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Abstract of the Dissertation
Invariants of Real Vector Bundles
by
Jiahao Hu
Doctor of Philosophy
in
Mathematics
Stony Brook University
2023
For a compact smooth manifold with corners (or finite CW-complex) X, we can prescribe a
finite set of spin or spin” manifolds (possibly with boundary) mapping into it so that every real

vector bundle over X is determined, up to stable equivalence, by the Dirac indices of the real vector

bundle when pulled-back onto those prescribed spin or spin” manifolds.
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Chapter 1

Introduction

1.1 Main results

The main purpose of this dissertation is to present a complete set of invariants for deciding whether
a real vector bundle is stably trivial. Unlike obstruction theory where higher order invariants are
defined only when the previous ones vanish, our invariants will be a priori given. Our result is
analogous to De Rham’s theorem which asserts that a closed differential form is exact if and only if
its periods (i.e. integrals) are zero over a set of a priori chosen cycles. Likewise, our invariants for
real vector bundles arise from pairing real vector bundles against a set of a priori chosen cycles of
the base. The major difference is, in our case the cycles will come equipped with extra geometric
structures adapted to the question, and our pairing invokes geometry intensively. Moreover the
cycles in our case should be broadly interpreted to include Z; cycleﬂ to deal with stably non-trivial
bundles whose certain multiple is stably trivial. The appropriate geometric structures to put on the
cycles and how the geometrically structured cycles pair against real vector bundles are the central
topics of this dissertation.

Two types of correlated geometric structures will be considered. One is the well-known spin
structure, and the other is its quaternionic sibling—the spin” structure (Definition , which is

less-known but appears to be more natural for the subject of this dissertation due to a certain duality

'a chain is a Z; cycle if its boundary is zero modulo k.



between the reals and quaternions. The way a real vector bundle pairs against a (spin or spin’)
structured cycle is through geometry by means of Dirac operator. The invariants we get for real
vector bundles are indices of twisted Dirac operators.

To elaborate, let us now describe our invariants more concretely in terms of spin structured
cycles. First consider closed spin manifolds mapping into the base X. Such a mapping f: M — X

is called a spin cycle in X. For a vector bundle E over X, we define a pairing
<M 1 x X+ E > := index of Dirac operator on M twisted by f*E

taking values either in Z or Z, depending on the dimension of M (see e.g. [LM&9]). We call these
integer invariants and parity invariants.

Next we consider spin manifolds M with boundary, whose boundary dM has several, say &,
identical parts denoted by BM (Bockstein of M). Denote by M the quotient space of M obtained by

gluing dM onto SM.

olue -V
= @)1

Figure 1.1: Gluing dM onto M

A continuous map f : M — X is called a Z;-spin-cycle or torsion spin cycle in X. Then we

define a pairing
—f | . . %
<M S X| X+ E > = gqndex of Dirac operatOIﬂ)n M twisted by f*E(modZ)

taking values in Q/Z, where € =2 if dimM =4 mod 8 and € = 1 otherwise. We call these angle
invariants.
It follows from index theory that stably equivalent bundles have the same integer, parity and

angle invariants over all spin cycles and torsion spin cycles. In other words, a necessary condition

2with appropriate Atiyah-Patodi-Singer boundary condition.
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for two vector bundles to be stably equivalent is that they have the same those invariants. One of
our main theorems is that this necessary condition is also sufficient. Thus these invariants form a
complete set of invariants. In particular, a real vector bundle is stably trivial if and only if it has the

same invariants as a trivial bundle.

Theorem A (Theorem [6.8). For each compact manifold with corners (or finite CW-complex) X,
there exists a finite set of spin cycles and torsion spin cycles in X such that every real vector bundle
on X can be determined, up to stable equivalence, by the corresponding integer, parity and angle

invariants.

The same holds true with spin replaced by spin”, this is our Theorem In fact we will prove
Theorem |6.7| first and derive Theorem |A| from it by a geometric consequence of Bott periodicity. It
is implicitly implied that Dirac operators can be defined on spin” manifolds and they share similar
properties with Dirac operators on spin manifolds. Indeed much effort of this dissertation is devoted
to studying Dirac operators and their indices on spin manifolds.

Our Theorem [A]is analogous to [Fre88], in which it is proved that complex vector bundles up to
stable equivalence are determined by the indices of twisted Dirac operators over spin‘ cycles and
torsion spin‘ cycles. As is common in algebraic topology, the major difficulty in the real case we
consider here lies in handling the 2-torsion information. To overcome this difficulty, we come up
with a general duality theorem between cycles and cocycles. This general duality in our context is a
duality between the reals and quaternions that we earlier mentioned, and is the reason why spin”
manifolds should be more natural than spin manifolds in our question.

To explain this duality, we note the functor
KO" (X) = real vector bundles over X modulo stable equivalence

that we are interested in extends to a generalized cohomology theory KO* (X )—the real K-theory. We
approach the question of finding complete invariants for real vector bundles up to stable equivalence
by putting it into a general framework of finding complete invariants for cohomology classes in

a generalized cohomology theory. Our idea is that cohomology classes should be determined



by their periods over suitable cycles. To be precise, let us consider a generalized cohomology
theory A*. Since functors Hom(—,Q) and Hom(—,Q/Z) are exact, the functors Hom(h*(—),Q)
and Hom(h*(—),Q/Z) define generalized homology theories. Now there is a third generalized
homology theory Dh,, known as the Anderson dual of ~*, fitting into the following long exact
sequence

-++— Dh, — Hom(h*,Q) — Hom(h*,Q/Z) — Dhy,—y — -+

It turns out cohomology classes in a generalized cohomology theory are determined by their periods

over cycles and torsion cycles for its Anderson dual theory.

Theorem B (Theorem . Let h* be a generalized cohomology theory of finite typ{] and let
Dh, be its Anderson dual homology theory. Suppose X is a finite CW-complex, then h'(X) is
naturally isomorphic to the group of homomorphisms Dh;(X;Q/Z) AN Q/Z that can be lifted to
Dh;(X;Q) 9, Q through the canonical "covering homomorphisms" Dh;(X;Q) — Dh;(X;Q/Z) and

Q — Q/Z. That is,
Dhi(X;Q) —>— Q

h(X) = { l l

Dhi(X:Q/7) —2— Q/Z

The isomorphism holds true with all the groups localized at a set of primes.

The maps @ and @ record the periods of a cohomology class over cycles and torsion cycles for
Dh, this will be explained in detail in Section

Now back to our interested case #* = KO*. It is known the Anderson dual of real K-theory
is symplectic K-theory (see [[And69]), therefore Theorem [B|implies that real vector bundles up
to stable equivalence should be determined by their periods over cycles and torsion cycles for
symplectic K-theory. This thus leads us to finding cycles for symplectic K-theory and describing
periods of a real vector bundle over those cycles. As discussed above, the most natural cycles we
find for symplectic K-theory are spin” manifolds, and the periods we desire are indices of Dirac

operators on spin” manifolds twisted by the bundle.

3that is 4 (pt) is finitely generated for all i.



1.2 Organization

This dissertation is organized as follows. In Chapter 2] we prove Theorem [B|and use it to interpret
cohomology classes as periods over cycles. Chapter 3] @] and [5] constitute a thorough study of Dirac
operators on spin manifolds. These three chapters respectively discuss the algebraic, topological
and analytical aspects related to spin” manifolds. In Chapter [3| we study quaternionic Clifford
algebras and their modules in order to establish a quaternionic version of Atiyah-Bott-Shapiro
isomorphism relating quaternionic Clifford modules to symplectic K-theory. In Chapter [ we
build "Thom classes" for spin” vector bundles and prove a Riemann-Roch theorem for spin maps.
Along the way, we pick out a special characteristic class for spin” vector bundles analogous to the
A-class for spin vector bundles. We also discuss all possible characteristic classes for (stable) spin”
vector bundles. In Chapter we define Dirac operators on spin” manifolds and study their indices.
An index theorem for families of quaternionic operators is needed, whose proof is postponed to
Chapter[7} All these are parallel to the study of Dirac operators on spin manifolds. In Chapter [6| we
prove spin” manifolds provide enough cycles for symplectic K-theory and show the periods of a
real vector bundle, abstractly obtained from Theorem B} coincides with indices of Dirac operators.

This in turn implies Theorem[6.7and we deduce Theorem [A] from Theorem



Chapter 2

Periods of generalized cohomology classes

In this chapter, we prove Theorem |B|and use it to interpret ~A*-cohomology classes as cocycles over
a suitable class of manifolds-with-singularities determined by the homology theory Dh,.
Throughout, generalized (co)homology theories are functors defined on the category of CW
pairs satisfying all the Eilenberg-Steenrod axioms except for the dimension axiom. A fundamental
result by Brown, Whitehead and Adams says generalized (co)homology theories can be represented

by spectra. Spectra will be underlined in our notation.

2.1 Anderson duality

Let 4* be a generalized cohomology theory with hi(pt) finitely generated for all i, i.e. h* is of
finite type. Now since functors Hom(—,Q) and Hom(—,Q/Z) are exact, Hom(A#*(—),Q) and

Hom(h*(—),Q/Z) define generalized homology theories which come with a natural transformation
Hom(h*(—),Q) — Hom(h*(—),Q/7Z)

induced by the natural quotient map Q — Q/Z. Since Hom(A*(pt),Q) and Hom(A*(pt),Q/Z)
are countable, by Brown representability theorem these homology theories are represented by
spectra denoted by Dgh and Dg,7h respectively. Moreover, the natural transformation induced by

Q — Q/Z is represented by a map Dgh — Dg /Zh whose fiber is denoted by Dh. We define the

6



Anderson dual homology theory Dh, of h* to be the homology theory represented by Dh. We also
call the cohomology theory Dh* represented by Dh the Anderson dual cohomology theory of i*.

From definition, for X a finite CW-complex there is a long exact sequence
.-+ — Dh;j(X) — Hom(h'(X),Q) — Hom(h'(X),Q/Z) — Dh;_{(X) — --- (2.1.1)
from which one has for all i the following splittable short exact sequence
0 — Ext(h~1(X),Z) — Dh;j(X) — Hom(h'(X),Z) — 0.

In particular Dh;(pt) is (non-canonically) isomorphic to the direct sum of the free part of A(pt) and

the torsion part of i1 (pt).

Example 2.1 ([And69]). Consider the cases where /" is singular cohomology H* (with Z-coefficients),

complex K-theory KU* or real K-theory KO*.

(i) DH,(pt) is concentrated in degree zero and DHy(pt) = Z. Therefore DH, is the singular

homology theory.
(i) DKUy;(pt) = Z and DKUy;_;(pt) = 0. In fact, Anderson showed DKU, = KU.,.
(iii) DKO,(pt) =7%,0,0,0,Z,7Z,,7,,0,Z for 0 <« < 8. In fact, Anderson showed DKO, = KSp,.

Example 2.2 ([Sto12]). The Anderson dual of topological modular for is the 21-fold suspension

of itself.

Remark 2.3. A version of Theorem [A]should hold for topological modular form with spin manifolds
replaced by string manifolds, provided we have a good index theory developed for string manifolds

and topological modular form.

Anderson duality is indeed a duality in the sense that D? is the identity. For a proof of this and
for more about Anderson duality, we refer the reader to the original paper of Anderson [And69].

For our purpose here, we need one extra fact about Dh, essentially due to Anderson.

Ithe non-connective, non-periodic version corresponding to Deligne-Mumford compactified moduli stack of elliptic
curves.



Proposition 2.4 ([And69, pp. 42-43]). Let h* be a generalized cohomology theory of finite type and
Dh, its Anderson dual homology theory. Then for all finite CW-complex X and all i € N there are

isomorphisms
(i) Dhi(X;Q) = Hom(K' (X),Q), and
(ii) Dhi(X;Q/Z) = Hom(h'(X),Q/7Z).

Moreover, under these isomorphisms, the long exact sequence ([2.1.1)) is identified with the coefficient

long exact sequence
-+ — Dhi(X) — Dh;(X;Q) — Dh{(X;Q/Z) — Dh;_1(X) — - (2.1.2)
associated to the short exact sequence 0 — 7 — Q — Q/Z — 0.

Proof. Let S denote the sphere spectrum and let Sg, Sg /7 be the Moore spectra for Q and Q/Z

respectively. Then the fiber sequence S — Sg — Sq,7 induces a fiber sequence

f

which corresponds to the coefficient long exact sequence (2.1.2)). On the other hand, by definition
we have the fiber sequence

Dh % Dgh — Dgzh

which corresponds to the long exact sequence (2.1.1). We will show there is a homotopy equivalence
¢ : DhA\Sqp — Dgh so that g = @ o f. Then it follows there is an induced homotopy equivalence

¢ :Dh A S,z — Dg/zh such that the following diagram commutes:

f
Dh —— DhA\Sqg —— DhASqy

| lv

8
Dh —*— Doh ——— Dyzh

Now the desired isomorphisms are induced by ¢ and ¢’, and the claim about long exact sequences

follows as well.



To construct ¢, let us consider the commutative diagram

Dh ——*—— Dgh

Vo b

8N\Sq
DhNSg — Dgh A Sqg
where j is induced by S — Sg. Applying 7.(—) we have

Dh,(pt) —=— Hom(h*(pt),Q)

Is J

Dh.(pt) ©Q 4% Hom(h* (pt),Q) @ Q

It is clear that j, is an isomorphism, and it follows by applying the exact functor ®Q to (2.1.1))
that g. ® Q is an isomorphism since Hom(A*(pt),Q/Z) ® Q = 0. Therefore both g A S and j
are homotopy equivalences, and thus the desired ¢ can be obtained by composing g A S with a

homotopy inverse to j. L

2.2 Proof of Theorem

To prove Theorem [B] we need an algebraic version of Pontryagin duality in which the circle group
R/Z is replaced by Q/Z and continuity is imposed by a lifting property using a covering-like
construction. To elaborate, let A be an abelian group. Consider the abelian group of commutative

diagrams of the form
Hom(A,Q) —— Q
mod Z | moaz (2.2.1)
Hom(A,Q/Z) — Q/Z

In other words, consider the group of pairs (¢, ¢) of homomorphisms
¢ :Hom(A,Q/Z) — Q/Z, and ¢ : Hom(A4,Q) — Q

in which @ is a "lifting" of ¢ via the "covering homomorphisms"

Hom(A,Q) _mod Z, Hom(A,Q/Z), and Q _mod Z, Q/Z.

9



Notice that ¢ is determined by ¢ because any two "liftings" of ¢ are differed by a homo-
morphism from Hom(A, Q) into Z which must be zero. Therefore this group can be viewed as
the subgroup of the group of homomorphisms from Hom(A,Q/Z) into Q/Z consisting of those
"liftable" homomorphisms. In analogy with covering theory, we may think of the "liftable" homo-
morphisms as continuous homomorphisms and the group of such commutative diagrams as the
continuous dual to the group Hom(A,Q/Z), which itself can be considered as a dual to A. With

these understood, the following can be viewed as an algebraic version of Pontryagin duality.

Proposition 2.5. Let A be a finitely generated abelian group. Then the map

l l

Hom(A,Q) —— Q
A— { }
Hom(A,Q/Z) — Q/Z

induced by evaluation is an isomorphism, where the target is the group of diagrams of the form

(2.2.1). The isomorphism clearly remains true with all the groups localized at a set of primes.

Proof. It suffices to prove for Z, and Z. The former case is a straightforward verification using
that Hom(Z,, Q) = 0 and Hom(Z,,, Q/Z) = Z,. The latter case is equivalent to the claim that every
homomorphism ¢ : Q/Z — Q/Z that can be lifted to ¢ : Q — Q is a multiplication by some integer.
Indeed ¢ must be a multiplication by some rational number ¢ and in order for ¢ to descend to a
map ¢ it is necessary that g - Z C Z and consequently ¢ is an integer which in turn implies ¢ is a

multiplication by an integer. |

Remark 2.6. This is an instance of coherent duality of Serre-Grothendieck-Verdier: Z, as a coherent
sheaf over Spec(Z), is the dualizing sheaf for coherent duality over Spec(Z) and Q — Q/Z is an

injective replacement of Z.

Theorem 2.7 (Theorem [B)). Let h* be a generalized cohomology theory of finite type, and let Dh, be

its Anderson dual. Suppose X is a finite CW-complex, then for all i we have natural isomorphisms

R (X) = (2.2.2)

l l

{ Dhi(X;Q) —— Q }
Dhi(X;Q/Z) — Q/Z

10



The isomorphism remains true with all the groups localized at a set of primes.

Proof. Combine the above proposition with Proposition [2.4] [ |

Remark 2.8. Compare the above to [MS74, Theorem 2.1, Theorem 2.2] in which the special case

h* = H* is obtained.

Remark 2.9. For X = J, X, an infinite complex filtered by an increasing sequence of finite sub-
complexes X;, the the same isomorphism holds with /(X) replaced by lim /'(X,). This can be
proved by applying the above theorem each to X, and using the facts that homology commutes with

direct limit and that Hom(lim —, -)= lé'r_nHom(—7 —). In general h'(X) # lim, h(X,), see [Mil62].

Since the Anderson dual of KO is KSp, we get

Corollary 2.10. Let X be a finite CW-complex. Then for all i we have natural isomorphisms

KSp;(X;Q) —— Q }

KO'(X) = { | |

KSp;(X;Q/Z) — Q/Z

Remark 2.11. This corollary localized at odd primes, i.e. with 2 inverted, is obtained by Sullivan
in the 70’s in studying geometric topology, see [Sul05, Theorem 6.3] and note KSp[%] = KO[%]
Sullivan’s proof relies on that KO, (—;Z,) is a Z,-module for n odd. But since KO (pt; Z,) = Z4
is not a Z,-module, that proof cannot be directly applied to deal with KO* at prime 2. It is this

difficulty at prime 2 that motivated the author to formulate and prove Theorem

2.3 Interpretation of Theorem

We will explain why Theorem [B|means cohomology classes for i* are determined by their periods
over cycles and torsion cycles for Dh,. Let us begin by pointing out generalized homology classes

can be represented by geometric cycles.

11



2.3.1 Representing homology classes by geometric cycles

This subsection is a quick summary of the work of Buoncristiano, Rouke and Sanderson in [BRS76].
They showed every generalized homology theory is a bordism theory of a suitable class of manifolds-

with-singularities. To explain, let us introduce the wonderful notion of transverse CW-complex.

Definition 2.1. Let M be a compact smooth manifold (with boundary) and X a CW-complex. A
continuous map f : M — X is transverse to an open cell e of X if either f~! (e) = & or there is a

commuting diagram
c(T) —L— D

~

where T = f~!(e), h from the n-dimensional closed unit disk D" into X is characteristic map of the
cell e so that A restricted to the open disk is a homeomorphism onto e, ¢ is a projection of a smooth
bundle (necessarily trivial) and c/(T) is the closure of T. Notice that this implies 7 = ¢~1(0) is a
submanifold of M of codimension n and c/(T) is diffeomorphic to 7' x D".

We say f is a transverse map if f is transverse to all cells of X. We say X is a transverse

CW-complex if its attaching maps are transverse to all previous cells.

Theorem 2.12 (Transversality theorem [BRS76, pp. 134-135]). Every CW-complex is homotopy
equivalent to a transverse CW-complex. Every continuous map from a manifold with boundary
to a transverse CW-complex which is already transverse on the boundary can be deformed into a

transverse map by a homotopy relative to boundary.
A transverse CW-complex behaves like a Thom space.

Example 2.13 (Moore space). Let X be the 2-dimensional Moore space S' Us D? for Z3 obtained
by attaching a 2-cell onto S! by a transverse degree 3 map g, then X is a transverse CW-complex.
Denote by ¢&; the center of the (unique) i-cell ¢; of X, i = 0,1,2. Let Y denote the union of three

closed line segments in D? connecting é; to g~ '(¢;). Denote Y —g~'(&;) by ¥ and the closure of ¥

12



in X by Y. Then X can be viewed as the Thom space of the "normal bundle" of Y in X illustrated by

the figure below, in which anything outside of a neighborhood of Y is collapsed to a single point é.

Figure 2.1: Moore space viewed as a Thom space

Now let f : " — X be a transverse map, then BM := f~1(&,) is a codimension 2 submanifold of
S" with an open neighborhood f~!(e,) diffeomorphic to BM x e>. Denote Sy := S" — f~!(e>), and
foi=f |50, then My := f, ! (é1) is a codimension 1 submanifold of Sy with an open neighborhood
fy H(e1) diffeomorphic to My x ej. Define M := Mo Ucl(f~1(¥)). Then M is a manifold with
singularity whose singular locus is BM. Near BM, M is diffeomorphic to BM x cone(3 points).
Therefore M is a Z3-manifold (see Definition below). Moreover M admits a normal framing

inherited from the normal framing of é| in e and the normal framing of Y in e.

Figure 2.2: Local structure near M

Reversing the above construction, we see conversely that every framed Z3-manifold embedded
in §" yields a transverse map from S” to X. So X can be viewed as the Thom space for (codimension

1) framed Z3-manifold.

13



Definition 2.2. A Z;-manifold is a pair (M, BM) consisting of an oriented smooth manifold with
boundary M and a closed oriented manifold BM so that dM is a disjoint union of k-copies (assume
labelled) of BM. Let M be the quotient space of M obtained by gluing dM onto BM, we also say M
is a Z;-manifold. The manifold SM (also denoted by SM) is called the Bockstein of M.

If (N, BN) is another Z;-manifold, then (M, BM) is Z;-cobordant to (N, BN) if BM is cobor-
dant to BN via a cobordism W, i.e. IW = W LI(—BN), and M Ugp kW U(_gy) (—N) is a boundary.

A Zj-manifold is a Z;-boundary if it is Z;-cobordant to the empty Z;-manifold.

Figure 2.3: Zy-boundary

Example 2.14 (Z;-sphere). Let X be " with k disjoint open disks removed, then X is a Z;-manifold
with BX = 5" 1, we call (X,BX) the Z-n-sphere and denote it by S”. Observe that S" is Z;-
cobordant to the Z-manifold (S", @) since BX = 8"~ ! is cobordant to @ via D" and X U,y kD" is

exactly S". Moreover, both §” and (S", @) are framed, and the Z;-cobordism is a framed one.

We leave it to the reader to define smooth maps between Z;-manifolds, Z;-submanifolds,
Zi-manifolds with extra tangential structures and their corresponding notions of cobordisms.

