the author of this paper uses the excision principle
and a basic equivalence of braided categories C ⊠ Cbop ≃ Z(C) [Eti+15], where Cbop

denotes the same braided category as C but with the inverse braiding.

4.1.2 Main result: CY ≃ Z

The main result of this paper is an explicit calculation of the Crane-Yetter theory
for all smooth oriented surfaces with at least one puncture. In particular, we obtain a
description of the value on the 3-punctured 2-sphere which was missing in the literature.
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With the excision principle, this provides us several combinatorial constructions of the
same category. Also with the excision principle, this provides us a fairly compact
description for the values on all smooth oriented surfaces. In this section, we overview
the statement and its consequences, leaving a detailed proof to section 4.4.

Crane-Yetter theory in dimension two is defined as a linear category whose spaces of
morphisms are vector spaces presented by many complicated generators and relations.
By a calculation we mean to describe it as a category whose description is much smaller.
An analogy of this is that the first homology of the circle “calculated” to be the group
of integers

H1(S
1) ≃ Z.

Given any open surface Σ, we present it by an oriented 2-disk and some segments
of its boundary glued. Which segments are glued together are described by some
combinatorial data, called the admissible gluings. With a choice of an admissible glu-
ing σ, the categorical center of higher genera Z = Zσ is a specific category explicitly
constructed in 4.49, with some basic properties given in 4.3.3. Roughly, given a pre-
modular category C and an admissible gluing σ of rank n, the categorical center of
higher genera Z = Zσ(C) is a category with objects of the form (X,γ1, . . . ,γn) where
X is a C-object and the γi’s are half-braidings satisfying specific relations. The main
statement is that Z is equivalent to CY(Σ) as a finite semisimple abelian category.

Theorem 4.10 (Main statement) Let n be a nonnegative integer, σ an admissible
gluing of rank n, Σσ the surface constructed from σ, C a premodular category, Zσ(C)
the categorical center of higher genera of C with respect to σ, and CYΣσ(C) the Crane-
Yetter theory (over C) of the surface Σσ.

Then CYΣσ(C) only depends on C and the oriented topological type of the surface Σσ.
Moreover, we have an equivalence of finite semisimple abelian categories

CYΣσ(C) ≃ Zσ(C).

⋄

A detailed proof of the main statement is given in section 4.4.

Example 4.11 (n = 0) For n = 0, the surface Σ is the open disk, the categorical center
of higher genera reduces to the underlying premodular category C, so the theorem
recovers that CYΣ(C) ≃ C as shown in 4.2. ⋄
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Example 4.12 (n = 1) For n = 1, the only possible surface is the cylinder, the
categorical center of higher genera reduces to the Drinfeld center Z(C). Hence, the
theorem recovers that CYΣ(C) ≃ Z(C) as shown in 4.3. ⋄

Example 4.13 (n = 2) For n = 2, there are two possible surfaces: the 1-punctured
torus and the 3-punctured disk. In the former case, the categorical center of higher
genera reduces to the elliptic center Zel(C), so the theorem recovers that CYΣ(C) ≃
Zel(C) as shown in 4.7. In the later case, the theorem provides a new result. ⋄

Remark 4.14 In H1(S1) ≃ Z, one sees the algebra of the shape S1 and the shape of
the algebra Z. Our main result should be viewed as a higher analogue. That is, one
sees the (higher) algebra of the shape Σσ and the shape of the (higher) algebra Zσ. ⋄

Remark 4.15 A full definition for premodular categories is given in 6.68. ⋄

Remark 4.16 These categories have their tensor structures and module categorical
structures [Eti+15] coming from their topological nature. This will be treated in the
author’s following work. ⋄

Remark 4.17 The smoothness condition is not necessary for our theory, but is in-
cluded for the sake of simplicity. Indeed, later we will see that the Crane-Yetter theory
in dimension 2 can be defined based on stringnets. With the smooth structure, it is
easier to regulate how they meet each other. On the other hand, Crane-Yetter theory
works also in the PL-setting, parallel to its 3-dimensional analogue, the Turaev-Viro
theory. Curious readers are refer to a setup given in [KB10]. ⋄

4.1.3 Summary of each subsection

• Section 4.2: The relevant topological theory, namely the Crane-Yetter theory in
dimension two, is treated formally in terms of string-nets ([Kir11]).

• Section 4.3: The relevant algebraic theory, namely the categorical center of higher
genera Zσ(C), is constructed. We prove some of its basic properties, such as its
finite semisimple abelianess and its ambidextrous adjunction with the underlying
C.

• Section 4.4: The proof for the main theorem is given, which bridges the topolog-
ical theory and the algebraic theory.

• Section 4.5: Outlook and remarks.

4.2 Topological theory

In this section, we describe the topological side of our main statement (cf 4.10 and
4.14), namely the Crane-Yetter theory in dimension two, is treated formally in terms
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of string nets. This includes a definition of Crane-Yetter in dimension two, and a
combinatorial description of oriented smooth surfaces. The former requires the notion
of string nets (also called tensor nets or tensor networks), which will be treated in
4.2.1. A definition of Crane-Yetter theory in dimension two follows in 4.2.2. Finally,
the combinatorial description of smooth surfaces (σ-construction) is given in 4.2.3.

4.2.1 String nets

Originated from Penrose combinatorial description of space-time [Pen71], string nets
are the building stone of Crane-Yetter theory. They are also called (quantum) tensor
nets or tensor networks in other contexts. In dimension two, they were first explicitly
written by the physicists Levin and Wen in [LW05]. For Crane-Yetter theory, how-
ever, we need string nets in dimension three. Following [AT22], we provide a formal
definition 4.27 of them in this section.

Before the formal definition, keep in mind that it aims to formalizes the pictures
of the following sort.

Definition 4.18 (2-folds) A 2-fold is either a compact oriented smooth manifold
without boundary of real dimension 2, or such a manifold with finitely many points
removed (punctures). A 2-fold is also called a surface. ⋄

Definition 4.19 (Extended 2-folds) An extended 2-fold is a 2-foldM with the extra
data

{(p1, v1,or1) . . . (pn, vn,orn)},
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where n < ∞, the points pi ∈ M are disjoint to each other, the tangent vectors
vi ∈ TpiM are nonzero, and the orientations ori are in the set {+,−}. ⋄

Definition 4.20 (3-folds) A 3-fold is an oriented smooth manifold with boundary of
real dimension 3. ⋄

Definition 4.21 (Framed arcs in a 3-fold) Let M be a 3-fold (4.20). An arc α in
M is a smooth embedding of the standard interval I = [0, 1] (with orientation from 0

to 1) into M. We require that if an end-point is sent by α to the boundary ∂M, then
α has to intersect the boundary transversally.

A framing of an arc α in M is a non-vanishing smooth section s of the normal
bundle of α(I) ⊆M. A framed arc is an arc equipped with a framing. ⋄

Remark 4.22 For our theory, the smoothness condition is not necessary but included
for the sake of simplicity. Crane-Yetter theory works also in the PL-setting, parallel
to its 3-dimensional analogue, the Turaev-Viro theory. Curious readers are referred to
the setup given in [KB10].

The framing, on the other hand, is necessary. Such structure is expressed in slightly
different way in related works. For example, in the context of skein modules, people
use the notion of ribbons instead of that of arcs. The “width” of a ribbon corresponds
to the normal vector from the section. ⋄

Definition 4.23 (Framed graphs in a 3-fold) Let M be a 3-fold (4.20). A framed
graph Γ in M is a finite collection of framed arcs αi 4.21 satisfying the following
conditions.

• Denote the set of arcs of Γ by E(Γ).

• The images of the embeddings αi’s do not meet each other, with an exception at
their endpoints which must be in the interior of M.

• Let p be a point in the interior of M. Denote Out(p) (In(p), resp.) be the
set of the αi’s with p = αi(0) (αi(1), resp.). Denote the set of all arcs (edges)
E(p) := In(p) ∪ Out(p). The directions of the tangent vectors of the α’s that
end at p must be different, i.e. for each i ̸= j, there is no positive real number r
such that vi = rvj. In the case where E(p) is nonempty, we call p a vertex of Γ .
Denote the set of vertices by V(Γ).

• Let α ∈ E(Γ). If an end of α ends on the boundary of M, we call the end-point
a boundary point of Γ . Denote the set of boundary points by B(Γ).

⋄

Definition 4.24 (Extended 3-folds) An extended 3-fold is a pair of a 3-fold M and
a framed graph Γ in M. ⋄
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Notice that an extended 3-fold (M, Γ) naturally induces an extended 2-fold ∂(M, Γ) :=
(∂M,∂Γ), where ∂Γ denotes the set

{(pi, vi,ori) |pi ∈ B(Γ)},

where vi is naturally identified via

Npi = TpiM/Tpiα ≃ Tpi(∂M)

with the framing vector of Γ at the point pi, and ori ∈ {+,−} is + (−, resp.) if the
framed arc α that passes through pi is oriented such that α(1) = pi (α(0) = pi, resp.).

Definition 4.25 (C-extended 2-folds) Given a premodular category C, a C-extended
2-fold, or a C-colored extended 2-fold, is an extended 2-fold with an extra data: a C-
object Xi is assigned to each oriented framed point (pi, vi,ori). We call Xi the “color”
assigned to the point pi. ⋄

To define a C-extended 3-fold, we need the Reshetikhin-Turaev theory ([Tur10],
[BK02], [Kas12]) for genus-0 surfaces which we recall here. Let C be a premodular
category. To each C-extended 2-fold

M = (M, {(X1,p1, v1,or1) . . . (Xn,pn, vn,orn)})

diffeomorphic to a sphere, the first part of Reshetikhin-Turaev theory functorially
assigns a vector space RT(M) that is (non-canonically) isomorphic to

⟨Xϵ1, . . . ,Xϵn⟩ := HomC(1,Xϵ1 ⊗ . . . ⊗ Xϵn),

where Xϵi denotes Xi if (ori = +) or X⋆
i if (ori = −).

Let C be a premodular category, and V be a real vector space of dimension 3. Let
S be a finite collection of distinct framed oriented rays from the origin of V, with an
assignment S ϕ−→ Obj(C). In this case, we say V has a finite collection of distinct
C-colored rays. Then the Reshetikhin-Turaev theory for genus-0 surfaces naturally
assigns a vector space RTC(V,S,ϕ) to the sphere (V − 0)/R+.
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Definition 4.26 (C-extended 3-folds) Let C be a premodular category, and M be
an extended 3-fold (M, Γ). A C-coloring of (M, Γ) is an assignment as follows:

• To each arc α of Γ , assign a C-object X(α).

• After such assignment, to each vertex p of Γ , the tangent space at p naturally
has a finite collection of C-colored rays (S,ϕ).

• The Reshetikhin-Turaev theory for genus-0 surfaces assigns a vector space RT(p) :=
RTC(Tp(M),S,ϕ) as above. Note that RT(p) is (non-canonically) isomorphic to

HomC(⊗Xi,⊗Xo)

where the Xi runs through the objects assigned to all incoming arcs, and the Xo
runs through the objects assigned to all outgoing arcs.

• After such assignment, to each vertex p of γ assign a vector v ∈ RT(p).

A C-extended 3-fold M is a 3-fold with a C-colored graph inside. This gives the
boundary ∂M a C-extended surface structure. Conversely, we call such a C-colored
graph a framed graph that satisfies the boundary condition posed by the C-extended
surface ∂M. ⋄

Let C be a premodular category. While the first part of Reshetikhin-Turaev the-
ory for genus-0 surfaces assigns a vector space to a C-extended genus 0 surface, the
second part of it assigns a C-extended 3-fold (M, Γ) diffeomorphic to a ball to a vector
RT(M, Γ) ∈ RT(∂M).

Definition 4.27 (String nets in 3D) Let C be a premodular category andM a 3-fold
whose boundary ∂M is a C-extended surface. Let F be the free vector space over k
generated by all C-colored graphs that satisfy the boundary condition posed by ∂M.
Let N be the subspace generated by either of the following

• The difference Γ − Γ ′ of two C-colored graphs that are smoothly isotopic to each
other.

• A linear combination v = ΣciΓi such that there exists a closed region B ⊆ M

diffeomorphic to a ball such that the vector assigned by the Reshetikhin-Turaev
theory for genus-0 surfaces of v|B is the zero vector.

We call S(M) := F/N the space of string nets of M with the given boundary condition,
and we call an element of S(M) a string net. ⋄

We conclude this section with a useful lemma.

Lemma 4.28 (Sliding lemma) Let C be a premodular category. Then the following
string nets are equal, where Ω is the shorthand notation given in 2.19. Heuristically,
the moral is that Ω protects anything “inside” it by making it transparent.
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⋄

Proof. Apply 2.18 locally with W = X ⊗ Ω. Use isotopy and the naturality of the
braidings. And then apply 2.18 locally again with W = Ω⊗ X. ■

Notice that in fact Y can be more general than an object - the lemma works even
when Y is a puncture.

4.2.2 Crane-Yetter theory in dimension two (CY)

We define the Crane-Yetter theory in dimension two in this subsubsection, following
[AT22, section 5]. Let Σ be a smooth oriented 2-manifold and C a premodular category.
To define CYΣ(C), we first define an auxiliary category cyΣ(C).

