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Abstract of the Dissertation

Limits of Hodge structures via D-modules

by

Qianyu Chen

Doctor of Philosophy

n

Mathematics

Stony Brook University

2022

This dissertation contains two parts. In the first part, we construct the limiting mixed
Hodge structure of a degeneration of compact Kahler manifolds over the unit disk with a
possibly non-reduced normal crossing central fiber via holonomic Z-modules, which generalizes
Steenbrink’s geometric construction of limits of Hodge structures. Our limiting mixed Hodge
structure does not carry a Q-structure; instead, we use sesquilinear pairings on Z-modules
to construct a canonical polarization on the limiting mixed Hodge structure as a replacement.
The associated graded quotient of the weight filtration of the limiting mixed Hodge structure
can be computed by the cohomology of the cyclic coverings of certain intersections of
components of the central fiber. We also generalize the local invariant cycle theorem to this

setting.

In the second part, we study how the V-filtration along a subvariety of arbitrary codimen-
sion and the Hodge filtration on a mixed Hodge module interact with each other, generalizing
the theory for hypersurfaces. In particular, we can describe Hodge module theoretic restriction
functors in terms of this V-filtration. As applications, we give a Hodge theoretic proof of

Skoda’s theorem on multiplier ideals.
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Chapter 1

Introduction

Based on the work of Hodge [Hod41], Hodge theory studies the linear algebra data, called
Hodge structure, on cohomology groups of complex varieties, developed by Deligne [Del71a;
Del71b; Del74], Griffiths [GS75] and others. It was Schmid who started the study of the
asymptotic behavior of degeneration of variation of Hodge structure [Sch73]. For a 1-parameter
family of compact Kéahler manifolds, the cohomology of each smooth fiber carries a polarizable

Hodge structure. This leads to the following two interesting questions:

1. How does the family of Hodge structures on the cohomology groups of smooth fibers

degenerate?

2. How does the cohomology of the central fiber relate to that of nearby fibers?

These are two classical and central questions in Hodge theory. Before Saito’s theory
of mixed Hodge modules [Sai88; Saif0], Schmid showed the existence of a limiting mixed
Hodge structure for an abstract polarized variation of Hodge structure over the unit disk
[Sch73] using Lie theoretic methods. For the variation of Hodge structure coming from a
semistable family of Kahler manifolds over a 1-dimensional base, the limiting mixed Hodge
structure was first established by Steenbrink [Ste76] whose construction is equivalent to

Schmid’s in [Sch73] but purely geometric. A consequence of Steenbrink’s construction is
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the local invariant cycle theorem, which is a piece in the Clemens-Schmid sequence [Cle77].
It says that for a semistable degeneration of compact Kahler manifolds, the monodromy
invariant cohomology as a mixed Hodge structure of the smooth fiber is coming from the
cohomology of the total space. The local invariant cycle theorem was first proved by Deligne
in an algebraic setting when the base is a scheme [Del71b, Theorem 4.1.1] and later treated
in [Ste76], [Cle77] and [GNI0] for a semistable Kahler degeneration. The local invariant cycle
theorem puts a strong constraint on the topology of the degeneration and it reads off the
geometric information of the possible central fiber. For example, it was used to classify the

semistable degeneration of K3 surfaces [Kul77].

The theme of this thesis is to study the degeneration of variation of Hodge structure
via the theory of Z-modules. Invented in Japan and France, Z-modules, are modules over
the ring & of differential operators. It has its origins in the field of algebraic analysis,
which means the study of partial differential equations with algebraic tools. The famous
Riemann-Hilbert correspondence proved by Kashiwara and Mebkhout [Kas84; Meb84] states
there is an equivalence of categories between the category of regular holonomic Z-modules
and the category of perverse sheaves. It builds a bridge from algebra and analysis to topology
leading us to several applications in various fields in mathematics. Saito’s theory [Sai88;

Saig0] of mixed Hodge modules relates Hodge theory and Z-modules.

We give a conceptually simpler construction of the limiting mixed Hodge structure for
the degenerations of Kéahler manifolds over the unit disk, using the theory of holonomic
Z-modules in Chapter 2. Although the Q-structure is absent, our method enables us to
bypass the semistable reduction. This means we can compute the limiting mixed Hodge
structure for arbitrary degeneration of Kahler manifolds over the unit disk by embedded log
resolution of the central fiber. We also prove the local invariant cycle theorem in this more

general setting.

Chapter 3 is contained in joint work with Bradley Dirks [CD21], where the objects

we focus on are two interesting filtrations of mixed Hodge modules: Hodge filtration and



V-filtration. A (mixed) Hodge module, roughly speaking, is a filtered regular holonomic
Z-module which is a (graded-)polarizable variation of (mixed) Hodge structure over a locally
closed subset. Hodge filtration is useful in algebraic geometry since it allows one to study
canonical sheaves by the package of Hodge modules. V-filtration is topological filtration
indexed by the eigenvalues of the Euler vector field along a submanifold. Deligne came up
with a formal algebraic way of formalizing and generalizing the classical ideas of studying the
degeneration of algebraic varieties to perverse sheaves [Del68], which led to the notions of
nearby and vanishing cycles functors. Then V-filtration was introduced by Kashiwara [Kas83]
and Malgrange [Mal83] to translate nearby and vanishing cycles to the regular holonomic
Z-modules. Recently, the relation between Hodge filtration and V-filtration become more
interesting because the projects started by Mustata and Popa on Hodge ideals [MP19]. One
of the technical tools used by Mustata and Popa is the compatiblity of Hodge filtration
and V-filtration in codimension 1. We generalize this compatibility to Hodge filtration and

V-filtration in higher codimension in this thesis.

Our result is also interesting internal to the theory of mixed Hodge modules. The
definition of mixed Hodge modules is given inductively by “restriction” to hypersurfaces
using V-filtrations in codimension 1. This makes restriction of Hodge modules to subvarieties
in higher codimension have to be done in terms of hypersurfaces. However, the V-filtration
exists in any codimension and we wanted to know if we can characterize the restriction
functors 1-step directly by V-filtration in higher codimension. We generalize what Saito did
in codimension 1 to higher codimension and describe of the restriction functors in terms of

V-filtration in higher codimension.

We proceed to introduce the two parts of this thesis in more detail.



1.1 Limits of Hodge structures

Before stating the main theorem, we briefly review the relative log de Rham complex for a
proper holomorphic morphism f: X — A from a complex manifold of dimension n + 1 to the
unit disk smooth away from the origin. Let Y be the central fiber and suppose that Y only
has simple normal crossing support. Then we define Qx(logY’) (resp. Qa(log0)) to be the
sheaf of one-forms with log pole along Y (resp. 0). Let Qx/a(logY") = Qx(logY)/f*Qa(log0)
be the sheaf of relative log one-forms, which is locally free. Then the relative log de Rham

complex is

Q;/nAUOgY) ={0x ~ Qi{/A(logY) - Q?{/A(log Y)}
placed in degrees —-n,-n+1,...,0. Steenbrink proved that R¥ f*Q;/”A(log Y') is the Deligne’s

o+n
X/A

canonical extension of the flat connection R f,Q A+ over the punctured disk A* with
eigenvalues of the residue operator R in [0,1). It follows the limiting mixed Hodge struture
lives on the central fiber R* f*Q;fA(log Y) ® C(0), where C(0) is the residue field of the

origin. Our first theorem is as follows:

Theorem A. Notation as above and assume that X is Kahler. Let R, (resp. Rs) denote
the nilpotent (resp. semisimple) part of the Jordan-Chevalley decomposition of the residue

operator R on @, H*(X, Q;;/”A(log Y)ly). Then each eigenspace of Rs on

%@grgvﬂ’“()@ 0%/a(logY)ly)

underlies a limiting polarized bigraded Hodge-Lefschetz structure over C of central weight n,

where Wy = W, (R,,) is the monodromy filtration associated to R,,.

A polarized bigraded Hodge-Lefschetz structure is essentially a direct sum of polarized
Hodge structures of different weights preseerved by an sly(C) x sly(C)-action. In the setting
of Theorem A, the sly(C) x sly(C)-action is induced by the operator R, and 27v/-1L

where L = wA is the Lefschetz operator for a Kahler form w. In particular, each summand
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gryy H* (X, Q;/"A(log Y)|y) is a Hodge structure of weight n + k + ¢ and there are two Hard

Lefschetz type isomorphisms of Hodge structures:
o for k>0,leZ
k
(27V=1L) @l HH(X, Q53 (log YV)v) > el HE (X, 03¢/ (log V)| ) (k) and
o for (>0,keZ

Ry, :gry H (X, Q¥ (log Y)ly) — grty H* (X, Q35 (log V)ly ) (=0).

Theorem A implies that each H*(X, Q;/"A(log Y)|y) still underlies a limiting mixed Hodge
structure of weight n + k whose weight filtration is given by W, = W,(R,,) when the central
fiber is non-reduced. The associated graded quotient of the weight filtration of the limiting

mixed Hodge structure can be computed by the cohomology of the cyclic coverings of certain

intersections of components of the central fiber.

We will prove that there exists a filtered holonomic Z-module (M, F') whose de Rham
complex is filtered isomorphic to the Q;;/“A(log Y)|y. Indeed, M is the cokernel of a canonical

morphism

Q}_/lA(lOgY)h/ ® -@X - Q}/A(IOgYNY ® .@)(.

Locally, choosing a trivialization of {27, AlogY), (M, F) is isomorphic to

-@X/(taDlvD27'"7Dk>ak+1a---aan)9X

with the filtration induced by the order filtration on Zx shifted by degree —n where ¢ =
zg0 27z * is the locally defining equation of Y and D; = e;'%;0; — e5'200p. The monodromy
logarithm is the left multiplication by e;'z00p in the local presentation. The main difficulty
of Steenrbink’s approach is to construct the monodromy filtration on Q;;/”A(log Y)ly over Q.

With the help of Z-modules, the monodromy filtration is easy to derive by local calculation

on the single Z-module M.



Instead of proving the monodromy filtration defined over QQ, we provide a sesquilinear
pairing on M, taking values in the sheaf of currents €x on X, by a device of Mellin
transform, which only involves symbolic computation, to avoid a messy topological argument.
The sesquilinear pairing can be viewed as a renormalization of the intersection pairing
/ x, i Wx, ®c Wx, ~> €x, on the nearby fibers X, for t € A*; for example, if Y is reduced, the

pairing on M is induced by
e(n+2 dt dt —_
Resszo% f |t|25? A /);t Q% a(logY) @c Q}/A(logY) - Cx,

where the constant scalar e(n + 2)(27v/-1)~("*1) depending on the dimension is used to make

the pairing independent of the choice of orientation.

As an application of Theorem A, we establish the local invariant cycle theorem when Y is

non-reduced.

Theorem B. Suppose we are in the same setting as in Theorem A. Then the following

sequence of mized Hodge structures is exact:

H""(Y,C) — HY(X, Q57 (log Y)ly) =5 HY(X, Q37 (log V) |y )(-1).

In other words, all cohomology classes invariant under the monodromy action comes from the

cohomologies of Y.

Steenbrink later pointed out that the limiting mixed Hodge structure he constructed
only depends on the log structure associated with the semistable family f: X — A [Ste95].
Inspired by the idea in [Ste95], Fujisawa extended Steenbrink’s results in [Ste76; Ste95] to
semistable Kéhler families over the polydisk and to the log geometry setting [Fuj99; Fuj08;

Fujl4]. Recently, Nakkajima announced a simpler proof of Fujisawa’s results [Nak21].

Assume that X is Kahler of dimension n+1 and Y =Y ,.;e;Y; where the Y;’s are smooth

components and I a finite index set. The strategy for proving Theorem A is as follows.
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We shall first give a different proof of the local freeness of RFf, Q;;;‘A(log Y) which only
uses the fact that the residue along the origin has eigenvalues in [0,1) (Theorem 2.2.2). Then

we translate the data of the relative log de Rham complex to the Z-module side (see §2.3):

Theorem C. There exists a filtered holonomic Px-module (M, F,M) whose de Rham
complez DR x M with the induced filtration F,DRx M is isomorphic to Q;;/"A(log Y)|y with
the stupid filtration in the derived category of filtered complex of C-vector spaces. Moreover,
there exists an operator R : (M, F,M) - (M, Fo 1 M) whose eigenvalues are in [0,1) nQ
such that DRx R can be identified with the residue operator on Q;g/"A(log Y)|y via the above

1somorphism.

Next we will investigate the Jordan block of the operator R. Let M,, (resp. Ms,) be
the submodule of M spaned by the generalized eigen-modules ker(R — \)*> for A > « (resp.
A>a). Let M, = M5,/ Ms,. Note that M,, is canonically isomorphic to ker(R - a)* and
therefore R, = R — « acts nilpotently on M,. Using an idea of Saito [Sai90], we filter M, by

FZM n Mzcx + M>a
M. ’

The filtration F, M, is different from the naive one F, M nker(R - «)*. The reason why we

Fg/\/la = for £ € Z.

do not use the naive filtration is that F, M, not only gives the correct weight but is also easy
to work out. We prove that any power of the operator R, is strict with respect to FyM,,.
Namely, for every ¢ > 0, we have the relation R FoM,, = Fo,yeM n REM,, (Theorem 2.4.1
for the case Y is reduced and Theorem 2.6.5 for the general case). This implies that the
monodromy filtration W, M, and F,M,, interacts very well. Note that the monodromy
filtration associated to R, is the same as the one of R, on M, the nilpotent part of R in

Jordan-Chevalley decomposition. We have the induced good filtrations
FoWrMa = FoM N WrMa and FongVMa = FoWrMa/FoerlMa-

Denote by Pa . = ker R4 ngr}¥ M,, the (-th primitive for ¢ >0, which is isomorphic to

ker RS
ker RY +im R, nker R&
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We endow it with the induced good filtration F,P,, = im (FuM nker R — P,,). As a
corollary of the strictness of every power of R,, the Lefschetz decomposition of gr'¥ M,
respects the good filtrations, i.e.

Fogr" M, = P RﬁF._ngr_,.Qg for r > 0.
£>0,-%

See Theorem 2.4.6 for the case Y is reduced and Theorem 2.6.8 for the general case. This
corollary suggests that it suffices to study the hypercohomology of each primitive part. The

primitive parts will be the source for the pure polarized Hodge structures.

We will construct a sesquilinear pairing Sy, : M, ®c M, - €x using the Mellin transfor-
mation [Sab02], where M, is the naive conjugation of M, and €y is the sheaf of currents.
Both M, ®c M, and €x canonically carry Zx ®c PD+-module structures where Z+ denotes
the sheaf of anti-holomorphic differential operators and the sesquilinear pairing is just a
morphism of Zx ®c Px-modules. See the MHM project [SS] by Sabbah and Schnell for
systematical treatment of complex variation of Hodge structure via sesquilinear pairings. The
sesquilinear pairings on M, is an analogy of a polarization on a Hodge structure: a complex
polarized Hodge structure of weight n can be described as a filtered vector space (V, F'*)
with a Hermitian pairing S such that (-1)»?S is a Hermitian inner product on FP n G*P
where G™P is the S-orthogonal complement of FP*!. The sesquilinear pairing S, induces
the second filtration on the hypercohomology of DRxM,. We refer to the §2.1.1 for the

definition of sesquilinear pairings on Z-module.

The operator R, is self-adjoint with respect to the pairing S, : M, ®c M, — €x, i,
Sa(=, Ra—) = Sa(Ra—,—). See §2.5 for the case that Y is reduced §2.7 for the general case.

This implies we have an induced pairing on the associated graded modules:
Ser gl My ®c gt M, > Cx.

Then Pg,Sa; = Saro (id ®c R7) defines a sesquilinear pairing on the primitive part P,



Theorem D. The cohomologies of the de Rham complex of Pq.,

EQ%HZ(X, DRxP,.,)

together with the filtration induced by FyP,, and the sesquilinear pairing induced by Pgr, Sq,r
determine a polarized Hodge-Lefschetz structure of central weight n +r with sly(C)-action

induced by 2m\/—1L.

A polarized Hodge-Lefschetz structure basically is a direct sum of Hodge structures of
different weights preserved by an sly(C)-action. This notion is motivated by the direct sum
of all the cohomologies of a compact Kahler manifold. We refer to §2.1.3 for the definition
of polarized Hodge-Lefschetz structures. To illustrate the idea of Theorem D, assume for a
moment that Y is reduced so the endomorphism R is nilpotent and this implies that M = M.
Denote by Y/ = N;.; Y; for any non-empty subset J of I. Let 7/ : Y/ - X be the closed
embedding and 7+ : Y (r+1) = [4s-1 Y7 = X be the natural morphism for every r > 0.
For simplicity, suppose P, = Py,. We will show that there exists a filtered isomorphism
(Theorem 2.4.7)

¢ (P, FJP,) — T_,(_r+l)w§7(r+1)(_7").

Here, the Tate twist of a filtered Z-module is (N, FLN)(-r) = (N, Fo,, N). Moreover, the

isomorphism respects the pairing PrS, on P, (Theorem 2.5.5):

PRST(_v _) - %TETH)S?(”U(QST_’ er_),

where Sy (-.1) is the standard pairing on wy .1y. Therefore, the k-th hypercohomology of
the de Rham complex DRy P, is isomorphic to Hn+k(Y (+1) C)(-r) as polarized Hodge
structures of weight n + r + k. Summing all the hypercohomology groups of DR xP,., we get a

polarized Hodge-Lefschetz structure of central weight n +r with sly(C)-action induced by
2m\/—-1L.

In contrast to the case when Y is reduced, if Y is non-reduced, we shall construct cyclic

coverings of Y/ whose degree depends on the multiplicity of Y; in Y for j € J. Then the

9



primitive part P, , will be identified with the eigenspace of the intersection cohomology of
the cyclic coverings under the Galois action (Theorem 2.6.13), and the identification also

respects the sesquilinear pairing (Theorem 2.7.10). As a direct consequence, we obtain

Theorem E. Let V= HY(X,gr)y DRxM,,) be the relabelling of the first page of the weight
spectral sequence. Then V* = @y, pez Vﬁk 1s a polarized bigraded Hodge-Lefschetz structure
of central weight n with the polarization induced by S, and sly(C) x sly(C)-action induced
by 2m\/-1L and R,. Moreover, the differential dy of the first page of weight spectral is a

differential of polarized bigraded Hodge-Lefschetz structure.

By a formal argument of Guillén and Navarro Aznar [GN90], which follows some ideas of

Deligne and Saito, we have

Corollary F. We have the following statements:

1. the Hodge spectral sequence degenerates at ' Ey;
2. the weight spectral sequence degenerates at " Es;

3. the a-generalized eigenspace of the bigraded vector space

By = @ e HH(Y, Q75 (log Y)ly)
0, keZ

with respect to R is a polarized bigradged Hodge-Lefschetz structure of central weight n
with polarization induced by S, and sly(C) x sly(C)-action induced by 2mv/ =1L and R,.

Note that the third statement in the above Corollary is equivalent to the Theorem A;
therefore, we finish the proof of Theorem A. See Theorem 2.5.6 and Corollary 2.5.7, when Y

is reduced. See Theorem 2.7.11 and Corollary 2.7.12, when Y is allowed to be non-reduced.
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1.2 On Hodge filtration and V-filtration

The original Kashiwara and Malgrange’s theory of V-filtration is in codimension one. Let
t: X - A! be a regular function and Z be the central fiber. For any regular holonomic
right Z-module M, we can associate it with a functorial filtration V, M along Z such that
Pz-module gr¥ M is regular holonomic. Indeed, the nearby and vanishing cycle of M is given
by gr¥ M for o € [-1,0] and the index « is determined by the eigenvalues of the monodromy.
The nearby cycle and vanishing cycle of filtered Zx-modules is an input in the definition
of mixed Hodge modules [Sai88; Sai90]. If a filtered Zx-module (M, F') underlies a mixed

Hodge module, then

(V1) t: F,V,M — F,V,_ 1M is bijective for a <0,

(V2) 9, : Fpgr¥ M — F,,1gr¥ M is isomorphism for « > 0.

We also have two distinguished triangles in the derived category of mixed Hodge modules:
M — gt M 2 gtV M — i M[1] and M — gif M 5 gtV M — i'M[1]

where i: Z - X is the closed embedding; see also the nice survey [Sch14].

The V-filtration along a higher codimension submanifold is induced by deformation to the
normal cone. However, gr¥ M is even not coherent in general for a holonomic Z-module M.
This is a major difference in the theory of higher codimension. The generalization of (V1),
(V2) and the above distinguished triangles to higher codimension was not known and we

formulate and prove the generalization in higher codimension in the second part of this thesis.

Now we give the general definition of V-filtration. Let t = (¢1,s,...,t.) : X = A" be a
smooth morphism from a smooth variety to the affine r-space A™ and let Z be the fiber over

the origin. Assume there exist global vector fields 0;,0,,...,0, on X dual to the 1-forms

dty,dts, ..., dt,. We define a Z-indexed filtration on Zx by

Vi2x ={Pex:P - J}c fg_k for all j},

11



where .#7 is the ideal sheaf of Z. Then the V-filtration on a Z-module M along Z is the

exhaustive, increasing Q-indexed filtration uniquely characterized by the following:

1. VM- V. Dx € VoM for all ke Z,a e Q,
2. VaM . Vk@X = VaJrkM for all k € ZsOa o << O,
3. each V,M is coherent over Vy%x,

4. the operator 6 — « is nilpotent on gr¥ M, where 6 := ¥'7_, t;0; is the Eular vector field.

We generalize the above properties of V-filtration in codimension 1 to the V-filtration
along subvarieties of arbitrary codimension and the statement is formulated by certain
Koszul-type complexes. For any filtered regular holonomic Zx-module M, define Koszul-type

complexes

An(M) = {(VQM,F) L D(Var M, F) o s (va_,.M,F)}

placed in degrees 0,1,...,r,

BuM) = { (M) > D (M) o (M)

1=

as the quotient A,/A., and
Ot A Ot Ot
o) = { ek M I % Dt ML 1) % o (M, ) |

in degrees —r,—-r+1,...,0, where V, M is the V-filtration along Z and F[i]x = Fy_;. Our first

theorem in this direction is a generalization of (V1) and (V2):

Theorem G. If the filtered Px-module (M, F) underlies a mized Hodge module, then the

Koszul-like complezes

1. the complex A,(M) is filtered exact if a < 0;

2. the complexr Co(M) is filtered exact if o> 0.
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As a very special case of Theorem G, we give a Hodge-theoretic proof of a theorem of
Skoda. See [Laz04] for the background on the multiplier ideal sheaves and a proof of Skoda’s
theorem. Let fi, fo,..., f, be the generators of a coherent ideal a on X and let ¢ : X — X x A"
be the graph of fi,..., f.. Then by [BMS06, Theorem 1|, the &x-module F,. V¢, O is the
multiplier ideal J(X,a¢) for € > 0 sufficient small where V*, Oy is the V-filtration along

X x {0}. The the exactness of A"*¢(,,0x) when ¢ >n by Theorem G gives:

Corollary H (Skoda). Let a be a coherent ideal of Ox and J(X,a¢) be the multiplier ideal.
Then we have

J(X,a%) = (X,a"")

for any ¢ > dim X.

To simplify the notation, denote B(M) := By(M) and C(M) = Cy(M). The second
main theorem says that we can give a comparison between ' M (resp. i*M) in the derived
category of mixed Hoge modules and B(M) (resp. C(M)) where i : Z - X is the embedding
of the central fiber of f: X — A",

Theorem 1. Let (M, F,L,K) be a mized Hodge module where F' is the Hodge filtration, L
is the weight filtration and KC is the Q-structure of the Zx-module M i.e. DRxM ~ K ®¢ Q.

Then we have:

1. the complexes B(M) and C (M) together with the filtrations W induced by the relative
monodromy filtration W = W (0 — a, gr¥ Lo M) on gr¥ M are mized Hodge complezes,
i.e. the Dz-modules H'gr)¥ B(M) and H'gr}V C(M) are polarizable Hodge modules of
weight k + £ for any k,¢ and

gy B(M) = @HﬁgrkWB(M)[—g] and gry’ C(M) = @%egrkwc(M)[—é]
in the derived category of filtered Z-modules;

2. the complex B(M) (resp. C(M)) is isomorphic to (i* M, F') (resp. (i*M,F)) in the

derived category of filtered Z-modules with Q-structures;
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3. moreover,
gtV H B(M) = grfl HA' M and - gr)V HEC (M) = gr)V H 4% M
as polarizable Hodge modules.

The reason why we do not get the distinguished triangles in the derived category of mixed
Hodge modules is that we directly use the monodromy filtrations relative to Lgr} M without

the shift in Saito’s definition of vanishing cycles.

Theorem I simplifies, in a way, the calculation of the functors 7' and i* of mixed Hodge
modules [Sai90]. For example, if i is the embedding of the origin in A2, Saito’s definition of 7'
is

i i'M={M > M(*D;) ® M(%Dy) - M(*D; + Dy)}
placed in degrees 0,1,2 where Dy, Dy are the two coordinate axes. The weight filtration
of M(*D;) is uniquely determined by some gluing conditions on the weight filtration on
M and the relative monodromy filtration on the unipotent vanishing cycle of M along D;.
Theorem I says one can bypass the gluing construction of the weight filtration on M(*D;)

by looking at the V-filtration directly.

To prove Theorem G, we first do the case when (M, F,) underlies a polarizable pure
Hodge module. Because pure Hodge modules have strict support decomposition, we are in

two situations:

(a) the support of M is contained in Z;

(b) there is no sub-Hodge module of M whose support is contained in Z.

Case (a) will directly follow from the definition. For case (b), we will pass to the blow-up and
reduce the problem to the codimension one case. Let 7 : X = X be the blow-up of Z and
E be the exceptional divisor. Let (M, F,M) be the minimal extension of (M, Fy,M)|x.z

along E, which also underlies a pure Hodge module by the structure theorem of Hodge
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modules [Sch14]. By the direct image theorem of Hodge modules, (M, F,M) is a direct
summand of 7, (M, F,M). Therefore, it suffices to prove the statement for m, (M, F.M).
Then we factor 7 : X — X into the graph embedding i, : X > X xX and the second projection
p: X xX > X and study the direct images of (J\;L F.M) under these two morphisms. The
graph embedding case has no homological algebra involved and in the case of the projection,
we use the bistrctness proved by Budur, Mustata and Saito [BMS06] and Hard Lefschetz

[Sai88, p. 2.14] on the direct images.

The strategy of proof for the pure case does not work for mixed Hodge modules because
there is no decomposition theorem for mixed Hodge modules. Instead, we use deformation
to the normal cone to get the compatibility among the Hodge filtration, V-filtration, and

weight filtration. From the compatibility, we reduce the proof to the pure case.

As for the proof of Theorem I, we first deal with the case when (M, F) underlies a
polarizable Hodge module as we did in the proof of the pure case for Theorem G. In this case,
we heavily use the semisimplicity of polarizable pure Hodge modules. To do the mixed case
we need a theorem of Deligne [Del93] in his personal letter to Cattani and Kaplan, which
roughly states that there exists a unique functorial splitting of the associated graded of the

relative monodromy filtration. The proof reduces to the pure case by Deligne’s Theorem.
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Chapter 2

Limits of Hodge structures

2.1 Preliminaries

2.1.1 Filtered Z-modules with sesquilinear pairings

We will work with right Z-modules unless further specified. Let Z be a complex manifold
of dimension n and denote by Y, the sheaf of holomorphic p-forms and .7, the sheaf of
holomorphic tangent vectors fields. For a filtered Zz-module we mean a pair (N, F,N)
where N is a coherent Zz-module and F,N is a good filtration. Occasionally we will abuse
notations and say A also denotes the filtered Zz-module if the filtration is clear. Denote by
gDy = @ez grl Dx the associated graded algebra and grf N = @yez grl’' N the associated
graded module. Note that grf NV is a coherent gr”” Zz-module. Let T*Z = Spec,grf’ Zx be
the algebraic cotangent bundle and 77 Z the geometric conormal bundle of a subvariety V'
in Z. The characteristic variety of N is the support of gr AV on T*Z and is denoted by
char(N'). The characteristic cycle of N is the cycle associated to the coherent sheaf grf’ N/
on T*Z and is denoted by cc(N). Neither the characteristic variety nor the characteristic

cycle depend on the choice of the filtration [HTT08|. For example, the canonical bundle wy
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is naturally a holonomic Zz-module with action

a.f=-d(€ 1)
for local sections £ € .7, and « € wy. It also naturally has a good filtration

wz, €>-n;
Fng = (211)
0, £<—-n.
Then one can compute cc(wy) = [T Z] which is the cycle of the zero section of the cotangent

bundle. We call N a holonomic Pz-module if dim char(N') = n. See more details in [HTTO0S].
A Tate twist of filtered Zz-module is defined to be N'(-r) = (N, F,.,N) for any r € Z.