Combining the transversality theorem and the previous example one can show there is a 1-1
correspondence between the set of homotopy class of maps [S", S/ Uy D/*1] and the set of cobordism
classes of codimension j framed Z;-manifolds embedded in S”. In general every CW-complex can
be viewed as a generalized Thom space for framed manifolds-with-singularities whose singularity
type is determined by the CW-complex. Consequently every CW-spectrum can be viewed as a
generalized Thom spectrum whose corresponding homology theory is a bordism theory of framed

manifolds with certain type of singularities.

14



For a CW-spectrum X, we call its corresponding homology theory the bordism theory of
manifolds with X-singularity. A mapping from a manifold with X-singularity into a space is called
an X-cycle in that space, an X-cycle is an X-boundary if the map is cobordant (with X-singularity)

to the empty X-cycle.

Example 2.15. (i) For a usual Thom spectrum, the singularity is virtual in the sense that the
corresponding bordism theory are formed by smooth manifolds, but with normal structures

degenerated from normal framings to weaker structures.
(ii) The Moore spectrum for Zy, Sy, , corresponds to the bordism theory of framed Z;-manifolds.
a) The reducing modulo k transformation § — S, induced by Z _mod k, Zy, corresponds to

the geometric operation M — (M, ).

b) The transformation Sz, = Sz, induced by Zj X—l> Zy; corresponds to the geometric

multiplication operation (M,BM) — (MUMU---UM,BM) =: (IM,BM).

[ times

¢) The Bockstein transformation §7, — XS corresponds exactly to the geometric operation

(M,BM) — BM, where £ means suspension.

(ii1) If X,Y are CW-spectra, then X AY-singularity combines X -singularity and Y -singularity. For
instance MSpin A S, corresponds to the bordism theory of spin Z;-manifolds. Here MSpin

is the Thom spectrum for spin cobordism theory.

2.3.2 Cohomology classes as periods over cycles

Let 1* be a generalized cohomology theory of finite type and X a finite CW-complex. Then using
Dh;i(X;Q) =Dh;(X)®Q and Dh;(X;Q/Z) = lim, Dh;(X,Zy) where the direct system is formed by
maps induced by Z; EalN Zy, for all k, [, Theorem [B[says a cohomology class in 4(X) is equivalent

to the following data:
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(i) An assignment Ag, called Q-periods, that assigns to each i-dimensional Dh-cycle (see remark
below) in X a rational number that is additive upon disjoint union of cycles and vanishes on

Dh-boundaries in X.

(ii) An assignment Aq /z- called Q /Z-periods, that assigns for each k and to each i-dimensional
Dh-Z-cycle in X a rational angle in Q/Z that is additive upon disjoint union of Z;-cycles
and vanishes on Dh-Z-boundaries. Moreover the assignment is unchanged if a Z-cycle is

treated as a Zy;-cycle by multiplication (M, BM) — (IM,BM).

(iii) The two assignments Ag and Ag /7, are compatible, that is the following diagram commutes:

tha
Dh-cycles ——— Q

J{modk lmodZ

Dh-Zy-cycles Y% /2

In short, a h*-cohomology class is equivalent to a compatible system of Q- and QQ/Z-periods over

Dh-cycles and Dh-Z-cycles.

Remark 2.16. We caution the reader that by an i-dimensional Dh-cycle, we mean a geometric cycle
representing an element in Dh;(X), which does not necessarily have geometric dimension i, but
might be of mix dimension (possibly unbounded). However if DA happens to be connective, then
Dh,(X) = 0 for * < 0 and an element in Dh;(X) can indeed be represented by a geometric cycle of

homogeneous dimension i. See also [BRS76, p. 144, Remark 5.2].

In practice the Dh-singularity is hard to describe concretely, and if 4*-cohomology classes
themselves have geometric interpretations, one wonders how the periods are related to geometry.

These are the problems we will address for 4* = KO* and Dh, = KSp, in the rest of this dissertation.
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Chapter 3

Quaternionic Clifford modules

In this chapter, we develop an algebraic theory of quaternionic Clifford algebras and quaternionic
Clifford modules for the geometric study of spin” manifolds and their Dirac operators. In particular,
we prove a quaternionic version of Atiyah-Bott-Shapiro isomorphism that relates quaternionic
Clifford modules to symplectic K-theory.

Throughout R, C, H stand for the real, complex, quaternion number-fields respectively. i, j,k

will be the standard basis for the imaginary quaternions, and i € C is the standard square root of —1.

3.1 Quaternionic Clifford algebras

3.2 Review of Atiyah-Bott-Shapiro isomorphism

Let Cl, be the (real) Clifford algebra on R" with respect to the quadratic form || - |* where || - ||
the Euclidean norm. That is, Cl, is the unital associative R-algebra generated by R" subject
to relations > = —||e||? for all e € R, If ey,...,e, is the standard orthonormal basis of R"
then Cl,, is the associative R-algebra generated by a unit and the symbols e; subject to relations
e? =—1for 1 <i<nand eiej+eje; =0 for i # j. A basis of Cl, is given by {e; e;,---e; } for
1 <i; <--- <ip <n. Inparticular Cl,, has dimension 2".

The antipodal map R" — R" e — —e extends to an automorphism of Cl,, of order 2, whose
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eigenspace decomposition yields a Z;-grading Cl, = CISEBCl,ll where Cl1? is the eigenspace of
eigenvalue (—1)%. It is clear that the multiplication in Cl, respects the Z,-grading in the sense that
Cl,‘f -CIE C Cl,o,‘ +B for a, B € Z;. In other words, Cl,, is a Z,-graded algebra.

For K = R,C or H, by a Z;-graded K-module over Cl, we mean a Z,-graded K-module
V =V9@ V! equipped with a R-linear (left) Cl,-action that commutes with scalar multiplication by
K and satisfies C1* -VF c VOB where a, B € Z».

Let 91, (K) denote the Grothendieck group of finite dimensional Z,-graded K-modules over
Cl, with respect to direct sum. Let J1,(KK) denote the cokernel of the map i* : M, (K) — 9,(K)
induced by the embedding of Z,-graded algebras i, : Cl, — Cl, | extended from the isometric
embedding R” — R"! ¢ — (e,0).

Using that Cl,, & Cl,, = Cl,,,., where ® means Z,-graded tensor product (Definition , Atiyah,
Bott and Shapiro [ABS64] showed for K = R or C the graded group 9t,(K) = D.>0 M, (K) forms
a commutative graded ring (with unit) with respect to direct sum and Z,-graded tensor product.
Further, this ring structure descends to make 9ts (K) = @, 91,(K) into a commutative graded ring.
Moreover they constructed the following celebrated graded ring isomorphisms relating Clifford

modules to K-theories

¢ : Ne(R) = KO™*(pt) = PHKO™"(p),
n>0

¢ : Ne(C) = KU *(pt) = KU (pt).
n>0
As we will see, the construction of the above isomorphisms easily extends to the quaternionic case

to give a map of graded abelian groups

" : N4 (H) — KSp~*(pt) = PKSp " (pt).

n>0

We would like to show ¢” is an isomorphism. In order so, we must examine H-modules over Cl,,.
But notice that H-modules over Cl,, are the same as R-modules over Cl,, ®rH. So we will begin
by studying this algebra Cl,, @gH. Our following discussion will be guided by the Bott’s 4-fold
periodicity KSp™ = KO~ 4, KO™" = KSp~"*.
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3.3 Quaternionic Clifford algebra and complexification

Definition 3.1. We define the (n-th) quaternionic Clifford algebra ClZ to be the associative
R-algebra Cl, @rH. Adopting the notation of [LM89] we denote the complex Clifford algebra
Cl,, ®rC by Cl, and denote the complexification of the quaternionic Clifford algebra Clz ®rC by

C1”. Both Cl, and CI” are associative C-algebras.

Since the real Clifford algebras are classified, we can classify the quaternionic Clifford algebras

and their complexifications using the well-known identities:

CorC=CaqC

Her C=C(2)

Hog HR(4) (3.3.1)
R(n) @r R(m) = R(nm) for all n,m

R(n) ®r K= K(n) for all n,K =R, C,H

where K(n) means the full n x n matrix algebra over K for K = R, C or H. The results are listed in

the following table.

n Cl, Cl, cl c1
0 R C H C(2)
1 C CoC C(2) C2)eC(2)
2 H C(2) R(4) C(4)
3 Ho C2)®CR2) | R4 @R(4) | C4)@C4)
4 H(2) C(4) R(8) C(8)
5 C(4) C(4)®oC(4) C(8) C@R)@C(8)
6 R(8) C(8) H(8) C(16)
7 [ R()SR(8) | C(8)®C(8) | H(8) @ H(8) | C(16) & C(16)
8 R(16) C(16) H(16) C(32)

Table 3.1: Clifford algebras

The rest can be deduced from this table because the real and complex Clifford algebras are
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periodic in the following sense:

Cl,48 = Cl, ®gr Clg = Cl, ®rR(16),
(3.3.2)
Cly42 2 Cl,®c Clp = Cl,@cC(2).

Consequently the quaternionic Clifford algebras and their complexifications are periodic as well.
Now we observe from the above table there is a symmetry between the real and quaternionic

Clifford algebras:
Proposition 3.1. For n > 0, there are isomorphisms of associative R- and C-algebras
(i) Clyia = ClP@RR(2) and CI, , = Cl, ®gR(8);
(i) CI" = Cl,®cC(2).
Proof. The complex case (ii) follows directly from definition and (3.3.1):
Cl! = Cl! ®xC = Cl, ®rH &g C = Cl, @rC(2) = Cl,®cC(2).
For (i), we claim that Cl,,; 4 = Cl, ® Cly. Then using Cly = H(2) we have

Cly14 = Cl, ®pH(2) = Cl, @g H g R(2) = CI! @gR(2), and

Cl!,, = Cl, 4 @rH = Cl, ®rH(2) ®g H = Cl, 2gR(8).

Now to prove the claim, consider the linear map f : R"** — Cl, ®g Cly defined on the standard
basis eq,...,e,+4 by

1! forl1 <i<4

1
fle) = (3.3.3)
el_,@ele)ele) for5<i<n+4
where €/, ..., e, (tesp. €], €, €5, e}y) are the standard generators of Cl,, (resp. Cly). It is straightfor-
ward to check that f(e;)?> = —1 and f(e;) f(e;) + f(e;)f(e;) = 0 for i # j. Therefore f extends to
an algebra morphism Cl,,, 4 — Cl, ®r Cls. Now notice f maps onto a set of generators and the two

algebras in question have the same dimension (both algebras are of dimension 2"%), we conclude

Clyya 2 Cl, ®g Cly. m
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This proposition in particular shows Cl,,+4 is Morita equivalent to Clﬁ as associative R-algebras.

More precisely, the functor

R-modules over CI — R-modules over Cl,; 4 = Cl' @R (2)

Vi VeoR?

is an equivalence of categories. Similarly ClZ 14 18 Morita equivalent to Cl, as associative R-algebras,
and (CIZ is Morita equivalent to Cl,, as associative C-algebras. We remark on several extra properties

of the isomorphisms in Proposition 3. 1| that will be used later.

Remark 3.2. (i) These isomorphisms are compatible with the isometric embedding i : R" —
R"*1 e (e,0) in the sense that the isomorphisms commute with the induced embeddings
of algebras Cl, LN Cl,y 1, CI2 LN Cr 41 and their complexifications. The complex case is

clear, while the real case follows from that foi =i, 0 f.

(i1) The quaternionic Clifford algebras and their complexifications inherit Z;-gradings from those

on the real Clifford algebras by setting
(CIMH* = C1Y @pH, (CI})* = (CI)* @ C

where oo = 0, 1. Now the isomorphism in Proposition [3.1{ii) is a Z,-graded one where Cl, is
graded by C1¥ = C1¥ @gC for o = 0, 1. But the isomorphisms in Proposition [3.1]i) do not

preserve the Z,-gradings.

(iii) In particular, the Morita equivalence between C1" and Cl, is a Zy-graded one, in the sense
p q n g
that the equivalence V¢ — Ve ®c C? between the categories of C-modules restricts to an

equivalence of the corresponding subcategories of Z,-graded modules.

3.4 Z,-grading

We can relate higher dimensional Clifford algebras to lower dimensional ones in two ways through

their Z,-gradings. One is the following:
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Lemma 3.3. Let {e;} be the standard orthonormal basis of R™ 1. Then the linear map R"* — Cl4q
given by e; — eje, 11 extends to an algebra isomorphism Cl,, = Clg 1 compatible with the isometric

embeddings, i.e. the following diagram commutes:

Cl, -5 Cl,yy

1= ' 1=
ci,, - el

Proof. 1t is straightforward to check the map extends to an algebra map Cl,, — Cl,,,; whose image
lies in CI9 +1- Now observe that the images of ¢; for i < n and e;e; for 1 <i < j <n generate (olf 41
Therefore the algebra map Cl,, — Clg 1 1s surjective, but the two algebras in question have the same
dimension. So the map is an isomorphism. The commutativity of the diagram follows directly from

construction. [}

The other involves Z,-graded tensor product.

Definition 3.2. Let V = V'@ V! and W = WO @ W! be Z,-graded K-vector spaces for K =R or C.
Then their Z,-graded tensor product V&W is defined to be the vector space V @ W equipped
the Z-grading (VRW )k = @, =k mod 2(V ® W/) where direct sum and tensor product are taken
over the underlying field K. If further V and W are Z,-graded algebras, then V&W is made into
a Z,-graded algebra with the usual Koszul rule: (v@w) - (V@w/) = (—1)degwdey’y, /! T V
and V' are Z,-graded KK-modules over Z,-graded K-algebras A and A’ respectively, then V&gV’ is

made into a Z,-graded module over AQgA’ also by the usual Koszul rule.

Lemma 3.4 (see [LM89, Proposition 1.5]). Let {e;}, {e}} and {€/'} be standard orthonormal base

of R R™ and R" respectively. Then the linear map R™™" — Cl,, & Cl,, given by

ei&1 fori<m
e —r

1&®e! ,  fori>m
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extends to an isomorphism of Z-graded R-algebras Cl,, , = Cl,, & Cl, compatible with the iso-

metric embeddings, i.e. the following diagram commutes:

Cl, &Cl, 2%, Cl,, &Cl,.

lg |=

Clyyn # Clyint

Upon tensoring with C, we get Cl,,, = Cl,,&Cl, as Z-graded C-algebras compatible with

isometric embeddings.

Proof. It is straightforward to check the map extends to an algebra map Cl,,,, — Cl,, ®Cl,,. Then
notice the image of this map contains the generators of Cl,, © Cl, and the two algebras in question

have the same dimension. [ |

See also Lemma|/.1|for a more general statement.
Corollary 3.5. For all m,n > 0 there are isomorphisms of Z,-graded R-algebras
(i) Cl,&Cl = Cl" ., and
(i) CI" &Cl" = Cl, QR(4).

In particular Cl,,,,, is Morita equivalent to Cl}n’l ®C1Z as Zo-graded algebras. Here the Z.,-grading

on Cly1, @R(4) is given by (Clyy, @R(4))* = C1%

m-+n

®@R(4) for oo =0, 1.

Proof. The first isomorphism is derived from the above lemma by tensoring with H. For (ii) recall

the Z,-grading on CI” is given by (C1?)* = C1¥ ®H. Therefore
cll &Cl! = (C1,&C1,) @HRH 2 Cl,., QR (4).

Since R(4) does not contribute to the Z;,-grading, the Morita equivalence is a Z-graded one. W
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3.5 Quaternionic Clifford modules

3.5.1 Ungraded v.s. Z,-graded

We are interested in Z,-graded modules, but Z,-graded modules and ungraded modules are closely
related. Given a Z,-graded K-module V over Cl,, 1, V° is an ungraded KK-module over c12 41 =Cly.

Conversely given an ungraded K-module V over Cl,, then
Clut1®cp |V = (Clysy Bep V)@ (Clyyy B, V)

is a Zp-graded K-module over Cl,; . It is clear these two constructions are inverses to each other
and therefore the category of Z,-graded K-modules over Cl,.1 1 is isomorphic to the category of
ungraded K-modules over Cl,,. So even though we are interested in Z,-graded modules, we might

as well study ungraded ones, which are easier to construct and classify using Table 3.1}

3.5.2 Grothendieck groups of modules

For K = R, C or H, let 9t,(K) denote the Grothendieck group of finite dimensional (ungraded)
K-modules over Cl,, with respect to direct sum. Then for n > 0 we have

A

M1 (K) = 90, (K). (3.5.1)

Once all the groups 2, (K) are known, we can recover all ifR,,(K) for n > 1. The special case
95?0(11{) is easy to work out: since Cly = R is concentrated in degree 0, it has two inequivalent
irreducible Z;-graded K-modules, both of which are one dimensional over K but concentrated in
degree 0 and degree 1 respectively. This means 9%, (K)=Z+Z.

Let us also denote by 9" (K) (resp. M"(K)) the Grothendieck group of finite dimensional

ungraded (resp. Z;-graded) K-modules over Clﬁ. Then we have
MI(R) = 90, (H), and M (R) = 901, (H).

There are more relations among these Grothendieck groups of modules derived from Morita

equivalences of algebras.
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Proposition 3.6. The isomorphisms of algebras in Proposition induce isomorphisms
(i) My r4(R) =M, (H) and M, 14(R) = M, (H) for n > 0;
(ii) My 4(R) =2 M, (H) and M, 4 (H) = N, (R) forn > 1;
(iii) MA(C) =2 M, (C) for n > 0.

Proof. It is clear (i) is a direct consequence of Proposition [3.1] (i). Then (ii) follows from (i) by

(3.5.1)). Finally (iii) follows from Proposition [3.1] (ii) since the isomorphism therein is a Z,-graded

one. [ |

We leave it to the reader to verify that the above isomorphisms are compatible with isometric

embeddings. Then we get

Corollary 3.7. The isomorphisms of algebras in Proposition[3.1|induce further isomorphisms
(i) Muya(R) =N, (H) and N4 (H) =2 N, (R) forn > 1;
(ii) N(C) =N, (C) forn>0.

Now from the knowledge of real and complex Clifford modules (see [ABS64, p.12]), we have

nmod8 || 1 2 1314 5|6 7|8 nmod?2 || 1| 2
MR | Z | Z |Z|2°|Z |7 |Z|7Z Mm,(C) || Z | z?
MM | Z | Z |Z|7Z* |7 | Z |Z|Z? MC) || Z | Z?
M(R) ((Zy|Zy |O| Z | 0|0 |0]| Z M, (C) || 0| Z
M(H) | 0] 00| Z |Zy|Zy | 0| Z NC) | 0| Z

Table 3.2: Clifford modules

From Table all the algebras in question are semisimple (matrix algebras over R, C,H are
simple), so their Grothendieck groups of (ungraded and consequently Z;-graded) modules are free

abelian groups generated by inequivalent irreducible modules. This is reflected in Table [3.2]
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3.5.3 Irreducible modules

We now construct explicit generators for 91, (K) for K = R,C or H. Let us begin with real and
quaternionic modules. From Table whenever n % 3 mod 4, Cl,, and C1” are of the form K(N). It
is well-known that the matrix algebra IK(N) has a unique (up to equivalence) irreducible module KV
by matrix multiplication. In view of , we have described generators for 93, (R) and 9%, (H)

for n Z 0 mod 4. In the case n = 0 mod 4, we need the assistance of the (oriented) volume element
w, =erer---e, €Cly,,

which enjoys the properties ®? = (—1)""*1/2 and ew, = (—1)" ' w,e for all e € R" (see e.g.
[LMS89, Proposition 3.3]).

Now let Cly = H(2) act on H? by left matrix multiplication. Then since (@y)? = 1, H? splits
into a direct sum of +1 eigenspaces (1 £ (1)4)H2 of w4, denoted by H... Since ewy = —wye,
multiplication by any e € R* — 0 yields an isomorphism of real vector spaces H, = H_. So each of
H is of real dimension 4. Further, since @4 commutes with Clg, H.. are invariant under the action
of C1Y = Cls. Thus we may treat H as Cl3-modules. Notice now @3 is in the center of Cl3 and the
action of @3 on H is through @4 (= mse4), we conclude H 1 are inequivalent as Cl3-modules. The
two inequivalent Z,-graded R-modules of Cly corresponding to the two inequivalent Clz-modules
H., denoted by Aj_fR, are tautologous: the underlying real vector spaces of Aj_fR are both simply H?,
with Z;-gradings given by

+0 +1
Ap=H:, Ay =He

As H2 is an irreducible ungraded Cly-module, Az:tt,R are irreducible as Z;-graded Cly-modules.
Next observe that H? carries a natural right H-multiplication that commutes with the left matrix
multiplication from Cly. Since H°? = H by conjugation, left and right modules of H are no different.
We can thus view H? as a left H-module and therefore an H-module of Cls. Equipped with this
H-module structure, AiR are enhanced into two inequivalent irreducible Z,-graded H-modules of

Cly, denoted by A}H:
AfﬁH = AIR equipped with an H-module structure. (3.5.2)
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Similarly by considering the eigenspace decomposition of the volume element g through the
matrix multiplication of Clg = R(16) on R!6, we obtain two inequivalent irreducible Z,-graded
R-modules AE;R on whose even parts g acts by 1. The two inequivalent irreducible Z,-graded
H-modules of Clg, denoted by A;;H, can be obtained by considering the eigenspace decomposition
of the volume element g ® 1 € CI# through the matrix multiplication of CI% = H(16) on H'® as
before. It is not hard to see

Asy = Agr OrH.

Using periodicity, we now have a complete description of irreducible Z,-graded R- and H-
modules for the Clifford algebras. The story for C-modules is similar. Note that C-modules over
Cl,, are the same as C-modules over Cl, since C is commutative. Now consider the left matrix
multiplication of Clp, = C(2n) on C?". This is the unique (up to equivalence) irreducible ungraded
C-module over Cl,, and therefore gives rise to the unique (up to equivalence) irreducible Z,-graded

C-modules over Cly,, 1. On the other hand observe the complex volume element

C

satisfies (a)zn)2 = 1, so we obtain two Z;-graded C-modules Ai ¢ for Clp, by setting

A= (1% 05) €, Ak = (15 0f) >

These two Z;-graded modules A;Emc are inequivalent because their even parts A;tn”(gc as Clgn =

Cly,—1-modules are inequivalent. To see this, we simply note @,,_ is central in Cl,_; and the
action of wy,_1 on A;(ZC’ which is through the action of w,, = (—i)”a)écn, are different.

Now let us introduce notations for these irreducible Clifford modules.

