
Collet-Eckmann Laminations and Newhouse dynamics

A Dissertation presented

by

Zhuang Tao

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Mathematics

Stony Brook University

August 2022



Stony Brook University

The Graduate School

Zhuang Tao

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Marco Martens - Dissertation Advisor

Professor, Department of Mathematics

Scott Sutherland - Chairperson of Defense

Professor, Department of Mathematics

Mikhail Lyubich - Inside Member

Distinguished Professor, Department of Mathematics

Christopher Bishop - Inside Member

Distinguished Professor, Department of Mathematics

Liviana Palmisano - Outside Member

Associate Professor, Department of Mathematics, KTH

This dissertation is accepted by the Graduate School

Celia Marshik

Interim Dean of the Graduate School

ii



Abstract of the Dissertation

Laminations of chaotic and Newhouse dynamics

by

Zhuang Tao

Doctor of Philosophy

in

Mathematics

Stony Brook University

2022

In one-dimensional dynamics, there are quadratic unimodal maps where the orbit of the

critical point has a rate of expansion, the so-called ”Collet-Eckmann Condition”. For maps

with the Collet-Eckmann Condition, we cannot find any periodic attractors. In holomorphic

dynamics of higher dimensions, the situation is completely different. In particular, in the

thesis, we study holomorphic systems of arbitrary dimensions. In the dissipative family of

such systems, we are able to construct a ”Collet-Eckmann Lamination” in the parameter

space. Each leaf of this lamination is of codimension-1 and each map in the leaf has a critical

point with expanding directions and its orbits have chaotic properties. The topological

classes of the ω-limit set of the critical point are stable along each leaf of the lamination.

We also observe the Newhouse Phenomenon in this lamination. In particular, there are

maps in the lamination which have a critical point with Collet-Eckmann condition and have

the coexistence of infinitely many periodic sinks. Moreover, the union of periodic sinks

accumulates at the ω-limit set of the critical point. In the parameter space, we can also find

leafs in Collet-Eckmann Lamination where a generic point has the Newhouse Phenomenon.

The closure of the Newhouse points is the same as the closure of the whole lamination.
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Chapter 1

Introduction

One of the purposes of science is to understand the law of the world. The main theoretical

tools for scientists to do so are through modelings using mathematics. We may build up

differential equations for continuous time models or recursive relations for discrete time

models, which abstractly, can be written as

dX(t)

dt
= F (X(t), t) (1.0.1)

or

Yn+1 = G (Yn, n) (1.0.2)

for continuous time t or discrete time n respectively, where X(t) and Yn are points in some

appropriate spaces with finite or infinite dimensions, F and G are maps with certain regularity.

Now suppose we get the right model for our target object, and suppose we know how

to solve our equation for any given initial state, can we predict the motion of the target

object in a certain amount of time in practice? For example, in physics, in order to know the

orbit of a planet, physicists came up with a system of differential equations using Newton’s

mechanics to describe the motion of a group of celestial objects interacting with each other

gravitationally, which is called the N−body problem. For N = 2, the two body problem is

completely understood. The two planets are either trapped in elliptical orbits that share a

focus at the center of mass, or they escape along hyperbolic orbits. They will also be confined
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to a two dimensional Euclidean plane in the three dimensional Euclidean space due to the

conservation of angular momentum.

But when N ⩾ 3, things are much more complicated. In the striking work of Henri

Poincaré [Poi90], he found that in some cases of the 3-body problem, the trajectory of objects

will be extremely sensitivity to initial conditions, which we know today as chaos. In these

situations, when the initial condition was perturbed a little bit, the resulting trajectories

will change dramatically after a certain time. So in such a system, even the system itself is

deterministic, due to the inevitable existence of errors in the observation of initial state, it is

impossible to predict the state when time is longer than some finite number. Chaos theory

was summarized by Edward Lorenz, who introduced the famous Lorenz system in [Lor63], as:

Chaos: When the present determines the future, but the approximate present does not

approximately determine the future.

The following old proverb may describe the chaotic system metaphorically:

For want of a nail the shoe was lost.

For want of a shoe the horse was lost.

For want of a horse the rider was lost.

For want of a rider the message was lost.

For want of a message the battle was lost.

For want of a battle the kingdom was lost.

And all for the want of a horseshoe nail.

In the dynamical point of view, we can give an explanation like the following:

A small change of the initial states (”Lack of a nail”) will lead to a dramatic change of the

state in the long run (”Losing a battle”). For an introduction to mathematical theory of

chaos, we refer to the textbooks written by Devaney [Dev89] and Guckenheimer& Holmes

[GH83].
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So we now know for chaotic systems, one problem of such system is the unpredictability

of long time future in practice as the inevitable existence of errors in the observation of

initial state. The other problem for chaotic systems in practice is the inevitable existence

of modelling errors. In practise, when people build up a model, it may often come up with

using many parameters or using some assumptions and approximations. The errors in the

observation of parameters or the error occurs during the assumptions and approximations

contribute to the error of the model. So it is also very important to know the robustness

of the dynamical features we got for the model in practice, which means these dynamical

features are the equivalent for any small perturbations of the model. This leads us to consider

the stability of the system itself. There are many versions of definitions of such kind of

stability, the strongest version of stability conditions is the structural stability introduced by

Andronov and Pontryagin [AP37]. In discrete dynamical systems, this notion can be defined

as follows.

Let M be a manifold and f : M → M be a diffeomorphism on M as the dynamical system.

Let S be the class of diffeomorphisms of certain regularity, which can be Cr(r ⩾ 1), C∞ or

holomorphic. We say f is S-structurally stable if for any small enough perturbation g of f in

the class S, there exist a homeomorphism h of M , such that h ◦ f = g ◦ h holds for all points

in M . From this definition we can see that for any point x ∈ M , the orbit of x under f can

be mapped one-to-one to the orbit of h(x) under g through the homeomorphism h. In other

words, the two systems are the same up to change of coordinates. If we change restrict the

conjugation equation of f and g to holding on subsets of M with certain dynamical meanings

such as the non-wandering set of a map, then we can get weaker versions of stabilities.

There are two aspects of understanding the structurally stable systems, one is to understand

the orbital structures of the structurally stable systems, and the other is to understand the

density of structurally stable systems among all dynamical systems in a given regularity

class, measure-theoretically or topologically. Uniform hyperbolicity is observed to give a way

to describe the two aspects. In discrete dynamical systems, uniform hyperbolicity can be
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defined as follows.

Let a M be a manifold and f : M → M a C1-diffeomorphism. A compact f -invariant

subset Γ ⊂ M is uniformly hyperbolic if the restriction of the tangent bundle TM to Γ splits

into two continuous invariant subbundles:

TM |Γ = Es ⊕ Eu (1.0.3)

and Es being uniformly contracted and Eu being uniformly expanded. Given a hyperbolic

compact set Λ, for every p ∈ Λ, the sets

W s(p) =

{
c′ ∈ M : lim

n→+∞
d (fn(p), fn (p′)) = 0

}
,

W u(p) =

{
c′ ∈ M : lim

n→−∞
d (fn(p), fn (p′)) = 0

}
are called the stable and unstable manifolds of p. By invariant manifold theorems, they are

immersed manifolds tangent at p to respectively Es(p) and Eu(p). There are many studies of

structural stability, hyperbolic dynamical systems and their relationships. For a mathematical

treatment of these topics, we refer to the textbook written by Shub [Shu87] and also the

comprehensive introduction to modern dynamical systems written by Katok and Hasselblatt

[KH95]. We also refer to a very good lecture by Berger [Ber18] summarizing recent progress

on structural stability. Here we cite one classical result:

Theorem 1.0.1. (Anosov [Ano67], proof by Moser [Mos69]) A uniformly hyperbolic compact

set Λ for a C1-diffeomorphisms is structurally stable.

The main conjecture on structural stability is the Palis-Smale stability conjecture [PS70]:

Palis-Smale stability conjecture. A Ck(or Cs, s ⩾ k) diffeomorphism is Ck structurally

stable if and only if it satisfies Axiom A and the transversality condition.

We now give the definition of Axiom A and strong transversality condition. Here the

Axiom A is related to the hyperbolicity. Indeed, a diffeomorphism f is called Axiom A if the

following conditions holds:

(1) The non-wandering set, Ω(f), is a compact hyperbolic set;
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(2) The set of periodic points of f is dense in Ω(f).

Where the non-wandering set Ω(f) is defined as

Ω(f) :=
{
x| for all open U ∋ x , there exists N such that fN(U) ∩ U ̸= ∅

}
(1.0.4)

And for an Axiom A diffeomorphism f , we say it satisfies the transversality condition if

the stable and unstable manifolds of any two points in Ω(f) are in general position. The

transversality condition is an important, as it can be shown that, the breaking of transversality

condition will make the system away from structural stability.

Here we want to emphasis one special cases, which is the homoclinic orbits. For a

hyperbolic fixed point p, q is a homoclinic point if q is inside the intersection of the unstable

and stable manifold of p, in other words, we have

lim
t→±∞

f t(q) = p. (1.0.5)

We can classify homoclinic points into two categories by transversality condition: If the stable

and unstable manifolds of p are transversal at intersection point q, then this intersection

point is called transverse homoclinic point. Otherwise we call it homoclinic tangency point.

The homoclinic point was firstly introduced by Henri Poincaré [Poi90] during the treatment

of 3-body problem. The Horseshoe map, introduced by Stephen Smale [Sma67], plays an

important role in understanding the dynamics near a transverse homoclinic point. The

Horseshoe map is a a topological model with a very simple symbolic dynamics description

and it is the first example of a structurally stable diffeomorphism with an infinite number of

periodic points [Sma63]. And using this tool, we have the following theorem [Sma65]:

Theorem 1.0.2. Suppose x is a transversal homoclinic point of f ∈ Diff(M). Then there

is a Cantor set Λ ⊂ M,x ∈ Λ, and m ∈ Z+such that fm(Λ) = Λ and fm restricted to Λ is

topologically a shift automorphism.

The chaotic behavior around such maps are actually theoretically known, and it is an

example of the so called ”Hyperbolic attractors”.
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But unfortunately, we don’t have such beautiful and simple description for dynamics

around homoclinic tangency points. And it is beyond the context of classical uniform

hyperbolic systems. We need more math around it. Palis gave a conjecture around it in

[Pal00](Conjecture II):

Palis Conjecture. In any dimension, the diffeomorphisms exhibiting either a homoclinic

tangency or a (finite) cycle of hyperbolic periodic orbits with different stable dimensions

(heterodimensional cycles) are Cr dense in the complement of the closure of the hyperbolic

ones, r ≥ 1.

Pujals and Sambarino [PS00] have provided a positive solution to the conjecture for

surface diffeomorphisms and r = 1. In the dissertation, we are interested in the holomorphic

case. More concretely, we will focus on the bifurcation of dynamical systems with quadratic

homoclinic tangency associated to a hyperbolic periodic cycle.

There are many interesting dynamical phenomenons around bifurcation of homoclinic

tangencies. Two important properties are of our special interest, the Collet-Eckmann

Condition and the Newhouse phenomenon. We start with discussing the Collet-Eckmann

Condition first.

For expanding maps on an bounded interval(it is an example of hyperbolic systems), we

can find an invariant probability measure which is absolutely continuous with respect to the

Lebesgue measure. The expansiveness plays an important role in the proof. But if we are class

of unimodal maps (an example of such families are the quadratic family:fc(x) = x2 + c, c ∈

[−2, 1
4
]), because the existence of the critical point, there are no universal expansion. Hence

such an invariant measure absolutely continuous with respect to the Lebesgue measure may

not exist for all the unimodal maps. Collet and Eckmann [CE83] firstly introduced an weak

condition, now called The Collet-Eckmann Condition, on the growth rate of post-critical point

to guarantee the existence of invariant probability measures which is absolutely continuous

with respect to the Lebesgue measure. Let c be the critical point of a unimodal map f , then
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the Collet-Eckmann Condition can be defined as:

|Dfn(f(c))| ⩾ Kλn, for all n ⩾ 0, (1.0.6)

where K > 0 and λ > 1 are constants. The maps with Collet-Eckmann Condition have shared

many fine properties with the classical hyperbolic systems: exponential decay of correlations,

the central limit and large deviations theorems, good spectral properties and zeta functions,

see [KN92], [You92] for details.

For unimodal C1 maps on an compact interval satisfying the Collet-Eckmann condition

together with some other technical conditions, they showed the existence of invariant proba-

bility measures which is absolutely continuous with respect to the Lebesgue measure. Many

papers later have addressed this question, e.g. Nowicki and van Strien [NS88], Benedicks and

Carleson [BC85] and Tsujii [Tsu93]. For interested readers, we refer the classical textbook

[MS93] for detailed treatment. One may ask whether the Collet-Eckmann condition a typical

condition among certain family of maps. The answer is actually yes.

As having the absolutely continuous invariant measure can be viewed as the ”stochastic”

property, Lyubich has shown in [Lyu02] that almost every real quadratic map is either

regular or stochastic. A quadratic map Pc : x 7→ x2 + c is called regular if it has an

attracting cycle. In this case, the attracting cycle is unique and attracts almost all orbits

[Sin78],[Guc79]. It is called stochastic if it has an absolutely continuous invariant measure.

In this case the measure is unique, weakly Bernoulli, and almost all orbits are asymptotically

equidistributed with respect to it [Led81], [BL91]. Furthermore, in the works of the Avila

and Moreira [AM05],[AM03], the statistical properties of quadratic family or S-unimodal

maps are analyzed, they showed a dichotomy of regular and stochastic behaviors of maps,

roughly speaking, there exist a full measure subset in stochastic parameters of the family

satisfying the Collet-Eckmann condition.

The Collet-Eckmann condition is also considered in holomorphic dynamics, many papers

have considered the properties of rational Collet-Eckmann maps over Riemann spheres, e.g.,
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Przytycki [Prz98], Graczyk and Smirnov [GS98], Magnus[Asp04], Astorg, Gauthier, Mihalache

and Vigny [Ast+19].

For dynamical systems of dimensions greater than 1, one notable usage of the Collet-

Eckmann condition is the the celebrated work of Benedicks and Carleson [BC91] on the the

dynamics of the Hénon map. They have shown in the following celebrated theorem for the

real Hénon family T : (x, y) 7→ (1 + y − ax2, bx):

Theorem 1.0.3. (Benedicks, Carleson) Let W u be the unstable manifold of T at its fixed

point in x, y > 0. Then for all c < log 2 there is a b0 > 0 such that for all b ∈ (0, b0) there is

a set E(b) of positive one-dimensional Lebesgue measure such that for all a ∈ E(b) :

(i) There is an open set U = U(a, b) such that for all z ∈ U ,

dist
(
T ν(z),W u

)
→ 0 as ν → ∞

(ii) There is a point z0 = z0(a, b) ∈ W u such that

(a) {T ν (z0)}∞ν=0 is dense in W u;

(b) ∥DT ν (z0) (0, 1)∥ ≥ ecν.

In Theorem 1.0.3, property (ii)(b) is also called the Collet-Eckmann condition. There

are many great studies following Benedicks and Carleson’s methods, e.g., Mora and Viana

[MV93], Wang and Young [WY01],[WY08], Viana and Lutstsatto [VL03], Takahasi [Tak11].

And in this dissertation, we will define the Collet-Eckmann condition in similar manner.

Another property which is of our interest is the celebrated Newhouse phenomenon [New74],

which is, roughly speaking, the existence of maps with coexisting infinitely many sinks, plays

an important role in the theory of non-hyperbolic dynamical systems. Many theorems and

conjectures are related to this phenomenon. The classical theory makes inductively use of

the idea of persistent tangencies and a deep analysis of intersections of Cantor sets. Then

we can prove that for certain class of diffeomorphisms some manifold M , there exist a

open subset which consist of diffeomorphisms with persistent tangencies and therefore, a
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generic diffeomorphism in this open subset would carry infinitely many sinks. For a detailed

explanation about this topic, we refer the classical textbook [PT93]. Recently in the work of

Berger [Ber16], the author introduced the notion of Cd−paratangency and parablender to

prove that the following theorem:

Theorem 1.0.4. (Berger) For all ∞ ⩾ r > d ⩾ 0 or ∞ > r = d ⩾ 2, for all k ⩾ 0, we

have the following:

(1) If M is a compact surface, then there exists an open set Û in Cd
(
Rk, Cr(M,M)

)
and

a Baire residual set R in Û so that for every (fa)a ∈ R, for every |a| ≤ 1, the map fa has

infinitely many sinks.

(2) If n ≥ 3, then there exists an open set Û in Cd
(
Rk , Diff r(M,M)) and a Baire residual

set R in Û so that for every (fa)a ∈ R, for every |a| ≤ 1, the map fa has infinitely many

sinks.

For Newhouse Phenomenon in the dynamical systems of several complex variables, it was

firstly constructed in the work of Buzzard [Buz97] and Gavosto [Gav98] for polynomial maps

with high degree. Recently, Biebler [Bie20] have constructed a residual set in the space of

automorphisms of low degree in C3 which consist of parameters satisfying the Newhouse

phenomenon. For polynomial automorphisms of C2, Dujardin and Lyubich [DL15] have

certified a holomorphic version of Palis conjecture [Pal00] by showing that for a family of

dissipative polynomial automorphisms of C2, the set of parameters satisfying either locally

weakly J∗-stable condition or Newhouse phenomenons is dense in the parameter space.

There are many great articles around all the subjects we have mentioned above. We

apologize if there are any missing of references and citations.

1.1 Methodology and Statement of main theorems

Recently, Benedicks, Martens and Palmisano in [BMP18] started to study the stability of

the Newhouse phenomenon arsing from unfoldings of homoclinic tangencies for dissipative
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C∞ real maps. They are able to prove that there are codimension 2 laminations, named as

”Newhouse Laminations”,in the parameter space consisting of maps with infinitely many

sinks . And the sinks moves smoothly along the leaves of the lamination. And based on

their result, Martens, Palmisano and I in [MPT20] have extended the result to polynomial

self-maps on C2. The analysis in the two works are all based on real analysis and there are

some obstructions to extend the result into holomorphic settings.

In this dissertation, we are able to extend the results to dynamical systems in several

complex variables. Both the parameter space and the phase space will be holomorphic in this

dissertation. We follow the same combinatorics aspects of dynamics as [BMP18]and [MPT20],

but we reconstruct everything using purely tools from complex analysis. In this way, we are

able to give a better geometrical picture and can be applied for future developments.

Besides, following the ideas from Benedicks and Carleson [BC91], we also study the

stability of the Collet-Eckmann condition. After showing there is a complex codimension-1

lamination in the parameter space of maps with the Collet-Eckmann condition, we are able

to find a dense subset of the lamination of maps with Newhouse phenomenon. This subset

can be viewed as the extension of the real Newhouse Laminations constructed in Benedicks,

Martens and Palmisano in [BMP18] to the holomorphic setting.

This dissertation is mostly self-contained. After reviewing some basic tools from complex

analysis, all the theorems and lemmas are proved in the dissertation.

In the dissertation, we restrict ourselves in family of dynamical systems with unfoldings

of strong homoclinic tangency. We have define the notion of strong homoclinic tangency and

the unfolding of it in Section 2.4.

Now we give a definition of the Collet-Eckmann condition in our setting. Before give the

actual definition, we need to define the meaning of critical point in our setting, which we

named as a ”quasi-critical point”. It is given in section 2.5, see definition 2.5.1. Figure 1.1

gives a model illustration of ”quasi-critical point” in the real slice.

Then we can give the definition of Collet-Eckmann condition.
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Figure 1.1: Model picture of ”quasi-critical point” in the real slice

Definition 1.1.1. We say a dynamical system F : M −→ M satisfies the Collet-Eckmann

condition if the following holds:

There exist constants K, ρ > 1, a point c ∈ M which is a quasi-critical point of F and a

vector V of unit length in the tangent space of M at c, such that the following holds for every

positive integer n:

|DF n(c)(V )| > K · ρn. (1.1.1)

Our main results on around the Collet-Eckmann condition is the followings:

Theorem A. Let M , P be complex manifolds with dim(M) ≥ 2 and dim(P) ≥ 3. Let

F : P ×M → M be a holomorphic family of unfolding of a map with a strong homoclinic

tangency. Then we have the following results:

There exist a codimension 1 lamination in P , denoted as CE, satisfies the following:

11



(1) CE has unaccountably many leafs. All the leafs in the lamination CE can be viewed as

graphs over a fixed domain with uniform radius.

(2) For any parameter t inside CE, there exist a quasi-critical point c(t) ∈ M and a vector

V (t) of unit length in the tangent space of M at c(t), such that Ft satisfy the Collet-Eckmann

condition at c(t) in the direction V (t) for some K, ρ > 1 uniformly, i.e.,

|DF n
t (c(t))(V (t))| > K · ρn. (1.1.2)

(3) c(t) and V (t) persist along each leave of the lamination holomorphically. Also, the

combinatorics of c(t) under the map F , which is given by the kneading sequence (see remark

6.2.3), will be constant along the leaves. On the contrary, different leaves will have different

kneading sequences.

(4) The closure of CE is a lamination. Furthermore, the transversal sections of the lamination

CE are cantor sets, i.e., totally disconnected perfect sets.

(5) The ω-limit set of c(t), ω(c(t)), forms a cantor set. c(t) is a recurrent point, i.e.,

c(t) ∈ ω(c(t)).

Remark 1.1.1. Let t be a parameter in a leaf L of the lamination CE, we emphasize that

ω(c(t)) is not stable in the parameter space in the following sense. For any complex embedded

disc U in the parameter space centering at t with small radius, and transversal to the leaf

L at t. We may holomorphically extend c(t) to t′ ∈ U , but c(t′) will no longer satisfies

the Collet-Eckmann condition and ω(c(t)) will no longer conjugate to the ω(c(t′)) for any

t′ ∈ U, t′ ̸= t. In particular, ω(c(t)) is is not hyperbolic for every t ∈ L.

For the Newhouse Phenomenon, we have the following theorem:

Theorem B. With the same assumptions in Theorem A, there exist a set NH inside CE,

such that there exists infinitely many sinks for maps with parameter in NH. And NH has

following properties:

12



(1) The closure of NH is the same as the closure of CE, i.e.,

NH = CE (1.1.3)

(2) There exist leaves in CE, such that the intersection of NH with that leaf are dense in the

leaf.

(3) Let σ ∈ NH, then there exists sequence of sinks {P (l)
σ } with strictly increasing periods,

such that the following holds:

ω(c(σ)) = ∪lO(P
(l)
σ )\ ∪l O(P (l)

σ ), (1.1.4)

where O(P
(l)
σ ) denotes the orbit of the sink.

1.2 Further Discussions and Questions

Let L be a leaf in the lamination CE, for any t ∈ CE, by Remark 1.1.1, we know that ω(c(t))

is not stable in the transversal direction of the leaf L. But we may investigate the stability

behavior of ω(c(t)) when t moves along the leaf L. The starting point is the Theorem A(2),

c(t) will have the same kneading sequence when t moves along the leaf L. And we make a

conjecture on this subject as follows:

Conjecture. For two parameters t1,2 ∈ L, we have that ω(c(t1)) is conjugated to ω(c(t2)).

If it is true, compared with the definition of structural stability, we may say that F is

ω(c(t))-stable along the leaf L. This gives a very weak version of stability.

The conjecture is not proved in the dissertation. But the reason why we think it is true is

the following:

Suppose t0 is a parameter on a leaf L of lamination CE where there exist a sink. By

section 4, we can find a box in the phase space such that its return map is a Hénon-like map

with image completely inside it. Then when we perturbing the t0 along the leaf, the relative

position of the box with the image of the same iteration of maps will change continuously
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to other possibilities. Figure 1.2 shows some of the relative position in the real slice of the

phase space. We call it a Hénon renormalization region for cases (b)− (e).

Figure 1.2: Relative position of the box with the image in the real slice. (a) is the case when
they do not intersect, (c) is the case of sink, (b)− (e) are the cases when they intersect with
each other.

Now we want to see the corresponding regions of the Hénon renormalization region in the

parameter space. We specify the parameter space to the one using (µ, λ, a) as coordinates,

where a is the unfolding parameter, µ is the only unstable eigenvalue of the differential of our

map at the associated hyperbolic fixed point p, λ is the unique largest stable eigenvalue of the

differential of our map at p (See section 2.4 for details). Then the a axis is transversal to the

lamination CE. And we can actually find 2 strips in the (µ, λ)−plane, while the strip, named

as Hénon strip, H are made of the parameters such that the box intersect with the image of
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return map (cases (b) − (e) in Figure 1.2), while a sink strip contained in H consisting of

parameters with sinks what got by continuation of the sink at t (case (c) in Figure 1.2). See

Figure 1.3 for the picture in the real slice of (µ, λ) plane. So if parameter t walk through this

Hénon strip H, a sink will be created and disappeared in the phase space. For a parameter

Figure 1.3: Model picture of H and sink strip in the real slice of (µ, λ) plane.

t1 in NH, there are infinitely many Hénon strips {Hi} and corresponding sink strips. Their

intersections will contain the point t1. See Figure 1.4 for an illustration in the real slices of

(µ, λ) plane. When t is a parameter on leaf L with Newhouse phenomenon, we may have an

illustrative picture (figure 1.5). If we are on the leaf with dense subset of Newhouse points

as Theorem B, part (2), we can see that there exist an collection of countably many Hénon

strips, such that they concentrate on the dense subset of Newhouse points in the leaf. What

we can prove is that the complement of all the Hénon strips in the leaf will have positive

measure for every leaf in the lamination CE.

But surprisingly, by the construction of the c(t) for t ∈ L, we can see that ω(c(t)) will

never enter any of the Hénon renormalization regions. Thus we can see that all the Hénon
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Figure 1.4: Model picture of intersection of Hénon strips at a Newhouse point t in the real
slice of (µ, λ) plane.

strips in the parameter space will not affect the structure of ω(c(t)).

When t moves along the leaf, the Hénon renormalization regions actually will change

dramatically as figure 1.2 indicates, the birth and death of sinks can be viewed as a form of

topological instability. Furthermore, when t is a Newhouse parameter, by part (3) of Theorem

B, we can see that ω(c(t)) and the union of orbits of the sinks have a close relationship: they

share the same boundary! So if the conjecture holds, then in the neighborhood of the cantor

set ω(c(t)), we can split it into two regions, a ”Stablity” region and a ”Instablilty” region.

The ”Stablity” region is ω(c(t)), while the ”Instablilty” region consists of unions of all Hénon

renormalization regions.

The two ingredients in our discussion, the limit set of a point with Collet-Eckmann

condition and the regions creating the Hénon renormalization (and corresponding little Hénon

strips in the parameter space), also have appeared in Benedicks-Carleson’s work [BC91] on

real Hénon maps. Thus we may also ask whether there is a form of stability conditions

applies to Benedicks-Carleson’s situation. Notice that even though the Hénon renormalization
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Figure 1.5: Relative position of ω(c(t)) and basins of sinks for a Newhouse parameter t

regions will not affect ω(c(t)) in our case, but it will play an role in substantially in Benedicks-

Carleson’s situation, as the transitivity of the Collet-Eckmann point in the strange attractor.