Denote by D?(Z,C) the bounded derived category of complexes with values in finite
dimensional C-vector spaces and D¥(Z, 2) the bounded derived category of Zz-modules.
Denote by DY(Z, 2) the full subcategory of D?(Z, 2) whose objects are complexes with
holonomic cohomologies. For a morphism f: Z — W between complex manifolds, denote by
Rf.,Rf : D"(Z,C) - Db W,C) the derived pushforward and proper pushforward functors
respectively and R* f,, RF f) the k-th cohomology functors respectively. For any N'* € D*(Z, 2),
the pushforward functor and the proper pushfoward functor f,, f; : D*(Z, 2) - D*(W, )

are by definition, respectively
SN =R (N6 Z7) and fiN =R (N 8 Dz ).
zZ Z

where Z;_,w = f*Pw is the transfer module. In fact, the functor f; preserves the holonomicty,
ie., fi : DY(Z,2) - DY(W,2) (see [HTTO8]). Of course if f is proper or proper on the

support of N then f, = f;. The de Rham complex of N is
A n n—1
DRZN:defN®A9Z:{N@AyzN9N®/\gzﬁ---eN}

with NV is in degree 0. If without further indication, tensor products are always taken over

O-modules. Some authors also call it Spencer complex. The de Rham complex of wy

N n n—-1
wZ@/\yZ:{wZ@/\ﬂzwz—w)Z@)/\yZ_%.._,wZ}
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is isomorphic to the usual de Rham complex DRz 07 = Q%** of Z under the isomorphisms
P . ,
wz® N\ Tz > Q7 wedy - (-1)" " edzy, (2.1.2)

where 9 is a local section of A? 7, J is ordered index set and J is the complement with
the natural ordering, and w = dz; Adzy A - Adz,. If F,N is a good filtration, the de Rham

complex is also filtered:
e n n-1
FgDRzNZ Fg+./\/’® /\yz = {Fg_nN(X) /\yz./\/’ g Fg_n+1N® /\ yz —> e > FgN}

The direct image functor and the de Rham functor commute : Rfi o DRz = DRy o f; [MS,

Corollary 4.4.4].

A sesquilinear pairing S on Zz-module N is a 9, 7z-module morphism S : NeocN - ¢y
Here, 7,7 = 97 ®c Y7 for 9 is the sheaf antiholomorphic differential operators, A is the
stupid conjugate of N as a 2 -module and € is the sheaf of currents on Z with natural
9, z-module structure. We have the proper pushforward functor similarly as above on

9, 7-modules and also call it f;:
L
fT(_) =def Rf!(_ @® 92,7—>W,W)’
Z,Z

where the transfer module 9, _ 7 =det f* Py 5. Because of the natural morphism f;€; —

¢y, we can pushforward the sesquilinear pairing to get
e%ﬂoerSk : %kff./\/’ ®c %_kaN - jfoff./\/’ ®<c./\_/ - Cy.

If f is a closed embedding then f,S: f.N ®c f.N = €. If W is a point, then we have an

induced pairing on the complex
fiS:DR,zN ®@c N - DR, 3€5 ~ C[2n],

where DR, 7/ ®c N =~ DRZN ®c DRyN. Taking cohomology at 0-th degree yields, for each
k€7,

H¥(Z,DRyN) ® H;*(Z,DR;N) - H)(Z, DR, 7N ®c N) - H?(Z,C)~C.  (2.1.3)
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Example 2.1.1. The Z;-module wy carries a natural pairing Sz : wz Qc wy = €,

e(n+1)
(Sz(m',m'),n) = f nm' Am’”, (2.1.4)
- @rV/-D)n
for m’,m" local sections of wz, n a test function on Z and (k) = (- 1)k(k 2 The coefficient

% in the definition is chosen so that (;ﬂ(?/%))nm AT =|m|? is a positive current for any

local section m of wz and elimination the choice of orenation (see more details in §2.1.3).

The pairing Sz : wz ®c wy — €4 yields a collection of pairings

Héc(Z, DR,sz) ®c Hc_k(Z, DRsz) - C

2.1.2 Logarithmic connections

If D=3%a;D; is a simple normal crossing divisor on Z for a; > 0, denote by Qz(log D) the
sheaf of meromorphic differential 1-forms with logarithmic poles along D,.q = Y. D; and denote
by Q) (log D) = AP Qz(log D) the meromophic p-forms with logarithmic pole along D. Each

Q7 (log D) is a locally free 0z-module.

In our convention, the de Rham complex of Z is DR,0,
O = (O = Oy 0 > U} [0].
The log de Rham complex is
Q3" (log D) = {6 ~ Q5(log D) > 0 (log D) — -+ - 2 (log D) }[n].

We will follow the Koszul sign rule: for a chain complex C'* with differential d, the shifted
complex C**" = C*[n] equipped with differential (-1)"d. We define residue along D; by
(see [EVO2, p. 2.5])

dz;

i

Resp, : Q%" (log D) — QHdimD"

where z; is the local defining equation of D, and dz—zii A ais a local section of Q%™ (log D). It
factors through
Q5" (log D)|p, > Q™"

Di)‘
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By abuse of notations, we still call the above morphism Resp,. Let D/ = n;.; D7 and
Dy =% ;e; Dj. Then we have a collection of residue maps, by choosing an order on the indices

and successively applying Resp, for j € J,

Resps : Q5" (log D) - Q3mP” (1og(D — D) ps).

A log connection V with poles along D on a coherent &’z-module F is a C-linear morphism
V:F - Qz(log D) ® F satisfying the Leibniz rule Vfs=df ® s+ fVs for f local section of

U7 and s local section of F. One can extend standardly V to a complex
F L Qu(logD)e F % o Y Qn(logD) ® F.

If the above is a chain complex, i.e., V2 = 0 we say (F, V) is an integrable log connection. For
any integrable log connection V : F — Qz(log D)®F, we call the morphism Resp,V : F — F|p,

induced by Resp, : Q2z(log D) — Op, its residue along D;. Note that Resp, is 0z-linear and

factors through again F|p, - F|p,.

An integrable log connection is same as a left Z(log D)-module, where 2 (log D) is the
sub-algebra of ¥, generated locally by the differential operators P such that P-.%p c .Zp.
Here, we denote by .#p the ideal sheaf of the normal crossing divisor D. Then we can extend
the definition of residues of a log connection as follows. The sheaf &p, = 0/.#p, naturally has
a left Z(log D)-module structure because .#p, is also stable under by the %, (log D)-action

by the naive reason. Let F* be a complex of integrable log connections. Then the complex
L
F* ® Op,
Oz

is a complex of Z,(log D)-modules because taking tensor products over & is closed in the
category of Z(log D)-modules and one can resolve either F* or &p, using locally Z(log D)-
free resolutions. The ¢-th cohomology J#¢(F* ®~ Op,) is indeed Op,-module equipped with
an integrable log connection. The residue of of this log connection is &, -linear and is called

the the (-th residue of the complex F*.
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As in the case of Z-module, the sheaf wz(log D) = Q7% (log D) carries a canonical right
2z (log D)-module structure and we have the left to right transformation F — wz(log D) ® F

for any left 2,(log D)-module F. Moreover, we have the following analog

Theorem 2.1.2. The log de Rham complex of Zz(log D)
{P4(log D) - Qz(log D) ® Z7(log D) - -+ - Q% (log D) ® Z4(log D)} [n]

is a resolution of wz(log D) as right Zz(log D)-modules. The Spencer complex of 2z(log D)
P7(log D) ® /n\ T7(log D) - P7(log D) ® 7\1 Iz(log D) - -+ > D4(log D)

is a resolution of Oy as left D7(log D)-modules.

For any integrable log connection F, it induces a complex of right Zz-modules,
{F® 27> Q2(logD)®@F® D7 - - - Q% (log D) @ F ® D }[n]. (2.1.5)
In fact, it is nothing but the log de Rham complex of F ® Z as a left Z,(log D)-module.
Lemma 2.1.3. The log de Rham complex of F ® Dz is a Pz-module resolution of

logD)o F ® 9;.
wz(log D) 7 (log D) d

Proof. By the above theorem, we have

wz(logD)®F ® ).@Z ~ wyz(log D) ®.7:_@ ((12) D) (@Z(logD) ® }\ ﬂz(logD)) ® YDy
z\log

P (log D
=wz(logD)® F® }{ T7(log D) ® 95
~ QY " (logD)® F ® Z5.
The last isomorphism follows from that the contraction wz(log D)®A™* 7, (log D) ~ Q%™ (log D).

]

Example 2.1.4. We will use the following fact: the complex of right Z,-modules

{97 - Qz(logD)® D7 — - > Q% (log D) ® D7 }[n]
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is a filtered resolution of wyz (* D) = Ugezwz (kD), equipped the induced filtration by Q% (log D)®
FrinsePz. In fact, it is well-known that the inclusion Q%**(log D) — Q%**(+D) is a fil-
tered quasi-isomorphism [Del71b]. The inclusion extends to a filtered quasi-isomorphism
Q% *(log D) @ Dy — QL (D) ® D4. Since QL (*D) ® P is a filtered resolution of wy(*D),

we conclude the proof. It follows that, for f: Z - W,
fTwZ(*D) = Rf;(wz(*D) ®éZ @Z—WV) = Rf!Q%+.(10g D) ® 9W

In particular, if f is a closed embedding then fi = f, is right exact and f; = 2 f;, which

means

is a resolution of fiwz(*D). We put the induced filtration to make it a filtered resolution

and denote by

filwz(+D), Fawz(+D)) = (fiwz(+D), . fiwz(+D)),

or for simplicity just fiwz(*D).

The Zz-module looks like £ ® &5 for L is a 0z-module is called induced Zz-module.
For example, we have seen QimZ+* @ 9, and Q(log D){™%** @ 2, are complexes of induced

9 z-modules.

2.1.3 Polarized Hodge-Lefschetz structures

The goal of this subsection is to introduce polarized bigraded Hodge-Lefschetz structures.
The prototype of polarized Hodge-Lefschetz structures one should keep in mind is the graded
vector space consisting of cohomologies of a compact Kahler manifold. Polarized bigraded
Hodge-Lefschetz structures are the degenerations of polarized Hodge-Lefschetz structures.
We begin with the convention on Hodge structures and we only consider complex Hodge

structures.
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A Hodge structure of weight n is a finite dimensional vector space V' with two decreasing
filtrations F'* and G* satisfying

V=FreGui,

for each p e Z. Let VP4 = FPn G4 for p+ q =n. Then the above definition is equivalent to

V=@ vea

p+g=n
A morphism of Hodge structures is just a morphism of vector spaces such that it preserves
the two filtrations. A polarization on the Hodge structure (V, F'*,G*) is a non-degenerated

hermitian pairing S:V ®c¢ V — C such that

1. FP is orthogonal to G"*1-P with respect to S for every p € Z;
2. (-1)4S(-,-) is hermitian inner product on VP4,

Remark 2.1.5. A polarized Hodge structure of weight n is completely determined by the
triple (V, F,V,S) because

G PV ={a eV :S(a,b) =0 for all b in FPV} = FPV1s.

We will also call the triple (V, F,V,.S) a polarized Hodge structure.

Remark 2.1.6. A Tate twist (V, F*,S)(r) on a polarized Hodge structure (V, F'*,S) is the

triple (V, F'**" (-1)7S), for any integer r.

Now let us move on to the geometric case. It is well-known that the k-th cohomology
group of a compact Kahler manifold Z has Hodge decomposition
H*(Z,C)= @ HP(Z)
p+q=k

and thus it is a Hodge structure of weight k. Fix a choice of \/-1. Let Z be a compact Kéahler
manifold of dimension n, and let A be any Kéahler metric on Z. We denote the Kéhler form

by w=-Imh e A%2(Z,R) and denote its cohomology class by [w] € H?(Z,R); note that this
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depends on the choice of \/-1 through the function Im: C - R. The choice of /-1 endows
the two-dimensional real vector space C with an orientation on Z. The induced orientation

on Z has the property that

Y —vol(2) > 0.
z n!

The integral also depends on the orientation, hence on the choice of v/-1. To remove the
dependence, instead of the usual integral, we should use

1

FEVaT fZ . A(Z,C) > C.

Of course we still have

1 (2mv/—1w)"
Ty e

Let L =[w]A be the Lefschetz operator for a Kéhler class [w]. Then for k < dimZ the

=vol(Z).

n!

primitive part

PLHk(Z, (C) =def ker Ldimz_k N Hk(X, (C)

is a polarized Hodge structure of weight k with the polarization

_e(n-k+1) STV a0 AR
S0 = [Z (2rV/=1L)"*a n T,

for a,b e PLH*(Z,C) because of the Hodge-Riemman bilinear relation.

If we consider the cohomology groups all together, we will get the Hodge-Lefschetz

strcuture of central weight n. Denote by (X,Y,H) the sly(C)-triple, i.e.,
[X,Y]=H, [H,X] = 2X, [H,Y] = -2Y.

In the Lie group SLy(C), we have the Weil element w = eXe™eX with the property that

w~l = —w, and under the adjoint action of SLy(C) on its Lie algebra, one has the identities

wHw?=-H, wXw?l=-Y, wYw!=-X

Y

From this, one deduces that eX =weXeY = eYwe”. Now A*(Z) becomes a representation of
sl (C) if we set

X=2rv-1L and Y=(27V-1)"'A
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and let H act as multiplication by k —n on the subspace A¥(Z). The reason for this (non-
standard) definition is that it makes the representation not depend on the choice of v/-1.
It is easy to see how w acts on primitive forms. Suppose that o € An*(Z) satisfies Yo = 0.

Then wa € An*E(Z). If we now expand both sides of the identity

GXOé = €YW€YOé = €YWOé

into power series, and then compare terms in degree n + k, we get

Xk

wa = —a.
k!

This formula is the reason for using w (instead of the otherwise w=1): there is no sign on the

right-hand side.

A Hodge-Lefschetz structure is linear algebra data encoding both representation theoretic
and Hodge theoretic information. Recall that a finite dimensional sly(C)-representation is a

graded vector space V = @z V; satisfying the following three equivalent conditions.

1. each graded piece V} is the (-eigenspace of H;
2. the morphism X¢:V_, » V} is an isomorphism for each ¢ > 0;
3. the morphism Y¢:V, - V_, is an isomorphism for each ¢ > 0.

Example 2.1.7. For any finite dimensional vector space V' together with a nilpotent operator
N, there exists a so-called monodromy filtration W, uniquely determined by the following

two conditions

o foreach (€ Z, N: W, - Wy_y;

e the induced operator N¢: gr)V — gr'¥ is an isomorphism for each ¢ > 0.

Let gr'"V = @z gr;)”. The (-th primitive part Pygr)” = ker N*! ngr} consists of the classes

of generators of cyclic subspaces of V' of dimension ¢ as C[N]-modules for ¢ > 0. For each
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generator v, we have N®ly =0 but N% # 0 and also v is not a image of N. Therefore, we

have the identification

ker N¢+1
Pyt = .
NBL T L NT +im N nker NO+L

Furthermore, we have the Lefschetz decomposition gr}” = @0 N¥ Py Visor,. Taking N =Y, the
Lefschetz structure and the grading uniquely determines the operator X such that (X,Y,H)
is a sly(C)-triple by the relation XY* = k(¢ -k +1)Y*! on Pygr}’. Thus gr'V naturally is a

representation of sly(C).

By Hard Lefschetz theorem, for any compact Kahler manifold the vector space

@ ]’_]’dirnZJrZ(Z7 (C)

leZ,

is a representation of sly(C) by setting X = 27v/~1L the Lefschetz operator, Y = (2m/~1)"1A
the adjoint operator. But because of the Lefschetz operator of is of type (1, 1), we actually have
X:H¥(Z,C) -» H*'(Z,C)(1) is a morphism of Hodge structures and X¢: HdmZ-¢(7 C) —
HAmZ+£(7 C)(¢) is an isomorphism of Hodge structures. This leads to the following definition:
a Hodge-Lefschetz structure of central weight n is a sly(C)-representation V' = @,z V; with

two filtrations F*V and G*V such that

1. each graded piece (V, F*V,,G*V,) is a Hodge structure of weight n + ¢;

2. the operator X: (Vp, F*Vy, G*Vy) = (Viyo, F**1Vp,a,, G**1V,,5) is a morphism of Hodge

structures such that
X (Vg F*Vo, G*Vog) — (Vi F*Vi, G*V) ()
is an isomorphism of Hodge structures;

3. the operator Y : (V, F*Vy, G*Vy) — (Vig, F*~1V,_5, G*"1V,_5) is a morphism of Hodge

structures such that
YZ : (W7F.W7G.W) - (V,@F.V,[, G.V,g)(—e)
is an isomorphism of Hodge structures.
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It follows from the definition the primitive part PxV} is a sub-Hodge structure for each ¢ < 0.
Let Vy = HimZ+(7Z C) and V = @z V. It follows that V' is a Hodge-Lefschetz structure of
central weight dim Z. Hodge-Lefschetz structure interplays well with the Hodge-Riemann
bilinear relation. A polarization on a Hodge-Lefschetz structure V' of central weight n is a

hermitian symmetric paring S:V ®c V - C such that

1. the restriction S|y, 7, is zero for £ +k # 0;
2. S(X-,-) =S(-,X=) and S(-,Y-) = S(Y-,-);

3. S_y(Xf-,-) is a polarization on PxV_,, or equivalently, Sy o (id ® w) is a polarization

on V, where Sy:V; ® V_; - C is the restriction of S.

Note that w : Vj, - V_x(-k) is automatically an isomorphism of Hodge structures (of
weight n + k). We first prove an auxiliary formula. Suppose that a € V_, is primitive, in the
sense that X“la = 0( and £ > 0). Then Ya =0, and from we™ = eXe™Y, we get we>a = eXa,

and after expanding and comparing terms in degree ¢ — 27, also

a (2.1.6)
since w? acts on Vg0 as (—=1)~%*% = (-1)*, this formula is actually symmetric in j and £ - j,.

Lemma 2.1.8. IfV is a Hodge-Lefschetz structure, then w : Vi, = V_.(=k) is an isomorphism

of Hodge structures.

Proof. Any a € V}, has a unique Lefschetz decomposition

XJ
a= TCL]‘
j=max(k,0) J:
where a; € Vi_o; satisfies Ya; = 0. (We only need to consider j > k in the sum because

X2%=k+lg; = 0, which implies that Xia; = 0 for j < k.) Suppose further that a € V", where

p+q=n+k. Then Xia; € V)% and by descending induction on j > max(k,0), we deduce
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that a; € V,f:;‘j’.q_j . In other words, the Lefschetz decomposition holds in the category of Hodge

structures.

We can now check what happens when we apply w. Using (2.1.6), we find that

Xi - Xik ko
wa = Z W—'CLJ = Z (—1)]ma] € V_pk k.a-k

j>max(k,0) J: j>max(k,0)

and so w is a morphism of Hodge structures. The same calculation shows that w1 is also a

morphism of Hodge structures. It follows that w is an isomorphism of Hodge structures. [J

The definition of polarized Hodge-Lefschetz structure of central weight n is redundant. In
fact the definition is equivalent to a tuple (V. X, F*,S) for V = @z Vi, F* is a decreasing

filtration, X : (Vj, F'*) = (Viso, F**1), and S is a Hermitian pairing such that

(pHL1) for each £>0, X! : F*V_, - F**V} is an isomorphism;
(pHL2) S(X-,-)=5(-,X~) and S|y, 7~ vanishes except for k = -(;

(pHL3) the triple (PxV}, F,, S o (Xioid)) is a porlarized Hodge structure of weight n — j.

The condition (pHL1) in the above definition indicates the Lefschetz decomposition respects
the filtration F'*. Therefore Y is determined uniquely and also filtered. The second condition
implies that S(Y—,—-) = S(—,Y-). The third condition says that So(id ®w) is non-degenerate
on FPV, ® FPV_,. Therefore, we also get the following concrete description of the Hodge
structure on V;: for p+qg=n+/¢

VP9 ={ae FPV,;: Sy(a,b) =0 for all be FP~*1V_,},

GWy={a eV, Se(a,b) =0 for all be F"9"1V ,}.
Example 2.1.9. For a compact Kéhler manifold Z of dimension n, let V;, = H**(Z,C) and
V = @z Vi. Then V together with X = 2rv/—1L and Y = (27T\/—_1)‘1A and with the natural
filtration is a Hodge-Lefschetz structure of central weight n. By Hodge-Riemann bilinear

relation, taking

e(n+l+1)

@mV/-1)" Jz

anb () (<) (2.1.7)

Sg(a,b)Z (271'\/—_1)” z
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for a € V, and b e V_, gives a polarization on V. The polarized Hodge-Lefschetz structure V'
is determined by the filtered Zz-module wy together with the sesquilinear pairing S;. The
graded piece Vj is just /-th hypercohomology of DRzw, with induced filtration F'*V, given by

the image of H(Z, F_..DRzw). And the polarization Sy is given by (k) times the pairing

Hk(Z, DRsz) ® H_k(Z, DRsz) E— HO(Z, DRZ77WZ ®c @) i) I‘IO(Z7 DRZ77Q:2) ~C

We can work out the pairing explicitly. Note that we have a commutative diagram

DRZ,wa Qcwy — DRZZﬁZ ®c ﬁ_z

ls 2

DR,,€; ———— DR, Dby,

where the upper horizontal arrow is the isomorphism induced by (2.1.2) and similarly the

lower horizontal arrow is defined on the terms in degree —k,
A 2n—k
¢z ®ﬁz,2 /\ ‘?Z,Z - QZYE ®ﬁz,2 Dby

by the following rule: write a current locally as Dw A w, with a distribution D and denote by

05 =NA;0; and dx ;7 = Ny dz; for an ordered index subset J of I; then
(Dw A @) ® Dy ADg > (—1) 1t wip)t(kieska) (L1)(p s A dr e © D (2.1.8)

where #J = p and #K = ¢, and p+q = k. The sign factor is explained by the number of swaps
that are needed to move everything into the right place, which is (2n—j;) +--+ (2n-j,) +

(n—Fky)+--+(n—-k;). We can now derive a formula for the induced pairing
DRzﬁZ ®c DRzﬁZ —>DRZ7Zgbz. (219)

For the two local sections o = dx 7 and 8 = dz, under the isomorphism DRz, ¥ DR wy

in (2.1.2), the (n - p)-form a goes to

(=1)"(=1)1**r .y ® 3.
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and the (n - ¢)-form S goes to
(1) (=1)krr R ) @ O
The pairing Sz on DRzw, takes those two sections to
(—1)nPra) (1) Grerip)+(kieka) Gy ) ® Oy A Ok (2.1.10)

where Sz is defined in (2.1.4). Now Sz(w,w) = Dzw A w, where D is the distribution

_e(n+1)
P2 Ty fz

Under the isomorphism in (2.1.8) the section (2.1.10) therefore goes to
(-1)"PdzjAndrg ® Dy = (~1)"deeMo A @ Dy

The formula we have just derived also works for smooth forms, of course. In other words, the
same formula can be used to extend (2.1.9) to a pairing on the de Rham complex of smooth

forms. The resulting pairings on cohomology are, assuming Z is compact

H™(Z,C)® H"*(Z,C) - C, (a,ﬁ)H(—1)"<dega‘">%fzwﬁ, (2.1.11)

which coincides with the pairing (2.1.7) precisely.

2.1.4 Polarized bigraded Hodge-Lefschetz structures

In the paper, what we really consider is the degeneration of “variation of Hodge-Lefschetz struc-
tures” of a family of compact Kéhler manifolds. As it turns out the limit of the degeneration is
a bigraded Hodge-Lefschetz structure. We begin to define polarized bigraded Hodge-Lefschetz
structures. Similarly to the case of sly(C)-representation, a sly(C) x sly(C)-representation is

a bigraded vector space V' = @y kez, Vi1 satisfying the following three equivalent conditions:

1. each bigraded piece V, is the ¢-th eigenspace of H; and k-th eigenspace of Hy;
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2. for each (,k € Z we have X, : Vy i, = Viso i and Xo 0 Vi = Vi pio plus isomorphisms

XV = Vig and X5 : Vg = Vig;

3. for each ¢,k € Z we have Y, : Vy, = Vo and Yo : Vj — Vi o plus the isomorphism

Yf : Ve,k - V—Z,k and Y§ : Ve,k - Vé,—k-

A bigraded Hodge-Lefschetz structure of central weight n is a sly(C) xsly(C)-representation
V' = @y ez Vo With two filtrations F*V and G*V such that

1. the bifiltered vector space (Vi F*Vig, G*Viy) is a Hodge structure of weight n + ¢ + k;

2. the two operators X; : (Vog, F*,G*) - (Visor, F**1,G**) and Xy @ (Vig, F*,G*) -

(Vi g2, F*™1, G**1) are morphisms of Hodge structures such that
X (Vi F*,G*) = (Vig, F*,G*)(0)  and  X§: (Vi _, F*,G*) = (Vig, F*,G*) (k)
are isomorphisms of Hodge structures.

3. the two operators Yy : (Voi, F'*,G*) - (Viog, F*71,G*Y) and Yy @ (Viy, F*,G*) —

(Vi k-2, F*71, G*=1) are morphisms of Hodge structures such that
Y0 (Vig, F*,G°) > (Vogp, F*,G)(=0)  and  Y5: (Vig, F*,G*) > (Viw, F*,G*)(=k)
are isomorphisms of Hodge structures.

A polarization on a bigraded Hodge-Lefschetz structure V' = @y ez Vi i of central weight

n is a hermitian symmetric pairing S: V ®c V - C such that

1. the restriction S|w oV Vir ®c W] — C vanishies except for £ = -7 and k = —j;

2. S(Xy-,-) = S(-,X;-) and S(-,Ya-) = S(Yo—,-);
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3. Ser(X{=, (=Y2)*-) is a polarization on the bi-primitive part P_,, = ker X{*! nker Y& n
V_i.x, or equivalently, Sp (-, wiwe—) is a polarization on V; x, where Sy is the restriction

of Son Vyp® Vo) and w; = eXie™YieXi for i =1,2.

This is the practical definition because in the later application X; will be the 27/ -1L and
Y, will be, up to a scalar, the logarithmic of the monodromy for the degeneration. Similiarly

to the case of Hodge-Lefschetz structure, we have a simpler definition.

Theorem 2.1.10. A polarized bigraded Hodge-Lefschetz structure of central weight n on a

filtered bigraded vector space (V = @y Vi, F*V') is uniquely determined by the following:

(pbHL1) for every ¢,k € Z we have two operators Xy : (Vog, F*) = (Virok, %) and
Yo: (VirF®) = (Vig-o, F*71) such that

Xﬁ c Vo~ F’*‘]Vg,k and Y§ 3 F"ng,_k are 1somorphisms;

(pbHL2) a collection of Hermitian pairings Se : Vig ®c Vg = C such that

Sz,k(x1—, —) = SZ+2,k(_ax1_) and SE,k(_7Y2_) = Sz,k—Q(Yz—, —);

(pbHL3) the triple (P_M,F‘P_@’k,so (X{@ (—Yg)k)) is a polarized Hodge structure of

weight n— { + k where F*P_y; = ker X{ nker Y5 n F*V_y 1 1s the bi-primtive part.

Then the Hodge structure on Vjj, can be described as: forp+q=n+j+k

V]{’If ={a e F*V,}: S;x(a,b) =0 for all be FP=*1y . 3
GWVr={aeV;y:S;x(a,b) =0 for allbe F" 9V ; ;1.
The proof is simple and is left to the reader. Later when we construct the limiting mixed
Hodge structure, the polarized bigraded Hodge-Lefschetz structure naturally comes up from

the first page of weight spectral sequence associated to a mixed Hodge complex. Modeled on

the properties of the differential of spectral sequence we give the following definition:
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A differential of a polarized bigraded Hodge Lefschetz structure (V, F*,X;,Ys,5) is a
linear map d:V — V such that

1. d: (Vig, F*) > (Vis1-1, F*) and d? = 0;

2. d is skew-symmetrc with respect to S, i.e., S(d—,-) + S(-,d-) =0;

3. [X1,d] =0 and [Ya,d] =0.

Remark 2.1.11. In fact, the above three conditions imply that d is a morphism of Hodge

structures d : V3! — V2T . A vector a € GV, means that S(a,b) =0 for all b e F*=a1V_; .

Then S(da,b) = S(a,db) =0 for all be Fr=a+*1V_,;_; ,.q, indicating da belongs to G7Vq j_1.

The main result of this subsection is the following version of Deligne’s lemma, showed by

Guillén and Navarro Aznar.

Theorem 2.1.12 ([GN90, (4.5)]). The cohomology kerd/imd of a polarized differential

bigraded Hodge-Lefschetz struture is again a polarized bigraded Hodge-Lefschetz structure.

Proof. Let C':V — V be the operator that acts as (-1)9 on the subspace Vj’?,’cq in the Hodge
decomposition of each V; . Since d is a morphism of Hodge structures, we have [d,C] = 0.

The fact that S is a polarization means that the Hermitian pairing
h*:VecV -»C, h*(a,b)=5(Ca,wiwsyb)

is positive-definite on V. Let d* be the adjoint of d with respect to h*. Fix a € Vj; and
beVjy,:
h*(da,b) = S (Cda,wywyb) = S (dCa,wiwsb)
= S (Ca,dwiwsb) = =S (Ca, wiws - wy'witdwiws - b) = h* (a,d*b),
i.e. the adjoint d* = —w;wytdwyws.
In addition to the two relations in the definition of differential
[X1,d]=0 and [Y3,d] =0
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we obtain from the grading another two relations
[Hi,d]=d and [Hs,d]=-d.