Definition 3.3. For K = R or H, let A, g denote the unique (up to equivalence) irreducible Z,-
graded K-module over Cl,, for n # 0 mod 4. For n = 0 mod 4, let AiK denote the two inequivalent
irreducible Z,-graded K-module of Cl,, so that @, acts on Aiﬁg by +£1. We call these modules the
fundamental Z,-graded R- and H-modules over the Clifford algebras. Similarly let A, ¢ denote

the unique (up to equivalence) irreducible Z;-graded C-modules over Cl, for n % 0 mod 2. For
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n=0mod 2 let Ajl[(c denote the two inequivalent irreducible Z,-graded C-modules over Cl,, so
that a),(qC acts on Ag’é by +1. We call these modules the fundamental Z,-graded C-modules over

the Clifford algebras.

The dimensions of these fundamental modules can be read off from Table [3.1]in the following
two steps. First note the dimension of a fundamental Z,-graded module over Cl, is twice the
dimension of an ungraded irreducible module over Clg 2 (Cl,,—1. Then the dimensions of ungraded
irreducible modules can be read off directly from Table (and periodicities). Let d,r,d, c,
and d, iy denote the real dimensions of fundamental Z,-graded R-,C- and H-modules over CI,

respectively. The results are listed below.

n 112|345 |6| 7|8
d,r || 2|4|8|8|16]16 |16 | 16
dyc |44 8|8|16| 16|32 | 32
dym || 8188 |8| 16|32 | 64| 64

Table 3.3: Dimensions of fundamental Z;-graded modules

The rest can be deduced from the recursive relation d,, g x = 24dn7K for K =R, C or H. These
simple dimension counts reveal some relations among the fundamental Z,-graded modules. The
fundamental Z,-graded R- and H-modules are related by forming Z;-graded tensor products as

follows.

Lemma 3.8. (i) As equivalence classes of Z,-graded K-modules over Clg ®g Cl, = Cl,, g, we

have
A§R®RAn,K =Apgx  (n#4 mod 8)

A

A§R®RAiK = Arjzt—i-&K (n=4 mod 8)

for K=R or H.

(ii) As equivalence classes of Z-graded H-modules over Cl, & Cly = Cl, 4, we have
AnrORA g = Appam  (n#4 mod 8)

AiR@)RAI 0= A,;_LM?H (n=4 mod 8)
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(iii) As equivalence classes of Z,-graded R-modules over Clz ®r CIZ = Cly44 ®rR(4), we have

An,H®]RAIH = An+47]R QR R* (n 7_é 4 mod 8)

A

Aru®rALy = A, g ®rRY (n=4mod 8)

Proof. For (i), if n # 4 mod 8, by simple dimension counts A§R®RA,,7K has the same dimension
as the unique (up to equivalence) Z-graded K-module A, ;g x over Cl,,,g. Therefore A;RQ?RA,,K
must be equivalent to A, g k. If n =4 mod 8, again by dimension counts A;{R@)RA,LK must be
equivalent to one of the two irreducible Z;-graded modules A;“ 48K OF A, LK To know which one,
we observe the volume element @), g coincides with wg® @, under the isomorphism Clg &g Cl,, =
Cl,, g (from Corollary . So the actions of @, g on (A;Ré@RAiK)O are 1, and therefore

A

A;RQ@RA;—LK = Af;L&K. The same argument proves the rest. |

The fundamental R- and H-modules are related to fundamental C-modules through scalar
extension and restriction. If K C L are two of the skew-fields R, C or H. Then we have two natural
functors

Indz
K-vector spaces 7 IL-vector spaces
Resk
where Ind%g is L ®kg — and Res% is taking the underlying K-vector space. These functors restrict to

the categories of K- and LL.-modules over the Clifford algebras. It is clear Res]% ORes]fC]I = Res% and

Ind? o Ind§ = Indf.

Lemma 3.9. (i) Ifn=4 mod 8, then up to equivalence

H
Res(C

Res&
4 R
An,H

F +
An,(C An,R

(ii) If n =0 mod 8, then up to equivalence

Proof. The proof is similar to the previous lemma by straightforward dimension counts and by
looking at the actions of the real and complex volume elements. We note that a),(iC = —, for

n=4mod 8 and ®* = w, for n =0 mod 8. |
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3.6 Atiyah-Bott-Shapiro isomorphism

3.6.1 Multiplicative structures

Recall that from Lemma Cl,, ®r Cl, = Cl,,,1. Therefore, Z,-graded tensor product (over R)
yields natural pairings

My (R) @7, D (K) = M (K)
for K = R, C or H making 91, (R) into a graded ring and 90,(K) a graded module over 9, (R).
Furthermore, since the isomorphisms in Lemma [3.4] are compatible with isometric embeddings, this
pairings descend to pairings

A A A

Fon(R) @7, 5 (K) = Tn (K)

making 91, (R) into a graded ring and 91, (K) a graded module over 1, (R). Similarly Z,-graded
tensor product over C makes 91, (C) and 9, (C) into graded rings.

Proposition 3.10. (i) For K=R or H|, A§R®R— induces 8-fold periodicity isomorphisms of
graded Mo (R)- and Ny (R)-modules

A

Do (K) = Mays(K), Tto(K) = Fus(K).

and

Proof. These follow from Lemma [3.§] [ |

Remark 3.11. Since A} y®rA;y = Ay ®r R*, the composition of the two 4-fold periodicities

recovers the 8-fold periodicity.

Corollary 3.12. For K =R, C or H, the residue classes of the fundamental Z.-graded K-modules
of the Clifford algebras additively generate Ny (K).
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Proof. The real and complex cases are well-known, see [ABS64, pp. 12-13]. The quaternionic case

follows from the real case by the above proposition and Lemma [3.8] [

Remark 3.13. Forn =0 mod 4 and K = R or H, AZK Pr A;K = i*A,41 K (see [ABS64, Corollary
5.71). So either A or A generates 91, (K) = Z. Similarly for n = 0 mod 2, Afc®cA, - =

i*An+ 1,C-

3.6.2 Atiyah-Bott-Shapiro construction

Now let us quickly review Atiyah, Bott and Shapiro’s construction that relates Clifford modules
to K-theories. For any Z,-graded R-module V = V° @ V! over Cl,, we associate to it an element
@(V) € KO(D",dD"l| by setting

o(V) =" 7 ]

where D" is the unit disk in R” (with respect to the standard Euclidean metric), ¥ * = D" x V¥ for

a = 0,1, and u is the Clifford module multiplication, i.e. at e € R"
U :V =V, vise-v

Note that i, interchanges V¥ and V!, and satisfies u2 = —||e||? - 1 for e € R". In particular, when
restricted to dD",  is a skew-adjoint isomorphism between bundles #° and 7!
It is clear (V') depends only on the Z;-graded equivalence class of V, and ¢ preserves direct

sums. Thus we have a homomorphism
@ : M, (R) — KO(D",0D") = KO "(pt).

If the Z,-graded module V is the restriction of some Z;-graded module over Cl,; through the
embedding Cl,, C Cl,,4 1, then the isomorphism u extends to D" by identifying D" with the upper

hemisphere of §” = dD"*! C R**!. Therefore ¢ descends to a graded homomorphism

@ : Ne(R) — KO™*(pt).

'Here, and from now on, we follow the convection that KO stands for KO°. Similarly KU (resp. KSp) will stand
for KU? (resp. KSp?).
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Now the same construction applies to C- and H-modules over the Clifford algebras as well,

yielding graded homomorphisms

A

¢°: 9 (C) — KU *(pt)
goh : ‘JAI.(H) — KSp™*(pt).

It is proved in [ABS64] that ¢ and @€ are isomorphisms (of graded rings). In analogy, we will prove

@’ is an isomorphism. For this, we need

Lemma 3.14. ¢" is a homomorphism of graded modules over the graded ring homomorphism @.

That is, the following diagram commutes

Fo(R) @7 Fo (H) — 2 1, (H)

l(p®(ph l(ph

KO™*(pt) @z KSp~*(pt) —— KSp~*(p)
where X is the module multiplication of KO on KSp induced by tensor product over R.

Proof. The proof is essentially the same as that of [ABS64, Proposition 11.1] which asserts ¢ is a

graded ring homomorphism. We refer the reader to their proof. [

3.6.3 Quaternionic ABS isomorphism

Now we are ready to prove our quaternionic version of Atiyah-Bott-Shapiro isomorphism.

Theorem 3.15. ¢" : N1, (H) — KSp~*(pt) is an isomorphism of graded modules over the graded

ring isomorphism @ : Ne(R) =2 KO~ (pt).

Proof. Let us identify Jt,(R) with KO~*(pt) through ¢. From the previous lemma, ¢” is a
homomorphism of KO™*(pt)-modules. Now from Proposition and Bott’s 4-fold periodicity,
both 1, (H) and KSp~*(pt) are free modules of rank one over KO~*(pt) in degrees > 4. So it
suffices to prove @” is an isomorphism in degrees 0 and 4 (the groups in question are zero in degrees

1,2,3). In degree O, ‘JAIO(H) = Z is generated by the residue class of A(J{ > and it follows from
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construction that ¢” (Ad ) is the trivial bundle H — pt which generates KSp®(pt) = Z. In degree 4,

consider the commutative diagram

N h
T (H) —— KSp~*(pt)

lRes% lResﬁ%

Fu(R) —— KO*(pt)

By Lemma ResE (A ) = Al . hence Resf: : T4 (H) — Ji4(R) is an isomorphism. From
[ABS64] ¢ : §T4(R) — KO_4(pt) is an isomorphism. Finally thanks to Bott [Bot59, p. 3.14]
Resl : KSp~*(pt) — KO~ *(pt) is an isomorphism. We conclude ¢" is an isomorphism in degree 4.

This completes the proof. |

3.7 More on modules

Previously we have been using the quaternionic Clifford algebras as a tool for studying H-modules
over the (real) Clifford algebras. Now we put the quaternionic Clifford algebras in center stage and

study their modules in their own rights.

3.7.1 Notations

Let us begin with some notation changes. Henceforth we will denote the fundamental Z;-graded
R-, C-, H-module(s) over Cl, by A, (or A;—L if n=0mod 4), A, ¢ (or Afc if n is even) and Aﬁ (or
AZ’i if n = 0 mod 4) respectively. That is we suppress R from our notation and regard H-modules

over Cl,, as R-modules over CIZ.

Recall that C1" 22 Cl, ®¢C(2) and
M, (C) = M(C), Ve Ve C?

is an isomorphism. We denote the Z;-graded C-module(s) A, c ®c C?2 (or A,jf(c ®c C?) over CIZ
by Aﬁ c (or Aﬁ’fct). We call Af,’ (or Az’i) and AZ c (or AZ%) the fundamental Z,-graded R- and

C-modules over CI”.
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We also introduce the following notations:

A, ifn#0mod 4

Anc ifnisodd
Av:=qAF ifn=0mod8 Auc:=
AZC if n is even

A- ifn=4 mod 8

Al if n %0 mod 4

A" ifnisodd
A=A ifn=0mod8 Alci={
AZ::CF if n is even

AP ifn=4mod 8
If n is clear in the context, we will suppress n and write, for example, A for A,. The choices are

made so that

Indg (Agi) = Agec,  Resg(Af o) = Ag,

Resf (Agir4,0) = Agira,  IndR (Al y) = Al yc.

3.7.2 Right modules

The Clifford algebra Cl,, carries a transpose endomorphism (—)’ : Cl,, — Cl,, determined by
(eiei, i)' = e -epei.

The transpose satisfies (a’)’ = a and (ab)' = b'a’ for all a,b € Cl,, and thus it is an isomorphism
between Cl,, and its opposite algebra C17”. Hence left and right modules over Cl,, are equivalent
under the transpose as follows. Let V be a left module over Cl,,, we can define a right module %
over Cl,, whose underlying vector space is V on which the right Cl,,-multiplication is defined by
v-a:=(d")-vforallveV,aeCl,.

Now the transpose on Cl,, extends to a transpose endomorphism on Clﬁ by putting together the

transpose on Cl,, and the conjugation on H:

(a®z) :=d ®%
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for all a € Cl,, z € H. The extended transpose is an isomorphism of algebras (—)’ : CI* 2 (C1")7.
Therefore left and right modules over ClZ are also equivalent through the construction V V as

before.

3.7.3 Bimodules

So there is nothing new by considering right modules. It is more interesting to consider bimodules.
As we will see, the canonical bimodule over le‘l, which is CIZ itself via left and right multiplications
on itself, can be written as a tensor product of left and right modules. We focus on the dimensions
n=4,5,6,8 mod 8.

For n = 8k + 4, Clgk .4 is of form R(N) and recall Ag;i 4 are constructed from left matrix
multiplication of R(N) on R" and distinguished by the volume element. Here we think of Cl,, as
the subalgebra Cl, ®1 of CIZ = Cl,, ®gH and thus think of the volume element as an element of
CI%. Let Al 4 be the ungraded CI%, 4-module that underlies either Ag}; 4 OF Ag}; 4> then since the

matrix representation is faithful, we have an injective homomorphism
h h
Clgy4 — Endg (Agi14)

which must be an isomorphism since both algebras have the same dimension. It is well-known
Endg(V) 2V ®g V* as bimodules over Endg (V). Therefore we have an isomorphism of CI, -

bimodules
Clgiia = Agira Or (Agira)”

Now equipping Agk 4 With either of the gradings from Ag}i 4» the induced Z,-gradings on Ag’k +4®R
(Ag’k .4)" are the same, and it is clear the above isomorphism is a Z,-graded one. Next observe
that Zg’k 14 1s equivalent to (Ag’k 14)" as Zp-graded right modules over Clgk 14~ Indeed for dimension
reasons both are irreducible and the actions of the volume element on them are the same. Therefore

we have an isomorphism of Z;-graded real Cllgk 4-bimodules

h o o~ Ak ~h
Clgria = Agiia OR Agyi4-
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For n = 8k + 5, the volume element wgy, 5 € Clg‘k 5 18 central and satisfies wi%k 45 = —1. Thus
(g5 generates a central Z,-graded subalgebra C® of Clg’k 5 that is isomorphic to C. It follows

we have an algebra isomorphism
Clgrss = (Clgrs)° ® @st4.5(Clgys)” = (Clggy5) ©r C? = Cly,  @rC

where the Z;-grading on Clg‘k 14 ®@RrC is only contributed from the decomposition C = R +iR.

Similarly every Z,-graded R-module V over Clg’k 5 can be written as
V=V'0agy, sV’ =V C.

In particular Ag’k 5= Agk 14 ®r C and similarly ng 5= ng +4 @R C. Then using the result in the

8k +4 case, we get an isomorphism of Z,-graded real CIf, 5-bimodules
h oy Ah Ah
Clgis = Agrys O Agyy s

Here the Z,-grading on A§k+5 Qc ng+5 is given as follows. Write Agk+5 = (AQHS)O ®r C then
Al 5% Zg‘k 45 = (Al +5)0 ®R ng .5 has a Z,-grading inherited from ng +s- Or equivalently one
can write A§k+5 ®cC ZgHS as A§k+5 QR (ZQ’HS)O and use the Z,-grading on A§k+5'

For n = 8k + 6 there is a strong analogy. The volume element wg;,¢ generates a central
subalgebra C® of (Clg’k +6)0, moreover Mgy ¢ and egy¢ together generate a Z;-graded subalgebra
H® that is isomorphic to H. Notice under the isomorphism (CI, o) CI, 5 the subalgebra C?
here coincides with the one just discussed in the 8k + 5 case. Consider now Clg’k 44 as a subalgebra
of (Cl_¢)° via C1}, 4 = (Cl},, 5)° C (Cl,_4)°. Tt is easy to check H® commutes with CI{,

within Clgk ¢ and there is an isomorphism of Z;-graded algebras
h h
Clgy+6 = Clgy 4 OrH

where the Z;-grading on Clgi;4 ®@rH is only contributed from the decomposition H = C + Cj. For

a Z,-graded module V over Cllgk 16> WE can first write it as

V=V'®eg sV’ =VO®cH.
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Then by treating V° as a module over Clg’k 15, We can write it as W ®g C for some Clg’k 4-module
W and thus

V=W®xrH.

In particular every Clg’ r+6-module carries a right H-module structure that commutes with the left
Clgk ¢-multiplication. Consequently ng ¢ carries a left H-module structure commuting with the
right Clg’k ¢-multiplication. And similar as before, we have an isomorphism of Z;-graded real
Clg’k L¢-bimodules
h o~ A Ah
Clgi6 = Askr6 @1 Agere-

Here ®p means equating the right H-action on Ag‘k +¢ With the left one on ng +¢» and the Z-
grading on A§k+6 OH Agk+6 is given by writing Agk% = (Ag‘k%)o ®c H and then Agk% OH A§k+6 =
(Agk%)o ®c ng% inherits a Z,-grading from Zg‘k+6.

Finally for n = 8k, consider first (Clgk which is of form C(N). Then we have an isomorphism
of Z,-graded complex CI? -bimodules C1%, = A?, . ®¢ A" .. Since CI%, = CI%, & Cl%, as real

8k 8k 8k,C 8k,C 8k 8k 8k

bimodules over Clgk, we may write

1 _
ho~ L an h
Clg, = §A8k7(C Q¢ Agi.c-

In summary we have proved:
Proposition 3.16. Forn=0,4,5,6 mod 8, there are isomorphisms of Z;-graded real Clﬁ-bimodules:
h ~ 1 h Ah
Clg, = 5 Ag,c @cAgic
h ~ Ah Ah
Clgiya = Agjys OrR Agyiy

h o~ Ah ~h
Clgiys = Agyrs O Agyes s

h o~ Ah ~h
Clgir6 = Agir6 Om Agrys

This proposition and its proof will be used in computing the index of certain Dirac operator, see

Example[5.3]
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Chapter 4

Spin” vector bundles

In this chapter, we develop a topological theory of spin” vector bundles. In particular, we construct
"Thom classes" for spin” vector bundles in real and complex K-theories and exhibit versions of
Thom isomorphisms for spin” vector bundles. Using these "Thom classes”, we prove a version of
Riemann-Roch theorem for spin” maps which picks out a special characteristic class for spin” vector
bundles analogous to the A-class for spin vector bundles. Finally we compute the cohomology of

the classifying space of (stable) spin” vector bundles.

4.1 Spin” structures on vector bundles

Recall the spin group Spin(n) is a subgroup of CL*, the multiplicative group of Cl,. Let Sp(1) be

the group of unit quaternions, then we have a natural group homomorphism
Spin(n) x Sp(1) — (CI")* = (Cl, @rH)*,

whose kernel is the "diagonal" Z, generated by (—1,—1). By modding out the kernel, we obtain
the group
Spin”(n) := Spin(n) x Sp(1)/Z, C (CIM)*.

Since Spin(n) C C1°, we see Spin”(n)  (CI")0. From here we can see the representation theory of

Spin” (n) is closely related to that of C1”. Let V be a Z,-graded R-module (resp. C-module) over
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C1”, then V° is a module over (C1?)? and therefore a representation of Spin”(n). If V is irreducible
over CI, then V' is irreducible over Spin”(n) because Spin(n) contains a set of generators of C1°
and Sp(1) contains a set of generators of H.

But Spinh(n) owns more irreducible representations than CIZ. For instance, through projections

onto its two factors, Spin” (n) admits two natural orthogonal representations

Spin(n) — Spin(n) /Z, = SO(n)
4.1.1)
Spin"(n) — Sp(1)/Z2> = SO(3)
Thus irreducible representations of SO(n) and SO(3) also become irreducible representations of

Spinh(n). By contrast, Clﬁ has only one or two irreducible representations.

Now putting the two projections in (#.1.1)) together, we get a short exact sequence of groups:
1 — Z — Spin(n) — SO(n) x SO(3) — 1 (4.1.2)

where Z, corresponds to 41 in C1”. This means Spin”(n) is a central extension of SO(n) x SO(3)

by Z,. Group extensions of this type are classified by
H?(BSO(n) x BSO(3);Z2) = {0, wy, wh, ws +wh}

where wy € H*(BSO(n);Z,) and w) € H*(BSO(3);Z,) stand for the corresponding second Stiefel-
Whitney classes. Clearly Spin” (n) is the extension that corresponds to wy + w); the other three
elements 0, wy,w/, correspond to Zy x SO(n) x SO(3), Spin(n) x SO(3) and SO(n) x Sp(1) respec-

tively.

Definition 4.1. Let E be an oriented Riemannian vector bundle of rank n, and let Pso(E) denote its
oriented frame bundle. A spin” structure on E is a principal Spin”(n)-bundle P pinh (E) and a map
of principal bundles P . (E) — Pso(E) which is equivariant with respect to Spin”(n) — SO(n)
in (4.1.1). Or equivalently, in view of and (4.1.2), a spin” structure is a rank 3 oriented
Riemannian vector bundle hg with wa(hg) = wa(E).

With a fixed choice of hg or Py . »(E), we say E is a spin” vector bundle. The bundles b and

pinh

Pspinh (E) are called the canonical bundle and the structure bundle of E respectively.
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Remark 4.1. The primary obstruction to the existence of spin” structures is the fifth integral Stiefel-

Whitney class W5 (see [AM21]]). There are non-trivial secondary obstructions.

Definition 4.2. A smooth manifold M is a spin” manifold if its tangent bundle is equipped with a
spin” structure. Spin” manifolds with boundary and spin” cobordism can be defined in the usual

way.

Example 4.2. Every compact oriented Riemannian manifold of dimension < 7 admits a spin”
structure [AM?21]]. Every oriented Riemannian 4-manifold (including non-compact ones) admits
two natural spin” structures whose canonical bundles are the bundle of self-dual two forms and the

bundle of anti-self-dual two forms.

Example 4.3. Let F be a spin vector bundle of rank m over Y and E a spin” vector bundle of rank 7
over X, then F x E is a spinh vector bundle over Y x X with canonical bundle hr«g = myhr where
Ty 1Y x X — X is the projection onto X. Let Pspi, (F') denote the structural principal Spin(m)-bundle
associated to F, then the structure bundle PSpinh (F X E) of F X E is derived from the principal

bundle Pspin (F) x PSpin

»(E) through the natural homomorphism
Spin(m) x Spin(n) — Spin” (m +n)

induced from the isomorphism given in Corollary [3.5().

4.2 Quaternionic Clifford and "spinor bundles

Recall for a spin vector bundle F — Y of rank m, its Clifford bundle is defined to be the bundle of
Z,-graded R-algebra
Cl(F) = PSpin (F) X Ad Cl,

with the natural inherited Z,-grading, where Pspin (F) is the principal Spin(m)-bundle associated to

F and Spin(m) acts on Cl,, through the adjoint representation

Ad : Spin(m) — Aut(Cl,), g+ Adg(x):=gxg™', forx € Cl,.
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Since —1 € ker Ad, the adjoint representation descends to a representation Ad : SO(m) — Aut(Cl,).