So we need to exclude the potentially affecting Hénon strips in order to get a stability

condition, and we expect the set left after these procedures remain positive measure. So we

end our discussion with the following question:

Question. In theorem 1.0.3, for a real Hénon family T , is there an submanifold P in the

parameter space such that the Collet-Eckmann point z0 move analytically with the same

kneading sequence? If so, is there a subset in P with positive Lebesgue measure (of P ), such

that the resulting strange attractor persist analytically along P with same combinatorics?
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Chapter 2

Preliminaries

2.1 Univalent functions and an Univalency Criteria

A domain in the complex plane C is an nonempty open connected subset. Let E be a domain

in C, a holomorphic function f : E −→ C will be called a univalent function if it is injective.

The following is a criteria for univalency, the proof can be found in [Pom92].

Proposition 2.1.1. Let f be non-constant and analytic in the domain H ⊂ Ĉ and let G be

the inner domain of the Jordan curve J .If

f(z) → J as z → ∂H,

then f(H) = G. If furthermore f assumes in H some value in G only once (with multiplicity

1) then f is injective and H is simply connected.

For univalent map, we have following distortion estimations, we refer to [McM94] and

[FM08] for details.

Theorem 2.1.2. Let D ⊂ U ⊂ C be bounded domains with Mod(D,U) > m > 0. Let

f : U → C be a univalent map. Then there is a constant C(m) such that for any x, y and z

in D, the following holds:

1

C(m)
|f ′(x)| ⩽ |f(y)− f(z)|

|y − z|
⩽ C(m) |f ′(x)| .
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2.2 Polynomial-like maps and its perturbations

Following Douady-Hubbard[DH85], we have the definition of polynomial-like maps:

Definition 2.2.1. A Polynomial-like map of degree d is a triple (U,U ′, f) where U and U ′

are open subsets of C isomorphic to discs, with U ′ relatively compact in U , and f : U ′ −→ U

a holomorphic mapping, proper of degree d. If d = 2, we call it a Quadratic-like map.

Now we prove a proposition about perturbation of proper maps of a given degree in the

complex plane. First we give a technical lemma. Denote ∆ be the unit disc in the complex

plane C.

Lemma 2.2.1. (1) Let d ⩾ 2 be a positive integer, then there exists positive constants

Rd =
√

d−1
d+1

∈ (0, 1), ϵd = 2d
d+1

(
√

d−1
d+1

)d−1 ∈ (0, 1) only depending on d and a increasing

analytic function Md : [0, ϵd] → [0, Rd] such that the following holds:

for any ϵ ∈ (0, ϵd), any holomorphic map f : ∆ → ∆ and any number u ∈ C with |u| = 1,

define g(z) = uzd + ϵf(z) a holomorphic function on ∆, let ∆r be the disc centered at origin

with radius r. Then g : ∆r → C has d− 1 critical points counting with multiplicities when

r ∈ (Md(ϵ), Rd). Furthermore, we have

Md(ϵ) < ϵ
1

d−1 . (2.2.1)

(2) When d = 2, for any ϵ ∈ (0, ϵ2) and α ∈ (0, 1), let t∗(1−α
ϵ
) ∈ (0, 1) be the unique

solution of the following equation in (0, 1):

(1− t2)2 =
1− α

ϵ
t. (2.2.2)

t∗(1−α
ϵ
) is analytic function depending on 1−α

ϵ
. Then for any t ∈ (t∗(1−α

ϵ
), 1), we have the

following:

Let f : ∆ → ∆ be a holomorphic map with t < |f(z)| < 1 for z ∈ ∆, u a complex

number with modulus 1. Consider the function g(z) = uz2 + ϵf(z) on ∆. Then for any

r ∈ (M2(ϵ(1 − t2)), Rd), g : ∆r −→ C has unique critical point. Denote the corresponding
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critical value as v(g). Then we have the following lower-bound estimation:

|v(g)| > αtϵ. (2.2.3)

Proof. It suffice to prove the lemma for u = 1 in both parts.

(1) Since g′(z) = dzd−1 + ϵf ′(z). By Rouché’s theorem, g′(z) will have d− 1 zeros(counting

with multiplicities) in the disc ∆r = {z
∣∣|z| < r} if the following inequality holds:

ϵ|f ′(z)| < d|z|d−1 (2.2.4)

on the circle Sr = {z
∣∣|z| = r}. By Schwarz–Pick theorem, we have

|f ′(z)| ⩽ 1− |f(z)|2

1− |z|2
⩽

1

1− |z|2

Thus, inequality (2.2.4) will hold on Sr if we have

ϵ

1− r2
< drd−1 (2.2.5)

Thus we consider the real function H(r) : (0, 1) → R defined by

H(r) = drd−1 − drd+1

Then we have

H ′(r) = d(d+ 1)rd−2(
d− 1

d+ 1
− r2)

Thus when r ∈ (0,
√

d−1
d+1

), H ′(r) > 0, implying H(r) is strictly increasing on (0,
√

d−1
d+1

), hence

invertible. Thus denote Rd =
√

d−1
d+1

, ϵd = H(
√

d−1
d+1

) = 2d
d+1

(
√

d−1
d+1

)d−1 and Md(ϵ) = H−1(ϵ)

on [0, ϵd]. Then when ϵ ∈ (0, ϵd), for any r ∈ (Md(ϵ), Rd), inequality (2.2.4) holds, hence g(z)

will have d− 1 critical points counting with multiplicities on ∆r. For the last inequality, one

can check when r ∈ (0,
√

d−1
d+1

), we have

H(r) > rd−1.

Taking inverse function on the both side, we have

r > H−1(rd−1).
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Thus we have

Md(ϵ) = H−1(ϵ) < ϵ
1

d−1 .

This proves the part (1).

(2) Following the same method of part (1), we have g′(z) = 2z+ ϵf ′(z). By Rouché’s theorem,

g′(z) will have 1 zero (counting with multiplicities) in the disc ∆r if the following inequality

holds:

ϵ|f ′(z)| < 2r (2.2.6)

on the circle Sr = {z
∣∣|z| = r}. But now by Schwarz–Pick theorem and the assumption

t < |f(z)| < 1, we have

|f ′(z)| ⩽ 1− |f(z)|2

1− |z|2
⩽

1− t2

1− |z|2
.

Thus inequality (2.2.6) will hold on Sr if we have

ϵ(1− t2)

1− r2
< 2r. (2.2.7)

By previous discussion in part (1), it is equivalent to the following:

r > M2(ϵ(1− t2)).

Thus for any r ∈ (M2(ϵ(1− t2)), Rd), g : ∆r −→ C has unique critical point. Next we consider

the estimation on |v(g)|. Since g(z) = z2 + ϵf(z), we have

|v(g)| ⩾ ϵt− r2

for any r ∈ (M2(ϵ(1 − t2)), Rd). Take a sequence ri ∈ (M2(ϵ(1 − t2)), Rd) with lim ri =

M2(ϵ(1− t2)), passing to the limit and use the inequality (2.2.1), we have

|v(g)| ⩾ ϵt− (M2(ϵ(1− t2)))2

> ϵt− (ϵ(1− t2))2

= ϵt[1− ϵ

t
(1− t2)2]
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When t ∈ (t∗(1−α
ϵ
), 1), we have

(1− t2)2 <
1− α

ϵ
t.

Combining the two inequalities together, we have

|v(g)| > ϵt[1− ϵ

t
(1− t2)2]

> ϵt[1− ϵ

t

1− α

ϵ
t]

= αϵt

which finish the proof.

Remark 2.2.2. Above lemma focus on the behaviors of critical points and values under small

perturbations. For the perturbation of zeros of analytic functions, we refer to [Ros69a] and

[Ros69b].

Proposition 2.2.3. Let U,U ′ ⊂ C be two bounded simply connected domains and f : Ū ′ −→ Ū

be a holomorphic proper surjective map of degree d, d ⩾ 1. Denote all the critical points of f

by ω1, · · · , ωd−1. Suppose there exists a simply connected domain T ⊊ U such that T contains

all the critical value of f , we choose a small enough number δ with 0 < δ < d(T,C− U). If

d ⩾ 2, we also require the following:

For any ωi, T contains D(f(ωi), 2δ), the open disc centered at f(ωi) with radius 2δ. Then

their exists an open neighborhood of ωi, denoted by Di, such that f(Di) = D(f(ωi), 2δ). We

assume that for rach i ̸= j, either Di = Dj or Di ∩Dj = ∅.

Let g : Ū ′ −→ C be a holomorphic map satisfying |g(z)− f(z)| < δ for all z ∈ Ū ′, then the

set T ′ = g−1(T ) is a simply connected domain and g : T ′ −→ T is a holomorphic proper

surjective map of degree d. Furthermore, all the critical values of g on T ′ is contained in

∪
i
D(f(ωi), 2δ).

Proof. Consider the straight line homotopy H from f to g on Ū ′:

H : [0, 1]× Ū ′ −→ C

H(s, z) = (1− s)f(z) + sg(z).
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Notice that since |g(z)− f(z)| < δ for all z ∈ Ū ′ and 0 < δ < d(T,C−U), we can deduce

that T is strictly inside H(s, Ū ′) for every s ∈ [0, 1]. Thus for any z ∈ T , we have:

wind(g(∂U ′), z) = wind(f(∂U ′), z) = d

where a proper orientation of ∂U ′ is chosen. Since T is in one connected component of

C\g(∂U ′), we conclude that g is a degree d map from T ′ onto T .When d = 1, the conclusion

follows easily. When d ⩾ 2, it suffice to prove that T ′ contains all the d− 1 critical points.

Now consider f locally around ωi, f : Di −→ D(f(ωi), 2δ). Then we know that f is a degree

di proper map on Di for some di ⩽ d. Let ϕi : (Di, ωi) −→ (∆, 0) be the uniformization map

such that ϕi(ωi) = 0, ξi be the affine map from D(f(ωi), 2δ) to ∆ such that ξi(f(ωi)) = 0.

Then f̃i = ξi ◦ f ◦ ϕ−1
i is a degree di map from ∆ to itself with only critical point 0. Thus we

have f̃i(z) = uiz
di where |ui| = 1. Now let g̃i = ξi ◦ g ◦ ϕ−1

i . Then we have

|g̃i(z)− f̃i(z)| < δ|ξ′i| =
1

2
.

Since 1
2
< ϵd =

2d
d+1

(
√

d−1
d+1

)d−1, by lemma 2.2.1, we have g̃i has di − 1 critical points on the

disc ∆r with r ∈ (Mdi(
1
2
), Rdi). Then all the critical values are contained in a disc ∆s(r),

where s(r) = rdi + 1
2
. Choose a sequence {rj} in (Mdi(

1
2
), Rdi) such that limj rj = Mdi(

1
2
).

We conclude that all the critical values are contained in the closed disc ∆s(Mdi
( 1
2
)). Since

s(Mdi(
1

2
)) = (Mdi(

1

2
))di +

1

2
< (

1

2
)

di
di−1 +

1

2
< 1.

Thus all the critical values of g̃ on ∆r with r ∈ (Mdi(
1
2
), Rdi) are in the unit disc ∆. Since

ξi and ϕi are biholomorphisms, we know that there are di − 1 critical values counting with

multiplicities in D(f(ωi), 2δ) for the map g corresponding to the local map f : Di −→

D(f(ωi), 2δ). Combining all the local information together, we know that T ′ is homeomorphic

to a disc. Thus T ′ is a simply connected domain and g : T ′ −→ T is a holomorphic

proper surjective map of degree d, and all the critical values of g on T ′ is contained in

∪
i
D(f(ωi), 2δ).
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The following proposition is given in Douady-Hubbard ([DH85])(Example 4 in Chapter

1), which can be deduced as a corollary from previous proposition.

Proposition 2.2.4. (Perturbation of Polynomial-like map)([DH85]). Let f : U ′ −→ U be

a polynomial-like map of degree d with d ⩾ 2. Denote its critical points as ω1, · · · , ωd−1,

counting with multiplicities. Choose δ satisfying 0 < δ < d(U ′,C − U) and let U1 be the

component of {z| d(z,C−U) > δ} containing U ′. Suppose that δ is so small that U1 contains

all the critical values f(ωi), where 1 ⩽ i ⩽ d − 1. Then if g : U ′ −→ C is an holomorphic

function such that |g(z)− f(z)| < δ for all z ∈ U ′, the set U
′
1 = g−1(U1) is homeomorphic to

a disc and (U1, U
′
1, g) is a polynomial-like map of degree d.

The following estimation is useful, we refer to [McM94] (Lemma 5.5 in [McM94]) for

details.

Lemma 2.2.5. Let (U,U ′, f) be a quadratic-like map with critical value lying in a compact

set K ⊂ U , and let K ′ = f−1(K). Then we have:

1. Mod(f−1(A)) = Mod(A)
2

for any annulus A ⊂ U enclosing K.

2. Mod(K ′, U ′) ⩾ Mod(K,U)
2

.

2.3 Earle-Hamilton holomorphic fixed point theorem

Earle and Hamilton proved a holomorphic fixed point theorem in [EH70].

Theorem 2.3.1. (Earle-Hamilton) Let D be a nonempty domain in a complex Banach space

X and let h : D → D be a bounded holomorphic function. If h(D) lies strictly inside D, then

h has an unique fixed point in D.

For a mathematical treatment about it we also refer to [Har03].
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2.4 The definition of strong homoclinic tangency and

its unfoldings

2.4.1 The definition of strong homoclinic tangency

The definitions of strong homoclinic tangency and the the unfoldings of strong homoclinic

tangencies in the real setting appear in [BMP18]. In [Zhuang], the definition was extended

to the holomorphic case in C2. In this paper, we consider the strong homoclinic tangency in

Cm.

First, following [NPT83], we give the definition of holomorphic quadratic homoclinic

tangency.

Definition 2.4.1. Let M be an m-dimensional complex manifold and f : M → M a local

holomorphic diffeomorphism, p is a rank-one hyperbolic fixed point. Let q ∈ W u(p) ∩W s(p),

we say f has a holomorphic quadratic homoclinic tangency if the following holds:

(T1) W u(p) and W s(p) intersect at q uniquely in the neighborhood of q,

(T2) The holomorphic tangent space T 1,0
q (W u(p)) is a subspace of T 1,0

q (W s(p)),

(T3) Let i : T 1,0
q (W u(p)) −→ W u(p) be a holomorphic map such that i(0) = q and (d i)0

is identity matrix; Let π be a holomorphic projection (i.e., π2 = π) of a neighborhood U

of q to a complex 1-dimensional submanifold such that π(q) = q, (d π)q(T
1,0
q (W s(p))) = 0

and π(W s(p) ∩ U) = q; Let R = π(U), we call R the unfolding manifold associated to

q. Then π ◦ i maps 0 to q, d(π ◦ i)0 = 0. The second holomorphic derivative ∂2(π ◦ i)0 :

T 1,0
q (W u(p))⊗ T 1,0

q (W u(p)) −→ T 1,0
q (R) is a well-defined quadratic map. We define Q to be

the composition of ∂2(π ◦ i)0 with the canonical isomorphism T 1,0
q (R) ∼= T 1,0

q (M)/T 1,0
q (W s(p)).

We require

Q : T 1,0
q (W u(p))⊗ T 1,0

q (W u(p)) −→ T 1,0
q (M)/T 1,0

q (W s(p))

to be a non-zero quadratic map. Notice the definition of Q is independent of various choices.
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Remark 2.4.1. Following the definition, there are coordinate systems (z1, · · · , zm) on a

neighborhood of q(q corresponding to origin) such that W s(p) and W u(p) locally have the

following:

W s(p) = {zm = 0},

W u(p) = {z2 = · · · = zm−1 = 0, zm = sz21} where s is non-zero complex number.

Remark 2.4.2. A geometric consequence is the following:

For a small enough neighborhood W u
loc,q(p) of q in W u(p), π|Wu

loc,q(p)
: W u

loc,q(p) −→ R, i.e.,

the projection map π restricted on W u
loc,q(p), is a branched double-cover onto its image with

unique branch point q.

Now we will give our definition of strong homoclinic tangency in the holomorphic setting.

Definition 2.4.2. Let M be an m-dimensional complex manifold and f : M → M a local

holomorphic diffeomorphism satisfying the following conditions:

(f1) f has a rank one saddle point p ∈ M, with only 1 unstable eigenvalue |µ| > 1 and stable

eigenvalues λ⃗ = (λ, λ2, . . . , λm−1) , where λ is the unique one with largest modulus, namely

|λ| > max
2≤i≤m−1

|λi| ,

(f2) |λ∥µ|3 < 1,

(f3) f has a holomorphic quadratic homoclinic tangency q1 ∈ W u(p) ∩ W s(p), in general

position,namely

lim
n→∞

1

n
log d (fn (q1) , p) = log |λ| ,

(f4) the direction 0 ̸= B ∈ Tq1W
u(p) is in general position, namely

lim
n→∞

1

n
log
∣∣Dfn

q1
(B)
∣∣ = log |λ| ,

(f5) f has a transversal homoclinic intersection, q2 ∈ W u(p) ∩ W s(p) in general position,

namely

lim
n→∞

1

n
log d (fn (q2) , p) = log |λ| .

A map with these properties is called a map with strong homoclinic tangency.
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Remark 2.4.3. Let Du
p (q2) be the closed local unstable manifold isomorphic to a complex disc,

such that q2 is on the boundary of it. Then there exists N ∈ N such that q3 = f−N (q1) lies

in the interior of Du
p (q2).

2.4.2 The unfolding of a map with strong homoclinc tangency

First, let us define the 1−parameter unfolding of a map f with a holomorphic quadratic

homoclinic tangency. Let Dr ⊂ C be a disk centered at 0 with radius r.

Definition 2.4.3. Given a map f : M −→ M with a holomorphic quadratic homoclinic

tangency, then the 1-parameter unfolding of f is a holomorphic map F : Dr ×M −→ M

with the following properties:

(U1) F0 = f , f has a hyperbolic fixed point p and a holomorphic quadratic homoclinic

tangency point q ∈ W u(p) ∩W s(p) is associated to p,

(U2) there is a holomorphic map p : Dr −→ M such that p(a) is a hyperbolic periodic point

of Fa and p(0) = p. Following the same notation (i.e. π, i, R) as in (T3) in Definition 2.4.1,

we have an univalent map q : Dr −→ M such that q(0) = q and for each a, π|Wu
loc,q(a)

(p(a)) :

W u
loc,q(a)(p(a)) −→ R is a branched double-cover onto its image and π(q(a)) is the unique

branched point. We also have the 1−parameter family of non-zero quadratic form Qa with

Q0 = Q defined by

Qa : T
1,0
q(a)(W

u
Fa
(p(a)))⊗ T 1,0

q(a)(W
u
Fa
(p(a))) −→ T 1,0

q (M)/T 1,0
q (W s

f (p)).

Thus the composition of π and q is an univalent map, π ◦ q : Dr −→ R.

Remark 2.4.4. Using the notation in Remark 2.4.1 and above Definition, the 1-parameter

unfolding F of f , (z1, · · · , zm) on a neighborhood of q(0) ( q(0) corresponding to origin) such

that W s(p(0)) and W u(p(0)) locally have the following:

W s(p(a)) = {zm = 0},

W u(p(a)) = {z2 = · · · = zm−1 = 0, zm = sz21 + a} where s is non-zero complex number.
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Then we consider the concept of unfoldings of maps with strong homoclinic tangency

of certain type. This definition is stronger than the previous notions in ([BMP18]) and

([Zhuang]), but it is also a natural definition.

Definition 2.4.4. Given a map f with a strong homoclinic tangency with saddle point p, P

a holomorphic manifold with complex dimension k greater or equal to 3 with a base point O,

we consider a holomorphic family F : P ×M → M through f with the following properties:

(F1) FO = f ;

(F2) A holomorphic function p̂ : P −→ M , with p̂(O) = p, such that Fb has a rank-one saddle

point p̂(b). The saddle point p̂(b) of Fb has unstable eigenvalue µ(b) and stable eigenvalues

λ⃗(b) = (λ(b), λ2(b), . . . , λm−1(b)) , where λ(b) is the unique one with largest modulus, namely

|λ(b)| > max
2≤i≤m−1

|λi(b)| ;

Moreover, µ(b), λ⃗(b) are holomorphic mapping of b.

(F3) There exist positive integers k1, k2 such that the following holds:

Up to biholomorphism, P can be written as Tt1((µmin)
1
k1 , (µmax)

1
k1 )×Tt2((λmin)

1
k2 , (λmax)

1
k2 )×

Da(ϵ)×U , where 1 < µmin < µmax, 0 < λmin < λmax < 1, ϵ > 0, and Tt1((µmin)
1
k1 , (µmax)

1
k1 ) =

{t1 ∈ C|(µmin)
1
k1 < |t1| < (µmax)

1
k1 }, Tt2((λmin)

1
k2 , (λmax)

1
k2 ) = {t2 ∈ C|(λmin)

1
k2 < |t2| <

(λmax)
1
k2 }, Da(ϵ) = {a ∈ C||a| < ϵ}, U is a bounded domain in Ck−3. Furthermore, for any

(t1, t2, a, τ) ∈ P , we assume

µ(t1, t2, a, τ) = (t1)
k1 (2.4.1)

and

λ(t1, t2, a, τ) = (t2)
k2 . (2.4.2)

(F4) For µmax, λmax, we assume

λmax(µmax)
3 < 1; (2.4.3)

(F5) for each given (µ, λ, τ) ∈ Tµ(µmin, µmax)× Tλ(λmin, λmax)× U , F(µ,λ,0,τ) is a map with

strong homoclinic tangency, and F(µ,λ,a,τ) is 1−parameter unfolding of F(µ,λ,0,τ) for a ∈ Da(ϵ).
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A family of maps F with these properties is called an unfolding of map with strong

homoclinic tangency of type (k1, k2).

Remark 2.4.5. Throughout the rest of the paper, we will only consider the case for k1 = k2 = 1

for simplicity of discussion. Indeed, all the results can be extended to any (k1, k2) pair by

simply rewrite every µ, λ by tk11 , tk22 respectively. So in this manner, we will set our parameter

space with local coordinates (µ, λ, a, τ).

Furthermore, when we are not in the process with the analysis of parameter dependence,

for the simplicity of writing, we will also use the notation (t, a) where a is the unfolding

parameter and t stands for the rest of parameters,i.e.,t = (µ, λ, τ ). Thus we will focus on the

family Ft,a witch is the unfolding of map with strong homoclinic tangency.

Remark 2.4.6. The condition λmaxµ
3
max < 1, see (F4), allows us to choose θ ∈

(
0, 1

2

)
such that

1 < λ2θ
minµ

3
min and λθ

maxµmax < 1,

We can choose any θ satisfying

0 < θ0 =
log µmax

log 1
λmax

< θ <
3

2

log µmin

log 1
λmin

= θ1 <
1

2
. (2.4.4)

Example 1. Now we give a degree 4 family of polynomial endomorphisms which are

unfolding of map with strong homoclinic tangency in a domain of C2.

For m = 2, let x1, x2 be 2 nonzero different complex numbers with |x1| < |x2|, denote

fµ(x) := − µ
x2
1x2

x(x− x1)
2(x− x2) be a polynomial of degree 4, we may consider the following

generalized Hénon-like map Hµ,ϵ,a on C2: x

y

 7→

 fµ(x)− ϵy + a

x

 (2.4.5)

where we assume |µ| > 1. The map Hµ,ϵ,a is non-invertible when ϵ = 0, invertible when ϵ ̸= 0,

and its inverse map are  x

y

 7→

 y

x−a−fµ(x)

ϵ

 . (2.4.6)
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When ϵ, a = 0, O = (0, 0) is a fixed point of Hµ,0,0, and we can take W s
loc(O) to be the

y−axis and W u
loc(O) to be the graph {(fµ(x), x)||x| ⩽ 2|x2|}. We have a homoclinic tangency

at (0, x1) and a transversal homoclinic intersection at (0, x2).

Now we perturb ϵ, a in a small disc around 0, which means chooseing a small disc Dϵ(ρ)

around 0. Let µ be inside a round annuli T (µ1, µ2) with ρµ3
2 < 1. So we consider triple

(µ, ϵ, a) in T (µ1, µ2)× Dϵ(ρ)× Da(ρ).

Denote the fixed point continued from O to be P0(µ, ϵ, a) = (p(µ, ϵ, a), p(µ, ϵ, a)). Then

we have p(µ, ϵ, 0) ≡ 0 and it is the solution of the equation

fµ(x)− ϵx+ a = x. (2.4.7)

Thus we have the following asymptotic expansion when ϵ, a small enough:

p(µ, ϵ, a) = a((− 1

µ− 1
)+ (− 1

(µ− 1)2
)ϵ+

x1 + 2x2

2x1x2

µ

(µ− 1)3
a+higher order terms). (2.4.8)

Let t1,2(µ, ϵ, a) be the 2 eigenvalues of DHµ,ϵ,a(p(µ, ϵ, a)), with

t1(µ, 0, 0) = µ, t2(µ, 0, 0) = 0.

We have that t1,2 satisfies the following equation:

t2 − f
′

µ(p(µ, ϵ, a))t+ ϵ = 0. (2.4.9)

Then we have the asymptotic expansion of t1 and t2:

t1 = µ+ (− 1

µ
)ϵ+ (

2µ

µ− 1

x1 + 2x2

x1x2

)a+ h.o.t; (2.4.10)

t2 = 0 + (
1

µ
)ϵ+ 0a+ h.o.t. (2.4.11)

Now consider the holomorphic map h : (µ, ϵ, a) −→ (t1, t2, a), and use t1t2 ≡ ϵ, we know

the differential of h at (µ, 0, 0) is

Dh((µ, 0, 0)) =


1 − 1

µ
2µ
µ−1

· x1+2x2

x1x2

0 1
µ

0

0 0 1

 (2.4.12)
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Then the Jacobian is

Jach((µ, 0, 0)) = det(Dh((µ, 0, 0))) =
1

µ
̸= 0. (2.4.13)

Thus h is local diffeomorphisms in the neighborhood of (µ, 0, 0), we may choose some ρ such

that h is local diffeomorphism in T (µ1, µ2)× Dϵ(ρ)× Da(ρ).

Now consider the first component of the map h and denote it by Sϵ,a, i.e , Sϵ,a(µ) = t1.

