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Abstract of the Dissertation

Prismatic cohomology and p-adic homotopy theory

by

Tobias Shin

Doctor of Philosophy

in

Mathematics

Stony Brook University

2022

This dissertation is an observation about the recent theory of prismatic cohomology de-
veloped by Bhatt and Scholze. In particular, by applying a functor of Mandell, we see that
the étale comparison theorem in the prismatic theory reproduces the p-adic homotopy type
for a smooth complex variety with good reduction mod p. Historically it was known, by
work of Artin and Mazur, that the mod p reduction reproduces the ℓ-adic homotopy type
for the complex variety, where ℓ is a prime not equal to p. This latter constraint is imposed
to disallow étale coverings with degree equal to the characteristic. The observation of the
thesis is that the p-adic homotopy type of the complex variety can still be recovered from
an integral model over a p-complete ring of integers, using the prismatic ideas of Bhatt and
Scholze, and the homotopical algebra ideas of Mandell.
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Introduction

A homotopy type is an equivalence class of a CW complex up to homotopy equivalence.
Restricting to simply connected spaces (or spaces whose fundamental group acts trivially on
higher homotopy groups), one can apply functorial algebraic constructions to the homotopy
groups. The processes are best summarized in the following fiber product diagram, called
the arithmetic square:

Z Ẑ

Q Q⊗ Ẑ

Here, the map Z → Ẑ is the profinite completion of Z, where Ẑ is the inverse limit over all
finite index subgroups of Z. The ring Ẑ is isomorphic to the direct product

∏
p Zp, indexed

over all primes p, where Zp denotes the p-adic integers. The vertical map Z→ Q is localiza-
tion at 0, or rationalization. The homology, cohomology, and homotopy groups of a simply
connected homotopy type are all abelian groups, and so can all be profinitely completed or
localized appropriately.

The work of Sullivan [25] constructs spaces whose homotopy invariants are precisely those
obtained from the above algebraic processes applied to the homotopy invariants of a given
space. For example, he constructs the rationalization XQ of a space X, whose homology,
cohomology, and homotopy groups are all rationalizations of those of the original space.
Similarly, there is a notion of a p-adic completion Xp of a space X whose homotopy informa-
tion is the p-adic completion of the homotopy information of X. The space Xp is constructed
as the limit of an inverse system of homotopy types, indexed over maps from X into spaces
with finitely many non-zero homotopy groups, all which have order powers of p. We shall
refer to the homotopy type of Xp as the p-adic homotopy type of X.

The classical work of Artin and Mazur [2] defines the notion of an étale homotopy type
for an algebraic variety. They construct the étale homotopy type by taking étale hypercov-
erings of the variety, yielding a simplicial object (up to simplicial homotopy), and passing
to geometric realizations. The resulting object is an inverse system of homotopy types. By
restricting to coverings with degree powers of p, one has a p-adic étale homotopy type.
A natural question one may ask is:

Given a smooth, proper complex variety X with good reduction mod p, what is the
relationship between the p-adic homotopy type of X and the étale homotopy type of the

reduction [X mod p]?

Artin and Mazur in fact prove that if a smooth, proper complex variety X has good
reduction mod p, then the inverse systems defining the ℓ-adic homotopy type of X and the
ℓ-adic étale homotopy type of [X mod p] are equivalent for ℓ ̸= p. In particular, the ℓ-adic
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homotopy type of a smooth proper complex variety with good reduction mod p can be re-
covered from its mod p reduction, where ℓ ̸= p.

The work of this dissertation is to show that this last constraint can be removed, and
that the p-adic homotopy type is accessible from p-adic information. This is accomplished
by utilizing a theorem of Mandell, which says that the p-adic homotopy type of a space is
obtained from the E∞-algebra structure of its mod p singular cochains, in conjunction with
the recently constructed prismatic cohomology theory of Bhatt and Scholze [7]. In partic-
ular, the argument will still utilize characteristic p information, but in the form of tilts of
local perfectoid coverings rather than the reduction mod p alone. That is, we will use the
reduction mod p with the data of an integral model over a suitable p-adically complete ring
of integers.

Prismatic cohomology is defined with reference to a base prism (A, I), such that the re-
sulting cohomology groups are modules over A (see section 3.1 for preliminaries for prismatic
cohomology). The notation RΓ(X,∆X/A) will denote the cochains of the prismatic cohomol-
ogy of X over the base prism (A, I). In particular, this paper will fix one particular prism for
its setting. First, let Cp denote the p-completion of an algebraic closure of Qp and let OCp

denote its ring of integers. We can then take the tilt, O♭
Cp
, which is defined as the inverse

limit of (...
ϕ−→ OCp/p

ϕ−→ OCp/p) where ϕ denotes the Frobenius. Then we can take the Witt
vectors of the tilt to obtain our δ-ring A = Ainf := W (O♭

Cp
). This ring has a natural map

θ : Ainf → OCp and our prism is then the pair (Ainf , ker θ).

The work of Bhatt, Morrow, and Scholze in [5] yields the following corollary of the étale
comparison theorem in [4] (Lecture IX, Theorem 5.1).

Theorem 0.1. (Bhatt-Morrow-Scholze) Let X denote a smooth formal scheme over OCp and
let X denote its fiber over Cp. Then there is a quasi-isomorphism

(RΓ(X,∆X/Ainf
)⊗L

Ainf
C♭

p)
ϕ=1 ≃ RΓét(X,Fp)

where the notation (−)ϕ=1 denotes the the homotopy fixed points of the lift of Frobenius ϕ on

the prismatic complex over the prism (Ainf , ker(Ainf
θ−→ OCp)) (i.e., the mapping co-cone of

the chain map ϕ− Id in the derived category (so Cone(ϕ− Id)[−1]).

In particular, identify Cp with C and let X ⊂ Pn be a smooth projective variety over C
that arises as the generic fiber of a smooth, proper scheme XZ over Z, e.g., one whose defin-
ing homogeneous polynomials have coefficients in Z and whose Jacobian matrix has rank
n + 1 − dim(X) modulo p. Then the above quasi-isomorphism holds after taking X as the
formal scheme whose underlying topological space XO/p is the fiber of XZ over OCp/p, and
whose structure sheaf is the p-completion of the structure sheaf of XO.

In fact, the proof of the above theorem proves more: there are natural E∞-Fp-algebra
structures on the cochains above, such that the quasi-isomorphism is a map of E∞-Fp-
algebras. The natural E∞-Fp-algebra structures on the cochains arise via Godement res-
olutions. The theorem above then states one can recover the full E∞-algebra structure on
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the étale Fp-cochains of a smooth proper complex variety with good reduction mod p, by
natural constructions applied to the prismatic complex over the prism (Ainf , ker(θ)). On the
other hand, we have the following theorem of Mandell [15] (see also [15], Remark 5.1).

Theorem 0.2. (Mandell) Let H denote the homotopy category of connected p-complete nilpo-
tent spaces of finite p-type, and let hE denote the homotopy category of E∞-Fp-algebras. The
singular cochain functor C∗

sing(−,Fp) induces a contravariant equivalence from H to a full sub-

category of hE. The quasi-inverse on the subcategory is given by U, the right derived functor
of the functor A 7→ HomE(A,C

∗(∆[n],Fp)). Moreover, there is the following adjunction

[X,UA] ∼= [A,C∗
sing(X,Fp)]

where [−,−] denotes morphisms in the respective homotopy category. Moreover, for X con-
nected and of finite p-type, the natural map X → UC∗

sing(X,Fp) via the adjunction is naturally
isomorphic to p-completion in the sense of Bousfield-Kan.

There is also the analog of the above theorem ([15], Proposition A.2, A.3) for the singular
cochain functor with coefficients in Fp.

Theorem 0.3. (Mandell) Let hE denote the homotopy category of E∞-Fp-algebras. The right
derived functor U of the functor A 7→ HomE(A,C

∗(∆[n],Fp)) from the category of E∞-Fp-
algebras to simplicial sets is right adjoint to the right derived functor of the singular cochain
functor C∗

sing(−,Fp), such that there is a natural isomorphism LX → UC∗
sing(X,Fp) in the

homotopy category for X connected, p-complete, nilpotent, and of finite p-type, where LX
denotes the free loop space of X.

In other words, taking coefficients in Fp recovers the free loop space of the p-adic homotopy
type. An immediate consequence of the theorems above is the following main theorem of the
thesis:

Theorem 0.4. Let X be as in the hypotheses of Theorem 0.1. Assume further that X
is nilpotent and finite p-type. Then U(RΓ(X,∆X/Ainf

) ⊗L
Ainf

C♭
p)

ϕ=1 is the free loop space of

the Bousfield-Kan p-completion of the complex variety X. Similarly, U((RΓ(X,∆X/Ainf
)⊗L

Ainf

C♭
p)

ϕ=1 ⊗L
Fp

Fp) is the Sullivan p-completion of the complex variety X.