Definition 4.29 (cyΣ(C), an auxiliary category) Given a premodular category C
and a 2-fold Σ, we define the k-linear category cyΣ(C) as follows. An object is a
collection c of C-colored points and tangent vectors, such that (Σ, c) is a C-extended
2-fold. Given two objects c and c ′, the morphism space HomcyΣ(C)(c, c

′) between
c and c ′ is defined to be the space of string nets for the 3-fold Σ × [0, 1] satisfying
the boundary condition (c × {0}) ∪ (c ′ × {1}), where c denotes the same collection of
C-colored points as c does but with all orientations flipped. ⋄

Two examples of morphisms in cyΣ1,0(C) is depicted as follows.
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Definition 4.30 (Karoubi envelope) Given an additive category C, its Karoubi
envelope (Karoubi completion) Kar(C) is defined to be the category as follows. The
objects are pairs (X,p), where X ∈ Obj(C) and p ∈ HomC(X,X), such that p2 = p.
Given objects X̄ = (X,p) and Ȳ = (Y,q), the space of morphisms HomKar(C)(X̄, Ȳ) is
defined to be the subspace of HomC(X, Y) consisting of those f such that qfp = f. ⋄

The Karoubi envelope is the pre-abelian completion in our context.

Definition 4.31 (CYΣ(C), Crane-Yetter theory in dimension 2) With the nota-
tions above, we define

CYΣ(C) := Kar(cyΣ(C)). (4.32)

⋄

Remark 4.33 The definition given in 4.31 was first given in [AT22, section 5]. That
it extends the original Crane-Yetter theory is proved in [Tha21]. ⋄

It is immediate from the definition that cyΣ(C) is additive. On the other hand,
CYΣ(C) is in fact finite semisimple abelian for all surfaces with at least one puncture
(cf 4.37, 4.57, 4.58). It’s conjectured that it holds in fact for all surfaces.

4.2.3 A presentation of surfaces (σ-construction)

In this paper, we construct a surface Σ from the standard disk and an additional
data σ ∈ Adm2n., give some examples, and prove that such construction produces all
oriented surfaces with at least one puncture.

Definition 4.34 (Adm2n, admissible gluings) Let n be a nonnegative integer. An
element σ in the permutation group S2n on 2n elements is called an admissible gluing
(of rank n), if σ satisfies the following conditions.

• σ has no fixed points.

• σ is an involution; i.e. σ2 = 1.

We denote the subset of admissible gluings by Adm2n ⊆ S2n. ⋄

Definition 4.35 (Σσ, σ-construction) For each admissible gluing σ ∈ Adm2n, we
construct a smooth surface Σσ. Start from the standard oriented disk. We choose
2n closed segments with the same length from the boundary. To make the presen-
tation easier, we emphasize them by drawing them like legs (without changing the
diffeomorphism type), and we call them legs from now on.
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Glue the end of the legs in pairs according to σ with the orientation preserved. Finally,
removed the boundary the the result to be an open surface. The result is denoted by
Σσ. ⋄

Example 4.36 The only element (12) in Adm2 constructs the cylinder Σ(12) ≃ Cylinder.
The elements σ0,3 = (12)(34) and σ1,1 = (13)(24) in Adm4 construct a 3-punctured
sphere Σ and a 1-punctured torus respectively.

⋄

So constructed surfaces must have at least one puncture, thus the procedure does
not give all surfaces. However, the following theorem shows that this is the only case
it misses.

Theorem 4.37 The σ-constructions produce all oriented surfaces with at least one
puncture (i.e. all open surfaces). ⋄

Proof. Indeed, the admissible gluing σ1,1 = (13)(24) ∈ Adm4 gives an once-punctured
torus Σσ1,1 . Similarly, the admissible gluing

σ2,1 = σ1,1 ◦ (57)(68) = (13)(24)(57)(68) ∈ Adm8

gives an once-punctured surface of genus two. Following this fashion, for any g ∈ N
one can construct an once-punctured surface of genus g by using the admissible
gluing

σg,1 = (13)(24)(57)(68) . . . ((4g− 3)(4g− 1))((4g− 2)(4g)) ∈ Adm4g .
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To add k punctures to the surface, use the admissible gluing

σg,(k+1) = σg,1◦((4g+1)(4g+2))((4g+3)(4g+4)) . . . ((4g+2k−1)(4g+2k)) ∈ Adm4g+2k .

Then the statement follows from the well-known classification of oriented smooth
surfaces. ■

Notation 4.38 (σ-orbit) We take this opportunity to introduce a later useful nota-
tion. Let σ ∈ Adm2n. Denote [i] to be the orbit of

i ∈ {1, 2 . . . , 2n}

under the action of σ, [i] ′ the smaller number in the set [i], and [i] ′′ the larger number
in the set [i]. Note that the set {[1], [2], . . . , [2n]} has exactly n elements.

As an example, for σ = (13)(24), we have

[1] = {1, 3}, [1] ′ = 1, [1] ′′ = 3;

[2] = {2, 4}, [2] ′ = 2, [2] ′′ = 4;

[3] = {1, 3}, [3] ′ = 1, [3] ′′ = 3;

[4] = {2, 4}, [4] ′ = 2, [4] ′′ = 4.

⋄
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4.3 Algebraic theory

In this section, we describe the algebraic side of our main statement (cf 4.10 and 4.14),
namely the categorical center of higher genera Z.

Its definition is quite algebraic and abstract, so some motivation is supplemented
in 4.3.1. The formal definition is given in 4.3.2. Finally, some basic properties of Z
are proved in 4.3.3. In particular, we show that Z is finite abelian semisimple, and
that there is a strictly ambidextrous adjunction between Z = Z(C) and the underlying
premodular category C.

4.3.1 Motivation: Drinfeld categorical center

Abstract algebraic theories (groups, rings, modules.. etc) are ubiquitous in modern
mathematics. Among the algebraic objects, the abelian ones are simpler, and are often
first treated. One then builds the theory toward the generic cases. In group theory,
for example, one can study a group G by starting with its center Z(G) ⊆ G and then
apply induction.

Drinfeld’s categorical center is an analogue in the categorical setting. There, al-
gebras are replaced by categorical algebras (more precisely, by monoidal categories
[Eti+15]), and centers are replaced by categorical centers. As in the classical theory,
the theory of the one side helps that of the other.

In contrast to the classical case, categorical centers need not be smaller nor easier.
This is due to the fact that equalities are replaced by equivalences in the categorical
settings. Therefore, the condition ab = ba is replaced by ab ≃ ba. That is to say,
a categorical commutativity not only remembers both sides being identified, but also
how they are identified. Therefore, a typical object in the Drinfeld center Z(C) is a
pair (X ∈ Obj(C),γ), where γ is a half-braiding that encodes how X commutes with
all the others. To be more precise, a half-braiding γ of X is a natural equivalence

(−)⊗ X γ−→ X⊗ (−)

satisfying some compatibility conditions 6.62. It is worthwhile to mention that such
construction has been successful in many contexts, e.g. representation theory, statis-
tical physics, knot theory, .. etc.

Categorical center of higher genera Z = Zσ(C) = ZΣσ(C), on the other hand,
generalizes the Drinfeld center. Instead of remembering how X commutes with others,
an object (X,γ) remembers how X commutes in multiple different ways. The amount
of ways depends on the underlying surface Σ = Σσ. Therefore, an object of Zσ(C) is a
pair (X,γ), where γ is a collection of half-braidings

γ = {γ1,γ2, . . . ,γn}.

53



However, extra conditions must be carefully imposed in order to keep track of the
underlying topological data. In contrast to the case of Drinfeld center, multiple half-
braidings give essentially infinite ways to fuse via tensors, e.g. γ1γ2γ2γ1γ1γ1γ2 . . ..
Therefore, suitable commutative relations among the half-braidings are needed. This
is given in the formal definition of Zσ(C) as (:comm 1), (:comm 2), and (:comm 3) (cf
4.40).

Before moving on to the formal definition of Zσ(C), let us remark on the premodular
condition on C. As a classical analogue, it does not make sense to talk about the
center Z(S) for a set S; one needs a few extra structures on S. In the categorical
setting, in order to define the Drinfeld center, merely a plain category C is not enough.
Essentially, a monoidal structure is required. Similarly, for categorical centers of higher
genera, we need essentially the braided structures (cf 6.60), which are included in the
premodular condition. Note that we will assume premodularity for other purposes, but
the categorical center of higher genera can certainly be defined for other less restricted
categories.

4.3.2 Categorical center of higher genera (Z)

In this section, we formally define the categorical center of higher genera Zσ(C) for
a premodular category C and an admissible gluing σ ∈ Adm2n. Assume C to be a
premodular category throughout this section.

Definition 4.39 (σ-pair) Let σ ∈ Adm2n, i.e. σ an admissible gluing. Define a σ-pair
of C to be a pair (X,γ), where X is a C-object and γ is a set of half-braidings for X (cf
6.62)

γ = {γ[1],γ[2], . . . ,γ[2n]}

satisfying pairwise commutative relations in 4.40. ⋄

Recall the notation [i] from 4.38, and note that γ contains exactly n elements
instead of 2n.

Definition 4.40 ((:comm), technical commutative relations) Let Z1 and Z2 be
objects in C, and c be the braided structure of C (so a⊗ b

ca,b−−→ b⊗ a). Given [i] and
[j], there are three possible cases without loss of generality

• [i] ′ < [i] ′′ < [j] ′ < [j] ′′

• [i] ′ < [j] ′ < [i] ′′ < [j] ′′

• [i] ′ < [j] ′ < [j] ′′ < [i] ′′
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We will give the technical conditions that the γ’s should obey, following by their
graphical versions.
(1) In the first case, γ[i] and γ[j] are required to satisfy the following commutative
relation (:comm 1), functorial in Z1 and Z2.

(γ[j],Z2
⊗ 1)(1⊗ (cZ1,XcX,Z1

γ[i],Z1
)) (4.41)

=(1⊗ cZ1,Z2
)((cZ1,XcX,Z1

γ[i],Z1
)⊗ 1)(1⊗ γ[j],Z2

)(c
(−1)
Z1,Z2

⊗ 1) (4.42)

(2) In the second case, γ[i] and γ[j] are required to satisfy the following commutative
relation (:comm 2), functorial in Z1 and Z2.

(γ[j],Z2
⊗ 1)(1⊗ γ[i],Z1

) (4.43)

=(1⊗ c(−1)Z2,Z1
)(γ[i],Z1

⊗ 1)(1⊗ γ[j],Z2
)(c

(−1)
Z1,Z2

⊗ 1) (4.44)

(3) In the third case, γ[i] and γ[j] are required to satisfy the following commutative
relation (:comm 3), functorial in Z1 and Z2.

(γ[j],Z2
⊗ 1)(1⊗ γ[i],Z1

) (4.45)

=(1⊗ cZ1,Z2
)(γ[i],Z1

⊗ 1)(1⊗ γ[j],Z2
)(c

(−1)
Z1,Z2

⊗ 1) (4.46)

Notice that the first and the third case are almost the same, which is not surprising
given their topological meaning. To make them look alike, define

γ̃[i],- = c-,XcX,-γ[i],-.
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⋄

Definition 4.47 (σ-morphism) Given two σ-pairs X̄ = (X,γ) and Ȳ = (Y,β) of C,
define [X̄, Ȳ]σ to be the linear subspace of HomC(X, Y) consisting of the morphisms
(X

f−→ Y) compatible with all the half-braidings in the following sense. For any Z ∈ C,
we have for each 1 ⩽ i ⩽ 2n,

β[i],Z(1⊗ f) = (f⊗ 1)γ[i],Z. (4.48)

Finally, let the identity maps and the compositions be inherited from that of C. ⋄
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Definition 4.49 (categorical center of higher genera) Let C be a premodular
category, and σ ∈ Adm2n an admissible gluing. The categorical center of higher genera
Zσ(C) of C is defined to be the category with objects the σ-pairs of C and with
morphisms the σ-morphisms. ⋄

4.3.3 Properties of Z

In this section, we establish some basic properties of categorical centers of higher
genera. In particular, we show that they are finite semisimple abelian categories,
and that there is a strictly ambidextrous adjunction between it and the underlying
premodular category C.

4.3.3.1 Connecting functors

In this subsubsection, we establish the relation between C and its categorical center of
higher genera Zσ(C), where C is a premodular category and σ is an admissible gluing.
More precisely, there exist two additive functors Iσ and Fσ.

Iσ : C⇄ Zσ(C) : Fσ.

We will see that Iσ is both a right and a left adjoints of Fσ (thus vice versa) in
section 4.3.3.2. Such a pair of adjunction is called a (strictly) ambidextrous adjunction
in the literature.

Definition 4.50 (forgetful functor) The forgetful functor

C
Fσ←− ZσC

is defined to send objects (X,γ) to X, and to send morphisms by inclusion (recall that
the morphism space of Zσ(C) is defined as a subspace of that of C). Clearly, it is an
additive functor. ⋄

Definition 4.51 (induction functor) The induction functor

C
Iσ−→ Zσ(C)

is more complicated, so will be defined step-by-step. Define Iσ(X) to be (Xσ,γ), which
is given below.
Denote by O(C) the set of isomorphism classes of simple objects of C. Let o(C) be a
set of representatives. To each C-object X, define another C-object

Xσ :=
⊕
o(C)n

(X1 ⊗ X2 ⊗ . . . ⊗ Xn ⊗ X⊗ Xn+1 ⊗ . . . ⊗ X2n−1 ⊗ X2n), (4.52)
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where Xk runs through o(C) for those k = [k] ′, and Xk = X⋆
([k] ′) for those k = [k] ′′.

Here, recall that the first case means that k is the smaller member in the set [k], while
the second case means that k is the larger member (cf 4.38). For example,

1(12) = ⊕X∈o(C)X⊗ X⋆.

Notice that it does not depend on the choice of o(C) up to canonical isomorphisms.
Similarly, neither does Xσ for general admissible gluings σ.