Since we have h(µ, 0, 0) = (µ, 0, 0), we know S0,0(µ) = µ. When ρ small enough, by, formula

(2.4.10), we can find a small constant 0 < s < µ2−µ1

5
such that

|Sϵ,a(µ)− S0,0(µ)| < s (2.4.14)

for any (µ, ϵ, a) ∈ T (µ1, µ2) × Dϵ(ρ) × Da(ρ). Then by proposition 2.2.3, we know Sϵ,a is

a diffeomorphism from (Sϵ,a)
−1(T (µ1 + s, µ2 − s)) onto T (µ1 + s, µ2 − s). Denote V (ρ) :=

∪
|ϵ|,|a|<ρ

(Sϵ,a)
−1(T (µ1 + s, µ2 − s))× {ϵ} × {a} ⊂ T (µ1, µ2)×Dϵ(ρ)×Da(ρ). And we also have

|(Sϵ,a)
−1(t1)− t1| = |S0,0 ◦ (Sϵ,a)

−1(t1)− Sϵ,a ◦ (Sϵ,a)
−1t1| < s (2.4.15)

for t1 ∈ T (µ1 − s, µ2 + s). Thus we have

T (µ1 + 2s, µ2 − 2s)× Dϵ(ρ)× Da(ρ) ⊂ V (ρ) ⊂ T (µ1, µ2)× Dϵ(ρ)× Da(ρ). (2.4.16)

Now let ρ1 =
ρ

µ2−s
, we know h−1 defined by

h−1(t1, t2, a) = ((St1t2,a)
−1(t1), t1t2, a) (2.4.17)

is a well-defined injective holomorphic map from T (µ1 + s, µ2 − s)× Dt2(ρ1)× Da(ρ) onto

V (ρ). And we have

Jac
(
h−1
)
= det


∂S−1

∂t1
+ ∂S−1

∂ε
t2

∂S−1

∂ε
t1

∂S−1

∂a

t2 t1 0

0 0 1

 =
∂S−1

∂t1
t1 ̸= 0. (2.4.18)

Thus V (ρ) is biholomorphic to T (µ1 + s, µ2 − s)× Dt2(ρ1)× Da(ρ) via map h.
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Now for (t1, t2, a) ∈ T (µ1 + s, µ2 − s) × Dt2(ρ1) × Da(ρ). First denote P (t1, t2, a) to be

P0(h
−1(t1, t2, a)). And in coordinate, we denote

P (t1, t2, a) = (p(t1, t2, a), p(t1, t2, a)).

Then denote the local stable and unstable manifold of P (t1, t2, a) by W s,u
loc (t1, t2, a). Then we

know W s
loc(t1, t2, a) is a graph over Dy(0, 2|x2|) in y-axis.

Denote the foliation Ws(t1, t2, a) to be the foliation generated by translating W s
loc(t1, t2, a)

in x-direction, and denote πs(t1, t2, a) to be the projection map along the foliation into the

horizontal plane {y = p(t1, t2, a)}. When we consider (t1, t2, a) ∈ T (µ1+s, µ2−s)×Dt2(ρ1)×

Da(ρ). Let Ut1,t2,a(r) = {(x, y)||x− p(t1, t2, a)| < r, y = p(t1, t2, a)}.

First we consider the case when t2 = a = 0. Then under this case, πs(t1, t2, a) = πx,

where πx is the projection onto x-coordinate. And Ut1,0,0(r) will be the 1-disc {(x, 0)||x| < r}

in the x-coordinate. Now consider (πx)
−1(Ut1,0,0(r)) ∩W u

loc(t1, 0, 0), it will have 3 connected

component when r small enough since (πx)
−1(0) ∩W u

loc(t1, 0, 0) = {O, (0, x1), (0, x2)}. Let

W u(r) be the connected component of (πx)
−1(Ut1,0,0(r)) ∩ W u

loc(t1, 0, 0) containing (0, x1).

Then there exist a r0 > 0 such that πs(t1, 0, 0) is a degree 2 branched cover from W u(r0) onto

U(r0) with critical point (0, x1) and critical value 0.

By proposition 2.2.4, when ϵ, a small enough, there exists r1 < r0 such that (πs(t1, t2, a))
−1(Ut1,t2,a(r1))∩

W u
loc(t1, t2, a) have 3 connected component. The projection πs(t1, t2, a) on each component

have degree 2, 1, 1 separately. Now let W u
t1,t2,a

(r) be the connected component such that it is

an degree 2 branched covering onto Ut1,t2,a(r1) via projection πs(t1, t2, a). Let the y-coordinate

of the critical value of this map be v(t1, t2, a).

Now we want to solve equation v(t1, t2, a) = p(t1, t2, a). Notice that v(t1, 0, a) = a and

v(t1, 0, 0) = p(t1, 0, 0) = 0. We have

∂v

∂a
(t1, 0, 0) = 1, (2.4.19)

and

∂v

∂t1
(t1, 0, 0) =

∂p

∂t1
(t1, 0, 0) = 0. (2.4.20)
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By formula (2.4.8) and (2.4.11), we know

∂p

∂a
(t1, 0, 0) = − 1

t1 − 1
,
∂t2
∂a

(t1, 0, 0) = 0. (2.4.21)

Thus we have

∂(v(t1, t2, a)− p(t1, t2, a)

∂a
(t1, 0, 0) = 1 +

1

t1 − 1
=

t1
t1 − 1

̸= 0. (2.4.22)

Then by implicit function theorem, there exist ρ0 < ρ1 such that there exist holomorphic

map g : T (µ1 + s, µ2 − s)× Dt2(ρ0) −→ Da(ρ) with g(t1, 0) = 0 such that

v(t1, t2, g(t1, t2)) = p(t1, t2, g(t1, t2)). (2.4.23)

Now consider ĥ : (t1, t2, a) −→ (t1, t2, a
′), where a′ := a− g(t1, t2). Then ĥ is invertible by

ĥ−1(t1, t2, a
′) = (t1, t2, a

′ + g(t1, t2)).

2.5 The normalization of unfoldings

In this section we normalize previous definitions by change of coordinates and rescaling without

loss of generality. Let Ft,a : M −→ M be an unfolding of strong homoclinic tangency. Let p

be a hyperbolic fixed point of F0,0. There exist a coordinate system (x⃗, y) = (x1, · · · , xm−1, y)

in a small enough neighborhood of p satisfying the following:

(1) p = (⃗0, 0). Ft,a is hyperbolic on D = {(x⃗, y) | |xi| ⩽ L, |y| ⩽ L} with p the hyperbolic

fixed point. Denote D2 = {(x⃗, y) | |xi| ⩽ 2, |y| ⩽ 2}, then L > 2 is a constant chosen to

satisfy Ft,a(D2) ⊆ D and F−1
t,a (D2) ⊆ D for every (t, a). Furthermore by the property of local

diffeomorphism, we may assume that there exist 0 < s < 1 such that ||DF (v)|| > s|v| for

every point p ∈ M , and nonzero vector v the tangent space of p.

(2) W u
loc(p) becomes a disc in y-axis, i.e. W u

loc(p) = Dy = {(⃗0, y) | |y| ⩽ L}.

(3) W s
loc(p) becomes a poly-disc in x⃗-axis, i.e., W s

loc(p) = Dx⃗ = {(x⃗, 0) | |xi| ⩽ L, 1 ⩽ i ⩽

m− 1}.

(4) Ft,0 has homoclinic tangency points at q1(t) = (1, x2(t), · · · , xm−1(t), 0) and q3(t) =
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F−N (q1(t)) = (0, · · · , 0, z3), where xi(t) is holomorphic functions of t and ∥xi(t)∥ ⩽ 1
2
, N is a

positive constant integer and |z3| ∈ ( 1
µmax

, 1).

The tangent space of W u(p) at q1(t) is contained in Tq1(t)W
s(p). Then the unfolding

manifolds Rt now become vertical: R(t) = {(1, x2(t), · · · , xm−1(t), y) | |y| ⩽ L}, we may

identify each R(t) with the y-axis. Now denote πy as the projection map onto the y-coordinate,

then πy|Wu
loc,q1(t)

(p) : W
u
loc,q1(t)

(p) −→ Dy is a double branched cover with unique branched

point q1(t). Thus we have the following lemma:

Lemma 2.5.1. (Dy,W
u
loc,q3(t)

(p), πyF
N
t,0) is a quadratic-like map in a neighborhood of q3(t)

restricted in the y−axis with unique critical point q3(t) and corresponding critical value 0.

(5) πy ◦ ht is identity map, i.e., πyq1(t, a) = a.

In other words, (Dy,W
u
loc,q3(t,a)

(p), πyF
N
t,a) is a quadratic-like map with unique critical

point denoted by q3(t, a) = F−N
t,a (q1(t, a)) and corresponding critical value a.

Using Taylor expansion, we may assume

DFN |q1(t,a)+(∆x,∆y) =

 A B

C D∆x+ 2Q∆y

 (2.5.1)

where A,B,C,D,Q are bounded matrices holomorphic over coordinates and parameters,

(∆x,∆y) are the coordinates of the point with centered at q1(t, a), since we have a quadratic

homoclinic tangency, we also have |Q| > Q0 > 0. Since FN is diffeomorphism, we know that

DFN has nonzero determinant, so C(0, 0) is a nonzero vector and we may assume C nonzero

for the whole neighborhood of q1(t, a).

(6) There is a homoclinic intersection point q2(t) = (0, z2) such that W s(p) intersect with

W u
loc(p) at q2(t) transversely and W s

loc(q2(t)) = {(x⃗, z2) | |xi| ⩽ L, 1 ⩽ i ⩽ m − 1}, where

|z2| = 2. Furthermore, there exist a constant integer M > 0, such that FM will send a

neighborhood of q2 to a neighborhood of q3 for every parameter in the parameter space. And

there exist two constants ϕ1,2 > 0, such that the tangent cones {(v⃗x, vy)||v⃗x| < ϕ1|vy|} with

base point p1 in the neighborhood of q2 will be mapped into the tangent cone {(v⃗x, vy)||v⃗x| <
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ϕ2|vy|} with base point FM(p1).

(7) Moreover, the restriction of the mapping to each axis of the coordinate system is linearized,

see for example [Mil06].

On the the unstable invariant manifolds, we have

Fµ,λ,a,τ (⃗0, y) = (⃗0, µy), (2.5.2)

and on each xi-axis, we have

Fµ,λ,a,τ (0, · · · , xi, · · · , 0) = (0, · · · , λixi, · · · , 0), 1 ⩽ i ⩽ m− 1 (2.5.3)

where λ1 = λ.

Besides, at the origin, we have

DFt,a(⃗0, 0) =

Λ(t, a) 0

0 µ

 ,

where Λ(t, a) is the diagonal (m− 1)× (m− 1) matrix with diagonal terms (λ1, · · · , λm−1).

Thus, for (x, y) in D we have the following estimate

F (x⃗, y) = (Λx⃗+ Ps(x⃗, y), µy + Pu(x⃗, y)), (2.5.4)

where Pu is holomorphic functions satisfying Pu(x⃗, 0) = 0 and Pu(⃗0, y) = 0, Ps = (Ps,1, · · · , Ps,m−1)
T

is holomorphic mapping satisfying the following:

Ps,i(0, · · · , xj, · · · , 0) = 0, 1 ⩽ i, j ⩽ m− 1.

Ps,i(0, · · · , 0, y) = 0

Their derivatives at the origin are zero. From above condition, and by using Taylor expansion

around origin, we have following estimates:

Lemma 2.5.2.

Pu(x⃗, y) = O(
m−1∑
i=1

xiy),

Ps,i(x⃗, y) = O(
∑

1⩽l<j⩽m−1

xlxj +
m−1∑
i=1

xiy).
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(8) The parameter space are chosen to be P = Tµ(µmin, µmax)× Tλ(λmin, λmax)×Da(2)× U .

Definition 2.5.1. For a dynamical system F : M −→ M , we call a point c a quasi-critical

point associated to the hyperbolic point p,if there are sequences of points {ci} and {si}, such

that the following holds:

(1)

ci ∈ W u(p), si ∈ W s(p). (2.5.5)

(2)

lim
i
ci = c, lim

i
si = c. (2.5.6)

(3) The local stable manifold of si and c are graph over the x-axis, i.e., πx are biholomorphism

from W u
loc(si) onto the image.

(4) For every i, πy : W
u
loc(ci) −→ C is double branched cover onto the image inside the y−axis.

Besides, W u
loc(ci) are pair-wisely disjoint.

2.6 Invariant holomorphic cone fields

There exists stable and unstable holomorphic cone fields, namely Cs
x(α), C

u
x (α) inside T

1,0
x Cm

for every x ∈ D, where

Cs
x(α) := {(v⃗s, vu) = (v1, · · · , vm−1, vm) | |vu| ⩽ α|vs|},

Cu
x (α) := {(v⃗s, vu) = (v1, · · · , vm−1, vm) | |vu| ⩾ α|vs|},

where | · | is the L2 norm of a vector. Since Ft,a is hyperbolic in D, there exist a α such that

the stable and unstable cones are invariant under Ft,a.

Proposition 2.6.1. If x, f(x) ∈ D, we have

Df−1
f(x)

(
Cs

f(x)(α)
)
⊆ Cs

x(α)
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Dfx (C
u
x (α)) ⊆ Cu

f(x)(α)

We also have

|µ| − ϵ ⩽
∥Dfx(v)∥

∥v∥
⩽ |µ|+ ϵ, ∀v ∈ Cu

x (α)− {0};

∥Df−1
f(x)(w)∥
∥w∥

⩾
1

|λ|+ ϵ
, ∀w ∈ Cs

f(x)(α)− {0}.

where 1
10

> ϵ > 0 is a small constant satisfies (λmax + ϵ)(µmax + ϵ)3 < 1, µmin − ϵ > 1 >

λmax + ϵ, ϵ < 1
4
(1− 1

µmin
), λmin − ϵ > max

2≤i≤m−1
{|λi(t, a)|}+ ϵ when m > 2, ϵ < µmin−λmax

5
and

ϵ < λmin

max
t

{|q1(t)|+2L} .

2.7 The foliation of Palis invariant

For a map f with homoclinic or heteroclinic tangencies, Palis ([Pal78]) has introduced a

differentiable invariant treating the conjugacy of diffeomorphisms. We can define a quantity

of f called Palis invariant , denoted as Pa(f), by the following equation:

Pa(f) := − log |λ|
log |µ|

. (2.7.1)

Since our parameter space contains µ, λ as coordinates, we can view Palis invariant as a map

from our parameter space P = Tλ × Tµ ×Da ×U to the real line. Then the level sets of Palis

invariant {Pa(f) = c} form a real codimension-1 foliation where all leaves can be written as

one the forms:

∪c∈(λmin,λmax) {µ||µ| =
1

cP (f)
} × {λ||λ| = c} × Da × U, (2.7.2)

or

∪c∈(µmin,µmax) {µ||µ| = c} × {λ||λ| = 1

cP (f)
} × Da × U. (2.7.3)

In our case, we know that the range of P (f) is just [− log |λmax|
|µmax| ,− log |λmin|

|µmin| ] = [ 1
θ0
, 3
2θ1

].
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Chapter 3

Hyperbolic dynamics of graph

transformation

Definition 3.0.1. For any mapping f : A −→ B, where A,B are sets, define the graph of

f , denoted by Gr(f), to be the subset of A×B:

Gr(f) := {(x, f(x))|x ∈ A}. (3.0.1)

We have the following proposition:

Proposition 3.0.1. A. Let U is a connected open subset of Ck, f : U −→ C a holomorphic

mapping, endow Gr(f) with the subspace topology, then Gr(f) is a holomorphic hypersurface

of Ck+1 which is biholomorphic to U .

B. Moreover, let fi : U −→ C holomorphic mappings, i = 1, . . . , l and denote F :=

(f1, . . . , fl) : U −→ Cl, endow Gr(F ) with subspace topology of Ck+l, then Gr(F ) is a

holomorphic submainfold of Ck+l which is biholomorphic to U .

Denote H(α) be the set of all holomorphic hypersurfacesH ⊆ D such that ∀p̃ ∈ H,T 1,0
p̃ H ⊆

Cs
p̃(α), V(α) be the set of all holomorphic 1-dimensional submanifolds V ⊆ D such that

∀p̃ ∈ V, T 1,0
p̃ V ⊆ Cu

p̃ (α). We call an element in H(α) almost horizontal while an element in

V(α) almost vertical.
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Remark 3.0.2. For every almost horizontal hypersurface H ∈ H(α), there exist a holomorphic

mapping fH : πx⃗H −→ Dy with bounded derivative such that H can be represented as the

graph of fH , i.e., H = Gr(fH).

Similarly, for every almost vertical 1-dimensional submanifold V ∈ V(α), there exist

a holomorphic mapping gV : πyV −→ Dx⃗ with bounded derivative such that V can be

represented as the graph of gV , i.e., V = Gr(gV ).

By proposition 2.6.1, we have the following lemma:

Lemma 3.0.3. For any H ∈ H(α), we have (F−1
t,a (H) ∩D) ∈ H(α); for any V ∈ V(α), we

have (Ft,a(V ) ∩D) ∈ V(α)

Definition 3.0.2. The two operations (F−1
t,a (H) ∩D) ∈ H(α) and (Ft,a(V ) ∩D) ∈ V(α) are

called the graph transformation of H and D respectively.

Since {y ≡ c} ∈ H(α), {(x1, · · · , xm−1) ≡ (e1, · · · , em−1)} ∈ V(α), we get a special case:

Lemma 3.0.4. If (x⃗i, yi) = F i(x⃗, y) ∈ D,∀ 0 ⩽ i ⩽ n, then

∥x⃗i∥ ⩽ C0∥x⃗0∥(|λ|+ ϵ)i), C1
|yn|

(|µ|+ ϵ)n−i
⩽ |yi| ⩽ C2

|yn|
(|µ| − ϵ)n−i

where C0, C1, C2 are constants uniformly bounded away from zero.

Estimates for orbits in D have been studied previously. See for example [AŠ73]. For

completeness, using the above lemma, we prove the following estimates for the norm of

coordinates of points which remain in the domain of semi-linearization after n iterates

following [MPT20].

Lemma 3.0.5. (1) If for a point (x⃗, y) ∈ D with y ̸= 0, (x⃗i, yi) = F i(x⃗, y) ∈ D, ∀ 0 ⩽ i ⩽ n,

then for n large enough we have

|x⃗k| ⩽ C(x⃗0, yn)|x⃗0||λ|k
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and

1

C(x⃗0, yn)
|yn||µ|−(n−k) ⩽ |yk| ⩽ C(x⃗0, yn)|yn||µ|−(n−k),

where C(x⃗0, yn) is a positive constant depending on x⃗0, yn with a uniform upper bound C1,i.e.,

C(x⃗0, yn) ⩽ C1 for all pairs (x⃗0, yn), all n and all Ft,a.

(2) When m ⩾ 3, let K be a positive constant. Denote JK = {(x1, x2, · · · , xm−1, y) ∈ D
∣∣|x1| >

K|(x2, · · · , xm−1)|}. Then we have F (JK) ∩D ⊊ JγK, where

γ =
λmin − ϵ

λ− + ϵ
> 1.

Furthermore, if we have

K > K0 =
1√

|λ|2
ϵ2

− 1
, (3.0.2)

then for a point (x⃗, y) ∈ JK with (x⃗i, yi) = F i(x⃗, y) ∈ JK, ∀ 0 ⩽ i ⩽ n, then for n large

enough we have

|x⃗k| ⩾ C(x⃗0, yn, K)|x⃗0||λ|k

where C(x⃗0, yn, K) is a positive constant depending on x⃗0, yn with a uniform positive lower

bound C1(K),i.e., C(x⃗0, yn, K) ⩾ C1(K) > 0 for all pairs (x⃗0, yn), all n and all Ft,a.

Proof. (1) By Equation 2.5.4 and Lemma 2.5.2, since Ps and Pu is of order 2, we can write

Ps and Pu by the following

x⃗k+1 = Λx⃗k + Ps (x⃗k, yk) = Λx⃗k +Dk(x⃗k, yk)x⃗k,

yk+1 = µyk + Pu (x⃗k, yk) = µyk + Ek(x⃗k, yk)yk,

where Dk is a (m − 1) × (m − 1) matrix-valued holomorphic mappings on (x⃗, y), Ek is a

holomorphic mapping on (x⃗, y). Furthermore, by lemma 2.5.2, we have

||Dk|| ≤ M(|x⃗k|+ |yk|) and |Ek| ≤ M |x⃗k| (3.0.3)

for some constant M , where || · || is L2 operator norm of a matrix,i.e. ||A|| := sup{ |Av|
|v|

∣∣∣ v ̸= 0}.

By shrinking the domain D appropriately we may assume that

||Dk||, |Ek| ≤ ϵ. (3.0.4)
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By Lemma 3.0.4, we have

n∑
k=0

|x⃗k| ≤
n∑

k=0

(|λ|+ ϵ)k |x⃗0| ≤
1

1− |λ| − ϵ
|x⃗0| , (3.0.5)

and
n∑

k=0

|yk| ≤
n∑

k=0

1

(|µ| − ϵ)n−k
|yn| ≤

|µ| − ϵ

|µ| − ϵ− 1
|yn| . (3.0.6)

Notice that the lemma is automatically true for x⃗0 and yn. Then, for some 0 ≤ k ≤ n, we

have

x⃗k = Λx⃗k−1 +Dk−1(x⃗k−1, yk−1)x⃗k−1 =
k−1∏
i=0

(Λ +Di) x⃗0, (3.0.7)

and

yk = µ−1 1

1 + Ek

µ

yk+1 = µ−(n−k)yn

n−1∏
i=k

(
1

1 + Ei

µ

)
. (3.0.8)

Using (3.0.7), the fact ln(x) ⩽ x− 1 for x > 0, (3.0.3) and (3.0.6), we have

ln |x⃗k| ⩽
k−1∑
i=0

ln || (Λ +Di) ||+ ln |x⃗0| ⩽
k−1∑
i=0

ln(||Λ||+ ||Di||) + ln |x⃗0|

⩽
k−1∑
i=0

ln(|λ|+ ||Di||) + ln |x⃗0| ⩽ ln(|λk|) +
k−1∑
i=0

∥Di∥
|λ|

+ ln |x⃗0|

⩽ ln(|λk|) + ln |x⃗0|+
M

|λ|

(
n∑

k=0

(|x⃗k|+ |yk|)

)

⩽ ln(|λk|) + ln |x⃗0|+
M

|λ|

(
|µ| − ϵ

|µ| − ϵ− 1
|yn|+

1

1− |λ| − ϵ
|x⃗0|
)
.

Similarly, using (3.0.8), the fact ln(x) ≤ x − 1 for x > 0, (3.0.3) and (3.0.5), we have the

upper bound:

ln

∣∣∣∣ yk
µ−(n−k)

∣∣∣∣ = ln |yn|+
n−1∑
i=k

ln
1∣∣∣1 + Ei

µ

∣∣∣ ⩽ ln |yn|+
n−1∑
i=k

|Ei|/|µ|
1− |Ei|/|µ|

⩽ ln |yn|+
1

|µ| − ϵ

n∑
i=0

|Ei| ⩽ ln |yn|+
M

|µ| − ϵ

(
1

1− |λ| − ϵ
|x⃗0|
)
,
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and the lower bound:

ln

∣∣∣∣ yk
µ−(n−k)

∣∣∣∣ = ln |yn|+
n−1∑
i=k

ln
1∣∣∣1 + Ei

µ

∣∣∣ = ln |yn| −
n−1∑
i=k

ln(

∣∣∣∣1 + Ei

µ

∣∣∣∣)
⩾ ln |yn| −

n−1∑
i=k

ln(1 +

∣∣∣∣Ei

µ

∣∣∣∣) ⩾ ln |yn| −
1

|µ|

n∑
i=0

|Ei|

⩾ ln |yn| −
M

|µ|

(
1

1− |λ| − ϵ
|x⃗0|
)
.

Thus we finish our proof for this part.

(2) For every point (x⃗, y) = (x1, x2, · · · , xm−1, y) ∈ JK with F (x⃗, y) ∈ D, denote (x̂1, x̂2, · · · , x̂m−1, ŷ) =

F (x⃗, y). We also denote λ− = max2≤i≤m−1{|λi(t, a)|}. Then by previous discussion, we have

|x̂1|
|(x̂2, · · · , x̂m−1)|

⩾
(λmin − ϵ)|x1|

(λ− + ϵ)|(x2, · · · , xm−1)|
>

λmin − ϵ

λ− + ϵ
K.

Thus we have F (JK) ∩D ⊊ JγK .

Next for a point (x⃗, y) ∈ JK with (x⃗i, yi) = F i(x⃗, y) ∈ JK , ∀ 0 ⩽ i ⩽ n, denote

(x⃗i, yi) = (xi,1, xi,2, · · · , xi,m−1, yi)

Thus following the discussion in part (1), we have

xi+1,1 =i,1 +
m−1∑
j=1

(Di)1j(x⃗i, yi)xi,j.

Thus we have

|xi+1,1| = |i,1 +
m−1∑
j=1

(Di)1j(x⃗i, yi)xi,j|

⩾ |i,1| − |
m−1∑
j=1

(Di)1j(x⃗i, yi)xi,j|

⩾ |i,1| −

√√√√m−1∑
j=1

|(Di)1j(x⃗i, yi)|2 ·

√√√√m−1∑
j=1

|xi,j|2

> |i,1| −

√√√√m−1∑
j=1

|(Di)1j(x⃗i, yi)|2 ·
√
1 +

1

K2
|xi,1|

= (|λ| −
√
1 +

1

K2

√√√√m−1∑
j=1

|(Di)1j(x⃗i, yi)|2)|xi,1|.
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By condition (3.0.2), we have

|λ| −
√
1 +

1

K2

√√√√m−1∑
j=1

|(Di)1j(x⃗i, yi)|2 > |λ| −
√

1 +
1

K2
ϵ > 0.

For any 1 ⩽ k ⩽ n, using inequality ln(1− x) ⩾ −x
1−x

where x ∈ (0, 1), we have the following

estimate:

ln(|xk,1|) = ln(|λ|k) + ln(|x0,1|) +
k−1∑
i=0

ln(1−

√
1 + 1

K2

|λ|

√√√√m−1∑
j=1

|(Di)1j(x⃗i, yi)|2)

⩾ ln(|λ|k) + ln(|x0,1|)−
k−1∑
i=0

√
1+ 1

K2

|λ|

√∑m−1
j=1 |(Di)1j(x⃗i, yi)|2

1−
√

1+ 1
K2

|λ|

√∑m−1
j=1 |(Di)1j(x⃗i, yi)|2

> ln(|λ|k) + ln(|x0,1|)−

√
1 + 1

K2

|λ| − ϵ
√

1 + 1
K2

k−1∑
i=0

√√√√m−1∑
j=1

|(Di)1j(x⃗i, yi)|2

> ln(|λ|k) + ln(|x0,1|)−

√
1 + 1

K2

|λ| − ϵ
√

1 + 1
K2

k−1∑
i=0

M(|x⃗i|+ |yi|)

⩾ ln(|λ|k) + ln(|x0,1|)−

√
1 + 1

K2

|λ| − ϵ
√
1 + 1

K2

M

(
|µ| − ϵ

|µ| − ϵ− 1
|yn|+

1

1− |λ| − ϵ
|x⃗0|
)
.

Finally we have

ln(|x⃗k|)− ln(|x⃗0|)− ln(|λ|k) > ln(|xk,1|)− ln(

√
1 +

1

K2
|x0,1|)− ln(|λ|k)

> − ln(

√
1 +

1

K2
)−

√
1 + 1

K2

|λ| − ϵ
√

1 + 1
K2

k−1∑
i=0

M(|x⃗i|+ |yi|).

Remark 3.0.6. By part (2) of the lemma, for q1(t), it will enter JK0 in finite forward iterations.

Thus by replacing q1(t) with some F s
t,0(qt) where s > 0, we can assume q1(t) ∈ JK0 .