As such, the Clifford bundle only relies on the metric on F.

Definition 4.3. The quaternionic Clifford bundle of a spin” vector bundle E — X of rank # is the

bundle of Z,-graded R-algebra

Cl"(E)=P

Spin” (E) X Adl CIZ

with the natural inherited Z,-grading, where Spin” (n) acts on CIZ through the adjoint representation
Ad": Spin”(n) — Aut(CI}), g+ Adi(x) :=gxg~ ', forx € CI..

This adjoint representation can be lifted to the adjoint representation of Spin(n) x Sp(1) on CI”,
which is the tensor product of the adjoint representations of Spin(n) on Cl, and Sp(1) = Spin(3)
on H = Clg. So the lifted representation (and therefore Ad" as well) descends to a representation of

SO(n) x SO(3) which is the tensor product of the (descended) adjoint representations of SO(n) on

Cl, and SO(3) on CI9. Therefore C1"(E) depends only on the metrics on E and b, and
CI"(E) = CI(E) @r CI°(bE).

So the construction of the quaternionic Clifford bundle does not really require a spin” structure.
However, the presence of the spin” structure will allow us to construct interesting bundles of

modules over the quaternionic Clifford bundle.

Definition 4.4. Let E — X be a spin” vector bundle of rank n. A real “spinor bundle of E is a

bundle of the form
SME, V) =Py 1(E) xu V,
where V is a R-module over C1” and p is the composition Spin”(n) C (CI?)* — Aut(V). Similarly

a complex “spinor bundle of E is a bundle of the form

S%(EJ/(C) =P,

Spinh (E> X’u V(Cﬂ
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where V¢ is a C-module over Clﬁ. If the module V' (or Vi) is Z,-graded, the corresponding bundle
is said to be Z,-graded. It is clear (real or complex, ungraded or Z,-graded) "spinor bundles are

bundles of modules over the quaternionic Clifford bundle.

Example 4.4 (fundamental Z,-graded "spinor bundle). We denote the corresponding Z,-graded
real "spinor bundle constructed from the Z,-graded modules A” (resp. AZ’i if n =0 mod 4) by
$"(E) (resp. " (E)). Similarly, §~(E) (resp. $éi(E ) if n is even) denotes the Z,-graded complex
hspinor bundle that corresponds to AQ’C (resp. A:% ). We call them the fundamental Z,-graded
(real or complex) “spinor bundles of E. Every Z,-graded "spinor bundle of E can be decomposed

into a direct sum of fundamental ones.

4.3 Thom classes and Thom isomorphisms
In [ABS64], ¢ is upgraded, for each spin vector bundle F' — Y of rank »n, to a homomorphism
or : T (R) — KO(Th(F))
where Th(F) is the Thom space of F. Similarly if F is spin®, we have a homomorphism
0% : T, (C) — KU(Th(F)).
Now we upgrade ¢”" for each spin” vector bundle E of rank n to a homomorphism
o : S1,(H) — KO(Th(E))

as follows. Let D(E),dD(E) denote the (closed) unit disk and sphere bundle of E respectively. Let
7 : D(E) — X be the bundle projection.

For a Z,-graded R-module V over ClZ, we have the associated Z,-graded "spinor bundle
S"(E,V). Then the pull-backs of the degree 0 and degree 1 parts of S"(E,V) are canonically

isomorphic over dD(E) via the map

Ue : <7t*Sh (E,VO))E — (n*Sh (E,V1)>
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given at e € dD(E) by u.(0) = e-o. That is, Clifford multiplication by e itself. Since e-e =

—|le]|? = —1, each map g, is an isomorphism. This defines a difference class
PL(V) = [n*sh (E,VO),2*s" (E,V1); u} € KO(D(E),dD(E)) = KO(Th(E)).

Clearly (pg (V') depends only on the equivalence class of V. If V is restricted from a Z,-graded
module over CI”_ ,, i.e. [V] belongs to i*%, (H), then we may embed E into E & R, where R is
the trivialized bundle with a nowhere zero cross-section e, and a metric so that e, | is of norm
one. This way the spinor bundle S”(E,V) is contained in S"(E ®R,V) and 7*S"(E,V) extends to

a bundle over D(E & R). Then
fio(0)=(e+(1/1—|le||*)ens1) -0 foree D(E) C D(E®R)

extends the isomorphism y on dD(E) to an isomorphism on D(E). This means @} descends to a
group homomorphism

ol 9, (H) — KO(Th(E)).

From definition (pg is functorial with respect to pull-backs of spin” bundles and if E is the trivial

bundle over a point, then (pg coincides with the composition
< o' —n Res% _n
M, (H) — KSp " (pt) —— KO "(pt).

Moreover the module structure of 1, (H) over 1, (R) is compatible with the external product

in real K-theory.

Proposition 4.5. Let E — X be a spin" vector bundle of rank n and F — X a spin vector bundle of

rank m. Suppose F x E is given the spin" structure as in Example Then the following diagram

commutes:
Tt (R) @ Tt (H) ————— Tl (H)
l(pF@(,,g l"’gw 4.3.1)
KO(Th(F)) ® KO(Th(E)) —2— KO(Th(F x E))
Proof. The proof is the same as that of [ABS64, Prop. 11.1]. [
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As an application of the upgraded homomorphism, we have:

Theorem 4.6. Let E — X be a spin” vector bundle of rank 8k +4. Then
¢ (A") € KO(Th(E))

restricted to each fiber over x € X generates IZ()(Th(Ex)) >~ KO~ 8~4(pt) = Z. Moreover, multipli-

cation by @l (A") induces a Thom isomorphism

. 1

KO"(X)[3] = KO (Th(E))[5]

N =

Proof. Since when restricted to the fiber Ey over x € X, (pgx coincides with Res%o(ph, the first
assertion follows from Res%(Ag‘k +4) = Agky4 and Res% o = gDRes%. The second assertion fol-
lows from a Mayer-Vietoris argument and that KO~8~4(pt)[1] generates KO*(pt)[1] as a free

KO* (pt)[5]-module. |

Remark 4.7. It is necessary to invert 2 in order to obtain an isomorphism. Indeed, when X is a point
the map KO*(pt) — KO (S8k+4) = KO*~8=4(pt) = KO*~*(pt) is never an isomorphism since the

2-torsion on both sides are placed in different degrees.

Analogously using complex modules over the quaternionic Clifford algebras we have:

Theorem 4.8. Let E — X be a spin vector bundle of rank 2n, then there is a homomorphism
@ 98, (C) — KU(Th(E))

so that % (AL) € KU(Th(E)) restricted to each fiber over x € X is twice the generator of
Pe(Ac

KU(Th(Ey)) = KU 2" (pt). Moreover, multiplication by 0% (AL) induces a Thom isomorphism

— 1

KU"(X)[5] = KU (Th(E))[5).

N =

Proof. Tt suffices to show @f (Afé) restricted to each fiber is twice the generator. Indeed, restricted
to the fiber over x € X, @f_coincides with the composition

cih
Res 2"
Clh, <

Fh (C) —22 §1,,(C) 25 KU (pt),
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ch, . L - .
where the first map Res,”" is the forgetful homomorphism induced by restricting the Clgn-actlon to
2n

h
its subalgebra Cly, = Cl, @1 C Cl, = Clp, ®cC(2). Recall AL = Ac ®¢ C? so Resg% AL =2Ac.

2n

Therefore @ (A) = ¢°(2A¢) = 2¢°(Ac); and @°(Ac) generates KU (pt) by [ABS64]. W
These Thom isomorphisms motivate the following definition.
Definition 4.5. Let E be a spinh vector bundle of rank n. If n = 4 (mod 8), then
N (E) = gh(a")
is called the weak KO-Thom class of E. If n = 0 (mod 2), then
AL(E) = g (A%)
is called the weak KU-Thom class of E. Note Indg (A"(E)) = AL(E) for n = 4 (mod 8).
The weak Thom classes enjoy a nice multiplicative property.

Proposition 4.9. Let E be a spin” vector bundle of rank 8k + 4 and F a spin vector bundle of rank

81. Denote by A(F) = @r(A) the KO-Thom class of F. Then
A"F x E) = A(F)-AY(E).
Similarly, denote by Ac(F) = @5 (Ac) the KU-Thom class of F, then
NL(F  E) = Ac(F) - Al (E).

Proof. The first identity follows from Proposition 4.5] the second follows from a similar property

for ¢¢ and @°. [

The Chern character of the weak KU-Thom class is calculated below. The Pontryagin character

of A"(E) is given by ph(A"(E)) = ch(AL(E)) since Ind§ (A" (E)) = AL(E) for n =4 mod 8.
Proposition 4.10. Let E — X be a spin” vector bundle of rank 2n. Then

ch(AL(E)) = (—1)"Uk - <2<:osh (&) ﬁl(E)”)
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where Ug € H*(Th(E);Z) is the singular cohomology Thom class of E and U(E) is the total

A-class of E.

Proof. Since the map f : BSpin(2n) x BSp(1) — BSpin”(2r) induced by the double cover Spin(2n) x
Sp(1) — Spinh(Zn) induces an isomorphism on rational cohomology, without loss of generality we
may assume E is spin and its canonical bundle b is also spin. Then A%L(E) = Ac(E) ®c¢ & where
& is the rank 2 complex vector bundle associated to the principal structural Sp(1)-bundle of hg
via the fundamental representation of Sp(1) = SU(2) on C2. The proposition now follows from
ch (AL(E)) = ch(Ac(E)) - ch(§) by ch (Ac(E)) = (—1)"Ug - U(E) ! (see [AH59]) and the lemma
below. |

Lemma 4.11. Let & be the complex vector bundle over BSU(2) associated to the the fundamental
representation of SU(2) on C? and let ¥ be the real vector bundle over BSU(2) associated to the

rotation representation of SU(2) on R? via the double covering map SU(2) = Spin(3) — SO(3).

Then ch(E) = 2cosh (@)

Proof. The fundamental representation is irreducible with weights 1, —1. By spitting principle, we
may write ¢(&) = (14x)(1 —x) = 1 —x?. The complexification of the rotation representation is the
adjoint representation of SU(2), which is irreducible with weights 2,0, —2. Therefore we can write

c(y®r C) = (1+2x)(1 —2x) = 1 —4x>. Now p;(y) = —c2(y®r C) = 4x2, hence symbolically

x = p21(7)_ So ch(&) = "+ e = 2cosh(x) = 2cosh (—szlm) This expression makes sense

since hyperbolic cosine is an even function. |

4.4 Riemann-Roch theorem for spin” maps

Definition 4.6. Let M and N be closed oriented smooth manifolds. A continuous map f: M — N is

called a spin” map if there exists an oriented rank 3 real vector bundle b ron M so that
wa (M) + f w2 (N) = wa(by).

The bundle b is called the canonical bundle of the spin” map f.
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Theorem 4.12. (i) Let dimM = dimN mod 2. Then a spin™ map f: M — N induces a direct

image homomorphism f, : KU(M) — KU(N) such that

chfi(€)-U(TN) = f, | ch&-2cosh w A(TM)

where TM, TN are the tangent bundles of M,N respectively, and
fo 1 H(M;Q) — H*(N;Q)
is the Umkehr homomorphism.

(ii) If moreover dimM — dimN = 4 mod 8, then there is a direct image homomorphism fi :

KO(M) — KO(N) so that the following diagram commutes.

KoM) —

KO(N)

Ind§ Ind§
KUM) —L KU(N)
Proof. Since only the homotopy class of f is relevant to the theorem, we may assume f is smooth.
Let g : M — S?" be a smooth embedding of M. Then f : M — N can be factored into a smooth
embedding 1 : f x g: M — N x §?" followed by a projection 7 : N x §?* — N. Since wy(§?") =0, 1
is a spin” map with b, = b 7; meanwhile 7 is a spin map, that is T*w,(N) = w(N x S*"). Suppose
we have proved (i) for 1. Then since 7 is spin, by Riemann-Roch theorem for spin maps (from
[Hir95], enhanced in [ABS64]), 7 incudes a homomorphism 7, : KU(N x $?*) — KU(N) satisfying
chm (=) -A(TN) = m,(ch(=)-A(T (N x §?")). Hence f; = m1, is as desired. So we can assume f
is an embedding.

Now let E be the normal bundle of M in N whose rank is even, then wy(E) = wo(N) +
F*wa(M) =wy(hy) and thus E is spin” with canonical bundle h ;. Identify a closed tubular neighbor-
hood of M with D(E), then we have KU(D(E),dD(E)) =2 KU(N,N—M) and H*(D(E),dD(E);Q) =

H*(N,N — M;Q) by excision. Recall the Umkehr homomorphism f; is the composition

H*(M;Q) % H*(D(E),dD(E);Q) = H*(N,N — M; Q) — H*(N; Q).
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Define f) to be the composition

AL(E)

KU(M) KU(D(E),dD(E)) = KU(N,N — M) — KU(N).

Using Proposition and the multiplicative property of the A-class: f*A(TN)=A(TM G E) =
A(TM) - A(E), we conclude f; satisfies (i).

For (i1), using the same embedding trick so that 7 has relative dimension divisible by 8, and
noting from [Hir95] and [ABS64] m, in this case lifts to a homomorphism between KO-groups, we
may again assume f is an embedding. Now E is of rank 8k 44, as such Al (E) = Ind$ (A" (E)).

Define £ to be the composition

Ah
- AN(E)

fi : KO(M) KO(D(E),dD(E)) = KO(N,N — M) — KO(N).

Then f clearly is as required. |

Remark 4.13. f, is independent of the embedding M — $?" due to the multiplicative property
(Proposition 4.9) of the weak KO-Thom class. Indeed had we chosen two different embeddings,
we may find a common larger embedding. So we can assume M¢ C §¢8k+4 — gd+8k+8I+4 ‘then
the normal bundle of S¢+8+4 jn §d+8k+81+4 jg spin of rank 8. By Proposition and that

Ag € KO8 (pt) is the Bott generator, we conclude f; is independent of the choice of embedding.

Definition 4.7. Let M be a closed spin” manifold of even dimension. We define the A”-class of M

to be rational cohomology class

A" (M) := 2cosh (%) A(M).

This cohomology class has Chern-Weil form representatives once we put Riemannian connections
on TM and by;. Such a Chern-Weil representative is called an A”-form of M. Note A"-forms can
also be defined for non-closed spin” manifolds through Chern-Weil theory, but now they are not

necessarily closed forms.

Corollary 4.14. Let M be a closed spin" manifold of dimension n = 0 mod 2 with canonical bundle

by
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(i) Suppose & is a complex vector bundle over M. Then [,,ch& - A" (M) is an integer.

(ii) If further n =0 mod 8 and y is a real vector bundle over M, then [,,phy-A"(M) is an even

integer.

Proof. For (i), apply Theorem i) to the spin”-map f : M — pt. Then we have
/ ch& - A (M) :/ chfi € Z.
M pt

For (i1), apply Theorem ii) to the spin”-map f : M — pt < S*. Then we have

/ phy A" (M) = / ph fiy € 27Z.
M s
The asserted integralities follows from Bott’s theory (see [Hir93]). [ |

Remark 4.15. These integrality results are first obtained by Mayer [May635] in studying immersions

of manifolds into spin manifolds. They are also used to construct non-spin” 8-manifolds [AM21]].

Definition 4.8. The integer A"(M) := [,,9"(M) is called the A”-genus of M, and for a complex
vector bundle &, the integer number A"(M, &) := [,,ch& - A*(M) is called the A"-genus of M

twisted by &.

Example 4.16 (self-dual and anti-self dual spinh structures). Let M be a closed oriented Riemannian
4-fold. We furnish M into a spin” manifold by putting by, = A;{,[ (resp. A,;,) where A?(d (resp. Ayy)
is the bundle of self-dual (resp. anti-self-dual) two forms, and denote the resulting spin” manifold
by M. (resp. M_). Then since p;(A;;) = p1(M) £ 2e(M) (see e.g. [WalO4, pp. 195]) where e(M)

is the Euler class of M, we have

+
Ah(Mi)z/M(2+p1(;\M))(1—p12(f))
[ M) | e(M)
6 T 2

= (Signature & Euler characteristic) /2.

In particular A"(HPL ) = £1, A"(CP% ) = 2 and A*(CP2 ) = —1.
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4.5 Characteristic classes of spin” bundles

We calculate the cohomology of (the classifying space of) the stable spin” group (Theorem ,
which serves as an input for applying Adams spectral sequence to analyze the spin” cobordism
groups, especially at prime 2. The cohomology for unstable spin” groups can be obtained using the
beautiful algebro-geometric method of Quillen [Qui7/1], however we do not pursue it here.

To begin with, recall that Spin” is a central extension of SO x SO(3) by Z,, which is classified

by wa +wh € H*(BSO x BSO(3);Z,). Therefore we have a pull-back diagram

BSpin" ——— PK(Z,,2)

gl |

BSO x BSO(3) —!— K(Z5,2)

where PK(Z,,2) — K(Z,2) is the path space fiberation, and f is induced by w, +w). Let i denote

the generator of H*(K(Z,2);7) = Z,. It is well-known the mod 2 cohomology of K(Z,,2) is a

polynomial algebra generated by i and Sq’(i>) where I runs over all multi-indices (27,2"~1,... 1).

emma 4.1/. : 2,2) L) —> X 3,400 ) = Lip|W2,W3,...; Wy, Wa| LS MONIC.
L 4.17. " H*(K(Z,2);Z H*(BSO x BSO3;%Z Y/ howh i ]

Proof. For oriented bundles S¢'w» = w3. Then inductively using S¢"~'w,, = w»,_| +decomposables

(see [Sto68,, pp. 291]), we get

Sq° (wy +wh) = wy +wh
Sq' (wy +wh) = w3 +wh

Sq' (wa +wh) = wyrs1 | +decomposables  (r > 1).
It is clear these are algebraically independent, thus proving f* is monic. |
Lemma 4.18. ©* : H*(BSO x BSO(3);Z,) — H*(BSpin"; Z,) maps the subalgebra
Zolwili >2,i £ 2 4 1,r > 1]
isomorphically onto H*(BSpin”; Z,).
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Proof. Let E denote the Serre spectral sequence for 7 : BSpin” — BSO x BSO(3) and E’ that of
PK(Z,,2) — K(Z5,2). The map f induces a map f* : E’ — E between spectral sequences. Since

E is an H*(BSO x BSO(3);Z,)-module, one has an induced spectral sequence map
Tolwili>2,i# 2" +1,r>1]®FE - E

by means of f* and module multiplication. This is an isomorphism on the second page by the
calculations done in the proof of Lemma.17] Therefore the proposition follows from Zeeman’s

comparison theorem and that the path space PK(Z;,2) is contractible. [

Remark 4.19. In H*(BSpin";Z;), the classes w41 .1 are not identically zero but decomposable.

For instance, using Theorem below one can prove wg = wowy +wawg.

Our next step is to apply Bockstein spectral sequence to recover the 2-local cohomology of

BSpin”, so first of all we must understand the action of Sqg'.
Proposition 4.20. In H*(BSpin”;Z,) we have Sq' Vyr.1 = 0 for r > 1 where V; is the i Wu class.

Proof. Let w, v denote the total Stiefel-Whitney class, the total Wu class respectively, and let Sg
denote the total Steenrod square. They are related by Wu’s relation S¢(v) = w. Suppose U is the
Thom class of the stable normal bundle to the bundle in question, then Sq(U) = w-U where w is
the total Stiefel-Whitney class of the stable normal bundle, satisfying w-w = 1.

Applying Sq to v-U and using Cartan’s formula we get
Sq(v-U)=Sq(v)-SqU)=w-w-U=U.

Then since ¥ (Sq) is the inverse to Sq, where ¥ is the canonical involution of the Steenrod algebra,

we get v-U = x(Sq)U. Now from Adem’s relation Sg*Sqg* ! = Sg*Sq' we get

(Sq'var) - U = Sq" (varU) = Sq' x(S¢™)U = x(Sq" ) x(S¢*)U
= x(Sqg*Sq")U = x(S¢*Sq™ "U = x(S¢* " x(S¢*)U

= x (5" S¢*U = x(S¢* ") (w2U).
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Here we used SqIU = 0 and w, = wj since the bundles in question are orientable. Next we note

from [Dav74]

r+1 r r—1
xS Y =547 S¢¥ ---54%Sq’",

therefore

Sq' Vo T = 2(S¢%" =) (w20)
=S5¢¥Sg* " ---5¢*Sq" (wU)

r r—1 -
=S¢* Sq*  ---Sq*(Sq'v4-U).

By Thom isomorphism, we are reduced to proving Sq'v4 = 0. For oriented bundles, v4 =
wy + w% and thus Sq'v4 = Sq'ws = ws. But the integral fifth Stiefel-Whitney class vanishes for
spin” bundles [AM21, Corollary 2.5], so its mod 2 reduction ws must also vanish for spin” bundles.

This completes the proof. |

We now derive a better description of the mod 2 cohomology of BSpin”.

Theorem 4.21. 7* : H*(BSO x BSO(3);Z,) — H*(BSpin"; Z,) is surjective, with kernel generated

by wa +wh, w3 +Wwh, and Sq' Vo1 for all r > 1. In particular, ©* induces an isomorphism
H*(BSpin™; Z,) = H*(BSO:Z1) /(8¢ Vyri1,r > 1).

Proof. Lemma shows that 7* restricted to H*(BSO; Z,) is surjective. Then by Proposition[4.20]

this restriction descends to a surjection
H*(BSO:7Z3)/(Sq" Vyri1,r > 1) — H*(BSpin™; Z,).

Now it is well-known that Wu classes in degrees powers of 2 are indecomposable, that is to say
Vyri1 = Wyrr1 + decomposables. Consequently Sg! Vo1 = worii 1 +decomposables. From here
and Lemma4.18| we see the domain and target of the above map have the same dimension in each

degree, forcing the map to be an isomorphism. [
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Remark 4.22. Using the same method, we can prove
H*(BSpin; Z,) = H*(BSO;Z,) /(v2,8¢' v2,8¢' v4,5¢ s, ... );
H*(BSpin®; Zy) = H*(BSO;Z,)/(Sq' v2,5q' v4,Sq' v, ...).
However, the (mod 2) cohomology of BSpin® does not seem to follow the same pattern.
Corollary 4.23. H (H*(BSpin";Z,),8q") = Zo[w}, w3;, Vorei [k # 27, r > 1]
Proof. From the above theorem, the mod 2 cohomology of BSpin” is isomorphic to
Zo [Wz,SC]lWZ;WZk,SQIWzk; Vo1 |k # 2/ > 1]

whose cohomology with respect to S¢' can now be easily obtained by applying Kiinneth theorem.