Next, to each k, we define the [k]-th half-braiding γ[k] for Xσ

(−)⊗ Xσ
γ[k]−−→ Xσ ⊗ (−) (4.53)

as in the following pictures.
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To be more precise, denote the braiding of C by β. The morphism in the first picture
above is

β−,Ω2n
◦ β−,Ω2n-1 ◦ . . . ◦ β−,Ω[k] ′′+1

◦ ϕa ◦ ϕa ◦ β−,Ω[k] ′-1 ◦ . . . ◦ β−,Ω2
◦ β−,Ω1

where Ωi denotes the ith component of Ω in the picture counted from the left, and
where

ϕa ⊗ ϕa ∈ HomC(Ω[k] ′′ ,Ω[k] ′′ ⊗ (−))⊗HomC((−)⊗Ω[k] ′ ,Ω[k] ′)

is the canonical element (a sum of any dual basis) given similarly as in 2.18.
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We contend that so given (Xσ,γ) is indeed an object of Zσ(C). One needs to show
that each element in γ is a half-braiding, and that γ satisfies the commutative relations
(4.40). A proof of this can be found in (6.91). It remains to define the map on the
morphism spaces HomC(X, Y). Given a morphism X

f−→ Y, one defines

Iσ(f) := f := id⊗n⊗f⊗ id⊗n . (4.54)

To conclude, it remains to show that

• The morphism f is compatible with the half-braidings γ and β.

• The construction (−) preserves the identities and the compositions.

The first point is shown in (6.92). The second point is clear. ⋄

4.3.3.2 Ambidextrous adjunction

Both functors Fσ and Iσ are additive immediately by definition. We are ready to state
and prove the main statement of this subsubsection.

Theorem 4.55 The functors

Iσ : C⇄ Zσ(C) : Fσ

so defined in 4.50 and 4.51 are (strictly) ambidextrous adjoint to each other. In other
words, Iσ is both a left adjoint and a right adjoint of Fσ, thus vice versa. ⋄

Proof. We will prove that Fσ is right adjoint to Iσ. Namely, we need to show
that for each C-object X and for each Zσ(C)-object (Y,β), there is a vector space
isomorphism

F : HomC(X, Fσ(Y,β))⇄ HomZσ(C)(Iσ(X), (Y,β)) : G.

It will then be obvious that the other side can be proved verbatim by taking duals
(or by flipping the graph, in terms of graphical calculus). To prove such equivalence,
we construct explicit maps for both sides, and argue that each composition equals
the identity map.

Given ϕ ∈ HomC(X, Fσ(Y,β)), define its image on the other side to be

F(ϕ) :=
1

dim(Ω)n
(Π̂k∈{[1],...,[2n]}β

⋆
k,Ω) ◦ (1⊗ . . . ⊗ 1⊗ ϕ⊗ 1⊗ . . . ⊗ 1),

where Ω is the shorthand notation given in 2.19, the index set {[1] . . . , [2n]} consists
of exactly n elements instead of 2n (cf. 4.38), and the term Π̂ is explained below:
The term Π̂ is a C-morphism Iσ(Y)→ Y. Each β⋆

[i],Ω is a C-morphismΩ⊗Y⊗Ω→ Y,
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induced from Ω ⊗ Y
β[i],Ω−−−→ Y ⊗ Ω by composing the evaluation map (note that

Ω⋆ ≃ Ω). So the β⋆
[i],Ω’s are maps that kills the [i] ′-th and the [i] ′′-th component

of Ω by using β[i]. However, depending on the combinatorial nature of σ ∈ Adm2n,
one should insert suitable braidings for it to make sense. For example, if n = 3,
[1] = [4], [2] = [6], and [3] = [5], we define the Π̂ term as in the following diagram –
the order of the [i]’s does not really matter, thanks to 4.40.

That F(ϕ) is indeed a morphism in Zσ(C) follows directly from the commutative
relation 4.40, that half-braidings are by definition monoidal, and the sliding lemma
4.28.

On the other hand, given ψ ∈ HomZσ(C)(Iσ(X), (Y,β)), define its image G(ψ)
on the other side to be as indicated in the graph below.

To prove that GF is the identity map, use the fact that the half-braidings are by
definition functorial. Hence one can slide the Ω’s out the axis. Finally, the product
of the dimensions of the Ω’s cancel with the denominator.
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To prove that FG is the identity map, use the sliding lemma again. Then use the
assumption that ψ is a Zσ(C)-morphism to drag Ω down. Finally, slide the Ω’s
away from the axis as in the case for GF = 1.
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■

4.3.3.3 Z is finite semisimple abelian

In this section, we show that the categorical centers of higher general over premodular
categories are finite semisimple abelian categories.

Lemma 4.56 ((monadic) projection) Let σ ∈ Adm2n be an admissible gluing, C
be a premodular category, Z = Zσ(C) be the categorical center of higher genera of C
with respect to σ, and X = (X,γ·) and Y = (Y,β·) be Z-objects.

Recall that the morphism space Z(X, Y) is by definition a subspace of C(X, Y). Then
there is a natural projection πγ·,β· ∈ End(MorC(X, Y)) to the subspace Z(X, Y) that
respects the composition. ⋄

Proof. The full proof is tedious and postponed to 6.4. In particular, see 6.87.
Roughly, the statement follows from the monadic nature of the strictly ambidextrous
adjunctions and a condition called the “unity trace condition” (6.82). ■

Theorem 4.57 Let C be a premodular category, σ ∈ Adm2n an admissible gluing.
Then the categorical center of higher genera Zσ(C) is a finite semisimple abelian cate-
gory. ⋄

Proof. The complete proof is tedious and thus postponed to the appendix. See
6.88, 6.89, and 6.90. The main idea is to make heavy use of the projection 4.56. ■

4.4 Proof of the main theorem

In this section, we prove the main statement of this paper.

Theorem 4.58 (Main Statement) Let C be a premodular category, σ ∈ Adm2n an
admissible gluing, Σ = Σσ the surface constructed from σ. Then the Crane-Yetter
theory of Σσ over C and the categorical center of higher genera Zσ(C) are equivalent
as k-linear categories

CYΣσ(C) ≃ Zσ(C).

As the Zσ(C)’s are proven to be finite semisimple abelian 4.57, the Crane-Yetter theory
for each open surface is also a finite semisimple abelian category. ⋄

To stress the informal aspect again, we recall 4.14.
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Remark 4.59 In H1(S1) ≃ Z, one sees the algebra of the shape S1 and the shape of
the algebra Z. Our main result should be viewed as a higher analogue. That is, one
sees the (higher) algebra of the shape Σσ and the shape of the (higher) algebra Zσ. ⋄

Example 4.60 (n = 0) For n = 0, the surface Σ is the open disk, the categorical center
of higher genera reduces to the underlying premodular category C, so the theorem
recovers that CYΣ(C) ≃ C as shown in 4.2. ⋄

Example 4.61 (n = 1) For n = 1, the only possible surface is the cylinder, the
categorical center of higher genera reduces to the Drinfeld center Z(C). Hence, the
theorem recovers that CYΣ(C) ≃ Z(C) as shown in 4.3. ⋄

Example 4.62 (n = 2) For n = 2, there are two possible surfaces: the 1-punctured
torus and the 3-punctured disk. In the former case, the categorical center of higher
genera reduces to the elliptic center Zel(C), so the theorem recovers that CYΣ(C) ≃
Zel(C) as shown in 4.7. ⋄

Example 4.63 (General case) In the later case, the theorem provides a new result
by providing an explicit value Z0,3(C) for the 3-punctured sphere. Together with the
excision principle and the value for the disk and the cylinder, this allows us to actually
compute the values for all oriented surfaces, in several different ways. For example, a
4-punctured sphere has values Z0,4(C) and Z0,3(C)⊠(Z(C),⊗)Z0,3(C). By the invariance
of tqfts, we know that they are equivalent. We can then use this to compute the value
for the surface of genus 2, say, and so on. ⋄

4.4.1 Strategy

CYΣσ(C) Zσ(C)

Kar(cyΣσ(C)) Kar(ho.cyΣσ(C))

cyΣσ(C) ho.cyΣσ(C)

:=

≃

J

G

j

≃

≃

1. (Condensation of string nets) By definition, CYΣσ(C) is the Karoubi envelope
of cyΣσ(C). Find an equivalent subcategory ho.cyΣσ(C) of cyΣσ by reducing
topological data. Then of course

Kar(cyΣσ) ≃ Kar(ho.cyΣσ(C)).

2. (top → alg) Construct a functor

ho.cyΣσ(C)
j−→ Zσ(C),
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and extend it to
Kar(ho.cyΣσ(C))

J−→ Zσ(C).

3. (top ← alg) Construct a functor

Kar(ho.cyΣσ(C))
G←− Zσ(C).

4. Argue that the compositions J◦G and G◦J are equivalent to the identity functors.

5. Show that the equivalence is of finite semisimple abelian categories.

4.4.2 Proof

In this section, we give the full proof of the main statement. Each subsection corre-
sponds to each step in the outlined strategy.

4.4.3 Reducing topological data

In this subsection, we reduce the topological data by constructing a smaller yet equiv-
alent subcategory

ho.cyΣσ(C)
⊂−→
∼
cyΣσ(C). (4.64)

Definition 4.65 (ho.cyΣσ(C)) Let C be a premodular category and σ an admissible
gluing. The subcategory ho.cyΣσ(C) of cyΣσ(C) is defined as follows.

Let p be the central point of the standard disk. An object of ho.cyΣσ(C) is defined
to be the single C-colored point (p,X) for some X ∈ Obj(C). A morphism from (p,X)
to (p, Y) is the equivalence class in which the following string net lives.

Clearly, ho.cyσ(C) is a subcategory of cyσ(C). ⋄

Theorem 4.66 (equivalence of reduction) The inclusion functor

ι : ho.cyΣσ(C)
⊂−→ cyΣσ(C)

is an equivalence of categories. Clearly, it is additive. ⋄
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Proof. By a basic lemma in category theory, it is enough to show that ι is fully
faithful and essentially surjective.

(Essentially surjective) Recall that a typical object of cyΣσ(C) is a finite collection
of C-colored points on Σσ. It suffices to find an equivalent object of the form (p,X),
for some X ∈ Obj(C). This can be done by the following reductions.

1. Slightly push the points on the boundary into the smaller side.

2. Compress the points from the legs into the disk.

3. Then compress further for the points to stay in a small unit disk in the middle.

4. Project the objects to a fixed line.

5. Take their tensor products.

Each step above can be realized as an isomorphism in CYΣσ(C), so every object is
isomorphic to an object in ho.cyΣσ(C).

(Fully faithful) We ought to show that

Homho.cyΣσ(C)
((p,X), (p, Y)) ι−→ HomcyΣσ(C)

((p,X), (p, Y))

is an equivalence of vector spaces. Clearly, it is linear and injective, as the quotient
relations on both sides are the same. To prove surjectivity, we have to show that
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any arbitrary string net with given boundary condition is equivalent to a stringnet
given in the definition of ho.cyΣσ(C). This can be done by a similar compression
process as in the proof of essential surjectivity.

1. Push the stringnets away from the end of the legs.

2. Push the stringnets away from the legs.

3. Compress everything into a fixed central bar.

4. Replace the stringnets through boundaries with one strand for each leg by taking
tensor products by using the Reshetikhin-Turaev evaluation.

5. Then compress vertically.

6. Then finally replace the tangled mess in the middle by a morphism.

■
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4.4.3.1 topology → algebra

In this subsubsection, we aim to construct a functor

Kar(ho.cyΣσ(C))
J−→ Zσ(C).

As Zσ(C) is abelian (4.57), by 6.93 we only have to construct an additive functor

ho.cyΣσ(C)
j−→ Zσ(C).

To define j, recall that a typical object of ho.cyΣσ(C) is a colored point (p,X),
where p denotes the central point of the standard disk. Define its image under j to be
Xσ as in (4.52). A typical morphism from (p,X) to (p, Y) is a linear combination of
the equivalence classes of the stringnets like Γ . Define the image of [Γ ] under j to be

[Γ ] :=

where Ω is the shorthand notation given in 2.19 crossings mean the braidings of C, and
the nontrivial pairs of intertwiners are given in [KB10, (1.8)]. Extend the definition
additively, and then we have our desired additive functor j.

4.4.3.2 topology ← algebra

In this subsubsection, we construct a functor

Kar(ho.cyΣσ(C))
G←− Zσ(C).

Recall that a typical object in Zσ(C) is (X,γ), where X ∈ Obj(C) and γ is a set of
half-braidings

γ = {γ[1],γ[2], . . .γ[2n]}

satisfying some relations 4.40. Define the image of (X,γ) under G to be ((p,X),πγ),
where p denotes the central point of the standard disk, and πγ to be the equivalence
class of the following stringnets.
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1
|Ω|n

That πγ is a projection follows from the commutative relations (4.40) and a graphical

lemma [Kir11, (3.7)]. For morphisms, define the image of (X,γ) f−→ (Y,β) under G to
be
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which is indeed a morphism in the Karoubi envelope because πγ and πβ are idempo-
tents.

4.4.3.3 topology ↔ algebra

In this subsection, we will show that J◦G and G◦ J are equivalent to identity functors.
That G ◦ J ≃ 1 follows directly from the same argument of [Kir11, Figure 15]; we

just have to do it n times. On the other hand, in fact we have J ◦ G = 1. Indeed,
denote (J ◦G)((X,γ)) = (X ′,γ ′). That X ′ = X follows directly from the sliding lemma
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4.28, and that γ ′ = γ follows from the sliding lemma, and the fact that half-braidings
are by definition monoidal.

Finally, since G and J are additive, this proves the equivalence of both sides as
abelian categories. Therefore, CYΣσ(C) and Zσ(C) are equivalent as finite semisimple
abelian categories.

4.5 Outlooks and Remarks

In this section, we describe some open directions and more work in progress.