For a point Z = (Z⃗x, Zy) ∈ D, denote the linear unstable cone with slope ι > 0 by

V u(Z; ι) := {(x⃗, y) ∈ D
∣∣|y − Zy| ⩾ ι||x⃗− Z⃗x||}.
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Now consider 2 distinct points (x⃗0, y0), (x⃗
′
0, y

′
0) ∈ D with F k((x⃗0, y0)) ∈ D and F k((x⃗′

0, y
′
0)) ∈

D for 0 ⩽ k ⩽ n. Denote their forward iterations by (x⃗k, yk) = F k((x⃗0, y0)), (x⃗
′
k, y

′
k) =

F k((x⃗′
0, y

′
0)). Then we have the following estimation:

Lemma 3.0.7. Suppose there exists an ι > 0 such that (x⃗′
0, y

′
0) ∈ V u((x⃗0, y0); ι).Then there

exist a constant ζ = max{0,− log|µ|
ι(|µ|−|λ|−3ϵ)

C1ML
} ⩾ 0 not depending on n, such that when n

large enough, for 0 ⩽ k ⩽ n− ζ, (x⃗′
k, y

′
k) ∈ V u((x⃗k, yk); ι

−), where ι− = min{ι, |µ|−|λ|−3ϵ
2ϵ

} > 0.

Furthermore, there exists an uniform constant C((x⃗0, yn, x⃗
′
0, y

′
n, ι)) > 0 such that

|y′k − yk| > C((x⃗0, yn, x⃗
′
0, y

′
n, ι))|µ|k|y′0 − y0|. (3.0.9)

for any 0 ⩽ k ⩽ n. C((x⃗0, yn, x⃗
′
0, y

′
n, ι)) has a uniform positive lower bound C(ι) only

depending on ι.

Proof. Again by previous lemma, we have the following:

x⃗k+1 = Λx⃗k + Ps (x⃗k, yk) = Λx⃗k +Dk(x⃗k, yk)x⃗k,

yk+1 = µyk + Pu (x⃗k, yk) = µyk + Ek(x⃗k, yk)yk,

x⃗′
k+1 = Λx⃗′

k + Ps (x⃗
′
k, y

′
k) = Λx⃗′

k +Dk(x⃗
′
k, y

′
k)x⃗

′
k,

y′k+1 = µy′k + Pu (x⃗
′
k, y

′
k) = µy′k + Ek(x⃗

′
k, y

′
k)y

′
k.

By lemma 2.5.2, we have

||Dk(x⃗k, yk)−Dk(x⃗
′
k, y

′
k)|| ≤ M(|x⃗k − x⃗′

k|+ |yk − y′k|) (3.0.10)

and

|Ek(x⃗k, yk)− Ek(x⃗
′
k, y

′
k)| ≤ M |x⃗k − x⃗′

k| . (3.0.11)

Then we have

|y′k+1 − yk+1| = |µ(y′k − yk) + Ek(x⃗
′
k, y

′
k)y

′
k − Ek(x⃗k, yk)yk|

⩾ |µ||y′k − yk| − |Ek(x⃗
′
k, y

′
k)y

′
k − Ek(x⃗k, yk)yk|

⩾ |µ||y′k − yk| − |Ek(x⃗
′
k, y

′
k)y

′
k − Ek(x⃗

′
k, y

′
k)yk| − |Ek(x⃗

′
k, y

′
k)yk − Ek(x⃗k, yk)yk|

⩾ (|µ| − |Ek(x⃗
′
k, y

′
k)|)|y′k − yk| −M |x⃗k − x⃗′

k| |yk|.
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and

∣∣x⃗′
k+1 − x⃗k+1

∣∣ = |Λ(x⃗′
k − x⃗k) +Dk(x⃗

′
k, y

′
k)x⃗

′
k −Dk(x⃗k, yk)x⃗k|

⩽ (|λ|+ |Dk(x⃗
′
k, y

′
k)|)|x⃗′

k − x⃗k|+ ||Dk(x⃗k, yk)−Dk(x⃗
′
k, y

′
k)|| · |x⃗k|

⩽ (|λ|+ |Dk(x⃗
′
k, y

′
k)|)|x⃗′

k − x⃗k|+M(|x⃗k − x⃗′
k|+ |yk − y′k|)|x⃗k|.

If we denote lk > 0 be a number such that (x⃗′
k, y

′
k) ∈ V u((x⃗k, yk); lk), we let l0 = ι. Then we

have

|y′k+1 − yk+1| ⩾ (|µ| − |Ek(x⃗
′
k, y

′
k)|)|y′k − yk| −M |x⃗k − x⃗′

k| |yk|

⩾ (|µ| − |Ek(x⃗
′
k, y

′
k)| −

M |yk|
lk

)|y′k − yk|,

and

∣∣x⃗′
k+1 − x⃗k+1

∣∣ ⩽ (|λ|+ |Dk(x⃗
′
k, y

′
k)|)|x⃗′

k − x⃗k|+M(|x⃗k − x⃗′
k|+ |yk − y′k|)|x⃗k|

⩽ (
|λ|+ |Dk(x⃗

′
k, y

′
k)|+M |x⃗k|

lk
+M |x⃗k|)|y′k − yk|.

Overall we have the following inequality

lk+1 ⩾
(|µ| − |Ek(x⃗

′
k, y

′
k)|)lk −M |yk|

|λ|+ |Dk(x⃗′
k, y

′
k)|+ (1 + lk)M |x⃗k|

⩾
(|µ| − ϵ)lk −M |yk|

|λ|+ ϵ+ (1 + lk)M |x⃗k|
.

Denote Rk,n(l) =
(|µ|−ϵ)l−M |yk|

|λ|+ϵ+(1+l)M |x⃗k|
Then function t = Rk,n(l) has following properties:

(1) It is increasing and has two asymptotes: l = − |λ|+ϵ
M |x⃗k|

− 1 and t = M |yk|
|µ|−ϵ

.

(2) It has two intersection points with the line t = l, denoted by (w−
k,n, w

−
k,n) and (w+

k,n, w
+
k,n),

where

w±
k,n =

(|µ| − |λ| − 2ϵ−M |x⃗k|)±
√
(|µ| − |λ| − 2ϵ−M |x⃗k|)2 − 4M2|x⃗k| · |yk|
2M |x⃗k|

are the two roots of the quadratic equation:

M |x⃗k|l2 − (|µ| − |λ| − 2ϵ−M |x⃗k|)l +M |yk| = 0.
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Since we have M |x⃗k|,M |yk| < ϵ < |µ|−|λ|
5

, thus the discriminant of the quadratic equation

(|µ| − |λ| − 2ϵ−M |x⃗k|)2 − 4M2|x⃗k| · |yk| > (|µ| − |λ| − 3ϵ)2 − 4ϵ2 > 0.

is always positive. We have the inequality:

0 < w−
k,n <

|µ| − |λ| − 2ϵ−M |x⃗k|
2M |x⃗k|

< w+
k,n.

(3). When l ∈ (w−
k,n, w

+
k,n), we have Rk,n(l) > l. When l ∈ (w+

k,n,+∞), we have Rk,n(l) > w+
k,n.

Overall, when l ∈ (w−
k,n,+∞), we have Rk,n(l) ⩾ min{l, w+

k,n}.

Now when n large enough, by lemma 3.0.5, we have

w−
k,n =

(|µ| − |λ| − 2ϵ−M |x⃗k|)−
√
(|µ| − |λ| − 2ϵ−M |x⃗k|)2 − 4M2|x⃗k| · |yk|
2M |x⃗k|

=
2M |yk|

(|µ| − |λ| − 2ϵ−M |x⃗k|) +
√
(|µ| − |λ| − 2ϵ−M |x⃗k|)2 − 4M2|x⃗k| · |yk|

<
M |yk|

|µ| − |λ| − 2ϵ−M |x⃗k|

⩽
M |yk|

|µ| − |λ| − 3ϵ

⩽
C1M |yn||µ|−(n−k)

|µ| − |λ| − 3ϵ

⩽
C1ML|µ|−(n−k)

|µ| − |λ| − 3ϵ

where L is the radius of D. Thus when k ⩽ n+min{0, log|µ|
ι(|µ|−|λ|−3ϵ)

C1ML
}, we have

w−
k,n <

C1ML|µ|−(n−k)

|µ| − |λ| − 3ϵ
< ι.

Besides, for any 0 ⩽ k, k′ ⩽ n, we have

w−
k,n <

M |yk|
|µ| − |λ| − 2ϵ−M |x⃗k|

⩽
ϵ

|µ| − |λ| − 3ϵ

<
|µ| − |λ| − 3ϵ

2ϵ

<
|µ| − |λ| − 2ϵ−M |x⃗k′|

2M |x⃗k′ |

< w+
k′,n.
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Thus we let ζ = max{0,− log|µ|
ι(|µ|−|λ|−3ϵ)

C1ML
} ⩾ 0, then when n large enough, for any 1 ⩽ k ⩽

n− ζ, we have the following estimations:

lk ⩾ Rk−1,n(lk−1)

· · ·

⩾ Rk−1,n ◦ · · · ◦R0,n(l0)

⩾ Rk−1,n ◦ · · · ◦R1,n(min{ι, w+
0,n})

· · ·

⩾ min{ι, w+
0,n, · · · , w+

k−1,n}

⩾ min{ι, |µ| − |λ| − 3ϵ

2ϵ
}

= ι−.

Thus we know (x⃗′
k, y

′
k) ∈ V u((x⃗k, yk); ι

−).

Finally, for any 1 ⩽ k ⩽ n− ζ, we have

|y′k − yk| ⩾ (|µ| − |Ek−1(x⃗
′
k−1, y

′
k−1)| −

M |yk−1|
lk−1

|)|y′k−1 − yk−1|

⩾ (|µ| − |Ek−1(x⃗
′
k−1, y

′
k−1)| −

M |yk−1|
lk−1

)|y′k−1 − yk−1|

⩾ (|µ| − |Ek−1(x⃗
′
k−1, y

′
k−1)| −

M |yk−1|
ι−

)|y′k−1 − yk−1|

⩾ |y′0 − y0|
k−1∏
i=0

(|µ| − |Ei(x⃗
′
i, y

′
i)| −

M |yi|
ι−

).
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Then we have

ln |y′k − yk| ⩾ ln |y′0 − y0|+
k−1∑
i=0

ln (|µ| − |Ei(x⃗
′
i, y

′
i)| −

M |yi|
ι−

)

⩾ ln |y′0 − y0|+ k ln |µ|+
k−1∑
i=0

ln (1− |Ei(x⃗
′
i, y

′
i)|

|µ|
− M |yi|

|µ|ι−
)

⩾ ln |y′0 − y0|+ k ln |µ| −
k−1∑
i=0

|Ei(x⃗
′
i,y

′
i)|

|µ| + M |yi|
|µ|ι−

1− |Ei(x⃗′
i,y

′
i)|

|µ| − M |yi|
|µ|ι−

⩾ ln |y′0 − y0|+ k ln |µ| − |µ|
|µ| − ϵ(1 + 1

ι−
)

k−1∑
i=0

(
|Ei(x⃗

′
i, y

′
i)|

|µ|
+

M |yi|
|µ|ι−

)

⩾ ln |y′0 − y0|+ k ln |µ| − |µ|
|µ| − ϵ(1 + 1

ι−
)

k−1∑
i=0

(
M |x⃗′

i|
|µ|

+
M |yi|
|µ|ι−

)

⩾ ln |y′0 − y0|+ k ln |µ| − |µ|
|µ| − ϵ(1 + 1

ι−
)
(
M

|µ|
1

1− |λ| − ϵ
|x⃗′

0|+
M

|µ|ι−
|µ| − ϵ

|µ| − ϵ− 1
|yn|).

Thus

|y′k − yk| > C((x⃗0, yn, x⃗
′
0, y

′
n, ι))|µ|k|y′0 − y0|

for any 0 ⩽ k ⩽ n− ζ.C((x⃗0, yn, x⃗
′
0, y

′
n, ι)) have a lower bound:

C((x⃗0, yn, x⃗
′
0, y

′
n, ι)) = exp[− |µ|

|µ| − ϵ(1 + 1
ι−
)
(
M

|µ|
1

1− |λ| − ϵ
|x⃗′

0|+
M

|µ|ι−
|µ| − ϵ

|µ| − ϵ− 1
|yn|)]

⩾ exp[− |µ|
|µ| − ϵ(1 + 1

ι−
)
(
M

|µ|
1

1− |λ| − ϵ
L+

M

|µ|ι−
|µ| − ϵ

|µ| − ϵ− 1
L)] > 0.

When n large enough, ζ ≪ n, we can see that for k ⩾ n− ζ,

|y′n−ζ+1 − yn−ζ+1| ⩾ (|µ| − |En−ζ(x⃗
′
n−ζ , y

′
n−ζ)|)|y′n−ζ − yn−ζ | −M

∣∣x⃗n−ζ − x⃗′
n−ζ

∣∣ |yn−ζ |

> |y′n−ζ − yn−ζ |

since

|y′n−ζ − yn−ζ | > C((x⃗0, yn, x⃗
′
0, y

′
n, ι))|µ|n−ζ |y′0 − y0|

and ∣∣x⃗n−ζ − x⃗′
n−ζ

∣∣ |yn−ζ | < C|λ|n−ζ |µ|−ζ ≪ |µ|n−ζ .
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Repeat this process for k ⩽ n, by shrinking the constant C((x⃗0, yn, x⃗
′
0, y

′
n, ι)) properly, we

have

|y′k − yk| > C((x⃗0, yn, x⃗
′
0, y

′
n, ι))|µ|k|y′0 − y0|.

for any 0 ⩽ k ⩽ n.

When orbit of points are inside the hyperbolic domain D, we may extend lemma 17 in

[BMP18] in our situation to get a estimation on the differential matrix:

Lemma 3.0.8. If (x, y) ∈ Dm−1 × D and F i(x, y) ∈ Dm−1 × D, for all i ≤ n, then for any

k ⩽ n,we have

DF k(x, y) =

 a11(k)λ
kµk a12(k)λ

kµk

a21(k)
1

µn−k a22(k)µ
k

 (3.0.12)

where aij(k) are matrices satisfy following properties:

(1) aij(k) are matrices holomorphically depending on all the parameters and unifomrly bounded

with respect to n, k;

(2) there exists constant α ∈ ( 1
|µmin| , 1) and C > 0 such that for any integers i, j from 1 to

m− 1, |a11(k)ij| < Cαk;

(3) a22(k) ̸= 0 and uniformly away from zero.

Proof. Let us denote (xk, yk) := F k(x, y) and by equation (2.5.4) and lemma 2.5.2, we can

denote the differential matrix at this point as

DF (xk, yk) =

 Λ +D11(k) D12(k)

D21(k) µ+D22(k)

 (3.0.13)

and we have the following estimations on each entity of every matrices:

||D11(k)||max = O(|xk|+ |yk|), (3.0.14)

||D12(k)||max = O(|xk|), (3.0.15)

||D21(k)||max = O(|yk|), (3.0.16)

|D22(k)| = O(|xk|). (3.0.17)
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where || · ||max denote the max norm of a matrix. Now let

DF k(x, y) =

 a11(k)λ
kµk a12(k)λ

kµk

a21(k)
1

µn−k a22(k)µ
k

 ,

then by (3.0.13), we have

a11(k + 1) =
1

λµ
(Λ +D11(k)) a11(k) +D12(k)a21(k)

1

λk+1

1

µn+1
, (3.0.18)

and

a21(k + 1) = λkµn−1D21(k)a11(k) +

(
1 +

1

µ
D22(k)

)
a21(k) (3.0.19)

Since xk = O(|λk|), we have

|D22(k)| < C|λk| (3.0.20)

for some constant C > 0 dependent of k, n, thus∣∣∣∣∣∏
i<k

(
1 +

1

µ
D22(i)

)∣∣∣∣∣ ⩽
n∏

i=0

(
1 +

C

|µ|
|λ|i
)

<
∞∏
i=0

(
1 +

C

|µ|
|λ|i
)

< C ′ (3.0.21)

where C ′ independent of n, k. Then from (3.0.19), (3.0.21) and the fact a21(0) = 0, we have

||a21(k)||max = O

(∑
i<k

(λµ)i ||a11(i)||max

)
(3.0.22)

Let Mk = maxi⩽k ||a11(i)||max. Then by (3.0.18) and (3.0.22), we have

||a11(k + 1)||max ⩽ (
1

|µ|
+O(|xk|+ |yk|))||a11(k)||max +

1

|µ|n
O

(∑
i<k

(λµ)i ||a11(i)||max

)

⩽ [
1

|µ|
+ C1(|λ|k +

1

|µ|n−k
)]||a11(k)||max +

1

|µ|n
C2

1− |λµ|
Mk−1

⩽ [
1

|µ|
+ C1(|λ|k +

1

|µ|n−k
) +

1

|µ|n
C2

1− |λµ|
]Mk,

where C1,2 > 0 are constants independent of n and k. Thus when n large enough, fix

α1,2 ∈ ( 1
|µmin| , 1) with α1 < α2, there exist positive integers k0 and k1 independent of n, such

that, for any k with k0 ⩽ k ⩽ n− k1, we have

||a11(k + 1)||max ⩽ α1||a11(k)||max +
1

|µ|n
C2

1− |λµ|
Mk−1 ⩽ α2Mk, (3.0.23)
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and for 0 ⩽ k < k0 or n− k1 < k ⩽ n, we have

||a11(k + 1)||max ⩽ (α2 + 2C1)Mk. (3.0.24)

Thus we know when n large enough, Mk are uniformly bounded for all k.

Furthermore, we have when k0 ⩽ k ⩽ n− k1, there exist some constant C3 > 0 such that

||a11(k + 1)||max ⩽ α1||a11(k)||max + C3
1

|µ|n
. (3.0.25)

Then we know that

||a11(k)||max ⩽ (α1)
k−k0||a11(k0)||max +

1

|µ|n
C3

1− α1

. (3.0.26)

Thus by the choice of α1, we know there exists constant C > 0 such that when n large enough,

for every 0 ⩽ k ⩽ n, we have

||a11(k)||max ⩽ C(α1)
k. (3.0.27)

By (3.0.22), we also get ||a21(k)||max are uniformly bounded for all k.

Similarly, we have

a12(k + 1) =
1

λµ
(Λ +D11(k)) a12(k) +

1

λk
D12(k)

1

λµ
a22(k), (3.0.28)

and

a22(k + 1) =
λk

µ
D21(k)a12(k) +

(
1 +

D22(k)

µ

)
a22(k). (3.0.29)

By (3.0.21), (3.0.29) and the fact a22(0) = 1, we get

|a22(k)| = O

(
1 +

1

|µ|n
∑
i<k

(λµ)i ||a12(i)||max

)
. (3.0.30)

Let M ′
k = maxi⩽k ||a12(i)||max. Then by (3.0.28), we have

||a12(k + 1)||max ⩽ (
1

|µ|
+O(|xk|+ |yk|))||a12(k)||max +O

(
1 +

1

|µ|n
∑
i<k

(λµ)i ||a12(i)||max

)

⩽ [
1

|µ|
+ C3(|λ|k +

1

|µ|n−k
) +

1

|µ|n
C4

1− |λµ|
]M ′

k + C5,
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where C3,4,5 > 0 are constants independent of n and k. By same argument as above, when

n large enough, we can settle down that |a12(k)||max are bounded for all k ⩽ n and this

bound are independent of k, n. Thus by (3.0.30), when n large enough, we know a22(k) are

uniformly bounded and away from zero for all k. Thus we finished the proof.
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Chapter 4

Cascades of sinks

By shrinking the coordinates and replacing N with N + n, we may assume

πyF
N
t,0(W

u
loc(q3(t, 0))) ⊇ Dy(0, 2)

and

dist(W u
loc(q3(t, 0)),C−Dy(0, 2)) > 10ϵ.

We will prove following proposition in this section:

Proposition 4.0.1. For n large enough, there exists a holomorphic mapping an : Tµ(µmin, µmax)×

Tλ(λmin, λmax) × U −→ Da(2) and a positive constant η > 0 such that there exists a

disc in in the a-parameter with center an(t) and radius η
|µmax|2n , which we denoted by

Da(an(t),
η

|µmax|2n ) ⊂ Da(2), such that they satisfy the following:

For each a ∈ Da(an(t),
η

|µmax|2n ), Ft,a has a sink with period N +n. Moreover, the sink created

is holomorphically depending on t.

Just a reminder, as we mentioned previously, t is just (µ, λ, τ).

We will prove this theorem by construction in several steps, throughout the process,t =

(µ, λ, τ) will be fixed:

53



Step 1. Since by definition, we know

(Dy,W
u
loc,q3(t)

(p), πyF
N
t,0)

is a quadratic-like map, then there exists a simply connected domain D0(t, 0) ⊆ W u
loc,q3(t)

(p)

such that

πyF
N
t,0(D0(t, 0)) = Dy(0, 2),

dist(∂D0(t, 0), q3(t)) = m, where m is a constant satisfying

0 < m <
1

2
. (4.0.1)

Besides, (Dy(0, 2), D0(t, 0), πyF
N
t,0) is a quadratic-like map, with unique critical point q3(t)

and critical value 0.

Remark 4.0.2. The three lemmas 4.0.3,4.0.4,4.0.6 extends above fact further, and each lemma

can be viewed as an extension from the previous lemma. Even though we state these lemmas

in a similar way, the proofs for each lemma use different ingredients.

Now we first prove the following lemma to show similar construction exists for every n:

Lemma 4.0.3. There exist a sequences of simply-connected domains Dn(t, 0) with q3(t) =

∩
n
Dn(t, 0)and Dn(t, 0) ⊆ Dn−1(t, 0) such that (Dy(0, 2), Dn(t, 0), πyF

N+n
t,0 ) is a quadratic-like

map, with unique critical point q3(t) and critical value 0. For n large enough, the diameter of

Dn(t, 0) has the following estimates:

1

C2|µ|
n
2

⩽ diam(Dn(t, 0)) ⩽
C2

|µ|n2
,

where C2 is a positive constant.

Proof. We construct Dn(t, 0) inductively on n. Suppose the Lemma is verified from 0 to n,
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then by Lemma 3.0.5, we know for every point (0, z) ∈ Dn(t, 0),

|
πyF

N+n+1
t,0 (0, z)

µ
− πyF

N+n
t,0 (0, z)| = |(πyFt,0

µ
− πy)(F

N+n
t,0 (0, z))|

= |En(F
N+n
t,0 (0, z))πy(F

N+n
t,0 (0, z))|

⩽ ϵ|πy(F
N+n
t,0 (0, z))|

⩽ 2ϵ

< d(D0(t, 0),C−Dy(0, 2))

< d(Dn(t, 0),C−Dy(0, 2)).

Thus, by Proposition 2.2.4, we know (
πyF

N+n+1
t,0

µ
)−1(Dy(0, 2−2ϵ)) is a simply connected domain

inside Dn(t, 0).

Thus we know

(Dy(0, 2− 2ϵ), (
πyF

N+n+1
t,0

µ
)−1(Dy(0, 2− 2ϵ)),

πyF
N+n+1
t,0

µ
)

is a quadratic-like map. Since we know 0 has only 1 preimage q3(t), we know the unique

critical point is q3(t) and corresponding critical point 0.

Thus we can see that

(Dy(0, |µ|(2− 2ϵ)), (πyF
N+n+1
t,0 )−1(Dy(0, |µ|(2− 2ϵ))), πyF

N+n+1
t,0 )

is a quadratic-like map.

Since |µ|(2− 2ϵ) > 2 and 0 ∈ Dy(0, 2). We conclude that

(Dy(0, 2), (πyF
N+n+1
t,0 )−1(Dy(0, 2)), πyF

N+n+1
t,0 )

is a quadratic-like map.

Then we define Dn+1(t, 0) to be (πyF
N+n+1
t,0 )−1(Dy(0, 2)), a simply connected domain

inside Dn(t, 0). Thus we finish the induction step and the sequence Dn(t, 0) is constructed.

Now we estimate the diameter of Dn(t, 0). Since

FN
t,0(Dn(t, 0)) = F−n

t,0 (F
N+n
t,0 (Dn(t, 0)))
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and πyF
N+n
t,0 (Dn(t, 0)) = Dy(0, 2), by Lemma 3.0.5, we can see that

2

C1

|µ|−n ⩽ diam(πyF
N
t,0(Dn(t, 0))) ⩽ 4C1|µ|−n.

Then since diam(D0(t, 0)) > m > 0, and (Dy(0, 2), D0(t, 0), πyF
N
t,0) is a quadratic-like map,

there is a uniform constant C2 > 0 such that

1

C2|µ|
n
2

⩽ diam(Dn(t, 0)) ⩽
C2

|µ|n2
.

Since q3(t) ∈ D0(t, 0) for every n and the diameter of D0(t, 0) is asymptotic to zero exponen-

tially fast. We have

q3(t) = ∩
n
Dn(t, 0).

Step 2. Now we extend previous result from (t, 0) to (t, a). Since by condition (5) in Section

2.5, we know

(Dy,W
u
loc,q3(t,a)

(p), πyF
N
t,a)

is a quadratic-like map with unique critical point denoted by q3(t, a) = F−N
t,a (q1(t, a)) and

corresponding critical value a. By change of coordinates in a−parameter, there exist A0 =

Da(0, 2) such that for every a ∈ A0, there exists a simply connected domain D0(t, a) ⊂ Dy

such that

(Dy(0, 2), D0(t, a), πyF
N
t,a)

is a quadratic-like map with critical point q3(t, a) and critical value a ∈ Dy(0, 2), and

dist(D0(t, a),C−Dy(0, 2)) > 5ϵ.

.

Now we will prove the following lemma to show similar construction exists for every n:

Lemma 4.0.4. For every t, there exist a sequence of domains in the a-parameter, An ⊆ Da(r)

with A0 = Da(0, 2) and An+1 ⊆ An. For each a ∈ An, there is a simply connected domain
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Dn(t, a) ⊆ Dy, such that

(Dy(0, 2), Dn(t, a), πyF
N+n
t,a )

is a quadratic-like map with critical point denoted by q3(n, t, a) and critical value v(n, t, a).

Furthermore, we have an univalent onto mapping

ht,n : An −→ Dy(0, 2)

defined by ht,n(a) = v(n, t, a). An is a simply-connected domain.

Moreover, their exist a uniform constant C3 such that diameter of An and Dn(t, a) has

the following estimation:

1

C3|µ|n
⩽ diam(An) ⩽

C3

|µ|n
, for n ⩾ M,

1

C3|µ|
n
2

⩽ diam(Dn(t, a)) ⩽
C3

|µ|n2
,

Dn(t, a) ⊂ Dy(q3(n, t, 0),
C3

|µ|n2
).

Proof. First, following the method used in the proof of Lemma 4.0.3, we construct An, Dn(t, a)

and ht,n inductively in n. n = 0 case is verified in the above discussion.

Suppose we have constructed Ak, Dk(t, a), a ∈ Ak and the univalent mapping ht,k from

Ak to Dy(0, 2) for k ⩽ n. Then for every point (0, z) ∈ Dn(t, a), where a ∈ An,

|
πyF

N+n+1
t,a (0, z)

µ
− πyF

N+n
t,a (0, z)| = |(πyFt,a

µ
− πy)(F

N+n
t,a (0, z))|

= |En(F
N+n
t,a (0, z))πy(F

N+n
t,a (0, z))|

⩽ ϵ|πy(F
N+n
t,a (0, z))|

⩽ 2ϵ

< d(D0(t, a),C−Dy(0, 2))

< d(Dn(t, a),C−Dy(0, 2)).