The result is as claimed. |
Corollary 4.24. All torsion in H*(BSpin”; Z) has order 2.

Proof. Since H (H *(BSpinh; Zz),Sql) is concentrated in even degrees, all higher Bocksteins van-
ish. Hence by Bockstein spectral sequence all 2-primary torsion of H* (BSpinh;Z) has order 2.

Meanwhile we see
H*(BSpin™; Z[1/2]) = H*(BSO x BSO(3); Z[1/2])
is torsion-free. |

At this point, we have a rather complete description of characteristic classes for spin” vector
bundles. Putting torsion aside, the integral characteristic classes are the Pontryagin classes of the
bundle together with the first Pontryagin class of its canonical bundle. The mod 2 characteristic
classes are the Stiefel-Whitney classes subject to universal relations generated by Sg' Vyr+1 = 0 for
r > 1. Certain mod 2 classes admit integral lifts. The square of the even Stiefel-Whitney classes
are lifted to the Pontryagin classes. The odd Stiefel-Whitney classes are lifted to their integral

counterparts. Finally the Wu classes in degrees power of two except for v, all have integral lifts.
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Chapter 5

Dirac operators on spin” manifolds

In this chapter, we develop a geometric theory of indices of Dirac operators on spin” manifolds with

and without boundary.

5.1 Dirac operator

Let M be a closed spinh manifold of dimension n with canonical bundle §j;. We choose, once

and for all, a Riemannian connection on Pso(hy). Then P pin

»(TM) inherits a connection from
the Levi-Civita connection on Pso(7M) and the Riemannian connection on Pso(ha). Suppose S
is a "spinor bundle of TM, then S is a bundle of CI" (M)-module, and consequently a bundle of

Cl(M)-module. Moreover, S is equipped with a connection VS induced from P

spin' (TM). As usual

we define the Dirac operator D : I'(S) — I'(S) to be the first order elliptic differential operator
D:=Y ¢V (5.1.1)
i=1
where {e;}7_, is a local orthonormal frame of M, and - means Clifford multiplication.

If S = S° @ S! is Z,-graded, then D clearly interchanges the two factors. Written in matrix form

0 D!
D=

DY 0
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where DY : T'(8°) — I'(S') and D' : T'(S') — I'(S°). As usual the Dirac operator is formally
self-adjoint, namely (D°)* = D! and (D')* = D°. In particular ker D' = coker D°.

Recall all "spinor bundles are direct sums of the fundamental ones.

Definition 5.1. Let M be a closed spin” manifold of dimension n. We define its fundamental

Z,-graded real "spinor bundle to be

.

$"(TM)  ifn#0mod4

$"(M) = $"7(TM) ifn=0mod8

§"7(TM) ifn=4mod8

\
and denote the corresponding Dirac operator to be lﬁﬁ,, If v is a Riemannian real vector bundle over
M with an orthogonal connection, we denote by lﬁ,}",,(y) the Dirac operator on 8" (M) ®p v (defined
by replacing the connection in (5.1.1)) with the tensor product connection).
Similarly we define the fundamental Z,-graded complex “spinor bundle to be

b $L(TM)  ifnisodd

c(M) =

%+(TM) if n is even

and denote the corresponding Dirac operator to be Eﬁlwc- If & is a Hermitian complex vector bundle

over M with a unitary connection, we denote by Iﬁﬁ,,c(ﬁ) the Dirac operator on Sé (M) ®cé&.

Theorem 5.1. Let M be a closed spin” manifold of dimension 2n and & a complex vector bundle

over M. Then
ind (Blyc(8)) = A40n.8)

In particular ind(ﬁ}nﬂ,’c)o =AMNM).

Proof. Letxy,...,x, be virtual Chern roots of M then from Atiyah-Singer index theorem we have

nd (Be(®)' = [ (en (st0n) - en (st0n) ') eng [T, o

i=1
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Meanwhile from Proposition 4.10| we have

ch ($2.0)" —ch ($00)) = (~172cosh (—p}(hM)) T T2,
i=1 i

Here we used that, when restricted to M, the weak KU-Thom class AL (TM) becomes (Sfé (M))? —
($fé (M))! and the singular cohomology Thom class Urjs becomes the Euler class []x;. The rest is a

straightforward computation. [

5.2 Cl!-linear operator

Definition 5.2. By a ClZ-Dirac bundle over a Riemannian manifold M we mean a real Dirac bundle
S over M, together with a left action CIZ — Aut(&) which is parallel and commutes with the
multiplication by elements of C1(M). Note as such the Dirac operator © on & commutes with the
Cl#-action.

A Clﬁ—Dirac bundle & is said to be Z,-graded if it carries a Z,-grading & = G ® &' as a Dirac

bundle, which is simultaneously a Z,-grading for the Cli’-action, that is
(C1H*.aP c 5P
for all o, B € Z,. The Dirac operator © with respect to the Z,-grading can be written as
0o
2% 0
where D0 : T(&°) = I'(&!) and D! : T(&!) — I'(&). Therefore
ker® = ker®? @ ker®!

is a Zp-graded ClZ—module.

Definition 5.3. Let G be a Z;-graded ClZ-Dirac bundle over a closed manifold. The analytic index

indz (D) of the Dirac operator © on & is the residue class
ind?(D) := [ker®] € S (H) = KSp ¥ (pt).
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Example 5.2 (ClZ—iﬁcation). Let S be any ordinary real Z;-graded Dirac bundle over a closed
manifold M, and let D be its Dirac operator. We now consider an irreducible Z;-graded module V

over CI?, and take the tensor product

S = S&rV

where V is considered as the trivialized bundle V x M — M. This bundle is naturally a Z,-graded
ClZ—Dirac bundle. The associated Dirac operator ® on & is simply DXIdy. Consequently we have

that

ker® = (kerD)QV
and in particular ker®° = (kerD° ® V0) @ (kerD' @ V!). To determine the residue class [ker D]
in S (H) = 90 (H) /i* 9041 (H) we recall the isomorphism 9t (H) = My (H) by taking the
degree zero part, so it suffices to determine [ker®°] in 9t;_; (H) /i*9;(H). Since VY@ V! is a

Cl"-module, we have [VO] + [V!] = 0 in 99 (H) /i* (H). Therefore
[ker®] = (dimp ker D° — dimp ker D')[V?] = (ind D°) - [VY)].

It follows [ker®] = (ind D?) - [V]. Now that [V'] generates S (H), we conclude

;

ind DY if k=0 mod 4
[ker®] = ¢ indD°(mod2) ifk=5,6 mod 8

0 otherwise
\

Example 5.3 (The fundamental case). Let M be a closed spin” manifold of dimension n. Consider

the “spinor bundle

whose Dirac operator is denoted by @, where Spin”(n) C (CI")* acts on CI” through the left
multiplication. Clearly (M) admits a right C1-action that commutes with 9, we can turn this into

a left one by transpose. This way, & (M) is a C1’-Dirac bundle, and it follows from Propositionm
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that

(

8" (X) @ A" if n=4mod 8
§'"(M)®cA!  ifn=5mod 8

' (M)®gA"  ifn=6mod8

%SQ(M) ®c AZ@ ifn=0mod 8

Ve

Note that the tilde’s are removed for we have turned right Cl”-actions into left ones. Also we remark
that for n = 6 mod 8, the tensor @y is equating the right H-multiplications on $h (M) and Af’l. From

here we can extract the analytic index of D as follows.

For n = 8k + 4, this is exactly the case of Example hence ind"(D) = ind(lﬁﬁ,,)o. Now
recall that Ind : g, 4(H) — ‘ftg’kH((C) is an isomorphism and Indﬁ%(Ag’kH) = Agk+4,<c’ we see

ind(By)° = ind(Byy c)° = A*(M), and thus ind?(D) = A" (M).

For n = 8k + 5, the situation is similar to Example we analogously have ker® = ker%}{,, ®c

A’gk 5- Recall every Z,-graded module V over Clg‘k 45 can be written as V0 ®@g C. Therefore

/
ker® = ker Py, ®c Al 5
h
= ((keer)O KR C) Qc Agk+5

~ h
= (kerEM)O ®R A§k+5'

Thus ind”(®) = dimp ker(lﬁzl,,)o = dim¢ kerl])ﬁ,,( mod?2).

For n = 8k + 6, we similarly have ker® = (kerlf})° ®c All, . ¢ and therefore ind (D) =
dimg ker(18);)? = dimg ker I3, (mod?2).

Finally for n = 8k, recall the forgetful morphism Res% : ’ﬁg’k(C) — ’ﬁgk(H) is an isomorphism,
and A% (C) generates 9t (C). The argument of Example [5.2|extended to the complex case yields
, . h A
ind" (D) = %lnd(le@)O = %Ah(M).
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5.3 Index of closed spin” manifold

Let M be a closed spin” manifold of dimension n and let  be the Dirac operator on & (M) as in
Example[5.3] We define the analytic index of M to be
a-ind(M) :=ind"(9) € KSp™"(pt).

If yis a Riemannian real vector bundle over M with an orthogonal connection, denote by D () the

Dirac operator on &(M) ® y. We define the analytic index of M twisted by 7 to be
a-ind(M,y) := ind” (D(7)) € KSp"(pt).
It follows from Example [5.3] that

Theorem 5.4. Let M be a closed spin” manifold of dimension n. When n =15 or 6 mod 8, let
H = kerlﬁgl,[ denote the kernel of the Dirac operator on the Z-graded fundamental real "spinor
bundle of M. Then

Ah(M) /2 ifn=0mod 8

Al (M) ifn=4mod 8
a-ind(M) = (5.3.1)

dimc 7 mod 2 ifn=5mod 8

dimy 72 mod 2 if n =6 mod 8
(

The same argument goes through with & (M) replaced by & (M) ®g 7, so we have

Theorem 5.5 (cf. [LM89, §2. Theorem 7.13]). Let M be a closed spin” manifold of dimension n
and y a real vector bundle over M whose complexification is denoted by yc. When n =5 or 6 mod
8, let 7y = kerlﬁﬁ,,(y) denote the kernel of the Dirac operator on the Z,-graded fundamental real

hspinor bundle of M twisted by Y. Then

;

AMM, yc) /2 ifn=0mod 8

AM(M,ye) ifn=4 mod 8
a-ind(M,y) = (5.3.2)

dimc %, mod 2 ifn =15 mod 8

dimy 74y mod 2 ifn=6 mod 8
\
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We can define the topological index of M using the direct image map from Riemann-Roch
theorem as follows. Let f: M — S™ be a smooth embedding of codimension 8k + 4. Then from

Theorem [4.12] we have a homomorphism

fi : KO(M) — KO(S™).

A closer look at the construction of fv shows it maps into IZ()(S’") since the weak KO-Thom class

has virtual rank zero. We define the topological index of M to be
t-ind(M) := q1£1(1) € KSp~"(pt),

where ¢ : IZ()(Sm) — KSp~"(pt) is the periodicity isomorphism. If ¥ is a real vector bundle over

M, we define the topological index of M twisted by 7 to be
t-ind(M,y) := q1fi(y) € KSp~"(pt).
Of course topological index and analytic index coincide:
Theorem 5.6. Let M be a closed spin" manifold. Then
a-ind(M) = t-ind(M).

If moreover v is a Riemannian real vector bundle over M with an orthogonal connection, then

a-ind(M,y) = t-ind(M, ).

Remark 5.7. In particular the analytic index does not depend on the chosen geometric data involved

in its definition, such as the Riemannian metrics on M, b, and 7.

We postpone the proof of this theorem to Chapter 7]

5.4 Boundary defect

Let M be a spin” manifold with boundary dM of dimension 2n, so that dM has dimension 21 —

1. Assume the Riemannian metric on M coincides with a product metric on dM x [0,1] in a
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neighborhood of the boundary. Recall M carries a fundamental Z,-graded complex “spinor bundle
$%.(M) that admits a Dirac operator Dﬁx[,@- The restriction of the bundle (§4-(M))° onto dM can be

identified with the fundamental ungraded complex spinor bundle over M
SE(OM) := Py n(IM) xy (A5, ¢)° (5.4.1)

where (Agn’c)o is viewed as a CI% _,-module through the isomorphism CI2 | = (CI% )°. Note
(Agm(c)o is the unique, up to equivalence, irreducible ungraded C-module over Clgnfl.
Choose, in a neighborhood of the boundary, a local framing ey, ..., e,, for M so that ey, is the
inward normal direction. In local terms
2n—1
(Bhuc)* = e (Ves, + Y cienVe) =em: (Ve +D)
i=
where D, through the identification ($fé (M))°| 531 = SE(dM) is the Dirac operator on S{(dM). In
particular D is a first order self-adjoint elliptic operator. As such, D has a discrete spectrum with
real eigenvalues.
Two spectral invariants are attached to D: the multiplicity of the eigenvalue 0, i.e. dim¢ ker D,
and the eta-invariant 1) (0) where 7 is the analytic continuation of
n(s)= ) (signd)A[™*
A0
where the A runs over the non-zero eigenvalues of D (counted with multiplicity) and signA = +1 is
the sign of 1.

Abusing the notation, let us define

n"(OM) := = (dimgc ker D+ n(0))

| =

and call it the eta-invariant of dM. Note that the definition of the eta-invariant involves only the
Dirac operator on the fundamental ungraded complex “spinor bundle, as such the eta-invariant can
be defined for any odd dimensional spin” manifold even if it is not a spin” boundary. Also note it is

clear the eta-invariant is additive with respect to disjoint union.
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Now if we impose the following global boundary condition for (@1}(47@)0

P(flow) =0, f €T (M, (5£01))") (542)

where P is the spectral projection of D corresponding to eigenvalues > 0, then the Atiyah-Patodi-

Singer index theorem [[APS75] asserts:

ind DM(C / o (x M).

where o (x) is certain locally defined differential form on M. To determine o0y (x), it suffices to do a
local computation, so we can assume M is a spin manifold and its canonical bundle b, is reduced
from a Sp(1)-bundle through the covering map Sp(1) — SO(3). Now that Agmc, when viewed as
a representation of Spin(2n) x Sp(1), is the tensor product Ay, ¢ ® C? where C? is considered the
fundamental irreducible representation for Sp(1) = SU(2), the Z,-graded complex "spinor bundle
JS% (X) can be written as $(X) ® & where §c(M) is the usual Z-graded complex spinor bundle
for spin manifolds that corresponds to the complex Clifford module Ay, ¢, and where & is the
rank 2 complex vector bundle associated to the fundamental irreducible representation of Sp(1).
This is exactly the twisted situation considered in [APS75, p. 4.3], therefore o is the Chern-Weil
form representative of ch(&)2(M). By Lemma this form is identical to the A"-form 2" (M).

Therefore we have proved:

Theorem 5.8. Let M be a 2n-dimensional spin" manifold with boundary OM. Let lﬁe y be the

Dirac operator on the fundamental Z-graded complex "spinor bundle over M. Then the index of

(EéM)O with the global boundary condition (5.4.2)) is given by

ind ¢CM / A (M M).

The corresponding statement naturally holds for Dirac operators with coefficients in a Hermitian

vector bundle.

Theorem 5.9. Let M be a 2n-dimensional spin" manifold with boundary OM. Suppose & be

a Hermitian vector bundle with a unitary connection and that, near the boundary, the metric
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and connection are constant in the normal direction. Let IﬁéM(é) be the Dirac operator on
the fundamental Z,-graded complex "spinor bundle tensored with & over M. Then the index of

(E%M(é))o with the global boundary condition

Pe(flow) =0, feT (M, ($E(M)28))

is given by

ind( () = | ch(€)- A1) ~ " (OM.¢).

M

Here Py is the spectral projection of the Dirac operator Dg on Sfé(aM ) ®c & corresponding to

eigenvalues > 0, and N""(OM, E) is defined similar to n"(IM) using Dg.

Remark 5.10. If n =0 mod 4, i.e. dimM = 0 mod 8, the Z,-graded complex CI4,-module A},
carries further a right H-multiplication making it into a Z;-graded H-module. Therefore $% (M) is a
Zo-graded H-vector bundle on which Efé u 1s H-linear, and the spectral projection operator P is H-
linear as well. As such the index of (Dé )0 is an even integer. If further & is the complexification yc
of a Riemannian real vector bundle y with an orthogonal connection, then lz)f("; uAcye = Efé MORY
is again a Z,-graded H-vector bundle on which me 18 H-linear. So the index of (ﬁé‘: w(re))is

an even integer.

5.5 Index of Z;-spin” manifold

Let M be a Z; spin” manifold of dimension n = 0 mod 4. We define its analytic Z;-index to be
a-ind, (M / (M) —k-n"(BM) (mod k) € Zy

If £ is a Hermitian complex vector bundle over M with a unitary connection, then the analytic

Zi-index of M twisted by & is

a-indy, (M, &) : /mh )ph(&) —k-n"(BM,E)  (mod k) € Zy.

We note that even though the integral and the eta invariant in our definition involve geometric data,

such as curvature, connection and spectrum of Dirac operator, the resulting analytic Zi-index is
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independent of those geometric data. This is because the Z;-index depends continuously on those
geometric data but takes discrete values. Also note that from the previous section, the analytic
index as defined is indeed the index of the Dirac operator on M with Atiayh-Patodi-Singer boundary
condition, provided that the geometric data on dM is induced from the geometric data on M

according to the identification oM = BM UBM U --- LU BM.

y
k times

On the other hand we can define a topological Z-index for M as follows. Let S be the Z-m-

sphere (Example 2.14). We can find m large enough so that M embeds into S as a Z; submanifold.
The normal (vector) bundle of M in S carries an induced spinh structure. Then our construction in

the Riemann-Roch theorem using weak KU- and KO-Thom classes yields:

(1) If m =n mod 2, then we have a homomorphism

fi : KU(M) — KU(S™).

(i1) If moreover m —n =4 mod 8, then we have a homomorphism
fi : KO(M) — KO(S™)

so that the following diagram commutes
KO(M) —'—5 KO(5™)

llnd% llnd%

KUM) — s KU(S")

Now an easy computation shows

Lemma 5.11. Let h* be a generalized cohomology theory. Then we have the following short exact

sequence
0 1™~ (pt)*“V @ (W (pt) @ Zy) — h*(S) — Tor(h* ™"+ (pt), Z) — 0

Proof. Let X be the manifold with boundary obtained from S by removing k disjoint open disks.

Then 0X is the disjoint union of k copies of $”~!. Choose a base point x € dX. The gluing map
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X — §™ yields a map of triples 7 : (X,0X,x) — (8" 8™~ ! x) which in turn induces a commutative
diagram

s BE(SSTY) s (S — RSN s m(Em Sl

L = L s

. — h*(X,0X) — h*(X) — h*(0X) — *T1(X,0X) — ---
where the rows are the long exact sequence of the triples. Here the reduced cohomology group I
is the cohomology group relative to the base point x, and treated as a subgroup of the unreduced
cohomology group. The lemma now follows easily from the following facts. First, the pair (X, dX)
is equivalent to (8™, S~ 1) through 7, so £* : h*(X,dX) — h*(S™,8™1) is an isomorphism. Second,
7*(9X) = h*(S™ V) @ h*(§m1)®(*=1 and p*(S™') — h*(9X) is the diagonal map. Finally, X
is equivalent to the wedge sum of (k — 1)-copies of §"=1 (the boundary components of X not
containing x) and thus /*(X) = h*(S™1)®*=1)_ Moreover the restriction map h* (X)— h* (90X ) is

identified with the injective homomorphism

'I:L“*(Sm—l)@(k—l) N h*(Sm—l)®(k—l) @%*(Sm—l)
that takes (a;)1<j<x—1 to (ai; — Y a;) (recall the definition of addition in homotopy group). |
Corollary 5.12 (cf. [FM92, Proposition 1.7][Zha96, Proposition 3.1]). We have

KU(S™) =7 form=0mod 2,

KO(S™) =7y for m=0 mod 4.

Moreover the map

Inds : KO(S™) — KU(S™)
is an isomorphism for m = 0 mod 8, and multiplication by 2 for m =4 mod 8.

Proof. Apply the above lemma to KU and KO and use that the short exact sequence commutes with

natural transformations between cohomology theories. |
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Remark 5.13. For m even, the generator of IZ[/J(S_”’) can be obtained as follows. From the commuta-
tive diagram in the proof of Lemma we see the generator of IZfJ(S_m) is reduction mod k of
the generator of KU(X,dX) = Z. Meanwhile, by excision we have KU(X,dX) = KU(8", kD) =
ﬁJ(Sm) Therefore the generator of ﬁJ(S_’”) is simply the reduction mod k of the (virtual) bundle
A c over ™ restricted to X which is trivialized over dX (since it is trivialized over kD"). Similarly

KO(S™) is generated by the restriction of A, mod k for m = 0 mod 4.

We define the topological Z;-index of M to be
t—inde(M) = fg(l) € 7.

If £ is a complex vector bundle over M, then we define the topological Z;-index of M twisted by
& to be
t-indz, (M, &) == fi(§) € Z.
As usual, the topological Z-index is independent of choice of embedding due to the multiplicative
property of the weak KU-Thom class.
Now the mod k& index theorem of Freed and Melrose [FM92] applied to the Dirac operator on

the fundamental complex “spinor bundle implies the analytic and topological Z-indices of M agree:

Proposition 5.14. a-indz, (M) = t-indz, (M).

Proof. The proof is the same as that in the spin® case presented in [FM92, Corollary 5.4]. It suffices
to replace the spin® KU-Thom class by the spin” weak KU-Thom class and replace the Dirac
operator accordingly. A crucial computation is made therein using Atiyah-Patodi-Singer index

theorem, in our case this is done by Theorem [

The same of course holds in the twisted case: a-indz, (M,£) = t-indz, (M, &) for complex vector
bundle & over M.
Now since we are concerned with real vector bundles, we are more interested in the quantity
t-indz, (M, y) := fi(7)
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where 7 is a real vector bundle over M. We wish to find an analytic formula for tfiﬁdzk (M,7). In

view of Corollary|[5.12} if dimM = 4 mod 8, then

t-indz, (M, y) = t-indz, (M, 1)

where ¢ is the complexification of . Then Proposition [5.14] gives the desired analytic formula. On

the other hand if dimM = 0 mod 8, then

t-indz, (M, ¥c) = 2 t-indz, (M, 7).