Surface combinatorics Let Σ be an open surface of a fixed topological type. In
general, there are many different admissible gluings σ with Σσ ≃ Σ. As Crane-Yetter
theory is topological, we have many differently-presented categories that are in fact
equivalent.

Moreover, the excision property 4.4

CYΣ1∪Σ2(C) ≃ CYΣ1(C)⊠CYΣ1∩Σ2
(C) CYΣ2(C)

provides more ways to obtain Σ. See 4.63 for a concrete example. It is an interesting
work to establish explicit equivalences.

Surfaces without punctures
The main statement of this work provides a nice description for the Crane-Yetter

theory of any surface with at least one puncture. While the case without punctures can
be taken care easily by patching with the excision principle, the resulting categories
are described in terms of balanced (Deligne) tensor products, which are more obscure.
The author believes that there should be a better description.

Module categorical structures
The Drinfeld center with the stacking tensor product ⊗ acts on CYΣ(C) in possibly

multiple ways. We will establish the module categorical structure for CYΣ(C) explicitly
in future work.

Concrete computations
Compute examples for Crane-Yetter theory in dimension two and three explic-

itly and concretely, especially for premodular categories C that are neither modular
nor symmetric. There are a few candidates. The first is the even part of the semi-
simplification of Rep(Uqsl2) for special q. Another family of examples are given by
Rep(X), where X denotes a finite 2-group [Ban10]. Compute C-Y invariants for 3-folds
and 4-folds directly from our result, and seek for insights.

Action of mapping class groups
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Crane-Yetter theory is expected to be a fully-extended TQFT. So given a surface
Σ, its mapping class group MCG(Σ) should act on CYC(Σ) or any premodular category
C. Compute the action explicitly.

Minimal data for Crane-Yetter
When C is modular, CY in dimension two trivializes to the number of punctures.

In particular, for closed surfaces Σ, CYΣ(C) trivialize to the Muger center of C, which
is just (Vect) due to the modularity [Eti+15, Prop 8.20.12]. On the other hand, when
C is not modular, CYΣ(C) does no seem to depend on full information from C. Find
the minimal data needed in order to determine CYΣ(C).

Piecewise-linear setting
For exposing stringnets with simplicity, we assume smooth structures for our sur-

faces. Crane-Yetter theory can be made precise in the PL setting. This is not necessary
and should be removed in future work. For an analogue in one dimension lower, see
[KB10].
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5 Explicit Factorization of Categorical Center
Section 5 is written with Ying Hong Tham.

5.1 Introduction

Topological quantum field theories (TQFT) provide sophisticated invariants for man-
ifolds. For example, the Witten-Reshetikhin-Turaev (WRT) 3D model gives rise to
the celebrated quantum invariants for knots and 3-manifolds, vastly generalizing the
Jones polynomial which disclosed deep connections among low-dimensional topology,
quantum algebras, combinatorics, field theories, and statistical mechanics. It is known
in recent years that the WRT is a special case of (more precisely, a boundary theory
of) a 4D model, the Crane-Yetter model (CY).

Another interesting aspect about TQFTs is that they provide invariants for (higher)
algebras. For example, the 2D FHK model "integrates" [BBJ18] an input algebra
A over the circle to its (classical) center Z(A). A nontrivial example is the WRT
model, which distinguishes higher algebras (e.g. modular tensor categories (MTC)) by
examining the expectation values over various Wilson loops. This is a powerful tool
for the classification program of MTCs, whose importance in mathematics and physics
can be found in [Bar+15] and [Bar+19].

We are interested in the CY model, which produces category-valued invariants of
surfaces. Similar to the FHK model, over the cylinder the CY model "integrates" the
input tensor category into its categorical center (à la Drinfeld) Z(A) 1. Moreover, over
the 2-sphere the CY model integrates the input to its Muger centralizer, which was a
key to study premodular categories [Mue03]. Given their importance, it is therefore
natural to ask for the results over other surfaces. The results for the (punctured) tori
Σ1,0 and Σ1,1 were computed in [Tha19] and [Tha22], while the rest of the surfaces
Σg,n were done in [Guu21] by showing that the CY model integrates to the categorical
center of higher genera (see a construction therein).

This work focuses on an extension of the computation. To be more precise, we
investigate the surgery picture of the CY model in dimension 2+ 1 by computing the
values (as functors) of the morphisms in the cobordism category Cob2+1. Thanks to
the excision principle [Coo23] [AT22], we only have to take care of the basic handle
move:

CY(D2 ∪D2)←→ CY(S1 × I)

F : C⊠ Cbop ←→ Z(C) : G

While the functor F is well-known to the tensor categorists [Eti+15, (8.18)], the
construction of the functor G has been left open for years. In particular, in the special

1The construction was not obvious priori and was used to construct quantum groups in the 80s.
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case where the input algebra is modular, the functor G was known to exist by dimension
argument. Despite the succinct definition of Z(C), its structure is notoriously hard.
Knowing an explicit construction of G helps us understand their structures in future
work. In this paper we do four things.

1. Explicitly construct the functor G (section 5.2.1).

2. Show that it is ambidextrous adjoint to F (section 5.2.3).

3. Explicitly construct the natural transformations witnessing the adjunctions. We
conjecture that this is the value of the CY model for the corresponding 2-
cobordism (section 5.2.2).

4. Show that G is indeed the inverse functor of F in the special case while the input
category C is modular (section 5.2.4).

Finally, we remark that the construction of G is fairly nontrivial from the viewpoint
of tensor categories, and only becomes obvious when we considere the topological
nature of the higher algebras. We hope that the community can utilize the CY model
to reveal the inner structures of tensor categories more in the future.

5.2 Main Result

For any premodular category C, we aim to construct a functor

Z(C)
G−→ C⊠ Cbop,

and prove it an inverse functor for C⊠Cbop F−→ Z(C) in the case that C is modular by
constructing explicit natural isomorphisms.

Throughout this section, we fix a premodular category C, fix a complete set of
simple objects O(C) and its dual O(C)⋆ (2.7). With a C-object X fixed, HomC(X, i⋆)
is a finite dimensional vector space over C with a natural nondegenerate pairing 2.17
with HomC(i

⋆,X). Pick and fix an arbitrary basis X[i] = {αi,1, . . . ,αi,li} for the former
space, and form its dual basis X[i]⋆ = {α1i , . . .α

li
i } in the latter. We will drop the

super/subfix when there is little danger of confusion. We also identify x and its (left)
double dual x⋆⋆ by the spherical structure of C.

5.2.1 Functor: G

Definition 5.1 (The coupling morphism Γi,(X,γ)) Let (X,γ) be an object of Z(C).
For each i ∈ O(C), define the C-morphism Γi,(X,γ) to be the product of 1

dim(Ω) and the
following morphism

i i

X Xγ

Ω
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⋄

By axiom, C is an abelian category, so there is a canonical object Ii,(X,γ) and two

canonical maps (i⊗X) ↠−→ Ii,(X,γ) and Ii,(X,γ)
⊆−→ (i⊗X) such that Γi,(X,γ) = (⊆) ◦ (↠).

Both canonical maps depend on i and (X,γ). However for simplicity we often omit
mentioning the dependence. Notice also that Γ 2i,(X,γ) = Γi,(X,γ) by the tensoriality of γ
and the sliding lemma.

Definition 5.2 (The functor G) Define G to be the functor that sends any object
(X,γ) in Z(C) to ⊕

i∈O(C)

i⋆ ⊠ Ii,(X,γ),

and any morphism (X,γ) ϕ−→ (Y,β) to⊕
i∈O(C)

1i⋆ ⊠ (↠ ◦Γi,(Y,β) ◦ (1i ⊗ ϕ) ◦ Γi,(X,γ)◦ ⊆).

⋄

The construction was motivated by the Crane-Yetter theory and the construction of
the categorical center of higher genera [Guu21]. Notice what while its existence was
known by (Frobenius-Perron) dimension argument [Eti+15], this construction is new
and is expected to provide insight in the difference between two topological quantum
field theories, the Witten-Reshetikhin-Turaev theory and the Crane-Yetter theory.

Remark 5.3 It is not hard to prove from the definition of G that G is lax monoidal.
When C is modular, lemma 5.12 implies that G is monoidal. However we do not expect
this to be the case in general. One might find counterexample in C = Rep(S3), where
S3 is the nonabelian group of order (3!). ⋄

5.2.2 Transformation: b,d,p,q

We will further construct four natural transformations

1
d−→ GF, GF

q−→ 1, 1
b−→ FG, FG

p−→ 1.

and argue that they witness FG ≃ 1 and GF ≃ 1 where C is modular.

Definition 5.4 (The transformations d and q) To construct the natural transfor-
mation 1 d−→ GF, it suffices to construct a morphism in C⊠Cbop for each object X⊠ Y.
We thus define

d = dX⊠Y :=
∑

i∈O(C)

di :=
∑

i∈O(C)

|X[i]|∑
k=1

di(k),

where di(k) denotes the product of
√
dim(i) and the following morphism:
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Y

⊠

X

Ii,F(X⊠Y)

⊠

i∗

Y
⊗
X
⊗
i

αi,k

αk
i

coev

Similarly, define the natural transformation GF q−→ 1 to be the sum

q = qX⊠Y :=
∑

i∈O(C)

qi :=
∑

i∈O(C)

|X[i]|∑
k=1

qi(k),

where qi(k) denotes the product of
√
dim(i) and the following morphism:

Y

⊠

X

Ii,F(X⊠Y)

⊠

i∗

Y
⊗
X
⊗
i

⊆

αki

αi,k

ev

⋄

Notice that while di(k) and qi(k) depend on the choice X[i], the morphisms di and qi
do not.

Definition 5.5 (The transformations b and p) To construct the natural transfor-
mation 1 b−→ FG, it suffices to construct a morphism in Z(C) from each object (X,γ) to
FG(X,γ) =

⊕
i∈O(C) i

⋆ ⊗ i⊗ X. We thus define

b = b(X,γ) :=
∑

i∈O(C)

bi

where bi denotes the product of
√
dim(i) and the following morphism:

X

Ii,(X,γ)

i∗

⊗

X
⊗
i
⊗
i∗

(↠) ◦ Γi,(X,γ)

coev
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Similarly, define the natural transformation FG p−→ 1 to be the sum

p = p(X,γ) :=
∑

i∈O(C)

pi

where pi denotes the product of
√
dim(i) and the following morphism:

X

Ii,(X,γ)

i∗

⊗

X
⊗
i
⊗
i∗

Γi,(X,γ)◦ ⊆

ev

⋄

It requires some effort to check that so defined transformations b and p are indeed
morphisms in Z(C). We prove that in the following lemma.

Lemma 5.6 Given an Z(C)-object (X,γ), the definition of the natural transformations
b = b(X,γ) and p = p(X,γ) are indeed morphisms in Z(C). ⋄

Proof. By the definition of Z(C), it suffices to show that b and d respect the half-
braidings γ and c⊗ c-1. We provide a graphical proof for this fact.
Since any proof for b also works similarly for p, so we shall only prove for b. By
definition of Z(C), it suffices to prove the following equality (functorial in Z ∈ Obj(C))

Z

X

i

γ

=
X

i

γγ

Z

However, this follows directly from the tensoriality of the half-braiding γ and the
sliding lemma 4.28. ■

5.2.3 F ⊢ G ⊢ F

In this section we prove that F and G are ambidextrous adjunctions witnessed by the
natural transformations b,d,p,q. In the next section, we will prove that F and G are
inverse to each other if the underlying category is modular.

Proposition 5.7 (G ⊢ F) The functor G is a left adjoint to the functor F, witnessed
by the natural transformations d and p. ⋄
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Proof. It amounts to proving two things, in which (·) denotes the whiskering product
in the 2-category of categories.

• (F
1F−→ F) = (F

F·d−−→ FGF
p·F−−→ F)

• (G
1G−→ G) = (G

d·G−−→ GFG
G·p−−→ G)

To prove the first equation, evaluate the term on the right on (X⊠Y) ∈ Obj(C⊠Cbop).
The result is

Σi∈O(C)
dim(i)

dim(Ω)



X

Y

⊗
X

Y

⊗

αk
i

αi,k

coev

Ω

i∗


(5.8)

which is exactly 1F(X⊠Y) by canceling dim(Ω) with theΩ-loop and by absorbing dim(i)

to the α-pair and creating 1X using lemma 2.18. The second equation can be proved
similarly. ■

Proposition 5.9 (F ⊢ G) The functor F is a left adjoint to the functor G, witnessed
by the natural transformations b and q. ⋄

Proof. It amounts to proving two things, in which (·) denotes the whiskering product
in the 2-category of categories.

• (G
1G−→ G) = (G

G·b−−→ GFG
q·G−−→ G)

• (F
1F−→ F) = (F

b·F−−→ FGF
F·q−−→ F)

To prove the first equation, evaluate the term on the right on (W, ζ) ∈ Obj(Z(C)).
The result is

⊕
i,j∈O(C)

dim(i)

dim(Ω)2


Ij ⊆

W
⊗
j⊠

j∗

ζ

δ

Ij↠
W
⊗
j ⊠

j∗

δ


(5.10)

which is indeed iG(W,ζ) by absorbing dim(i) into the δ-pair to create 1j and by canceling
the Ω’s. The second equation can be proved similarly. ■

Remark 5.11 (G is a C⊠ Cbop-bimodule map) Since F is monoidal, the fact that
G is adjoint to F makes G a C⊠Cbop-bimodule map by the proof of [DSS19, corollary
2.13]. The authors thank Thibault Décoppet for pointing out this fact. ⋄
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5.2.4 C modular ⇒ G is an inverse of F

We state our main theorem in this paper and will provide a proof after a few lemmas.