Thus by Proposition 2.2.4, we know

(Dy(0, 2− 2ϵ), (
πyF

N+n+1
t,a

µ
)−1(Dy(0, 2− 2ϵ)),

πyF
N+n+1
t,a

µ
)
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is a quadratic-like map, for a ∈ h−1
n,t(Dy(0, 2 − 2ϵ)). Denote the critical value by hn+1,t(a)

µ
.

Then by proposition 2.2.3, we know that the critical value of
πyF

N+n+1
t,a

µ
and the critical value

of FN+n
t,a differ by 4ϵ, i.e.

|hn+1,t(a)

µ
− hn,t(a)| < 4ϵ (4.0.2)

where a ∈ h−1
n,t(Dy(0, 2−2ϵ)). Then by proposition 2.2.3, we know that hn+1,t(a)

µ
is univalent

from (hn+1,t(a)

µ
)−1(Dy(0, 2− 6ϵ)) to Dy(0, 2− 6ϵ).

Thus

(Dy(0, |µ|(2− 2ϵ)), (πyF
N+n+1
t,a )−1(Dy(0, |µ|(2− 2ϵ))), πyF

N+n+1
t,a )

is a quadratic-like map, for a ∈ h−1
n,t(Dy(0, 2− 2ϵ)). Denote the critical point by q3(n+ 1, t, a)

and the critical value by v(n+ 1, t, a). Then we know that

v(n+ 1, t, a) = µ
hn+1,t(a)

µ
= hn+1,t(a).

Thus hn+1,t(a) = 0 if and only if hn+1,t(a)

µ
= 0 if and only if a = 0. Thus by proposition 2.1.1,

we know hn+1,t(a) is univalent from (hn+1,t)
−1(Dy(0, (2− 6ϵ)µ)) onto its image. Furthermore,

since we have µmin(2− 6ϵ) > 2, we know Dy(0, 2) is in the interior of the image. Thus we

may define a simply connected domain An+1 to be the preimage (hn+1,t)
−1(Dy(0, 2)).

In conclusion, for a ∈ An+1, we have a quadratic-like map

(Dy(0, 2), Dn+1(t, a), πyF
N+n+1
t,a )

with critical point q3(n+ 1, t, a) and critical value v(n+ 1, t, a), where Dn+1(t, a) is defined

by (πyF
N+n+1
t,a )−1(Dy(0, 2)). Beside we know hn+1,t(a) defined by hn+1,t(a) = v(n+ 1, t, a) is

univalent from An+1 onto Dy(0, 2). This finish the induction step.

The estimation on the diameter of the Dn(t, a) follows the same proof in Lemma 4.0.3

and the compactness of An. Now we estimate the diameter of An. By above calculations, we

find that there exists constant C > 0 such that

1

C
|µ|n ⩽ |∂hn,t

∂a
(0)| ⩽ C|µ|n.
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Then by theorem 2.1.2, we can see that there exists constant C3 > 0 such that

1

C3|µ|n
⩽ diam(An) ⩽

C3

|µ|n

which finish the proof.

Remark 4.0.5. The same argument can be applied if we relax Dy(0, 2) to Dy(0, 2 + ϵ). That

is:

There exist a sequence of domains in the a-parameter, Ãn ⊆ Da(r) with Ã0 = Da(0, 2 + ϵ)

and Ãn+1 ⊆ Ãn. For each a ∈ Ãn, there is a simply connected domain D̃n(t, a) ⊆ Dy, such

that

(Dy(0, 2 + ϵ), D̃n(t, a), πyF
N+n
t,a )

is a quadratic-like map with critical point denoted by q3(n, t, a) and critical value v(n, t, a).

Furthermore, we have an univalent onto mapping

ht,n : Ãn −→ Dy(0, 2 + ϵ)

defined by ht,n(a) = v(n, t, a). Ãn is simply-connected.

Moreover, their exist a uniform constant C3 such that diameter of Ãn and D̃n(t, a) has

the following estimation:

1

C3|µ|n
⩽ diam(Ãn) ⩽

C3

|µ|n
, for n ⩾ M,

1

C3|µ|
n
2

⩽ diam(D̃n(t, a)) ⩽
C3

|µ|n2
,

Dn(t, a) ⊂ Dy(q3(n, t, 0),
C3

|µ|n2
).

Furthermore, An is a proper subset of Ãn. And for every a ∈ An, Dn(t, a) is a proper subset

of D̃n(t, a).

Step 3. Let S be a domain in Dx⃗, denote V(S) be the standard vertical foliations in D for

x ∈ S, i.e., V(S) consists of 1-dimensional submanifolds of the form Lx⃗0 = {(x⃗0, y)|y ∈ Dy}

where x⃗0 ∈ S as leaves. For every n > 0, we consider the foliation F n
t,a(V(S)). We parametrize
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the leaves of this push-forward foliation by the x⃗-coordinate of its preimage, and denote

the leaf with parameter x⃗ by L̃n,x⃗,t,a, i.e., L̃n,x⃗,t,a = F n
t,a(Lx⃗) ∩ D. Thus by lemma 3.0.3,

L̃n,x⃗,t,a ∈ V(α). When S is the polydisc in Dx⃗ centered at 0⃗ with radius r, we simply write

V(S) by V(r).

Now consider Vn,t,a(D) := F n
t,a(V(Dx⃗))∩ (Dx⃗×D̃n(t, a)), and denote the leaves of Vn,t,a(D)

coming from L̃n,x⃗,t,a by Ln,x⃗,t,a, i.e., Ln,x⃗,t,a = L̃n,x⃗,t,a ∩ (Dx⃗ × D̃n(t, a)). Then πy|Ln,x⃗,t,a
:

Ln,x⃗,t,a −→ D̃n(t, a) gives a bi-holomorphism from Ln,x⃗,t,a to D̃n(t, a). Thus we may define its

inverse mapping, denoted by Holn,t,a,x⃗, i.e., Holn,t,a,x⃗ = (πy|Ln,x⃗,t,a
)−1 : D̃n(t, a) −→ Ln,x⃗,t,a.

Now we consider the following mapping:

G(n, x⃗, t, a) : D̃n(t, a) −→ C

y 7−→ πyF
N+n
t,a (Holn,t,a,x⃗(y))

where x⃗ ∈ Dx⃗, a ∈ Ãn.

We now prove the following lemma:

Lemma 4.0.6. There exists a constant number M > 0 depending on ϵ, such that for every

n > M , we have the following:

For every x⃗ ∈ Dx⃗, there exists a simply-connected domain An(x⃗) properly inside Ãn, such

that for every a ∈ An(x⃗), there exists a simply-connected domain Dn(t, a, x⃗) properly inside

D̃n(t, a), such that

(Dy(0, 2), Dn(t, a, x⃗), G(n, x⃗, t, a))

is a quadratic-like map with critical point q3(n, t, a, x⃗) and critical value v(n, t, a, x⃗). Further-

more, the mapping

hn,t,x⃗ : An(x⃗) −→ Dy(0, 2)

defined by hn,t,x⃗(a) := v(n, t, a, x⃗) is an univalent mapping onto its image. And their exist

an uniform constant C4 ⩾ C3 such that diameter of An(x⃗) and Dn(t, a, x⃗) has the following

estimation:

1

C4|µ|n
⩽ diam(An(x⃗)) ⩽

C4

|µ|n
, for n ⩾ M,
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1

C4|µ|
n
2

⩽ diam(Dn(t, a, x⃗)) ⩽
C4

|µ|n2
.

Dy(0, 2−
1

3
ϵ) ⊆ hn,t(An,t(x⃗)) ⊆ Dy(0, 2 +

1

3
ϵ).

where Mod denotes the modulus of the annulus.

Remark 4.0.7. When x⃗ = 0⃗, we have

An(⃗0) = An and Dn(t, a, 0⃗) = Dn(t, a).

Thus lemma 4.0.4 is just the spacial case of lemma 4.0.6 for x⃗ = 0⃗.

Proof. Let (⃗0, y) be a point in D̃n(t, a). Since Holn,t,a,x⃗(D̃n(t, a)) is contained in F n
t,a(Lx⃗), by

lemma 3.0.5, we know

|Holn,t,a,x⃗(y)− (⃗0, y)| ⩽ C1|x⃗||λ|n.

Thus

|πyF
N
t,a(Holn,t,a,x⃗(y))− πyF

N
t,a((⃗0, y))| = O(|λ|n).

Furthermore, by lemma 3.0.5, we have

|πyF
N+n
t,a (Holn,t,a,x⃗(y))− πyF

N+n
t,a ((⃗0, y))| = O(|λµ|n). (4.0.3)

Thus we know there exists a constant M1 > 0 such that for every n > M1,

|πyF
N+n
t,a (Holn,t,a,x⃗(y))− πyF

N+n
t,a ((⃗0, y))| ⩽ 1

3
ϵ. (4.0.4)

Then by proposition 2.2.4, for every a ∈ h−1
n,t(Dy(0, 2 +

2
3
ϵ)),(

Dy(0, 2 +
2

3
ϵ), (G(n, x⃗, t, a))−1 (Dy(0, 2 +

2

3
ϵ)), G(n, x⃗, t, a)

)
(4.0.5)

is a quadratic-like map, holomorphically depends on x⃗, t, a. Define Dn(t, a, x⃗) by

Dn(t, a, x⃗) := (G(n, x⃗, t, a))−1 (Dy(0, 2)).

Since Dy(0, 2) is proper subset of Dy(0, 2+
1
3
ϵ), we may define An(x⃗) ⫋ h−1

n,t(Dy(0, 2+
1
3
ϵ)) by

An,t(x⃗) := {a ∈ Ãn|(Dy(0, 2), Dn(t, a, x⃗), G(n, x⃗, t, a))

is a quadratic-like map with critical value contained in Dy(0, 2)},
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and An,t(x⃗) is a simply-connected domain properly inside Ãn. Then we can define the

following holomorphic mapping:

hn,t,x⃗ : An,t(x⃗) −→ Dy(0, 2)

by

hn,t,x⃗(a) := v(n, t, a, x⃗).

Denote iD be the restriction onto D. Then by Inclination Lemma, since Lx⃗ intersects with

stable manifold transversally, we know that

lim
n→∞

(iD ◦ Ft,a)
nLx⃗ = Dy

in C1-topology. Thus for any given x⃗, hn,t,x⃗ converge to hn,t as n goes to ∞ in C1-topology.

Then by Theorem 2.5 in [PP11], we conclude that hn,t,x⃗ is univalent when n large enough.

We finish the proof by noticing that the estimations on the diameters of An(x⃗) and

Dn(t, a, x⃗) follows the same argument as in lemma 4.0.4.

Also when hn,t,x⃗ are univalent for all x⃗ ∈ Dx⃗, we have the following estimation:

Dy(0, 2−
1

3
ϵ) ⊆ hn,t(An,t(x⃗)) ⊆ Dy(0, 2 +

1

3
ϵ).

Lemma 4.0.8. When n large enough, there exists a holomorphic mapping san,t : Dx⃗ −→ C

such that the following holds:

q3(n, t, a, x⃗) = v(n, t, a, x⃗) if and only if a = san,t(x⃗).

Proof. By lemma 4.0.6, when n large enough, hn,t,x⃗ is univalent. Thus we may define the

following mapping:

Pn,t,x⃗ : Dy(0, 2) −→ C

by

Pn,t,x⃗(z) := q3(n, t, (hn,t,x⃗)
−1(z), x⃗).

62



Then it is a holomorphic mapping by the definition of hn,t,x⃗ and q3(n, t, a, x⃗). Since we have

q3(n, t, a, x⃗) ∈ D̃0(t, a) ⫋ Dy(0, 2) for a ∈ An,t(x⃗), we know that Pn,t,x⃗(Dy(0, 2)) lies strictly

inside Dy(0, 2). By Earle-Hamilton holomorphic fixed point theorem ( Theorem 2.3.1), there

exists a unique fixed point v of Pn,t,x⃗ in Dy(0, 2).

Now we define san,t(x⃗) to be h−1
n,t,x⃗(v), then it is easy to see it is a holomorphic mapping

and holomorphically depending on t. By the uniqueness of the fixed point, we can see that

q3(n, t, a, x⃗) = v(n, t, a, x⃗) if and only if a = san,t(x⃗)

which finish the proof.

Now since

(Dy(0, 2), Dn(t, a, x⃗), G(n, x⃗, t, a))

is a quadratic-like map with critical point q3(n, t, a, x⃗) and critical value v(n, t, a, x⃗), we may

denote the following:

Holn,t,a,x⃗(q3(n, t, a, x⃗)) := (X1(n, t, a, x⃗), q3(n, t, a, x⃗))

and

FN+n
t,a (X1(n, t, a, x⃗), q3(n, t, a, x⃗)) := (X2(n, t, a, x⃗), v(n, t, a, x⃗)).

Lemma 4.0.9. For n large enough, there exists a point x∗
n,t ∈ Dx⃗, such that the following

holds:

X1(n, t, san,t(x⃗), x⃗) = X2(n, t, san,t(x⃗), x⃗) if and only if x⃗ = x∗
n,t.

Proof. By lemma 4.0.8, we know that Xi(n, t, san,t(x⃗), x⃗) holomorphically depending on x⃗,

where i = 1, 2. Besides, we have

πx⃗F
−n
t,san,t(x⃗)

(X1(n, t, san,t(x⃗), x⃗), q3(n, t, san,t(x⃗), x⃗)) = x⃗.

Now we may define the a holomorphic mapping

Sn,t : Dx⃗ −→ Cm−1
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by the following:

Sn,t(x⃗) = πx⃗F
N
t,san,t(x⃗)(X1(n, t, san,t(x⃗), x⃗), q3(n, t, san,t(x⃗), x⃗)).

Since |X1(n, t, san,t(x⃗))| = O(|λ|n), when n large enough, we know Sn,t(x⃗) ∈ Dx⃗(2), where

Dx⃗(2) = {(x⃗, 0) | |xi| ⩽ 2, 1 ⩽ i ⩽ m− 1}.

Since L > 2, we know that Sn,t(Dx⃗) is strictly inside Dx⃗. By Earle-Hamilton holomorphic

fixed point theorem ( Theorem 2.3.1), there exists a unique fixed point of Sn,t(x⃗) in Dx⃗. We

denote that fixed point by x∗
n,t.

Since

πx⃗F
N
t,san,t(x⃗)(X1(n, t, san,t(x⃗), x⃗), q3(n, t, san,t(x⃗), x⃗))

can be rewritten as

πx⃗F
−n
t,san,t(x⃗)

(X2(n, t, san,t(x⃗), x⃗), v(n, t, san,t(x⃗), x⃗)),

we know, when x⃗ = x∗
n,t,

F−n
t,san,t(x∗

n,t)
(X1(n, t, san,t(x

∗
n,t), x

∗
n,t), q3(n, t, san,t(x

∗
n,t), x

∗
n,t))

and

F−n
t,san,t(x∗

n,t)
(X2(n, t, san,t(x

∗
n,t), x

∗
n,t), v(n, t, san,t(x

∗
n,t), x

∗
n,t))

are both in Lx∗
n,t
. Thus

(X1(n, t, san,t(x
∗
n,t), x

∗
n,t), q3(n, t, san,t(x

∗
n,t), x

∗
n,t))

and

(X2(n, t, san,t(x
∗
n,t), x

∗
n,t), v(n, t, san,t(x

∗
n,t), x

∗
n,t))

are both in F n
t,san,t(x∗

n,t)
(Lx∗

n,t
) ∩D. Since F n

t,san,t(x∗
n,t)

(Lx∗
n,t
) ∩D is almost vertical, it can be

represented as the graph over Dy, but we know that

q3(n, t, san,t(x
∗
n,t), x

∗
n,t) = v(n, t, san,t(x

∗
n,t), x

∗
n,t),
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we must have

X1(n, t, san,t(x
∗
n,t), x

∗
n,t) = X2(n, t, san,t(x

∗
n,t), x

∗
n,t).

Since x∗
n,t is the unique fixed point of Sn,t, we can see that

q3(n, t, a, x⃗) = v(n, t, a, x⃗) if and only if a = san,t(x⃗)

Which finish the proof.

Remark 4.0.10. We actually know that

(X1(n, t, a, x⃗), q3(n, t, a, x⃗))

and

(X2(n, t, a, x⃗), v(n, t, a, x⃗)) = FN+n
t,a (X1(n, t, a, x⃗), q3(n, t, a, x⃗))

coincide when x⃗ = x∗
n,t and a = san,t(x

∗
n,t). Thus

(X1(n, t, san,t(x
∗
n,t), x

∗
n,t), q3(n, t, san,t(x

∗
n,t), x

∗
n,t))

is a periodic point of Ft,san,t(x∗
n,t)

with period N + n.

Next, we prove that the periodic point is a sink. We know

(Dy(0, 2), Dn(t, san,t(x
∗
n,t), x

∗
n,t), G(n, x∗

n,t, t, san,t(x
∗
n,t)))

is a quadratic-like map with a superattracting critical fixed point q3(n, t, san,t(x
∗
n,t), x

∗
n,t). We

may choose 2 univalent mappings

ϕi(n, t) : Dy −→ Cz

where i = 1, 2 and Cz denotes the complex plane with coordinate z, such that the following

holds:

1) ϕ1(n, t) mappingsDn(t, san,t(x
∗
n,t), x

∗
n,t) biholomorphically ontoDz(0, 1), with q3(n, t, san,t(x

∗
n,t), x

∗
n,t)

to 0;
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2) ϕ2(n, t) mappings Dy(0, 2) biholomorphically onto Dz(0, 1),with q3(n, t, san,t(x
∗
n,t), x

∗
n,t) to

0, we choose ϕ2(n, t) to have the explicit formula:

ϕ2(n, t)(y) =
1
2
y − 1

2
q3(n, t, san,t(x

∗
n,t), x

∗
n,t)

1− 1
4
yq3(n, t, san,t(x∗

n,t), x
∗
n,t)

It is just the composition of the linear mapping y −→ 1
2
y and the Möbius mapping

z =
y − 1

2
q3(n, t, san,t(x

∗
n,t), x

∗
n,t)

1− 1
2
yq3(n, t, san,t(x∗

n,t), x
∗
n,t)

.

Thus, ϕ2(n, t) ◦G(n, x∗
n,t, t, san,t(x

∗
n,t)) ◦ (ϕ1(n, t))

−1 is a degree 2 mapping on the unit disc

Dz(0, 1) with unique superattrating fixed point 0. Thus by complex analysis, we see that

ϕ2(n, t) ◦G(n, x∗
n,t, t, san,t(x

∗
n,t)) ◦ (ϕ1(n, t))

−1(z) = ξz2,

where ξ is a complex number with |ξ| = 1. Thus we have

G(n, x∗
n,t, t, san,t(x

∗
n,t))(y) = ϕ2(n, t)

−1(ξ(ϕ1(n, t)(y))
2). (4.0.6)

Now we prove the following lemma:

Lemma 4.0.11. There exists a constant τ = C(ϵ) > 0 only depending on ϵ, independent of

n and t, such that , if we denote

En,t(α) := Dy(q3(n, t, san,t(x
∗
n,t), x

∗
n,t),

τα

|µ|n
),

then we have the following:

1)

En,t(1) ⊊ Dn(t, san,t(x
∗
n,t), x

∗
n,t),

2)

(G(n, x∗
n,t, t, san,t(x

∗
n,t)))En,t(1) ⊆ En,t(

1

2
) when n large enough.

Proof. For simplicity of writing, we will denote Dn(t, san,t(x
∗
n,t), x

∗
n,t), G(n, x∗

n,t, t, san,t(x
∗
n,t)),

ϕi(n, t), q3(n, t, san,t(x
∗
n,t), x

∗
n,t) and µ by Dn, G, ϕi, q3 and µ respectively in this proof, where

i = 1, 2. Thus by equation (4.0.6) is rewritten as

G(y) = ϕ−1
2 (ξ(ϕ1(y))

2),
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where ϕ2 simply rewrite as

ϕ2(y) =
1
2
y − 1

2
q3

1− 1
4
yq3

.

Consider a disc Dz(0,
τ ′

|µ|
n
2
) in the z-plane with center 0 and radius τ ′

|µ|
n
2
, where τ ′ > 0 with

be determined later. Then we have

(ξϕ2
1)(Dz(0,

τ ′

|µ|n2
)) = Dz(0,

(τ ′)2

|µ|n
).

By Koebe 1
4
Theorem, we have the following:

ϕ−1
1 (Dz(0,

τ ′

|µ|n2
)) ⊇ Dy(q3,

1

4
|(ϕ−1

1 )′(0)| τ ′

|µ|n2
)),

ϕ−1
2 (Dz(0,

(τ ′)2

|µ|n
) ⊆ Dy(q3, 4|(ϕ−1

2 )′(0)|(τ
′)2

|µ|n
)).

Thus we have

G(Dy(q3,
1

4
|(ϕ−1

1 )′(0)| τ ′

|µ|n2
)) = (ϕ−1

2 ◦ ξz2 ◦ ϕ1)(Dy(q3,
1

4
|(ϕ−1

1 )′(0)| τ ′

|µ|n2
))

⊆ (ϕ−1
2 ◦ ξz2)(Dz(0,

τ ′

|µ|n2
))

= (ϕ−1
2 )(Dz(0,

(τ ′)2

|µ|n
))

⊆ Dy(q3, 4|(ϕ−1
2 )′(0)|(τ

′)2

|µ|n
)).

(4.0.7)

Let τ1 =
1
4
|(ϕ−1

1 )′(0)| τ ′

|µ|
n
2
|µ|n = 1

4
|(ϕ−1

1 )′(0)|τ ′|µ|n2 , then formula (4.0.7) is equivalent to the

following:

G(Dy(q3,
τ1
|µ|n

)) ⊆ Dy(q3,
64|(ϕ−1

2 )′(0)|τ 21
|µ|2n|(ϕ−1

1 )′(0)|2
)

The lemma will be proved if the following condition is satisfied for τ1 = τ :

Dy(q3,
64|(ϕ−1

2 )′(0)|τ 21
|µ|2n|(ϕ−1

1 )′(0)|2
) ⊆ Dy(q3,

τ1
2|µ|n

). (4.0.8)

It is equivalent to the following inequality:

64|(ϕ−1
2 )′(0)|τ 2

|µ|2n|(ϕ−1
1 )′(0)|2

⩽
τ

2|µ|n
. (4.0.9)

Since (ϕ−1
2 )′(0) = 1

2
− 1

8
|q3|2, thus it is equivalent to the following inequality:

τ ⩽
|µ|n|(ϕ−1

1 )′(0)|2

16(4− |q3|2)
. (4.0.10)
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Now we give a lower bound estimation of |(ϕ−1
1 )′(0)|.

Since q3 ∈ D̃0(t) ⊂ Dy(0, 2− ϵ), we have

san,t(x
∗
n,t) ∈ h−1

n,t,x∗
n,t
(Dy(0, 2− ϵ)),

and (Dy(0, 2− ϵ), G−1(Dy(0, 2− ϵ)), G) is also a quadratic-like map. By the same method

as in the proof of Lemma 4.0.6, we may have the following estimation on the diameter of

G−1(Dy(0, 2− ϵ)):

1

C4(ϵ)|µ|
n
2

⩽ diam(G−1(Dy(0, 2− ϵ))) ⩽
C4(ϵ)

|µ|n2
,

where C4(ϵ) is a uniform constant only depend on C4 and ϵ. Besides, by Lemma 2.2.5, we

have

Mod(Dn \G−1(Dy(0, 2− ϵ))) ⩾
1

2
Mod(Dy(0, 2) \Dy(0, 2− ϵ)) =

1

4π
log(

2

2− ϵ
) > 0.

Since ϕ1 is univalent on Dn, by Theorem 2.1.2, we have a constant C > 0 depending on

1
4π

log( 2
2−ϵ

), such that for any x, y, z ∈ G−1(Dy(0, 2− ϵ)),

1

C
|ϕ′

1(x)| ⩽
|ϕ1(y)− ϕ1(z)|

|y − z|
⩽ C |ϕ′

1(x)| .

By choosing sequences of points yi, zi ∈ diam(G−1(Dy(0, 2 − ϵ)) such that lim |yi − zi| =

diam(G−1(Dy(0, 2−ϵ)) and using the fact that |ϕ1(y)−ϕ1(z)| ⩽ 2 for any y, z ∈ G−1(Dy(0, 2−

ϵ), we have

|ϕ′
1(q3)| ⩽ C

2

diam(G−1(Dy(0, 2− ϵ))
⩽ 2C4(ϵ)C|µ|

n
2

Since ϕ′
1(q3) =

1
(ϕ−1

1 )′(0)
, we have

|(ϕ−1
1 )′(0)| ⩾ 1

2C4(ϵ)C|µ|n2

Thus for τ = 1
256C4(ϵ)2C2 , we have

|µ|n|(ϕ−1
1 )′(0)|2

16(4− |q3|2)
⩾

1

64C4(ϵ)2C2(4− |q3|2)
> τ
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Thus τ1 = τ satisfies inequality (4.0.10). Thus we have

G(Dy(q3,
τ

|µ|n
)) ⊆ Dy(q3,

64|(ϕ−1
2 )′(0)|τ 2

|µ|2n|(ϕ−1
1 )′(0)|2

) ⊆ Dy(q3,
τ

2|µ|n
).

Let C(ϵ) = 1
256C4(ϵ)2C2 , we can see that it only depends on ϵ, independent of n and t. This

finishes the proof.

Since q3(n, t, san,t(x
∗
n,t), x

∗
n,t) ∈ Dn(t, a, x

∗
n,t) ⊂ Dy(0, 2− ϵ) and by equation ( 4.0.4), we

have

|πyF
N+n
t,a (Holn,t,san,t(x∗

n,t),x⃗
(y))− πyF

N+n
t,a (Holn,t,san,t(x∗

n,t),x
∗
n,t
(y))| ⩽ 2

3
ϵ

for every y ∈ D̃n(t, a) and every x⃗ ∈ Dx⃗. By Proposition 2.2.4, we conclude that

(Dy(0, 2), Dn(t, a, x⃗), G(n, x⃗, t, san,t(x
∗
n,t)))

is quadratic-like for every x⃗ ∈ Dx⃗, i.e.,

san,t(x
∗
n,t) ∈ An,t(x⃗).

Now we prove the following lemma:

Lemma 4.0.12. Let Hn,t(κ) be a polydisc in the x⃗-plane centered at 0⃗ with radius κ|λ|n.

Then there exist a constant κ > 4C1 independent of n and t such that

F n+N
t,san,t(x∗

n,t)
(Hn,t(κ)× En,t(1)) ⊆ (Hn,t(

1

2
κ)× En,t(

3

4
)) when n large enough.

It then implies that

(X1(n, t, san,t(x
∗
n,t), x

∗
n,t), q3(n, t, san,t(x

∗
n,t), x

∗
n,t))

is a sink.