With respect to the sly(C) x sly(C)-action on End¢(V'), the element d therefore has weight

(+1,-1), and is primitive with respect to the action by Y; and X,. Define
dl = [Yl, d] and dg = - [XQ, d] .

The reason for the minus sign is that we have [Ya,d] = 0. Then d; has weight (-1,-1), and

is primitive with respect to the action by X; and Xs; this gives

[Hl?dl] = _d17 [X17d1] = d, [Yl,dl] = O, W1d1WI1 = d
[He,d1] = —dh, [Yo,d;]=0.

Similarly, ds has weight (+1,+1), and therefore

[He,dy] =dy, [Xo,d2] =0, [Yo,d2]=-d, wadyw;'=d
[Hl,dg] = dg, [Xl,dQ] = 0

Therefore, d* = —[Y1,d2] = [Xg,d1] € Endc V. It has weight (-1,+1), and is primitive with
respect to X; and Y,. From this, and the identities we already have, we deduce the following

set of relations:

[Hl,d*] = —d*, [Xl,d*] =ds, [Yl,d*] =0, Wld*WI1 = —dy
[HQ’ d*] = d*7 [X2a d*] = 07 [YQ, d*] = —dl, ng*Wi1 = _dl-

We can check that the (formal) Laplace operator
A = dd* +d*d ¢ Ende (V)

is invariant under the action of sly(C) x sly(C). For example,

[X17 dd*] = ded* - dd*xl = dxld* - d(xld* + dg) = —dd2
[Xy,d*d] = Xqd*d — d*dXy = (d*Xy = dy) d = d*Xyd = —dad
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from which we conclude, using d? = 0, that
[Xl, A] = - (ddg + dgd) = —(d (dXQ - X2d) + (dXQ - ng) d) =0

The other three commutators can be checked similarly. On the other hand, A is also a

morphism of Hodge structures: the reason is that
d:Vig = Vierg-1, Y1:Vig = Vir(=1),  Xo:Vjg = Vigio(1)

are all morphisms of Hodge structures, and A is obtained by composing them in some order.
It follows that ker A € V' is a bigraded Hodge-Lefschetz structure, polarized by the restriction
of S. Because of the canonical isomorphism ker A ~ kerd/imd as bigraded Hodge-Lefschetz
structures, the induced pairing by S on kerd/imd is also a polarization. This concludes the

proof. O]

2.2 Log relative de Rham complex

Let f: X - A be a proper holomorphic morphism smooth away from the origin whose
central fiber Y is simple normal crossing but not necessarily reduced. Assume X is Kéhler
of dimension n+ 1 and Y = },.; ¢;Y; where Y;’s are smooth components and I a finite index
set. Let t be a parameter on A and zg, 21, 29, ..., 2, a local coordinate system on X such that
t =227 2% such that eg, e, ...,e; > 1. Then we have Qa(log0) = Oa - % and Qx(logY’) is

locally generated by
dzg dz; dzy,

€Co—H 1 €k, d2k+17 dzk+27 ey dzn
20 21 2k

over Ox. Denote by &y, ..., &, the image of the above generators in {2y (logY"), respectively.
As a quotient of Qx(logY’), the sheaf Qx/a(logY’) is generated by &, &1, ..., &, but under

the relation

dt dz dz dz
Co+&+-+&,=0 because fT— = 60_0 +61_1 + e +ek—k.
t 20 21 2k
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Let Ix/a(logY") be the dual bundle of Qx/a(logY’). It is a subsheaf of Jx, generated by
lzl& - iZ()a(), 1<i<k
D, =1 ¢ € (2.2.1)

81', 1> k,
where 0; is the local section of Jx dual to dz; in Qx. It follows that Dy, Ds,..., D, is the

dual frame of &1, &5, ..., &,.

2.2.1 A “log connection”

We shall construct an operator in End py(a c) (R f*Q;/”A(log Y)) which should be regarded a

“log connection”. Note that we have the following short exact sequence of &'x-modules
0~ f*Qa(log0) ® Q%4 (logY) —» Q" (log V) - Q%/3 ' (logY) - 0.
Under the identification %/\ : Ox — [*Qa(log0), the above short exact sequence becomes

dt
0 — Q37 (log¥) 55 Q3™ (log V) — Q7! (log V) — 0.

Here, the morphism % : O a(logY) = QF1(logY) works as [a] ~ 4 A o which does

not depend on the representative of [a]. Let Cone® = Q%" (log}) & Q;/”A(log Y) be the

mapping cone of %/\ : Q;(*/’Xl(log Y) - QY¢"(logY’). In our convention, the differential 6 of

the mapping cone works as §(a, [5]) = ((—1)"da + % A B, (—1)"d[ﬁ]), where d is the usual
exterior derivative on Q% (log ) and by abuse of notation, also d denotes the induced differential

on £2°

%/ A(ogY’). Then we have the following diagram:

X/A

lp (2.2.2)
L pogt
Q;(T/”A(logY

Cone® —2— Q%7 (logY)

where ¢ : Cone® » QY7 (logY), (a, [8]) = [@] is a quasi-isomorphism and p is the second

projection. Therefore we have the morphism po ¢ in End ps(x c) <Q’§/’A(log Y)) For any

local section g € Oa, the multiplication by ¢ is an endomorphism of Q;/"A(log Y") because it

is f~1Oa-linear.
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Lemma 2.2.1. The operator V = (=1)""'poq~" satisfies [V, g] = tg" in End py(x ¢ (Q;/”A(log Y)),

where g' denotes the derivative of g € Oa.

Proof. Tt is equivalent to show that [po gt g] = (-1)"tg’. Define g(a,[5]) = (9, g[5] +
(-1)"g'[«]) for any («, [B]) € Cone® and g € f~1&x. We shall show that ¢ is an endomor-
phism of Cone®, i.e., gé(a, [B]) = dg(a, [5]). This follows from that

93(a.[6]) = g ((-1)"da+ w5, (-1"al5))
= (g% 25, (-1)gd(9) - tg'dl 0]
and

Sg(an [61) =4 (90,9181 + (-1 /)
= (dga+ Fa (o5 + 1y gl (1) dgl8]+ () ig'Ta])
= (rgda 9% 6, (1)9d() - ')
It is casy to see that gog=gog so that ¢l o g =goq'. Therefore,

[pogt,gl=poglog-—gopoqg'=[p,glog™

But [p,g](e, [8]) = p(ga, g[B] + (-1)""tg'[a]) — g[B] = (1) ttg’[a]. Tt follows that
[pog,gloq(a,[B]) = [p,g](e, [B]) = (-1)""'tg" o q(a, [ B]).

By inverse ¢ we prove the statement. O

Because of the identification %/\ :OA — Qa(log0), what we really get is a morphism in
D*(X,C)

V: QYA (logY) - f*Qa(log0) ® Q575 (logY")

such that Vg = gV+%®tg’ € End Db(X7c)(Q;/7IA(IOg Y")) for any local section g € &o. Running
the similar construction, we obtain an induced C-linear (in fact f~!&-linear) endomorphism

[V] on QF7, (log Y)ly in D*(X, C) satisfying the following diagram.
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Q%A (logY) - LN Q;/”A(logY) — Q;/”A(logYﬂy —_ Q;;;LA(logY)[l]

lwl iv lm i(vu)m

Q5 A (logY’) - LN QF/a(logY) —— Q¥ (logY)ly —— Q75 (logY)[1]

Since Q;/"A(log Y) is f~1Oa-linear, each cohomolgy RF f*QB(*/"A(log Y') is a coherent Ox-

module. Taking direct image, we get C-linear morphisms between distinguished triangles in

ch)oh(A’ ﬁA)Z

Rf.Q%],(logY) — RfQY\(0gY) —— REQYT, (logY )y —— RfQY, (logY)[1]

lRf*VH lRf*v in*[v] in*(Wl)[l]

RfQY, (logY) — RIQY\(logY) —— REQY), (logY)y ——— QF/, (logY)[1]
(2.2.3)

where the morphism
Rf.V: REQY(logY) - RfQYT, (logY)

satisfies [Rf.V,g] =tg’ € End py(a ) (Rf*Q;;/”A(log Y)) for any local sections g € Oa.

2.2.2 Residue

In the above situation, one should regard Rf.[V] as the residue of Rf,V. More generally, let
F* be a complex of Oa-modules with a morphism V € End pi(a ¢y (F*) such that [V, g] = tg’ for
any g € Oa. Let G* be the mapping cone of ¢ : F* - F* which computes to F* ®C(0). Then
by the axioms of triangulated categories [HTTO08], there exists an operator R € End ps(a ¢y (G°)

making the following diagram commute in D?(A, C).

Fo —— F* —— G =F* oL C(0) — F°[1]

lv+1 lv \LR i(vu)m

Fo —5 F* —— G*=F* 0" C(0) — F*[1]
We call the operator R a residue of V. Note that the axioms of triangulated categories

cannot guarantee that the filling is unique. However, the eigenvalues of R, only depends on
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V, where R, denotes the induced operator on the cohomology 7 (F* ®* C(0)). First, every
object in D% | (A, 0) splits, meaning that F* ~ @z H#*F*[ (], since there are no Ext’ for
1> 2 between two coherent sheaves over a curve. It follows that the morphism V breaks up
into sum of morphism consisting of diagonal morphism V, : F*[-(] - H*F*[-¢] which
is an actual log connection and off-diagonal morphism #*F*[-(] - A" F*[-m] but only
for £ > m. Thus the eigenvalues of R, are determined by V, and V,,;. When F* is a locally
free sheaf centered at degree zero and V is the usual log connection. Then above definition

coincides with the usual definition of the residue of V.

Returning to our case, the natural choice of a residue of Rf.V is R = Rf,[V] because of

the diagram (2.2.3): by the projection formula, we have

REOYA(0gY) 8 €(0) = BL (03708 Y) & F1C(0)) = Rr. (957 (loV)ly).

Our main result concerning the relative log de Rham complex is the following.

Theorem 2.2.2. The higher direct image Rff*Q;’/”A(log Y') is locally free for each { € Z.

Moreover, there exists a canonical isomorphism for every p e A

Réf*Q;'/”A(log Y)® C(p) ~ HY(X, QY/a(logY)lx,), where C(p) is the residue filed at p.

We first present two preliminary theorems.

Theorem 2.2.3. The operator R, has eigenvalues in [0,1) nQ for each { € Z.

Proof. Later in §2.3 (Theorem 2.3.3) we will show that in fact [V] satisfies p([V]) = 0 for

0 -TTTTO-2)

iel j=0
Hence so is R’f,[V] and this implies the eigenvalues are in [0,1) n Q.

Alternatively, by Grothendieck spectral sequence

B = R f Q53 (log V) ) = RPF (573 (log V),
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it suffices to show that the induced operator RPf,9[V] on Rpf*%”qQ;/”A(log Y)|y has
eigenvalues in [0,1) N Q for each ¢ € Z since E% is a sub-quotient of EY?. The following is

proved by Steenbrink [Ste76, Proposition 1.13]:

Lemma 2.2.4. The stalk of %qQ;/”A(logYﬂy at a point u is generated by the germs
(te&i, A&y A &in)u for all0 <a<e and all 0 < iy, i, ..., iqm <1 over the ring C{t%}/tC{t%}
where e is the ged of eg, eq,...,ex and C{té} 1s the ring of convergent power series with the

variable te .

We will elaborate the proof of the lemma later. Temporarily admitting the lemma, then

ANTLAEE Gy A G Aoy u = (S MG Ao A Gy

meaning that the eigenvalues of J#4[V] are 0,1,2,..., %<1 €[0,1) nQ in a neighborhood of w.
This implies that there exists an open neighborhood U containing u and a polynomial py ()
whose roots are in [0,1) n Q such that py (#£4[V]) =0 over U. By the properness of Y, we
can take a finite open covering U = {U;} of Y such that p(2#9[V]) = I1, pv,(2#4[V]) = 0. Tt

follows that p(RP f,°1[V]) = 0, meaning eigenvalues of RPf, V] in [0,1) n Q. O

Proof of Lemma 2.2.4. We will actually prove the original statement of [Ste76, Proposition
1.13] that, in the same notations as in the lemma, the stalk at a point u of 7 qQ;/”A(log Y)

is generated by germs
(t%&l AEiy A ...&.qm)u
for all a € Z,y and all tuples 0 < iy, s, ..., lgs,, <1 OVer (C{t%} The lemma is a direct corollary.
The complex of stalks Q;/”A(log Y'), can be identified with the Kozul complex of operators

Dy, D,,...,D,, on Ox, putting in degree -n,-n +1,...,0. Define Gij;(/A(logY)u to be the

submodules of Q. / A(logY), spanned by the germs

§in N&iy Ao NG, for #E{mciy, <k} >
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Then {GEQB(/A(log Y)u}eez is a decreasing filtration of Q% /a(logY),. The associated spec-
tral sequence has Ej° = grgQ’;/'A(log Y).. Notice that grgQgg/'A(logY)u can be identi-
fied with direct sums of Koszul complex of operators Dy.1, Do, ..., Dy on Ox,y,, so E’{’K =

H“f(grng/A(log Y)) =0 for £+ 0 and E}° is spanned by germs
Eiy N&iy Ao A&, such that #{i,, <k} =7

over C{zg, 21, .., 2k }, thanks to the usual Poincaré lemma. Consequently, the spectral sequence
degenerates at F, with E5° = A (% a(logY))u. Now E} is the Koszul complex of
operators Dy, Dy, ..., Dy on C{zy, 21, ..., 21}. Because each D; for 0 <i < k is a homogenous

differential operator, E5 can be computed monomial by monomial.

For simplicity let &, i, . = &, A&y A= A&, Now I claim that a cocycle

- . . . ao al.-u ak . . . T’O
v = Z Cllﬂ'Q:"'ﬂTZO Zl Zk 511,7/27~71r € El

is cohomologous to zero if A; := a;/ej—ag/eg # 0 for some 1 < j < k. Note that D;(z°2{"---21*) =

A0 20"z for every 1< j <k. Since v is a cocycle, the coefficients satisfy

K_Zl(—1)fcil71‘27.“71.}““71.7‘“,4” =0. (2.2.4)

Assume that not all A;’s are zero for 1< j <k then A =Y A? is non-zereo. Then the number

k
p ~ A,
21,0250 50r-1 A 007117127--~ﬂr—1'
a=1

is well-defined. Here we extend standardly that c,(i,).e(is),...0(r) = sign(o)ci, i,....i, for any

permutation o. Then the element

. . ao a1, L0k ¢ .
2: d7117742:-~~77"r7120 &3 2k fllﬂ%n-ﬂr—l
11<19<...<lp_1
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: 1,0
in £} has coboundary

k

. . ao a1, %% . .
> 2 Aadiisi 2" 2 i i
a=1141<...<@

r—1

,
Z
Z Z A”d“m ..... Ty %802?1---22’“&1,@ ,,,,, ir
=1
k r A, A
YA 1
Z ZZ 1) —— azl,m,...,i},...,irzgoZ?l “Zlcclkfilﬂé ,,,,, ir
a=1/=1
ko A2
Z oz

a0 01, 0k ¢, o
Cll 2, lr’ZO Zl k 621,12 ,,,,, ip = U

applying (2.2.4) = Z

11<...<lp =1

We conclude the claim. Therefore, Eg is generated over C by 20°2"-+2;*&;, 4,4, With
D (25021 -2%) = 0.
That is, 252"z = t%/¢ for some a. Hence, we conclude the lemma. O

Theorem 2.2.5. Let F* be a complex of Oa-modules with coherent cohomologies, equipped

with a log connection, i.e an operator
V eEndpiac) (F*) such that [V,g] =tg’

for ant local holomorphic function g where g' is the derivative of g. Assume that the residue Ry
of V defined in the beginning of this subsection acting on each cohomology F¢(F* &L C(0))

has eigenvalues in [0,1). Then every F¢(F*) is locally free.

Proof. By the definition of residue, we have the morphism of distinguished triangles

Fo = F > Fo oL C(0) —— F°[1]

lw lv \LR l(vn)

Fo—— Fe > Fo oL C(0) —— F°[1]

in D?(A,C). Taking cohomologies gives
— A (F oL C(0)) — H(F) L HUF) — A (F L C(0)) — -

iRe iVH iV iRzﬂ
s AN (Fe oL C(0)) — HUFY) s HUFY) — A (F &b C(0) — -
(2.2.5)
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For simplicity, fix £ and let 5 = °(F*) and denote by kert the kernel of the morphism
t: 7 — . 1t suffices to prove that kert is trivial on 7. We are going to show that kert is

a subset of t* for all k>0 and thus, by Krull’s theorem kert is zero.

It follows from the diagram (2.2.5) that V + 1 on kert and V on J#/t.% have eigenvalues

in [0,1). Therefore, there exists a polynomial b;(s) € C[s] with roots in [0,1) such that
b1 (V)H ct A,
and another a polynomial by(s) € C[s] with eigenvalues in [0, 1) such that
bo(V + 1) kert =0.

Suppoe v is an element in ker ¢ nt* 7 for some k > 0. It follows that v = t*v; for some v, € JZ.
Because the roots of b;(s - k) are bigger then the roots of by(s+ 1), the two polynomials
b1(s—k) and by(s+ 1) are relative prime. We deduce that there exist p(s),q(s) € C[s] such

that

L=p(s)bi(s—k)+q(s)ba(s+1).

Therefore, combining the fact that by(V + 1)v vanishes,
v =p(V)b1(V = kv +¢(V)ba(V + D)o = p(V)by (V - k)t o1,
Because of the identity (V — k)t* = tkV, the above is equivalent to
v =t*p(V + k)b (V)vy.
Because by (V)wv; = tvg for some vy € 5, substituting in the last equality yields
v =t*p(V + k)b (V)vy = thp(V + k)b (V)tvy = t5 p(V + k + 1)by (V + 1)vy € tF12.

We proved that v is also an element in t**1.77. By induction and Krull’s theorem we conclude

the proof. n

Now we can immediately finish
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Proof of Theorem 2.2.2. The complex Rf*Q;/”A(log Y') with Rf,V satisfies the condition of

Theorem 2.2.5. Therefore, each cohomology R¢ f*Q;/"A(log Y') is locally free. The second
statement in the theorem follows from the the locally freeness of R‘f, Q;(T/”A(log Y) plus the

Grauert’s base change theorem. O]

2.3 Transfer to Y-modules

Lemma 2.2.4 implies the restriction of the relative log de Rham complex on Y is semi-
perverse. Indeed, it is even perverse, showed in [Ste76, §2]. Therefore, there should be
a regular holonomic Z-module whose de Rham complex is the restriction of the relative
log de Rham complex on Y, in the view of Riemann-Hilbert correspondence established by
Kashiwara [Kas84] and Mebkhout [Meb84]. The stupid filtration should also translates to a
coherent filtration from Hodge theoretic point of view. Then the endomorphism [V] in the
derived category can be captured by an endomorphism of a Z-module. This enable us to
study the relation between the filtration and [V] much easier and cleaner. In this section, we

will construct the filtered Z-module and the endomorphism.

2.3.1 Construction of filtered holonomic Zy-modules

Since Jx;a(log) is a subsheaf of Jx, the multiplication by sections in Fx/a(logY’) induces a
morphism Zx - Qx/a(logY’) ® Zx, with P~ Y¥ & ® D;P locally. The morphism extends

to a filtered complex of Zx-modules

QY A(logY) ® Dy = {Dx » Qxja(logY) ® Dy » -+ > Qy )y (logY) ® Ix }[n]  (2.3.1)
with filtration Fy (37 (logY) @X) given by
Q%’A(log Y)®F e Px = {F1%Px - Qx/a(logY)®F 1 Dx — -+ - QQ/A(log Y)®F;,..Zx }[n].

Let M be the 0-th cohomology of Q}?’A(log Y)® Zx and F;M be the O x-submodule induced

by the the filtration F (Q}?’A(log Y)e® .@X>.
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Theorem 2.3.1. The complex Q}?‘A(logY) ® PDx is a filtered resolution of a filtered Px -

module (M, FuM).

Proof. Notice that grf’ (Q’;;/'A(log Y)® @X) = Q}?’A(log Y) ®grf" Py, can be identified locally
with the Koszul complex associated to the regular sequence Dy, Do, ..., D,, over the ring
grf’ 9. Tt follows that Q”X*/‘A(log Y) ® grf Py is acyclic. Therefore, each graded peace

gry (Q}*/'A(log Y)® .@X) is acyclic. We deduce inductively that F (Q’;{/'A(log Y)® .@X) is
also acyclic; this can be seen from the long exact sequence associated to the short exact

sequence
0 Foy (s (logY) ® Zx ) ~ Fy (i (log V) © D ) > xf (25 (log V) ® Zx ) — 0.

Taking direct limit, we conclude that Q}*/‘A(log Y)® Py is a resolution of M. The long exact

sequence also implies the 0-th cohomology of F} (Q}?‘A(log Y)® QX) is isomorphic to FyM.

This completes the proof. O]

Remark 2.3.2. Note that Q?&‘A(log Y) ® Px is a complex of (f~10a, Zx)-bimodules because
Q}*/'A(log Y) is f~10a-linear. It follows that M is also a (f~10x, Zx)-bimodule. Note we
have two different actions of ¢ on M due to the bimodule structure. We usually use the left
multiplication by ¢. One can think of M as a flat family assembling the Z-module i X, WX,
of the smooth fibers X, for p € A and a specialization M = M /tM because using the left

f~YOA structure, we have filtered isomorphisms
C(p) ® M =C(p) ® Q5 (logY) ® Zx = U (logY)|x, ® Dx = ix, Q%" ® D = ix, wx,,

where ix, : X, > X is the closed embedding of the smooth fiber X,.

Remark 2.3.3. The theorem also says by choosing the local trivialization & A& A -+ A&, of
Q}/A(logY), M can be identified locally with Px (D1, Ds, ..., D,)Px and gr M can be
identified locally with grf 2x/(Dy, Do, ..., D,)ert @x.
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Remark 2.3.4. Let Zx/a(logY’) be the subalgebra of Zx generated by Jx/a(logY’). One

can show that M is nothing but

wX/A(log Y) %(/A%Ogy) Dx.

And the filtration Fy M is induced from Fuwx/a(logY'), where Fywx/a(logY) is wx/a(logY)
for £ > —n and is zero otherwise. To keep the proof elementary, we avoid talking about

Pxa(logY )-modules.

Theorem 2.3.5. The complex Q%‘A(log Yy ® Zx is a filtered resolution of a filtered
holonimic Px-module (M, FoM).

Proof. Because of the bimodule structure, we have Q}?‘A(log Y)|y ® Zx is the cokernel of the

left multiplication by ¢ on Q}?’A(log Y) ® Px. Therefore, the first part of the statement is
equivalent to ¢ : M — M is injective. It suffices to prove that ¢ : gr M — gr¥” M is injective
because the multiplication by t is a filtered morphism. But this follows from ¢, Dy, Ds, ..., D,,
is a regular sequence over the ring gr” Zy. It also follows that grf’ M is isomorphic locally to
et Dy [(t, D1, Dy, ..., D,)grf Zx. This means the characteristic variety of M is cut out by

t,D1,Ds,, ..., D, € Op-x and thus, the characteristic variety is of dimension n + 1. This proves

the holonomicity of M. O
Remark 2.3.6. Similarly to the case of M, the Zx-module M is just

w logY ® 9
X/A( s )|Y9X/A(10gy) *

with the filtration F, M induced by (Fuwx/a(logY)) |y

2.3.2 Properties of M

We first calculate the characteristic cycle of M which is important for later when we identifying
the primitive part of gr'”" M. Then we prove that the de Rham complex of M with the
induced filtration recover Q;(T]‘A(log Y)|y with the stupid filtration. Lastly, we translate the

operator [V] € End Db(X7c)(Q;/nA(10g Y))|y to an operator R on M
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Theorem 2.3.7. The characteristic cycle of M is
ce(M) =3 Y e [Ty X],
Jcl jeJ
where [Ty, X ] is the cycle of the conormal bundle of Y7 in T* X and e; is the multiplicity of

Y along each component Y; foriel.

Proof. The statement is local and we identify M with Zx/(t, D1, Do, ..., D,,). We first describe
the characteristic variety of M. The support of grf’ M as a sheaf on T*X is defined by the

radical of the ideal (¢, Dy, Ds, ..., D,,)gr? Px. In fact, z;0; for 0 <4 < k is in the radical because
(2:0;) T TTTE = (2900) 0 (2100 (21,05 ) = OO -0k = 0mod (¢, Dy, Do, ..., Dy,)gr? Px.

Therefore, char(M) is cut out by tieq, 2000, 2101, - ZkOk, Oks15 - O, Where treq = 2021725 1t
follows that char(M) =Uc; Ty, X.

Denote by p(Z) the prime ideal defining a integral subvariety Z. Let m; be the length
of ng/\/lp(T;JX) as an Artinian grfZx,-module . Then cc(M) = Y ;my [T;JX]. For
simplicity let us assume J ={0,1,2,..,u} and by abuse of notation we also the prime ideal
p = p(Ty,X) of the variety T;:, X is locally generated by 2o, 21, .-, 24, Ops1, s, -5 On OVeEr

grf” Py in some local coordinate system. Notice that

ngﬁx,p/(t, Dy, D, ...,Dn)ng@X,p = ng@Xm/(D(’),Dj, s D;L)glrF.@;(,,J

where

g for i=0

1 1 0
—zi——zogo, for 1<i<p

=10 T g (2.3.2)

—82-——20—0, for p+1<i<k

€; €0 Zi
81‘ for 7 > k‘,

because 0y, 01, ..., Oy Zus1s Zusas -, 2k are invertible in grf Py ,. Therefore, grf’ M, can be

identifies with
Clzo}/ ("),
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Then m; = dime C{zp} /(25" ""™™) = ¥c; €j. This completes the computation. O

Remark 2.3.8. The above theorem verifies that cc(M) = lim,,_¢ cc(ip, wx, ) = lim,, o [T;(pX]
as cycles in algebraic cotangent space T* X for p € A* where 7, : X}, - X the closed embedding
of the smooth fiber. In fact, one can show that C(p) ® grf M, using the left f-1&x-module
structure, is isomorphic to grf'i, wy, as in Remark 2.3.2. Refer to [Gin86a] for general results

about the characteristic cycles of specializations of holonomic Z-modules.

Corollary 2.3.9. The de Rham complex DRxM together with filtration F.DRxM s
isomorphic to Q”XJf/'A(logY)|Y with the stupid filtration in the derived category of filtered

complexes of sheaves of C-vector spaces.

Proof. We have showed that F) (Q’;{/'A(log Y)® .@X) is a resolution of Fy M. Therefore, the
total complex of F (Q?/'A(log Y)® @X) ® A" Jx is quasi-isomorphic to Fy,, M & N™* Tx,
which is exactly F;DRxM. It remains to show the total complex also quasi-isomorphic to

F,Qre (logY). This follows from that

X/A
Fru (2 (08 Y) @ Zx ) @ A Tx = U (105Y) @ Frunes (@X ® A\ yx)
~ Q’;/'A(log Y)® FrinieOx
= Fifdya (logY).
Here, F,0x = Ox for £ >0 and otherwise it is zero. O

Theorem 2.3.10. The endomorphism V € End Db(Xv(C)Q}*/‘A(log Y) in Lemma 2.2.1 transfers

to a filtered morphism
V(M M) > (M, For M), [[a] ® P] o (%A)-l (d(a® P))

where o € V% (logY') and P € Px so that [a] ® P € Q}/A(log Y)® Px. Moreover, restriction

on'Y wyields a filtered morphism

R: (M, F.M) — (M, Fay M)
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such that

Heﬁl(R— é) = 0. (2.3.3)

iel j=0
Proof. The morphism %A : Q"X*/'A(logY) - Qul*e(logY) extends to the corresponding
complexes of induced Zx-modules

dt
A Qa(logY) ® Zx » Q' (log V) ® P

Let Cone® ® Zx be the mapping cone of the above morphism. We get a diagram of complexes

of Zx-modules similarly to (2.2.2) and taking 0-th cohomology we get the following.

0 (Cone® ® Px) —— M
ip (2.3.4)

where abuse of notation, still denote by p and ¢ the induced morphisms from diagram (2.2.2).
Now ¢ is an isomorphism of Zx-modules. Let [a® P, [5]® @] be a class in #°(Cone* ® Zx)

for any a® P e Q% (logY) ® Zx and [f]®Q € Q’;(/A(logY) ® Zx. Then

0.

S(a®P[B]leQ)= ((—1)"d(a® P) + % AB®Q,(-1)"d([B]® Q))

Here, the sign factor (-1)" shows up due to we follow the Koszul sign rule. Because

dip Q%A(log Y) - Q% (logY) is an isomorphism, we have

(80 Q= (-1 () {d(a s P)).