Theorem 5.12 (Main Theorem) If C is modular, then the functor G is a factoriza-
tion of the Drinfeld center Z(C). More precisely, G is an inverse functor for F witnessed
by the natural transformations b,d,p,q. ⋄

Proof. It amounts to proving that the compositions

qd : 1→ GF→ 1,

dq : GF→ 1→ GF,

pb : 1→ FG→ 1,

bp : FG→ 1→ FG

(5.13)

are equal to identity natural transformations. These are proved respectively in lemma
5.14, 5.16, 5.18, and 5.19. ■

Lemma 5.14 Let X⊠ Y be an object in C⊠ Cbop. Then the morphism

X⊠ Y
q◦d−−→ X⊠ Y

is equal to the identity morphism idX⊠Y . ⋄

Note that this lemma does not assume modularity.
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Proof. We prove the equality by direct computation.

q ◦ d = (
∑
i

qi) ◦ (
∑
j

dj)

=
∑
i

qi ◦ di

=
∑
i

|X[i]|∑
k=1

|X[i]|∑
r=1

dim(i)qi(k) ◦ di(r)

=
∑
i

|X[i]|∑
k=1

dim(i)qi(k) ◦ di(k)

=
1

dim(Ω)

∑
i

|X[i]|∑
k=1

dim(i)


Y

X

⊠

Y

X

⊠
coev

αi,k

αk
i

αl
i

αi,l

Ω
i


= idX⊠Y

(5.15)

The first pair of sums collapse to a single sum because HomC(i, j) is zero unless i = j.
The second pair of sums collapse to a single sum by the simplicity of i and the definition
of the pairing between HomC(X, i⋆) and HomC(i

⋆,X). The factor dim(i) is absorbed
to the upper pair of α to make the identity of X by 2.18. The lower pair of α traces to
δkl by definition. ■

Lemma 5.16 Suppose C is modular. Let X ⊠ Y be an object in C ⊠ Cbop. Then
(d ◦ q)X⊠Y is equal to the identity isomorphism idGF(X⊠Y). ⋄

Proof. Recall that the image of X⊠ Y under GF is⊕
i∈O(C)

i⋆ ⊠ Ii,
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where Ii denotes Ii,F(X⊠Y). We will prove the equality by direct computation.

d ◦ q = (
∑
i

di) ◦ (
∑
j

qj)

=
∑
i

di ◦ qi

=
∑
i

|X[i]|∑
k=1

|X[i]|∑
r=1

dim(i)di(r) ◦ qi(k)

=
∑
i

|X[i]|∑
k=1

dim(i)di(k) ◦ qi(k)

=
1

dim(Ω)

∑
i

|X[i]|∑
k=1

dim(i)


Ii

i∗

⊠

Ii

i∗

⊠

⊆
Y

X

i

↠

Y

X

i

αi,k αk
i


= idGF(X⊠Y)

(5.17)

The pairs of sums collapse as in the proof of the last lemma. The cut skeins are
connected and protected by a Ω-circle by lemma 2.21. And the factor dim(i) is
absorbed to make the identity of X by 2.18. ■

Lemma 5.18 Suppose C is modular. Let (X,γ) be an object in Z(C). Then (p◦b)(X,γ)
is equal to the identity isomorphism id(X,γ). ⋄

Proof. It is not hard to check that (p ◦ b)(X,γ) is equal to the product of 1
dim(Ω) and

the following morphism

Ω

γ
Ω

By lemma 2.21, the horizontal Ω kills off all nontrivial components in the vertical Ω
providing the desired equality. ■

Lemma 5.19 Suppose C is modular. Let (X,γ) be an object in Z(C). Then (b◦p)(X,γ)
is equal to the identity isomorphism idFG(X,γ). ⋄
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Proof. We prove the equality by direct computation.

γ γ

= =

= =

The tensoriality of γ allows the left circle to attach on the right; thus follows the
first equality. The sliding lemma allows us to slide one strand to the background, and
then again the tensoriality of γ allows detachment; thus follows the second equality.
Finally, we sear the two strands and use lemma 2.21 to smooth it out; thus follows the
third equation. ■

5.3 Discussion & Prospect

Using the topological insight from the Crane-Yetter TQFT, we provided an explicit
equivalence between C ⊠ Cbop and Z(C) for modular categories C. With the same
idea, we can also provide explicit equivalences (and witnessing natural isomorphisms)
between the categorical centers of higher genera ZΣ(C) [Guu21] and Cn, where Σ is an
oriented surface with n punctures. In particular, this provides an explicit equivalence
between C and the elliptic Drinfeld center Zel(C) [Tha19].

We stress again that this only works in the case where C is modular. This happens
for a good reason. Over modular categories, the Crane-Yetter theory is expected
to trivialize to the Witten-Reshetikhin-Turaev theory by taking boundaries. It is
interesting to investigate the situation where C is not modular. In fact, this is the
motivation of the current paper. We expect that by measuring how the adjoint functors
F and G fail to be an inverse of the other, the difference between both theories will
become clear, leading to a better understanding of the full power of the Crane-Yetter
theory. Moreover, this will also help understand the structures of the categorical center
of higher genera (note that the Drinfeld center is hard enough).

One way to attack this problem is to look for a general tool in category theory
that measures the failure of the invertibility of a pair of adjoint functors. As F and
G are adjoint to each other, the failure can be measure by the induced (co)monads.
We expect that the effect of the (co)monads should coincide with tensoring with some
object whose size is controlled by the size of Mu(C). This seems to be the case for GF
but not FG. Successfully characterizing the effect of both GF and FG in such a way
will provide a better proof for theorem 5.12 and a better understanding of the failure
of invertibility. Before such characterization is known, there is hope to make guesses
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based on explicit computations for various genuine premodular categories: (super)-
groups, crossed modules, and the even part of the semisimplification of Rep(Uq(sl2))
[KO01]. We leave this for future work.

83



6 Appendix
Most sections in the appendix are added for the sake of completeness.

6.1 Abelian categories

A complete definition of an abelian category is given in this subsection. In particular,
see 6.25.

Definition 6.1 (pre-additive category) [Mac10, I.8. p.28] A pre-additive category,
or called an Ab-category, is a category A in which each hom-set is an (additive) abelian
group, with respect to which the composition maps are bilinear. ⋄

Definition 6.2 (biproduct) [Mac10, VIII.2. Definition] Let A be an pre-additive
category (6.1). For each pair of A-objects (a,b), define their biproduct to be the pair
(c, {pa,pb, ia, ib}), where c is an A-object, pa and pb are morphisms from c to x, ia
and ib are morphisms from a and b to c, with the equations satisfied:

1a = paia (6.3)

1b = pbib (6.4)

1c = iapa + ibpb. (6.5)

⋄

Definition 6.6 (initial object) [Mac10, p.20] Let C be a category. An initial object
s in C is a C-object such that to each C-object a there is exactly one C-morphism
s→ a. ⋄

Definition 6.7 (terminal object) [Mac10, p.20] Let C be a category. A terminal
object t in C is an C-object such that to each object a there is exactly one morphism
a→ t. ⋄

Definition 6.8 (null object) [Mac10, p.20] Let C be a category. A null object z is a
C-object which is both initial (6.6) and terminal (6.7). ⋄

Definition 6.9 (additive category) [Mac10, VIII.2. p.196] An additive category A
is an pre-additive category (6.1) that satisfies the following conditions

• A has a null object (6.8).

• A has a binary biproduct for each pair of A-objects (6.2).

⋄
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Definition 6.10 (zero morphism) [Mac10, p. VIII.1.] Let C be a category with a
null object z (6.8). Let a,b be C-objects. The zero morphism from a to b is defined
to be the composition of the morphism from a to z and the morphism from z to b

(a
0−→ b) := (a→ z→ b).

⋄

Definition 6.11 (monic morphism) [Mac10, p.19] Let C be a category. A monic
morphism is a C-morphism a

m−→ b such that the left cancellation rule holds:

(mf = mg)⇒ (f = g). (6.12)

⋄

Definition 6.13 (epi morphism) [Mac10, p.19] Let C be a category. An epi mor-
phism is a C-morphism a

m−→ b such that the right cancellation rule holds:

(fe = ge)⇒ (f = g). (6.14)

⋄

Definition 6.15 (diagonal functor) Let C and J be categories. The diagonal functor
∆ from C to CJ is defined to send each C-object c to the constant functor ∆c, and to
send each C-morphism c

f−→ c to the constant natural transform ∆f. (cf [Mac10, p.67]).
⋄

Definition 6.16 (universal morphism) [Mac10, p. III.1.] Let C and D be categories.
Let c be an C-object. Let D S−→ C be a functor. A universal morphism from c to S
is a pair (r,u), where r is D-object and c u−→ Sr is an C-morphism that satisfies the
following condition:

For each pair (d, f) ∈ Obj(D) × C(c,Sd), there is a unique D-morphism r
f ′−→ d

with Sf ′ ◦ u = f. ⋄

Definition 6.17 (categorical limit) [Mac10, p. III.4.] Let C and J be categories and
J
F−→ C be a functor. A limit for the functor F is defined to be a universal morphism

(6.16) (r, v) from ∆ to F, where ∆ is the diagonal functor (6.15) from C to CJ. ⋄

Definition 6.18 (equalizer) [Mac10, p. III.4.] Let C be a category, a,b be C-objects,
and f,g be C-morphisms from a to b. The equalizer for the pair (f,g) is defined to
be the limit (6.17) of the corresponding functor P J−→ C, where P denotes the category
with exactly two objects 0, 1 and two non-identity morphisms 0⇒ 1. ⋄

Definition 6.19 (kernel) [Mac10, p. VIII.1.] Let C be a category with a null object
(6.8). A kernel of a morphism a

f−→ b is defined to be an equalizer (6.18) for the pair
(f,a 0−→ b), where 0 denotes the zer morphism (6.10). ⋄
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Definition 6.20 (cokernel) [Mac10, p.192] The notion of a cokernel is the dual of
the notion of a kernel (6.19). ⋄

Definition 6.21 (pre-abelian category) An abelian category is an additive category
(6.1) in which ever morphism has a kernel (6.19) and a cokernel (6.20). ⋄

Lemma 6.22 Let A be a pre-abelian category. Then each morphism X
f−→ Y in A has

a canonical factorization [Ive, p. I.1]

f =
(
X→ cok(ker(f)) f ′−→ ker(cok(f))→ Y

)
. (6.23)

⋄

Definition 6.24 (exact category) An exact category is a pre-abelian category in
which the middle morphism of the canonical factorization (6.22) f ′ of each morphism
X

f−→ Y is an isomorphism. ⋄

Definition 6.25 (abelian category) [Mac10, VIII.3. Definition] An abelian category
is an pre-abelian category (6.1) in which every monic morphism (6.11) is a kernel, and
every epi morphism (6.13) is a cokernel. ⋄

Lemma 6.26 Let A be a pre-abelian category. Then the followings are equivalent.

• A is abelian.

• A is exact.

⋄

Lemma 6.27 To summarize, an abelian category is a category such that the followings
are satisfied.

• (pre-additivity) Every hom set is an abelian group such that every composition
is bilinear.

• (additivity) A null object and binary biproducts exist.

• (pre-abelianity) Every morphism has a kernel and cokernel.

• (exactness) Canonical factorizations induce isomophisms between the images and
coimages

cok ◦ ker(−) −→ ker ◦ cok(−).

⋄

Lemma 6.28 Let C be an abelian category and D be an additive category. Suppose
there is an additive equivalence of categories C F−→ D. Then D is abelian. ⋄
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Proof. By 6.27, we have to show that the additive category D is pre-abelian and
exact.

Let X ′ ϕ ′
−→ Y ′ be a D-morphism. Pick C-objects X and Y such that FX and FY

are isomorphic to X ′ and Y ′ respectively. Since

C(X, Y) ≃ D(FX, FY) ≃ D(X ′, Y ′),

ϕ ′ has kernels and cokernels, and its canonical factorization induces isomorphisms
between images and coimages. ■

6.2 Semisimple categories

Throughout the whole section, assume that k is an algebraically closed field of charac-
teristic 0.

Definition 6.29 (subobject) [Eti+15, p. 1.3.5] Let C be a category and X be a
C-object. A subobject of X is a monic C-morphism Y

f−→ X. ⋄

Definition 6.30 (simple object) [Eti+15, p. 1.5.1] Let C be an abelian category.
A simple object X of C is a nonzero C-object whose only subobjects are 0

0−→ X and
X

idX−−→ X. ⋄

Definition 6.31 (semisimple object) [Eti+15, p. 1.5.1] Let C be an abelian category.
A semisimple object X of C is a direct sum of some simple objects of C. ⋄

Definition 6.32 (semisimple category) [Eti+15, p. 1.5.1] A semisimple category is
an abelian category whose objects are all semisimple. ⋄

Definition 6.33 (object of finite length) [Eti+15, p. 1.5.3] Let X be an object of
an abelian category C. We say that X is of finite length if there exists a positive integer
n and a sequence of monic morphisms

0 = X0 → X1 → · · ·→ Xn = X (6.34)

each of whose cokernel object Xi+1/Xi is simple. Call n the length of this sequence. ⋄

Remark 6.35 Such a sequence is called a Jordan-Holder series for X. By Jordan-
Holder theorem [Eti+15, p. 1.5.4], all Jordan-Holder series of X have the same length.

⋄

Definition 6.36 (length of an object) [Eti+15, p. 1.5.5] Let C be an abelian cate-
gory and X a C-object. The length X is defined to be the length of one, thus all, of its
Jordan-Holder series. ⋄
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Definition 6.37 (linear category over a field) [Eti+15, p. 1.2.2] Let k be a field.
A k-linear category is an additive category C whose hom-spaces are k-vector spaces,
such that all compositions of morphisms are k-linear maps. ⋄

Definition 6.38 (locally finite abelian category over a field) [Eti+15, p. 1.8.1]
A locally finite category (or an Artinian category) over k is a k-linear abelian category
C that satisfies the following conditions.