Proof. By equation (4.0.3), we have

|πyF
N+n
t,san,t(x∗

n,t)
(Holn,t,san,t(x∗

n,t),x⃗
(y))− πyF

N+n
t,san,t(x∗

n,t)
(Holn,t,san,t(x∗

n,t),x
∗
n,t
(y))|

⩽ |πyF
N+n
t,san,t(x∗

n,t)
(Holn,t,san,t(x∗

n,t),x⃗
(y))− πyF

N+n
t,a ((⃗0, y))|+

|πyF
N+n
t,a ((⃗0, y))− πyF

N+n
t,san,t(x∗

n,t)
(Holn,t,san,t(x∗

n,t),x
∗
n,t
(y))|

= O(|λµ|n)

69



for every x⃗ ∈ Dx⃗ and y ∈ D̃n(t, a). By condition (F3) in Definition 2.4.4, for n large enough,

we have

|πyF
N+n
t,san,t(x∗

n,t)
(Holn,t,san,t(x∗

n,t),x⃗
(y))− πyF

N+n
t,san,t(x∗

n,t)
(Holn,t,san,t(x∗

n,t),x
∗
n,t
(y))|

= O(
1

|µ|2n
)

⩽
τ

4|µ|n

Thus we have

G(n, t, san,t(x
∗
n,t), x⃗)(En,t(1)) ⊆ En,t(

3

4
)

Besides, by the normalization of the problem, when n large enough we can see that

πx⃗F
N
t,san,t(x∗

n,t)
(Hn,t(κ)× En,t(1)) ⊆ πxD2.

Thus by lemma 3.0.5 we have

πx⃗F
N+n
t,san,t(x∗

n,t)
(Hn,t(κ)× En,t(1)) ⊆ Hn,t(2C1).

Choose a constant κ such that 1
2
κ > 2C1. Then we have

F n+N
t,san,t(x∗

n,t)
(Hn,t(κ)× En,t(1)) ⊆ (Hn,t(

1

2
κ)× En,t(

3

4
))

which finish the proof.

Step 4. In this part we finish the proof of Theorem 4.0.1. Now choose η > 0 small enough,

consider a disc around san,t(x
∗
n,t) in An(x

∗
n,t) with radius η

|µ|2n , denote it as Da(san,t(x
∗
n,t),

η
|µ|2n ).

Then for every a ∈ Da(san,t(x
∗
n,t),

η
|µ|2n ), by Taylor expansion of FN

t,a(x⃗, y) on (x⃗, y, a)

parameter, we know the following:

πyF
N
t,a(Hn,t(κ)× En,t(1)) is in

Cη

|µ|2n
-neighbourhood of

πyF
N
t,san,t(x∗

n,t)
(Hn,t(κ)× En,t(1))

where C > 0 is some constant uniformly away from 0.
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Besides by the lemma in Appendix, we know

πyF
−n
t,san,t(x∗

n,t)
(Hn,t(

1

2
κ)× En,t(

3

4
)) is in O(

n|a− san|
|µ|n

) = O(
n

|µ|3n
)

-neighbourhood of πyF
−n
t,a (Hn,t(

1

2
κ)× En,t(

3

4
)).

Thus if we choose η small enough such that O( n
|µ|3n ) +

Cη
|µ|2n ⩽ τ

8C1|µ|2n . Then since

πyF
N
t,san,t(x∗

n,t)
(Hn,t(κ)× En,t(1)) ⊆ πyF

−n
t,san,t(x∗

n,t)
(Hn,t(

1

2
κ)× En,t(

3

4
)),

we find

πyF
N
t,a(Hn,t(κ)× En,t(1)) is in

τ

8C1|µ|2n
-neighbourhood of

πyF
−n
t,a (Hn,t(

1

2
κ)× En,t(

3

4
)).

Thus by lemma 3.0.5, we have

πyF
N+n
t,a (Hn,t(κ)× En,t(1)) is in

τ

8|µ|n
-neighbourhood of

πy(Hn,t(
1

2
κ)× En,t(

3

4
)) = En,t(

3

4
),

i.e.,

πyF
N+n
t,a (Hn,t(κ)× En,t(1)) ⊆ En,t(

7

8
).

Thus by lemma 3.0.5 we have

πx⃗F
N+n
t,a (Hn,t(κ)× En,t(1)) ⊆ Hn,t(2C1) ⊆ Hn,t(

3

4
κ)

by the choice of κ. Overall, we have

F n+N
t,a (Hn,t(κ)× En,t(1)) ⊆ (Hn,t(

3

4
κ)× En,t(

7

8
)).

Thus there exists a unique sink of mapping F n+N
t,a inside Hn,t(κ) × En,t(1). Since x∗

n,t is

holomorphically depending on t, then if we define the mapping

an : Dt(r) −→ Da(r)
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by

an(t) := san,t(x
∗
n,t),

we can see that an(t) is a holomorphic function. This finish the proof of Proposition 4.0.1.
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Chapter 5

The creation and properties of

secondary tangency

5.1 The creation of secondary tangency

In this section, we will create a map bn,k,i : Tµ(µmin, µmax)× Tλ(λmin, λmax)× U −→ Da(2)

such that when parameter are on the graph of this map, FN+θn+N+n+N+k will exhibit the a

new homoclinic tangency. We will show this result by construction in several steps, again, we

fix a t = (µ, λ, τ).

Step 1. First of all, we will consider iterations with iternery N + θn. We begin with the

following lemma:

Lemma 5.1.1. There exists a constant χ > 0 such that, for n > 2χ, we have

hk,t(An) ⊆ Dy(0, 2)\D0(t, 0)

for every k < n− χ. Especially, when n > χ
1−θ

, we have

θn < n− χ,

thus

hθn,t(An) ⊆ Dy(0, 2)\D0(t, 0).
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Proof. We know that Dy(0, 1) ⊂ Dy(0, 2)\D0(t, 0). By inequality (4.0.2), for a ∈ An, we have

|hk,t(a)−
hn,t(a)

µn−k
| = |

n−1∑
i=k

(
hi,t(a)

µi−k
− hi+1,t(a)

µi+1−k
)|

⩽
n−1∑
i=k

|hi,t(a)

µi−k
− hi+1,t(a)

µi+1−k
|

< 4ϵ
n−1∑
i=k

| 1
µ
|i−k

< 4ϵ
∞∑
i=0

| 1
µ
|i

=
4ϵ|µ|
|µ| − 1

Thus we have

|hk,t(a)| < |hn,t(a)

µn−k
|+ 4ϵ|µ|

|µ| − 1
⩽

2

|µ|n−k
+

4ϵ|µ|
|µ| − 1

⩽
2

µn−k
min

+
4ϵµmin

µmin − 1

Let

χ =
ln(2− 2

µmin
)− ln(1− 1

µmin
− 4ϵ)

lnµmin

(5.1.1)

be a positive constant. Then one can check that for any s > χ, we have

2

µs
min

+
4ϵµmin

µmin − 1
< 1.

Thus when n− k > χ, i.e., k < n− χ, we have

|hk,t(a)| <
2

µn−k
min

+
4ϵµmin

µmin − 1
< 1.

Thus we have

hk,t(An) ⊂ Dy(0, 1) ⊊ Dy(0, 2)\D0(t, 0).

Step 2. Thus when a ∈ An, consider the intersection of FN+θn
t,a (Dθn(t, a)) with Dx⃗ ×D0(t, 0).

Then πy is degree 2 covering map with no branched points onto D0(t, 0). Let Lθn(t, a) be one
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of leaves of this covering, then Lθn(t, a) can be viewed as the graph of a (m− 1) vector-valued

holomorphic function lθn,t,a : D0(t, 0) −→ Dx⃗, i.e.,

Lθn(t, a) = {(lθn,t,a(z), z)|z ∈ D0(t, 0)}.

By Lemma 3.0.5, we have

dist(⃗0, πx⃗(Lθn(t, a))) ⩽ 2C1|λ|θn.

By the same argument of equation (4.0.3), we have

|πyF
N+n
t,a (lθn,t,a(y), y)− πyF

N+n
t,a ((⃗0, y))| = O(|λθµ|n)

where y ∈ D0(t, 0). Since |λθµ| < 1 and D̃n(t, a) ⊂ D0(t, 0), for n large enough, we have

|πyF
N+n
t,a (lθn,t,a(y), y)− πyF

N+n
t,a ((⃗0, y))| < 1

3
ϵ

where y ∈ D̃n(t, a). Since

(Dy(0, 2 + ϵ), D̃n(t, a), πyF
N+n
t,a )

is a quadratic-like map, by proposition 2.2.4, and by the same argument as in the proof of

Lemma 4.0.6, there exists a simply connected domain there exists simply connected domains

Tθ,n(t, a) ⊂ D̃n(t, a) and Aθn,n ⊂ Ãn such that

(Dy(0, 2), Tθ,n(t, a), πyF
N+n
t,a (lθn,t,a(y), y))

is a quadratic-like map of y variable with critical value v(θn, n, t, a), where a ∈ Aθn,n. Besides,

there exists a univalent map

hθn,n,t : Aθn,n −→ Dy(0, 2)

defined by hθn,n,t(a) = v(θn, n, t, a).

By Step 1 and the definition of Lθn(t, a), we know there exists a simply connected domain

S̃θ,n(t, a) ⊂ Dθn(t, a) such that πyF
N+θn
t,a is a biholomorphic map from S̃θ,n(t, a) to Tθ,n(t, a)

and FN+θn
t,a (Sθ,n(t, a)) is a subset of Lθn(t, a).

75



Thus we have the quadratic-like map

(Dy(0, 2), S̃θ,n(t, a), πyF
N+n
t,a (FN+θn

t,a ))

with same critical value v(θn, n, t, a) and function hθn,n,t defined above.

Step 3. For n > k ⩾ 0, let Uk be a neighborhood of D̃k(t, 0) such that Uk ⊂ Uk−1 and

FN+k
t,a (Uk) ⊋ Dy(0, 2 + 2ϵ), for a ∈ Ãn. We have the estimation

diam(Uk) ≍
1

|µ| k2
.

Denote B(k, θ, n, t) to be

B(k, θ, n, t) = h−1
θn,n,t(Uk).

We have the following estimations:

Lemma 5.1.2. When n large enough, we have

diam(B(k, θ, n, t)) ≍ 1

|µ|n+k
. (5.1.2)

Besides, there exists an uniform constant C > 0 such that when k is large enough, we have

1

C|µ|n
< |a| < C

|µ|n
(5.1.3)

for every a ∈ B(k, θ, n, t).

Proof. The first estimation follows from the distortion theorem 2.1.2. Since hθn,n,t(0) = 0,

when k large enough, there exist some ϵ ∈ (0, 1), such that

Uk ⊂ D(0, 1 + ϵ) \D(0, 1− ϵ). (5.1.4)

Then by distortion theorem 2.1.2, we can see the second estimation.

When a ∈ B(k, θ, n, t), we know that

(Uk, (πyF
N+n
t,a (FN+θn

t,a ))−1(Uk), πyF
N+n
t,a (FN+θn

t,a ))

76



is a proper map of degree 2, and we denote (πyF
N+n
t,a (FN+θn

t,a ))−1(Uk) by Sk,θ,n(t, a).

We are interested in the map πyF
k+N
t,a ◦FN+n

t,a ◦FN+θn
t,a on Sk,θ,n(t, a). First, let us analyze

the map πyF
k+N
t,a ◦ πyF

N+n
t,a ◦ FN+θn

t,a on Sθ,n(t, a).

By above discussion and Lemma 4.0.4, we know that for a ∈ B(k, θ, n, t),

(πyF
k+N
t,a ◦ πyF

N+n
t,a ◦ FN+θn

t,a (Sk,θ,n(t, a)), Sk,θ,n(t, a), πyF
k+N
t,a ◦ πyF

N+n
t,a ◦ FN+θn

t,a )

is a polynomial-like map of degree 4. It has 3 critical points and critical values (counting

with the multiplicities), the critical values are πyF
N+k
t,a (v(θn, n, t, a)) and v(k, t, a). As long

as v(θn, n, t, a) ̸= q3(k, t, a), we have πyF
N+k
t,a (v(θn, n, t, a)) ̸= v(k, t, a).

When a ∈ Ãn, choose a simply-connected domain Un, such that the following holds:

D̃n(t, a) ⊂ Un

and

diam(Un) = O(
1

|µ|n2
).

By previous discussion, we know that

q3(k, t, a) ∈ Un

where 0 ⩽ k ⩽ n, a ∈ Ãn. Now we prove the following lemma for πyF
N+k
t,a on Uk:

Lemma 5.1.3. There exist a constant K0 > 0 and an integer β > 0, such that for any

k < n− β, z ∈ Dy(0, 2 + ϵ)\Dy(0,
K0

|µ|n−k ), there exists two univalent functions

c1(k, z), c2(k, z) : B(k, θ, n, t) −→ Uk,

such that

πyF
N+k
t,a (⃗0, ci(k, z)(a)) = z,

where i = 1, 2. Their images ci(k, z)(B(k, θ, n, t)) are strictly inside Uk. Moreover, for any

simply-connected domain T inside Dy(0, 2 + ϵ)\Dy(0,
K0

|µ|n−k ), the maps:

z −→ ci(k, z)(a)

are univalent on T for any a ∈ B(k, θ, n, t).
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Proof. Choose a K0 > 0 such that

FN+k
t,a (Un) ⊂ Dy(0,

K0

|µ|n−k
)

We choose β > 0, such that

Dy(0,
K0

|µ|n−k
) ⊂ Dy(0, 1)

for k < n− β. Now for any z ∈ Dy(0, 2 + ϵ)\Dy(0,
K0

|µ|n−k ), consider the equation

πyF
N+k
t,a ((⃗0, y)) = z,

where a ∈ B(k, θ, n, t). Then it has 2 different solutions on y variable y = c1 and y = c2. In

this situation, we have

∂πyF
N+k
t,a

∂y

∣∣∣∣
y=ci

̸= 0,

where i = 1, 2, then by implicit function theorem, we have

y = ci(k, z)(a)

are well defined holomorphic functions on the set B(k, θ, n, t), where i = 1, 2.

For any fixed z ∈ Dy(0, 2 + ϵ)\Dy(0,
K0

|µ|n−k ), we have that ci is univalent on a-variable

because

∂ci
∂a

= −
∂πyF

N+k
t,a

∂a
/
∂πyF

N+k
t,a

∂y
̸= 0.

When y ∈ ∂Uk, since FN+k
t,a (Uk) ⊋ Dy(0, 2 + 2ϵ), we know that FN+k

t,a (∂Uk) lies outside of

Dy(0, 2 + 2ϵ). Thus ci(k, z)(B(k, θ, n, t)) are strictly inside Uk.

Let T be a simply-connected domain inside Dy(0, 2 + ϵ)\Dy(0,
K0

|µ|n−k ), for any fixed

a ∈ B(k, θ, n, t), again we consider the equation

πyF
N+k
t,a ((⃗0, y)) = z

where z ∈ T . For different z, we must have different y, then the conclusion follows easily.

Now we only consider k satisfying 0 ⩽ k < n− β.
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Given z ∈ Dy(0, 2 + ϵ)\Dy(0,
K0

|µ|n−k ), for i = 1, 2, define the maps:

c̃i(k, z) : Uk −→ Uk

by

c̃i(k, z)(y) = ci(k, z)(h
−1
θn,n,t(y))

By lemma 5.1.3, c̃i(k, z)(Uk) lies strictly inside Uk. Thus by theorem 2.3.1, there exist an

unique fixed point yi(k, z) such that

c̃i(k, z)(yi(k, z)) = yi(k, z).

Moreover, yi(k, z) depends holomorphically on z-variable when z lies in any any simply-

connected domain inside Dy(0, 2 + ϵ)\Dy(0,
K0

|µ|n−k ). Denote b̃i(k)(z) = h−1
θn,n,t(yi(k, z)). Thus

we have

πyF
N+k

t,̃bi(k)(z)
(v(θn, n, t, b̃i(k)(z))) = πyF

N+k

t,̃bi(k)(z)
hθn,n,t(̃bi(k)(z))

= πyF
N+k

t,̃bi(k)(z)
(yi(k, z))

= πyF
N+k

t,̃bi(k)(z)
(c̃i(k, z)(yi(k, z)))

= πyF
N+k

t,̃bi(k)(z)
(ci(k, z)(̃bi(k)(z))

= z.

It is then easy to see that b̃i(k)(z) is an univalent function on z when z lies in any any

simply-connected domain inside Dy(0, 2 + ϵ)\Dy(0,
K0

|µ|n−k ).

Now we goes back to the map πyF
N+k
t,a ◦ FN+n

t,a ◦ FN+θn
t,a . Since for any y ∈ Sk,θ,n(t, a), we

have

|πx⃗F
N+n
t,a ◦ FN+θn

t,a (y)| ⩽ 2C1|λ|n.

Thus we have

|πyF
N+k
t,a ◦ FN+n

t,a ◦ FN+θn
t,a (y)− πyF

N+k
t,a ◦ πyF

N+n
t,a ◦ FN+θn

t,a (y)| ⩽ C4|λ|n|µ|k. (5.1.5)
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where C4 is a positive constant. Denote

TSk,θ,n(t, a) = (πyF
N+k
t,a ◦ FN+n

t,a ◦ FN+θn
t,a )−1(Dy(0, 2 + ϵ))

When n large enough such that 100C4|λ|n|µ|n−β ⩽ ϵ, by proposition 2.2.4, we know that

(Dy(0, 2 + ϵ), TSk,θ,n(t, a), πyF
N+k
t,a ◦ FN+n

t,a ◦ FN+θn
t,a )

is a polynomial-like map of degree 4, where a ∈ B(k, θ, n, t). We are interested in the

critical value of the map πyF
N+k
t,a ◦ FN+n

t,a ◦ FN+θn
t,a corresponding to the critical value

πyF
N+k
t,a ((⃗0, v(θn, n, t, a))) of the map πyF

N+k
t,a ◦πyF

N+n
t,a ◦FN+θn

t,a , we denote it as sv(k, θ, n, t, a).

Denote

B̃k,θn,n(t) = h−1
θn,n,t(Uk\Un).

Consider the disc Dy(q2(t), 10C4|λ|n|µ|k), then it is a simply-connected domain inside Dy(0, 2+

ϵ)\Dy(0,
K0

|µ|n−k ). We conclude

yi(k, z) ∈ Uk\Un

for z ∈ Dy(q2(t), 10C4|λ|n|µ|k).

Hence b̃i(k)(z) is univalent on Dy(q2(t), 10C4|λ|n|µ|k) and

b̃i(k)(Dy(q2(t), 10C4|λ|n|µ|k) ⊂ B̃k,θn,n(t).

For a ∈ b̃i(k)(Dy(q2(t), 10C4|λ|n|µ|k), denote

Pk(t, a) ⊂ (πyF
N+k
t,a ◦ πyF

N+n
t,a ◦ FN+θn

t,a )−1(Dy(q2(t), 10C4|λ|n|µ|k)

be the component containing the critical point. Then Pk(t, a) is homeomorphic to a disk. We

have following lemma:

Lemma 5.1.4. For a ∈ b̃i(k)(Dy(q2(t), 5C4|λ|n|µ|k), let

P̂k(t, a) = (πyF
N+k
t,a ◦ FN+n

t,a ◦ FN+θn
t,a

∣∣
Pk(t,a)

)−1(Dy (̃b
−1
i (k)(a), 3C4|λ|n|µ|k))
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then P̂k(t, a) ⊂ Pk(t, a) homeomorphic to a disk and πyF
N+k
t,a ◦ FN+n

t,a ◦ FN+θn
t,a is a proper

map of degree 2 from P̂k(t, a) onto Dy (̃b
−1
i (k)(a), 3C4|λ|n|µ|k). Thus sv(k, θ, n, t, a) is in the

image, i.e., we have

| sv(k, θ, n, t, a)− (̃bi(k))
−1(a)| ⩽ 2C4|λ|n|µ|k (5.1.6)

Let SBi(k, t) ⊂ b̃i(k)(Dy(q2(t), 5C4|λ|n|µ|k) be the a parameters such that sv(k, θ, n, t, a) ∈

Dy(q2(t), 2C4|λ|n|µ|k). Then we know SBi(k, t) is homeomorphic to a disk and sv(k, θ, n, t, a)

is univalent on a-variable from SBi(k, t) onto Dy(q2(t), 2C4|λ|n|µ|k) for each t.

Proof. We know that πyF
N+k
t,a ◦ πyF

N+n
t,a ◦ FN+θn

t,a is a proper map of degree 2 from Pk(t, a)

onto Dy(q2(t), 10C4|λ|n|µ|k), where

a ∈ b̃i(0)(Dy(q2(t), 10C4|λ|n|µ|k)).

When a ∈ b̃i(k)(Dy(q2(t), 5C4|λ|n|µ|k)), we know that

Dy (̃b
−1
i (k)(a), 3C4|λ|n|µ|k) ⊂ Dy(q2(t), 9C4|λ|n|µ|k).

By inequality (5.1.5) and proposition 2.2.3, we know that P̂k(t, a) homeomorphic to a disk and

πyF
N+k
t,a ◦FN+n

t,a ◦FN+θn
t,a is a proper map of degree 2 from P̂k(t, a) ontoDy (̃b

−1
i (0)(a), 3C4|λ|n|µ|k).

Besides, by proposition 2.2.3, we also have

| sv(k, θ, n, t, a)− (̃bi(k))
−1(a)| ⩽ 2C4|λ|n|µ|k (5.1.7)

Then again by proposition 2.2.3, we know SBi(k, t) is homeomorphic to a disk and sv(k, θ, n, t, a)

is univalent on a-variable from SBi(k, t) onto Dy(q2(t), 2C4|λ|n|µ|k) for each t.

Definition 5.1.1. Denote bn,k,i(t) be the point in SBi(k, t) such that

sv(k, θ, n, t, bn,k,i(t)) = q2(t),

i.e., FN+θn+N+n+N+k
t,bn,k,i(t)

has a secondary tangency. By lemma 5.1.4, for any k < n− β, we know

that bn,k,i(t) is holomorphically depending on t for t ∈ Dt(τ). Especially, by lemma 5.1.2,
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there exist uniform constant C > 0, such that when n large enough, for k large enough,

i = 1, 2 and t ∈ T (µmin, µmax), we have

1

C|µ|n
< |bn,k,i(t)| <

C

|µ|n
. (5.1.8)

Step 4. Denote Pr ∂
∂y
DFN

t,a(
∂

∂x1
)
∣∣∣
(x⃗,y)

be the ∂
∂y

component of DFN
t,a(

∂
∂x1

)
∣∣∣
(x⃗,y)

at (x⃗, y). Since

Pr ∂
∂y
DFN

t,a(
∂

∂x1
)
∣∣∣
q3(t)

is non-zero, there exist an neighborhood of q3(t), denoted by S, such

that

|Pr ∂
∂y
DFN

t,a(
∂

∂x1

)
∣∣∣
(x⃗,y)

| > C > 0 (5.1.9)

for every point (x⃗, y) ∈ S. For n large enough, we have Uθn ⊂ S.

Now we consider the case when a ∈ Da(an(t),
η

|µ|2n ), i.e., when a is in the parameter

discs which exhibit a periodic sink. Choose an a in this disc, then consider the map

(Dy(0, 2), Dn(t, a), πyF
N+n
t,a ), we know the critical value v(n, t, a) ∈ Un. Thus we know there

exist a positive constant e > 0 such that Dy(v(n, t, a), e) ⊊ S ⊂ Dy(0, 2). Denote ϕ(y)

be the affine map transforming Dy(v(n, t, a), e) to ∆ with v(n, t, a) to the origin of ∆, i.e.,

ϕ(y) = 1
e
(y − v(n, t, a)).

Denote ξ(y) be the uniformization map from (πyF
N+n
t,a )−1(Dy(v(n, t, a), e)) to ∆ such that

ξ(q3(n, t, a)) = 0. Then ϕ ◦ πyF
N+n
t,a ◦ ξ−1 is a holomorphic map from ∆ to itself preserving

the boundary. 0 is the only zero and it is of degree 2. Thus ϕ ◦ πyF
N+n
t,a ◦ ξ−1 = uz2 where

|u| = 1.

Denote the ϕ ◦ πyF
N+n
t,a (lθn,t,a(−),−) ◦ ξ−1 be g(z), then it is a holomorphic map from ∆

to C.

Lemma 5.1.5. For n large enough , there exist an uniform constant C > 0 such that

1

C
|λθµ|n < |πyF

N+n
t,a (lθn,t,a(y), y)− πyF

N+n
t,a ((⃗0, y))| < C|λθµ|n.

where y ∈ Dy(v(n, t, a), e).

Proof. The upper bound part is already proven in the previous discussions. Now we prove for

the lower bound. When n large enough, we know that FN
t,a(Dθn(t, a)) are inside JK0 . Thus

82



by lemma 3.0.5, we have

Lθn(t, a)) ⊂ JγθnK0

and

dist(⃗0, πx⃗(Lθn(t, a))) ⩾ 2C1(K0)|λ|θn.

Thus when n large enough, by condition (5.1.9), we have

FN
t,a(Lθn(t, a))) ⊂ JK0

and

|πyF
N
t,a(lθn,t,a(y), y)− πyF

N
t,a((⃗0, y))| > 2CC1(K0)|λ|θn.

Furthermore, there exist an ι > 0, such that

FN
t,a(lθn,t,a(y), y) ∈ V u(FN

t,a((⃗0, y)); ι)

Then by lemma 3.0.7, their exist an uniform constant C > 0 such that

|πyF
N+n
t,a (lθn,t,a(y), y)− πyF

N+n
t,a ((⃗0, y))| > 1

C
|λθµ|n.

Thus we have

1

Ce
|λθµ|n < |g(z)− uz2| < C

e
|λθµ|n.

Then by part (2) of lemma 2.2.1, for the case ϵ = C
e
|λθµ|n, t = 1

C2 . Since ϵ goes to zero when

n getting larger. there exist α > 0 such that t∗(ϵ, α) > 1
C2 . Thus we have the lower bound:

|ϕ ◦ hθn,n,t(a) ◦ ξ−1| > α
1

Ce
|λθµ|n.

Then we get our desired estimation:

Lemma 5.1.6. For a ∈ Da(an(t),
η

|µ|2n ),

α
1

C
|λθµ|n < |hθn,n,t(a)− hn,t(a)| < 2C|λθµ|n.

Furthermore, by condition 2.5.1, lemma 3.0.5 and 3.0.7, we can conclude that for k < n,

1

C
|λθµ|2n|µ|k < |FN+k

t,a (hθn,n,t(a))− FN+k
t,a (hn,t(a))| < C|λθµ|2n|µ|k.
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Since hn,t(a) ∈ Un, we know that hθn,n,t(a) ∈ U0\Un, we have

|sv(0, θ, n, t, a)| < |sv(1, θ, n, t, a)| < · · · < |sv(n− 1, θ, n, t, a)| < |sv(n, θ, n, t, a)|

and

|sv(0, θ, n, t, a)| < 2 + ϵ < |sv(n, θ, n, t, a)|.

Definition 5.1.2. Denote n0 < n be the integer such that

sv(n0, θ, n, t, a) ∈ Dy(0, 2 + ϵ),

sv(n0 + 1, θ, n, t, a) /∈ Dy(0, 2 + ϵ).