Recall that for simply connected CW-complexes of finite type, the Bousfield-Kan p-
completion and Sullivan p-completion coincide. So as a corollary we have

Corollary 0.1. Let X be as in the hypotheses of Theorem 0.1. Assume X is simply connected
and finite p-type. Then U(RΓ(X,∆X/Ainf

)⊗L
Ainf

C♭
p)

ϕ=1 is the free loop space of the p-completion

of X, and U((RΓ(X,∆X/Ainf
)⊗L

Ainf
C♭

p)
ϕ=1 ⊗L

Fp
Fp) is the p-completion of X.

That is, for a smooth variety over C with good reduction mod p, natural constructions
applied to its prismatic complex over Ainf yield its p-adic homotopy type (in the senses above).

Notation and conventions. All rings are commutative with unit. All varieties over C
are assumed connected in the analytic topology. We use k to denote the ground field, usually
Fp or Fp. All E∞-k-algebras are chain complexes of k-modules with an action of a fixed
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E∞-operad Ek in Ch(k-mod), where Ek has a fixed map of operads Ek → Zk to the Eilenberg-
Zilber operad Zk. We refer the proof that such a map of operads always exists to [14]. Often
we will omit the subscript k if it is clear in context. By a quasi-isomorphism of E∞-algebras,
we mean a morphism of E∞-algebras that induces a quasi-isomorphism on the underlying
chain complexes. A complex variety with good reduction mod p is a variety that admits an
integral model over Spec(Z) such that the reduction mod p is regular.

Given a site C, we write AbSh(C) for the category of abelian sheaves on C. We write Sh(C)
and PSh(C) for the category of sheaves and presheaves of sets respectively on C, and Sh(C, D)
for sheaves with values in a category D. Ab denotes the category of abelian groups, and
DAbSh(C) and DAb denote the respective derived categories. If C is some category, then
∆C denotes the category of cosimplicial objects of C. We avoid any ∞-categorical language
because the author does not know it.

The author would like to thank Joana Cirici and Dan Petersen for helpful comments about
E∞-algebras. He would also like to thank Frederick Vu for helping him learn prismatic
cohomology from the ground up.

1 E∞-algebras and homotopy types

In this section we review some preliminaries regarding operads and E∞-algebras, following
Kriz and May [13].

1.1 Operads and algebras

We fix a ground field k. In this paper, k is Fp or an algebraic closure Fp. All tensor products
are over k.

Definition 1.1. An operad O consists of a sequence O(n), n ≥ 0 of cochain complexes over
k, with a unit map η : k → O(1), a right action of the symmetric group Σn on O(n) for each
n, and maps (of cochain complexes)

γ : O(k)⊗O(n1)⊗ ...⊗O(nk)→ O(n1 + ...+ nk)

for k ≥ 1 and nj ≥ 0. The maps γ must satisfy the following diagrams.
a) (Associativity) We have the following commutative diagram, where

∑
s js = j and∑

t it = i, with gs = j1 + ...+ js and hs = igs−1+1 + ...+ igs for 1 ≤ s ≤ k:

O(k)⊗ (
⊗k

s=1O(js))⊗ (
⊗j

r=1O(ir)) O(j)⊗ (
⊗j

r=1O(ir))

O(i)

O(k)⊗ (
⊗k

s=1O(js)⊗ (
⊗js

q=1O(igs−1+q))) O(k)⊗ (
⊗k

s=1O(hs))

γ⊗Id

shuffle

γ

Id⊗(⊗sγ)

γ

b) (Unital) The following unit diagrams commute:
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O(n)⊗ k⊗n O(n)

O(n)⊗O(1)⊗n

≃

Id⊗ηn
γ

and

k ⊗O(j) O(j)

O(1)⊗O(j)

≃

η⊗Id
γ

c) (Equivariance) The following diagrams commute, where σ ∈ Σk, τs ∈ Σjs, and σ(j1, ..., jk) ∈
Σk permutes k blocks of letters as σ permutes k letters, and τ1 ⊕ ... ⊕ τk ∈ Σk is the block
sum:

O(k)⊗O(j1)⊗ ...⊗O(jk) O(k)⊗O(jσ(1))⊗ ...⊗O(jσ(k))

O(j) O(j)

σ⊗σ−1

γ γ

σ(jσ(1),...,jσ(k))

and

O(k)⊗O(j1)⊗ ...⊗O(jk) O(k)⊗O(j1)⊗ ...⊗O(jk)

O(j) O(j).

Id⊗τ1⊗...⊗τk

γ γ

τ1⊕...⊕τk

The complexes O(n) parameterize n-ary operations, which take as input n values and
produces one output, via the γ maps.

We now define what operads act upon.

Definition 1.2. Let O be an operad. An algebra A over an operad is a cochain complex
with maps

θ : O(n)⊗ A⊗n → A

for every n ≥ 0 that are associative, unital, and equivariant in the following sense.
a) (Associativity) The following associativity diagrams commute, where

∑
js = j

O(k)⊗O(j1)⊗ ...⊗O(jk)⊗ A⊗j O(j)⊗ A⊗j

A

O(k)⊗O(j1)⊗ A⊗j1 ...⊗O(jk)⊗ A⊗jk O(k)⊗ A⊗k

γ⊗Id

shuffle

θ

Id⊗θk

θ

5



b) (Unital) The following unit diagram commutes:

k ⊗ A A

O(1)⊗ A

≃

η⊗Id
θ

c) (Equivariance) The following diagram commutes, for σ ∈ Σj:

O(j)⊗ A⊗j O(j)⊗ A⊗j

A .

σ⊗σ−1

γ

γ

A morphism of O-algebras is a morphism of complexes such that the operadic action
commutes. A quasi-isomorphism of O-algebras is a morphism of O-algebras that is a quasi-
isomorphism of the underlying complexes.

Definition 1.3. An operad O is unital if O(0) = k. If O is unital, then there are augmen-
tation maps ϵ = γ : O(n)⊗O(0)n → O(0) = k. We say a unital operad O is acyclic if the
augmentations are quasi-isomorphisms for every n. If the unital operad O is acyclic and Σn

acts freely on O(n) for every n, we say O is an E∞-operad. An E∞-algebra is any algebra
over an E∞-operad.

Example 1.1. Consider the singular chains functor Λ : ∆ → Ch(k-mod) that sends a
simplex [n] to the normalized cochain complex C∗(∆n, k). We define Λj to be the functor
that sends [n] to the j-fold tensor power C∗(∆n, k)⊗j. Let Hom(Λj,Λ) denote the set of
natural transformations between these two functors. We can define an operad as follows:
let Z(j) = Hom(Λj,Λ) for every j. This is the Eilenberg-Zilber operad [11]. By the
acyclic carrier methods of Eilenberg and Zilber, this operad is acyclic, but the actions of the
symmetric group are not free. However, one can show there always exists an E∞-operad
E → Z (see [14] section 4) so that any Z-algebra can be considered an E∞-algebra with
respect to the operad E.

Example 1.2. An explicit example of an E∞-operad, pointed out to the author by John
Morgan, is that of the Barratt-Eccles operad E. Here, for each j, the chain complex E(j)
is generated in degree d by (d + 1)-tuples (w0, ..., wd) where each wi is an element of the
symmetric group Σj. The symmetric group acts freely by definition, and this operad admits a
map of operads to the Eilenberg-Zilber operad above. For more details see Berger and Fresse
[3].

For more examples of algebras over operads, see section 2.2. Given two E∞-operads E
and E ′, the homotopy categories of algebras over each operad respectively are equivalent.
Thus, for the entirety of this paper, when we say E∞-algebra, we only make reference to one
fixed E∞-operad (with fixed map E → Z to the Eilenberg-Zilber operad) unless otherwise
specified.
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1.2 Homotopy types

Given a homotopy type X, one can take the p-completion of its homotopy groups. There is a
construction (due to Sullivan) that builds a homotopy type Xp called the p-completion of
X. The homotopy groups of Xp are precisely the p-completions of the homotopy groups of
X. We say two spaces X and Y have the same p-adic homotopy type if there is a homotopy
equivalence of their p-completions. Notice immediately then that X and Xp have the same
p-adic homotopy type. In this section, we briefly review the notion of a p-completion (in the
sense of Sullivan) and prove some elementary lemmas on base-changing for operads. For a
field k, we let Ek denote the E∞-operad for complexes of k-modules. We present the definition
of the p-completion of a space in the sense of Sullivan below [25].