• Every object has finite length.

• Every hom space is a finite dimensional k-vector space.

⋄

Definition 6.39 (finite abelian category over a field) [Eti+15, p. 1.8.6] A finite
category abelian category C over k is a locally finite abelian category over k such that

• C has enough projectives, i.e. every simple object of C has a projective cover.

• The set of isomorphism classes of simple objects is finite.

⋄

Remark 6.40 By discussion before [Eti+15, p. 1.8.6], a finite k-linear abelian category
C is equivalent to the category of finite dimensional modules over a finite dimensional
k-algebra A. ⋄

6.3 Tensor categories

Recall that the Crane-Yetter theory CY comes in a family, of which member depends
on a type of algebraic data called the premodular categories. Despite its technical
definition (finite semisimple ribbon braided rigid tensor category), it does not hurt too
much to think of a premodular category as a higher categorical analogue of a finite
abelian group: the “braided tensor” structure encodes the (higher) group operation,
the “rigid” structure encodes the (higher) inverses, and the “ribbon” structure ensures
that (g-1)-1 is equivalent to g.

In this section, a complete definition for a premodular category 6.68 is collected
from [Eti+15]. Throughout the whole section, assume that k is an algebraically closed
field of characteristic 0.

Definition 6.41 (monoidal category) [Eti+15, p. 2.1.1] A monoidal category is a
septuple

(C,⊗,a, 1, ι, l, r),
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that satisfies the pentagon axiom and the triangle axiom [Eti+15, (2.2)], where C is a
category, C× C ⊗−→ C is a bifunctor,

((−1 ⊗−2)⊗−3)
a−→ (−1 ⊗ (−2 ⊗−3))

is a natural equivalence, 1 is an object in C, 1⊗1
ι−→ 1 is an isomorphism, (−)

l−→ (1⊗−)

and (−)
r−→ (−⊗ 1) are natural equivalences.

We will abuse notations and denote the septuple by C. The bifunctor ⊗ is called
the tensor product bifunctor, the pair (1, ι) is called the unit object, and the natural
equivalence a is called the associativity isomorphism ⋄

Definition 6.42 (duals of an object) [Eti+15, 2.10.1 and 2.10.2] Let X be an object
of a monoidal category (C,⊗, 1,a, ι, l, r). A left dual of X is an object L with two
morphisms

L⊗ X ev−→ 1 (6.43)

1
coev−−→ X⊗ L (6.44)

such that the compositions of the following the identity morphisms

X
coev⊗1−−−−→ (X⊗ L)⊗ X a−→ X⊗ (L⊗ X) 1⊗ev−−−→ X, (6.45)

L
1⊗coev−−−−→ L⊗ (X⊗ L) a(-1)−−−→ (L⊗ X)⊗ L ev⊗1−−−→ L. (6.46)

Similarly, a right dual of X is an object R with two morphisms

X⊗ R ev ′−−→ 1 (6.47)

1
coev ′−−−→ R⊗ X (6.48)

such that the compositions of the following are the identity morphisms

X
1⊗coev ′−−−−−→ X⊗ (R⊗ X) a(-1)−−−→ (X⊗ R)⊗ X ev ′⊗1−−−→ X, (6.49)

R
coev ′⊗1−−−−−→ (R⊗ X)⊗ R a−→ R⊗ (X⊗ R) 1⊗ev ′−−−→ R. (6.50)

⋄

Remark 6.51 It can be proved that the left (resp., right) dual, if exists, is unique up
to isomorphism [Eti+15, p. 2.10.5]. We will denote it by X⋆ (resp., ⋆X). ⋄

Definition 6.52 (rigid object) [Eti+15, p. 2.10.11] Let C be a monoidal category.
A rigid object X of C is a C-object that has a left dual and a right dual. ⋄

Definition 6.53 (rigid category) [Eti+15, p. 2.10.11] A rigid category C is a monoidal
category all of whose objects are rigid. ⋄
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Definition 6.54 (multitensor category) [Eti+15, p. 4.1.1] A multitensor category
C over k is a locally finite k-linear abelian rigid monoidal category if the bifunctor ⊗
in the monoidal structure is k-bilinear on morphisms. ⋄

Lemma 6.55 [Eti+15, p. 4.2.1] Let C be a multitensor category. Then the bifunctor
⊗ is exact in both factors. ⋄

Proof. It is a fun exercise to prove. A sketch is as follows. Let X be a C-object.
The rigidity says that X⊗(−) is a left and right adjoint functor. In general category
theory, adjoint functors preserve all (co)limits essentially because Hom does and
Yoneda lemma. In particular, they preserve (co)kernels. ■

Definition 6.56 (multifusion category) [Eti+15, p. 4.1.1] A multifusion category
over k is a multitensor category that is finite over k and semisimple. ⋄

Definition 6.57 (fusion category) [Eti+15, p. 4.1.1] A fusion category C is a mul-
tifusion category with EndC(1) ≃ k. ⋄

Definition 6.58 (braiding) [Eti+15, p. 8.1.1] A braiding of a monoidal category
(C,⊗, 1,a, ι, l, r) is a natural equivalence

(−1 ⊗−2)
c−→ (−2 ⊗−1) (6.59)

such that the hexagon diagram [Eti+15, (8.1)] holds. ⋄

Definition 6.60 (braided category) [Eti+15, p. 8.1.2] A braided category is a
monoidal category with a braiding. ⋄

Remark 6.61 The Yang-Baxter equation holds automatically in a braided category
[Eti+15, p. 8.1.10]. ⋄

Definition 6.62 (half-braiding) [Eti+15, (7.41)] A half-braiding for an object X in
a monoidal category (C,⊗, 1,a, ι, l, r) is a natural equivalence

(X⊗−)
c−→ (−⊗ X) (6.63)

such that the hexagon diagram [Eti+15, (7.41)] holds. ⋄

Definition 6.64 (twist) [Eti+15, p. 8.10.1] Let C be a braided rigid monoidal cate-
gory. A twist of C is an element θ ∈ Aut(idC) such that for each C-object X, Y

θX⊗Y = (θX ⊗ θY) ◦ cY,X ◦ cX,Y (6.65)

⋄
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Definition 6.66 (ribbon structure) [Eti+15, p. 8.10.1] Let C be a braided rigid
monoidal category. A twist θ is called a ribbon structure if (θX)⋆ = (θ(X⋆)), where the
first dual is taken in a rigid category. ⋄

Definition 6.67 (ribbon tensor category) [Eti+15, p. 8.10.1] A ribbon tensor cat-
egory is a braided rigid monoidal category equipped with a ribbon structure. ⋄

Definition 6.68 (premodular category) [Eti+15, p. 8.13.1] A premodular category
is a ribbon fusion category. ⋄

Definition 6.69 (pivotal structure) [Eti+15, p. 4.7.7] Let C be a rigid monoidal
category. A pivotal structure of C is a natural isomorphism

(−)
a−→
∼

(−)⋆⋆

such that aX⊗Y = aX⊗aY for all C-objects X and Y. We call a rigid monoidal category
pivotal if it is equipped with a pivotal structure. ⋄

Definition 6.70 (pivotal dimension) Let C be a rigid monoidal category with a
pivotal structure a. Let X be a C-object. We define the pivotal dimension with
respect to a to be

dima(X) := Trace(aX) ∈ EndC(1).

⋄

Definition 6.71 (spherical structure) [Eti+15, p. 4.7.14] Let C be a rigid monoidal
category with a pivotal structure a. The latter is called a spherical structure if

dima(X) = dima(X
⋆)

for any C-object X. ⋄

Remark 6.72 [Eti+15, p. 8.13.1] Equivalently, a premodular category is also a braided
fusion category equipped with a spherical structure. ⋄

Definition 6.73 (modular category) [Eti+15, 8.14 and 8.20.12] A modular category
is a premodular category with a non-degenerate S-matrix. ⋄

6.4 Adjunctions as monads

Definition 6.74 Let X be a strict 2-category, C and D be X-objects, and C F−→ D and
C

G←− D be morphisms. We say that F is right adjoint to G, that G is left adjoint to F,
if there exists 2-morphisms

1D
η⇒ FG, GF

ϵ⇒ 1C
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such that the followings

G = G ◦ 1D
1G∗η⇒ G ◦ F ◦G ϵ∗1G⇒ G

F = 1D ◦ F η∗1F⇒ F ◦G ◦ F 1F∗ϵ⇒ F

equal the identity 2-morphisms 1G and 1F respectively. Denote F ⊢ G in this case.
We call η and ϵ the unit and counit of the monad, and call the coherence condition
the rigidity condition. ⋄

Definition 6.75 Let X be a strict 2-category, D be an X-object. Then E = EndX(D)

is a 1-category. A monad of D is a monoid object T = (T ,η,µ) in E. That is to say, T
is an E-object, and (1D

η⇒ T) and (T 2
µ⇒ T) are E-morphisms such that

(1T ∗ η) = 1T = µ ◦ (η ∗ 1T ), µ ◦ (µ ∗ 1T ) = µ ◦ (1T ∗ µ).

⋄

Theorem 6.76 Let X be a strict 2-category, C and D be X-objects, (C
F−→ D) and

(C
G←− D) be morphisms such that F is right adjoint to G. Then T = FG has a monad

structure given by
(1D

η⇒ T), (T 2
µ⇒ T)

where µ is defined as FGFG 1F∗ϵ∗1G⇒ FG. Dually, ⊥= GF has a comonad structure. ⋄

Proof.

1T

= 1F ∗ 1G

= 1F ∗ (G
1G∗η⇒ GFG

ϵ∗1G⇒ G)

= (FG ◦ 1D
1F∗1G∗η⇒ FGFG

1F∗ϵ∗1G⇒ FG)

= (T ◦ 1D
1T∗η⇒ T ◦ T µ⇒ T)

1T

= 1F ∗ 1G

= (F
η∗1F⇒ FGF

1F∗ϵ⇒ F) ∗ 1G

= (1D ◦ FG η∗1F∗1G⇒ FGFG
1F∗ϵ∗1G⇒ FG)

= (1D ◦ T η∗1T⇒ T ◦ T µ⇒ T)
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(T 3
1T◦µ⇒ T 2

µ⇒ T)

= ((FG)(FGFG)
1FG∗1F∗ϵ∗1G⇒ FGFG

1F∗ϵ∗1G⇒ FG)

= 1F ∗ (GFGF
1GF∗ϵ⇒ GF

ϵ⇒ 1D) ∗ 1G

= 1F ∗ (GFGF
ϵ∗ϵ⇒ 1D) ∗ 1G

= . . . = (T 3
µ◦1T⇒ T 2

µ⇒ T).

■

Theorem 6.77 Let C and D be categories, C F−→ D and C G←− D be functors such that
F is a right adjoint functor to G, i.e. there exists natural equivalence Φ such that

C(Gd, c) ∼−−−→
Φd,c

D(d, Fc).

Then F is right adjoint to G the strict 2-category Cat of all categories. ⋄

Proof. From the given natural equivalence Φ, we have to construct 1D
η⇒ FG and

GF
ϵ⇒ 1C that satisfy the conditions as in 6.74. We contend that ηd = Φd,Gd(1Gd)

and ϵc = Φ
(-1)
Fc,c (1Fc) are as desired.

Let us first show that ηd is indeed a natural transformation from 1D to FG. So
is ϵc similarly, whose proof will be omitted. Let d ϕ−→ d ′ be a D-morphism. We
shall prove that the following commutative diagram commute.

d FGd

d ′ D

ηd

ϕ FGϕ

ηd ′

First notice that

Φ
(-1)
d,Gd ′(ηd ′ ◦ ϕ) = (Gϕ)⋆ ◦Φ(-1)

d ′,Gd ′ ◦ (ϕ⋆)(-1)(ηd ′ ◦ ϕ)

= (Gϕ)⋆ ◦Φ(-1)
d ′,Gd ′(ηd ′)

= (Gϕ)⋆(1Gd ′)

= Gϕ

As Φ is an equivalence, it suffices to prove that Φ(-1)
d,Gd ′((FGϕ) ◦ ηd) is also Gϕ.
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Φ
(-1)
d,Gd ′((FGϕ) ◦ ηd) = Φ

(-1)
d,Gd ′((FGϕ) ◦Φd,Gd(1Gd))

= (Gϕ)⋆ ◦Φ(-1)
d,Gd ◦ (FGϕ)

(-1)
⋆ ((FGϕ) ◦Φd,Gd(1Gd))

= (Gϕ)⋆ ◦Φ(-1)
d,Gd(Φd,Gd(1Gd))

= (Gϕ)⋆(1Gd)

= Gϕ

which is due to the naturality of Φ

C(Gd,Gd) D(d, FGd)

C(Gd,Gd ′) ′ D(d, FGd ′)

Φd,Gd

(Gϕ)⋆ (FGϕ)⋆

Φd,Gd ′

Next, we have to show the rigidity conditions of η and ϵ. Indeed, from the
naturality of Φ we have the commutative diagram

C(GFGd,Gd) D(FGd, FGd)

C(Gd,Gd) D(d, FGd)

ΦFGd,Gd

(G(ηd)
⋆) η⋆d

Φd,Gd

and thus the following holds

[(ϵ ∗ 1G) ◦ (1G ∗ η)]d = (ϵ ∗ 1G)d ◦ (1G ∗ η)d
= (GFGd

ϵGd−−→ Gd) ◦G(d ηd−→ FGd)

= Gd
G(ηd)−−−−→ GFGd

ϵGd−−→ Gd

= Gd
G(ηd)−−−−→ GFGd

Φ
(-1)
FGd,Gd(1(FGd))−−−−−−−−−−→ Gd

= (G(ηd))
⋆
(
GFGd

Φ
(-1)
FGd,Gd(1(FGd))−−−−−−−−−−→ Gd

)
=

(
Φ

(-1)
d,Gd ◦ η

⋆
d

)
(1FGd)

= Φ
(-1)
d,Gd(ηd) = 1Gd.