Since 2 is not necessarily invertible in Zy, t-ind 7, (M. y) cannot be directly deduced from t-indz, (M, 1c).
However recall (from Remark[5.10)) that if M = 0 mod 8, then the analytic index (twisted by a real

bundle) before modulo k is divisible by 2, so it is natural to expect

tindz, (,7) = 5 [ 3()ph(y) Sk 1" (BM. )~ (mod k)

This is indeed true and can be proved using the method of [Zha96, Theorem 3.2] in which a similar
formula for Zj-spin manifold of dimension 8k + 4 is obtained. The crucial ingredient of that proof
is the quaternionic structure on the fundamental Z;-graded complex Clifford module in dimension
8k +4. So that proof, adapted in our case using the quaternionic structure on the fundamental
Z-graded complex module over Clgk, yields the above formula.

To summarize, we have proved:

Theorem 5.15. Let M be a Zy-spin” manifold of dimension n = 0 mod 4 and let y be real vector

bundle over M. Then after equipping appropriate geometric data on M and y as before, we have

t- dek (M,y) = (/ A" (M) ph(y k-nh(ﬁM,y(c)> (mod k)

where € =1 ifn=4 mod 8 and € =2 ifn =0 mod 8.
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Chapter 6

Characteristic variety theorems

In this chapter, we prove our main theorem. We start by showing spin” manifolds provide enough
cycles for symplectic K-theory. Then we define invariants of real vector bundles over spin” cycles
and spin” Z-cycles using indices of Dirac operators. These invariants descend to periods of real
vector bundles over symplectic K-homology, and therefore by Theorem [B| determine real vector
bundles up to stable equivalence.

Henceforth, we will use the notation Q% (—) to denote the bordism theory of G-manifolds. For
instance, Qf: "(-), Qipin(—) and Qipinh(—) stand for the framed, spin and spin” bordism theory

respectively.

6.1 Spin” orientation of KSp

Using the universal weak-KO-Thom class of the universal bundle Eg;_ 4 over BSpin”(8k +4) we
can construct a spectrum map from the Thom spectrum of spin” cobordism to the Q-spectrum of

symplectic K-theory. This is a consequence of the following commutative diagram

S8 AMSpin” (8k +4) —— MSpin” (8k + 12)
lid/\Ah(ESkJrét) lAh(Egk_Hz)

SSA(BOxZ) — L BOXZ
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where the top map is induced by the bundle R® @ Eg; 4 and the bottom map is the Bott periodicity
map. The commutativity follows from the multiplicative property of the weak-KO-Thom class
(Proposition and that Ag € KO(S8) = KO~ 8(pt) is exactly the Bott generator. Thus we obtain

a spectrum map AR MSpin” — KSp. The multiplicative property of the weak-KO-Thom class

further implies /" is a module map over the ring spectra homomorphism o MSpin — KO where
o is the Atiyah-Bott-Shapiro spin-orientation of KO, defined using the KO-Thom class for spin

vector bundles. Indeed, the following diagram commutes:

MSpin(8!) AMSpin” (8k 4-4) —— MSpin” (8] 4 8k +4)

lA/\Ah lAh

(BOXZ) A (BO xZ) = » (BOXZ)

where the top map is induced by the Whitney sum of the universal bundles.

We can think of 27 as a sort of spin” orientation for KSp in view of the following theorem.

Theorem 6.1. Let X be a finite CW-complex, and A an abelian group. Then the natural transforma-
tion

QP (X A) < KSp, (X;A),
upon a base change with respect to < Qpin (pt) — KO, (pt), induces a surjection

sk
QP (X;A) ® gin KO, (pt) — KSp, (X;A).

(pt)

with a canonical splitting that is natural in X and functorial in A.

Proof. Consider the following commutative diagram:
QP (X;A) —Z 5 KO.(X;A)
lxm”i lngh(H]P’L)
spin /. ah .
Q. (X5A) —— KSp,(X;A)
where vertical maps are of degree +4. After base change, we get

QP (X A) @ pin, ) KOL(pt) —— KOL(X;A)

(pt)
lXHPL lx;ﬂ(HM)

< h
QP (X5 A) @ in KOL(pt) —— KSp,(X;A)

(pt)

69



The right vertical map is an isomorphism since .</" (HP!) generates KSp4(pt) (Example .
The top horizontal map is an isomorphism thanks to Hopkins and Hovey [HH92||. Therefore the
bottom horizontal map is surjective with a splitting given by composing the inverses of the two

isomorphisms followed by xHIP!. It is clear this splitting is natural in X and functorial in A. W

Remark 6.2. The map in this theorem is not an isomorphism. For instance take X = pt and
A = Z[1/2], the left hand side is KO, (pt) ®z H,(HP*=;Z[1/2]) which is strictly bigger than
KSp, (pt: Z[1/2]).

6.2 Invariants of real vector bundles

6.2.1 Integer and parity invariants
Let f : M — X be a spin” cycle in X and let E be a real vector bundle over X, we define a pairing
M L X|X « EY := tind(M, f*E) € KSp, (pt). (6.2.1)

This pairing can be computed using Theorem For simplicity of notation, we denote (M i>

X|X < E) by (M|E).
Proposition 6.3. The pairing has the following properties.
(i) (biadditivity) For spin” cycles (M, f) and (M', f') we have
(MUM'|E) = (M|E) + (M'|E);
and for vector bundles E,E’ we have

(MIE®E"Y = (M|IE)+ (M|E').

(ii) (naturality) Let (M, f) be a spin® cycle in X and g : X — Y a continuous map, F a vector

bundle over Y. Denote the spin cycle go f : M — Y by g.M. Then

(+M|F) = (M|g"F).
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(iii) (cobordism invariance) If (M, ) is a spin" boundary, then (M|E) =

(iv) (slant product) From (i)(ii)(iv) the pairing (6.2.1) descends to a pairing

QP (X) © KO(X) =% KSp, (pt).

We have the following commutative diagram:

o™ (X) @ KO(X) .
\\
d"®1 \/ Kspn (pt)

KSp,(X) ©®KO(X)

where —\ — is the slant product defined using that KSp is a KO-module.

(v) (multiplicativity) For a spin manifold N and a spin” cycle (M, f) we have
(N xM|E) = </ (N)- (M|E)

where N x M is the spin® cycle given by projection onto M followed by f. Here - means the

action of KO, (pt) on KSp, (pt).

Proof. (1) and (i1) are straightforward. Now to prove (iii) and (iv), we choose an embedding
M C S8+ with k large, then the Pontryagin-Thom construction yields a map §"+8+4 — X A
MSpin” (8k +4). The universal weak KO-Thom class yields a map MSpin”(8k +4) — BO and the

bundle E over X yields a map X — BO xZ. Putting these maps together, we obtain
S84y x A MSpin (8k +4) £25 (BO xZ) ABO % BO. (6.2.2)

By definition, (M|E) is exactly the homotopy class of the composition of the above maps. Now if
f M — X is a spin” boundary, then by Pontryagin-Thom argument, the first map is null-homotopic,
and therefore (M|E) = 0. Meanwhile unwrapping the definition of <7/h and slant product, (iv)
follows immediately from . Finally (v) follows from (iv) by that " is a module map over

</ and that the slant product is a map of KO, (pt)-modules. [
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6.2.2 Angle invariants

Let f: M — X be a spin” Z;-cycle in X of dimension n =0 (mod 4) and let E be a real vector

bundle over X, we define a pairing

(M L X|X « E) := tindy, (M, f*E) € Z € Q/Z (6.2.3)

This pairing can be computed using Theorem 5.15| For simplicity of notation, we denote (M i>

X|X < E) by (M|E). To proceed further, we need an alternative definition of tfinvde valued in
KSp, (pt; Z). Note for n = 0 mod 4, KSp,,(pt; A) = A by universal coefficient theorem.

Choose an embedding i : M < S™ of Z;-manifolds so that m —n = 4 mod 8 (in particular
m = 0 mod 4) and further choose an embedding j : §” < S™*" for r sufficiently large. Then i yields
a direct image map i, : KO(M) — IZ@(S_’”) using the induced spin” structure on the normal bundle

of M. And recall t-ind 7,(M,—) = iy(—). Meanwhile, we have

Lemma 6.4. There is an induced direct image isomorphism

—~r

ji : KO(S™) = KO' (§™1":Zy).

Proof. Consider the map ¢ : [S”,BO] — Q&r(BO;Zk) that takes g : S” — BO to the framed Z;-
bordism class of g. We claim ¢ is an isomorphism. Indeed, the generator of Q,f,,r(BO;Zk) =
KO(S™;Zy) = Zy is reduction mod k of the Bott generator S™ 2n BO of Qg,r(BO) — KO(S™) = Z.
We can deform A, so that it is trivial over k disjoint closed disks, and consequently A,, is cobordant
to Ay|x as framed Z-cycles (recall Example 2.14). On the other hand, from Remark [5.13] A,,[x
exactly is the generator of [§", BO| = KO(S™) = Z. This proves ¢ is surjective and therefore an
isomorphism.

Now we interpret ¢ as a direct image homomorphism j; as follows. The embedding j yields
a map " — §" A (S" U D"1) = §" A (S, ) by a Pontryagin-Thom type construction as in

Example Then for any given map g : §” — BO we obtain the composition

S™ S TN (Sy,)r S5 BOA(Sz,),
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whose homotopy class defines an element j)(f) in IZ?)V(S’””; Zy). Clearly under the isomorphism
IZér(Sm” 3 Zy) =2 Qﬁ(BO; Zy) by a transversality argument as in Example , we see j coincides

with ¢. m

We redefine tfi\n/dzk (M, —) to be qyjii;(—) € KSp, (pt; Zy) where g, is the suspension isomor-
phism @r(S’"”;Zk) 5 KO(S™;Z;) followed by the periodicity isomorphism KO(S™; Z) =

KSp, (pt; Z).
Proposition 6.5. The pairing has the following properties.
(i) (biadditivity) For spin” Zy-cycles (M, f) and (M/,f/) we have
(MUM '|E) = (M|E) + (M '|E);
and for vector bundles E,E’ we have
(M|[E®E'Y = (M|E)+ (M|E").
(ii) (naturality) Let (M, f) be a spin” Zy-cycle in X, g : X — Y a continuous map, and F a vector
bundle over Y. Denote the Zy-spin" cycle go f : M — Y by g.M. Then

(8:M|F) = (M|g"F).

(iii) (cobordism invariance) If (M, f) is a spin" Zy-boundary, then (M|E) = 0.
(iv) (slant product) From (i)(ii)(iii) the pairing descends to a pairing
P (X;2¢) © KO(X) = KSp, (pt: Zs)
We have the following commutative diagram:
O™ (X3 Z4) © KO(X)
e KSp, (pt; Z¢)
KSp,(X;Zx) ® KO(X)
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(v) (multiplicativity) For a spin manifold N and a spin" Z-cycle (M, f) we have

A

(N x M|E) = o/ (N) - (M|E).

where N x M is the spin" Zy-cycle given by projection onto M followed by f, and - means the

action of KO, (pt) on KSp, (pt; Zy,).

Proof. The proof is similar to Proposition[6.3] (i)(ii)(iii) are straightforward. To prove (iv), choose
an embedding M C S so that m —n = 4 mod 8 and further choose an embedding S C ™" for r

sufficiently large. Then by a Pontryagin-Thom type argument, we get a map
S — X AMSpin” (m —n) A (Sz,),

using the normal spin” bundle of M in §” and the "normal bundle" of S in §”*". Then using the
universal weak KO-Thom class and the bundle E, we obtain the composition

h
ST X AMSpin® (m— n) A (85, ), L BOA(S,, ), (6.2.4)

From the proof of Lemma the homotopy class of this composition is exactly (M|E). So if
(M, f) is a Z-boundary then the first map is null-homotopic and therefore (M|E) = 0. Similar to

Proposition [6.3] (v) follows from (6.2.4)) and (vi) follows from (v). [ |

6.3 Proof of Theorem A

When defining the pairing (6.2.3) we assumed M has dimension n = 0 mod 4. However, part (iv) of
Proposition |6.5|allows us to extend the pairing lb to all dimensions by /" and slant product.

Definition 6.1. Let E be a real vector bundle over X and A an abelian group, we define inv?\(E ) to

be the composition
oy . P’y Ay D A) :
invi (E): Q" (X;A) — KSp,(X;A) — KSp, (pt; A).

Under this definition, the pairing (6.2.1) is inv? (E) evaluated on a spin” cycle and (6.2.3) is

inv%k (E) evaluated on a spin” Z-cycle.
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To prove Theorem we are concerned with invfé and invfé /Z (recall Section [2.3.2). They

can be computed using 1nVZ and i 1nVZ since 1nv6 1nVZ ®Q and i 1an 7= 1qumvZ Note that

KSp, (pt; Q) = KSp, (pt) ® Q is concentrated in degrees multiples of four, so 1an involves only the
integer invariants. On the other hand, an easy computation using the coefficient long exact sequence

associated to 0 — Z — Q — Q/Z — 0 shows

Q/Z n=0mod4
KSp,(pt:Q/Z) =S Z, n=6,7mod8

0 otherwise

\

Moreover, KSp,, (pt; Q/Z) is isomorphic to KSp,_; (pt) for n = 6,7 mod 8 via Bockstein. Therefore

vy /7 involves
(i) the angle invariants for 4m-dimensional spin” Z;-cycles; and

(ii) the parity invariants for spin-cycles of dimension 5,6 mod 8: if (M, f) is a spin” Z-cycle in
X of dimension n = 6,7 mod 8, then the evaluation of invfé Iz (E) on (M, f), via Bockstein
isomorphism KSp, (pt; Q/Z) = KSp,_;(pt), is (BM|E) since both 27" and slant product

commute with Bockstein.

From here we see that both inv@ and invfé /z can be computed analytically. It is worth pointing out
that inv% is local in the sense that the evaluation of invfé (E) on a spin”-cycle can be expressed as
an integral of a locally defined differential form. In contrast invfé Iz is global since neither the eta
invariant nor the parity invariant can be locally expressed.

The maps invfé and inva /7, are compatible in the sense that for any real vector E over X, the
diagram

spin” @(E)
QP (x;Q) — > KSp, (pt; Q)
| moaz lmOdZ 6.3.1)

spln mv@/ (E)
(X;Q/Z) —— KSp,(p;Q/Z)
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commutes because the slant products are compatible with change of coefficients. Consider the map

o (X;Q) — KSp,(pt: Q)
il’th : KO(X) — lmodZ lmodZ }

QP (X;Q/2) — KSp. (pt:Q/2)

that sends E to the diagram (6.3.1), where the target is the group of commutative diagrams of such

form. We have

h

Proposition 6.6. inv" is injective.

Proof. Observe that both invf@ (E) and inv% /7 (E) are equivariant with respect to .7 : QPin (pt) —
KO.(pt). Therefore inv"" maps into the subgroup of diagrams that are equivariant with respect to .

This subgroup, by tensor-hom adjunction, is isomorphic to the group

—spin”

{ J/ mod Z lmod 7 }
—spinh KO. (pt)

Q. (X;Q/Z) — KSp,(p;Q/Z)

(6.3.2)

—spin®
of commutative diagrams of KO, (pt)-modules of the above form, where Q."" (X;A) denotes

- h ~
QP (X;A) ® owin o KOx(pt) for A = Q,Q/Z. From Theorem the natural transformation .<7"

(pt)
—oin”
induces split surjections Q. (X;A) — KSp, (X;A). Therefore by pulling back along these split

surjections, we obtain an embedding i of the group (6.3.2)), as a direct summand, into the group

lmodZ lmodZ (6.3.3)

{ KSp, (X;Q) —— KSp,(p;Q) }
KSp. (X;Q/Z) — KSp, (pt;Q/z) * KO-®V

of commutative diagrams of KO, (pt)-modules of the above form. Taking the degree zero compo-

nents yields a map 7 from the group (6.3.3) to the group

l mod Z l mod Z (6.3.4)

{ KSpy(X;Q) —— Q }
KSpy(X;Q/Z) — Q/Z
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of commutative diagrams of abelian groups of the above form. Note by Corollary [2.10] the group
(6.3.4)) is isomorphic to KO(X).

We claim the composition of inv and the maps i, 77, namely

KO(X) ™% 632) - ©33) 5 (634,

is an isomorphism. Indeed this composition 7 o i o inv” by construction takes x € KO(X) to slant
products with x, which by the proof of [And69] is an isomorphism. This in particular implies inv"

is injective. u

The above proposition means that two real vector bundles are stably equivalent if and only if
they have the same integer, parity and angle invariants over all spin-cycles and torsion spin”-cycles.

We can improve this to

Theorem 6.7 (Characteristic variety theorem, spin” version). For each finite CW-complex X, there
exists a finite set of spin” cycles and torsion spin” cycle in X such that every real vector bundle
on X can be determined, up to stable equivalence, by the corresponding integer, parity and angle

invariants.
Proof. We can write

QP (x;Q) = (P (X) /torsion) ® Q

szinh (X;Q/Z) = ( szinh (X)/torsion) ® Q/Z & torsion(QSpinh (X))

n—1

where the latter is be obtained from the coefficient long exact sequence associated to 0 — Z —
Q — Q/Z — 0 by noting Q/Z is injective. Under this notation we can write inv@ = inv% ®Q and
soh
invfé /7= inv?, ®Q/Z @ ¢ where ¢ is the restriction of invf(’P /7, 0Nto torsion(™] (X)). Then it is
- h
spin'

clear that inv" is determined by inv’ restricted to Q.. (X)/torsion and ¢. For n =0 mod 4, ¢

encodes the angle invariants and for n = 6,7 mod 8, ¢ encodes the parity invariants.

'a torsion cycle is a Zy-cycle for some k.
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So Proposition [6.6] can be restated as that the map

KO(X) — Hom(Qiﬁinh (X)/torsion, Z)
. spin”
@ Hom(torsion(Q"" (X)), Q/Z)

soh
@ Hom(torsion(Qg) 15 g, (X)), Z2)

given by (inv%, ¢, ¢) is injective. Note the target group carries an increasing filtration by * < N.
Since KO(X) is Noetherian, the above map embeds KO(X) into some finite filtration level.
soh
spin’

ioh
Now choose a finite set of additive generators for Q;"" (X)/torsion, torsion(;"",(X)) and

spinh

torsion(Qg. 15 .1

(X)) up to that filtration level, and then represent those generators by 4x-
dimensional spin”-cycles, 4x-dimensional torsion spin”-cycles and 8 % 45,8 % +6-dimensional
spin’-cycles respectively. This is the finite set of spin” cycles and torsion spin” cycles as de-

sired. [ |

The name, characteristic variety theorem, is borrowed from [Sul71]. We call the union of
the cycles and torsion cycles appearing in Theorem a characteristic variety (for real vector
bundles). Thus two real vector bundle are stably equivalent if and only if they have the same
invariant (now valued in a direct sum of copies of Z, Z, and QQ/Z) over a characteristic variety.

Theorem[A]is the spin version of the above characteristic variety theorem, whose proof is similar.

We sketch the proof of Theorem [A]below with an emphasis on its relation with Theorem

Theorem 6.8 (Theorem [A). For each compact manifold with corners (or finite CW-complex) X,
there exists a finite set of spin cycles and torsion spin cycles in X such that every real vector bundle
on X can be determined, up to stable equivalence, by the corresponding integer, parity and angle

invariants.

Proof. Using the natural transformation </ and slant product in real K-theory, we can define
inva(E) : Q™ (X;A) — KO, (pt; A) similar to Definition Note invg and invg,7 can be com-

puted using the integer, parity and angle invariants defined in the introduction. Now invg and
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invg 7 can be assembled into a map
OP"(X:Q) —2 KO, (pt:Q)
inv: KO(X) — lmodZ lmodz A
@ /z) " Ko (pr/z) 7
which is related to our previous map inv” by multiplication by ]HHP’L. More precisely for any map
o Qipinh (X;A) — KSp, (pt;A), we can form a map ¢ : Qipin(X ;A) — KO, (pt; A) by requiring
the following diagram to commute:
QP (x;A) —2— KO, (pt;A)
lXH]P’i ZJ/X,QW’(HIPL)
QF in (X;5A) L KSp, (pt; A)
Denote the mapping ¢" — ¢ by (H]Pfr)* and we will use the same notation for all consequent maps
induced by multiplication by ]HI]P’EL. It follows from the proof of Theoremthat nv = (IHHP’EF)* inv".
Now a similar construction applied to inv as in the proof of Proposition (with <" replaced
by o, Theoremreplaced by [HH92], and taking degree O components replaced by taking degree
—4 components) yields a map

KO 4(X;Q) —— Q
KO(X)%{ lmodZ lmodZ}
KO_4(X;Q/Z) — Q/Z z

h

which coincides with (HIP’}F)* omoioinv®. Notice now both (HPL)* and moioinv" are isomor-

phisms, so inv is injective. This combined with that KO(X) is finitely generated completes the

proof. [

Remark 6.9. The proof in fact shows that the spin” cycles and torsion spin” cycles in Theorem

can be chosen to be products of spin cycles and torsion spin cycles with the map ]I-]I]P’ﬂr — pt.

6.4 Examples

Example 6.10 (Spheres). (i) For S®, one can take the union of pt — S® and the identity map of

S8 as its spin characteristic variety. Indeed, pt — S® detects the rank of the bundle and the
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(ii)

(i)

Dirac index of S® twisted by a real bundle E, according to index theorem, is

[ AsHpn(E) = [ ph(E).
N N

Bott showed this integral is always an integer and further this integer together with the
rank classify vector bundles on S® up to stable equivalence. Similarly for S*, one can take
ptUS* — $*. In this case, the Dirac index of S* twisted by a bundle E is § [s ph(E). Again
thanks to Bott, this is always an integer and further (together with rank) classifies stable vector

bundles.

For §? = CP!, putting rank aside, there are only two classes of stable vector bundles, the
trivial complex line bundle & and the tautological complex line bundle &'(—1). The tangent
bundle of CPP! is ¢/(2), whose "square root" is ¢(1). The Dirac operator in this case is d and
the Dirac index is the dimension of holomorphic sections modulo 2. In the untwisted case,
the Dirac index of CP! is the (complex) dimension of holomorphic sections of ¢'(1) modulo
2, which is zero. Meanwhile the Dirac index of CP! twisted by ¢/(—1) is the dimension of
holomorphic functions on CP! modulo 2, which is one. So the twisted Dirac indices indeed

distinguish real vector bundles on S up to stable equivalence.