Definition 1.4. Let X be a homotopy type. Consider the category {f}X where objects are
maps

X
f−→ F

where F is connected with finitely many nonzero homotopy groups πi(F ), all of which are
finite groups of order a power of p for all i, and whose morphisms are given by homotopy
commutative diagrams

F

X

F ′.

Let the notation [X,F ] denote the set of (based) homotopy classes of maps from X to F .
For a given F with finitely many non-zero homotopy groups, all of which are finite groups,
the set of homotopy classes of maps from a finite complex X (i.e., a homotopy type with
finitely many attaching maps) is finite by basic obstruction theory. It is proved in [25] that
the category above is actually cofiltered, and that one can take an inverse limit over all
objects of the category.

Moreover, for such an F , we have the equivalence [X,F ]
≃−→ lim←−Xα

[Xα, F ], where Xα is

a finite subcomplex of X. As each [Xα, F ] is finite, this gives the set [X,F ] a topology as
an inverse limit of finite discrete sets. The space [X,F ] is compact, Hausdorff, and totally
disconnected.

Finally, since the category {f}X is cofiltered, Sullivan defines a homotopy functor

Xp(Y ) := lim←−{f}X
[Y, F ]

from the homotopy category of spaces to the category of compact, Hausdorff, totally discon-
nected spaces. He then shows this functor is representable by a space Xp by appealing to the
theory of Brownian compact functors.

Definition 1.5. The p-completion (in the sense of Sullivan) of a homotopy type X
is the (homotopy class of) map

7



X → Xp

corresponding to
∏

{f}(X
f−→ F ), i.e., the map from X to the inverse limit over all X

f−→ F .
The space Xp is the p-adic homotopy type of X.

It is proven in [25] and the 1970 MIT notes that for a simply connected homotopy
type X with finitely generated homotopy groups, we have that π∗(Xp) ≃ (π∗(X))p and
H∗(X,Z)p ≃ H∗(X,Zp) ≃ H∗(Xp,Zp). Moreover, H∗(X,Z/p) ≃ H∗(Xp,Z/p). The above
results generalize to the case of “simple” fundamental group (i.e., where the fundamental
group acts trivially on higher homotopy groups). In this case, we can say the p-adic homo-
topy type of a space X is simply a space Xp whose homotopy and integral cohomology are
p-completions of those of X.

We restate below Mandell’s main theorem 0.2 that we will utilize. The homotopy category
of E∞-algebras is obtained by forcing quasi-isomorphisms to be isomorphisms (following
Quillen).

Theorem 1.1. (Mandell) Let H denote the homotopy category of connected p-complete nilpo-
tent spaces of finite p-type, and let hE denote the homotopy category of E∞-Fp-algebras. The
singular cochain functor C∗

sing(−,Fp) induces a contravariant equivalence from H to a full sub-

category of hE. The quasi-inverse on the subcategory is given by U, the right derived functor
of the functor A 7→ HomE(A,C

∗(∆[n],Fp)). Moreover, there is the following adjunction

[X,UA] ∼= [A,C∗
sing(X,Fp)]

where [−,−] denotes morphisms in the respective homotopy category. Moreover, for X con-
nected and of finite p-type, the natural map X → UC∗

sing(X,Fp) via the adjunction is naturally
isomorphic to p-completion in the sense of Bousfield-Kan.

The above theorem is about the p-adic homotopy type in the sense of Bousfield-Kan. We
will not define this notion here; for its definition, see the book by Bousfield and Kan [8]. We
will instead work with the p-adic homotopy type in the sense of Sullivan [25] throughout this
paper. Below we will review some preliminary lemmas about base-change for operads, and
show how Mandell’s theorem relates the two notions of p-adic homotopy types, justifying
why we work with the Sullivan type than the Bousfield-Kan type.

We state a lemma by Mandell, whose proof we refer to [15], in the paragraph preceding
Proposition A.8.

Lemma 1.1. There is a map of operads EFp ⊗Fp Fp → EFp
. By changing the operad EFp

if necessary, this map is an isomorphism. This defines a functor from E∞-Fp-algebras to
E∞-Fp-algebras that sends A to A⊗Fp Fp.

Now we study the extended scalars C∗
sing(X,Fp)⊗Fp Fp. This is an E∞-Fp-algebra by the

above lemma. However, there is another E∞-Fp-algebra structure as described in the lemma
below; we will prove that these two structures agree. See Appendix B in [15] for details.

Lemma 1.2. C∗
sing(X,Fp)⊗FpFp is an algebra over EFp

. There is a natural map of EFp
-algebras

C∗
sing(X,Fp)⊗Fp Fp → C∗

sing(X,Fp).

8



Proof. Let {Xα} denote the inverse system of levelwise finite quotients of X; that is, Xα is
a quotient of X as a simplicial set, and in each simplicial degree n, the set of n simplices
is finite. We give C∗

sing(X,Fp) ⊗Fp Fp the structure of an E∞-Fp-algebra via the natural

isomorphism C∗
sing(X,Fp)⊗Fp Fp

∼= colimα C∗(Xα,Fp). The inverse system of maps X → Xα

induces a map of E∞-Fp-algebras C
∗
sing(X,Fp)⊗Fp Fp → C∗

sing(X,Fp).

The following argument was communicated to the author by Mandell.

Lemma 1.3. The E∞-Fp-algebra structure on C∗
sing(X,Fp)⊗Fp Fp from Lemma 1.1 and the

E∞-Fp-algebra structure from Lemma 1.2 agree.

Proof. The maps X → Xα induce a map of E∞-Fp-algebras in the sense of Lemma 1.1

C∗
sing(Xα,Fp)⊗Fp Fp → C∗

sing(X,Fp)⊗Fp Fp.

There is a natural map C∗
sing(Xα,Fp) ⊗Fp Fp → C∗

sing(Xα,Fp) of E∞-Fp-algebras, which is
an isomorphism since Xα is degreewise finite; that is, the lemma holds for Xα by finiteness.
Thus we obtain a system of maps of E∞-Fp-algebras

C∗
sing(Xα,Fp)→ C∗

sing(X,Fp)⊗Fp Fp.

This system is filtered, so the colimit over α of C∗(Xα,Fp) in the category of E∞-Fp-algebras
is the same colimit on the underlying differential graded modules over Fp. By universal
property of colimits in E∞-Fp-algebras, we obtain an E∞-Fp-algebra map

colimαC
∗
sing(Xα,Fp)→ C∗

sing(X,Fp)⊗Fp Fp

which is an isomorphism on the underlying differential graded modules over Fp, and so is an
isomorphism of E∞-Fp-algebras. The E∞-Fp-algebra structure on the colimit is in the sense
of Lemma 1.2.

The following theorem of Mandell ([15], Theorem B.1) relates the above discussion to the
p-profinite completion of the variety X in the sense of Sullivan ([25], Section 3).

Theorem 1.2. For any connected simplicial set X, the composite map

X → UC∗
sing(X,Fp)→ U(C∗

sing(X,Fp)⊗Fp Fp)

is Sullivan p-completion.

The first map is from the unit of the adjunction in Theorem 0.2. By Lemma 1.2, we have
a map C∗

sing(X,Fp) ⊗Fp Fp → C∗
sing(X,Fp). This induces the second map above, from the

Bousfield-Kan completion to the Sullivan completion. If we assume X is simply connected,
the second map above is an isomorphism. Thus, our notion of p-adic homotopy type in this
paper will be in the sense of the Sullivan p-completion unless otherwise specified, though the
distinction will not play a large part.

We very briefly and informally mention the Artin-Mazur construction of an étale homo-
topy type of an algebraic variety X over any field k. For a given variety, one can take a
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covering by étale opens U → X and take iterated fiber products: pairwise, then by triples,
etc. This yields a simplicial set (scheme), called the Čech nerve, just as in the ordinary
topological setting. To define the étale homotopy type, Artin and Mazur take a hypercover-
ing by étale opens, which is roughly the Čech nerve construction, but modified as follows.
Instead of taking the iterated fiber product at each step, one takes a finer étale open covering
of the iterated fiber product. For example, instead of taking pairwise intersections U ∩ V ,
one takes an étale open covering of the intersection U ∩ V . One takes triple intersections in
this new covering. For each triple intersection in the new covering, one takes another new
covering by étale opens, and we reiterate the process. This yields a simplicial scheme, called
a hypercovering.