The other rigidity condition follows similarly from the commutative diagram

C(GFc,GFc) D(Fc, FGFc)

C(GFc, c) D(Fc, Fc)

ΦFc,GFc

(ϵc)⋆ (Fϵc)⋆

ΦFc,c
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■

Therefore, adjoint functors give adjoint pairs in the 2-category Cat, which in turn
gives a monad and a comonad in Cat. Let’s summarize the result in the following
theorem.

Theorem 6.78 Let C F−→ D and C G←− D be functors such that F is right adjoint to G.
Then there is a D-monad (T = FG,η,µ) and a C-comonad (⊥= GF, ϵ,∆), where

ηd = Φd,Gd(1(Gd)),µ = 1F ∗ ϵ ∗ 1G,

ϵc = Φ
(-1)
Fc,c (1Fc),∆ = 1G ∗ η ∗ 1F.

⋄

For the rest of this subsection, assume that C F−→ D is a right adjoint functor of C G←−
D with the natural transformation Φ. The categories C and D are intimately tided
together by the adjoint functors between them. For example, a part of compositions
in C can be identified as monadic composition in D.

Theorem 6.79 The usual composition map

C(Gx,Gy)× C(Gy,Gz) ◦−→ C(Gx,Gz)

is identified under Φ as the Kleisi composition

D(x, Ty)×D(y, Tz) ◦T−→ D(x, Tz)

◦T (f,g) 7→ µZ ◦ (Tg) ◦ f.

⋄

Proof. Since Φ is an equivalence, and since

Φ(◦(Φ(-1)(f,g))) = Φx,Gz(Φ
(-1)
y,Gz(g) ◦Φ

(-1)
x,Gy(f)),

it suffices to prove that

Φ
(-1)
x,Gz(µZ ◦ (Tg) ◦ f) = Φ

(-1)
y,Gz(g) ◦Φ

(-1)
x,Gy(f).

The main task would be to express µZ in terms of Φ.
From the commutative diagram

C(GFGz,Gz) D(FGz, FGz)

C(Gy,Gz) D(y, FGz)

ΦFGz,Gz

(−)◦G(g) (−)◦g
Φy,Gz
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we have

µZ ◦ (Tg) ◦ f

= F(Φ
(-1)
FGz,Gz(1FGz) ◦ F(G(g)) ◦ f)

= F(Φ
(-1)
FGz,Gz(1FGz) ◦G(g)) ◦ f)

= F(Φ
(-1)
y,Gz(1FGz ◦ g)) ◦ f)

= F(Φ
(-1)
y,Gz(g)) ◦ f)

It remains to prove that

Φ
(-1)
x,Gz(F(Φ

(-1)
y,Gz) ◦ f) = Φ

(-1)
y,Gz(g) ◦Φ

(-1)
x,Gy(f),

which directly follows from the commutative diagram obtained from the naturality
of Φ:

C(Gx,Gy) D(x, FGy)

C(Gx,Gz) D(x, FGz)

Φx,Gy

Φ(-1)(g)◦(−) F(Φ(-1))◦(−)

Φx,Gz

■

The natural equivalence Φ isn’t as easy to manipulate as the (co)monads it induces.
We collect more statements that express the former in terms of the later.

Lemma 6.80 In terms of (co)monad, Φ can be expressed as follows.

Φd,c(ϕ) = F(ϕ) ◦ ηd,

Φ
(-1)
d,c (ψ) = ϵc ◦G(ψ).

⋄

Proof. These are evident from the commutative diagrams below respectively.

C(Gd,Gd) D(d, FGd)

C(Gd, c) D(d, Fc)

Φd,Gd

Φ◦(−) (Fϕ)◦(−)

Φd,c

C(GFc, Fc) D(Fc, Fc)

C(Gd, c) D(d, Fc)

ΦFc,c

(−)◦ψ (−)◦G(ψ)
Φd,Fc

■
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Instances arise where two functors are adjoint to each other from both sides. We
call them (strict) ambidextrous functors.

Definition 6.81 (ambidextrous adjunctions) Let C F−→ D and C G←− D be functors.
We call F and G a pair of (strict) ambidextrous functors if F is both left-adjoint and
right-adjoint to G. ⋄

Two monads and two comonads arise from a pair of ambidextrous functors. More
precisely, that F ⊢ G gives a natural D-monad (T = FG,η,µ) and a natural C-comonad
(⊥= GF, ϵ,∆). Similarly, that F ⊣ G gives a natural D-comonad (T = FG,η ′,µ ′) and
a natural C-monad (⊥= GF, ϵ ′,∆ ′). In particular, we have a bimonad structure on
T = (T ,η,µ, ϵ,∆), with unit η, multiplication µ, counit ϵ, and co-multiplication ∆.

Definition 6.82 We say the bimonad T is of unity trace if

(1D
η−→ T

η ′−→ 1D) = (1D
1(1D)−−−→ 1D).

We say the bimonad T is of collapsable diamond if

(T
µ ′
−→ T 2

µ−→ T) = (T
1T−→ T).

⋄

By the following lemma, the second condition is superseded by the first one.

Lemma 6.83 If such adjunction is of unity trace for ⊥, then T is of collapsable dia-
mond. ⋄

Proof.

(T
µ ′
−→ T 2

µ−→ T)

= (FG
1F∗ϵ ′∗1G−−−−−−→ F(GF)G

1F∗ϵ∗1G−−−−−→ FG)

= 1F ∗ (1
ϵ ′−→⊥ ϵ−→ 1) ∗ 1G

= 1F ∗ 1(1C) ∗ 1G = 1T

■

The unity trace condition turns out to be crucial for our work - essentially it guar-
antees an averaging map analogue to that in the theory of finite group representations.

Lemma 6.84 Let T = (T ,η,µ, ϵ,∆) be a D-bimonad of unity trace. Then for each D-

object x and y, the morphism [D(x,y)
ηy◦(−)
−−−−→ D(x, Ty)] is monic, the arrow [D(x, Ty)

η ′y◦(−)
−−−−→

D(x,y)] is epic, and moreover the map (ηy ◦ η ′y) is a projection map onto the image of
(ηy ◦−). ⋄
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Proof. The unity trace condition says that η ′y ◦ ηy = 1y, so the first two conditions
follow. The last statement is also evident since

(η ′yηy)
2 = η ′y1yηy = η

′
yηy.

■

Therefore, in the context of (strict) ambidextrous adjoint functors, the unity trace
condition yields a projection map

C(Gx,Gy)
πx,y−−→ D(x,y)

from the equivalence C(Gx,Gy) ≃ D(x, Ty). In the next lemma, we see that this
projection is functorial without any extra assumption.

Theorem 6.85 Let F : C↔ D : G be a pair of strictly ambidextrous adjoint functors,
and T = FG be the naturally induced bimonad on D. If T is of unity trace, then πx,y
is functorial in the sense that

1. πx,x(Gx
1Gx−−→ Gx) = 1x.

2. For C-morphisms (Gx
ϕ−→ Gy

σ−→ Gz), we have

(x
πx,yϕ−−−→ y

πy,zσ−−−→ z) = (x
πx,z(σϕ)−−−−−→ z).

⋄

Proof. By the unity trace condition and 6.80,

πx,x(1Gx) = η
′
x ◦ (1FGx ◦ ηx) = 1X,

proving the first statement. It remains to prove that

(η ′z ◦ F(σ) ◦ ηy) ◦ (η ′y ◦ F(ϕ) ◦ ηx) = (η ′z ◦ F(σϕ) ◦ ηx).

Indeed,

(
z
η ′z←− Tz F(σ)←−− Ty ηy←− y η ′y←− Ty F(ϕ)←−−− Tx ηx←− x)

=
(
z
η ′z←− Tz F(σ)←−− Ty Tη ′y←−− T 2y ηTy←−− Ty F(ϕ)←−−− Tx ηx←− x)

=
(
z
η ′z←− Tz F(σ)←−− Ty Tη ′y←−− T 2y T(F(ϕ))←−−−−− T 2x ηTx←−− Tx ηx←− x)

=
(
z
η ′z←− Tz F(σ)←−− Ty Tη ′y←−− T 2y T(F(ϕ))←−−−−− T 2x Tηx←−− Tx ηx←− x)

=
(
z
η ′z←− Tz F(σ)←−− Ty F(ϕ)←−−− Tx ηx←− x)

98



The first two equalities follow from the naturality of η. The third equality T(ηx) =
η(Tx) follows from the Eckmann-Hilton argument

η ∗ 1T = 1T ∗ η.

Finally, the last equality follows from all the tricks and conditions: that η is natural,
that T ◦ η = η ◦ T , that T is functorial, and the unity trace condition. ■

Remark 6.86 In the context of categorical center of higher genera, the proof above
translates into the following graphical proof, where the orange dotted lines represent
the shorthand notation Ω given in 2.19.

⋄

In the proof, it is tempting to demand ηy ◦ η ′y to be identity, which would have
finished the proof right away. However, it is not necessarily true. In fact, it is false in
our context. The best one can say about it is that it is idempotent.

Example 6.87 Let C be a premodular category, σ be an admissible gluing, D be the
categorical center of higher genera Zσ(C), F be the induction functor C Iσ−→ Zσ(C), and
G be the forgetful functor C Fσ←− Zσ(C).

By 4.55, both functors are strictly ambidextrous to each other. Moreover, it is
clear by their definitions that the bi-monads they form are of unity trace. Therefore,
by 6.85, we have the followings.

1. D((X,γ), (Y,β)) embeds into C(X, Y) naturally, with a natural projection πγ,β
onto the subspace.

2. C(X, Y) embeds intoD(Iσ(X), Iσ(Y)) naturally, with a natural projection πX,Y onto
the subspace.

⋄

This is an analogue of the averaging map one has in the theory of finite dimensional
complex linear representations of finite groups.
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6.5 Misc proofs

Statements and proofs that could break the flow of are collected in this section. The
readers are advised to use it as a reference.

Lemma 6.88 Let C be a premodular category and σ ∈ Adm2n an admissible gluing.
Then the categorical center of higher genera Zσ(C) is an abelian category. ⋄

Proof. By 6.27 we need to show that Zσ(C) is an additive category such that

• every morphism in Zσ(C) has a kernel and a cokernel.

• Zσ(C) is an exact category.

By its definition, Zσ(C) is additive. To prove that every morphism has a kernel
and a cokernel, first let (X,γ) f−→ (Y,β) be a Zσ(C)-morphism. Recall by definition
that f is a C-morphism X

f−→ Y that respects both sets of half-braidings γ and β.
Since C is premodular thus abelian, f has a kernel K

m
↪−→ X in C. We will construct

a Zσ(C)-object (K,m⋆γ) such that (K,m⋆)
m−→ (X,γ) is a Zσ(C)-morphism and is in

fact a kernel of f.
To construct m⋆γ, notice that all we need is a set of half-braidings for K that

work compatibly with γ. As
K

m−→ X
f−→ Y

is exact and that ⊗ is bi-exact 6.55, we see that 1(−) ⊗m and m⊗ 1(−) are kernels
of 1(−) ⊗ f and f ⊗ 1(−) respectively. Therefore, γ[i] ◦ (m ⊗ 1(−)) factors through
1(−)⊗m uniquely. Ditto for the other direction. So defines an natural isomorphism

K⊗ (−)
(m⋆γ)[i]−−−−−→ (−)⊗ K.

Define so for all other i’s. it’s straightforward to prove that m⋆γ is a σ-pair 4.39
from that γ is also one.

From the construction above, clearly

(K,m⋆γ)
m−→ (X,γ)

is a Zσ(C)-arrow. It remains to show that m is indeed a kernel of f in Zσ(C).
Let (W,α) h−→ (X,γ) be a Zσ(C)-morphism such that fh = 0. Then h uniquely
factors through m by some C-morphism k. The crux is to show that k is indeed a
Zσ(C)-morphism. But indeed, by the projection 6.87 we have

h = m ◦ k⇒ π(h) = π(m ◦ k) = π(m) ◦ π(k)⇒ h = m ◦ π(k)
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But since k is unique, we have k = π(k), which is indeed a morphism in Zσ(C).
Therefore, m is a kernel of f. The argument works for the cokernel, and is thus
omitted. A corollary of this construction is that the (co)kernels are really the same
as in C, so Zσ(C) is clearly exact since C is exact. ■

Lemma 6.89 Let C be a premodular category and σ ∈ Adm2n an admissible glu-
ing. Recall from 6.88 that the categorical center of higher genera Zσ(C) is abelian.
Moreover, it is semisimple. ⋄

Proof. Let (X,γ) f−→ (Y,β) be a monic morphism in Zσ(C). It suffices to show that
f has a left inverse. Recall that f is also a C-morphism X

f−→ Y. We contend that
X

f−→ Y is monic in C. Indeed, assume

(W
g−→ X

f−→ Y) = (W
h−→ X

f−→ Y)

then
(IσW

g−→ (X,γ) f−→ (Y,β)) = (IσW
h−→ (X,γ) f−→ (Y,β))

by the construction of Iσ. Then g = h, and thus g = h.
Since C is semisimple, we get a left inverse X p←− Y for free. However, p lives in

C, so we need to find another candidate that does the job in Zσ(C). This is again
taken care by the projection 6.87 We contend that it is a left inverse of f in Zσ(C).
Indeed, as πβ,γ is a projection, πβ,γ(f) = f. So,

πβ,γ(p) ◦ f = πβ,γ(p) ◦ πγ,β(f) = πγ,γ(p ◦ f) = πγ,γ(1X) = 1X.