For S! = RP!, we need to use the non-trivial spin structure on S' which corresponds to the
double cover of RP! by S'. The spinor bundle in this case is the tautological line bundle. The
Dirac index of RP! without twisting is the (real) dimension of locally constant sections of
the tautological line bundle modulo 2. However since every section of the tautological line
bundle has a zero, the locally constant ones must be identically zero. So the untwisted Dirac
index is zero. On the other hand, the Dirac index of RP! twisted by the tautological bundle is
the dimension of the constant functions on RP! modulo 2, which is one. So the twisted Dirac
indices indeed distinguish trivial bundle and tautological bundle on S' = RP! up to stable
equivalence. But, putting rank aside, these are the only two stable equivalence class of real

vector bundles.
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(iv) In general ptUS" — S" is a spin characteristic variety for §”. Indeed, the "integration over the
fiber" map

Ko(s") 2L k0, (pt)

is an isomorphism, where [S"] is the fundamental class of S in real K-theory.

Example 6.11 (Quaternionic projective spaces). pt UHP! UHP?U--- UHP" — HP" by inclusions
of a flag of quaternionic projective subspaces is a spin characteristic variety. To see this, let V;
denote the weight k irreducible complex representation of Sp(1) = SU(2) so that dim¢ Vy = k+ 1.
Let & be the complex vector bundle over BSp(1) = HIP* corresponding to V. Note that Vj is of
real type if k is even and of quaternionic type if k is odd. Let 7»; be the real bundle over HP” so
that 5, ® C = & and let 15,1 be the underlying real bundle of & ;. Then ph(}s;) = ch(&y) and
ph(Pu_1) =ch(&y_1)+ch(Exy_1) = 2ch(Ex_1) (Var_ is of quaternionic type and thus isomorphic
to its complex conjugate). We now view HP/ as a subspace of HIP* by the standard embedding,

and claim that

/WJA(HPJ)ch(@-) _ ("fjﬂ).

L=

In particular the integral is 0 if i < j and 1 if i = j. From here the matrix
(HHPY)i j<n

of integer invariants is an upper triangular matrix with diagonals = 1. Note that for i = j = odd, the
integer invariant is % i A(HP') ph(y;) = % x 2 = 1. Therefore the integer invariants over a flag of

quaternionic projective subspaces yield a surjective map
KO(HP") — 7!

which must be an isomorphism since KO(HP") is free of rank n+ 1 (by e.g. Atiyah-Hirzebruch
spectral sequence).

To prove the claim, consider the Hopf-type fiberation & : CP*+! — HP/ with fiber CP'.
Since 7* is injective on cohomology, we may express H*(CP?/*!;Z) = Z[x] /(x*/*?) and identify

H*(HP/;Z) through * with the subring generated by x*>. The A-class of HP/ is F (x)%/+2 /F (2x)
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where F(x) = x/2sinh(x/2), and the Chern character of &; is sinh((i + 1)x)/sinh(x). Therefore by

residue theorem, we need to evaluate the integral

dx

1 fsinh((i+1)x) F(x)%*2 1
2_71'1/ sinh(x) F(2x) x%+1

We will suppress the factor 1/27i for simplicity. Multiplying the above by #/ and then summing

over j > 0, we get a generating function

 fsinh((i41)x) F(x)?  dx
Gi(t) = / sinh(x)  F(2x)xy _ F0?,°

After making the substitution y = 2sinh(x/2) = x + o(x), we have

Gi) = [0) % = [0 L
where ©;(y) is sinh((i 4 1)x)/sinh(x) viewed as a function in y. So the coefficient of #/ in G;(t) is
exactly the coefficient of y?/ in ®;(y). Finally let U; be the Chebychev polynomial of the second
kind which satisfies U;(coshx) = sinh((i + 1)x)/sinh(x), and then ®;(y) = U;(1+ %yz). We leave
it to the reader to use the well-known inductive relation Ui (z) = 2zU;(z) — U;—1(z) to derive

®i(y) =X, (.

Example 6.12 (Classifying spaces). Let G be a compact connected, simply-connected Lie group
of rank r. Even though BG is not a finite CW-complex, Theorem [A]still holds by Remark [2.9]and
KO(BG) = @KO(ﬁnite skeleton of BG). From Atiyah-Segal completion theorem, KO(BG) is the
completed real representation of G. Now choose a maximal torus for G and correspondingly obtain
r embeddings of Sp(1) = SU(2) into G. From representation theory, a real representation of G is
trivial if and only if its restriction onto those Sp(1) subgroups are trivial. This implies KO(BG)
embeds into the direct sum of r copies of KO(HP*) by pulling back along the induced maps
between classifying spaces of those embeddings of groups. Therefore from the previous example, a
spin characteristic variety of BG can be chosen to be a union of maps from HP'! x HP?2 x - - - x HP'"
foriy,...,i, > 0. A special case is G = Sp(1) and KO(BSp(1)) = Im, KO(HP") is a power series

ring over Z. A real vector bundle over BSp(1) = HIP* is stably trivial if and only if its integer
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invariants over a flag of (positive dimensional) quaternionic projective subspaces are zero. It seems

hard to explicitly find characteristic varieties if G is not simply-connected (for example U (1)).
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Chapter 7

Index theorem for quaternionic operators

In this chapter, we state and sketch the proof of an index theorem for families of quaternionic
operators and apply it to prove that the analytic and topological indices of a closed spin” manifold

coincide.

7.1 Bigraded ABS isomorphisms

In this subsection we study Clifford algebras associated to (non-degenerate) indefinite quadratic
forms as well as their modules. Since over C all non-degenerate quadratic forms are isomorphic,
we deal only with R- and H-modules. Our goal is to establish a quaternionic version of ABS
isomorphism in the indefinite setting. Given our understanding of the positive definite case, this

will be easy once we have the appropriate language.

7.1.1 Clifford algebras associated to indefinite forms

Let Cl,.; be the Clifford algebra on R"* = R” x R* with respect to the quadratic form ||x||> — ||y||?
of signature (r,s) where x € R” and y € R’. In particular Cl, o = Cl,. These algebras are also

Z>-graded (induced from the antipodal map on R""*) and there are Z,-graded isomorphisms (see
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e.g. [LM&9, Proposition 3.2]):

C1r+r’,s+s’ = Clr,s ®R Clr’,s’ (7.1.1)

These isomorphism can be deduced from the following general fact. Recall the Clifford algebra
Cl(V, q) associated to a vector space V (over a field of characteristic not 2) with a quadratic form
q is the quotient of the tensor algebra generated by V by the relations v@v = —¢q(v) forallv € V.

The antipodal map v — —v extends to an involution of C1(V,q) yielding a Z;-grading on C1(V, q).

Lemma 7.1. Let (V,q) and (V',q) be finite dimensional vector spaces with quadratic forms over a

field (of characteristic not 2). Then
CI(VaV,q@q) = CI(V,q)&CIV', ).

Proof. The linear map V&V’ — CI(V,q)@CI(V',q'), (v,v') = v&1 + 1&V extends to an algebra
map CI(V&V,q®q') — CI(V,q)&CL(V',4') which is seen to be an isomorphism since it maps onto

a set of generators and the two algebras in question have the same dimension (24mV+dimV"y g

For K =R or H, let 951,7 s(K) denote the Grothendieck group of finite dimensional Z,-graded K-
modules over Cl,.;, and set ‘)AT,,S(K) = ifﬁ,’s(K) / l.*g,jt,q_]’s(K) where i* is induced by the inclusion
R” x R < R™1 x R, (x,y) — (x,0,y). Then naturally 9, «(R) = Dr.s M, s(R) is a bigraded
ring with respect to direct sum and Z,-graded tensor product, and D, «(H) = D, M,.s(H) is
a bigraded module over M, o(R). These structures descend to make s o (H) = D..s N,.s(H) a
bigraded module over the bigraded ring N, o(R) = D N,.s(R).

In [Ati66], Atiyah showed 1, «(R) is isomorphic to Real K-theory of a point:
Fu o (R) = KR**(p).
We will prove analogously ‘ft.,.(H) is isomorphic to Quaternionic K-theory of a point:

Fo.o (H) = KQ** (pt).
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7.1.2 Real and Quaternionic K-theories

The Real K-theory KR is a variant of K-theory invented by Atiyah in [Ati66] partially for the
purpose of analyzing indices for families of real elliptic operators. The Quaternionic K-theory KQ
was invented by Dupont in [Dup69] to extend the work of Atiyah to the quaternionic case. As we
will see later, KQ is suitable for analyzing indices for families of quaternionic operators. Both
theories are defined on the category of real spaces.

A real space is simply a space equipped with an involution. For example, the set of complex
points of a real algebraic variety equipped with conjugation is a real space. Another important
example is R"* whose underlying space is R” x R* equipped with the involution (x,y) — (x, —y) for

x € R%, y € R®. When r = s, we write R”" = C” where the involution becomes complex conjugation.

Definition 7.1. Let (X, f) be a real space and & a complex vector bundle over X equipped with an

involution j covering the involution f on X such that j : §; — &y, is C-antilinear for all x € X.
(i) If j> =1, then (&, j) is called a Real bundle, or simply a R-bundle, over (X, f).
(ii) If j2 = —1, then (&, j) is called a Quaternionic bundle, or simply a Q-bundle over (X, f).

Definition 7.2. For a real space X (suppressing the involution), we define KR(X) and KQ(X)
respectively to be the the Grothendieck groups of R-bundles and Q-bundles over X with respect
to direct sum. The reduced groups KR and IZQ for pointed real spaces (the base point is fixed by
involution) are defined to be the kernel of restriction to base point. The relative groups KR(X,Y)
and KQ(X,Y) for a real pair (X,Y) are defined to be KR(X/Y) and KQ(X /Y) respectively. The
higher groups are defined b

KRr7s(X,Y) = KR(X X D’?s’X < S UY % Dr"s)’

KQ(X,¥) = KQ(X x D™,X x §™ UY x D).

Ithe order of (r,s) here coincides with [LM89] but is the opposite of that in [|Ati66].
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Here D™* and S"* are the unit disk and unit sphere in R"* respectively with restricted involutions.

For X alocally compact Hausdorff real space, we define compactly supported groups to be

KR’ (X) := KR (x°7"),

cpt

KQJ3, (X) :=KQ™ (X,

r,§

where XP" = X U {pt} is the one-point compactification of X. If X is compact then KR, (X) =

KR (X).
We will need the following facts about KR and KQ theories drawn from [[Ati166]] and [Dup69]].

(i) If the involution on X is trivial (the identity map), then KR(X) = KO(X) and KQ(X) =

KSp(X).

(i) KR is a multiplicative theory and KQ is a module theory over KR. The multiplication
on KR and the module multiplication of KR on KQ are both induced from tensor product
over C. Given R-bundles 7 : (§,j) — X and 7" : (&', ') — X/, the complex vector bundle
' @¢ (n')*E" equipped with J = * j® (7')* j’ is a Real bundle over X x X'. If either & or &’
is a Q-bundle then 7*& ®¢ (n’)*&’ is a Q-bundle. In particular KR**(pt) = @, ;~o KR™(pt)
is a bigraded ring and KQ**(pt) = @, ;o KQ"*(pt) is a bigraded module over KR**(pt).

(iii) KR"!(pt) = Z and multiplication by the generator of KR! (pt) yields isomorphisms

KR™(X) = KR 151 (x),

~

KQr,S(X) = KQr+l’s+1(X).

(iv) KQ*%(pt) = Z and multiplication by the generator of KQ*°(pt) yields an isomorphism

KRS (X) i KQr+4’S (X)

(v) For a locally compact Hausdorff real space X, KRz, (X) = KR (X X R"*) and KQg,, (X) =
KQ_p: (X x R™). In particular KR" O(pt) = KRep (R") = KO, (R") = KO~"(pt). Similarly
KQ"(pt) = KSp~(pt).
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In fact all the above are easy to prove except for (iii) and (iv). The isomorphisms in (iii) are called
(1,1)-periodicity theorems for KR- and KQ-theories. The former is proved by Atiyah [Ati66,
Theorem 2.3] and the latter by Dupont [Dup69]. The isomorphism in (iv) is proved by Dupont

[Dup69] implicitly, we justify this in Appendix

7.1.3 R-and Q-modules

Now, to connect Clifford modules to KR- and KQ-theories, we consider the algebra-with-involution
CI(R"*) which is Cl,.; equipped with the involution ¢ : CI(R"*) — CI(R"*) extended from the invo-
lution on R"*, (x,y) — (x,—y) for x € R" and y € R®. Since the involution on R"* commutes with
the antipodal map, CI(R"*) still carries a Z,-grading.

We note that the inclusion i, : Cl.; C Cl,; induced from R” x R® — R X RS, (x,y) —
(x,0,y) is compatible with the involutions and therefore gives rise to an inclusion of algebras-with-
involution i, : CI(R™) C CI(R"1+%). Also observe that the Z-graded isomorphism Cl,.; & Cl,/ v =
Cl, 4y 44y carries the involution c&c’ to the involution on Cl,y s4g. So we have an isomorphism

of Z,-graded algebras-with-involution CI(R"$)& CI(R”") 2 CI(R/ 75 +5),
Definition 7.3. Let V be a complex module over Cl,; together with a C-antilinear mapc:V — V
such that
cla-v)=c(a)-c(v)
foralla € CI(R™*) and v € V.
() If ¢ = 1, then V is called a R-module over CI(R"*).

(ii) If ¢> = —1, then V is called a Q-module over CI(R’*).

If further V is a Z,-graded module over Cl,; and ¢(V%) = V* for oo = 0,1, then V is called a
Zp-graded R- or Q-module over CI(R"*). Denote by if)TRr, s and Dﬁth s the Grothendieck groups of
finite dimensional Z,-graded R- and Q-modules over Cl, respectively. And denote by ‘JAIRn s and
‘ﬁQm respectively the cokernels of i* : i)AItRHLS — Eﬁth,s and * : 95‘(Q,+17s — EJAIIQ,VS induced by
ir : CI(R™) C CI(R"*1),
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We will see on the one hand R- and Q-modules over CI(R"*) can be identified with R- and
H-modules over Cl,.; respectively, and on the other hand they can be directly related to KR- and
KQ-theories through Atiyah-Bott-Shapiro type constructions.

For a R-module V over Cl,.;, we consider the C-vector space Ve =V @r C = Indﬁ% (V) endowed

with the C-antilinear map given by complex conjugation and with the CI(R"*)-action determined by
(x,y)-v:i=xv+iy

for all (x,y) € R” x R® = R"*. For an H-module W over Cl,.;, we consider the underlying C-vector
space W = Resg(W) endowed with the C-antilinear map given by multiplication by j € H = C+Cj

and with the CI(IR"*)-action determined by
(x,y) - w=xw-+iyw

for all (x,y) € R" x R® = R". Tt is straightforward to check V¢ (resp. W) is a R-module (resp.

Q-module) over CI(R"*) and the functors

Ind§ rs
R-modules over Cl,,; — R-modules over CI(R"*)

Resﬁ% s
H-modules over Cl,; — Q-modules over CI(R"*)
are isomorphisms of categories that preserve Z;-gradings. Moreover, these functors are compat-
ible with the inclusions of algebras CI(R"*) C CI(R"*!), Cl,; C Cl, 5. Therefore they induce

isomorphisms

A

M,.s(R) NR,.s,

L
Ul

A

9fnRr,s; s)A,tr.,s(]R>
MQys, N, (H) = NO,.s.

s
s

M, s (H)

Now Z,-graded tenor product can be defined for R- and Q-modules. Let (V,c¢), (V',c’) be
Z>-graded R- or Q-modules over CI(R”) and CI(R"*') respectively. Then V&cV’ equipped
with ¢&¢’ is a Z,-graded module over CI(R"*"+5"). If both V and V' are R-modules or both

are Q-modules, then VRV’ is a R-module, and otherwise a Q-module. With these understood,
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if)?R., =@, >0 EfRRm is a bigraded ring and SIARQ.’. =@D,>0 95TQ,’S is a bigraded module over
MR, o. These structures descend to make TR, o = D50 MR, into a bigraded ring and NQ, » =
D=0 ‘fth_‘ s a bigraded module over ‘JAIR.,. It is now easy and left to the reader to check the above

isomorphisms assemble to isomorphisms of bigraded rings and modules.

7.1.4 Bigraded ABS isomorphisms

The Atiyah-Bott-Shapiro construction applies to R- and Q-modules over C1(R"*) without difficulty

and gives rise to homomorphisms

A

R : N o(R) = NR, o — KR**(pt),

)

02 : Mo o (H) = NQ. o — KQ™*(pt).

To prove these maps are isomorphisms, we need to better understand R- and H-modules over
the algebras Cl,.;’s. Denote Cl,; @rIH by ClZ s and think of H-modules over Cl,.; as R-modules over

CL,.
Proposition 7.2. For r,s > 0, there are isomorphisms of R-algebras
(i) Clyy1 541 = Cls@rR(2),
(i) CI! 4= Cly@rR(8);
(iii) Clryss = ClE @RR(2).

These isomorphisms are compatible with the embeddings R” x RS «— R x RS, (x,y) — (x,0,y)

forr,s > 0.

Proof. For a proof of (i), see [LM89, §1. Theorem 4.1]. We note in particular Cl; ; = R(2). Both

(i) and (iii) follow from (7.1.1)) and Proposition [3.1] [ |

From here, we can quickly deduce the following
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Proposition 7.3. (i) Multiplication by the generator of 951171 (R) gives isomorphisms

A A

Dﬁtr,saK) i fmrﬂ,sH(K)a sﬁrs(K) i s3?tr+1,s+1(K)
forK=RorHandr,s > 0.

(ii) Multiplication by A} 1y € My (H) = My o(H) gives isomorphisms

A

Mg (R) = Dy g (), Fyg(R) = Ty 5 (H)

)

I

forr,s > 0.

Proof. The algebras Cl,; and Cl}rf , are of the form K(N) for r —s # 3 mod 4, and of the form
K(N)®K(N) for r —s # 3 mod 4 for some N and K € {R,C,H}. This from the classification of
the algebras Cl,’s, see e.g. [LM89, pp.27-29], and the identities (3.3.1).

Now let K =R or H. As long as r —s # 3 mod 4, Cl,.; has a unique (up to equivalence)

irreducible ungraded K-module. We can turn these ungraded modules into Z,-graded modules by

0

applying the functor Cl,1 s ®cy,,— where Cl;.; is identified with CI,_; |

similar to the way Cl,, is
identified with C1%_ . So for r — s # 0 mod 4, we get M, ;(K) = Z. As for r — s = 0 mod 4, since
Cl,_1 s has two inequivalent irreducible ungraded K-modules, Cl, s has two inequivalent Z,-graded
R- or H-modules. So 93@7 s(K) = Z +Z. The two generators can also be explicitly constructed by
looking the matrix multiplication of Cl,.; = K(N) on K" and examining the the action of the volume
element @,; = ejey - --e,45 € Cl,; as follows. Note that a),%s = (—1)[(““‘)2“’_5)}/2 so in particular
wr%s =1 when r —s =0 mod 4. So similar to Section the two inequivalent Z,-graded modules
are constructed by putting the =1 eigenspaces of @, in even or odd degrees. Let us denote the two
such irreducible Z,-graded R-modules over Cl; | by Afl.

The proposition now follows from simple dimension counts and from looking at the actions of
the volume elements. To elaborate, we note that the real dimension of Atl is 2 which implies the

Zo-graded tensor product of Afl with an irreducible Z,-graded K-module over Cl, is irreducible

over Cl, 1 41 by dimension counts, in light of Proposition i). We also note that a)r7s®a)rr7sf
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is identified with @, 1,7 ¢, ¢ under the isomorphism Cl,. ®Clr/7 ¢ = Cl4p 51y, s0 by looking at the

actions of the volume elements we know the map
954tr.,s (K) — 93tr—ﬁ—l,s-i—l (K)

given by multiplication by Afl is onto and therefore is an isomorphism for all ,s > 0. This proves

(i) by noting the above map commutes with i*. The same argument proves (ii) as well. |
Now we are ready to prove

Theorem 7.4. @F is an isomorphism of bigraded rings and @2 is an isomorphism of bigraded

modules over the bigraded ring isomorphism @X.

Proof. That @R is an isomorphism of bigraded rings is proved by Atiyah in [Ati66]. The argument
therein that proves @F is a bigraded ring homomorphism also proves @< is a map of bigraded
modules over @&, To prove ¢ is an isomorphism we use the isomorphisms of algebras established
in the previous proposition.

First, the (1,1)-periodicities in Proposition [7.3|i) are compatible with the (1,1)-periodicities for
KR and KQ since all of them are induced by multiplication with the generator of ‘51171 (R) = MR 1=
KR"!(pt). So using (1,1)-periodicities it suffices to prove @< is an isomorphism in bidegrees (r,s)
for r > 4,5 > 0. Next, Proposition ii) says ‘)AI.+47.(]HI) = ‘JAIQ.+4,. is a free module of rank one
over Mo o(R) = NR, .. Since KQ***(pt) is a also free module of rank one over KR**(pt), it
suffices to prove < : My o(H) — KQ*°(pt), which is already proved in Theorem since this

map the same as @" : 14 (H) — KSp~*(pt). [

7.2 Family of quaternionic operators

Recall that a complex vector bundle E is said to be quaternionic if E is equipped with a real vector
bundle automorphism j : E — E which is C-antilinear in each fiber and j> = —1. The complex

vector space of smooth sections I'(E) is equipped with a quaternionic structure given by j*.
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Suppose now E, F are quaternionic vector bundles over a closed manifold M and P: I'(E) —
I'(F) is a complex elliptic differential operator of order m. We say P is quaternionic if P = jiP.

In local terms

p=Y A%(x)0!% /9x* + lower order terms

|ot|=m
where the A%’s are complex-matrix-valued functions with A% jr = jpA%. The principal symbol

07(P) =Y A%(x)(it)* of P in local terms is

ecE— Y %% (A%x)-e) e F

|ot|=m

for any tangent vector T = ¥, 7'd /dx’ of M. It is easy to see ¢ (P) satisfies
oc(P)j = jro_«(P). (7.2.1)
The symbol class of a quaternionic elliptic differential operator therefore lands in KQ-theory.

Definition 7.4. Given a closed manifold M, consider the tangent bundle 7 : TM — M to be equipped
with the canonical involution f : TM — TM defined by f(7) = —7, i.e. the fiberwise antipodal map.
Given any quaternionic vector bundle (E, j) over M, T*E is in a natural way a Quaternionic bundle

over the real space (TM, f) by setting J : n*E — ©*E to be

J(x,7,e) = (x,—7, j(e)).