Artin and Mazur then define a notion of simplicial homotopy for hypercoverings, and
prove that the homotopy category of hypercoverings is cofiltered (so one can form inverse
systems). The étale homotopy type of X is the inverse system of homotopy types, given by
the geometric realizations of all hypercoverings of X (i.e., it is a pro-homotopy type). Artin
and Mazur prove that the étale homotopy type is in fact pro-finite, i.e., it is isomorphic to
the inverse system of homotopy types whose homotopy groups are all finite.

For a fixed p, a p-homotopy type is a space whose homotopy groups are finite groups
with order powers of p. There is an evident inclusion of categories of p-homotopy types
into all homotopy types, and likewise for the respective pro- categories. The adjoint to
the inclusion functor is called p-completion. We can then consider the étale homotopy
type up to isomorphism after p-completion. We call this equivalence class the p-adic étale
homotopy type. The construction of this adjoint functor follows from using functoriality
of p-completion for ordinary groups, applied to inverse system diagrams of groups. Thus the
p-adic étale homotopy type is an inverse system of homotopy types, each of whose homotopy
groups are all finite p-groups.

Artin and Mazur prove in [2] the following two statements: 1) for a complex variety X,
the limit of its p-adic étale homotopy type is isomorphic to its p-adic homotopy type. 2) For
a complex variety X with good reduction mod p, the limit of the ℓ-adic étale homotopy type
of [X mod p] is isomorphic to the ℓ-adic homotopy type of X, for ℓ ̸= p.

For the rest of this thesis, we shall no longer discuss ℓ.

2 Étale cochains and E∞-Artin comparison

In this mainly expository section, we review some classical theorems regarding the E∞-
algebra structure on étale cochains. We emphasize there are no original theorems proven in
this section; many of the arguments can be found in, for example, [9], [19], and [20], with the
main conceptual ideas originating from Godement [10]. The aim of this section is to cover
the following well known theorem.

Theorem 2.1. Let X be a smooth complex variety. There is a quasi-isomorphism of E∞-
algebras between the singular Fp-cochains C

∗
sing(X(C),Fp) and the étale Fp-cochains RΓét(X,Fp).

Here is an outline of the section: first, we compare the étale site of X over C with the
site of analytic open sets on its underlying complex manifold X(C), by passing to the site of
local homeomorphisms mapping to X(C). We analyze the site of local homeomorphisms and
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show it has enough points. We then use the Godement resolution on all three sites to obtain
E∞-algebras on their sheaf cohomologies; the quasi-isomorphism of the underlying complexes
is omitted.

We have the following theorem from SGA IV (XII-4) [1]; we provide a translation of part
of the proof, with some details provided using lemmas from the Stacks Project [24].

Theorem 2.2. Let X be a smooth complex variety. There is a zig-zag of sites

Xcl

X(C) Xét

δ ε

where X(C) denotes the site of analytic open sets on the underlying complex manifold of X,
Xcl denotes the site of local homeomorphisms U → X(C), and Xét denotes the étale site of
X.

Proof. An object of Xcl is a continous map of topological spaces f : U → X(C) such that for
every point x ∈ U , there is a neighborhood Ux such that the restriction of f to Ux is a home-
omorphism onto an open neighborhood around f(x); that is, f is a local homeomorphism.
Since inclusions of open sets in X(C) are local homeomorphisms, we obtain a morphism of
sites δ : Xcl → X(C) by the continuous functor U 7→ (U ↪→ X(C)); this continuous functor
is the inclusion of categories X(C) ⊂ Xcl.

On the other hand, let f : X ′ → X be étale. Then the induced map on the underlying
smooth manifolds f(C) : X ′(C) → X(C) is a local isomorphism, by the Jacobian criterion
and implicit function theorem. The functor X ′ 7→ X ′(C) then induces the morphism of sites
ε : Xcl → Xét.

Lemma 2.1. The functor δ∗ sends surjective maps of sheaves of sets to surjective maps of
sheaves of sets. Moreover, it is an equivalence of the associated topoi, and reflects injections
and surjections (i.e., δ∗f is an injection (resp. surjection) implies f is an injection (resp.
surjection)).

Proof. For each local homeomorphism f : U → X(C), for each x ∈ U , there is a neighborhood
homeomorphic to an open neighborhood around f(x) in X(C). Thus, we can cover U by
open sets that are homeomorphic to open sets in X(C); that is, there exists a family of open
sets {Ui ↪→ X(C)} such that we have a commutative diagram of local homeomorphisms

Ui U

X(C)

and where U is the union of the images of the maps from Ui. The above geometric argument
immediately implies that the hypotheses of ([24], Tag 04D5, Lemma 7.41.2) are satisfied, and
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so δ∗ sends surjective maps of sheaves to surjective maps of sheaves. Similarly, the hypotheses
of ([24], Tag 04D5, Lemma 7.41.4) are also satisfied, so δ∗ reflects injections and surjections.

Lastly, to show δ∗ is an equivalence of topoi, notice that the inclusion functor X(C) ↪→ Xcl

is cocontinuous, and that the hypotheses of ([24], Tag 039Z, Lemma 7.29.1) are likewise sat-
isfied by the above geometric argument. The morphism of topoi g : Sh(X(C)) → Sh(Xcl)
associated to the inclusion as a cocontinuous functor is then an equivalence, with the ad-
junction mappings g−1g∗F → F and G → g∗g

−1G being isomorphisms. It follows from the
definition of induced morphism of topoi from a cocontinuous functor that δ∗ = g−1; in fact,
since g−1 is left adjoint to g∗, this shows δ∗ is right exact as well.

Remark. The functor δ−1 is not the same as the induced functor g∗ in the argument
above; the map of topoi (δ−1, δ∗) is induced from the inclusion as a continuous functor,
whereas the map of topoi (g−1, g∗) is induced from the inclusion as a cocontinuous functor.

The above theorem and lemma say that one can replace X(C) with Xcl for calculation of
usual sheaf cohomology. Moreover there is the following property of the morphism ε, again
explained in SGA IV (XII-4).

Theorem 2.3. Let X be smooth over C. There is an equivalence of categories given by the
quasi-inverse functors ε∗ and ε∗ between the category of locally constant constructible torsion
sheaves on Xét, and the category of locally constant finite fiber torsion sheaves on Xcl.

The proof of the above theorem is what ultimately gives the desired quasi-isomorphism
between sheaf cohomologies

RΓ(Xét,Fp)
≃−→ RΓ(Xcl,Fp)

≃←− RΓ(X(C),Fp)

where the first isomorphism is from ε∗ in the theorem above, and the second is by δ∗ from
Theorem 2.2. The quasi-isomorphism is really the difficult part of Theorem 2.1; the rest of
this section is to show that the above zig-zag of maps are maps of E∞-Fp-algebras. First, we
show how we obtain induced maps on cohomology from morphisms of sites:

Lemma 2.2. Let f : C → C ′ be a morphism of sites. The following diagram commutes:

DAbSh(C) DAbSh(C ′)

DAb

Rf∗

RΓ
RΓ

In particular, we have RΓ(C ′,Rf∗F) ≃ RΓ(C,F) for any F in Sh(C).

Proof. This follows from the following commutative diagram:

AbSh(C) AbSh(C ′)

Ab

f∗

Γ
Γ

12



We have that f∗ is right adjoint to an exact functor f−1. Hence, we have the following string
of natural isomorphisms:

Γ(C ′, f∗F) := HomAbSh(C′)(ZC′ , f∗F)
∼= HomAbSh(C)(f

−1(ZC′),F)
∼= HomAbSh(C)(ZC,F)
=: Γ(C,F).

Here, Z denotes the constant sheaf that takes values in Z: the category AbSh(C) has a unique
morphism of topoi (p∗, p

−1) to Ab, where ZC = p−1Z. The second isomorphism holds by
uniqueness of this morphism (see SGA IV (IV-4.3) [1]). All functors in the above diagram
are left exact but not right exact. Since f∗ preserves injective objects ([24], Tag 015Z), it
follows by ([24], Tag 015L, Lemma 13.22.1) that the natural morphism R(Γ◦ f∗)→ RΓ◦Rf∗
is an isomorphism.

2.1 Godement resolutions

Let us briefly recall the Godement construction [10], considered in a general categorical
context. Here, we use the language of Rodŕıguez-Gonález and Roig [21]. The Godement
construction will be where all of our E∞-algebra structures arise, using a theorem of Hinich
and Schechtman.

Definition 2.1. Let C be a site. A point of the site C is a pair of adjoint functors
x = (x∗, x∗)

Sh(C)
x∗

⇄
x∗

Set,

HomSet(x
∗F , E) ∼= HomSh(C)(F , x∗E)

where x∗ commutes with finite limits. The site C has enough points if there exists a
set S of points x such that a morphism f in Sh(C) is an isomorphism if and only if x∗f is a
bijection for all x ∈ S.