Lemma 5.1.7. For a ∈ Da(an(t),
η

|µ|2n ), when n large enough, there exist constant C ′ > 0

independent of n such that

1

C ′ |λ
θµ|2n|µ|k < | sv(k, θ, n, t, a)| < C ′|λθµ|2n|µ|k (5.1.10)

for 0 < k < n. Furthermore, we have estimation on n0:

n0 = (
−2 log(|λθµ|)

log(|µ|)
)n+O(1).

Proof. For k < n, we have the following estimations:

| sv(k, θ, n, t, a)− FN+k
t,a (hθn,n,t(a))| < 2C4|λ|n|µ|k

by lemma 5.1.4,

1

C
|λθµ|2n|µ|k < |FN+k

t,a (hθn,n,t(a))− FN+k
t,a (hn,t(a))| < C|λθµ|2n|µ|k

by lemma 5.1.6, and

|FN+k
t,a (hn,t(a))| < C| 1

µn−k
|

by the choice of a. Since we have

|λ|n|µ|k

|λθµ|2n|µ|k
=

(
|λ|1−2θ

|µ|2

)n

| 1
µn−k |

|λθµ|2n|µ|k
=

(
1

|λ2θµ3|

)n
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where

|λ|1−2θ

|µ|2
,

1

|λ2θµ3|
< 1.

Thus when n large enough, there exist a uniform constant C ′ > 0 such that the following two

inequality holds:

| sv(k, θ, n, t, a)| ⩽ | sv(k, θ, n, t, a)− FN+k
t,a (hθn,n,t(a))|+ |FN+k

t,a (hθn,n,t(a))− FN+k
t,a (hn,t(a))|

+ |FN+k
t,a (hn,t(a))|

< 2C4|λ|n|µ|k + C|λθµ|2n|µ|k + C| 1

µn−k
|

< C ′|λθµ|2n|µ|k,

| sv(k, θ, n, t, a)| ⩾ |FN+k
t,a (hθn,n,t(a))− FN+k

t,a (hn,t(a))| − | sv(k, θ, n, t, a)− FN+k
t,a (hθn,n,t(a))|

− |FN+k
t,a (hn,t(a))|

>
1

C
|λθµ|2n|µ|k − 2C4|λ|n|µ|k − C| 1

µn−k
|

>
1

C ′ |λ
θµ|2n|µ|k.

Thus by the definition of n0, we have

1

C ′ |λ
θµ|2n|µ|n0 < |sv(n0, θ, n, t, a)| < 2 + ϵ

< |sv(n0 + 1, θ, n, t, a)| < C ′|λθµ|2n|µ|n0+1.

Then we have

2 + ϵ

C ′|µ|
< |λθµ|2n|µ|n0 < (2 + ϵ)C ′.

After taking logarithm and take n large enough, we have

n0 = (
−2 log(|λθµ|)

log(|µ|)
)n+O(1).
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5.2 Finite time Collect-Eckmann condition

In this section we will prove that for a in a neighborhood of bn,k,i(t), there are points in the

phase space satisfying the finite time Collect-Eckmann condition.

Let us consider a in a neighborhood of bn,k,i(t), now sv(k, θ, n, t, a) is the critical value of

the map πyF
N+θn+N+n+N+k
t,a we denote the critical point constructed as q′1, then denote the

following forward orbits of q′1:

z1 = FN (q′1)

z2 = F θn (z1)

z3 = FN (z2)

z4 = F n (z3)

z5 = FN (z4)

z6 = F k (z5)

(5.2.1)

For any 0 ⩽ l ⩽ k, we compute the differential matrix of F n+N+l at z3:

DF n+N+l =

 a11(l)λ
lµl a12(l)λ

lµl

a21(l)
1

µk−l a22(l)µ
l


 A B

C D∆xz4 + 2Q∆yz4


 a11(n)λ

nµn a12(n)λ
nµn

a21(n) a22(n)µ
n


(5.2.2)

Thus we have

DF n (z3)

 v1

1

 =

 a11(n)λ
nµn a12(n)λ

nµn

a21(n) a22(n)µ
n


 v1

1


=

 (a11(n)v1 + a22(n))λ
nµn

a21(n)v1 + a22(n)µ
n


(5.2.3)

and let us denote it as

 Lx (v1)

Ly (v1)

. Then the two components have the following estimations

when |v1| < 2(ϕ1 + ϕ2 + 1) and n large enough:

|Lx (v1) | = O(|λµ|n) (5.2.4)
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and there exists 1 < L1 < L2 such that

L1|µ|n < |Ly (v1) | < L2|µ|n. (5.2.5)

Since we have ∆xz4 = O(|λ|n) and there exists positive constants L3, L4 such that

L3

|µ|n2
< |∆yz4| <

L4

|µ| k2
(5.2.6)

Then by computation, we have the following

DF n+N (z3)

 v1

1

 =

 ALx (v1) +BLy (v1)

CLx (v1) + (D∆xz4 + 2Q∆yz4)Ly (v1)

 . (5.2.7)

We can see that

DF n+N (z3)

 v1

1


x

= O(|µ|n), (5.2.8)

and

DF n+N (z3)

 v1

1


y

≍ ∆yz4|µ|n. (5.2.9)

If we go forward in l steps, we have

DF n+N+l (z3)

 v1

1


x

=[a11(l)(ALx (v1) +BLy (v1))

+ a12(l) (CLx (v1) + (D∆xz4 + 2Q∆yz4)Ly (v1))](|λµ|)l

and

DF n+N+l (z3)

 v1

1


y

=a21(l)
1

µk−l
(ALx (v1) +BLy (v1))

+ a22(l)µ
l(CLx (v1) + (D∆xz4 + 2Q∆yz4)Ly (v1) .

Thus we have

|DF n+N+l (z3)

 v1

1


x

| = O((|λµ|)l|µ|n) (5.2.10)
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and

|DF n+N+l (z3)

 v1

1


y

| ≥ 2|Q||∆yz4 ||a22(k)|L1|µ|n+l − L|µ|n+l−k. (5.2.11)

where L a positive constant. Thus we have the following lemma:

Lemma 5.2.1. There exists constant C > 0 such that, when |∆yz4| > C 1
|µ|min{n/2,k} , for any

m− 1 dimensional vector v1 with |v1| < 2(ϕ1 + ϕ2 + 1) and 0 ⩽ l ⩽ k, we have

|DF n+N+l (z3)

 v1

1


y

| > (L+ 1)|µ|n+l−k. (5.2.12)

More concretely ,we have

|DF n+N+l (z3)

 v1

1


y

| ≍ |∆yz4||µ|n+l. (5.2.13)

Besides there exist some constant C ′ > 0 such that DF n+N+k (z3)

 v1

1

 are in the cone

{(v⃗x, vy)||v⃗x| < C ′(|λµ|)k|vy|}, and when k large enough, we have C ′(|λµ|)k < ϕ1.

Since by the construction of z4, we know z4 ∈ Uk\Un, and then we can find a simply-

connected domain Uc between Uk and Un such that any point z ∈ Uk\Uc, we have |∆z| >

C 1
|µ|min{n/2,k} , and we denote

CE(n, k) := h−1
θn,n,t(Uk\Uc).

It is an annulus with same modulus with Uk\Uc, and when a ∈ CE(n, k), inequality 5.2.12

holds. And this would be the neighborhood of bn,k,i(t) we now taking. By previous construc-

tions, we can find a number β ∈ (0, 1) such that

k

n
< β (5.2.14)

for all admissible (n, k) pairs when n large enough. Then we let

ρ = |µmin|min{ 2
3
(1−β),α}, (5.2.15)
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where α ∈ (0, 1) is a constant satisfies

α <
1− M

n

log 1
s

log |µ|min

1 + k
n
+ N+M

n

(5.2.16)

for any

n > 2N + 2

(
1 +

log 1
s

log |µ|min

)
M. (5.2.17)

Thus when (5.2.17) holds, we have

ρ ⩽ min
n≥2N,k,0⩽l⩽k,µ

|µ|
n+l−k
n+N+l (5.2.18)

and

|µ|nsl ⩾ ρn+N+k+l (5.2.19)

for any 0 ⩽ l ⩽ M . Now we can state our key lemma:

Lemma 5.2.2. Let any a ∈ CE(n, k), integer T ∈ (0, n+N + k], there exist constant C > 1,

such that for any m− 1 dimensional vector v1 with |v1| < 2(ϕ1 + ϕ2 + 1), we have

||DF T (z3)

 v1

1

 || ≥ |DF T (z3)

 v1

1


y

| > CρT . (5.2.20)

when n large enough. Furthermore, when z6 are in the neighborhood of q2 as in the condition

(1) states, then we can extend (5.2.20) further to the case T ∈ [n+N + k, n+N + k +M ].

Proof. By inequality 5.2.12 and the fact 5.2.18, we know condition (5.2.20) is true for

T ∈ [n+N, n+N + k]. And for T ∈ (0, n], by lemma 3.0.8, we have

||DF T (z3)

 v1

1

 || ≥ |DF T (z3)

 v1

1


y

| > C1|µ|T > C ′
1ρ

T (5.2.21)

with C1 > 0 and C ′
1 > 1 when n large enough. The last part of T is when T ∈ [n+1, n+N−1],

when n large enough such that

ρn+N

|µ|n
< sN

C ′
1

C1

(5.2.22)
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We have that

||DF T (z3)

 v1

1

 || > C1|µ|nsT−n > C ′
1ρ

N+n ≥ C ′
1ρ

T . (5.2.23)

Taking C to be the smallest constant appeared in all above estimation, we still have C > 1.

now let z6 are in the neighborhood of q2 as in the condition (1) states, then for T ∈

[n+N + k, n+N + k +M ], we have

||DF T (z3)

 v1

1

 || > C|µ|nsT−n−N−k > CρT (5.2.24)

where C > 1 and the last inequality hold by (5.2.19).
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Chapter 6

The renormalization scheme and the

Collet-Eckmann condition

Since now we have constructed a secondary tangency, it is natural to localize ourselves to this

new homoclinic tangency and its unfolding, we will describe this renormalization procedure

first, then we will prove that the limiting object, which is a codimension 1 Lamination, will

satifies the Collet-Eckmann condition.

6.1 The renormalization scheme

Definition 6.1.1. Let U be a open connected subset of Cn, for a holomorphic mapping

f : U −→ C, let U1 an open connected subset in U , δ > 0, define the δ-cylindrical neighborhood

of f over U1 in Cn+1, denoted by CY (f, U1), as

CY (f, U1; δ) := ∪
z∈U1

{z} ×D(f(z), δ) (6.1.1)

where D(f(z), δ) is the disc in C with center f(z) and radius δ. We endow it with natural

subspace topology.

It has the following properties:
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Proposition 6.1.1. CY (f, U1; δ) has a complex 1-dimensional foliation with leaves D(f(z), δ)

for z ∈ U1, it also carries a complex n-dimensional foliation with leaves Gr(f |U1 + w) with

w ∈ D(0, δ).

Definition 6.1.2. Let b : Tµ(µmin, µmax) × Tλ(λmin, λmax) × U −→ C be a holomorphic

mapping, δ > 0, we say a family F : P ×M −→ M is an unfolding of strong homoclinic

tangency with respect to (P, b) the following holds:

(1). There exists some δ > 0, such that P = CY (b; δ);

(2) Let G be the following family

G : Tµ(µmin, µmax)× Tλ(λmin, λmax)× U ×D(0, δ)×M −→ M

(t, a, x) −→ Ft,a+b(t)(x).

This family G is an unfolding of strong homoclinic tangency.

Now using above definition, we can summarize the secondary tangency as the following

lemma:

Lemma 6.1.2. Let bn,k,i be the mapping of seconday tangency, then there exist a small cylinder

neighborhood of the graph of bn,k,i, denoted as P = CY (B : δ), such that FN+θn+N+n+N+k+M

is an unfolding of strong homoclinic tangency with respect to (P, bn,k,i). Furthermore, the

new tangency is again in the neighborhood of q1, which means we can keep using the same

normalization in the phase space.

Thus if we start with some unfolding of strong homoclinic tangency (P (1), b(1)) by keep

using lemma 6.1.2, and in each level, we choose a new bn,k,i map to create new secondary

tangency, we can have a chain of renormalizations (P (l), b(l)) with P (l+1) ⊂ P (l). After all, let

us consider the intersection of all P (l), this limiting object is a graph of some holomorphic

map over Tµ(µmin, µmax)× Tλ(λmin, λmax)× U in the parameter space, we denote this map

as b∞.

Now if we collect all possible chains of renormalizations, we end up with a collection of
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limiting objects b∞, by the construction, we can see that all such b∞ maps have disjoint

graphs in the parameter space. Thus it forms a complex codimention 1 lamination, let us

denote it as CE.

Proposition 6.1.3. CE is a codimention-1 lamination in the parameter space (λ, µ, a) ∈

Tλ × Tµ ×Da. Every leaf of the lamination is a graph over Tλ × Tµ.

6.2 The Collet-Eckmann condition

In this section we will prove that all the leaves in CE satisfy the Collet-Eckmann condition

for the whole time in the phase space.

Now suppose we start from an unfolding (P, b). We rename the notation in section

5.2 as the following: Denote q
(1)
1 to be q′1, c

(1) to be z3, T
(1) = n + N + k + M , N (1) =

N + θn + N + n + N + k + M = N + θn + N + T (1) and q
(1)
3 to be FN(1)

(q
(1)
1 ), then we

can choose δ > 0 such that CY (b, δ) ⊂
⋃

t CE(n, k). And now F will of strong homoclinic

tangency with respect to (P ′, b), where P ′ = CY (b; δ) (shrink δ if necessary). Then we can

repeat out construction with respect to this new unfolding.

Thus we can find new n(2), k(2) and corresponding secondary tangency curve b
(1)

n(2),k(2),i
(t),

and new CE(1)(n(2), k(2)) such that lemma 5.2.2 holds again for a ∈ CE(1)(n(2), k(2)), l ∈

(0, n(2)+N (1)+k(2)), and z
(1)
3 = FN(1)+θn(2)+N(1)

(q
(1)
1

′). Since N (1) = N+θn+N+n+N+k+M ,

thus the neighborhood of c(1) will map diffeomorphically onto a neighborhood of z
(1)
3 through

F n+N+k+M when a ∈ CE(1)(n(2), k(2)). Now let c(2) = F−(n+N+k+M)(z
(1)
3 ). Since when n(2)

goes to ∞, c(2) and z
(1)
3 will converge to c(1) and q

(1)
3 , we may take n(1) large enough such

that DF n+N+k+M
(
c(2)
)
will map the tangent cone {(v1, v2)||v1| < 2(ϕ1 + ϕ2 + 1)|v2|} at

c(2) into the tangent cone {(v1, v2)||v1| < 2(ϕ1 + ϕ2 + 1)|v2|} at z
(1)
3 . Thus c(2) will also

satisfies lemma 5.2.2 for 0 ⩽ T ⩽ n + N + k + M + n(2) + N (1) + k(2) + M . We have

T (2) = n + N + k + M + n(2) + N (1) + k(2) = T (1) + n(2) + N (1) + k(2) + M . Now we can

present the induction steps in the following lemma:
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Lemma 6.2.1. Suppose we have an unfolding with respect to (P (l), b(l)), where where

P (l) = CY (b(l); δ(l)), and q
(l)
1,3 in the neighborhood of q1,3 respectively with FN(l)

(q
(l)
1 ) = q

(l)
3 , c(l)

in the nested neighborhoods of all previous c(k), where k < l. And T (l) such that DF T (l)
(c(l))

satisfies lemma 5.2.2 with 0 ⩽ T ⩽ T (l) when a ∈ P (l).

Then for (n(l+1), k(l+1)) large enough, we have b
(l)

n(l+1),k(l+1),i
(t) curves which is inside CE(l)(n(l+1), k(l+1)) ⊂

P (l), such that z
(l)
3 satisfies (5.2.2) for 0 ⩽ T ⩽ n(l+1) +N (l) + k(l+1) +M . Then we let

N (l+1) = N (l)+θn(l+1)+N (l)+n(l+1)+N (l)+k(l+1)+M = N (l)+θn(l+1)+N (l)+T (l) (6.2.1)

and we have q
(l+1)
1,3 in the neighborhood of q1,3 respectively with FN(l+1)

(q
(l+1)
1 ) = q

(l+1)
3 . c(l+1) =

F−(T (l))(z
(l)
3 ) in the nested neighborhoods of all previous ck, where k < l + 1. Let

T (l+1) = T (l) + n(l+1) +N (l) + k(l+1) +M, (6.2.2)

then c(l+1) will also satisfies lemma 5.2.2 for 0 ⩽ T ⩽ T (l+1).

Now choose a leaf b∞ in the lamination CE, let the graph of b∞(t) be ∩lP
(l), then we have

the following proposition:

Lemma 6.2.2. For every parameter (t, a) in the graph b∞, there exist a point c∞(t, a) in

the intersection of neighborhood of c(l) such that it satisfies 5.2.2 for every positive integer T .

Moreover, c∞(t, a) is a quasi-critical point as definition 2.5.1.

Proof. Now let a = b∞(t), by previous constructions, we have c(l)(t, a) and their neighborhoods

U (l) satisfying lemma 5.2.2 for 0 ⩽ T ⩽ T (l). So we have a nested sequence of closed sets

{U (l)}, then we define c∞(t, a) as the intersection of all U (l), i.e.,

c∞(t, a) = ∩lU
(l). (6.2.3)

It is easy to see c∞(t, a) satisfies the lemma 5.2.2 for whole positive time, it is easy to see

this point is a quasi-critical point by above construction. Thus we finish the proof.
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Remark 6.2.3. By the normalization of unfoldings, there exists neighborhoods U1, U2, U3 of

q1, q2, q3 respectively such that for the whole family of maps, we have

FN(U3) ⊂ U1, F
M(U2) ⊂ U1. (6.2.4)

Then the forwards orbit of c∞(t, a) under Ft,a can be decomposed by the following four types

of orbits:

Type An: An orbit z, F (z), . . . , F n(z) with z ∈ U1, F
n(z) ∈ U3, F

i(z) ∈ D, for 0 ⩽ i ⩽ n.

Type Bk: An orbit z, F (z), . . . , F k(z) with z ∈ U1, F
n(z) ∈ U2, F

i(z) ∈ D, for 0 ⩽ i ⩽ k.

Type C: An orbit z, F (z), . . . , FN(z) with z ∈ U3, F
N(z) ∈ U1.

Type D: An orbit z, F (z), . . . , FM(z) with z ∈ U2, F
N(z) ∈ U1.

IF we may construct a kneading sequence of F i
b∞

(c(t, a)) following lemma 6.2.1, using symbols

An, Bk, C,D if the part of orbit belongs to corresponding Type above. By the induction

formulas of T (l) and N (l), this kneading sequence will be the same when c(t, a) moves along

the leaf of the lamination CE.

6.3 Proof of theorem A

Now we may give the proof of theorem A:

Proof. Part (1), (2) follow from proposition 6.1.3, Part (3) follows from lemma 6.2.2 and

remark 6.2.3. For part (4), notice that for any two leaves L1 and L2 of CE, by the construction

of the lamination, there exist an integer l ⩾ 0, such that the (nl, kl) of the two leaves differ

from each other, which implies that the corresponding P (l) for L1 and L2 have disjoint

neighborhoods. Thus if we fixed some t, the vertical transversal slice of CE over t is totally

disjoint. The perfectness follows from the following fact in the renormalization scheme:

For the unfolding of homoclinic tangency with respect to (P, b), we have the

lim
n+k−→∞

bn,k,i(t) = b(t) (6.3.1)
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uniformly. Thus for any cylindrical neighborhood of the a leaf L in CE, there exist another

leaf inside this neighborhood. Thus any point in the transversal vertical slice of the CE is

non-isolated point, which prove the perfectness of the transversal vertical slice of the CE. This

finish the proof of part (4). Part (5) actually comes from the construction of Collet-Eckmann

point. Let t be a parameter in a leaf L of CE, by lemma 6.2.1, we have

lim
l−→∞

c(t)(l) = c(t). (6.3.2)

We also know from construction, that the forward image of c(t)(l) will pass the neighborhood

of c(t)(l+1) for every l > 0. Thus we can see that c(t) ∈ ω(c(t)), i.e., c(t) is a recurrent

point.
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Chapter 7

Coexistence of sink and secondary

tangency

In this section, we will consider the coexistence of sink and secondary tangency, by previous

discussion, we will restrict ourselves into the case of the intersection of graphs of two maps

an(t) and bn,k,i(t). This intersection can be furthermore transformed into the solution of the

equation

sv(n0, θ, n, t, an(t)) = q2. (7.0.1)

We will discuss above equation in the rest of this section.

The following theorem of Huber[Hub51] is very useful, for a proof we recommend

[Kob70](P14. theorem 6.1):

Theorem 7.0.1. Let Ti be the annuli {z|0 < ri < |z| < Ri}, i=1,2. Then a holomorphic

map f from T1 into T2 satisfies:

|deg(f)| ⩽
log R2

r2

log R1

r1

. (7.0.2)

The degree in the theorem is the degree of the homomorphism f∗ : π1(T1) −→ π1(T2)

induced from the map f , i.e, if we denote the generators of π1(Ti) by αi, i = 1, 2, then we

have

f∗α1 = deg(f)α2.
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First of all, we consider the case when we fix a λ and τ , we prove the following proposition:

Proposition 7.0.2. For every (λ, τ) ∈ Tλ × U , when n large enough, there exist an integer

dn ∈ [− 2 logC
log µmax

µmin

, 2 logC
log µmax

µmin

] such that the following holds:

(1) If k ∈ [k0(n), k1(n)], then we know that sv(k, θ, n, t, an(t)) defines a covering map from

a subset of T (µmin, µmax) which is a topological annuli onto the annuli T (Cµ2n+k
min |λ|2θn, 1

C
µ2n+k
max |λ|2θn)

containing q2 with degree 2n+ k + dn.

(2) If k ∈ [k1(n), k2(n)], then we know that sv(k, θ, n, t, an(t)) defines a covering map from

a subset of T (µmin, tn,k) which is a topological annuli onto the annuli T (Cµ2n+k
min |λ|2θn, L

C2 )

containing q2 with degree 2n+ k + dn.

Thus when k ∈ [k0(n), k2(n)], the equation

sv(k, θ, n, t, an(t)) = q2 (7.0.3)

has 2n+ k + dn solutions.

We also have

lim
n

k0(n)

n
= lim

n

k1(n)

n
= 2θ

log 1
|λ|

log µmax

− 2, (7.0.4)

and

lim
n

k2(n)

n
= 2θ

log 1
|λ|

log µmin

− 2. (7.0.5)

Proof. Whenever sv(k + 1, θ, n, t, an(t)) is inside Dy, by condition (3.0.3), (3.0.4) and propo-

sition (2.2.3), we have

| sv(k+1, θ, n, t, an(t))−µ·sv(k, θ, n, t, an(t))| < 2min{M |λ|k, ϵ}| sv(k, θ, n, t, an(t))| (7.0.6)

Besides, by lemma 5.1.7, when sv(k, θ, n, t, an(t)) is inside Dy, it can be written as

sv(k, θ, n, t, an(t)) = Kn,k(t)
(
λθµ
)2n

µk, (7.0.7)

where Kn,k(t) is holomorphic with uniform bound:

1

C
< |Kn,k(t)| < C.
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Put formula (7.0.7) into (7.0.6), we have

|Kn,k+1(t)−Kn,k(t)| <
2

|µ|
min{M |λ|k, ϵ}|Kn,k(t)|. (7.0.8)

First we consider the case k ⩽ k1(n), where k1(n) is the largest integer such that the

following holds:

Cµ2n+k1(n)
max |λ|2θn < L, (7.0.9)

i.e., we have

k1(n) = ⌊
log L

C
+ 2θn log 1

|λ|

log µmax

− 2n⌋ (7.0.10)

Then by equation (7.0.7) and the condition on Kn,k(t), we know that sv(k, θ, n, t, an(t)) is

a holomorphic map from T (µmin, µmax) into annuli T ( 1
C
µ2n+k
min |λ|2θn, Cµ2n+k

max |λ|2θn) inside Dy.

By Theorem 7.0.1, we know that |deg(Kn,k(t))| ⩽ 2 logC
log µmax

µmin

. Since two holomorphic maps from

annuli A1 into annuli A2 with same degree are homotopic. Then we may choose a homotopy

from Kn,k(t) to C
′

kt
degKn,k(t) where C

′

k is a scaling constant. Then we have a homotopy

from sv(k, θ, n, t, an(t)) to C
′

kt
degKn,k(t)+2n+kλ2θn, thus the degree of sv(k, θ, n, t, an(t)) is

2n+ k + degKn,k(t), which is an integer inside [2n+ k − 2 logC
log µmax

µmin

, 2n+ k + 2 logC
log µmax

µmin

].

We know that for any t0 ∈ [µmin, µmax], the image of the circle S(t0) = {t||t| = t0} under

sv(k, θ, n, t, an(t)) is a loop inside an annuli T ( 1
C
t2n+k
0 |λ|2θn, Ct2n+k

0 |λ|2θn).

Thus when n large enough, the image of T (µmin, µmax) under sv(k, θ, n, t, an(t)) contains

an annuli T (Cµ2n+k
min |λ|2θn, 1

C
µ2n+k
max |λ|2θn).

Thus q2 ∈ T (Cµ2n+k
min |λ|2θn, 1

C
µ2n+k
max |λ|2θn) is equivalent to

Cµ2n+k
min |λ|2θn < 2 <

1

C
µ2n+k
max |λ|2θn

The first part of the inequality is always satisfied when k ⩽ k1(n), and the second part of

the inequality is equivalent to k ⩽ k0(n), where k0(n) is the smallest number such that the

inequality 2 < 1
C
µ2n+k
max |λ|2θn holds, i.e.,

k0(n) = ⌊
log 2C + 2θn log 1

|λ|

log µmax

− 2n⌋ < k1(n). (7.0.11)
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Next we consider the case when k ∈ [k1(n), k2(n)], where k2(n) is the largest integer such

that

Cµ
2n+k2(n)
min |λ|2θn < 2, (7.0.12)

i.e., we have

k2(n) = ⌊
log 2

C
+ 2θn log 1

|λ|

log µmin

− 2n⌋. (7.0.13)

Denote tn,k = (L
C
)

1
2n+k ( 1

|λ|)
2θn
2n+k , then we have

Ct2n+k
n,k |λ|2θn = L. (7.0.14)

Now Kn,k(t) is a holomorphic map from T (µmin, tn,k) into T ( 1
C
, C).

Now consider T (µmin, tn,k2(n)), then all Kn,t(t) is well defined on it for k ⩽ k2(n). When

n is large enough, we may take the following condition holds:

2

µmin

M |λ|k0(n) < 1

2C2
(7.0.15)

for k ∈ [k0(n), k2(n)]. Let γ be the circle {t||t| = t0} with t0 ∈ (µmin, tn,k2(n)). Then for each

k ∈ [k0(n), k2(n)− 1], define the following map:

Hk : [0, 1]× γ −→ C

(s, t) −→ (1− s)Kn,k(t) + sKn,k+1(t).

By inequality (7.0.8) and condition (7.0.15), we have

|Hk(s, t)| ⩽ |Kn,k(t)|+ s|Kn,k+1(t)−Kn,k(t)| < 2C,

and

|Hk(s, t)| ⩾ |Kn,k(t)| − s|Kn,k+1(t)−Kn,k(t)| <
1

2C
.