Therefore, ¢* : M — #°(Cone*® P ) is given by [[a]®@P] = [a®P, (-1)*(%A)"{d(a®P)}].
Then we have

v=(1)poq: [fa]e Pl (n)Hd(a e P}

Restricting to Y we have the induced operator R on M. If a =& A& A--- A&, then

R[& A& A NE, QP = (ﬁ/\)’1 (d(el% A 62@ A ANdz, ® P))
t 21 %)
= (@/\)‘1 (60% /\61% A 62@ A ANdz, ® lzoaoP)
t 20 21 29 €0

= |:§1 /\52/\-~-/\§n®elz()80P].
0
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We see that RF,M c F,,1M. The reason for VEM c F.+1M is similar. To prove the last
statement, we work locally and identify M with Zx/(t, Dy, ..., D,,) via the local trivialization

EENE NN, of Q7

%/a(logY). Then for P e x, R[P] = [2-2000P]. In fact, because

of the relation Dy, Do, ..., D,, the left multiplication by ézoao on M is the same as the

multiplication by eiiziai for 1 <7< k. It follows from the identity
(20)(20 = 1)-+(20 - £) = 27191

for any ¢ > 0 that

o 1 1 e; ne e
H H(R——) H H( Zi i__) ] H el zzazz _tl_[ elazZ
iel 3=0 iel j=0 € iel iel €

=0¢ .@X/(Dl,DQ, ,Dn,t)_@X

This completes the proof. O

Remark 2.3.11. Note that V: M — M is also can be identified with the left multiplication

by 2 zla for ¢ < k, by choosing the trivialization of Q7 (logY’), because of the relations

X/A
D, = e—izﬁ, - %zoao for 1 <4 < k. This means for any function g € f~1@x, we have [V, g] =tg’
where ¢ and ¢ are local sections of f~1@A acting on the left of M. This makes M a
(19 (log0), Zx)-bimodule. Using Godement resolution, the direct image Rf,DRxM is
a complex of left Z (log0)-modules. Similarly, as we already saw in the proof, locally the

morphism R : M — M can be identified with left multiplication by 2 218 for 0 <i <k,

meaning [R,g] =tg’ =0 for g local sections of f~10x acting left on M.

Remark 2.3.12. The Zx-module M is even regular holonomic. Even though it is irrelevant
for our purpose, we can also check M is regular using the definition. Recall that a holonomic
right 2z-module N is called reqular if there exists a good filtration F,N such that for any
o € gr” 9P, vanishing on the charateristic variety of N one has gr N'o = 0. In the case of M,

define locally
GeM =Y RFF Mt

r,k>0
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where tieq = 2021:-2;. This is a finite sum because M is supported on t = 0 and R has a
characteristic polynomial. It follows that G, is a good filtration for M. I claim that G, M
gives the filtration in the definition of the regularity. Since the characteristic variety of
M is locally cut out by treq, 2000, -y 2k0k; Oks1, -+, On (see Theorem 2.3.7) it suffices to check
that GyMtieq € Gooi M, GeMz;0; ¢ GeM for 0 < i < k and GoMO; ¢ GyM for k+1<i < n.
It is clear that GyMt,eq ¢ Gy-1 M. Due to locally grf M = gr¥ @D [(t, Dy, Dy, ..., D,,)grt M,
it follows that gr'f MD; =0 for 1 < i < n. In particular, grf M9; =0 for k+1<i < n, ie.

FyMO0; ¢ FyM for k + 1 <i<n. Therefore, for k+1<i<n, because [teq,0;] =0,

GeMO; = Y RFFu Mt 0;c > RFF, Mt =G M.

r,k>0 r,k>0

Since [t7 4, 2:0;] = (2:0; =) t! 4, and [2;0;, FiPx | c F;PDx, we have
RkFg+TMtIedZiai = RkFngTM (Zi i 7’) tred Cc Rk (ZiaiFg+T./\/l + Fg+rM) tfed'

But locally R has the same effect as the left multiplication by one of = -20; for 0 < i < k.
Hence,

R (Zza F€+TM + F€+7’M) tred - Rk+1FK+TMtred + RkF€+th;ed'
It follows that G, Mz;0; ¢ GyM for 0 <i < k.
In fact, later we will see that M is an extensions of regular holonomic Zx-modules which

will again prove that M is regular (see Theorem 2.4.7 for the reduced case and Theorem 2.6.13

for the general case).

2.4 Reduced case: Strictness and the weight filtration

We begin to study the weight filtration W, M induced R on M. For simplicity to state the
results and illustrate the ideas, we assume Y is reduced in §2.4 and §2.5. The general case will
be treated in §2.6 and §2.7. Since Y is reduced, the multiplicity e; of irreducible component
Y; is 1 and R is nilpotent. Recall that the weight filtration of the nilpotent operator R is

uniquely characterized by the following two properties:
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o foreach (€ Z, R: WM — W,y M;

e the induced operator R’ : gr}¥ M — gr' M is an isomorphism for each £ > 0.

2.4.1 Strictness of R

Let FFW,M = FEM W, M be the induced filtration for every integer r. In fact, the good

filtration and the weight filtration interact nicely because of the following theorem.

Theorem 2.4.1. The power of R is strict on (M, F,M), i.e., R*"Fy,M = F,,, R°M.

Proof. The strictness is a local property; therefore, we can assume M = Px /(t, D1, D, ..., D)) ZPx
and R is left multiplication by zy0y on it, recalling that D; = z;0; — 200y for 1 <4 < k and
D; =0; for k+1 <i<n. It is clear that R*Fy M is contained in F,,,R*M. It suffices to
show that for every R*P € F,,, M, we can find an element () € F, M such that R*P = R(Q).
Assume P e FyM. If £ <b then there is nothing to prove. Thus, we consider the situation

that ¢ > b. Then the class of R*P vanishes in gr, M. In fact, we have the following lemma:

Lemma 2.4.2. Denote by [R] the induced operator on grf M. Then ker[ R]™*! is locally

generated by the classes of all degree k —r monomials dividing t = zgzy--2.

We can easily check that monomials of degree k —r dividing ¢ is in ker[ R]"*!. Indeed,
it is already true that monomials of degree k — r dividing ¢ is in ker R™*!. Without loss of

generality, we only need to check this for the monomial z,,1 2,9 2:
r+1 _ = =
R™ 21204021 = 2000210127 Op 241 Zpa2s 2 = 10p-0 = 0 € M.

We will prove the opposite direction after finishing the proof of the theorem. Going back to
the proof of the theorem, by the above lemma,

P= > 2z,Q;+Qu

Jcl,
#J=k-a+1
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where z; = [1;e5 25, @y € FyM and Q1 € Fy-y M. But R* kills the monomials z; of degree
k —a+ 1 dividing t. It follows that R*P = R*(),_,. Iterating the procedure, we eventually
find an element @) € F, M such that R*P = R*() with ) € F, M. O

Proof of Lemma 2.4.2. Note that we are over the commutative ring grf’ Zx. We proceed by
induction on r. Let P € gr¥ Zx be a representative of an element in ker[ R]"*!. When r =0,

we have
2080]3 = th + Z DzQz
i1
Then tQq € (0o, 1, ..., O )grt Px. Notice that t, 0y, 01, ..., 0, is a regular sequence over grf’ .

We have Qy = Yi-, 0;Q%. This implies

2080P zk:i 8Q’ Z t@ Q, +ZD QZ
i=0 Zi j=k+1
k
-3 Lads R Qs LQ)+ 3 D@, +12)),
=0 <2 j=k+1

from which we conclude that 20y (P-Yr, ZLQ;) € (Dy, Dy, ..., Dy)grf 2. Because 290y, D1, Do, ...

is again a regular sequence, we see that P— Zf:o ziQ; € (D1, Do, ..., Dy)grt . This concludes
the base case for the induction.

Assume the statement is true for the cases when the exponent is less then r + 1. Let

27 = [ljes zj- Now for [P] € ker[R]™*!, we have [R][P] is in ker[R]". By induction,

Zoaop = Z ZJQJ + Z DzQz (241)
#J:Jk}wrl, i=1

Fix an index subset J of I such that #J = k—-r+1. Then 2;@Q; is in the submodule generated
by z; for i e I~ J and 0; for j € J and k < j <n over gr’Px. Since z; for i e I\ J, 0; for je J
and k£ < j <n and z; form a regular sequence, we have

Q= Z 2 Q5 + Zan; + Z 0,Qy.

ielNJ jed k<f<n

Therefore, it follows that

2 25 .,
2Qr= ) 2@+ ), (izoaoQ} + Dinj) + Y. Dyz;Qy.
J J

ielNJ jeJ k<l<n
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Then substuiting in (2.4.1), we deduce that
2000 (P - Z Z—JQz) - Z ZJZiQ;
jeJ %j i
is in the submodule generated by degree k£ —r + 1 monomials dividing ¢ except z;, and
Dy, D,, ..., D, over gr¥ 9. It follows that we can reduce the monomials of degree k —r + 1
dividing ¢ in the right-hand side equation (2.4.1) one by one and at the last step, we get
2000 (P — P") = @', where P’ is a linear combination of degree k —r monomials dividing ¢ and
()’ is a linear combination of k£ —r + 2 monomials dividing %, is in the submodule generated by
Dy, ..., D, over gr 9Px. But ker[ R]"! is generated by classes represented by degree k —r + 2
monomials dividing ¢ by induction hypothesis. It says that the class of P — P’ is in ker[ R]"
and by induction it is generated by degree k —r + 1 monomials dividing ¢. Therefore, P is a

linear combination of degree k —r monomials dividing ¢. This completes the proof. O]

Corollary 2.4.3. The ker R™! is also generated by degree k —r monomials dividing t if one
identifies M locally with Px[(t, D1, Da, ..., Dy)Px.

Proof. 1t suffices to show that grf ker R™*! is generated by degree k —r monomials dividing ¢.
Notice that grf'ker R™! is contained in ker[ R]™*!, since [R]™*! vanishes on grf ker R™*!. In
fact, we have grf"ker R™*! = ker[ R]"*! because degree k —r monomials dividing ¢ are also in

gri ker R™1. O

2.4.2 The weight filtration

The results concerning the weight filtration and Lefschetz decomposition are formal and we

will work on the abstract setting.

Theorem 2.4.4. Let N: (G, F,) — (G, Fuy1) be a nilpotent operator on a filtered Z-module
(G, F.). Asume that every power of N satisfies strictness, i.e., N*FyG = F,,, N°G for a >0
and b € Z. Then the induced operator N™: F,gtW G — Fy.gtW.G is an isomorphism for r >0,

where W, is the weight filtration induced by N.
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Proof. Tt suffices to prove that for any b € F,,,W_.G, we could find a’ € F;W,G such that
a = N"a'. Because W_.G c N"G, let N"a = b for some a. Then by strictness, there exists
a' € F,G such that N"a’ = N"a € W_,.G. It follows that a’ € W,.G. Indeed, if a’ € W,,,G for
some k > 0 such that o’ # 0 € gr'V, G. Then N"™**a’ =0 e gr'V_, G because N"a’ =0 e gt G,
from which we conclude that a’ € F;W,,;_1G. Thus, iterating the procedure, a’ is actually in

F,W,.G. We conclude the proof. O

Let P, =gt ker (N1 : gt G — gt ,G) be the primitive part of gr'VG, which can be

identified with
ker N7+1
ker N™ + N ker Nm+2°

See Example 2.1.7. Recall the Lefschetz decomposition:
gV G= @ NP,y for any reZ.
220,—5
There are two possible ways to define the filtration on P,: first we have the natural filtration

F,P, induced from the inclusion P, - gr'’VG and second we can also define the filtration using

Fyker N™*1 + ker N™ + N ker N7+2
ker N” + N ker N7+2 ’

But indeed, the two different methods result in the same filtration because of the strictness.
Let m € F,W, + W,_; such that N™*'m € W_,_3 so that represents a class in F,/P,. It
suffices to find an element in Fyker N™*! representing the same class as m in F,P,. Let
m =my +mg for my € F,W, and my € W,_;. It follows that N™*'m, € Fy,,.1W_,_3 because
both N™'m, N™*lmy € W_,_3 and my € F,W,. Since N™3 : F; oW,.3 - FppriW_,_3 is
surjective, there exists x € Fy_oW, 3 such that N™3z = N"*lm, € Fy.,..1W_,_3. See the proof
of the above theorem. It follows that m, — N2x € Fyker N™*! represents the same element as

m in F,P, c FerV.
Corollary 2.4.5. The Lefschetz decomposition of gtV G respects filtrations, i.e.

FootWG= @ N'Fe (P for any reZ.

ezo,—g
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Returning to our situation, it follows that:

Theorem 2.4.6. The induced operator R™ : FygtW M — Fy.gtW M is an isomorphism.

Therefore, the Lefschetz decomposition of gtW M respects filtrations, i.e.

FgrW M= @ RFeyPrio for any reZ.

£20,-%

2.4.3 Identifying the primitive part P,

Recall that Y7 = n;¢;Y; for a subset J of the index set I and Y +1) is the disjoint union of
Y7 such that the cardinality of .J is 7 + 1. The morphism 70D : Y(+1) - X is the natural

morphism induced by the closed embeddings 77/ : Y7 — X.

Theorem 2.4.7. There exists a canonical filtered isomorphism ¢, : (P, FJP,) - Tf”l)wwﬁn (-1).

Proof. Denote by D the normal crossing divisor Y/ nY7.; on Y/. The residue morphism
Resyany : Q¥ (logY)|y — #JG_}H Q37" (log DY)
extends to a morphism of complexes of filtered induced Zx-modules
Resg ey : Q¥ (logY)|y ® Zx — #JEB ) 037" (log D7) ® Zx.

Denote by H* the k-th cohomology % (%" (logY )y ® Zx). Taking 0-th cohomology of

the above yields, by Example 2.1.4

Resy (1) cHO > GB T;]wy_z(*DJ)(—r).

#J=r+1

Since the morphism % : Q;(T/"A(log Y) - Q3" !(logY) also extends to the complexes of

induced Zx-modules, we have a short exact sequence of Zx-modules
dt

0 — Q¥ (logY)ly ® Zx TN Q" (logY)ly ® Zx — Q;;;Xl(logYﬂy ® Ix — 0.

Considering the associated long exact sequence

0O —— H! — M
j (2.4.2)

AP,
M —— HO s 0
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we have the morphism %/\ : M - H° and it vanishes on the image of R. To motivate the proof,
let me do some local calculation. Let ¢ = dz—zll A df A A dz% A -+ Adz, represent a local frame
of %, AogY)ly. Then a local section of M is represented by ( ® P for P a local section
Px. Then Resyy % A(® P is a section of @y Q7 (log D7) ® Zx. Post-composing
with the projection
P Qv (logD’)e Ix - @ 7lwys(xD7)(-r),
#J=r+1 #J=r+1
we make the morphism explicit:
Resy a1y © —A M- P 7lwys(+D?)(-r), [(®P]~ [ResWHl)? AC® P].
#J=r+1

Let (® 27 P represent a class in ker R™*! for some fixed ordered index subset J with #J =7 +1,
where 25 = [Tje7.s 2; (Corollary 2.4.3). Its image under the above morphism only contained in
the component 77wy (*D7)(-r) because z7 vanishes on other components. Thus, the image

is the class represented by

d d d dz+
Resf/mﬁ AL A dz, ® 27P = +—2L Adzgsq A -dz, ® 27P € Q2 (log D7) ® D,
20 21 Ze Z5F
(2.4.3)
where d;—j = Njerws dz—'j_j and the sign depends on the order of J. In fact, from the calculation
J
we see that the image does not have any pole along D7, so it is contained in the subsheaf
consisting of classes represented by QU7 ® Zx. This means that the class of (2.4.3) in
T/ wy s (*D7)(-r) is also contained in the image of the inclusion

do—
mlwys(-1) = mlwys (xD7)(-1),  [dzg A dzg A-dz, ® P] [ﬁ Adzper A-edz, ® 25P].
T
See Example 2.1.4. It follows that we obtain a factorization p, : ker R™! — T£T+1)WY(T+1) (-1).

In conclusion, we have the following commutative diagram.

ker R+l oo > T_Sr+1)wY(r+1)(_T)

L, [

M Ly Ho By Dyy-ri1 7wy (xD7)(-r)
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For a local section ¢ ® zx P where zx =[], 2; @ monomial of degree k —r + 1, representing
a class in ker R", its image under p, is indeed zero because zx annihilates all Q77" (log D)
for index subset J such that #.J = r + 1. This implies the morphism p, kills ker R". The
morphism p, also kills Rker R™*2, because by (2.4.2) %A vanishes on the image of R. Thus it

factors through

ker R7+1 (r+1)
o P R Rk T @veen ().

The morphism ¢, is filtered surjective because for dzj; A dzp1 A~ Adz, @ P € Qg‘f ® Fy9Dx
representing a class in Fy7/wys(—r) with #J =7+ 1, we can find a lifting class represented

by ¢ ® z7P in Fyker R™!. It follows that

ce(Pr) 2 e Pwy ) = >, [1y.x].
#J=r+1

Summing up the inequalities gives

S (r+ee(P) 2 (r+1) > [Ty, X]=Y(#J) [Ty, X].

r>0 >0 #J=r+1 JcIl

On the other hand, by the Lefschetz decomposition and Theorem 2.3.7, we have

Z(#J) [T;JX] = cc(M) = ce(gr" M) = Z(r +1)ce(P,).

Jcl r>0

Therefore, all inequalities must be equalities, i.e. cc(P,) = cc(T£T+1)w1~/(T+1)). It follows that

¢, is a filtered isomorphism [HTTO08, Proposition 3.1.2]. ]

2.5 Reduced case: Sesquilinear pairing on M and

limiting mixed Hodge structure

2.5.1 Sesquilinear pairing

We begin to construct the last data we need for the limiting mixed Hodge structure —

Sesquilinear pairing. In the sense that M is the specialization of ix, , wx, for ¢t # 0, the
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sesquilinear S : M ®c M - €y should also be the specialization of ix,,Sx,, where Sy, is

defined in §2.1. Presumably one would expect that the pairing

(S([Ge Al,[Ge R]),n) = !}fg(ixﬂsxt(ﬁ ® P1,(2® Py),n)

. n+1
Lo (er\/_)n./ PiPAGAG

should work on M for (; ® P;, i = 1,2 sections of €)%

Y/a® Px over local chart U representing

classes of M, and 7 is a test function over U. But one could check that the integral
Ix, Py P; (1) (1AG, could have order (—log|t[?)* near the origin where k + 1 is the number of
components that intersect in U, so the limit may not exist. To avoid the issue, we use a

Mellin transform device (see [Sab02, 4.E]): locally
e(n+2)
(2 -1 )n+1

- essmo3 8(2) f' _— P t(%fxtplﬁwmg/\g)

2 t
:Ress: €(> f||28 ZXt+SXt(C1®P17C2®P2)777)‘

— dt dt
(S([C1® P1],[¢2® P»]),n) =aet Ress—o /X |t|25P1P277? ACLA — A G

The last expression in the definition in some extent explains that S is the specialization of

ix,,Sx, and the O-current Res,. 028(2) INGRE R Tt is doing the job of renormalization of

ix,,9x, for t # 0. In fact, for any test function g on A, we have

f||23t —g=9(0).

We have not check that S is well-defined, but let us do an example to see how the Mellin

Ress:()

transform works.

Example 2.5.1. Suppose Y is smooth, then R is identical zero and M ~ iy, wy, by Theo-
rem 2.4.7. Thus, the pairing S should recover the natural pairing Sy. In local coordinates

t = 2y and for any local sections (; ® P; = dz; Adzo A+~ ANdz, ® P; of Q7

X/A(logY) ®Dx,1=1,2
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over local chart U,
e(n+2)

(2my/-1)n+1
= Res,_g f t[**72 P, Py(n) /\

(S([Ct® P1],[¢2® P»]),n) = Resgp—F—="— f||28 P2(77)—/\C1/\—/\C2

dzl Adz;

-1 .
integration by parts on ¢ and f = Res,—q [ Laoao (P1P2(7])) /\ 5 dz; A dz;.
T

=0

Because the Laurent expansion of s2[t25 is ¥5°, (log [t|2)" s¢-2, the above continuously equals

to, by Poincaré-Lelong equation [GH14, Page 388]

/ 10g|t|28080 (P1P2(77)) /\ _1dZZ /\d_ZZ‘ = f P1P2(’I7> /\ le N dZZ
Y

=0 27T
_e(n+1)

(2mV1)"
= (iy Sy ([G1 ® P1], [ ® P»]), 7).

PiP(n)Ci A G

We can take a cleaner point of view. In the case Y is smooth, the form PPy (n)(iAC, is
smooth in the neighborhood of Y. It follows that ix,,Sx, extends smoothly to ¢t =0 and the

limit of 7x,, S, is exactly iy, Sy.

When Y has several smooth irreducible components, the idea of computation is similar
to the above. Now we begin to establish the statements needed to ensure S is well-defined.
For any test function n over an arbitrary open subset U of X and two sections my,ms in
HO (U QSL(/A(log Y)® @X) the (2n+2)-form % Am, /\M(n) is smooth away from Y but
with poles along Y supported in U. Locally, say m; = (® P; for ( = ﬁ/\@/\---%/\dzkﬂ/\---/\dzn
and i = 1,2, the (2n + 2)-form % A m, /\ng(n) is just P P(n)% A nd /\C Let

F(s) = F(s,my,mq,n) be the meromorphic continuation via integration by parts of the

following function
_e(n+2)
(271-1 /_1)n+1

The function F(s) is holomorphic when Res > 0 and has potential poles at non-positive

[ AmlA—Amm)

integers. Note that F'(s) is independent of local coordinates. We are only interested in the

polar part of the function F'(s) at s =0.
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Theorem 2.5.2. The polar part of F(s) at s =0 only depends on the classes of my and my
in M.

Proof. Let {p,} be a partition of unity of the open covering {U,} by local charts. Then

~ e(n+2)
)= 2 vy

Since p)n is a test function over Uy, without loss of generality, we can assume U itself

o, dt dt
[ [t — Amy A — Ama(pan).
U t t

is a local chart. It follows that we can assume that m; = (® P, for ¢« = 1,2 and ¢ =

dzy \ dzp

LA E -dzi: Adzgs A+ Adz,. We begin with some properties of F(s).

Lemma 2.5.3. Under the assumption that m; = ( ® P; for = dz—zll A ‘% A A ‘% A ANdzy,

and for i =1,2, the followings are valid.

1. the order of the pole of F(s) at s=0 is at most k+1;
2. if P, =tP! for one of i =1,2, then F(s) is holomorphic at s =0;
3. for 0 < j <k we have,

F(s,(1®P1,(®20,P,m) = F(s,( ®2j0;P,(® Py,n) =-sF(s,(1® P, ® Ps,n).

Proof of the lemma. The Laurent expansion of F'(s) at s =0 is

1
dz; ndzZ;), where z = Hzi

2m iel

F(s)= [ PP A\

2s _ _ n /_1 k
= |ZI| (91(91P1P2(?7) /\(—dZ,L AN dZ_Z), where 8[ = H@
X i=0

82k+2 2 0

0 ol—(2k+2) ¢ — n \/__1
=> 7 /;((log|21|2) a131131132(77)/:})( o

£=0

le' AN dZ_Z) .

The order of the pole at s =0 is at most k+ 1: if / <k + 1, the form

V-1
(27r

(log |z1|2)€ 910, Py P>(n) /\

n
1=0

dz; AdZ;)

is actually exact because one of a;’s must be 0 in the expansion of (log|z7|?)" into a linear

combination of [I¥, (log|z[?)* with ¥, a; = £ < k+ 1. This proves (1).
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Suppose that P, =tP]. Then the function

_ n /1
F(s) = [ P2t P B ) Aoz n d20).
X =0 2w
is well-defined at s = 0 because the form
1 — n /1 _
—P/P, dz; N dz;
= P{Pi(n) NS5z 0 )

is integrable. The same argument works for the case when P, = ¢P;. This proves (2).

Now we turn to the last statement

F(5,(® P,(®z0;Py,n)

_ e(n+2)
(2my/-1)n+1

:fX|ZI\{J}|25 22571230, P1P277/\(

d d d d
f 120, (P1P277)ﬂ/\ﬁ/\ dzn/\ﬁ ﬁ/\---/\dzn
Z1

20 21

dzZ Adz;)

integration by part on dz; = f 21|72 P, Pyn /\( dzl AdZ)

:—5F(S,C®P1,C®P27n)'

The same argument works for F'(s,(®z;0;P;,(® P2,n) = -sF(s,(® P1,(® P, n). This proves
(3). O

Returning to the proof of the theorem, if one of (® P, is dzl A 322 /\---dz’“ Adz A+ Adz, QP
the above lemma (2) says F'(s) is holomorphic. If one of ( ® P, is dzl A gf A di’“ A dzge1 A

A dz, ® D;P, then the (3) above lemma says F'(s) is in fact 0. O

For any sections a, 5 € M, let {p,} be a partition of unity of the open covering {U,} by
local charts such that a, 3 lifts to dy, 8y over Uy in Q}/A(log Y)® Zx. The above theorem

just says that the pairing S : M ®c M — €x given by

(S(a, B),n) =aet Resseo Y. F(s, @, By, pan)
A

is well-defined and does not depend on the choice of partition of unity. By the above lemma

we also have the following.
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Corollary 2.5.4. The operator R is self-adjoint with respect to S, i.e. So(R®cid) =
So (id Q¢ R)

Because the self-adjointness, we have induced pairings on the graded quotient S,

gt M ®c ngM Cx for every integer r. Denote by PrsS, the pairing
S,o(id ®c R") : P, ®c P, — Cx.

Theorem 2.5.5. The isomorphism ¢, : (P., FJP,) — f”l)wy(m)(—r) in Theorem 2.4.7

respects the sesquilinear pairings up to a constant (=1)"(r+ 1)!171, i.e.

(=D

(r+1)! 7S5 o (Br, 61:8)

PRST(aa 6) =

for any local sections o, 3 € P,.

Proof. Because the problem is local, it suffices to prove the theorem for o and [ are represented

by
d d d
ﬁ/\ﬁ/\, ﬁ/\dzkHA “ANdzy, ® zg,
21 Z9 Ze
and #K; =k —r for i =1,2 over a local chart U respectively. Recall that zx = [T;cx 2;. Let n

be a test function over U. We have

(P, (o ), = 80 7 9) 1) = e () [ a2 ) s ),

If a # 3, the above is in fact zero. Indeed, for v € Ky \ Ky, by choosing R" = [T;cr i, {0} 20

(PrS,(a, 8),m) = (S(R"a, B),m) = Res,- o/ |ZI|2S Q—Uzv /\( dzl/\dzz)

where 77 = 81\(;(1\{”})%(5)7117 is a smooth test function. The function

t no\/-1
25-2 " ==
e =\

is holomorphic at s = 0 because

17z,.7%

=1\

21 Ry =0

dzl A dzZ;)
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is integrable.
Therefore, we reduce the proof to the case when « = 3 represented by

dz; dze dzy,
— A— A A— A Adz, ® 2K.
21 22 2k

We shall prove that

PrS (o, @) = %Tfsyx(@%@@),

where K is the complement of K in I. Without loss of generality, we can assume K =

{r+1,r+2,....k}. Then

PRS, (04 04) Res- 0( 5) f |ZK’2S 2 H ’ZJ|2S77/\(

j=r+1

dzl A dzZ;)

= (-1)"Ress=0s -(r+2) f H |2 |2S(9 3_* )/n\(\g__ldzz AdZ;), where Ok = Hai
T

=0 =0

) (fn_ji;;ﬂ((logljlzﬁz) aKaK(n)/\( dzmdz)
(53)1[ [ [log |=i* 05 Ok ( 77)/\(

_ (1)
_(r+1)'j;/K zr+1
() w dt dt

e 1)!7-+ Syf(Resyf7 A, ResYz? AQ).

alzz A dZ)

dzl Adz;) (Poincaré-Lelong equation [GH14, Page 388])

The equality (*) holds because if we expand (log e, |zl~|2)r+1 as a linear combination of

15, (log|z>)™ with Y%, a; = 7 + 1, the only possible non-exact form among

ﬁ (log|zl*)" 9% 9% (n) /\(

=0

dzl ANdZ),

log |2]2) 00 (1) A2 dzl A dz;). Note that while Res,# depends on the order of
[T =0 Y

the index sets K and I, the pairing

(=1
(r+1)!

(=1)
(r+1)!

does not because the sign will cancel out. We complete the proof. O

(Hl)SY(Hl) (ngOé Qbrﬁ)

= dt dt
KSyf(ReSYf? A, Resyf? AQ)
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2.5.2 Constructure of the limiting mixed Hodge structure

We are going to show that the triple (DRx M, F, W) gives a mixed Hodge complex. Unlike
the Q-mixed Hodge complex considered by Deligne [Del71b], where the rational structure is
a required input, we do not have this piece of information in our situation. We will redo the
Deligne’s argument on mixed Hodge complex by sesquilinear pairings. It also worths to point
out that the sesqiuilinear pairing makes one check the first page weight spectral sequence
of DRxM is a polarzed bigraded Hodge-Lefschetz structure easier than the case in [GN90],
where they need to decompose the differential d; on the first page into a combinatorial

differential and a sum of Gysin morphisms.