The right adjoint x∗ assigns to each set E the skyscraper sheaf x∗E at the point x. The
left adjoint x∗ assigns to each sheaf F the stalk Fx := x∗F at the point x.

Example 2.1. Consider the site X(C) of (analytic) open subsets of the complex manifold
X(C). Take S to be the underlying set of X(C). The geometric points x ∈ S determine
points of the site by taking x∗ to be the stalk functor and x∗ to be the skyscraper sheaf functor.
Moreover, a map of sheaves is an isomorphism if and only if it is so on the stalks. Thus the
site X(C) has enough points.

Example 2.2. It is a classical fact that the étale site Xét has enough points; this follows
from, for example, Deligne’s criterion ([1], VI Appendix, Proposition 9.0). Isomorphisms of
sheaves on the étale site can be checked stalk-wise at geometric points x, where a geometric
point x (for a given point x of the underlying topological space X) is the spectrum of a
separably closed field k(x) containing k(x), with the map x→ X induced by the inclusion of
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the residue fields. It suffices to choose, for each point x of the underlying topological space
X, a separably closed field that contains the residue field of x (see the lecture notes of Milne
[17], by the argument of Lemma 7.4 therein and Remark 7.7). This gives the set of points
for the étale site. We caution that the collection of all geometric points does not form a set,
but rather a proper class.

Lemma 2.3. The site Xcl has enough points.

Proof. Recall we have an equivalence of topoi, with the equivalence induced by an inclusion
of categories, with induced functor δ∗ : Sh(Xcl) → Sh(X(C)) with quasi-inverse g∗. In fact,
δ∗ is left adjoint to g∗. By the example above, we know X(C) has enough points. For each
point x = (x∗, x∗) of X(C), define y = (y∗, y∗) := (x∗ ◦ δ∗, g∗ ◦ x∗). We check adjointness:

HomSet(y
∗F , E) = HomSet(x

∗ ◦ δ∗F , E)
∼= HomSh(X(C))(δ∗F , x∗E)
∼= HomSh(Xcl)(F , g∗ ◦ x∗E)

= HomSh(Xcl)(F , y∗E)

where all isomorphisms follow from the adjunction pairs (x∗, x∗) and (δ∗, g∗). Moreover, since
x∗ and δ∗ are both exact, their composition y∗ also commutes with finite limits.

The above argument shows that y as defined is a point. We take as our set of points S
a set with cardinality at most the cardinality of the underlying set of the manifold X(C),
via (x∗, x∗) 7→ (x∗◦δ∗, g∗◦x∗). We now show we can check isomorphisms of sheaves stalk-wise.

Assume f is an isomorphism in Sh(Xcl). By exactness of δ∗, we have that δ∗f is an iso-
morphism in Sh(X(C)). Thus, x∗δ∗f is a bijection for all points x. Therefore, y∗f = x∗δ∗f
is a bijection for all y.

Conversely, suppose y∗f is a bijection for all y, i.e., that x∗δ∗f is a bijection for all x.
Then, δ∗f is an isomorphism in Sh(X(C)). However, by lemma 2.1, δ∗ reflects injections and
surjections. Thus f is an isomorphism.

We are now ready to discuss the Godement resolution, following [21]. In fact, we have
the following proposition ([21], Proposition 3.3.1):

Proposition 2.1. Let D be a category closed under products and filtered colimits, and let x
be a point of the site C. Then there is an adjoint pair (x∗, x∗) of functors

Sh(C, D)
x∗

⇄
x∗

D,

HomD(x
∗F , E) ∼= HomSh(C,D)(F , x∗E)

Rodŕıguez-Gonález and Roig prove the above proposition by noting that we have explicit
formulas for x∗, using filtered colimits, and x∗, using products. We refer the formulas to their
paper ([21], 3.3).
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Definition 2.2. Let C be a site with enough points, with S as its set of points. Let D be a
category closed under products and filtered colimits. By abuse of notation, let S denote the
collection considered as a discrete category, with only identity morphisms. There is a pair
(p∗, p∗) of adjoint functors

Sh(C, D)
p∗

⇄
p∗

DS,

HomDS(p∗F , E) ∼= HomSh(C,D)(F , p∗E)

defined, for F ∈ Sh(C, D) and E = (Ex)x∈S ∈ DS, by p∗F := (Fx)x∈S and p∗E :=∏
x∈S x∗(Ex).

Definition 2.3. Let C be a site with enough points and D a symmetric monoidal cate-
gory closed under products and filtered colimits. The Godement functor is a functor
G : Sh(C, D) → Sh(C, D) defined as G = p∗p

∗ for the adjoint pair (p∗, p∗) defined in defini-
tion 2.2. The cosimplicial Godement functor is a functor G• : Sh(C, D) → ∆Sh(C, D)
into cosimplicial sheaves, where the i-th term is given by the i-th iterate Gi.

For the purposes of this paper, we will mainly be concerned with D = Ch(k-mod) the
category of cochain complexes of k-modules. In this situation, we have the following classical
theorem, proven for far more general D by Rodŕıguez-Gonález and Roig (see [20] Proposition
3.4.5, Corollary 3.4.6, Proposition 3.4.7) though definitely known to Godement [10] albeit
without modern language. See also Chataur and Cirici ([9] Definition 2.5).

Theorem 2.4. Let f : C → C ′ be a morphism of sites induced by a continuous functor, where
C and C ′ have enough points. Let D = Ch(k-mod). Then the functors G•, f∗, and Γ are lax
symmetric monoidal.

Remark. The symmetric monoidal structure on Sh(C, D) is by sheafifying the presheaf
whose values are tensor products object-wise. That is, given F and G, we can define a
presheaf by U 7→ F(U)⊗k G(U), and then sheafify.

We now use some definitions following Chataur and Cirici ([9], Definition 2.4), and Man-
dell ([14], Proposition 5.2). See also ([24], Tag 019H) for general Dold-Kan considerations.

Definition 2.4. The normalized complex functor is the functor N : ∆Ch(k-mod) →
Ch(k-mod) given as the composition of the cosimplicial degree-wise normalization functor
and the totalization functor. Normalization of a cosimplicial object means forming a chain
complex by taking the intersections of kernels of the cosimplicial maps, then restricting the
alternating sum of cosimplicial maps to the intersections. The associated complex func-
tor is the functor s : ∆Ch(k-mod) → Ch(k-mod) given by taking alternating sums of the
cosimplicial maps to obtain an associated double complex, then applying totalization.

It is well known that for every cosimplicial complex C•, the complexes NC• and sC• are
homotopy equivalent ([26], Lemma 8.3.7, Theorem 8.3.8).

Definition 2.5. Let D = Ch(k-mod). The normalized Godement resolution is the
functor NG• : Sh(C, D) → Sh(C, D) given as object-wise composition of the normalized
complex functor and the cosimplicial Godement functor.
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Definition 2.6. Let D = Ch(k-mod). The Godement resolution is the functor sG• :
Sh(C, D)→ Sh(C, D) given as object-wise composition of the associated complex functor and
the cosimplicial Godement functor.

The normalized cochain functor is monoidal but not symmetric monoidal; instead we
have the following theorem of Hinich and Schechtman [11] (see also Chataur and Cirici [9],
Proposition 2.2, and Mandell [14], Theorem 5.5).

Theorem 2.5. (Hinich-Schechtman) Let A• be a cosimplicial P-algebra for an arbitrary
operad P in Ch(k-mod). Then NA• is a (P ⊗k Z)-algebra, for the Eilenberg-Zilber operad
Z, functorial in A• and P.

2.2 Sheaves of commutative DGAs

This subsection will discuss how to obtain an E∞-algebra structure on the cochains of a sheaf
of commutative DGAs (CDGAs). An outline is as follows: the above theorem of Hinich and
Schechtman says by normalizing and totalizing a cosimplicial CDGA, the resulting complex
is an E∞-algebra. The Godement resolution precisely takes a sheaf of CDGAs to cosimplicial
sheaves of CDGAs, and then normalizes and totalizes. Taking global sections then yields an
E∞-algebra structure on the sheaf cochains.

We introduce two necessary definitions from [20] and [21] before proceeding. By the
remark on the symmetric monoidal structure on Sh(C, D) via the sheafification functor, the
following is well defined. See ([20], Remark 3.4.3).

Definition 2.7. Let D = Ch(k-mod). A sheaf of operads P in D is an operad in Sh(C, D).

Definition 2.8. Let D = Ch(k-mod) and let P be a sheaf of operads in D on a site C. A
sheaf of cochain complexes F ∈ Sh(C, D) is a sheaf of P-algebras if it is a P-algebra.
Equivalently, for each object U in C, there are the usual structure morphisms for an algebra
over an operad P(n)(U)⊗k F⊗n(U)→ F(U).