Thus Hk defines a homotopy from Kn,k(γ) to Kn,k+1(γ) inside T ( 1
2C

, 2C). As a consequence,

Kn,k+1(t) has the same degree with Kn,k(t) as maps from T (µmin, tn,k2(n)) into T ( 1
2C

, 2C).

Thus when n large enough, all Kn,k(t) have the same degree for k ∈ [k0(n), k2(n)], we

may denote the degree as dn. Then we have dn ∈ [− 2 logC
log µmax

µmin

, 2 logC
log µmax

µmin

]. Then we know that
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sv(k, θ, n, t, an(t)) is a holomorphic map from T (µmin, tn,k) into T ( 1
C
µ2n+k
min |λ|2θn, L) inside Dy

with degree 2n+k+dn. We may assume L large enough such that L > 2C2, then
log L

2C2

log L
2

∈ (0, 1).

Furthermore, the image contains an annuli T (Cµ2n+k
min |λ|2θn, L

C2 ) since
1
C
t2n+k
n,k |λ|2θn = L

C2 > 2.

We also have q2 ∈ T (Cµ2n+k
min |λ|2θn, L

C2 ).

Besides, by equation (7.0.7), we have

∂ sv(k, θ, n, t, an(t))

∂µ
= (

1

Kn,k(t)

∂Kn,k(t)

∂µ
+ (2n+ k)

1

µ
) sv(k, θ, n, t, an(t)). (7.0.16)

By replacing T (µmin, µmax) by some interior T (µmin + δ, µmax − δ) and take the interior as

the new domain of µ, we may assume T (µmin, µmax) is compactly supported in T (µ̂min, µ̂max)

with

µ̂min < µmin < µmax < µ̂max. (7.0.17)

Thus by Koebe’s Distortion Theorem, we have
∂Kn,k(t)

∂µ
is uniformly bounded. Then when

n large enough, we have ∂ sv(k,θ,n,t,an(t))
∂µ

is never zero. In conclusion, we have finished the

proof.

By the meaning of equation (7.0.3) and the definition of bn,k,i(t) and an(t), we have the

following corollary:

Corollary 7.0.3. For every (λ, τ) ∈ Tλ × U , when k ∈ [k0(n), k2(n)], for each i = 1, 2, we

have an intersects with bn,k,i transversally at finite many points, in total, there are 2n+ k+ dn

intersection points.

Next we prove the following proposition:

Proposition 7.0.4. For every given (λ, τ) ∈ Tλ × U , denote the solution set of equation

(7.0.3) for (n, k) as Γn,k(λ, τ). For any t0 ∈ T (µmin, µmax), we have a sequence tn ∈ Γn,kn

such that

lim
n

tn = t0

with

|tn − t0| = O(
1

n
), (7.0.18)
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where

lim
n

kn
n

= 2θ
log 1

|λ|

log |t0|
− 2.

Denote

LimΓn,kn := {lim
n

tn|tn ∈ Γn,kn}, (7.0.19)

then we have

LimΓn,kn = {t = |t0|}. (7.0.20)

For any arc I in {t = |t0|}, let Jn := {rz|r ∈ [1− 1
n
, 1 + 1

n
], z ∈ I}. Then we have

lim
n

#Γn,kn ∩ Jn
#Γn,kn

=
|I|

2π|t0|
, (7.0.21)

where |I| is the arc-length of I.

First we prove the following lemma:

Lemma 7.0.5. Let Ti be the annuli {z|0 < ri < |z| < Ri}, i=1,2. Then a holomorphic map

f from T1 into T2 can be written as:

f(z) = zdeg(z) (7.0.22)

on T1, where d is the degree of f and g(z) is a holomorphic function on T1. Besides, we have

log r2 − d logR1 < Re(g(z)) < logR2 − d log r1 (7.0.23)

for all z ∈ T1.

Proof. By theorem 7.0.1, we know f has a bounded degree. Then for any circle Γ around 0

contained in T1, we have ∫
Γ

f ′

f
dz = 2πid. (7.0.24)

Now let h(z) = z−df(z), then we have ∫
Γ

h′

h
dz = 0. (7.0.25)
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Fix a point a in T1, then

g(z) =

∫ z

a

h′

h
dz

is a well-defined holomorphic function on T1. Thus
h′(z)
h(z)

= g′(z), i.e., (h · e−g)′ = 0. We have

h(z) = ceg(z)

where c is some constant. We can choose another holomorphic function g(z) such that

h(z) = eg(z).

Thus

f(z) = zdeg(z).

Furthermore, since f(z) ∈ T2, we have

r2 < |z|deRe(g(z)) < R2

for all z ∈ T1. Thus we have

log r2 − d logR1 < Re(g(z)) < logR2 − d log r1

for all z ∈ T1.

Now we prove the proposition 7.0.4

Proof. By lemma 7.0.5, for each Kn,k(t), we could decompose as

Kn,k(t) = µdn exp(Pn,k(t)) (7.0.26)

where Pn,k(t) is holomorphic and |Re(Pn,k(t))| is uniformly bounded:

log
1

C
− dnlogµmax < Re(Pn,k(t)) < logC − dn log µmin. (7.0.27)

Besides, we have

∂Kn,k(t)

∂µ
= µdn−1 exp(Pn,k(t))(dn + µ · ∂Pn,k(t)

∂µ
) = Kn,k(t)(

dn
µ

+
∂Pn,k(t)

∂µ
). (7.0.28)
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Thus we have

∂Pn,k(t)

∂µ
=

∂Kn,k(t)

∂µ

Kn,k(t)
− dn

t
(7.0.29)

are uniformly bounded. Since

exp(Pn,k(t)) = exp(Pn,k(t) + 2πi), (7.0.30)

we may assume

Im(Pn,k(t)) ∈ [0, CP ] (7.0.31)

for some positive constant CP . Now for each n, choose a kn ∈ [k0(n), k2(n)] such that

lim
n

kn
n

= 2θ
log 1

|λ|

log |t0|
− 2, (7.0.32)

then for each µ ∈ Γn,kn , we have

exp(Pn,kn(t))µ
2n+kn+dnλ2θn = q2. (7.0.33)

Thus it satisfies one of the following equations:

exp(
Pn,kn(t)

2n+ kn + dn
)µ =

(q2)
1

2n+kn+dn

(λ)
2θn

2n+kn+dn

exp(
2sπi

2n+ kn + dn
), (7.0.34)

where s = 0, 1, ..., 2n+ kn + dn − 1. Since we have

∂

∂µ
(exp(

Pn,kn(t)

2n+ kn + dn
)µ) = exp(

Pn,kn(t)

2n+ kn + dn
)(1 +

µ · ∂Pn,k(t)

∂µ

2n+ kn + dn
). (7.0.35)

Then we have

lim
n

| ∂
∂µ

(exp(
Pn,kn(t)

2n+ kn + dn
)µ)| = 1. (7.0.36)

When n large enough, we may assume

| ∂
∂µ

(exp(
Pn,kn(t)

2n+ kn + dn
)µ)| > 1

2
. (7.0.37)

Thus exp(
Pn,kn (t)

2n+kn+dn
)µ is a local diffeomorphism when n large enough, we conclude that

equations ( 7.0.34 ) have exactly 1 solution for each s = 0, ..., 2n+ kn + dn − 1. Since now we

have

lim
n

exp(
Pn,kn(t)

2n+ kn + dn
) = 1 (7.0.38)
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and

lim
n

q
1

2n+kn+dn
2 = 1, (7.0.39)

lim
n
(
1

λ
)

2θn
2n+kn+dn = (

1

λ
)

log |t0|
log 1

|λ| = |t0|(
|λ|
λ
)

log |t0|
log 1

|λ| . (7.0.40)

Denote Arg(z) be the argument of complex number z which in [0, 2π). Then for n large

enough, choose sn such that

|2snπ + Arg(q2)

2n+ kn + dn
− Arg(λ)

2θn

2n+ kn + dn
+

CP

2(2n+ kn + dn)
− Arg(t0)| ⩽

π

2n+ kn + dn
.

(7.0.41)

Let tn be the number in Γn,kn corresponding to sn in equation (7.0.34), then we have

||tn| − |t0|| = O(
1

n
) (7.0.42)

and

|Arg(tn)− Arg(t0)| <
CP + 2π

2(2n+ kn + dn)
(7.0.43)

for n large enough. Besides, for every t∗0 ∈ {t||t| = |t0|}, we may choose s∗n such that condition

(7.0.41) is satisfied for sn = s∗n, t0 = t∗0. Thus there exist t∗n ∈ Γn,kn such that

||t∗n| − |t0|| = O(
1

n
) (7.0.44)

,

|Arg(t∗n)− Arg(t∗0)| <
CP + 2π

2(2n+ kn + dn)
(7.0.45)

and

| 2(sn − s∗n)π

2n+ kn + dn
| < |Arg(t0)− Arg(t∗0)|+

2π

2(2n+ kn + dn)
(7.0.46)

for n large enough. Thus we have

LimΓn,kn = {t = |t0|}. (7.0.47)

and for any arc I in {t = |t0|}, let Jn := {rz|r ∈ [1− 1
n
, 1 + 1

n
], z ∈ I}. Then we have

lim
n

#Γn,kn ∩ Jn
#Γn,kn

=
|I|

2π|t0|
, (7.0.48)

where |I| is the arc-length of I.
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The next proposition is about extending the solutions of equation (7.0.3) through the λ

parameter. First of all, since integer-valued dn depends continuously on λ, thus dn would

be constant over a open subset in λ parameter. Next, for n large enough, the solvability of

equation (7.0.3) turns to k ∈ [k0(n), k2(n)], where by equations (7.0.11, 7.0.13), the 2 integers

depends on λ and they are constants over a circle {|λ| = l}. Now we state the following

lemma:

Lemma 7.0.6. Suppose for a parameter pair (λ, µ), we can find some (n0, k0) solve the

equation (7.0.3), then there exist l1, l2 ∈ (0, 1), which satisfies

l1 =
(2C)

1
2θn0

(µmax)
k0+2n0
2θn0

(7.0.49)

and

l2 =

(
2
C

) 1
2θn0

(µmin)
k0+2n0

2θn

, (7.0.50)

where C is the constant in the formula (7.0.11, 7.0.13). Then consider the annuli defined by

Tλ(l1, l2) = {λ|max{l1, λmin} < |λ| < min{l2, λmax}}. For every λ ∈ Tλ(l1, l2), we can solve

equation (7.0.3) for (n0, k0). In other words, the solution can be extended to the annuli.

Proof. We only need to consider the equations:

k0(n0) = k0, k2(n0) = k0. (7.0.51)

By equations (7.0.11, 7.0.13), we can see l1, l2 are the solutions of above equations respectively.

Now we denote the Γn,k as the solutions of equation (7.0.3) over Tµ × Tλ × U ,then we

know, Γn,k = ∪λ,τΓn,k(λ, τ), then by above lemma, we know the points in each slice can be

extended. Thus Γn,k has several disjoint components and each component can be viewed as a

finite cover over the annuli Tµ. Now we can extend proposition 7.0.4 to Tµ × Tλ, the Palis

invariant will arise naturally:
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Proposition 7.0.7. Denote the solution set of equation (7.0.3) for (n, k) as Γn,k(λ, τ). For

any β ∈ [ 1
θ0
, 3
2θ1

], we have a sequence kn with

lim
n

kn
n

= 2θβ − 2.

Denote

LimΓn,kn := {(µ, λ)|(µ, λ) = lim
n
(µn, λn) where (µn, λ1,n) ∈ Γn,kn}, (7.0.52)

then we know that LimΓn,kn is the level set of the Palis invariant {Pa(f) = β}.
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Chapter 8

The Newhouse phenomenon

First of all we will construct the set of Newhouse phenomenon in the phase space with a

fixed λ and τ .

Now we have the following technical lemma:

Lemma 8.0.1. Let F be an unfolding of strong homoclinic tangency with respect to (P, b),

where P = CY (b; δ). Then there exist an integer n0 > 0, such that the followings can be

created:

(1). Holomorphic mappings an : T (µmin, µmax) −→ C with Gr(an) ⊂ CY (b; δ), such that there

exist an uniform constant η > 0, such that when n > n0, we have CY (an;
η

µ2n
max

) ⊂ CY (b; δ),

and Ft,a has a sink of period greater than n for a in CY (an;
η

µ2n
max

);

(2). Holomorphic mappings bn,k,i : T (µmin, µmax) −→ C, where k in {k0(n), . . . , k2(n)},

i = 1, 2, Gr(bn,k,i) ⊂ CY (b; δ) \ Gr(b), such that Ft,bn,k,i(t) have a holomorphic quadratic

homoclinic tangencies. We have

0 < k0(n) < k2(n) < n, k2(n)− k0(n) = O(n). (8.0.1)

There exist an uniform constant C > 0, such that when n > n0,

1

C|t|n
< |bn,k,i(t)− b(t)| < C

|t|n
, (8.0.2)
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where t ∈ T (µmin, µmax).

Furthermore, there exists number δ
′

n,k,i > 0 such that F is an unfolding of strong homoclinic

tangency with respect to (Pbn,k,i
, bn,k,i), where Pbn,k,i

:= CY (bn,k,i; δ
′

n,k,i) ⊂ CY (b; δ). Let us

define PB((P, b)) to be the collection of all such pairs ((Pbn,k,i
, bn,k,i)). Let us denote

B((P, b)) := ∪
(P ′,b′)∈PB((P,b))

Gr(b′). (8.0.3)

We have

B((P, b)) = B((P, b)) ∪Gr(b); (8.0.4)

(3). For any an, k in {k0(n), . . . , k2(n)}, Gr(an) intersects with the 2 graph of mappings

Gr(bn,k,i), where i = 1, 2, at, in total, 2n+ k + O(1) points transversally. Let Γbn,k,i
be the

collection of t-coordinates of the intersection points of an and bn,k,i, Γn,k be the union of Γbn,k,i

for i = 1, 2. We know:

Γbn,k,1
∩ Γbn,k,2

= ∅,

#Γbn,k,1
,#Γbn,k,2

> 0

#Γbn,k,1
+#Γbn,k,2

= 2n+ k +O(1);

(4). CΓ((P, b)) := ∪
(P ′,b′)∈PB((P,b))

Γb′, a dense subset of T (µmin, µmax);

(5). For any (P ′, b′) ∈ PB((P, b)), without loss of generality, suppose b′ = bn,k,1, there exists

δb′ > 0 such that, for any t ∈ Γb′, there exist an neighborhood Ub′(t) of t, such that

CY (b′, Ub′(t); δb′) ⊂ CY (an;
η

µ2n
max

) ∩ P ′ (8.0.5)

and

CY (b′, Ub′(t); δb′) ∩ CY (b′, Ub′(t
′); δb′) = ∅ (8.0.6)

whenever t ̸= t′. We call CY (b′, Ub′(t); δb′) a Newhouse box of ((P, b), (P ′, b′)) type and

let us denote INH((P ′, b′)) := ∪
t∈Γb′

CY (b′, Ub′(t); δb′)
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(6).

GΓ((P, b)) := ∪
(P ′,b′)∈PB((P,b))

∪
t∈Γb′

Ub′(t), (8.0.7)

NH((P, b)) := ∪
(P ′,b′)∈PB((P,b))

INH((P ′, b′)); (8.0.8)

We have

πtNH((P, b)) = GΓ((P, b)), (8.0.9)

CΓ((P, b)) ⊂ GΓ((P, b)), (8.0.10)

GΓ((P, b)) is an open and dense subset of T (µmin, µmax), and

NH((P, b)) ⊃ Gr(b). (8.0.11)

Proof. By the definition of unfolding of strong homoclinic tangency with respect to (P, b),

it is enough to prove the lemma under the case b(t) = 0 for all t ∈ T (µmin, µmax). Part (1)

follows from proposition 4.0.1;

Part (2) and inequality (8.0.2) follows from lemma 5.1.4 and definition 5.1.1. (8.0.4) follows

from (8.0.2).

Part (3) follows from proposition 7.0.2.

Part (4) follows from proposition 7.0.4.

Part (5) follows from corollary 7.0.3.

Part (6), by the definition of GΓ((P, b)) and NH((P, b)), we know that (8.0.9) and (8.0.10)

holds. As a consequence of CΓ((P, b)) is dense in T (µmin, µmax), we know GΓ((P, b)) is an

open and dense subset of T (µmin, µmax). By the openness and denseness of GΓ((P, b)) and

(8.0.4), we know (8.0.11) holds.

By lemma 8.0.1, we can define a tree as follows:

Definition 8.0.1. Let F be an unfolding of strong homoclinic tangency with respect to

(P, b), where P = CY (b; δ). Define a tree Tree((P, b)) as follows inductively on the level of

the tree:

(1). The root node is (P,b);
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(2). For any node (P ′, b′) of level k in the tree, define its child nodes are all the elements from

PB((P ′, b′)), where PB((P ′, b′)) is defined in (2) part of lemma 8.0.1.

Then we can define the following operations on each node of the tree:

For any node ((P ′, b′)) ∈ Tree((P, b)), denote l((P ′, b′)) be the level of this node. By lemma

8.0.1, we can also define CΓ((P ′, b′)), GΓ((P ′, b′)) and NH((P ′, b′)). When l((P ′, b′)) = l,

for any (P ′′, b′′) ∈ PB((P ′, b′)), we call the Newhouse boxes of ((P ′, b′), (P ′′, b′′)) type the

Newhouse boxes of ((P ′, b′), (P ′′, b′′)) type in l-th generation. For every natural number

l, denote the following:

NH(l)((P, b)) := ∪
(P ′,b′)∈Tree((P,b)),l((P ′,b′))=l

NH((P ′, b′)). (8.0.12)

Finally, we define the Newhouse set of the tree as follows:

NH((P, b)) := ∩
n
∪
l⩾n

NH(l)((P, b)). (8.0.13)

We also denote B((P, b)) to be the following:

B((P, b)) = ∪
(P ′,b′)∈Tree((P,b))

Gr(b′) (8.0.14)

For the Newhouse boxes of any generation, we have the following lemma:

Lemma 8.0.2. (1). Let (P ′, b′) ∈ Tree((P, b)) of level l, let U be a Newhouse box of

((P ′, b′), (P ′′, b′′)) type in l-th generation. Then we know the following:

U ∩NH((P ′′, b′′)) contains infinitely many Newhouse boxes in l + 1-th generation.

(2). ∩
l⩾0

NH(l)((P, b)) is nonempty and

∩
l⩾0

NH(l)((P, b)) ⊃ Gr(b). (8.0.15)

Proof. (1).For any point (t, b′(t)) ∈ U ∩ Gr(b′′), using the denseness of CΓ((P ′′, b′′)) and

inequality (8.0.2) in lemma 8.0.1, we know there exists an infinity sequence {nk}, a sequence

of nodes {(Pnk
, bnk

)} where (Pnk
, bnk

) ∈ PB((P ′′, b′′)), and tnk
∈ Γbnk

, such that

lim
k→∞

(tnk
, bnk

(tnk
)) = (t, b′′(t)). (8.0.16)
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Thus when k large enough, we can find infinitely many disjoint Newhouse boxes in l + 1-th

generation containing (tnk
, bnk

(tnk
)) inside U .

(2). Let U be a Newhouse box in 0-th generation. By part (1), we know that U contains

infinitely many Newhouse boxes in first generation. By repeatedly using part (1), we know

that U contains infinitely many chains of nested Newhouse boxes in all generation. Since

NH((P, b)) is the union of all the Newhouse boxes of 0-th generation, andNH((P, b)) ⊃ Gr(b),

we know that

∩
l⩾0

NH(l)((P, b)) ⊃ Gr(b). (8.0.17)

Now we state a theorem of the set of Newhouse phenomenon and give the proof.

Theorem 8.0.3. For any given λ, denote (P, b) to be the pair (T (µmin, µmax)× Da(r), O).

Then there exists a set NH((P, b)) ⊂ P such that Ft,a have infinitely many sinks for each

(t, a) ∈ NH((P, b)). Furthermore, NH((P, b)) = B((P, b)).

Proof. From lemma 8.0.1, definition 8.0.1 and lemma 8.0.2, we only need to proveNH((P, b)) =

B((P, b)).

First we prove NH((P, b)) contains B((P, b)).

For any node (P ′, b′) ∈ Tree((P, b)), we know Tree((P ′, b′)) is just the sub-tree of Tree((P, b))

with root (P ′, b′), then by lemma 8.0.2, we know that

∩
l⩾0

NH(l)((P ′, b′)) ⊃ Gr(b′). (8.0.18)

Thus we know

NH((P, b)) ⊃ ∩
l⩾0

NH(l)((P ′, b′)) ⊃ Gr(b′). (8.0.19)

This proves NH((P, b)) contains B((P, b)).

Then we prove NH((P, b)) ⊂ B((P, b)).

For any point z ∈ NH((P, b)), we have a sequence of points {zn} converging to z with

zn ∈ NH((P, b)), thus for any zn, there exist a infinity strictly-increasing sequences of positive
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integers In, such that zn ∈ ∩
l∈In

NH(l)((P, b)). Thus when n large enough, for each zn, we

can find a point z̃n such that ||zn − z̃n|| < 1
n
, and there exist a node (Pn, bn), such that

z̃n ∈ Gr(bn). Thus we have

lim
n

z̃n = z (8.0.20)

and

lim
n

z̃n ∈ B((P, b)). (8.0.21)

This proves NH((P, b)) ⊂ B((P, b)). Overall, we have

NH((P, b)) = B((P, b)). (8.0.22)

Furthermore, the set of total Newhouse phenomenon NH would be the union of all such

NH((P, b)) with (λ, τ) moving all over the Tλ × U .

8.1 Newhouse Phenomenon and the lamination of

Collect-Eckmann condition

Now we have constructed 2 objects of the Collect-Eckmann condition and the Newhouse

Phenomenon, denoted as CE and NH respectively, in previous sections. We now want to

consider their relationships. First of all, it is easy to see the following fact

Proposition 8.1.1. NH ⊂ CE.

We next state the following proposition:

Proposition 8.1.2. There exist leaves of CE such that for every leaf, there exist a dense

subset of that leaf consisting of Newhouse points.

Proof. We take a countable basis B of Tλ × Tµ, label them by Bi. The Palis invariant gives

a foliation of this product, and the range of Palis invariant is [ 1
θ0
, 3
2θ1

], now we choose a
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countable dense subset {βi} of the interval [ 1
θ0
, 3
2θ1

]. Now we construct the desired leaf in CE

as follows: First, we give pairs of positive integers (i, j) in lexicographical order, then we

construct the renormalization scheme as follows: For each pair (i, j), suppose for (i, j − 1),

we have a open subset of Newhouse boxes NHi,j−1 inside Bi, choose 2 small balls D1 ⊊ D2

inside NHi,j−1, we can find a denseness of {βi}, there exist some β such that the level set

{Pa(f) = β} intersect with D1 transversally, thus by lemma 7.0.7, we can find a some (n, k)

such that global sink box with this (n, k) intersect with D2 transversally, thus we denote this

open subset of NHi,j−1 as NHi,j.

Finally, by construction, this renormalization process will give a leaf in CE, and then for

each Bi, by considering the intersection of NHi,j for all j, this will give a Newhouse point

with projects inside Bi. Since Bi gives a basis of Tλ × Tµ. We prove our conclusion.

8.2 Proof of Theorem B

Now we give a proof of Theorem B.

Proof. The first 2 part of the theorem are proved in Theorem 8.0.3, Proposition 8.1.1 and

8.1.2. Now we prove part (3).

Let σ ∈ NH, P
(l)
σ be the a sink created in the l-the level of renormalization scheme and

O(P
(l)
σ ) be the orbit of the sink, and let c

(l)
σ be the point with finite time Collet-Eckmann

condition created in lemma 6.2.1, which leads to

lim
l−→∞

c(l)σ = c(σ). (8.2.1)

Then we have the following:

dist(c(l)σ , O(P (l+1)
σ )) −→ 0, when n(l+1) −→ ∞, (8.2.2)

where dist stands for the Hausdorff distance between sets. Furthermore, if we denote OT (p)

be the forward orbit of point p from time 0 to time T , then we have the following:

distD(O
T (l)

(c(l)σ ), OT (l)

(c(σ)) −→ 0, when l −→ ∞, (8.2.3)
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where distD denotes the dynamical distance of two orbits, i.e.,

distD(O
n(P ), On(Q)) := sup

0⩽i⩽n
dist(F i(P ), F i(Q)). (8.2.4)

Then we have

ω(c(σ)) = ∪lO(P
(l)
σ )\ ∪l O(P (l)

σ ). (8.2.5)
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Chapter 9

Appendix

Denote Bs(Dm−1
x (100), D) be the space of bounded holomorphic maps from Dm−1

x (100) into

D, such that, ∀f ∈ Bs(Dm−1
x (100), D), it satisfies the following two properties:

(A) it can be represented as a graph of a holomorphic function g which maps from from

Dm−1
x (100) into Dy(100), i.e., f(x) = (x, g(x)), ∀x ∈ Dm−1

x (100);

(B)∀x ∈ Dm−1
x (100), Dfx(TxD

m−1
x ) ⊆ Cs

f(x).

We endowBs(Dm−1
x (100), D) with supremum norm for any two maps f, g inBs(Dm−1

x (100), D):

d(f, g) = sup
γ
{ length of intersection of f, g by γ using restricted metric on γ},

where γ run over all almost vertical curves in D.

Define Ks
t,a := iD ◦ F−1

t,a where iD is the restriction onto D, actually Ks
t,a is just the graph

transformation. Thus we have d(Ks
t,a(f), K

s
t,a(g)) ⩽

1
|µ|−ϵ

d(f, g)

Denote Dm−1
x (100)× {0} by O, then O is the unique attracting fixed point for the action

Ks
t,a on the metric space (Bs(Dm−1

x (100), D), d).

Thus d(Ks
t,a(f),O) ⩽ 1

|µ|−ϵ
d(f,O). Then denote fi := (Ks

t,a)
i(f), we have d(fi,O) ⩽

1
(|µ|−ϵ)i

d(f,O).

Now differentiate fn = Ks
t,a(fn−1) by a, we have

∂fn
∂a

=
∂Ks

t,a

∂f
(fn−1)

∂fn−1

∂a
+

∂Ks
t,a

∂a
(fn−1).
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Apply above equation repeatedly, we have

∂fn
∂a

=
∂Ks

t,a

∂f
(fn−1) · · ·

∂Ks
t,a

∂f
(fk)

∂fk
∂a

+
n−1∑
i=k

(
n−1∏

j=k+1

∂Ks
t,a

∂f
(fj))

∂Ks
t,a

∂a
(fi)

for any 1 ⩽ k ⩽ n− 1.

Since ∥∂Ks
t,a

∂f
∥ ⩽ 1

|µ|−ϵ
, ∥∂Ks

t,a

∂a
(O)∥ = 0. we have ∥∂Ks

t,a

∂a
(f)∥ ⩽ L d(f,O) when ∥f∥ is small

enough and L depends uniformly on ∥f∥.

Thus we have the following lemma:

Lemma 9.0.1.

∥∂fn
∂a

∥ = O(
n

(|µ| − ϵ)n
).
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