■

Lemma 6.90 Let C be a premodular category and σ ∈ Adm2n an admissible glu-
ing. Recall from 6.88 and 6.89 that the categorical center of higher genera Zσ(C) is
semisimple abelian. Moreover, it is finite. ⋄

Proof. To prove that Zσ(C) is finite, we turn to the finiteness of C. Since Zσ(C)
is a k-linear abelian category by construction, from 6.38 and 6.39 we only have to
show four things.

• Every object has finite length.

• Every hom space is a finite dimensional k-vector space.

• Zσ(C) has enough projectives, i.e. every simple object of Zσ(C) has a projective
cover.

• The set of isomorphism classes of simple objects is finite.
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To prove that every object has finite length, pass a simple filtration of an object
in Zσ(C) to one in C by the forgetful functor Fσ. Extend the latter to a simple
filtration in C, which has finite length as C is assumed finite. Thus the former is
also of finite length. To prove that every hom space is of finite dimensional, recall
that the morphism spaces of Zσ(C) are defined as subspaces of those of C. Therefore
the dimension of the former is bounded by the dimension of the later, which is finite
the finiteness assumption of C.

To prove that Zσ(C) has enough projectives, it suffices to show that Zσ(C) is
semisimple, as then each epic morphism admits a left inverse. But this fact has
been shown in 6.89. To prove that there are only finitely many simple objects (up
to isomorphism), we utilize the ambidextrous adjunction of Fσ and Iσ. Let (X,γ)
be a simple object of Zσ(C). From

HomC(X, Y) ≃ HomZσ(C)((X,γ), Iσ(Y))

we know that (X,γ) appears as a summand in I(Y) for any Y that appears as a
summand in X. Since C has finitely many simple objects (up to isomorphism), it
follows that there are finitely many such (X,γ). ■

Lemma 6.91 The set of half-braidings defined in 4.53 satisfies the pairwise commu-
tative relations 4.40. ⋄

Proof. By definition, we have to prove that for each i, j, γi and γj satisfies the
commutative relation posed in 4.40. In this pictorial proof, we use the color light-
blue to indicate γi and the color red to indicate γj. Recall that with out loss of
generality, there are three cases to consider

1. [i] ′ < [i] ′′ < [j] ′ < [j] ′′
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2.[i] ′ < [j] ′ < [i] ′′ < [j] ′′

3.[i] ′ < [j] ′ < [j] ′′ < [i] ′′
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■

Lemma 6.92 The induced morphisms in (4.54) is compatible with the sets of half-
braidings γ and β given in (4.53). ⋄

Proof. Clearly it holds from the following figure.
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■

Lemma 6.93 Let A be an additive category and B be an abelian category. Suppose

A
ϕ−→ B

is an additive functor. Then ϕ lifts additively to the Karoubi completion Kar(A) of
A:

Kar(A) Φ−→ B.

⋄

Proof. Given the assumptions, we must constructΦ explicitly. Recall that a typical
object of Kar(A) is X̄ := (X,p) of X ∈ Obj(A) and an idempotent p ∈ EndA(X).
Define Φ(X̄) to be imB(ϕ(p)). Recall also that a typical morphism

(X,p) f−→ (Y,q)

is an A-morphism X
f−→ Y such that f = qfp. Hence Φ(f) induces a B-morphism

im(ϕ(p))
ϕ(f))−−−→ im(ϕ(q)).

Define it to be Φ(f). So defined map Φ is clearly an additive functor that extends
ϕ. ■
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arXiv Mathematics e-prints, math/0101219 (2001), math/0101219.
arXiv: math/0101219 [math.QA].

[KR21] Mikhail Khovanov and Louis-Hadrien Robert. Foam evaluation
and Kronheimer–Mrowka theories. 2021. doi: https://doi.org/
10.1016/j.aim.2020.107433. url: https://www.sciencedirect.
com/science/article/pii/S0001870820304618.

108

https://arxiv.org/abs/2111.06919
https://arxiv.org/abs/2107.05914
https://arxiv.org/abs/2206.04570
https://doi.org/https://doi.org/10.1007/978-3-642-82783-9
https://doi.org/https://doi.org/10.1007/978-3-642-82783-9
https://doi.org/https://doi.org/10.1007/978-1-4612-0783-2
https://doi.org/https://doi.org/10.1007/978-1-4612-0783-2
https://arxiv.org/abs/1004.1533
https://doi.org/10.48550/arXiv.1106.6033
https://arxiv.org/abs/1106.6033
https://arxiv.org/abs/1106.6033
http://eudml.org/doc/142535
http://eudml.org/doc/142535
https://arxiv.org/abs/math/0101219
https://doi.org/https://doi.org/10.1016/j.aim.2020.107433
https://doi.org/https://doi.org/10.1016/j.aim.2020.107433
https://www.sciencedirect.com/science/article/pii/S0001870820304618
https://www.sciencedirect.com/science/article/pii/S0001870820304618


[Lic12] W. B. Raymond Lickorish. An Introduction to Knot Theory. Springer
New York, NY, Oct. 2012. isbn: 978-1-4612-6869-7. doi: https:
//doi.org/10.1007/978-1-4612-0691-0.

[Lur09] Jacob Lurie. “On the classification of topological field theories”. In:
Current Developments in Mathematics Volume 2008 (Oct. 2009),
pp. 129–280. url: https://projecteuclid.org/euclid.cdm/
1254748657.

[LW05] Michael A. Levin and Xiao-Gang Wen. “String-net condensation: A
physical mechanism for topological phases”. In: Phys. Rev. B 71
(4 Jan. 2005), p. 045110. doi: 10.1103/PhysRevB.71.045110. url:
https://link.aps.org/doi/10.1103/PhysRevB.71.045110.

[Mac10] Saunders Mac Lane. Categories for the Working Mathematician.
Springer New York, NY, Nov. 2010. isbn: 978-1-4419-3123-8. doi:
https://doi.org/10.1007/978-1-4757-4721-8.

[Man06] Michael A. Mandell. “Cochains and homotopy type”. In: Publi-
cations Mathématiques de l’Institut des Hautes Études Scien-
tifiques (2006). doi: 10.1007/s10240-006-0037-6.

[Man16] Ciprian Manolescu. “Lectures on the triangulation conjecture”. In:
(2016). arXiv: 1607.08163.

[Mat] Sergei Matveev. Algorithmic Topology and Classification of 3-
Manifolds. Springer Berlin, Heidelberg. XII, 478. isbn: 978-3-662-
05102-3. doi: https://doi.org/10.1007/978-3-662-05102-3.

[Mil62] John Milnor. “Topological Manifolds and Smooth Manifolds”. In:
Proc. International Congress of Mathematicians - Stockholm
(1962).

[Mue03] Michael Mueger. “On the structure of modular categories”. In: Pro-
ceedings of the London Mathematical Society (Sept. 2003), pp. 291–
308.

[Pac87] U. Pachner. “Konstruktionsmethoden und das kombinatorische
Homöomorphieproblem für Triangulationen kompakter semilinearer
Mannigfaltigkeiten”. German. In: Abh. Math Sem. 57 (1987), pp. 69–
86.

109

https://doi.org/https://doi.org/10.1007/978-1-4612-0691-0
https://doi.org/https://doi.org/10.1007/978-1-4612-0691-0
https://projecteuclid.org/euclid.cdm/1254748657
https://projecteuclid.org/euclid.cdm/1254748657
https://doi.org/10.1103/PhysRevB.71.045110
https://link.aps.org/doi/10.1103/PhysRevB.71.045110
https://doi.org/https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/s10240-006-0037-6
https://arxiv.org/abs/1607.08163
https://doi.org/https://doi.org/10.1007/978-3-662-05102-3


[Pen71] Roger Penrose. “Angular Momentum: an Approach to Combinato-
rial Space-Time”. In: Living Reviews in Relativity
http://www.livingreviews.org/lrr-2008-5 Carlo Rovelli. Univer-
sity Press, 1971, pp. 151–180.

[Res90] N. Yu. Reshetikhin. “Ribbon graphs and their invariants derived
from quantum groups”. In: Comm. Math. Phys. 127.1 (1990), pp. 1–
26. issn: 0010-3616.

[Reu20] David Reutter. Semisimple 4-dimensional topological field the-
ories cannot detect exotic smooth structure. Jan. 2020. arXiv:
2001.02288 [math.GT].

[RS72] C. P. Rourke and B. J. Sanderson. Introduction to Piecewise-
Linear Topology. Springer-Verlag New York Heidelberg Berlin, 1972.
isbn: 0-387-05800-1.

[Sco05] Alexandru Scorpan. The Wild World of 4-Manifolds. 2005. 614
pp.

[Tha19] Ying Hong Tham. “The Elliptic Drinfeld Center of a Premodular
Category”. In: arXiv:2019.09511 (2019).

[Tha21] Ying Hong Tham. “On the Category of Boundary Values in the
Extended Crane-Yetter TQFT”. Ph.D. thesis. 2021. arXiv: 2108.
13467 [math.QA].

[Tha22] Ying Hong Tham. “Reduced tensor product on the Drinfeld center”.
In: Journal of Algebra 608 (2022), pp. 573–616. issn: 0021-8693.
doi: https://doi.org/10.1016/j.jalgebra.2022.05.031.
url: https://www.sciencedirect.com/science/article/pii/
S0021869322002824.

[Tur10] Vladimir G. Turaev. Quantum Invariants of Knots and 3-Manifolds.
De Gruyter, 2010. isbn: 978-3-11-022183-1.

[Tur91] Vladimir G. Turaev. “Topology of Shadows”. In: (1991).

[TV92] V.G. Turaev and O.Y. Viro. “State sum invariants of 3-manifolds
and quantum 6j-symbols”. In: Topology 31.4 (1992), pp. 865–902.
issn: 0040-9383. doi: https://doi.org/10.1016/0040-9383(92)
90015-A. url: https://www.sciencedirect.com/science/article/
pii/004093839290015A.

110

https://arxiv.org/abs/2001.02288
https://arxiv.org/abs/2108.13467
https://arxiv.org/abs/2108.13467
https://doi.org/https://doi.org/10.1016/j.jalgebra.2022.05.031
https://www.sciencedirect.com/science/article/pii/S0021869322002824
https://www.sciencedirect.com/science/article/pii/S0021869322002824
https://doi.org/https://doi.org/10.1016/0040-9383(92)90015-A
https://doi.org/https://doi.org/10.1016/0040-9383(92)90015-A
https://www.sciencedirect.com/science/article/pii/004093839290015A
https://www.sciencedirect.com/science/article/pii/004093839290015A


[Wal15] Kevin Walker. How are the Walker-Wang TQFT and the Crane-
Yetter TQFT related? https://mathoverflow.net/users/284/kevin-
walker. Jan. 2015. url: https://mathoverflow.net/q/194633.

[Wal21] Kevin Walker. A universal state sum. 2021. arXiv: 2104.02101
[math.QA].

[Was19] Thomas A. Wasserman. “The Reduced Tensor Product of Braided
Tensor Categories Containing a Symmetric Fusion Category”. In:
(2019). arXiv: 1910.13562 [math.QA].

[WW12] Kevin Walker and Zhenghan Wang. “(3+1)-TQFTs and topological
insulators”. In: Frontiers of Physics (2012). doi: 10.1007/s11467-
011-0194-z. url: https://doi.org/10.1007/s11467-011-0194-
z.

Compiled Time: [2023-05-02 19:50:08] .

111

https://mathoverflow.net/q/194633
https://arxiv.org/abs/2104.02101
https://arxiv.org/abs/2104.02101
https://arxiv.org/abs/1910.13562
https://doi.org/10.1007/s11467-011-0194-z
https://doi.org/10.1007/s11467-011-0194-z
https://doi.org/10.1007/s11467-011-0194-z
https://doi.org/10.1007/s11467-011-0194-z

	Acknowledgements
	Introduction
	Invariants as data representations
	TQFTs as higher invariants
	The Crane-Yetter TQFT
	Summary of each section

	Preliminaries
	Algebra
	Premodular categories
	Examples
	Graphical calculus
	Coordinates
	6j-symbols, 10j-symbols, and 15j-symbols

	Topology
	4-manifolds
	Triangulations
	Handle decompositions

	Crane-Yetter state sum

	Crane-Yetter Theory and Turaev Shadow
	Introduction
	Turaev shadows
	Shadow state sum
	Main result: equivalence of state sums

	Categorical Center of Higher Genera
	Overview
	Previous work of CY in (co)dimension two
	Main result: CY Z
	Summary of each subsection

	Topological theory
	String nets
	Crane-Yetter theory in dimension two (CY)
	A presentation of surfaces (-construction)

	Algebraic theory
	Motivation: Drinfeld categorical center
	Categorical center of higher genera (Z)
	Properties of Z
	Connecting functors
	Ambidextrous adjunction
	Z is finite semisimple abelian


	Proof of the main theorem
	Strategy
	Proof
	Reducing topological data
	topology  algebra
	topology  algebra
	topology  algebra


	Outlooks and Remarks

	Explicit Factorization of Categorical Center
	Introduction
	Main Result
	Functor: G
	Transformation: b, d, p, q
	F G F
	C modular  G is an inverse of F

	Discussion & Prospect

	Appendix
	Abelian categories
	Semisimple categories
	Tensor categories
	Adjunctions as monads
	Misc proofs

	Bibliography