We first set up the pairing on each page of the weight spectral sequence abstractly. Let
N be a holonomic Z;-module equipped with a sesquilinear pairing S: N ®c N — €4 on a
complex manifold Z. Assume that N has compact support. Let N be a nilpotent operator on
N such that So(id ®c N) = So (N ®cid). Let W, N be the monodromy filtration associated
to N on A. Denote by E“/ be the weight spectral sequence convergent to gtV H "I (Z,DRzN)

with B = H*i(Z,gtWDRzN). By abuse of notation, denote by Sy, the induced pairing

H*(Z,DRzN) @c H¥(Z,DRzN) - H*(Z, DR, zN @c N) - H)(Z, DR, 7€) = C

multiplying a sign factor (k). Let a be a local section of (DRzN) 7" and b be a local
section of (DRzA)". Then

D(CL ®c b) =da ®c b+ (—1)‘j‘1a Q®c db
for D a differential on DRZzN ®c N. Applying S, we find that
DS(a,b) = S(da,b) + (-1)771S(a,db). (2.5.1)

Since the differential d is compatible with the weight filtration, we have an induced pairing

E1(S), on the first page Eiﬂ of the weight spectral sequence by the pairing

Hk(Z, gr%DRZ./\/‘)@CH’“(Z, ngWDRZ/\/') - HO(Z, DRZ’ZgrY[f/\/'@@griW/\/') - HO(Z, DRz,Zetz)
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multiplying a sign factor (k). Then by equation (2.5.1) we obtain
0=e(=j)Er(S)-j(dra,b) +e(=j = 1)(=1) 7 E1(S)-j-1(a, dib),
since DSa ®¢ b is cohmologous to zero. Working out the sign, the above is equivalent to
Ei(5)-;(dya,b) + E1(S)_-1(a,dib) =0,

i.e. the differential d; is skew-symmetrc with respect to F1(.S). It follows that we have an
induced pairing on the second page: FE3(S)y : E;]H ® W — C since E, = kerd; /Imd;.
Again, it follows from the equation (2.5.1), the differential dy is skew-symmetric with respect
to F5(S). By an inductive argument, we get the induced pairing E,(S) : E, ® E, - C on the
r-th page of the weight spectral sequence E, ® E, - C such that d, is skew-symmetric with

respect to E,.(S) for every r > 1.

Next, let L = [w]A be a Lefschetz operator for a Kéhler class [w] € H(Z,Q7) n H?(Z,R)
on Z which can be thought as a morphism L : C - C[2] in D*(Z,C) and so is X = 27v/~1L.
Therefore, we obtain a morphism X : DRzN — DRzN[2]. Let us work out the relation
between the sesquilinear pairing Sy and the operator X. By funtorailty, we have the following

commutative diagram in D?(Z,C).

DR, 7N ®c N —2— DR, ;€¢; —>— DR, ;Db; —— A} ® Db, [2dim Z]

Jpoce I » J»

DR, 7N ®c N [2] A, DR, 7€z [2] —— DR, zDb;[2] —— A} ® Dbz [2dim Z + 2]
Similarly, we have S[2] o (id ®¢ X) = XS. It follows from X +X =0 on A% ® Db[2dim Z] that

S(k’)Sk(X—, —) + 6(/{7 - Q)Sk_g(—, —) = 0, i.e. Sk(X—, —) = Sk_g(—,x—). (252)

Returning to our situation, we begin to construct a polarized bigraded Hodge-Lefschetz

structure on

gt H*(X,DRxM).
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Fix a Kahler class [w] on X and let L = [w]A : DRx M — DRxM][2] be the Lefschetz operator
and X; = 27/ -1L as the discussion above. Relabel the first page of the weight spectral

sequence by

Vor = HY(X, gtV DRy M) = BHF,

Let V = @y ez Vo with filtration F,V induced by F,M. Denote by E;(R) the induced
operator by R on W E; and let Yy = E1(R). Denote by Sy for £,k € Z, the induced pairing

on Vi ® V.

H*(X, gry’ DRxM)®H (X, gr" DRx M) -~ H°(X, DRy, xer;’ Mecgry M) - H(X,DRy x€x) =~ C.
multiplying a sign factor (). Let d; be the differential of F;. In terms of relabeling, we have
di: (Vors FoVor) > (Verr -1, Fo Ve j-1)-

Theorem 2.5.6. The tuple (V,X1,Y2, FJV,@® S; i, d1) gives a differential polarized bigraded

Hodge-Lefschetz structure of central weight n.

Proof. Let us first check the conditions in Theorem 2.1.10 one by one. It is clear that two
operators Xi, Yo are commute. Moreover, we have Yo : (Vo i, FoVor) = (Vog—2, Fer1Vig—2) such
that

Y F Vi = FourVis,

is an isomorphism by Theorem 2.4.6. Denote by Py,V_;,. the Yo-primitive part ker Y5*nV_,, =
H=(X,DRxP,). It follows from Theorem 2.4.7 that (Py,V_,,, FeR,V_;,) is filtered isomor-
phic to H‘j(f/(”“), DRy (renyWyreny ) (—7) via ¢,.. Therefore, X1 Fe Py, V., € Fo_1 Py, V_j.o, and
by Hard Lefschetz,

X FPy, V.. — Fu Py, Vi,

is an isomorphism. Tt follows from the Lefschetz decomposition of Yy that X/ : F.V.;, —
F,_;V;, is an isomorphism. This proves (pbHL1) in Theorem 2.1.10. (pbHL2) follows from

the equation (2.5.2).
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Because the operator R self-adjoin with respect to S by Corollary 2.5.4, we have
Sir(=Y2=) = S;,+2(Yo—,-). By Theorem 2.5.5, the morphism ¢, identifies Py,S_;, =qer
S_jr(=Y5=) with %SY(H1)7_j. Recall that
e(n-r+7+1)

(2my/=1)nr Yo

and that SQ(M)J(X{—, —) is a polarization on Hsr;;j(}}(”l), C). The bi-primitive part P_;, =

Syt j(a,b) = anb, for ae H* (YD) and be H" (YD),

ker X{ Nnker Y5 nV_,, together with the induced filtration F,P_;, and the sesquilinear pairing
S, (X]—, (=Y)5-) is identified with the polarized Hodge structure H™.'7 (YD) C)(~r) via

prim

¢,. This proves (pbHL3).

It remains to prove that d; is a differential of the bigraded Hodge-Lefschetz structure V.

Clearly, we have

[dlvxl] = [dl,YQ] =0

because d; is induced by the differential of DR x M and d; preserves F,. The differential d;
is skew-symmetric with respect to @, 5, is formally follows the discussion at the beginning

of this subsection. Thus, we finished checking that d; is a differential. O

Corollary 2.5.7. We have the following

1. the Hodge spectral sequence degenerates at pFj,
2. the weight spectral sequence degenerates at "’ s,

3. The tuple (Bez gt HY(X,DRxM), F,X1,Ys) together with the pairing induced by

@ S is a polarized bigradged Hodge-Lefschetz structure of central weight n.

Proof. We slightly modify the idea of cohomological mixed Hodge complex in [Del71b] for
statement (1) and (2). I claim that the k-th weight spectral sequence Vé"’r =qef VE) b
together with the induced filtration F, and the induced pairing Sf,r o(id ®w): VZ“T ®W’fr - C
is a polarized Hodge structure of weight n + ¢ + r and the differential dy, : Vfr - Vz]iu—k; is a

morphism of Hodge structures. Indeed, the differential dj, is skew-symmetric with respect to
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the sesquilinear pairing, i.e. S§, (dx—,~)+S},;, (=, dr—) = 0. Therefore, if (~1)7S} o(id ® w)

for g =n+{+r—pis a Hermitian inner product on
(VEY" ={ae FPVE : S§ (a,b) =0 for all be FP-m1ykh 1y
then (—1)(152;1 o (id ® w) is also a Hermitian inner product on
(VED = {ae FPVET: S (a,b) = 0 for all be P iykel 3
In particular, we have the decomposition

p.q
vitt= @ (V)
p+q=n+l+r
and the morphism dj, : (Velfr)p’q - (VZ“: 1)p’q is compatible with the decomposition. See

Remark 2.1.11. By induction the claim is proved. It follows that dj vanishes for k > 2 by it is

a morphism of Hodge structures of different weights, which proves (2).

Since each bigraded piece V;, = H (X, gr DRxM) is pure Hodge structure of weight
n+r+{, the two vector spaces H* (X, grfgr’ DRy M) and V;, is isomorphic. Moreover, the

isomorphism is compatible with d;, because d; respects F, and
grWer DRy M = grf’grtW DR x M.

Taking cohomology of dy, we obtain that gr’¥ H* (X, gr DR x M) is isomorphism to gr’¥ H* (X, DRxM).
It follows from the dimension reason that H* (X, gr’ DR x.M) is isomorphic to H¢ (X, DRxM),

which is exactly the degeneration of Hodge spectral sequence at pFE;.

The statement (3) follows from Theorem 2.1.12. O

The third statement in the above corollary ensures that the weight filtration on the
hypercohomology of DR xM is the monodromy weight filtration of the nilpotent operator
R, i.e. RW,HYX,DRxM) c W, oH(X,DRxM)(-1) and R" : grfW HY(X,DRxM) —
gt HY(X, DRxM)(-r) is a filtered isomorphism. We proved Theorem A for the case when
Y is reduced.
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2.6 Non-reduced case: Generalized eigenspace M,
and the weight filtration

Now we move to the general situation. Recall that we have introduced the notations: the
index set I consisting of indices of irreducible components of Y and e; is the multiplicity of

Y along the component Y;.

2.6.1 The generalized eigen-modules M,

We begin with studying the generalized eigen-modules ker( R — «)*® of the morphism R in the
category of filtered Zx-modules. The generalized eigen-modules are naturally sub-modules
of M and one can put the induced filtration on it. However, this filtration does not match
with the expected weight of the mixed Hodge structure and is difficult to study. Instead, we
use the idea of Saito in [Sai90]: one regards the generalized eigen-module as a sub-quotient
of M and puts the induced filtration on it. It turns out the filtration behaves nice. Now let

us begin to settle some definitions.

Define M, = ker [Tyso (R = A)®, M.y =ker [T oo (R - M) and M, = M,/ M,,. Then
M, is canonically isomorphic to the generalized eigen-module ker (R — ). Endow M, the
filtration F, M, induced from (M, F,M),

Msoyn FLM
F.M, = Moo FM

There are parallel definitions on the relative log de Rham complex. Denote by C* =

Q;;/”A(log Y) ® Oy for simplicity. Define sub-complexes of C* by
Oz.a =C"® ﬁX(_{aY]% C;oz =C*® ﬁx(—[OéYJ - YRed) and Oc: = Cga/csou

where Ygeq is the associated reduced divisor of Y. Notice that if we let I, be the subset of I

consisting of all ¢ such that ae; is an integer, then

Co=C5,®0y, , whereY; => Y,

i€ly
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One can check C? is a generalized eigen-perverse sheaves of the residue [V]. Since Ox (-[aY])
is preserved by relative log differential 7x a(~logY"), the multiplication by relative log differ-
entials gives a morphism, recalling that Dy, D, ..., D,, are local generators of Jx/a(-logY")
dual to the local generators &y, &, ..., &, of Qx/a(logY),

ﬁX(—[ozY]) ® 9}( - QX/A(—{(MY]) ® @)(,

(2.6.1)
4o Py oDy e P=Y o (Dj+a) 8P,
j J

[ce;]

i

where, using the multi-index notation, zgae] = [Lies 2

denotes the local generator of
Ox(~[aY]) and define a; = [D;, 21*°1)/21°°1 = [ae;]/e; - [eep]/eo. The morphism extends to a
complex Q%‘A(log Y)(-[aY])® Zx, which is a subcomplex of Q"XJf/‘A(log Y)® Px (see (2.3.1)).
Tensoring Oy on the left gives C2, ® Yx by the above definition. Further tensoring Oy, on
the left, we obtain the complex of induced Zx-modules C's ® Zx with the filtration defined
by

Fy (C& ® .@)() = C; ® FrinteDx.

The following two theorems give the description of the generalized eigen-modules in terms of

complexes of the induced Zx-modules.

Theorem 2.6.1. The complex C ® PDx is filtered acyclic and the characteristic cycle of the

0-th cohomology is
cc(A°(CLe Dx)) =Y. (#1.nJ) [Ty, X].

Jel
Proof. Similarly to the proof of Theorem 2.3.1 and Theorem 2.3.5, the associated graded
grf’ (Cs ® D) locally is the Koszul complex of the regular sequence (t,, D1, Ds, ..., D,) over
grt’ Py, where t, = [y, 2 is the defining equation of Y. It follows that grf'(Cs ® Zx)
is acyclic and therefore, C' ® Zx is filtered acyclic. We also get that grf #°(Cs ® Zx) is

locally represented by

aeld d d
Ca®gr" D/(ty, D1, Dy, ..., Dy)grt x,  where (, = ,zg 1920 &2 AL Adzgi1 A ANdzy,.
1 Z9 2k

(2.6.2)

72



As the calculation in Theorem 2.3.7, we get the characteristic cycle is ¥ ;. (#1,n J) [T; ;X ]

]

Theorem 2.6.2. There exists a canonical filtered isomorphism
Yo : (HV(C2R Dx) , FoH°(C20 Dx)) — (Mg, FoM,,). (2.6.3)
In particular, the characteristic cycle cc(My) =Y jor (#Ian J) [T;JX].

We first study M, and M., locally by pointing out their cyclic generator. In principal,

this always can be done because every holonomic Zx-module locally is cyclic.

Lemma 2.6.3. Locally, M, is generated by zgae], and M, is generated by z}o‘ehl where

1=(1,1,..,1) e Z.

Proof. Let us first check that zgae] e Ms,. It suffices to check that it is in

ke [T ] (R- ei)

iel j=[aei]

This is follows from direct calculation:

e;—1 ] lae] e;—1 ] laei] e;—1 1 ] foer]
el j=[ae;] i iel j=[ae;] i iel j=[ae;] ©t i
—1 i YCiTIXE 1 e;i—[ae;
- H e"[ae']z?aiz o =t e-—[ae-]ail (] =0eM.
iel 61-1 ¢ iel 6iz ?

Because R satisfies the identity (2.3.3), M., is also equal to the image of [T;.; Hgigi]_l(R— e%)

It follows from

[ae;]-1

; [ae;]-1 .
H H (R_ l)(l) = H H (lzzal - l) = Zgae] H 1 . al[aei]
el j=0 €i iel j=0 Ci €; il elaeil

()

that zgae] [Ties 81[0‘8” generates Ms,. We deduce that zgae] generates Ms,. The similar

argument works for M., O

Proof of Theorem 2.6.2. 1t follows from the above lemma that M, is locally isomorphic to

C& (4, D1, Do, .., D) D (27 Dy, D, .., D) D
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dz

where ¢ = L A dz—zj A A ‘% A Adzy, so that (, = zﬁ“ek. Since °(Cs ® Yx) by (2.6.1) is

Z1

locally isomorphic to

<a®_@X/(ta,D1+Oél,D2+Q2,...,Dn+@n).@){,

the multiplication J#°(C ® Zx) > My, (L® P — (® zgae]P is well-defined, does not depend

on the coordinate and therefore, gives a filtered morphism

Yo : (FOUCL® Dx), Fo7°(Co® Dx)) — (Ma, FoM,,).

The surjectivity is clear from the local description. It follows that cc (20 (C ® Zx)) >

cc(M,). Summing over all the rational numbers « in [0,1) gives

Y ee (A0 (CL® Dx)) 2 Y ce(M,) = ce(M).

«

On the other hand, by Theorem 2.3.5 and Theorem 2.6.1, the Zx-module M is also successive

extensions of 70 (Cs ® Zx) for a e Qn[0,1). Thus,

S ce(H#°(CL® Px)) = co(M).
This forces that 1, must be isomorphism and therefore, filtered injective.
It remains to show that

Fp : F0°(Co ®© Dx) — FuM,,

[ae]

(2.6.4)

is sujective. Suppose that z; 'P € Yx is a representative of a class in FyM,. Then we can

write

AP = P Y D@, + AT

i=1

for P' € Fy,,Yx and T, Q; € Ix. It follows that

AW P-t,T)= P+ DiQ
=1

By the regular sequence argument of Theorem 2.3.5, we can assume that P—-t,T is in Fy,,%x.

Then the class represented by P —t,T in #°(C2 ® Px) is actually in F, ¢°(Cs ® Zx) by

the local formula. Therefore, we find a lifting represented by P in F, #°(C% ® Px) of the

class of z}ae]P in F;M,. We conclude the proof.
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Without loss of generality, we can assume by abuse of notation that locally I,, = {0, 1, ..., u}
so that t, = 2921--2,. Let R, be the induced operator (R - «a) on (M,, FeM,). One easily

gets a nice local formula of R,:

Corollary 2.6.4. The endormorphism R, of My acts locally as ¢q 0 (id ® L2;0;) o (o)~

J

for any j€1,.

Proof. Because R — a acts on the left hand side of the identification (2.6.2) by the left

multiplication by ézoé’o - a, the statement follows from

Ra [C ® Zgae]] = [C ® (%Zjaj - Oé) (Zgae])‘|

J

o (Eror-a) 1o 4 (2]

:%[gzﬁ‘” ® (ézjaj)] =1, o (id ® gzjaj) o' [Ca®1].

J J

This completes the proof. O

By the local formula of R,, it is obvious that R, : (Mg, FoMy) = (Mg, Fo 1 M,) is a

filtered morphism.

2.6.2 Striness of R,

Similar to the reduced case, every power of R, is strict.
Theorem 2.6.5. The power of the endomorphism R, on (Mg, FJM,) is strict:

REFy M, = Fup RAM,,  for any a € Zsg and b e Z. (2.6.5)

Let [R,] be the endomorphism on grf” M, induced by R,. To prove the above theorem,

we need the following statement on ker [ R, ] c grf” M,,.

Lemma 2.6.6. ker [Ra]Hl 15 locally generated by monomials of degree jn—r that divid t,,.
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Proof of Theorem 2.6.5. Temporarily admitting this lemma, let R%"'m be an element in
Fpir1M,. Assume that m € FxM,. If k > ¢ then the projection of RI*'m vanishes in
gri  M,. It follows from the lemma that m can be written as

m= > zymy+y DiQ;+m', for z;=]]z

#J=p—r, i=1 jed
Jcl,

where Q);, m' € Fj,_1M,. Because for every J c I, of cardinality r + 1 we can arrange
r+1 1 1
Ra zy= H —ZjajZJ:ta H —8j ZOEMa
jeland €j jelq €j
it follows that RI*'m is equal to,
Z R£+1ZJmJ + RZH(Z D;Q;+m') = Z tamy + Z(Dz + Oé)R;HQi + RZH (m' - Z aQ);)
i-1 i=1 i=1

#J=p-r, #J=p-r,
Jclg, Jcly

=R (m/ - aQ;) e M,,.

)

3

Il
—_

But now m’ - ¥, aQ; € Fy_1M,. Iterating the above argument one can find m € Fy M, such
that

R m = Ri .

This completes the proof of the theorem. n

Proof of the lemma. The proof is essentially the same as the reduced case. Note that we are
now working over the commutative ring grf’ 2. We prove by induction on r. Let P € gr¥’ 9y
represent an element of ker[ R, ]|™*!. When r = 0, we have
%zoé?oP =t,Qo + Zn: D;Q); recalling that t, = zp21---2,. (2.6.6)
i=1

Then ¢, is in the ideal generated by 0y, 01, ..., 0y, 24410441, 2u+20442, -y 260k, Okt ...0n OVer
grf’Px. Because t, together with 0y, 01, ..., Oy, 2410441, 2ur20u42, -y 250k, Oks1, -..0, form a
regular sequence in gr¥’ 2y, )y can be written as,

0 k n

Qo = Z 0aQa + Z 20pQp + Z 0cQc.
a=0 b=p+1 c=k+1
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Substuiting in (2.6.6)

1 Bt k
— 2000 P_Zea_Qa_ Z eptap E(DlaDQw'-an)ng-@X-
€0 a=0 “a b=p+1

Now because (z00q, D1, D, ..., Dy,) is a regular sequence in grf’Zy, P is a linear combination
of to/za for a € {0,1,...,u} and Dy, Do, ..., D, over gr¥ Pyx. This concludes the case when
r=0.

Assume the statement is true for the case when the exponent is less than r. Because [R, ]

sends the class of P to ker[R,]", by induction hypothesis we have

1 n
—Zoaop = Z ZJQJ + Z DzQz recalling that Zj= H Zj- (267)
€0 #J=p—r+1, i=1 JeJ

Jcl,

Fixing a subset J, then z;Q; is in the submodule generated by z, for a € I, ~ J, 0, for
beJ, 2.0, for ce I\ I, and 9, for d ¢ I over grf’ Px. Because the elements z,, 0y, 2.0., 04 for
a€l,~JbeJcelNI,d¢l together with z; form a regular sequence in gr” Zy, we deduce

that
QJ = Z ZaQa + Z 81)@1) + Z anch + Z ade'

aeloNJ beJ celNI, del
Substituting in (2.6.7), we deduce that

ol (P - (l; W+ T echQc)) - %
is in the submodule generated by degree p —r + 1 monomials dividing ¢, except z; and by
Dy, D,, ..., D, over grf 9. This means we can reduce z;Q; one by one for each J on the
right-hand side of the equation (2.6.7) and at the last step we find that %2080(]3 -P)isa
linear combination of degree p —r + 2 monomials dividing ¢, and Dy, D>, ..., D,,, where P’ is

a linear combination of degree u —r monomials dividing ¢,,.

Note that the left multiplication by %2080 has the same effect as applying [ R,] on grf M,,.
Therefore, the class represented by P — P’ is in ker[R,]" since degree y —r + 2 monomials
dividing t, is in ker[R,]"~!. By induction hypothesis the class represented P — P’ is a linear

combination of degree p —r + 1 monomials dividing ¢,. Therefore, the class represented by P
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in grf M,, is a linear combination of degree x —r monomials dividing ¢,. This completes the

proof. O]

Corollary 2.6.7. The ker RI*! is also generated by degree p—r monomials dividing t,, if one

identifies M, locally with Px [(ta, D1, Do, ..., Dp) Px .

The proof is the same as the one of Corollary 2.4.3

2.6.3 The weight filtration

Now the weight filtration of each generalized eigen-modules interacts well with the good
filtration because of the strictness. Recall that since R, is nilpotent on M,, it induces a
Z-indexed filtration W,M,. We filtered the sub-module W, M, by the induced filtration
FWM,=FM,nW,M,. Let

ker Rr+!
ker R, + R, ker R+2

Pa,r =

be the r-th primitive part of gr'V’.M, with the filtration defined by

F,ker R+ + ker R”, + R, ker RI+2

F =
Por ker k", + R, ker Rr+2

As the formal proof in Theorem 2.4.6, we have

Corollary 2.6.8. The induced operator RY, : FygrV M, — Fy.gt™W M, is an isomorphism.

Therefore, the Lefschetz decomposition of gt M, respects filtrations, i.e.

F.gr}f‘//\/la = GB Rf;F._ngH% for any reZ.

£20,-%

2.6.4 Summands of the primitive part P, ,

Recall that Y7 = N;e; Y; and Y = Uje; Y; for any subset J of I and e; is the multiplicity of
Y; in Y. Like the reduced case that P, decomposes into the direct images of wys(-r) for all

index subset s.J of cardinality 7 +1 (Theorem 2.4.7), the primitive part P, , of the generalized
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a-eigemodule also decomposes into direct images of certain filtered %y-s-modules V, ;(-r) for
all J of cardinality r + 1 such that e;a for every j € J is an integer. The filtered %y s-modules
Va,s comes from cyclic coverings so that P, , carries the Hodge theory of the cyclic coverings.
In fact, by a well-know construction in [EV92, §3] the direct image of the de Rham complex of
a cyclic covering decomposes into log de Rham complexes of line bundles. A line bundle with
an integrable log connection also can be viewed as a log Z-module. This suggests that the
Z-modules V, ; is generated by a certain log Z-module 7, ;. If Y is reduced and o =0, V, s
is just wys. We shall construct auxiliary log Z-modules 7, ; whose log de Rham complex
will be used to construct the Z-module V, ;, without using cyclic cover. The cyclic coverings
are involved only when we study the Hodge theory of those Z-modules. We fix a rational
number « € [0, 1) to simplify the notations and let I, be a subset of indices consisting of i

such that ae; is an integer.

Denote by £ the line bundle Oy (— il i), where N is the greatest common divisor of
e; for i € I,,. In this notation, Ox (-[aY]) = L2V (= ¥serp. [ae;Yi]). Because the line bundle

Ox(Y') can be trivialized by a global section, we get an isomorphism of &x-modules:

LY = 0x (— >, em) - ﬁX( > em). (2.6.8)

i€l 1€elNIy

Choose a local section [ of £ such that IV = [, 1, 2, under (2.6.8). Now we shall put a

log connection V on
Ox(-[aY]) = LV (— > [ozeiYi]).
1elNIy

First we define, using the product rule

N l dz:
VO NEL Y (2.6.9)

a I, <i
due to (2.6.8). Then, let s = 19V [T, 21°! be the local frame of @'x (~[aY]). Noting that

)

alN is a non-negative integer, the induced log connection works as

N z dz
E _ v( Hzel\la Z@ : ) _ CJ,/NV— + Z [ael]ﬁ
s JaN 17. [aei] [ . 2
[liera1, % iel~ o ‘ (2.6.10)
dZi dZi
= Y (ae]-ae) = Y {-ae}
ieINIq Zi o jelNIg Zi



where {-} denotes the function of taking fractional part. Putting in more standard form,

i®s.

Vs = Z {—aei}dz

ielNIy )

This log connection is integrable and has poles along Y; for ¢ € I \ I, with eigenvalues {-«e;}.

We endow the line bundle &x(-[aY]) with this integrable log connection V.

Fix a subset J of I, with #.J = r+1 so that dim Y/ = n—r. The pullback of (Ox([-aY']), V)
by the inclusion 77 : Y/ - X gives an integrable log connection (¥,V) = (¥,.,V) on Y/
with poles along F = E*/ the pullback of Y;.; . Moreover, the log de Rham complex of
(7,V)
{7V > Qyi(logE)® ¥V - - > QU (log E) ® ¥} [n 1],

induces a complex of Zy-s-modules
{7V Dys - Qyi(logE)® YV @ Dy - > QY (log E) @V ® Dys}[n—-r], (2.6.11)

which is nothing but the log de Rham complex of ¥ ® %y-;. It follows from Lemma 2.1.3

that the complex is a resolution of

V =Va =det wys(log E) @ ¥V @ Dy .

(v .5)

We endow V with the filtration F;V = F}V,_ ; induced the subcomplex
(V@ FyDys - Qyi(logE) @V @ FyinDys = - = Oy (log E) © ¥V ® Frany Dy }[n—r].

It is clear that F,V is a good filtration. For example, if a = 0, then E is empty and ¥ is
just Oy so that V = wys as Zys-modules. Since the eigenvalues of the log connection are
in (0,1) if poles exist, the log de Rham complex of (¥,V) is the minimal extension R,V
of the local system V consisting of the flat sections of V on ¥ over Y/ \ Y. ; (see [EV92,
p. 1.6]). Later we will put a sesquilinear pairing on ) and all the data will yield a pure Hodge

structure of the log de Rham complex of 7.

Lemma 2.6.9. The de Rham complex DRysV together with the filtration F.DRysV s

isomorphic to the log de Rham complexr Q77+ (log E) ® ¥ with the stupid filtration in the
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derived category of filtered complexes of C-vector spaces. In addition, V is holonomic and the

characteristic cycle of V is

ccV)= Y [TyxusY’].

KciINI,
Proof. We can choose the local frame s of # such that

Vs= >y da ® {-ae;}s

ielNI, ~t

where z; is the defining equation of E; for each i. Therefore, the complex (2.6.11) locally is

the Koszul complex over %y, associated to the sequence
2101 + {—ae }, 2205 + {—ea}, ..., 2,0, + {—aep}, Opi1, Opiay ooy Opr,

for some rearrangement of coordinates and under the trivialization of ¥ given by s. It
follows that the associated graded of (2.6.11) is the Koszul complex associated to the regular
sequence

xlal,.’IZ‘Qag, ceey l'pal,, 8p+1, 8p+2, ceey 071—1”

over grf’Py;. Thus, the complex (2.6.11) is filtered acyclic. By the similar argument

in Theorem 2.3.5, the %ys-module V is holonomic and the charateristic cycle cc(V) =
Yxera [Tyxw Y]
Moreover, we have isomorphisms in the derived category of complexes of C-vector spaces:
FDRV = 1.V @ \ Fys » Q7 (105 E) © ¥ ® Fronersars Fys @ N Fys
2 QU7 (log E) @ V' ® Frin—rsa Oy .
Since FyOy s is Oy, or vanishes if £ <0, the complex QY77 **(log £) ® ¥ ® Fy.p Oy is the

stupid filtration on the log de Rham complex on #". We conclude the proof. O

We also need an auxiliary Zys-module V} ; to identify the primitive part P, , which plays
the role as wys(*D7) in the counterpart for the reduced case (Theorem 2.4.7). The log de

Rham complex of (¥, V) can be enlarged into
{¥ - Qys(log D)@Y — - » Q%7 (log D)®¥ }[n—-r], for D= D’ the pullback of the divisor Y7 .
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It is quasi-isomorphic to Rj,V for j: Y7/ \Y; — Y7 is the open immersion. By the similar

process of the above, it induces a filtered acyclic complex of %y s-modules
{7V Dys - Qyi(logD) @YV & Dys » - = QY (logD)® YV ® Dysf[n-r].  (2.6.12)

Let V* =V ; be the 0-th cohomology of the above complex and endow it with the filtration

such that FyV* = FyV; ; is induced by the subcomplex
(Ve Fi%Dys - Qyi(logD) @YV ® Fpo1Pys —» - = Q37 (log D) @ V' @ Fpuny Dy s }[n—1].