Suppose now E, F are quaternionic vector bundles over M, then for any quaternionic elliptic operator

P:T(E) — I'(F), the Quaternionic symbol class of P is defined to be the element
[T°E,n"F;06(P)] € KQp (TM).
Note (7.2.1) says o(P) is an isomorphism of Quaternionic bundles outside the zero section of TM.

To define the topological index of a quaternionic elliptic operator, we need a version of Thom

isomorphism for KQ-theory.
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Theorem 7.5 (Atiyah, Dupont). Let E be a Real bundle over a locally compact Hausdorff real

space X. Then multiplication by Ag(E) induces isomorphisms

1%

KR/ (X) — KR (E)

1%

KQcp (X) — KQcpi (E)

Remark 7.6. Locally these Thom isomorphisms are compositions of (1,1)-periodicities. See also
Appendix

Now we can define the topological index of a quaternionic elliptic operator P as follows. We
first choose an embedding f : M — R™. The associated embedding TM — TR™ is compatible
with involutions, i.e. is a mapping of real spaces. If N is the normal bundle to M in R™, then
n*N @& n*N = n*N ® C is the normal bundle to TM in TR™. We consider this to be a Real bundle
over TM (with complex conjugation as its involution). Then similar to the construction in our

Riemann-Roch theorem, we can define a map
J1:KQep (TM) — KQ,,, (TR™) (7.2.2)

by composing the Thom isomorphism with the map induced by the inclusion of the normal bundle
as a tubular neighborhood of TM in TR™. This inclusion can be easily chosen to be compatible with
involutions. We now identify TR" = R™"™ = C", then KQ_,,,(TR™) = KQ™" (pt) = KQ%(pt) = Z.
Therefore we can define the topological index of P to be the integer fi(c(P)).

As usual, the fact that the topological index is independent of our choice of the embedding
follows from the multiplicative property of the KR-Thom class for Real bundles.

The discussion of symbol class and topological index naturally extends to families of quater-

nionic operators.

Definition 7.5. Let P be a family of quaternionic elliptic operators on a closed manifold M parame-
terized by a compact Hausdorff space A. Let .#Z — A denote the underlying family of manifolds,
and let T.# = UueaT #, be the tangent bundle of the family .#. Let 6(P) € KQ,,,(T.#) denote

the symbol class of the family. Then the topological index of the family P is defined to be the
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element

t-ind(P) = .10 (P) € KQ(4) = KSp(4)

where fi : KQ, (T #) — KQ., (A x TR™) is constructed similar to (7.2.2) and g, : KQ_,, (A x

C") — KQ(A) is the natural isomorphism given by the Thom isomorphism.

The forgetful morphism Res]}é1 : KSp(A) — KU(A) is not always injective, so the index we just
defined is more refined than the usual index of P as a family of complex operators.

One can define the analytic index for such a family P of quaternionic elliptic operators by
putting

a-ind(P) = [ker P] — [coker P] € KSp(A).

To be more precise, if the dimensions of ker P, and coker P, are constant for a € A, then ker P and
coker P define two quaternionic bundles over A. In this case, a-ind(P) is defined to be the difference
class [ker P] — [coker P]. In general, ker P, and coker P, are not constant dimensional, then we must
first "stabilize" the situation as Atiyah and Singer did in the complex case in [AS71a]; we simply
note the treatment in [AS71a, sec.2] can be easily made to respect the quaternionic structures.

The analytic index, of course, coincides with the topological index.

Theorem 7.7 (Index theorem for quaternionic family). Let P be a family of quaternionic elliptic

operators on a closed manifold parametrized by a compact Hausdorf(f space A. Then
a-ind(P) = t-ind(P).

We sketch below the proof of this quaternionic version of index theorem, which proceeds just
as in the case of real and complex families [AS71a; AS71b]. Recall that such index theorem for

families essentially relies on checking the following three axioms.

(i) The analytic index

a-ind : KQ.,, (T.#) — KQ(A)

is a homomorphism of KR(A)-modules, which in the special case .# = A = pt is the identity

map.
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(ii) (Excision) Let .#Z — A and .#’' — A be two families over A with compact fibers M, M’
respectively and let f: 0 — #, f': ' — .4’ be inclusions of open sets, with a smooth
equivalence & = ¢’ compatible with the maps to A. Then, identifying &’ with &, the

following diagram commutes:

KQep (T-4)
f’/ \a‘i”d
KQep(TO) KQ(4)

\ /-ind

f; T a
KQepi (T 4")

(iii) (Multiplicativity) Let & — .# be a family of oriented smooth vector bundles of rank n, and
let ¥ = §(& @ R) be the family of n-sphere bundle compactified from &. Then the following

diagram commutes:

i

where i, is multiplication by the fundamental equivariant symbol b € KRso, (T'S")¢p: (cf.

[AS71D]).

The argument of [AS71a; AS71b] for excision and multiplicativity goes through easily in the
quaternionic case, only the first axiom requires some special attention. To make sense of and prove
the first axiom, we need the following facts. First the analytic index depends only on the homotopy
class of the symbol class, which is a consequence of [Mat7/1, Main Theorem III]. Second, every
element in KQ,,, (7T.#) can be represented by some symbol class. And finally the homomorphism
a-ind is well-defined, i.e it does not depend on the choice of symbol-class-representatives. The

second and the last points can be proved no differently from the real and complex cases.
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7.3 Topological formula of ClZ-index

Assume E is a Zp-graded ClZ—bundle over a closed Riemannian manifold X. Further assume E
carries a bundle metric for which the Clifford multiplication by unit vectors in R is orthogonal
and the multiplication by unit quaternions is orthogonal. Let P : I'(E) — I'(E) be an elliptic
self-adjoint operator and assume P is Clz—linear and Z,-graded. Recall we defined the index
indﬁ (P) € KSp~* (pt) in terms of the ClZ—module ker P. We shall now give a topological formula
for this index using Theorem

Since P and (1 + P*P)_l/ 2P have the same kernel, we may assume P has degree zero. With

respect to the splitting E = E° @ E!, P can be written as

0 P!
P=

P’ o
where P! = (P%)*. Now we construct a family &2 of quaternionic elliptic operators parametrized by

R¥ by assigning to each v € R the operator
2% T(E" - T(EY)
defined by the restriction to E¥ of the operator
P, =v+P

where "v" denotes Clifford multiplication by v. Since both Clifford multiplication and P are H-
linear, so is &. Also since P commutes with Clifford multiplication, there is a "conjugate" family

P, = v — P satistying

PPy = PPy =~ (I +P).
Therefore 20 is invertible for all v # 0. Since the space of invertible H-linear operators on
a quaternionic Hilbert space is contractible (see [Seg69]], [Mat71]), we could pass to a family

parametrized by S by embedding R* into S* and extending the family to S* by invertible operators

outside R¥. The index of this extended family lies in KSp(S¥) and becomes trivial when restricted
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to any point outside R¥, so the index in fact lies in the kernel of KSp(S¥) — KSp(pt) which is
isomorphic to KSpC,pt(Rk). Alternatively, we can treat Z2° as a family with compact support and
directly define its topological index and analytic index in KSpCp,(Rk). The topological index and
analytic index so defined coincide by the "passing to S*" argument and Theorem We will take

the latter point of view, for it is more illustrating.

Theorem 7.8. Let P a zero-order elliptic self-adjoint Z,-graded Clg—operator on a closed manifold
M. Then
ind?(P) = a-ind(2°).

Proof. Set KO =ker P’ C I'(E) and K' = ker P! = coker(P’) C I'(E'). Then K°, K" are finite di-
mensional H-subspaces of I'(E?) and I'(E") respectively. By assumption the quaternionic structure
on E is compatible with the its bundle metric, so there are L2-orthogonal compliments V?, V! to
K% K respectively. Then the family 20 decomposes as a direct sum of two operators: the first
summand V° ﬁ V! is an H-isomorphism for all v € R, thus can be ignored for the purpose of
computing the index; meanwhile the second summand is just K° %)—:V> K'! which is independent of

variables on M. Therefore the analytic index of 2?? is
a-ind(2) = [K°,K';v] € KSpcp,(]Rk) >~ KSp *(pt).

Under the isomorphism KSp~*(pt) = 1, (H), this corresponds exactly to the element represented

by kerP = KY@© K, i.e. it corresponds exactly to ind?(P). [

Since a-ind(#°) = t-ind(#°), Theorem|7.8| gives a topological formula for ind’(P).

7.4 Proof of Theorem

This subsection is devoted to proving Theorem[5.6] We follow Hitchin’s treatment in the spin case,
see [Hit74]]. We will only prove the untwisted case, the twisted case is similar and thus omitted.
Let M be a closed spin” manifold of dimension n carrying a canonical Clﬁ—DiraC bundle

& (M) = Pspinh X CIZ with Dirac operator 9. We can turn D into a zero-order operator @Q = Q@ o
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with isomorphic kernel and the same symbol (see [Hit74, p. 39]), where Q = (1 + V*V)’l/ 4and V

is the covariant derivative. Then by Theorem [7.8]and Theorem[7.7| we have
a-ind(M) = ind" (D) = ind! (D) = t-ind(P) = t-ind(%"),

where @% =v+ @g and .@O =v+ @O. Note the last equality follows from that D o and 9 have the
same symbol. So to prove Theorem it suffices to prove t—ind(@o) = t-ind(M).
For this, choose a smooth embedding M — R"*8+4 Denote the normal bundle of M by N and

identify N with a tubular neighborhood of M. Consider the following natural diagram of embeddings

M K s N A N Rn+8k+4
lLM Iy llR
TM —% s TN — > TRn+8k+4 _ Cnt8k+4

We claim there is a corresponding commutative diagram

KR(M) —— 5 KRep(N) —21 5 KRep (R854

! B L), . L),
KQcp: (R" x TM) 5 KQ,(R"x TN) NALN KQ,; (R" x CH8k+4)

with the following properties:

(i) A, A, are the maps induced by the open embeddings A and A.

(ii) ki is the Thom homomorphism using the induced spin” structure on the normal bundle N.

Note M, N, R854 are equipped with trivial involutions.

(iii) &) is the Thom isomorphism using the Real structure on TN = my,N ® C where mys : TM — M

is the bundle projection.
(iv) (1), is multiplication by the symbol class of 7

(v) (tg): is an isomorphism and commutes with the periodicity isomorphisms g, : KR (R 8k+4) 2

KSp~"(pt) and g, : KQ,,;(R" x C"8k+4) = KSp~"(pt), that is ¢ = (1r)\q,.
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By definition, t—ind(@o) = g,AM % (1ar)1(1) and t-ind(M) = q;Aiki(1). Hence Theorem
follows immediately from the claim.
Now to prove the claim, we will first establish a local version of the claim, and then explain how

to globalize. The local version is the following commutative diagram:
MR, 0 —= MR-+ 85440 —r NOno
(lM)!l (lN)!l /
N2 = Nt 8k-+40+8k-+4
where the names of the maps are chosen to be the same as the their corresponding global maps.

Here the maps are defined as follows:

(i) % is multiplication by the R-module Af, ., ®g C over CI(R¥+49) Note A%, is a H-module
over Clgy4 and thus in particular a R-module. Also recall the way to turn a R-module into a

R-module is to tensor with C.

(i1) g is the Bott periodicity isomorphism given by multiplication by the Q-module Agk 4 Over

CI(R8k+4,0) )

(i) (1p7); is multiplication by the Q-module CI" over v € CI(R™"), where (x,y) € R™" acts on
Cl” by
(X, y) - v=x-v+jy-v.

(RKk+4,8k+4) ) € R8k+48k+4

(iv) X is multiplication by the R-module Clg;, 4 over CI , where (x,y
acts on Clg; 4 by the above formula except with j replaced by i. Note ¥ is the (1,1)-

periodicity isomorphism.

(v) g, is the (1,1)-periodicity isomorphism given by multiplication by the R-module Cl,, ¢4

over Cl (Rn+8k+4,n+8k+4) )

(vi) (1) is multiplication by the Z,-graded tensor product (over C) of the R-module Cl,, over

CI(R"") and the Q-module A, .4 over CI(RO8H4) ‘where x € RO¥*+ acts on v € AL L4 bY

X-v=yvj-x.



The commutativity K (1y), = (1v)1k follows from the isomorphism of Z;-graded Q-modules

over C](Rn+8k+4’n+8k+4):
Cl! & Clgrra = (Al 4 ®r C) & Cly OcAly 4,
which itself is a consequence of the isomorphism
h o~ Ah & KK
Clsia = A4 4@RAS 14

from Proposition The commutativity (1y)1q) = g, follows from the isomorphism of Z,-graded

R-modules over CI(R3%+48k+4)

~Ah A XD
Clgi+a = Agy 4O gL 4-

Indeed A’gk 14> When viewed as a complex module over Clgy4, is irreducible and therefore the
argument of Proposition [3.16] proves the above isomorphism holds as Z,-graded complex modules
over CI(R3+48%+4) " Then one can verify the isomorphism is further a R-module isomorphism.
Note for k = 0 this isomorphism is H? @¢ H? = C(4).

Finally let us argue the local version of the claim globalizes to the desired commutative diagram.

(i) The symbol class of 2 is (75, (M)°, 7, (M) ;v +it], which locally is CI” by Atiyah-
Bott-Shapiro isomorphism. So the local (1y7), globalizes to multiplication by the symbol class

of @0.
(i1) The local xy and K clearly globalize to multiplication by the corresponding Thom classes.

(iii) We define the global (1y), as follows. Notice the structure group of the bundle TN|y =
TM & N can be reduced to Spin(n) x Spin(8k +4)/Z; since wo(TM) = w,(N). Therefore
we can associate to it a Z,-graded Q-bundle using the representation CI, ®ngk 44 The
degree zero and one components of this bundle, when pulled back all the way to R" X TN,
become isomorphic away from {0} x N through Clifford multiplication (from R” and 7TN) and
therefore defines an element in KQ,.,,,(R" x TN). We set the global (1) to be multiplication

by this element. This clearly globalizes the local (1y);.
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(iv) The map (i), is similarly defined using that the structure group of the bundle TR"+8+4 over
R"+8k+4 can be reduced to Spin(n) x Spin(8k +4)/Z,. The commutativity (1g)iA; = A1 (1),
follows from that TN over N is isomorphic to the pull-back of TN|y along the bundle

projection N — M since the projection is a homotopy equivalence.

Therefore the local diagram does globalize and has the desired properties. The proof of Theorem|5.6|
is now complete.
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Appendix A

Spin” cobordism

In this appendix, we draw some easy conclusions concerning spin” cobordism. As of the time of
writing, the spin” cobordism groups are completely determined by Keith Mills [Mil23].

Proposition A.1. /" : QF in (pt) — KSp~*(pt) is surjective. In particular Qpin” £0 forn =
5,6 mod 8.

Proof. Since /" is equivariant with respect to the surjective ring homomorphism <7 : Q" (pt) —
KO~ *(pt), and since KSp~*~#(pt) is a free KO~*(pt)-module generated by KSp~*(pt), it suffices
to show .o/ is surjective in degrees 0 and 4. But clearly <" (pt) = A"(pt)/2 = 1 and &/"(HP. ) =
AMHPL) = 1. u

Remark A.2. With 2 inverted, Spin” ~ Spin x Sp(1) and consequently
spin” 1 ~ (Spin ooy 1 ~ (Spin o, 1
QP (pr) 3] 2 QP (HE™) ] & Q" (pr) @ H, (HE™: Z3)).

ioh
This implies Q""" is a 2-primary torsion group for n = 5,6 mod 8.
- h
Proposition A.3. Let F : Q" (pt) — Q3O(pt) be the forgetful homomorphism. Then
2hy . yspin’ SO —n
(F,.a/%) - P (pt) — Q" (pt) ©KSp ™ (pt)
is an isomorphism for n < 5.

Sketch of proof. The surjectivity is clear since /" is surjective by the previous proposition and
F is also surjective: one can enrich oriented manifolds of dimensions < 5 with spin” structures
(see Example . Meanwhile a formidable computation of the spin” cobordism groups in low
dimensions shows in dimensions < 5 the spin” cobordism groups are abstractly isomorphic to

7.,0,0,0,Z+ 7., Zr + 7.

Details will not be given. These groups are also abstractly isomorphic to Q3°(pt) & KSp~*(pt) in
dimensions < 5. Consequently surjectivity forces isomorphism. [
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- h
It is now easy to see Qipm (pt) is generated by H]P’i and CIP’%F, since CPP? generates ng and

HP! is zero in Q$° but &/"(HPL) = 1. Similarly Q;P‘“h (pt) is generated by RP! x HP! and
SU(3)/SO(3). Here RP! is viewed as a spin manifold with its non-trivial (i.e. non-bounding) spin
structure and SU(3)/ SO(3) carries a natural spin” structure whose canonical bundle is the natural
principal SO(3)-bundle SO(3) — SU(3) — SU(3)/SO(3).

Remark A.4. In fact, using standard notations for homotopy theorists, with the knowledge of the
cohomology of BSpin” calculated in Theorem one can show the spectrum map
MSpin” — ksp VE*HZ V¥’ HZ,

labeled by .&7", pyU and wow3U induces an isomorphism on 2-local cohomology up to degree 6. In
degree 7, the induced map on mod 2 cohomology is epic with a one-dimensional kernel reflecting
the relation Sg> (w3U) = Sq*(wow3U) = wiwsU. It follows that the above spectrum map lifts to
MSpin" — ksp V F where X~*F is the fiber of HZV LHZ, — Y>HZ, labeled by S¢*,Sq*. This

-
lifted map is an isomorphism on 2-local cohomology up to degree 7, hence Q7" = Zs + Zo.
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Appendix B
KM-theory

Definition B.1. Let (X, f) be a real space. An M-bundle over X is a pair (E, j) consisting of a
complex vector bundle E over X together with a real bundle map j: E — E covering f so that
J 1 Ex — Ey, is C-antilinear and j*=1. We say j is the M-structure on E. In the special case X is a
point with trivial involution, we say (E, j) is an M-vector space.

It is clear both Real bundles and Quaternionic bundles are M-bundles. It may be helpful to
think of the Real theory is associated to the group Z, while the M-theory is associated to the group
Zy4. The group Z,4 admits a natural even-odd filtration where the even subgroup is isomorphic
to Z;. Even though the sequence 0 — Zy — Z4 — Zo — 0 does not split, our KM-theory does.
Indeed with the assumption that X is connected, every M-bundle is a direct sum of a Real one and a
Quaternionic one.

Proposition B.1. Let (E, j) be an M-bundle over the connected real space (X, f). Then there is a
natural M-bundle isomorphism

Ex2(1+Ea(1-E
where (1+ j?)E, endowed with j, is a Real bundle and (1 — j?)E Quaternionic.

Proof. Notice that j2 : E — E is a complex linear automorphism of E. Since j* =1, at x € X, j?
decomposes E| into a direct sum of eigenspaces

ker(1 — j2) @ker(1+ j2).

The continuity of j)% with respect to x implies the dimensions of ker(1 F ])%) are upper semi-
continuous with respect to x, whence the sum of the dimensions of ker(1 F j2) is a constant. As
such both the dimensions of ker(1 j2) are locally constant in x. Since X is now assumed to be
connected, we conclude ker(1F j?) = (14 j?)E define complex vector bundles over X. It is easy
to see when equipped with j these two bundles are Real and Quaternionic respectively. The asserted
M-bundle isomorphism follows at once. [

So KM = KR @ KQ can be viewed as the Grothendieck group of M-bundles. When dealing
with Quaternionic bundles, it is better to think of them as M-bundles, since the theory KM is
multiplicative while the theory KQ is not. The multiplication on KM is of course induced by
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tensor product of complex vector bundles. A special feature for this product is that the product of
two Quaternionic bundles is Real. That said, we see the multiplication in KM-theory respects its
Z-grading; in particular KR is a subring of KM and KQ is a KR-module

Most of the results in [At166]] for Real bundles and KR-theory now hold for M-bundles and
KM-theory, it suffices to replace the Real structures therein by the M-structures. In particular,
adopting the notation of [At166]], we have the following projective bundle formula:

Proposition B.2. Let L be a Real line-bundle (i.e. of complex rank one) over the real compact space
X, H is the standard Real line-bundle over the projective bundle P(L & 1) where 1 is understood to
be the trivialized Real bundle over X. Then as a KM(X)-algebra, KM(P(L® 1)) is generated by H
subject to the single relation

(H] = [)(L][H] = 1) =0.
The Thom isomorphism for Real bundles and (1,1)-periodicity follow in a quite formal way.

Theorem B.3. Let E be a Real vector bundle over the real compact space X. Then
¢ : KM(X) = KMy (E)

is an isomorphism where ¢ (x) = Ag - x and Ag is the element of KR, (E) defined by the exterior
algebra of E.

Theorem B.4. Let b = [H] — 1 € KR! (pt) = KR(CP'). Then the homomorphism
B:KM™(X,Y) — KM st (x y)
given by x — bx is an isomorphism.

Since the homomorphisms ¢ and 8 are both induced by multiplication with Real bundles,
they preserve the Z,-grading KM = KR®KQ, i.e. they send KR to KR and KQ to KQ. So the
corresponding theorems hold for KQ-theory as well. This justifies Theorem[7.5]

Recall we have defined KM"* for r,s > 0 using

KM’ (X,Y) = KM(X x D", X x S UY x D),

which in the special case s = 0 coincides with the usual suspension groups KM™". Now thanks
to the (1,1)-periodicity, we can define KM-groups with positive indices by putting KM = KM"".
Then we have a natural isomorphism KM”* = KM*~". This justifies the use of the group KM* in
[Dup69].

Now we can quote [Dup69] to prove

Proposition B.5S. For r,s > 0, multiplication with the generator of KQ4’0(pt) vields an isomorphism
KR (pt) = KQ" ™ (pt).

Proof. From [Dup69, (6)], we know multiplication with the generator of KQ*(pt) 22 KQ"*(pt)
gives an isomorphism
KQr+4,s (pt) ~ KRr+4,s+4 (pt)
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On the other hand, the (1,1)-periodicity gives
KR ™45 (pt) 22 KR" (pt).

Combining the two isomorphisms and summing over all r,s > 0, we obtain isomorphisms of
bigraded-groups
KR (pt) = KR*™*(pt) 2 KQ™*(pt).

Now observe the above isomorphisms are homomorphisms of KR**(pt)-modules, the proposition
thus follows. |
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