Example 2.3. Let O be a sheaf of k-algebras. We can view this as a sheaf of trivial commu-
tative DGAs, which are concentrated in degree 0. Then O is a sheaf of Comm-algebras, where
Comm denotes the commutative operad, which has Comm(n) = k in degree 0 for all n, with
trivial symmetric group actions. Note that Comm-algebras are equivalent to commutative
DGAs (CDGAs) ([13] Example 2.2).

Example 2.4. Recall that the Eilenberg-Zilber operad is acyclic ([11] Theorem 2.3, [14]
Proposition 5.4), and so admits a map of operads Z → Comm. There is also the fixed map
of operads E → Z, where E is our fixed E∞-operad. Thus a sheaf O of k-algebras is a sheaf
of E∞-algebras.

Remark. Recall that the symmetric monoidal structure on ∆Sh(C, D) is induced degree-
wise by the symmetric monoidal structure on Sh(C, D), so the definitions above make sense
for cosimplicial sheaves as well.
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Remark. The equivalence above in definition 2.8 follows from the existence of the sheafifi-
cation functor for presheaves with values in D = Ch(k-mod). Part of the work of Rodŕıguez-
Gonález and Roig in [20] concerns the conditions on the coefficient category D for which a
sheafification functor is available. For the purposes of this paper, we will actually mainly be
concerned with the underlying presheaf structure than the sheaf structure per se.

Lemma 2.4. The category of Comm-algebras, equivalent to the category of commutative
differential graded k-algebras (CDGAs), is closed under limits and colimits.

Proof. Limits and colimits of cochain complexes are computed degree-wise on the underlying
k-modules, with the differential defined by universal property. A CDGA is precisely a cochain
complex C• with a chain map a : C• ⊗k C

• → C• unital and associative in the appropriate
sense, and satisfying graded commutativity. We sketch a proof of the colimit case in this
paragraph and omit the limit case, which is identical. For colimits in CDGAs, we take the
colimits of the underlying cochain complexes. Let D• denote the colimit of a system of

CDGAs C•
i

fji−→ C•
j . We define the algebra map by

D• ⊗k D
• = colimC•

i ⊗k colimC•
j
∼= colim(C•

i ⊗k C
•
i )

colim ai−−−−→ colimC•
i = D•

where the center natural isomorphism follows from invoking the universal property on colim (C•
i⊗k

C•
i ) for the system {C•

i ⊗kC
•
i }, via the maps C•

i ⊗kC
•
i → colimC•

i ⊗kcolimC•
j . For the inverse,

one fixes an index i and defines maps C•
i ⊗k C

•
j

fji⊗id−−−→ C•
j ⊗k C

•
j → colim C•

i ⊗ C•
i if i ≤ j,

and C•
i ⊗k C

•
j

id⊗fij−−−→ C•
i ⊗k C

•
i → colim C•

i ⊗ C•
i if i > j; one then uses the universal prop-

erty twice, and commutativity of all diagrams involved and uniqueness of the maps arising
from the universal property verify the isomorphism. Graded commutativity and the Leibniz
formula follow from all the terms in the equations being colimits of elements and colimits of
maps respectively, and functoriality of colim.

Lemma 2.5. Let F be a sheaf of Comm-algebras and let f : C → C ′ be a morphism of sites
with enough points induced by a continuous functor u : C ′ → C. Then G•F is a cosimplicial
presheaf of Comm-algebras. If F is a sheaf of P-algebras for a fixed operad P, then f∗F is
a presheaf of P-algebras.

Proof. Recall that G0F = p∗p
∗F . By definition, G0 is a product of filtered colimits of Comm-

algebras, and so is a presheaf of Comm-algebras by Lemma 2.4. By definition, f∗F(U) =
F(u(U)) for objects U in C; since F is a presheaf of P-algebras, it follows that f∗F is a
presheaf of P-algebras.

Remark. By Theorem 2.4 and results of [20], we obtain an induced functor, which we
also denote by G•, that sends sheaves of operads P in Sh(C, D) to cosimplicial sheaves of
operads G•P , which is by definition the same as a cosimplicial operad in Sh(C, D). Similarly,
we obtain an induced functor G• that sends sheaves F of P-algebras to cosimplicial sheaves
G•F which are G•P-algebras, i.e., algebras over the cosimplicial operad G•P .

An immediate consequence of Theorem 2.4 and Theorem 2.5 is then the following corol-
lary.
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Corollary 2.1. Let D = Ch(k-mod) and let C be a site with enough points with a terminal
object X. Let F be a sheaf of Comm-algebras. Then NG•(F) is a presheaf of Z-algebras.
In particular, RΓ(C,F) is an Z-algebra.

Proof. By Theorem 2.4 and Lemma 2.5, G•F is a cosimplicial presheaf of Comm-algebras.
Thus on each object U of C, we have that NG•(F)(U) is the normalized complex of a
cosimplicial Comm-algebra. By Theorem 2.5, NG•(F)(U) is a (Comm ⊗k Z)-algebra for
each object U . Since Comm ⊗k Z = Z, we have that this is a presheaf of Z-algebras.
Finally, we have RΓ(C,F) = NG•(F)(X) since the Godement resolution is a resolution by
flasque sheaves, which are acyclic.

We need just one more theorem, due to Mandell ([14], Theorem 5.8). See also Chataur
and Cirici ([9], Definition 2.4).

Theorem 2.6. There is a cosimplicial normalization functor N that sends cosimplicial E∞-
algebras to E∞-algebras, that agrees with the normalized cochain functor N on the underlying
cochain complexes, and such that, for a constant cosimplicial E∞-algebra A•, the isomorphism
of cochain complexes A0 ∼= N(A•) is a morphism of E∞-algebras.

Lemma 2.6. Let O be a sheaf of k-algebras. The cosimplicial Godement functor has an
augmentation O → G•O which is a map of presheaves of k-algebras in degree 0. The existence
of the augmentation is equivalent to the existence of a map of cosimplicial presheaves of k-

algebras O• → G•O. The composition O
∼=−→ NO• → NG•O is a map of presheaves of

E∞-algebras.

Proof. That an augmentation of a cosimplicial object is equivalent to a map from the constant
cosimplicial object is by composing the augmentation map with the cosimplicial maps; see
([24] Tag 018F Lemma 14.20.2). The map O• → G•O of cosimplicial presheaves of k-algebras
is then a map of cosimplicial presheaves of Comm-algebras, and so E∞-algebras. Applying
Theorem 2.6 gives the last statement.

The following proposition summarizes the above section in one clean statement.

Proposition 2.2. Let F be a sheaf of commutative k-algebras (or more generally of com-
mutative DGAs) on a site C with enough points. Then Γ(C, NG•F) is an E∞-k-algebra,
where NG•F is the normalization of the cosimplicial Godement resolution. Thus the object
RΓ(C,F) representing sheaf cohomology has an E∞-algebra structure.

2.3 E∞-Artin comparison

We are now ready to prove the statement that the classical Artin comparison theorem is
a quasi-isomorphism of E∞-algebras, with the corresponding E∞-algebra structures arising
from Godement resolutions.

Lemma 2.7. Let O and O′ be sheaves of k-algebras on sites C, C ′ respectively. Assume C
and C ′ both have terminal objects. A morphism of ringed sites (C,O) f−→ (C ′,O′) induced by
a continuous functor C ′ → C induces a map of E∞-algebras RΓ(C ′,O′)→ RΓ(C,O).
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Proof. A morphism of ringed sites by definition has the data of a map of sheaves of rings
O′ → f∗O. Viewing f∗O as an object in the derived category concentrated in degree 0, there
is a natural chain map f∗O → Rf∗O. By functoriality of RHomPSh(C′)(∗C′ ,−) we obtain maps

RHomPSh(C′)(∗C′ ,O′)→ RHomPSh(C′)(∗C′ , f∗O)→ RHomPSh(C′)(∗C′ ,Rf∗O) ≃ RHomPSh(C)(∗C,O)

where the last isomorphism follows from Lemma 2.2. The composition of these maps gives
our map RΓ(C ′,O′) → RΓ(C,O). The claim is that this naturally induced map is a map of
E∞-algebras. Note that Theorem 2.4 also implies that the last isomorphism from Lemma 2.2
is a quasi-isomorphism of E∞-algebras, for sheaves of k-algebras.