We naturally get an induced morphism (V, F,V) — (V*, F,V*) from the inclusion of the log

de Rham complexes.

Lemma 2.6.10. The canonical morphism (V, F,V) — (V*, F,V*) is injective, whose image

1s generated by the monomials defining D — E.

Proof. Suppose x1x9---x, is the local defining equation of E and x5+, is the local defining
equation of D for ¢ >p+ 1. Since V is locally generated by the class of

A

d[lﬁ'i

i=1 Li

ANdzpy A ANdzp, @ 5® 1

and V* is locally generated by the class of

q dl’z

A

=1 L4

ANdzga A ANdTyp— ® 51,

.

q dz;
i=1 x;

the image is generated by the class of A ANdTgr A ANdTp_p ® 8 ® Tp1Tpra+Tq. The

morphism locally is

Dy s [(X101 + 71, oo, TpOp + Ty Opiy oy O ) Dy = Dya [(1101 + 71, oy 40 + Tq, O oo, Ony ) Dy,

with [P] = [2p1Zps2---xyP] where 71,79, ..., 7, are the eigenvalues of V on ¥ and rp, = 7pe0 =

- =714=0. Since

Q?,‘f(log E) QY = F_(n_T)V - F_(n_r)V* = Q?,_Jr(log D) QY
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is injective, by induction, it suffices to show that grf'V — grfV* is injective. Due to the
complexes (2.6.11) and (2.6.12) is filtered acyclic, the morphism on the associated graded

modules works as, in the local representation,
gtf Dy s [(2101, .o, 2y 0y, Opits vy Onr ) 8TE Dyrs — gtF Dys [(2101, ., 240y, Ot ooy Oy )8t Dy,

with [P] = [2p+12pso--2,P]. By induction on the number of components of D — E, we can
assume g =p+ 1. Let P € gr" 9y, represent a class in the kernel. Then

q n-r
x P = inaiPi + Z 0;P; € g’ Dy 5.
i=1

Jj=q+1
Subtracting z,0,F, on the both sides yeilds
q-1 n-r
.flfq(P - @qPq) = Z :El&Pl + Z @PJ (S nggyJ.
i=1 j=q+l
Since @y, 101, ..., Tq-104-1, Og41, --., On—y 18 & regular sequence over gri’ Py,
q-1 n-r
(P - aqPq) = Z :CZ@P; + Z QJPJ’ € gI'F.@yJ.
i=1 j=q+1
We find that P is a linear combination of 101, 2202, ..., 2p0p, Opi1, - .., On—r Over grf @y.;. We

conclude the proof. O

Remark 2.6.11. One can use Riemann-Hilbert correspondence to conclude that V is the
minimal extension of ¥|ys. p and V* is the *-extension of ¥|y-s. p, which is overkill in our

situation. The above argument also showed the strictness, i.e., FyV = F,V*n V.

Putting in more general notations and summarizing what we have proved in the above

two lemmas:

Theorem 2.6.12. The filtered Dy-s-module (Va.s, Fo) is holonomic whose de Rham complex
DRy sV, together with the induced filtration is isomorphic to the log de Rham complex
Q7 (log E*7) ® ¥4,5 with the stupid filtration in the derived category of filtered complexes

of C-vector spaces and whose characteristic cycle is

ccVay)= Y, [ 1ﬁKuJY‘]].

KciI~Iy
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The canonical filtered morphism Vo, s, FVa,y) = (V2 5, FVE ) is injective and the image is

generated by the monomial defining the divisor D7 — B/,

2.6.5 Identifying the primitive part P, ,

Now we are going to identify the r-th primitive part (P,,, FoP,,) with a direct sum of
Va,s(—1) for J ranging over subsets I, of cardinality r+1. The argument is parallel to the one
of the reduced case (Theorem 2.4.7), replacing M by M, R by R, wys by Va7, wys(*D7)
by V;, ;, the complex Q}*/'A(log Y)ly by Cg = Q}*/'A(log Y)(=[aY])ly,, and the log de Rham

complex Q**(log D7) by QY7 **(log D7) ® ¥4, ;.

YJ

Theorem 2.6.13. Let V,, = @®; 7/ V. for J running over the subsets of 1, of cardinality
r+ 1, where 77/ : Y’/ - X is the closed embedding. Then there exists an isomorphism

bar (Par, FsPayr) = Var(-1) in the category of filtered Px-modules.

Proof. Because the log connection (2.6.8) we constructed on Ox(—[aY']) has zero residue on

Y; for ¢ € I,, we have the residue morphism between log de Rham complexes.

Resys : Q" (logY) ® Ox(-[aY])|y,, = Q7" (log D7) ® ¥, 5, where D” is the pull back of Y7,

for J c I, of cardinality r + 1, up to a sign depending on the order of the indices. Denote
by Bp, the log de Rham complex Q3! (logY) ® Ox(-[aY]) of Ox(-[aY]). The residue

morphism Resy s extends to a morphism of the complexes of induced Zx-modules
Resys : Bily,, ® Zx — Q77" (log D7) ® ¥, ® Dx.

Let HY, be the ¢-th cohomology of BYly, ® Zx. Then we have an induced morphism Resy :
Ho =V, ; by taking cohomology. Let Res, . = @ Resys : H) - V; (-r) where V; =@, V; ;
for J running over cardinality 7 + 1 subsets of I,. Because %A : QA (logY)(=[aY]) -

Q"1 (logY)(~[aY']) also extends to the complexes of the induced Zx-modules, we obtain

a short exact sequence
dt \
0— C&_l ® Dx RN B'_1|y1a ® Dy — C&@.@X — 0.
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The associated long exact sequence gives

0—>Ha1—>/\/laj

d Rao
ZEA
t

M, > HO > 0.

«

(2.6.13)

By pre-composing %/\, we get a morphism
dt N dt
Resq, s © 7/\ Mo =V, (-1), [Ca®P]— [Resod? Ao ® P

Recall that every element in M, is locally represented by (, ® P for (, = zgae]df A dz—z; Ao A

dzy

kAo Adz, given that locally T ={0,1,...,k}, and P € Zx. By Corollary 2.6.7, every class

2k

in ker R7*! is represented by (, ® 7P for some ordered index subset J of I, of cardinality
r+1 and J is the complement of J in I, and z7 = [l;c57;. Thus, its image under the
above morphism only contained in the component V* ;(-r) because z7 vanishes on other

components. The image is the class represented by

dzg dz dz,
ReSQ’J—/\—/\"'/\—/\"'/\dZnZEO[e]®ZjP =+
20 <1 Rk RINJ

dZI\J

Az A A2, ®54, 7 @27 P € Q77 Y, 18D x,

(2.6.14)
where s, ; is the local frame of ¥, ; by restricting zgae] and the sign is depending on the
order of J. It also follows from the calculation that the image does not have pole along
the pull-back of Y5. So it is contained in the subsheaf consisting of classes represented by
Q7 (log E*7) ® V4.5 ® Px, where E*7 is the pull-back of Y., so that D7 — E*/ is the
pull-back of Y5. This means that the image of the class represented by (2.6.14) is also in the
image of the canonical inclusion:

T Va,s(=1) = 7V (=),

dZ[\[ dZ* dZ[\]
[dz5 A CNdZpsy A Adzy, ® Sqg ® Pl [—L A ——2
ZINI, Z7 ZINI,

Adzgy A Ndzy @ 5.5 ® 27P].

See Theorem 2.6.12. Therefore, the morphism ker ;"' -V (-r) constructed above factors

through V,,(-r). Summarizing, we have the following diagram.

ker Ry ------ Feeeeeoy Var(=7)
\[ ﬂ/\ ReSa,r \[
Ma : > %g > V;,’/‘(_T)




In fact, the kernel of p, contains ker R": for an element in ker R’ locally represented by
Ca ® zx P for K a subset of I, such that the cardinality of I, \ K is r, its image under p,, is
zero because zg annihilates all QY7 (log D7) ® 75, ; for any J c I, of cardinality r + 1. The
morphism p,, also kills R, ker R.*? because %A vanishes on the image of R, by (2.6.13). It
follows that p, , factors through a filtered morphism

ker Rr+t
ker R + R, ker R*2

¢a,7‘ : Pa,r = - Va7r(—’l“).

For dz7 A % Adzgir A Adzy ® 84,0 ® P e QU7 (log E%7) ® 7, 5 ® FyPx representing a
class in Fy7{V, ;(-r) where J c I, of cardinality r + 1, we can find a lifting represented by

Ca ® 25P in Fyker R7, which means
Frker Rl = Froy Vo,

is surjective, i.e. the morphism ¢, , is filtered surjective. It remains to prove that ¢, , is
injective. We prove that ¢, , is an isomorphism by counting the characteristic cycles as in

Theorem 2.4.7. Because ¢, , is surjective, one gets
cc(Poy) 2 cc(Var).

It follows from Corollary 2.6.12 that

ccVar)= Y cc(tVuy)= > > [T;JuKX] = > [T;JX] .
Jcl,, Jcly, KclINI, Jcl,
#J=r+1 #J=r+1 #JInlg=r+1

One the other hand, by the Lefschetz decomposition and Theorem 2.6.2,

S H#H(I L) [Ty X] = co(My) = ce(gr'V M) = Y. (r + 1) ce(Pay) 2 Y. (r +1)ce(Va,r)

Jcl r>0 r>0
=3 Y (r+ ) [Ty, X] =Y #(In 1) [Ty, X].
r>0 Jcl, Jcl
#JInly=r+1

It follows that all inequalities above are equalities and in particular,
cc(Paor) = cc(Var)

from which we conclude that ¢, , is an isomorphism between the underlying Zx-modules.

Plus it is filtered surjective, we conclude that ¢, , is filtered isomorphism. O
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2.7 Non-reduced case: Sesquilinear pairing and

limiting mixed Hodge structure

2.7.1 Kahler package of cyclic covering

To accomplish our goal, we need to show that the sum of all hypercohomologies of the complex
Q3 (log E*7) @ ¥, s[n—r]

has a polarized Hodge-Lefschetz structure and hard Lefschetz so that the hypercohomology of
the de Rham complex of the primitive part P, , will inherit the properties by Theorem 2.6.12

and Theorem 2.6.13. For this, we need to use the geometry of cyclic coverings.

We first give another description of the integrable log connection (2.6.8) using cyclic
coverings. Fix a rational number « in [0,1), Because the isomorphism,

,chﬁX(—zeiYi)»ﬁX( > em),

i€ly delNIy

we obtain a cyclic covering 7, : X, - X by taking the N-th roots out of ) ;.; ; €;Y; and
normalizing it. The direct image m,,Ox, decomposes into eigenspaces with respect the Galois
action as well as the direct image of exterior differential 7., Ox, — 7. Qx, [EVI2, Theorem

3.2]. The line bundle

Lo ( > [aeim),

ieINI
is the a-eigenspaces of m,, 0%, for some suitable choice of a generator of the Galois group.
Because the decomposition respects the exterior differential, we obtained an integrable log
connection with eigenvalues {ae;} along Y; for each i € I,. Note that X, might not be

smooth.

Let J c I, of cardinality r + 1. Since Y/ is not contained in Y7.; , the fiber product

Y] = XoxxY"/ is again a cyclic covering of Y/ by taking the N-th roots out of ¥, ;. e;Y;nY7.
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Let 7 : Y/ - Y/ be the second projection.

Y] — X,

l”i lﬁa (2.7.1)

T

J
Y/ — X
We conclude that (7,5, V) is the a-eigenspace of ©/,(Oy,d). The log de Rham complex of

(74,7, V) is a summand of the direct image of the de Rham compolex 77 Q57" of Y,/

We shall work in the general setting and adopt the convention in [EV86] and [EV92].
Let £ be a line bundle on a Kahler manifold Z with a Kahler form w and D =}, v;D; be
a simple normal crossings divisor such that for some N > 1 one has LY = 07(D). Define
LG = Ej(—[jWDJ) for 1 <j < N —1. One puts an integrable logarithmic connection on £()

with poles along D), where
DU = 3 D,

KL
Let ¢ : U = Z be the complement of D and V is the underlying local system of L|;. Let
T: 7" — Z be the cyclic covering obtained by first taking N-th root out of D then taking the
normalization and 7 : Z - Z’ be a log resolution of singularity equivariant with respect to the
Galois group Gal(Z'/Z) = (o) and let E be the simple normal crossing exceptional divisor.
n

oy

Z N A A

Note that Z is Kihler because it is a resolution of subvariety of the geometric line bundle of
L, which is Kéhler, although the induced Kéhler class does not relate well with w on X. The
pullback n*w is only positive over U= n~t(U), but one can still cook up a Kahler class by
adding a small multiple of the first Chern class © € H2(Z,Z(1)) of the relative ample line
bundle of the projective morphism 7 : Z — Z’. We can assume © is invariant under o by

averaging it.

Lemma 2.7.1. Notations as above, the cohomology class [n*w] + A(2nv/-1)"1© e HY(Z) n

H?(Z,R) is an invariant Kdhler class for X is a sufficient small positive number.
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Proof. Let D; be the strict transformation of 7-1(D;) and s; € H'(Z, 05(D;)) whose zero
locus is D;. Let h; be a Hermitian metric on each line bundle ﬁZ(Di) and p; be sufficient
small positive bump function supported in a small neighborhood of D; for each i. Then the
(1,1)-form

n'w+ ZZ: %aﬁpihi(si, 5;)
is positive on Z — E but only semi-positive over E. However, the class (2rv/~1)~10 is positive

over E. Therefore, for A sufficient small positive, the class of
V-1 _
n*w + Z Taapihi(si7 5) + A(2mv-1)"'©
i T

is a Kihler class. But ddp;h;(s;,s;) is exact. The cohomology class of above just equals
[*w] + A(27/~1)"1© in HY(Z) n H2(Z,R). It is invariant because both [*w] and © are

invariant. O

Lemma 2.7.2. The hypercohomology H* (Z, Qs (log DW) ®£(j)_1) is a summand of £7I-

eigenspace of Hk(Z), and thus it is a sub-Hodge structure of weight k.

Proof. Tt follows from (1.6) in [EV86] that R, V=7, R,V and Q% (log DV)) & LD are all

quasi-isomorphic. Taking hypercohomology gives canonical isomorphisms
H*(Z,9Q5(log DD) @ LD ™Y ~ HH(U, VYY) ~ HE (U, V).

Because 7 is étale over U, H*(U,V7) (resp. H*(U, V7)) is a &i-eigenspace of H¥(U,C) (resp.
H(U,C)) for the cyclic action o, where ¢ is a N-th root of unity. Then the canonical

morphisms of mixed Hodge structures
H*(U) - H*(Z) - H*(U) (2.7.2)

respect the eigenspaces decomposition because we make Z equivariant. We complete the

proof. O]

Lemma 2.7.3. Let X = 2m/—-1L where L = [w]A is the Lefschetz operator on Z. The

following two statements hold:
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1. Hard Lefschetz is valid on the hypercohomolgy, i.e.
XE: HIm 2R (7,05 (log DW) @ L) > Hm 2k (7,05 (log DD) © LD (k)
is an isomorphism of Hodge structures.
2. The pairing
. e(dimZ +k+1) " (xcim ok

(QW\/__I)dimZ

is a polarization on the primitive part of H* (Z, Q5,(log DW) ® E(j)_l), where n* (Xdim Z=ka A B)

m' Am") (2.7.3)

(ml7 mll)

is the top form determined by the inclusion n*Q3™ % (log DV)) ® LD ¢ Wy

Proof. Let L = [n*w + AO]A be the Lefschetz operator on Z. Then the Hard Lefschetz on Z
says

)~<k . HdimZ—k(Z) = HdimZ+k(Z)(k)
is an isomorphism, where X =q¢f 2v/—1L. Because L is invariant and respects the morphisms

in (2.7.2), the above isomorphism is compatible with eigenspaces decomposition, it follows

that
Xk Hm 2k (7,05 (log DW) & £O)7) > HI 2% (7,05 (log DD) & L9 ) (k) (2.74)

is injective by Lemma 2.7.2. In fact, the &-eigenspace of H¥(U) is orthogonal to the &i-
eigenspace of H2dmZ-k([]) with respect to Poincaré pairing unless i + j = 0 (mod N): for a

in the &i-eigenspace of H*(U) and b in the &/-eigenspace of H2dmZ=k({7) then

g‘[aAb:[a*aAb:faA(afl)*b:gﬂfaAb,
U U U U

which means [ a A b is zero unless i + j = 0 (mod N). It follows from Poincaré duality on
Hk(U) x H24imZ=k([]) that the &i-eigenspace of H¥(U) is Poincaré dual to the £~i-eigenspace
of H2dimZ-k({7). On the other hand, since the &i-eigenspace is complex conjugate to the
¢-i-eigenspace, the &i-eigenspace of H¥(U) and the &i-eigenspace of H2dmZ=k([J) have the

same dimension. It follows that the morphism (2.7.4) is an isomorphism.
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The operator L has the same effect as n*L over Hc'(U), because O is supported on E.

Therefore,
Xk : HdimZ—k (Z, Q.Z(log D(j)) ® E(])—l) N HdimZ+k (Z, Q.Z(IOgD(j)) ® E(j)_l) (k‘)
is an isomorphism. We conclude (1). It also follows that n* identifies the primitive part of X

HAm (2,05 (log DV) @ L)

prim
with the primitive part of X
ker (>~<k+1 . pydimZ-k (27 Q3 (log DY) & E(j)‘l) _, pdim Z+k+2 (27 03 (log DV) ® ﬁ(j)_l)).

Thus, HdimZ-k (Z, Q5,(log DW) ® E(j)_l) is a sub-Hodge structure of H4mZ-F(7) And the

prim prim

restriction of the polarization is again a polarization. This proves (2). ]

The above two lemmas indicate that the sum of hypercohomologies

D H* (2,05 (log DD) & L)
keZ

is a polarized sub-Hodge-Lefschetz structure of @, H k(Z ,C). In practice, it is more
convenient to make the polarization independent of the resolution of singularities and intrinsic
on Z. Heuristically, the local system V=7 over U inherits a pairing from Cy and it has a
Hodge theoretic extension on its canonical extension. First, we can resolve Q3 (log DU)) using
A3, (log D), the complex of € ~-forms with log poles along D). Note that we have the

inclusion of sheaves

AdmZ+k (100 DY@ £ A AdimZ-k(log DO)) @ LO) ™ ¢ AZImZg L)™' (D) %Lm‘l(pm).

Since LN ~ 04(D), picking local section of [ such that IV = [T, z;" we can put a canonical

singular Hermitian metric on £ by setting the weight function as
U = [T |wil /", where z; is the local defining equation of D;.
i
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Then the induced singular Hermitian metric on E(j)_l(D(j)) = L[ 22|+ DWD) locally is

l‘j H[L’;Uﬂi/NJ H l'i—l — H |5172 jvi/ N=|jvi/N| H |$i|_1 — H |£L‘,~|_{_j'/i/N}.

Jvi N¢Z h JUi/ N¢Z

For any smooth top form Y with values in £0) ™ (DW) &@c ®L&) ™ (DW) we can associate
an integrable top form (Y1), = fg|s[? vol(Z) by fixing a volume form vol(Z) on Z and
writing locally T = fs® gsvol(Z) for s a local fram of £0) ™' (D). Therefore, we obtain a

well-defined pairing,

Ak (log DD) @ L)™' A Ak (log D) @ L)' >C,
e(dimZ +k+1)
(d
(2my/-1)dimZ  Jz

(m/’m//) (XdimZ—km/AW)h'
(2.7.5)

Since n: Z — Z is generic finite, it follows from

/277* (XA 2k’ A 777) = Nfz(xdimZ—km//\W)h

that (2.7.5) induces the same polarization in the statement (2) of the above lemma except

for the constant N.

Applying to our situation yields that ¥, j(E*”) carries a canonical singular Hermitian
metric | - |, with local weight functions [Tje;.s, [2;|7{%¢} restricted on Y/, where z; is the
defining equation of Y;. Provided the above two lemmas, the sum of hypercohomologies
@ H* (V7,0 (log ) © ¥, 1)
keZ
is a polarized Hodge-Lefschetz structure of central weight dimY” for any non-empty subset
J of I,. Similarly to Example 2.1.9 this is also determined by the filtered %-,-module
(Va.s, FVa.7) with the sesquilinear pairing S, 7 : Va.;s ®c Va.y = €y is given by

e(dimY’ +1)
(271-\/__1)dimYJ yJ

for local sections of V, ; (see (2.7.1)) represented by s; ® P; such that s; local sections of

([81®P1]7[52®P2]) = (Plﬁg—) (81 /\5_2)h (276)

wys(log B4 @ ¥ 7 = wys ® ¥ 1 (E7)
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and P; is a differential operator ¢ = 1,2. Here, (s1ASz)y, is the top form induced by the singular

Hermitian metric on 7%, ;(E%7). Summarizing the results we proved in this subsection:

Corollary 2.7.4. With notations as above, the direct sum of all hypercohomologies of the
de Rham complex of Va7, FoVa.s) underlies a polarized Hodge-Lefschetz structure of central
weight Aim Y with the Hodge filtration induced by FV, 5 and with the polarization, on degree

k, given by the following induced pairing scaled by e(k),

H*(Y? DRy sVa,7) ® H*(Y7 DRysVs ) — H(Y? DR, 57V ®c Va,s) j

~ Soc,J

(» H°(Y7, DRy, 55Cyv) - s C.

Remark 2.7.5. We cannot make the Hodge structure in the above corollary over Q because

there is no eigenvalue decomposition of Q-structure.

2.7.2 Sesquilinear pairing

As in the reduced case, we need a sesquilinear pairing to construct the limiting mixed Hodge
structure. In fact, the construction for the reduced case still works with a little modification.
Note that for any test function 7 over a local chart U and two local sections (; ® Py, (s ® P»

of HO (U Qn

X/A(log Y)(-[aY]) ® @X), the function

e(n+1)

(27?\/_)”

may have order approximately at most [¢[2¢ (= log [t2)" near ¢ = 0 where k + 1 is the number

1E(U)C1 A G

of components of Y7 that intersect in U. This suggests that we can define the pairing S, on
M, by

e(n+2)
v

O [ (% S, PP G).

Again, we have not check that S, is well-defined but let us do some local calculations to see

(5216 © PL) (G P ) i R IR

what is going on.
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Example 2.7.6. Suppose Y = 2Yj for Y} is a smooth manifold and ¢ is equal to z2 on X.
Then R satisfies the equation R(R - %) = (0. We deduce that M has two eigenspaces M, and
M% by (2.3.3). Then for any local sections (;® P; = dz; AdzoA-+-Adz, ® P; of Q7 /A(logY)@@X,
i = 1,2 representing classes of My, the calculation of the pairing So([(1 ® P1],[(2 ® P2]) is

exactly as in the reduced case and as it turned out
So([G1® P11, [G ® P2]) =iy, Sy, ([¢1 @ 1], [z @ P2]).

By Theorem 2.6.3 M 1 is locally generated by the class represented by dz; AdzoA---Adz, ® 2.
Now for any local sections ( ® zgP; = dz; Adzy A+ A dz, ® zoP; representing classes of M 1

we have

V-1
2T

(5,([C8 P [Ce 2Pa]).m) = Res,y [ |zo|4pfg(n)§( dd_)

1 o n (T
:f —log|z0|28080P1P2(7])/\(\éﬁ_dZiAdZ)

by Poincaré-Lelong equation [GH14, Page 388| = [ —P,Py(n) /\( dz; A dZ)

1<iYO+SYO([<1 ® Pl] ) [CQ ® PQ])?U)

"2
1
2(2Y0+51 0 ([G @ 2], [G® 20P]),n),
Recall Sy ) defined in (2.7.6): since we have the isomorphism Oy, (2Yy) = Oy, (Y) ~ Oy,
there exists a canonical singular Hermitian metric (this case is smooth) | - |, on Oy, (-Y;) by

setting the local frame zy has norm 1 so that
ivo,S1 (03 ([G1 @ 2011 ], [G2 ® 20P2]) )

- /. |zO|iP1E(n>§(éf

The above equality can also be explained as follows: the cyclic covering constructed by

dz; A dz_i) =1y, Sy, ([G1® P ], [ ® P»]), 7).

taking out of the second root of the constant section of Oy, (2Yy) ~ Oy, has two connected

components and each component is isomorphic to Yj.

Let n be a test function over an open subset U. For any two sections mi,ms €

HO(U, QX/A(logY)( [aY]) ® Px), the (2n + 2)-form % Amy A % Amy is smooth of out-
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side Y and has pole along Y. Locally, the (2n + 2)-form just is |z7[2[®1 P, Py(n) % A ¢ A 2 [N
where m; = C®Zlae]pj for ¢ = dz—zll/\dz—'z?/v--/\%/\m/\dzn and j =1,2. Let F'(s) = F(s,ml,mg,n)

be the meromorphic extension of

e(n+2) 55 dt
(2#\/—_1)n+1[|| ml/\_/\mZ(n)

via integration by parts. The function F'(s) is well defined when Res > —« and has a pole at

s = —a. We only care about the polar part of F'(s) at s =—

Theorem 2.7.7. The polar part of F(s) at s = —« is only depends on the classes of my and

mey n M.

Proof. Let {p,} be a partition of unity of the open covering {U,} by local charts. Then

F(s)=Y e(n+2)

/ |t|25dt U dt A ma(pan)
S —— — Amip A — Ama(pan).
X (2my/T) t

Since pyn is a test function over local chart Uy, we can assume U itself is a local chart. We

assume k + 1 components of Y intersect in U.

Lemma 2.7.8. Under the assumption that m; = (, ® P; for {, = zgae] dzzll A dZQ A A ‘% A

dzps1 A Ndz, and for i=1,2, the followings are valid.

1. the order of the pole of F(s) at s =—« is at most k+1;
2. if P, =t P! for one of i =1,2, then F(s) is holomorphic at s = —«;

3. for 0 < j <k we have,

[ae]

1
F($><a®PlaCa®_zjajP2an) (5 Ca ® Zjapl Ca®P2777)_ —(3+ )F(S G®P,GLeP,
€5

€j €;j
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Proof of the lemma. We work out Laurent series of F(s) at s = -«

/ |Z |25e+2 ae] 21P P2(77)/\(\/_

dZi A dz_,)

— A |ZI|2(s+a)e—2-1|ZI|2{—ae}P1P2(n) /\( dZZ A dZ_Z)

= f (s+ a)_2(k+1)|21|2(5+a)e77'/\( dzZ AdZ)  where i = 0;0; (|z1| (Fael P Pyn)

Z (S+Oz é 2(k+1) [(10g|21|2e)£7],/\(

When ¢ < k + 1, then the form

dzl AdZ).

(log |z IQQ)ZH’/\(

alzZ AdZ).

is actually exact because one of the a; must be zero in the expansion of (log|z7[?¢)¢ into the
linear combination of [T%, (log|z]?%)* such that Y% a; = £. Therefore, the order of the pole

at s = -« is at most £ + 1.

When P, =t, P, the form

_9. _ — no/-1
|z1|2(s+a)e 21|ZI|2{ ae}taPl’Pg(n) /\( - dz; A dZ)
=0

is integrable when s = —a where {-ae} is the multi-index such that {-ae}; = {-ae;}.

Therefore, F'(s) is holomorphic at s = —a. It is the same when P, = t,P;.

Lastly, by linearity we can assume that P, = P, = 1.

1 e(n+2) 1—— \dt dt
F Pl 04®]~; a®_ ‘a‘, :—/ th  — 8 J— a PR o
(5,¢ G o, 40 ) (2rv/ 1) X|| (ejzj ﬂ?) = AGa A= A

se;j+|ae; |- 1ﬁ \/_]-
:/ H |Zi|256i+2[aei]—22j j+[ae;] le_zj i+ J]aon/\( o

X jeIn{5) j i=0

_ / ( 046] ) H |Z1’2sel+2 ae;]- 77 /\
X

J iel

- [ae;] e(n+2) 5 dt dt
) ( €~j)(ZW\/—_l)"”[X't'zntACO‘AtAQ’"

—(s+[a€j])F(s (a®1,(,®1,7m).

€j

dZZ‘ N dZ_Z)

dzl/\dz_z)

(2.7.7)
The other equality in (3) holds similarly. We complete the proof of the lemma. O
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Returning to the proof of theorem. Since M, is locally represented by
Ca ® -@X/(taaDl + Oél,DQ +062, cee 7Dn +05n)9X

(see the proof of Theorem 2.6.2), and (2) and (3) in the lemma say that when one of m; and
mse 1s in

Coz® (tOle +a17D2 +O[2,...,Dn+an).@){
then F'(s) is holomorphic since «; equals [ae;|/e; — [aeg]/eo for 1 < i < k and equals zero

otherwise. O

For two sections 7,72 € H°(U, M) and any test function n over U, we define the pairing

SaiMa®CMa—>¢X by

<So¢(717’72)7 77) = Ressz—a Z F(Syﬁ/laﬁ/%px\n)?
A

where {p,} is a partition of unity with respect to an open covering by local charts {U,} such
that +; has a local lifting of 7; over Uy for i = 1,2. It is obvious that S, is Zy %-linear. Thus,

it is a sesquilinear pairing. As a corollary of Lemma 2.7.8, we have

Corollary 2.7.9. We have S, o (id ®c Ra) = Sq 0 (Ry ®c id).