First, note we already have maps of bounded below cochain complexes of sheaves of abelian
groups O′ → f∗O → Rf∗O where we view O′ and f∗O as complexes concentrated in degree
0. The first map O′ → f∗O is a map of presheaves of k-algebras, so of Comm-algebras,
and so of E∞-algebras. We have that Rf∗O is computed as f∗NG•O, which is a presheaf of
Z-algebras, and so of E∞-algebras, by Corollary 2.1 and Lemma 2.5. The second map is in

fact the functor f∗ applied to the map O
∼=−→ NO• → NG•O in Lemma 2.6; since this map

is a map of presheaves of E∞-algebras, applying the functor f∗ yields a map of presheaves of
E∞-algebras. We then have the following commutative square

O′ NG•(O′)

Rf∗O NG•(Rf∗O)

≃

∗

≃

by functoriality of the Godement resolution on the underlying complexes. The left hand
vertical map is a map of presheaves of E∞-algebras, by the above discussion. The right hand
vertical map is then a map of presheaves of (E∞⊗k Z)-algebras, and so a map of presheaves
of E∞-algebras; this follows from the existence of maps of operads E → E ⊗k E → E ⊗k Z.
The map E → E ⊗k E exists using cofibrancy of an appropriate choice of E∞-operad, or for
example using the Barratt-Eccles operad, which is known to have this property [3]. Taking
global sections gives us a map of E∞-algebras

RΓ(C ′,O′) = Γ(C ′, NG•(O′))
∗−→ Γ(C ′, NG•(Rf∗O)) = RΓ(C,O)

where the map ∗ is exactly the map described in the first paragraph above, by definition of
derived global sections.

Corollary 2.2. (Artin comparison) Let X be a smooth complex variety. The zig-zag of
sites in Theorem 2.2 gives a quasi-isomorphism of E∞-algebras between RΓét(X,Fp) and
RΓ(X(C),Fp).

Recall that the singular cochains of a space C∗
sing(X, k) have a natural E∞-k-algebra

structure, as an algebra over the Eilenberg-Zilber operad Zk; this structure arises from the
failure of commutativity of the cup product on cochains with values in a general field k,
and the Eilenberg-Zilber operad action is essentially given by the Alexander-Whitney maps
([16], Theorem 3.9). This E∞-algebra structure can be computed again using the Godement
resolution. We conclude with the following (again, very classical) statement neatly explained
by Petersen in [19], who also assumes the space only be cohomologically locally connected.
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Theorem 2.7. Let X be a locally contractible, paracompact Hausdorff space. There is a
quasi-isomorphism of E∞-algebras between RΓ(X, k) and C∗

sing(X, k).

Petersen’s proof of the above follows the same strategy as the other proofs in this section,
where one passes to the Godement resolution to see that one has a map of E∞-algebras. Of
course, one uses that the constant sheaf admits a resolution by the sheaf of singular cochains,
and then applies Godement to both complexes.

3 Prismatic cohomology and p-adic homotopy theory

This section will cover preliminaries regarding prisms and prismatic cohomology. We will
also briefly overview the étale comparison theorem of Bhatt and Scholze.

3.1 Prismatic cohomology

Prismatic cohomology arises as the sheaf cohomology of a sheaf of rings O∆ on an appropriate
site. The underlying category of the site is a category of objects, called prisms, with mor-
phisms to the variety of interest. Informally, a prism is a special type of characteristic 0 ring
that has the data of a lift of Frobenius; they are pairs (A, I), where A is a δ-ring, i.e., a ring
equipped with the data of a set map δ : A→ A such that the map ϕ(x) = xp+ pδ(x) reduces
mod p to the Frobenius endomorphism, and I is an invertible ideal. An illustrative example
to keep in mind is (Zp, (p)) where Zp denotes the p-adic integers, and δ(x) = x−xp

p
, which

is well defined as Zp is p-torsion free. Morally, prisms are mixed characteristic thickenings
of characteristic p varieties whose infinitesimal neighborhoods record a lift of the Frobenius
endomorphism. We formally define them below, starting with the definition of a δ-ring.

Definition 3.1. A δ-ring is a ring A equipped with a set map δ : A → A such that δ(0) =
δ(1) = 0, and satisfying the two identities:

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y)

and

δ(x+ y) = δ(x) + δ(y) +
xp + yp − (x+ y)p

p
.

Given a δ, one can define a map ϕ : A→ A by ϕ(x) = xp+pδ(x). By the identities in the
definition above, ϕ is a ring homomorphism. Moreover, ϕ reduces mod p to the Frobenius
homomorphism. We call ϕ a lift of Frobenius. A morphism of δ-rings is a map of rings which
commute with the respective δ maps.

We now briefly review the notion of derived completion.

Definition 3.2. Let A be a ring with finitely generated ideal I. An A-complex M ∈ D(A) is
derived I-complete if for each f ∈ I, the natural map M → Rlim(M ⊗L

Z[x] Z[x]/(x
n)) is a

quasi-isomorphism, where we view M as a Z[x]-module where x acts by multiplication by f .

If an A-module M is classically I-complete, then it is derived I-complete.
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Definition 3.3. A prism is a pair (A, I) where A is a δ-ring and I defines a Cartier divisor
on Spec(A) such that A is derived (p, I)-complete and p ∈ I + ϕ(I)A.

All prisms used seriously in this paper will be equipped with principal ideals I = (d)
for some choice of generator d, and will all be classically (p, I)-complete. We include the
definitions as they are, for full generality. Morphisms of prisms (A, I) → (B, J) are maps
of δ-rings that send the ideal I into J . In fact, it is a small lemma that any map of prisms
forces J = IB.

Definition 3.4. A prism is perfect if the lift of Frobenius ϕ is an isomorphism. A ring R
is (integral) perfectoid if R = A/I for a perfect prism (A, I).

The above notion of perfectoid differs slightly from the notion of perfectoid in Fontaine’s
sense [22]. For the relation between the two notions, see Lemma 3.20 in [5]; in context for
the étale comparison theorem later, the two notions will be compatible via this lemma. We
use the notion of perfectoid above in this paper.

We now fix a base prism (A, I). We now assume all formal schemes are equipped with the
p-adic topology. Recall that ordinary schemes in characteristic p can be considered p-adic
formal schemes, since p = 0.

Definition 3.5. Fix a smooth formal scheme X over A/I. The prismatic site of X is a
category, where objects are diagrams

Spf(B/IB) Spf(B)

X

Spf(A/I) Spf(A)

where the pairs (B, IB) are prisms over (A, I). We equip the category with the flat topology.
The structure sheaf O∆ sends a prism (B, IB) to B.

There is a map of topoi ν : Sh(X/A)∆ → Sh(Xét) (see [7] Construction 4.4) that localizes
prismatic cohomology on étale coverings, given by sending the above diagram to étale cov-
erings Spf(B/IB) → X. The prismatic complex ∆X/A is defined as Rν∗O∆ ∈ D(Xét). This
is a complex of étale sheaves of A-modules, and in fact a commutative algebra object in the
derived category. That is, it can be viewed as a presheaf of E∞-algebras.

Definition 3.6. We define prismatic cohomology H∆(X/A) over the base prism (A, I)
to be the hypercohomology of the complex of étale sheaves ∆X/A.

We finally end our review with one last definition.

Definition 3.7. The tilt of a ring R is the inverse limit lim←−ϕ
R/p where ϕ denotes the

Frobenius x 7→ xp.
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If (A, I) is a perfect prism, then there is a natural isomorphism A ≃ W ((A/I)♭). Thus,
if R = A/I is perfectoid with perfect prism (A, I) then its tilt R♭ is also perfectoid with
perfect prism (W (R♭), (p)) = (A, (p)). Indeed, there is an equivalence of categories between
the category of perfectoid rings, and the category of perfect prisms.

We are now ready to relate the result of Bhatt-Morrow-Scholze to the p-adic homotopy
theory of the complex variety X. We simply apply − ⊗L

Fp
Fp to the Bhatt-Morrow-Scholze

result and apply Mandell’s functor U. First we will briefly review the proof of Theorem 0.1,
and then recall the basic change-of-scalars results we mentioned in section 1.2, whose proofs
we will refer to Mandell [15], or Kriz and May [13]. Notice that since Fp is a field extension
over Fp, it is faithfully flat. Thus, the functor −⊗L

Fp
Fp is equal to the functor −⊗Fp Fp on

the underlying complexes in the derived category.

Theorem 0.1 can be obtained by first proving the following theorem ([7], Theorem 9.1)
for affine opens of X, then gluing the result to pass from local to global. We note that the
fraction field of O♭

Cp
is O♭

Cp
[1/d] = C♭

p where d is the element that generates the kernel of the

map W (O♭
Cp
) → OCp . Since RΓ(X,∆X/A) takes values in A = Ainf-modules, tensoring with

the fraction field is equivalent (locally) to inverting d and taking mod p.
Recall that there is a short exact sequence (the Artin-Schreier-Witt short exact sequence)

of étale sheaves:

0→ Fp → Ga
ϕ−Id−−−→ Ga → 0.