Because of the corollary, the sesquilinear pairing S, induces pairings on the associated

graded quotient of the weight filtration
Sa gty My ®c m - Cx,
as well as on the primitive part
Pr, S, =Sy0(id ®c R.) : Por ®c Par — Cx.

Theorem 2.7.10. The isomorphism ¢or : (Pary FoPay) = Var(-1) in Theorem 2.6.13

respects the sesquilinear pairings up to a constant scalar. More concretely,

P -
= —_—
e 5r (1, m2) Jé.éx» (T+1)!CJT+SQ’J(¢O[7T 1 Gaur 2)

#J=r+1
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Jor any local sections my,my € Py, and Cy =[l;e;s €5, where the pairing Sa.j : Va,7 ®c Va,g =

Cyu is defined in (2.7.6).

Proof. Because of the linearity and the generators of P, , are all monomials dividing ¢, of

degree p—1r Corollary 2.6.7, it suffices to prove the theorem in the case when m; is represented

by
dz dz
Ca® 2K, = zgae]—l Ao A =2 N A dz, ® 2k,
21 2k

where K; c I, with #K; =pu—r and i =1,2. Let n be a test function over U. Then we have

(Sa(ma, Rima),n) = Ress——a(-(s+a))" fX ’ZI|289+2M€]72.12K1 ZK> /\( dzz ndz;).

If m; # my, then the above is zero. Indeed, for v € Ky \ K; by choosing R, = 1®

1
HieI\le{u} e_iziaiy

(S(RLm1,ma),n) = Ress—_q / |2 |28z 2lee —az_vﬁ /\( dzz A dZ;)

where 7 = C’I\Kl\{v}af\,(l\{v}z—m(z)—ln is a smooth function with compact support. The

function

dz, A dzZ;)

f|Z [2s0-21 | |2[ac] a—~/\(
U

is holomorphic at s = —a because by setting s = —a the form

. 17z, .
|ZI|—2ae—2~1|ZI|2[ae —aZU /\( dZZ /\dz,) |ZI\I | 2{ae} “v /\
Zy a Zy =0

dzl A dzZy)

is integrable.

Therefore, we reduce the proof to the case when my = my = m represented by (, ® zx. We
shall prove that

S (m er) = % ?Sa,f(¢a,rm7¢a,rm)u

where K is the complement of K in I,. Without loss of generality, we can assume that
K={r+1,r+2,..,pu} and K ={0,1,...,r} so that zx = Zri1Zr42+%,. We have

(S(m, Rim),n) = Resse_o(~(s+))" f|z [P(s+eder |5y pe|Poerx+2laenkl- 1 /\(

1=0

dzl ANdZ;),
7T
(2.7.8)

98



where, for any index subset J c I, the j-th component the multi-index e is e; if j € J or zero
otherwise, and the j-th component of [ce;] is [ae;] if j € J or zero otherwise. Integration by

parts for {dz;,dz;}, 7, the identity (2.7.8) equals to

r |Z[a|2(s+a)ela 2ser. 1, +2[aer. a3\ AVl —
Res,—_a(~(s+ a)) fxwz 1 [Prertat2eern,] (afa?n)l/:})( 5 dz; N dZ;)
(2.7.9)
(_1)T f 2 _ . a . -1
“Resy g———2—— [ [t[2(sr |~2leei} (9 N Ay A dE 2.7.10
CSs= C%(S_f_a)ﬂ_g X| | jelj—\I[a|Z]| ( Kaﬁ)z/:})( 27T Zi N Az )7 ( )
where 007 = [1 R 9,0;. Because of the expansion
= (log t}?)’ (s +a)!
t2(8+a) — l t2 — (
0 = exp (log (s + ) = 3, SEEE T
we find that (2.7.10) is equal to
(-1)r /‘ gy\r+1 oo — V-1 _
— 7 log |t |~Haest (90 dz; A d7; 2.7.11
C%(TJFU! X(Og||) jegla|zj| (KKn)A)( 5 2i NdZ;) ( )

The expansion of (log|t|?)"*" is a linear combination of
[T (log]=[*)"
iel

for all partitions Y ,.;a; =7+ 1, but the differential form

a; _2fae, — -1 _
T Gos)" TT o) (o) A=tz )

iel jelNIy

is exact unless a; # 0 for any 4 € K, which is equivalent to a; = 1 for i € K and a; = 0 for i ¢ K.

It follows that (2.7.11) is equal to

crrmy Jy sl T 22000 (05 m) AL

jelNIqy =0
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We deduce from Poincéare-Lelong equation [GH14, Page 388] that the above continues to

equal to

% e TT ey /\( dzmdz_z) (2.7.12)

jelNIy i=r+1

Since ¢, zm = idZ’\K Ndzga ANz, ® 8,57 € wyf(Eaf) ® ¥, %, it follows that

(¢aKmA¢aKm) H |Z| 2{a6]} /\ ( dzl/\dz_l)

jeINIy i=r+1

from which we conclude that (2.7.12) is equal to

_1 r _1 r
m Y?T/(gba,fm A ¢a,?m)h = m(sa,l{(gbaj(ma ¢a7fm)7 77)

See (2.7.6). The theorem is proved. O

2.7.3 Construction of the limiting mixed Hodge structure

We begin to construct a polarized bigraded Hodge-Lefschetz structure on gr'V H*(X, DRxM,,).
Fix a Kéhler class w on X and let L = wA : DRxM, - DRxM,[2] be the Lefschetz operator
and X; = 2mv/—1L. Relabel the graded pieces of the first page of the weight spectral sequence
by

Vi, = HY(X,gr)/ DRxM,) = W gk,

Let V* = @y ez Vi, with the filtration F,V* induced by FoM,. Denote by E;(R,) the
induced operator by R, on WE, and let Yy = Ei(R,). Denote by Sy the induced pairing on

Vi ® Vi

H* (X, gry DRxMo)@H (X, gr'" DRxM,) - H*(X, DR xer)’ Mo®cgr'y M,) - H)(X, DRy x€x) = C

modifying by a sign factor e(¢). Let d; be the differential of the first page of the spectral

sequence. In terms of relabeling we have
dy (Veaka F.Vﬁk) - (‘/ﬁl,k—hFJ/ﬁLk—l)'

Exactly same to Theorem 2.5.6 and Corollary 2.5.7 in the reduced case, we conclude that
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Theorem 2.7.11. The tuple (V*, X1,Y2, FV, @D S;k, dv) gives a differential polarized bigraded

Hodge-Lefschetz structure of central weight n.

Corollary 2.7.12. We have the following

1. Hodge spectral sequence degenerates at pFh;
2. the weight spectral sequence degenerates at " Es;

3. the tuple (Bpez gtV HY (X, DRxM,), X1, Yo, F,) together with the pairing induced by S,

1s a polarized bigradged Hodge-Lefschetz structure of central weight n.

The last statement in the above corollary implies that the induced weight filtration on
HY(X,DRxM,) is the monodromy filtration associated to R, on H*(X,DRxM,). We
established Theorem A.

2.8 Application

2.8.1 Hard Lefschetz

The following is a consequence of the bigraded Hodge-Lefschetz structure

Theorem 2.8.1. The Lefschetz operator induces an isomorphism between Oa-modules
k
(27r\/—1L) : FgR‘kQ;/”A(log Y) ~ Fg,kRkQ;(T]‘A(log Y) for any integer {.

As a result, we have the following decomposition in the derived category of coherent Oa-

modules:

Rf.FQ A (logY) ~ P Fngf*Q;(*/"A(log Y)[-k]  for any integer {.

keZ

Proof. The first statement follows from the Hard Lefschetz on each fiber

k
(27v=1L) : BRO%, (logY) @ C(p) = FexR*OY 4 (log Y) ® C(p),
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for every p € A. The second statement follows from the first one plus the main theorem

in [Del68]. O

2.8.2 Invariant cycle theorem

Now we shall give the proof of Theorem B, which is equivalently to the following statement:

Theorem 2.8.2. We have the following exact sequence of mixed Hodge structures

H!+n(Y,C) — H(X,DRxM) & H!{(X DRxM)(-1).

Of course one can try to show that ker R is the filtered Zx-module such that the
hypercohomologies of its de Rham complex computes the cohomologies of Y. But we would
like to keep the proof elementary so we will just show that the first page of the weight spectral
sequence computing the hypercohomology of DR x ker R is the same to the one computing
the cohomology of Y up to a constant scalar; this will prove the theorem because both weight
spectral sequences degenerate at the second page. See [GS75, (4.2)] or [Ste76, (3.5)] for the
weight filtration of H¢(Y,C)

Proof. Note that kerR is contained in M. Therefore, W_;kerR = RikerR/*! for j > 0 and
vanishes for j < 0 where W = W (R) on M. It follows that grf?kerR is isomorphic to wy (1
for 7 > 0 by Theorem 2.6.13. Because grgkerR is a summand of grg/\/lo for j > 0 by the
Lefschetz decomposition on gr'V Mg, we have the following short exact sequence of Hodge

structures on the first page of the weight spectral sequences:

DRykerR) — H%*(X, gr%_DRxM,) 5 H**(X,gr"_, .DRxM;)(-1) — 0.

—j—e —j—2—e

0 — H*(X, gV

Cice
The associated long exact sequence gives the relation between the second page of the spectral

sequences:

o — g HY (X, DRxkerR) — gr' HY(X,DRxMo) — gt ,H*(X,DRxMo)(-1) — ---.

J
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Now it remains to prove that H¢(X,DRxkerR) and H* + n(Y,C) are isomorphic as mixed
Hodge structures. It suffices to check that they coincide at the first page of weight spectral
sequence since they degenerate at the second page. We have the following commutative
diagram where the leftmost column is the Fi-page spectral sequence of ker R and all the

horizontal arrows are isomorphisms of mixed Hodge structures.

o(RI) ) - ,
HY(X, g DR ykerR) 2205 HE(X, DRy 7wy ) < HE(Y 6D, QU7

s | L

DRykerR) —— H*'(X, DRx7/ Wy ) ¢—=— H*(Y 0D, QLI

(2.8.1)

e+ (X, grzlfjﬂ)

We shall identify the the rightmost vertical arrow with the differential of the first page of the

weight spectral sequence of H#"(Y,C) via diagram chasing.

gr” ker R® AP T - > TRwyk ® AP Ty 4 Oy
e | |
_ ~ Kn{j; — -Jj-
grf‘fjﬂ) kerROANP ' Ty ——=— Djes s i }wYKﬁ{ji} N Ty +— Djies szgn{p}i}
[+RI (o ® 212 ® D] > +dzg ® 0y < dzg.y

I ! !

[iRjHCO ® ZjieJ ejiZIZKijl ® aJ\{ji}] — Djes +dzg ® a]\{ji} % ZjiEJ €jidZg

Starting from the upper-right corner, let dzz. ; = Az dz; be a local section of Q’;}j_p where
K is an ordered index set of cardinality j + 1, K is the complement of K in I and J c K of

cardinality p. Then +dzz ® d; is the image in 7Xwyx ® AP Ty via the inclusion
i p X p
leg P = WyK ®/\gyK —> T, WyK ®/\9X,
where 05 = Aje; 0;. Its preimage under the isomorphism

- p , o P p
o,ic 0 (R?) ' :gri'kerR® A\ Ix = RkerR7"' @ \ Tx - Po_;® \ Ix » tFwyrx ® A\ Ix

dﬂA"'AdﬂAde+1A"'AdZn

is the class represented by +R/(y ® z1z;! ® ;, where (y = dz—? N -

and Py _; is the (—j)th-primitive part of gr'¥M,. It maps to the class of +R/*1(y ®
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Yjied ejl.zl(szji)_l ® O0j.yj,y by the differential of DRxkerR. By reverse the above pro-
cedure, +RI*1(y Y, ;s ejizl(szji)_l ® 0j.(j;) corresponds to 3, ;e;dzg. s restricting on
Djies Qg‘,ﬁ;{’;’; . Therefore, the morphism d; in the diagram (2.8.1), up to a scalar factor, can
be identified with the pullback

H (}7(]41)7 Qn-ite ) Ny (S}(j+2)’ Qq—j—u.) ’

Yy (G+1) Y (5+2)

which is the differential of the "V Ei-page of H*"(Y,C). This completes the proof. ]
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Chapter 3

Hodge filtration and V-filtration

3.1 Preliminaries

3.1.1 Kashiwara-Malgrange V-filtrations

We begin with a review of the theory of V-filtrations introduced by Kashiwara and Malgrange.
For more details, see [Sai88, Section 3.1] and [Sch14, Section 9] for the case of a hypersurface

and [BMS06, Section 1.1] for the case of higher codimension.

Let (t1,...,t.): X > A" be a smooth regular function, with fiber Z over the origin. We

define a Z-indexed filtration on Zx by

Vi%x ={PePx:P-7)c.7)" for all 5}.

A Q-indexed filtration V*M is discrete and left-continuous if N,z V= VP for all e Q,

and if there exists some £ € Z, such that the subspace V' is constant for all a € (7, ™7 1,

for any m € Z.

Given a coherent left Zx-module M, a Kashiwara-Malgrange V-filtration on M along Z
(see [Kas83], [Mal83]) is an exhaustive, decreasing Q-indexed filtration which is discrete and
left-continuous such that, if 6 := ¥, t;0;, is any locally defined Euler vector field along Z,

the filtration must satisfy:
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1. VM- VieDx c VoM for all ke Z,a € Q,
2. VM-V, Dx = VoM for all keZyy, a <0,
3. each VM is coherent over Vy%x,

4. the operator § — « is nilpotent on gr¥ M, where 6 := ¥°7_, t;0; is the Eular vector field.

It is an easy exercise to see that there can be at most one V-filtration on any coherent Zx-
module M. We say that a module M which has a Q-indexed V-filtration is Q-specializable.
Any morphism between Q-specializable modules is strict with respect to the V-filtration.
Moreover, if

O-M->-M->M"-0

is a short exact sequence of Zx-modules, and M has a V-filtration, then the induced filtrations

on M’ and M" satisfy the properties of the V-filtration.

Example 3.1.1. (a) Let & be an Ox-coherent Zx-module. Then VFE := IE™ - € satisfies

the properties of the V-filtration. For example,
0t*m = (o] + 0)t*m,

(b) (Kashiwara’s equivalence) Assume M is supported on Z, so by Kashiwara’s equivalence
(see [HTTO8, Section 1.6]), there exists a coherent Zz-module N such that M = ¥ . NO2.
Then

VM= Y N,

lo|<k

For us, it will also be important to understand the case when (M, F) =i, (N, F) as a
filtered Z-module. For left Z-modules, the pushforward of a filtered module has filtration
defined as

Fyis (N F) = Y Py NG

aeN”

From this, we see easily that

FViie(N,F) = Y Fpjopr N2

lo|<k
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This last example leads to an important property of the V-filtration.

Lemma 3.1.2. Assume ¢ : N — M is a morphism between two specializable modules, such
that ¢|y : Ny - M|y is an isomorphism, where U = X — Z. Then ¢ : V>N - V>0 M is an

isomorphism.

Proof. Let K = ker(y),C = coker(y). The assumption implies these are supported on Z,

so by the previous example, V>0K =0 and V>°C = 0. Hence, taking V>0 of the long exact

sequence
O—)K—)N—)M—)O—)Q
we get
0=VoK = VooN = VoM - VoC =0,
proving the claim. O]

3.1.2 Saito’s Main Theorems about Hodge Modules

In this section, we state two essential theorems in Saito’s theory of mixed Hodge modules.

The first main result is the behavior of mixed Hodge modules with respect to the
pushforward functor for a projective morphism f:Y — X. For more details and proofs, see
[Sch14, Section 16] or [Sai88, Section 5.3].

We say a morphism ¢ : (M, F) - (N, F) is strict if F,N nim(p) = p(F,M). We say
that a filtered complex (K*, F) is strict if all differentials are strict.

For example, a monomorphism ¢ : A < B is strict iff the filtration on A is the induced
filtration from B. The main utility of strictness is that, if (K, F') is a filtered complex with
strict differentials, then H*(F,K*) - H*(K*) is injective for all k € Z. Hence, we can define

a filtration F' on H*(K*), and strictness allows us to commute H* with F,.

We begin now with the statement of the direct image theorem in the pure case:
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Theorem 3.1.3 ([Sai88, Thm 5.3.1]). Let f:Y — X be a projective morphism of smooth
complex varieties, let M be a pure Hodge module on'Y of weight w. Let € € H?>(X,7Z) be the

class of a relatively ample divisor over Y. Then

1. fo(M,F) is strict and Hi f, (M, F') underlies a Hodge module on X of weight w + 1.

2. W HTf (MUF) > Hifo (M, F) (i) is an isomorphism for all i > 0.

As an application, if X is a smooth projective variety, f : X — * is the constant map, then
the strictness of f,(M, F") recovers the fact that the Leray spectral sequence degenerates at
E.

Also, as a formal consequence of the second part of the theorem (see [Del68, Prop. 2.1]),

one recovers the decomposition theorem, i.e., an isomorphism in the derived category
f+(M’ F) = @ka+(M7 F)[_k]
keZ
Remark 3.1.4. The strictness of f,(M, F') in part (a) of Theorem 3.1.3 still holds if we assume
M is a mixed Hodge module. One particular application of Theorem 3.1.3 will be when
the map f:Y =7 x X - X is a smooth, projective projection from a product and (M, F)
underlies a mixed Hodge module. In this case, the Z-module pushforward f,(M) is given by
the relative de Rham complex (see [HTTO08, Prop. 1.5.28])
dim Z d dim Z-1 d
K*® = M@/\gzﬁ./\/l(@ /\ yz—>—>/\/l
and this complex is filtered, given by
dim Z d dim Z-1 d
FPK.={deisz® /\ yZ—)prdimZJrlM@ /\ yz—>—>FpM}
Then strictness tells us that the induced map
REf(FK*) —» REf(K®) = HE f (M)

is injective, and defines the Hodge filtration on this cohomology module.
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The second main theorem is called the “structure theorem for polarizable Hodge modules”.

Let Z ¢ X be an irreducible closed subset. A Hodge module M on X has strict support
7 if the underlying Z-module has no sub or quotient ¥ modules supported on a proper
subset of Z. See [Schl4, Exercise 10.2] for a characterization of this property in terms of
the V-filtration along a hypersurface. See also our generalization of this property to higher

codimension in Corollary 3.3.3 and Corollary 3.3.4.

Built into the definition of the category of pure Hodge modules is the property that every
pure Hodge module has a decomposition by strict support, meaning, for any M pure on X, we

have

MZ@MZJ

zcX

where the direct sum ranges over irreducible closed subsets of Z, My # 0 for only finitely
many Z, and each My is a pure Hodge module with strict support Z. See [Sch14, Theorem
11.7] for a characterization of this property in terms of the V-filtration. See our generalization

of this property to higher codimension in Corollary 3.3.5.

The structure theorem gives a description of those pure Hodge modules with strict support
Z: they are generically given by (polarizable) variations of Hodge structure on Z. See [Schl4,

Section 15].

Theorem 3.1.5. Let X be a smooth complex algebraic variety, Z € X an irreducible subset.

Then

1. Every polarizable variation of Hodge structure of weight w —dim Z on a Zariski open
subset of Z extends uniquely to a polarizable Hodge module on X of weight w with strict

support Z.

2. Every Hodge module with strict support Z arises in this way.

The difficult claim is to extend a polarizable VHS to a Hodge module with strict support

on /. This result will be used to identify certain Hodge modules as strict support direct
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summands of other Hodge modules.

3.1.3 Conventions for Shifting the Hodge Filtration

We refer to [Sch14] for all conventions regarding the Hodge filtration and weight filtration
when applying functors to mixed Hodge modules when considering right Z-modules. As
noted at the beginning of Section 2.1, these conventions may differ if we want to use left

Z-modules instead. For convenience, we will list here those conventions for left Z-modules.

Tate Twist: Let (M, F) be a filtered Zx-module. Then we define (M, F')(k) for any
k € Z, the Tate twist of (M, F') by k, to be (M, F[k]), where F[k],(M) = F,_,(M).

Smooth pullbacks: See Remark (4.4.2) and Formula (2.17.3) in [Sai90]. Let p: X xY - Y
be a smooth surjective morphism of relative dimension r = dim X between smooth varieties.
Let M = p*(M) as an 0-module (which is also the Z-module pullback, see [HTT08, Sect.
1.3)). If (M, F) is a filtered left Zy-module, let F, M = p*(F,M).

If M is a mixed Hodge module with underlying filtered Zy-module M, then the pullback
p*(M) e DPMHM(X xY') has underlying filtered Zx,y-module

(M, F.) (3.1.1)
lying in cohomological degree r, and p'(M) € DPMHM(Y') has underlying filtered Zx.y-
module given by

(M, E[r]) (3.1.2)
lying in cohomological degree —r. The weight filtration is given by
Wap*(M)[r] = p* (We M)

Wop'(M)[=r] = p* (Were M).

Nearby and Vanishing Cycles: Let X = {t =0} €Y be a smooth hypersurface defined by

the global function ¢. Let M be a holonomic Zy-module. We define
Yia(M) = gr¥ (M) for Ae [-1,0), ¢ a(M) =1 a(M) for X e (-1,0) and ¢;1(M) = gry (M),
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where V*M is the V-filtration of M along X.

If (M, F) is a filtered holonomic Zx-module, then the filtration on nearby and vanishing

cycles is defined to be

F,VAM
F, VoM

FuVOM

Bl M) = Fro VM

for Ae[-1,0], and F,¢,1(M)= (3.1.3)

Just as the Hodge filtration includes a shift based on if A =1 or A € (0,1), so does the
weight filtration (see [Schl4, Sect. 20]. We make note of it here for later use: the weight
filtration Weg; x(M) for (M, W,) a Z-module underlying a mixed Hodge module is defined
to be the relative monodromy filtration (as defined in Subsection 3.5 above) of Le¢; (M)

along the nilpotent operator N = 0;t — A. here, Loy (M) is defined as

Lipdii(M) = gt% (WeM), and Lo a(M) = gry (Wi M) for X e (-1,0). (3.1.4)

3.2 Normal crossing type

For the codimension one case, it is essentially immediate from the definition that the maps
t:VeM —» VoM (resp. 0, : gré*! M — gre M) are isomorphisms for all a # 0. The following
example shows that, for codimension larger than one, the correct generalization of this

property should concern Koszul-like complexes in the tq,... ¢, (resp. O ,..., 0, ).

Let M be an algebraic regular holonomic left Ds-module of normal crossing type along
the two axes on A?, where D, is the Weyl algebra over A2. For details on normal crossing
type modules, see [Sai90, Section 3]. Let (z,y) be the coordinate system on A2. Define
MB =ker(0,x — ) nker(dyy — f)= for (o, B) € Q2. Because of the assumption that M is
of normal crossing type, we have the identity

p M>F=M
a,BeQ?

and each M®# is a finite dimensional vector space over C. Then one can easily check the
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V-filtration along the origin is given by

VM= @ M*P,

a+B>k

and gr{‘}zgr‘ﬁ/y/\/l = M*8 where V, M is the V-filtration along {z = 0} and V,M is the V-

filtration along {y = 0}. Then the double complex

b M — s it M Mo 2y pgoeis
ly ly = @ ly ly (3.2.1)
a+B=k
gr€+1M T gr]‘g;.QM Ma,ﬁ+1 L) Ma+1,ﬁ+1

is exact if k # 0 because one of x and y must be bijective in a summand by the properties of

V-filtration in codimension one. If k =0, the above double complex is quasi-isomorphic to

MO0 Ty AqLO
L L
MOL Ty AqLL
which is isomorphic to i, M. Since the total complex of the double complex is just the Koszul

complex

Y
gr@M ( 7y) (gr]‘(:;—l./\/l)Q (—x) gr]‘€/+2/\/l’

we proved a version of generalization of the properties of V-filtration in codimension one that
the above Koszul complex is isomorphic to i, M when k = 0 and is exact when k # 0. The

similar statement regarding the complex

(%)

82,0
grir2 M (—y; (gr"“/“/\/l)2 — gry M

is left to the readers.

If (M, L) underlies a mixed Hodge module of normal crossing type where L is the weight
filtration then M*# carries a relative mondromy filtration W = W(0,x + 0,y — o — 5, LM*5).
In fact, we have the relation W = W (0,2 —a, W (9,y - 5, L)) by [Sai90, p. 3] since we assume

M is of normal crossing type. It follows that, if & = 0, the result of applying gr'¥' to the
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complex (3.2.1) is quasi-isomorphic to

orW MO0 —Z 5 opW A[10

b b

oW MO Ty oy W AqLI
but the upper-horizontal and left-vertical morphisms are zero by [Sai90, p. 1]. This is the

motivation for using mixed Hodge complexes in Theorem 1.

3.3 Topological properties of V-filtration

In this section we first prove some basic properties of V-filtrations along a smooth subvariety.
The analogous statements for a codimension 1 subvariety appear in [Sai88, Section 3]. Now let
us fix the notation. Let X be a smooth variety and Z be a smooth subvariety of codimension
r globally defined by regular functions ¢y, s, ...,t.. Assume there exist global vector fields
01,0, ...,0, dual to the 1-forms dtq,dts,...,dt,. Let M be a right holonomic Zx-module
along Z and V,M be the V-filtration along Z. Recall that we have introduced the following
notation: for a right holonomic Zx-module M, we define

Ay M) ={V M > (Vo ytM) = - >V M}, in degrees 0,1,...,7;

By(M) = {ng/\/l = (gr¥ M) - e grg_r/\/l}, in degrees 0,1,...,7;

Coa(M) = {grl_ M > (gr}_, ;M) > > gr¥ M}, in degrees —r,—r+1,...,0.

Theorem 3.3.1. The complexes B,(M) and Co(M) are exact for a # 0.
Proof. We shall construct a retraction on the complex B, (M), i.e. a series of morphisms
. \% M (2) \% M (Zfl)
Se - (gra—Z ) - (gra—ﬁ+1 )

such that sy ody+dy_1 08, =6+ where d is the differential of the complex B,(M). Note

that the collection {# + ¢} gives an endomorphism of the complex B,(M). Let
(gro M) = @grg—lMei
i=1
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where eq,e,, ..., e, is a standard basis such that the Koszul differential works as

,
de(neiy Nei, A Nej,) = Znti € Neiy Nejy Ao Nej,,
i1

where 7 is a local section of gr¥ ,M. Now we can define the morphism

,
se(ney Nejy N Nej,) = Znﬁj e;(eil ANejy N NEj,),
j=1
where {e},e5,...,er} is the dual basis. It follows that

(sgs10dp+dp10Sp)ner Aeg A Aey

=Se1 Y Mtiei AerAeg A Aeg+dey Y ndip(0+L—1)€;(er Aeg A Aey)

i1 j=1
T T T T
* *
= Z ntiogep(einepAeg A Aeg) + Z Znajtaea nei(er Aeg A Aey)
k=1i=1 a=1j=1
T
=n| Y t:0;+ ) exnes A ney
i1

=n(0+L) e Aeg A Aey.

Because 6 + ¢ = (0 - (aw—/{)) + «, the scalar multiplication by « is equal to the nilpotent
operator 0 — (o — ¢) on the ¢-th cohomology of B,(M). This can happen for « # 0 if and only

if the ¢-th cohomology vanishes. We conclude that the complex B, (M) is exact for a # 0.

The proof of the exactness of the complex C, (M) is similar and we leave the rest of the

proof to the readers. O

Theorem 3.3.2. The complex A,(M) is exact for a <0.

Proof. Let H be the hypersurface defined ¢; =0, let i: H - X be the closed immersion and

j: X N H — X be the open immersion. Considering the distinguished triangle
i M > M > . M > i M[1]

in the derived category of holonomic Zx-modules, the problem is reduced to two cases: (a)

M = M(+H) and (b) M = HOLM.
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(a) Suppose that M = M(*H), then the right multiplication by ¢; is a bijection on M.
Consider another filtration U,M =V, 1 Mt;'. We find that U, M also satisfies the definition

of the V-filtration, which forces, by the uniqueness of V-filtration,
U M=V M=V, Mt"

In other words, we have a bijection t; : V,M - V,_1 M. By the property of Koszul complex,

it follows that A,(M) is exact for any a.

(b) Suppose that M = HY M, then by Kashiwara’s equivalence, we have M = N[9,] for
some holonomic Zy-module N. It is obvious to verify (see Example 3.1.1) the V-filtration of
M is given by

VoM =Y Vo NO}

k>0
for any «, where V,\ is the V-filtration of A along Z. The complex in A,(M) is the same

as the total complex of of the double complex

-

Va_k/\/'af S (Va_k_lj\/af)’”‘l > oo > a_k_m/\/'af

kZ;) iﬁ l/tl iﬁ
Va,k,lj\/'ﬁf — (Va,k,QNﬁf)T_l . > a,k,rf\/'ﬁf.