There is also an analogous version for truncated Witt vectors, thought of as a group
scheme with respect to addition:

0→ Z/pn → Wn
ϕ−Id−−−→ Wn → 0

which will be used in the argument below. The point is that prismatic cohomology is acyclic
(as a complex of sheaves) for perfectoid rings, and is given by the Witt vectors of their tilt
in degree 0. Moreover, the étale theory of perfectoid rings is equivalent to their tilts.

Theorem 3.1. (Bhatt-Scholze) Let X = Spf(S) be a formal affine scheme over a perfectoid
ring R corresponding to a perfect prism (A, (d)). There is a canonical quasi-isomorphism
of E∞-algebras (with the E∞-algebra structure induced by the Godement resolution for étale
sheaves)

RΓ(Spec(S[1/p],Z/pn) ≃ (∆S/A[1/d]/p
n)ϕ=1

for each n ≥ 1.

Very rough sketch of proof. Bhatt and Scholze first prove the two functors

Spf(S) 7→ RΓ(Spec(S[1/p],Z/pn)

Spf(S) 7→ (∆S/A[1/d]/p
n)ϕ=1

are sheaves in the arc topology on affine formal schemes. Étale cohomology satisfies descent
with respect to the arc topology ([6], Theorem 5.4). Given this, they assume S is perfectoid,
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using that affine perfectoids are a basis for the arc topology ([7], Lemma 8.8). Since S is
perfectoid, they can then identify (∆S/A[1/d]/p

n)ϕ=1 with RΓ(Spec(S♭[1/d]),Z/pn) where S♭

is the tilt of S, described as follows. As S is perfectoid, the complex of sheaves ∆S/A[1/d]/p
n is

concentrated in degree 0 and given by W (S♭)[1/d]/pn. By the Artin-Schreier-Witt sequence,
taking Frobenius fixed points yields RΓ(Spec(S♭[1/d]),Z/pn), after viewing the Witt vectors
as group schemes (which is why we get cohomology on S♭[1/d]). Moreover, as S is perfectoid,
the space Spa(S[1/p], S) is perfectoid in the sense of Fontaine, by Lemma 3.20 in [5].

By Huber’s comparison theorem ([12], Corollary 3.2.2), there is an equivalence of étale
sites between Spec(S[1/p]) and the étale site of Spa(S[1/p], S), where étale in the latter
sense is appropriately defined for adic spaces. The analogous equivalence holds for S♭[1/d].
Moreover, we have that the tilt of the perfectoid space Spa(S[1/p], S) is the perfectoid space
Spa(S♭[1/d], S♭). By Scholze ([22], Theorem 1.11), there is an equivalence of étale sites
induced by the tilting functor for perfectoid spaces. Thus we have an equivalence of étale
sites between S[1/p] and S♭[1/d].

The equivalence of étale sites by Scholze is then the root of the E∞-algebra comparison
as in section 2, again using that the étale site has enough points, and passing these points
through via the equivalences.

Remark. The above lemma is a comparison theorem on affine opens. To recover the
full theorem as stated, one glues affines together in such a way that the isomorphisms are
compatible. In the original context of [4] (Lecture IX, Theorem 5.1), the hypotheses of
smooth and proper are used to impose a finiteness condition on the complexes involved. Then,
under this finiteness condition, they utilize a semicontinuity theorem to obtain a dimension
inequality between de Rham cohomology of the special fiber and étale cohomology of the
generic fiber. In fact, the hypothesis of proper is unnecessary for our theorem.

3.2 Proof of Main Theorem

We are now ready to prove the main theorem 0.4. There is a slight nuance kindly pointed
out to me by Mark De Cataldo: there are many non-canonical identifications of C with Cp.
For a complex variety X = XC that admits a model over Spec(Z), to apply the work of Bhatt
and Scholze we must consider the model over the ring of integers OCp . We then have a model
XCp over Cp. Fixing an identification of C with Cp yields XC as the pullback of XCp under
the field isomorphism.

Lemma 3.1. Let X = XC denote the smooth complex variety over C with an integral model
over Z, and let Y = XCp denote the model over Cp. Choose a field isomorphism Cp → C so
that we have the following fiber product diagram:

X Y

Spec(C) Spec(Cp)

We then have an equivalence of sites between Xét and Yét.

Proof. Using the map X → Y induced by the field isomorphism, one can pull back étale
coverings over Y to étale coverings over X. Base-changing along this map produces a con-
tinuous functor between sites. By base-changing along the map induced by the inverse field
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isomorphism, one obtains the inverse continuous functor. To prove that the composition of
base-changes with respect to the induced maps is naturally isomorphic to the identity, we
present the following diagram:

(U ×X Y )×Y X U ×X Y U

X Y X

where each inner square is a pullback diagram and U → X is étale . This implies the larger
square with the four corners is a pullback diagram. However, the composition of horizontal
arrows on the bottom is the identity, since it is the composition of the maps induced by the
field isomorphisms. Thus the top left corner is naturally isomorphic to the top right corner.

Corollary 3.1. Fix a field isomorphism C → Cp. We have a quasi-isomorphism of E∞-
algebras RΓ(XCp ,Fp) ≃ RΓ(XC,Fp).

Remark. Suppose X only admits a model over OCp without admitting a model over
Spec(Z). One can produce a complex variety by using any field isomorphism between C and
Cp. However, it is entirely possible that two different field isomorphisms could yield two
non-isomorphic complex varieties. The two varieties produced would then be related by an
action of the Galois group Gal(C/Q). However, there are explicit examples due to Serre [23],
of complex varieties that differ by a Galois group action and whose fundamental groups are
not isomorphic; these examples are not even homeomorphic. This checks out, as these latter
automorphisms are not even continuous.

However, the argument above of Lemma 3.1 shows that if two complex varieties differ by
a field automorphism, their étale sites are nonetheless equivalent. So they have isomorphic
étale cohomology and étale fundamental groups (which are the profinite completions of their
ordinary fundamental groups). Moreover, they have isomorphic p-adic (étale ) homotopy
types. Thus, the output of the main theorem being “the” p-adic homotopy type of a complex
variety still makes sense.

We now prove the main theorem.
Proof of Theorem 0.4. Fix an identification of C with Cp. The sheaf cohomology of any

sheaf on the étale site of X inherits an E∞-algebra structure by Godement considerations,
as in section 2. By Bhatt-Morrow-Scholze 0.1 and Theorem 3.1, we have that

(RΓ(X,∆X/Ainf
)⊗L

Ainf
C♭

p)
ϕ=1 ≃ RΓét(X,Fp)

is a quasi-isomorphism of E∞-Fp-algebras. By the entirety of section 2, the right hand side
is quasi-isomorphic to RΓ(X(C),Fp) as E∞-Fp-algebras. By Theorem 2.7, we again ob-
tain a quasi-isomorphism of E∞-Fp-algebras with C∗

sing(X(C),Fp). By Mandell 0.3, applying
the functor U to the left hand side then yields the free loop space of the Bousfield-Kan p-
completion of X(C).
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On the other hand, we can apply − ⊗L
Fp

Fp to the equation above. Again by Mandell’s

Theorem 0.2 and Theorem 1.2, applying the functor U to the resulting expression gives the
Sullivan p-completion of X(C).

Remark. We have seen that applying Mandell’s functors U and U to the Bhatt-Morrow-
Scholze result recovers the free loop space of the Bousfield-Kan p-completion, and the Sullivan
p-completion respectively. One may wonder if the Bousfield-Kan p-completion itself is acces-
sible, without the presence of the free loop space. The author suspects this is doable given
the following: Mandell proves Theorem 0.3 by taking homotopy fixed points of the Frobenius
on A⊗Fp Fp where A is a cofibrant replacement of C∗

sing(X,Fp). Mandell shows this is weak
equivalent (for X connected, p-complete, nilpotent, and of finite p-type) to the homotopy
fixed points of the space X with the trivial action, which yields the free loop space. At the
same time, the theorem of Bhatt-Morrow-Scholze recovers the étale Fp-cochains by taking
homotopy fixed points of the Frobenius on (RΓ(X,∆X/Ainf

) ⊗L
Ainf

C♭
p). However, this latter

object is enormous over Fp. The author suspects by passing to spectra and analyzing an
appropriate Frobenius, as in [18] or [27], and using the relationship between prismatic coho-
mology and topological Hothschild homology, one could recover a clean statement regarding
the Bousfield-Kan p-completion of the variety X over C.
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