Notice that the horizontal complexes are the Koszul complexes induced by to,%3,..., 1,

~

Aoc—i(N) = {Va—iN — (Va—i—lN)r_l — o — Va_i_r,q_l./\/’}.
for i = k,k + 1. By an induction argument on the dimension, we conclude the proof. O]
We give some elementary applications of Theorem 3.3.1 and Theorem 3.3.2. As a
consequence we give a criterion for when M has strict support decomposition along 7.
Corollary 3.3.3. A Zx-module M with a V -filtration along Z has no submodules supported

on Z if and only if gry M 5 @;_, gr¥, M is injective.

Proof. If m € M is such that mt; = 0 for all 7, then m € VoM. Indeed, m € VA\M for some

AeQ. If A<0, we are done. Otherwise, considering the short exact sequence
0—-> An(M) > A\(M) - By(M) -0,
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by acyclicity of B_y(M) for X # 0, the left-most map being injective implies m € V.y, M. Since
the V-filtratoin is desrete, by induction we know that m € VoM. This means that M has no

submodules supported on Z if and only if N;_; ker(¢; : VoM — V_1 M) vanishes.

Since A.o(M) is acyclic, it follows from the short exact sequence and the snake lemma

that Nj_ ker(t; : grg M - gr¥; M) = N ker(¢; : VoM — V3 M), which concludes the

proof. n

Corollary 3.3.4. Let M’ be the smallest submodule of M such that M'|; 2= M|y. Then

MM’ 2 i, coker (GB gr’, M &, gry ) .
i=1
In particular, the morphism @, gr¥,M — gr¥ M is surjective if and only if M has no

quotients supported on Z.

Proof. Note that M’ = V\M - Px for any X < 0. Indeed, we know that VA M’ =V, M if A <0,
as they restrict to the same module on X — Z. Thus, V\ M - 9x = V\M'- 9y € M'. For the
other inclusion, note that (VAM - Zx)|y = M|y, because the V-filtration is all of M away
from Z. Hence, by minimality of M’, we get the desired equality.

Note that M /M’ is supported on Z, so by Kashiwara’s equivalence M/ M’ =i, gr¥ (M/M’),
where i : Z - X is the inclusion. We know gr} (M /M) = grly/ (M) /gry (M') and

VoM n M’

%4 N _
grO(M)_ V<0M 9

because V. oM =V oM’ and V.M n M’ = V,M’ by the uniqueness of the V-filtration. Thus,

the claim reduces to proving

%M nM' = Z V_l./\/lati + ‘/;()M
i=1

In fact, we can define inductively a filtration U, M’ by UM’ = ¥7_, Ux_1 M0, + UM
for A >0 and UM’ = V; M’ for X <0. Note that VA M’ = V; M for X\ <0 is discrete so U, M’
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is well-defined. Since M’ =V_ oM - Px, the filtration U, M is exhausted. Then it is easy to
check that U, M’ satisfies all the characterization of V-filtration, i.e. U, M’ = V, M’ which

concludes the proof. O

We prove here an analogue of the fact from the codimension one case that you can test if

a module has a strict support decomposition by looking at ¢, as f € Ox varies.

Corollary 3.3.5. Let M be a Px-module admitting a V -filtration along Z. Then there
exists a decomposition M = M' & M" with supp(M") € Z and M" having no submodules or

quotient modules supported on Z if and only if

gry (M) = (ﬁker(ti s grg M~ gr‘—/lM) S (Z gr‘—/lMati) .
i=1

i=1

Proof. For the “only if” part, by the previous lemma we know gry’ M” = im(d,,) and
T ker(t; s gry M — gr¥, M) = 0. Also, by Kashiwara’s equivalence, we know M’ satisfies

gr¥, M’ =0. By taking gr¥ of the equality M = M’ & M", we conclude.

For the other implication, note that we must certainly set M’ = H% (M), as this is the
maximal submodule of M supported on Z. Let M"” = VoM - Px, which we know is the

smallest submodule such that M" |y = M|y, and satisfies
T 8t‘
MJM" =i, (coker (EB gr’, M —5 grg./\/l) :
i=1

By the assumption, this cokernel is isomorphic to N, ker (¢; : gryy M — gr¥, M), and so

MIM" =2 M. But the inclusion M’ - M splits this quotient map, yielding the direct sum
MzMeo M,
which proves the claim. O

For convenience, denote by B(M) = By(M) and C(M) = Cy(M). To close this section,

we give a comparison of the restriction i* M and #'M with B(M) and C(M) for i: Z - X.
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Theorem 3.3.6. With notation as above, the complex B(M) (resp. C(M)) is isomorphic
to ity M (resp. i*M) in Db (D), where iz : Z — X is the closed embedding.

Proof. Let Z; be the hypersurface defined by ¢; = 0. Then the complex iz,i, M can be
expressed by the Koszul complex
K(M, Zl, Zg, ceey ZT) = {M g @M(*Zz) = M (* ZZZ)} (331)
i=1 i=1
placed in degrees 0, 1, ..., where the morphism is induced by natural morphisms N - N (*Z;)
for any regular holonomic Zx-module V. Similarly, the complex iz,i;M can be expressed

by the Koszul complex

i=1 i=1
placed in degree —r,—r +1,...,0, where the morphism is induced by the natural morphisms

N(1Z;) = N for any regular holonomic Zx-module N.

Lemma 3.3.7. Let v : X — X xA" be the graph embedding of f andig: H=Xx{0} > X xA"

be the closed embedding of the central fiber. Then we have natural isomorphisms

1 P)/+K(M7Z17Z27 e '7Z7‘) = Z'H+[((-/\/17217Z27 s 7ZT) and

2. 7+K!(M7 Zl> Z27 R ZT) = iH+K!(M7 Zla ZQ: R Z’r)
in the derived category of reqular holonomic Px.ar-modules.

Proof of the lemma. Let M = M ® wyr be the pullback of M to X x A”. Denote by D; be
the divisor on X x A" defined by f; —t; =0 for j =1,2,...,r and denote by H; be the divisor
on X x A" defined by t; = 0. Then we have

K(M,Dy,Ds,....D,) =~y M and K (M,H, Hy,..,H,)~ig M.
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It follows that
K(M,Dy,Dy,...,D;, Hi,Hy,...,H,)=K(K(M,Dy,Ds,...,D,),H,Hs,... H,)
~ K(v.M,H, H,,... H)
~y, K(M, 21,2y, ...,2,).
On the other hand,
K(M,Dy,Dy,...,D,, Hy,Hy,... . H)=K(K(M,H,H,,...,H,),D,D,,...,D,)
~ K(ig,M,Dy,Ds,...,D,)
g, K(M, 21, 2y, ... Z,).

We conclude the first statement of the lemma. The second statement is similar, we leave it

to the reader. ]

Returning to the proof of the theorem, denote by Bg(N) = B(N) if we want to emphasize
the V-filtration is along a subvariety S. Since taking grY is exact for the V-filtration along

H, by the above lemma,
gr}x/’y-*—K(Ma Zla ZQ; R ZT) = gr(‘x/ZH+K(Ma Zla ZQ) RN ZT)
It follows from the fact that iy, K(M,Z1, Zs, ..., Z,.) is supported on H that

0, a < 0;
ngiH+K(M, Zl, ZQ, ceey Zr) =
K(M,Zl,Zg,...,Zr), a=0.
Therefore, the complex By (v, K(M, Zy,Zs, ..., Z,)) is isomorphic to K(M, 2y, Zs, ..., Z,).
Due to the relation Byv, =1z, Bz, we have the isomorphism
iZ+Bz(K(M, Zl, ZQ, ceey Z,«)) jad K(M, Z17 ZQ, ey Zr)

Then the theorem follows from Bz (K (M, Z, Zs,...,Z,)) ~ Bz(M). This is because

By (K(M,Zy, Zo,.... 2,)) = {BZ(M) = @ Bs(M(+2;)) >~ By (/\/l ( ; z))}
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and Bz(N(#Z;)) is exact for any regular holonomic Zx-module N and any i = 1,2,...,r by
part (a) in the proof of Theorem 3.3.2.
The statement about C'(M) just follows from applying Proposition 3.3.8 to 77X - Z

and Theorem 3.3.1. Indeed, Sp(M) is monodromic on Tz X, and it is not hard to show that

a*(Sp(M)) =i*(M), where o : Z - Tz X is the zero section of the normal bundle. O

Proposition 3.3.8 ([Gin86b, Proposition 10.4]). For a monodromic Pg-module M, there

are quasi-i.somorphisms

pM=i*M, pM=itM

where p: B - Z 1s a vector bundle and i : Z — E is the zero section.

Remark 3.3.9. Lemma 3.3.7 also holds in the derived category of mixed Hodge modules. If
M underlies a mixed Hodge module, then M in the proof of Lemma 3.3.7 underlies a mixed
Hodge module as well. It follows that (3.3.1) and (3.3.2) are complexes of mixed Hodge
modules by Saito’s theory [Sai90] so every isomorphism in the proof of Lemma 3.3.7 extends

to the derived category of mixed Hodge modules.

Remark 3.3.10. Using the previous theorem, we can rephrase the results of Lemma 3.3.5 and
Lemma 3.3.4 respectively as H%'M =0 iff Hom (i, N, M) =0 for all A/ supported on Z, and
H0* M =0 iff Hom(M, i,N) = 0 for all N supported on Z.

We can describe the vanishing of other cohomologies in terms of Ext groups, similar to
the characterization of vanishing of local cohomology for &-modules. Specifically, the result

18

HI*M=0forall 0<j <k <= Ext/(M,i,N) =0 for all ' supported on Z,0<j <k

HIi' M =0for all 0< j <k <= Ext’(i,N, M) =0 for all N supported on Z,0< j < k.

The proofs of these are not hard, and we leave them to the reader.
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3.4 Deformation to the Normal Cone

This section is devoted to studying the specialization construction, which goes through the
deformation to the normal cone. See for example, Section 2.30 of [Sai90] and Section 1.3 of

[BMS06].

Let Z ¢ X be defined by the ideal sheaf 7, € Oy, and consider the variety
X = Specy (EBI; ® u’) ,
€7
along with the smooth morphism u: X - A! = Spec(C[u]). The fiber u~1(0) is isomorphic
to Tz X, the normal cone of Z in X, and so we call this a deformation to the normal cone.
Over the open subset G,, := A! — {0}, the map is isomorphic to the smooth projection
X x G, > G,,. Wee will also consider the smooth morphism p: X x G,, = X of relative
dimension 1. Let j : X x G,, = X be the open immersion. It is the complement of the smooth

divisor Tz X = u~1(0).

XxG, =X~

|

G,

—— TyX X214 X
l XJ lp
(0 X

For any M € MHM(X), define Sp(M) := ¢, j. (p*(M)[-1]) e MHM(T,X). Here the shift

B <

by [-1] comes from the relative dimension of p. As explained in [BMS06], the underlying

2-module is

SpM)= @ gy M,

x€Qn[0,1)
where we take the associated graded of V*M, the V-filtration along Z of the Zx-module M

underlying M.

3.5 Admissiblity

For convenience, we recall the definition of the relative monodromy filtration, see Section 1

of [Sai90] for details.
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Let L be a finite increasing filtration on an object M € C, an exact category which we take
to be embedded in some abelian category A. Let S :C — C be an additive automorphism of

the category, which extends to A.

Let N :(M,L) - S~Y(M, L) be a filtered morphism such that N? =0 for ¢ > 0. Here the
filtration L on S7M is defined as Ly(S7M) = Si(LiM) for any j € Z,k € Z. Then there is at
most one finite, increasing filtration W = W(N, L) of (M, L), called the relative monodromy

filtration which satisfies:

1. N:(M;L,W)— S (M;L,WI[2]) is a filtered morphism,

2. Ni:gr)V ort M — gr}V orl M is an isomorphism for all i > 0.

Here, recall that an increasing filtration is shifted as W{[jl. = W,_;. We shall take C the

category of filtered Z-modules and S the shifting of the filtration.

In the theory of mixed Hodge modules, the objects are defined to satisfy the admissble
condition: if (M, W) is a mixed Hodge module with its weight filtration and g € Ox is any

locally defined regular function, then

1. the relative monodromy filtration for ,(M, W) exists for the nilpotent monodromy
operator on this nearby cycle, with L; = ¢,(W;;1M). Similarly, one assumes the
existence of the relative monodromy filtration on ¢4 (M, W), with L; = ¢,1(W; M)

defined without a shift.

2. the three filtrations are compatible

0— FEVaWi—lM - FEVaWiM - Fﬁvagrva - 07

where V' is the V-filtration along g.

In the setting of higher codimension, say Z is a smooth subvariety defined by t4,...,¢,,

it is an easy exercise using the specialization construction to see that the V-filtration along
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Z satisfies a similar property. The associated graded modules grY (M) also have nilpotent

operators, given by 0 — x = Y7, t;0, — X

Lemma 3.5.1. Suppose that the triple (M, F, W) underlies a graded polarizable mized Hodge

module, then the three filtrations F, V. W are compatible, i.e., the following sequence is exact

0 - VWM - E,V,2WM - E,V,grt¥ M - 0.

Proof. We first recall the setting in Section 3.4: let X = Specx (Xiez, 7., -u) be the defor-
mation to the normal cone along Z, where Z is the ideal sheaf of Z and Z) = 0 where
i<0. Let p: X > X, p: X* > X be the two structure morphisms and j : X* - X is the
open immersion. Let M = j,p*M. Then by Saito’s theory [Sai90], there exist filtrations
F,M and W,M on M such that the triple (M, F,M, W./\;l) underlies a graded polarizable
mixed Hodge module and that j*FoM = p*Fo.y M and j*W.M = p*W. M. It follows from

the compatibility for mixed Hodge modules of the codimension-one case that
0 - FV, Wi M - EV,2WiM - FVaerl’ M - 0, (3.5.1)

where V, is the V-filtration along 77 X. Since V. only depends on the restriction of a
2-module to X*, it, follows that V,W;M = Vodsp*WiM for a < 0. On the other hand, the

Hodge filtration on V,, for oo < 0 can be calculated by
EV WM = FV Wijip* M = j.p* Fra WM 0 Voo p* Wi M.

We obtain, for a <0,

P FVaWiM = 3" Fria Vo WiM - .

keZ

Similarly, we have, for o <0,
p*FgVagr}’V/\;l = Z FiVriigry M-k,
keZ
Applying p, to the sequence (3.5.1) for a > 0 yields an exact sequence on X:
0— Z FVoirpiaWisaM k> Z FVoirit WiM k- Z FZVa+k+1gr¥VM uf 0.
keZ keZ keZ
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Since the morphisms in the above sequence respect the grading, we have
0 - FV W, M = E,V WM - F,V,ert¥ M = 0
for every a € Q. We conclude the proof. m

Lemma 3.5.2. If (M, F,W) is a bifiltered Px-module underlying a mized Hodge module
with the weight filtration W, then the relative monodromy filtration W (6 - x, L) on gry M

exists where Lygry M = gr¥ (W, M) is induced by the weight filtration.

Proof. The relative monodromy filtration W = W (ud, — a, L) exists on gr’¥ M for a e [-1,0]
because M is a mixed Hodge module. Then applying p., since Wkgrg/\;l is invariant under
the C*-action u0,,
pWigtd M = > Wity M-,
i€l
induces a filtration W on each gr” . M. We easily check that Wgr” . M is the relative

a+i+1 a+i+1

monodromy filtration W (6 —a-i-1,L) if & <0. Indeed, we have seen that, for o < 0

P8lLy8Y: 8l M = D griligrigra M- u'.
i€Z
The isomorphism (ud, — a)* : gr}” erk grgj\;l - gt ”grfgrgf/\;l commutes with the C*-action
so it induces an isomorphism on each graded piece after we apply p.. O

Lemma 3.5.3. Let (M, F) be a filtered 2-module underlying a mized Hodge modules over

projective smooth variety Y x X. Let p: Y x X — X be the second projection, Then

1. The spectral sequence associated to the relative monodromy filtration on p,gry M de-

generates at the second page Es in the category of filtered 2-modules.

2. If (M, F) underlies a polarizable Hodge module, then EY? is a filtered summand of
EM.

3. If (M, F) underlies a polarizable Hodge module and W grY M is the monodromy filtration,
then the image of H'p, Wigry M in Hp.gr} M is the monodromy filtration of
gry Hip, M = Hip,gry M.
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4. We have the decomposition in the filtered derived category of Z-modules
p(ry gy M, F) = D(H'p.gr gry M, F)[-(]
¢
where WgrY M is the relative monodromy filtration.

Proof. Because the spectral sequence associated to the relative monodromy filtration Wgr;//\;l
degenerates at the second page, the same is true for gry M thanks to the fact that p, is an
exact functor. Since polarizable Hodge modules are semisimple [Sai88, p. 5.2.13], EY? is a
summand of E7"? for the spectral sequence associated to the relative monodromy filtration
on grx./\;l. Again because p, is exact, the same is true for the spectral sequence associatd to
WgrY M. Lastly, the image of HEW.gr;/./\;l in H'gry M is the monodromy filtration [Sai88,
p. 5.3.4]. Applying p, for x >0 we conclude (¢). For (d), since grwgrg./\;l is a polarizable

Hodge module, we have the decomposition theorem
ﬁ+(grzvgr¥./\;l, F)~ @(H€p+grzvgr¥/\;l, F)[-1].
¢
Applying p, for x >0 we conclude the proof. O]

Lemma 3.5.4. For any short exact sequence of mixed Hodge modules
0O->M ->M->M"-0,
the induced sequence
0— (gry M, F,W) - (gt M, FE,W) - (gt M, F, W) = 0
15 bifiltered exact, where W is the relative monodromy filtration.
Proof. By the assumption and [Sai90, p. 2.5, we have
0 (gry M',F,W) - (grt¥ M, F,W) - (gr’ M", F,W) - 0

is exact for € [-1,0). Then the remaining goes like the proof of the above two Lemmas. [J
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3.6 Proof of the Theorem G

Recall our setting: let X — A" be a smooth regular map of smooth varietes where A" is the
affine space of dimension r and let Z be the fiber over the origin. Suppose (t1,t2,...,t,) is a
coordinate system on the A" term and assume there exist global vector fields 0y, 0s,...,0, on

X dual to the one-forms dtq,dts, ..., dt,.

We restate Theorem G in terms of right Z-modules: for any right filtered regular holonomic

and Zx-module M and rational number «, define Koszul-type filtered complexes
AuM) = { (VML) 2 @OV ML) B b (Vo )|
i=1

placed in degrees 0,1,...,r,

Ba(M) - {<grzM,F> Pl M) <ng_TM,F>}

i=1

as the quotient A,/A., and

CoM) = et M FT) 2 Dt M P - 1]) % e (M) |
in degrees —r,—r+1,...,0, where V,M is the V-filtration along Z and F[i] = Fj;.
Theorem 3.6.1. With the above notation, assume that (M, F,M) is a filtered holonomic

Dx -module underlying a mized Hodge module. Then

1. the complex FyA,(M) is exact for a<0;

2. the complex Fy;C,(M) is exact for a> 0.

Proof. By Lemma 3.5.1, we only need to prove the case when (M, F') underlies a polarizable
Hodge module. If the support of M is contained in Z, then by Kashiwara’s equivalence,
there exists a Hodge module (N, F,N') on Z such that (M, F,M) =iy (N, FJN). One can

easily check that (see Example 3.1.1)

Z Fg_il_b_..._ir./\/’ail 8;2"'8?", o 2> 0;
FgV ./\/l — 11+ ++ir<
(0%
07 a < 0.
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Thus, (gry M, F.gry’ M) recovers the filtered Zz-module (N, F,N) and gry M vanishes
for a < 0. The statement (a) is clear now. The statement (b) follows from the fact that

01,05, ...,0, form a regular sequence on the polynomial ring C[dy, s, ..., 0,].

Now we are in the case that no submodule of M is supported in Z. Let X denote the
blowup of X along Z, with exceptional divisor E. Let (/T/l\ , FM ) be the minimal extension
of (M, F,M)|x.z over E on X. By the structure theorem of Hodge modules (see Theorem
3.1.5), (M, F,M) underlies a polarizable Hodge module. Then by the decomposition theorem
of polarizable Hodge modules, the filtered holonomic Zx-module (M, F,M) is a direct
summand of HO7, (M, F,M). Thus, it suffices to prove the theorem for #Om, (M, F,M). Let
7:X > X be the blow up of X along Z and F = 7n~1Z be the exceptional divisor. Consider

the factorization 7 =i, o p and the Cartesian diagram

F— s Xx7Z —7

where i, : X > X x X is the graph embedding and p: X x X - X is the second projection.
Denote by I',; the graph of 7. Since the problem is local on X, we can assume that X is affine
and that (t1,%s,...,t,) extends to a coordinate system (t,s) = (t1,t2,...,tr, 81,82, -, Sn_r)

on X. Note that the blow-up is given by

X =Proj y @I, where I is generated by ty,ts,. .., t,.

i>0
Let u = [uy : ug : --+ : u,] be the homogeneous coordinates on P™'. Then X is a sub-
variety of P! defined by w;t; — ujt; = 0 for any 1 < i,j < r. Denote also by (z,y) =

(r1,%2, .., Tr, Y1, - - -, Ynr) the parameter (¢,s) on X so that
m(u,t,s) = (t,s) = (z,y).
Define a subvariety
H={(u,t,s,2,y) € X x X :w;x; —ujz; = 0 for any 1 <i,j <r}
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with codimension 7 — 1 in X x X. Since the graph I'; is defined by equations ¢t = z and s =y,
it is contained in H. Therefore, we can further factor the graph embedding i, = f o g to get a

Cartesian diagram

<)

_— Z:

Dy —— I

X x
s H —1

where ¢ : X - H and f: H - X x X are the natural embeddings. Note that X x Z is a

X Z
|
x X

g

<)

hypersurface in H.

The claim is that the Koszul complex
FrAo(in, M) = {FpViin M > (FiVrin, M) = = FEVi_ i, M} (3.6.1)

is exact if a < 0 where V,i,, M is the V-filtration of M along X x Z. The exactness of the
complex 3.6.1 is local so without loss of generality, we restrict everything to the open subset
U x X where U is the open subset of X defined u; # 0. The blow-up over U is given in

coordinates by
T (tl,U27U3, ceoyUpy 81,892, .- 75n—r) d (tl,t1U2,t1UQ, Ce ,tlur,sl, S9,... 75n—r)'

To give a concrete description of iﬂ/T/T , we make the following local coordinate charge:

tl fori=1
w; = , p;=s; forl1<i<n-r,
w; for2<i<r

xr; fori=1
Zi = , ¢ =y; forl<i<n-r
r;i—u;x; for2<i<r

so that 29, z3,..., 2. are the local defining equations of H. It follows from i“./T/l\ = f, g+/T/l\

that

i M= g M[0.,0s,...,0.,].
In fact, a simple calculation using the the chain rule indicates that
sy =0py=0oy 0y =0y, =05, ..., 0, =0, =0.
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Then FgVaiH/T/l\ can be written as

NS FraVarg MO0, (3.6.2)

k>0 as+ag+--ar=k

for every a where V,g, M is the V-filtration along X x Z. Notice that the morphism
FVogiM —"= FiVo19, M

is bijective when « < 0 because V,g, M is the V-filtration along X x Z defined by {1 =0} in

H. We deduce that the morphism
21t Fp Vi 1ge MOS0 --0% — Fy Vi 19, MOS0 0%

is also bijective for v <0 and k > 0. It follows that the Koszul complex (3.6.1) is exact when

a<0.

Similarly, the complex
FiCo(in, M) = {Fporgry_in M > (Fpopirgrlpyin, M) = > Fgi¥ie M} (3.6.3)
is exact for a > 0. By the expression (3.6.2),

Fglic M= Y Fogry g, Moyo5s-0%.

k20 ag+ag+--ar=k
Since for each 2 <7 <7 the morphism

0+ Fypgr! g . MOS29%...0% — Fy_ery g, M2 ...0% .90
is bijective, the complex (3.6.3) is quasi-isomorphic to,

{Fg,lgrg_lgyT/l\ SN FggrggJT/l\}, placed in degrees r —1,r.

which is exact for a > 0 also because again V, g+./T/l\ is the V-filtration along the hypersurface

XxZcH.
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It remains to prove the exactness of (3.6.1) and (3.6.3) are invariant under higher direct
image of p. This is Theorem 3.6.2 below. Applying Theorem 3.6.2 to (3.6.1) gives us that

the Koszul complex
FeAa(H puiz, M)
=BV H pin M~ (EVard Hepyin M) = oo > FVo  HEpig M)
is exact for a < 0 and every k where V,H¥p,i., M is the V-filtration along Z. Due to
Hopiin, = Hrm,,

we have finished the proof of the first statement in Theorem G. The second statement follows

similarly and we leave it to the readers. O]

Theorem 3.6.2. Let X be a nonsingular quasi-projective variety and Y be an affine space
with Z an affine subspace defined by xq1,xs,...,x,.. Let (M, F) be a filtered holonomic
Dx xy -module underlying a polarizable Hodge module. Suppose that the second projection
p: X xY =Y is projective on the support of M. Let VoM be the V -filtration along p~*(Z).
Let V,HFp, M be the V -filtration along Z for every k.

1. If the complex
FyAu(M) ={F,V_M - (F,Vy yaM)" > - > F,V, .M} (3.6.4)
is exact for some a, then the complex FyAL(HFp, M) is also exact for every k.
2. Similarly, if the Koszul complex
FiCo(M) = {Frpgrl M > (Fropgrl_, M) > > Fgrl M} (3.6.5)
is exact for some v, then the complex FyCo(H*p, M) is exact for every k.
Proof. Because of the bistrictness proved in [BMS06] on the complex p, (M, V4, F,) =

(Rp* (M ® /\ gXxy/y) ,Rp* (‘/.M ® /\ L7.)(><Y/Y) 7Rpx- (Fo+*M ® /\ yXXY/Y)) )
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we know that the k-th cohomology of H*F,V,p,M = RFp, (FZHVQM QN 3XXY/Y) is
canonically isomorphic to F,V,H*p, M. It follows from the Hard Lefschetz theorem on the

direct image of polarizable Hodge modules (see part (b) of Theorem 3.1.3) that the morphism
k
(27n/—1L)  FVaH *p, M — o VaHep, M.

is an isomorphism induced by the Lefschetz operator L = wa of a hyperplane class w on X.

Therefore, we have the decomposition

FEVap+M = @ FZVaHkp+M[_k]

keZ
in the bounded derived category D , (Y, Oy) of Y. If we apply p, on (3.6.4), by the above

decomposition, we obtain

Fppi Ag(M) ~ @ FpAo(HFp M)[-k]

keZ

in D?

coh

(Y, Oy). But by the assumption of the lemma, the complex Fyp, A,(M) is exact. It

follows that each summand
FZAa(%kp+M) = {FZVa%kp+M - (FZVa—lHkp+M)T > > szafererM}

in the decomposition is exact. We have thus proved (a).

The proof of (2) is similar. Since we still have the isomorphism from the Hard Lefschetz

theorem

k
(27r\/—1L) : FogrtV H*p M — Fy_pgrY HEp M,

we get a decomposition

i F,Co(M) = @ F,Co(HEp, M)[-E]

keZ

in DY

coh

(Y, Oy). The remaining goes like in (a) and is left to the readers. O

Remark 3.6.3. One can bypass the decomposition theorem in the above proof by the argument

in Theorem 3.7.5 and the double complexes (3.7.4) and (3.7.6)
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3.7 Proof of the Theorem 1

In this section we prove Theorem I and it is more convenient to work with right Z-modules.
Recall that the convention for right Z-modules is that the V-filtration be indexed increasingly.
The proof is split into three parts: Theorem 3.7.1, Theorem 3.7.5 and Theorem 3.7.7. For
simplicity, we denote by Bz(M) = By(M) and Cz(M) = Cy(M) to emphasize the V-
filtration is along the smooth subvariety Z. If the V-filtration is clear from the context, we

will simply use the notation B(M) or C'(M).

3.7.1 Mixed Hodge complex

We first prove that for M underlying a mixed Hodge module the complex B(M) together
with W induced by the relative monodromy filtration is a mixed Hodge complex. A mized
Hodge complez, roughly speaking, is a bifiltered complex of Z-modules (C, F, W), where F' is
a decreasing “Hodge” filtration by &-submodules and W is an increasing “weight” filtration
by Z-submodules with Q-structure (Cg,Wgy). These data should satisfy DR(C,W) =~
(Co, Wo) ®¢ C and that

gry C =~ gB Hegr]V O[-(]
ez

in the derived category of filtered Z-modules. Moreover, (H'gr}’ C, F') together with the
induced Q-structure underlies a polarizable Hodge module of weight k + ¢ for any k and /.

Theorem I(a) is restated as follows:

Theorem 3.7.1. Let M = (M, F,L,K) be a mized Hodge module on a smooth variety X as
in Theorem I and let Z be a smooth subvariety of X. Then Bz(M) together with the relative

monodromy filtration is a mized Hodge complex.

Proof. We first remark that B(M) carries a Q-structure. Indeed, by Theorem 3.3.1

DRzB(M) ~DRz(i'M) ~i'K &g C.
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In fact, if W is the filtration on B(M) induced by the monodromy filtration on each gr¥ M

relative to gr¥ LeM then W;B(M) also carries a Q-structure. This is because
DRzl'ZWkSp(M) ~ Z'ZWkSp(IC) ®qQ C, ig: 4 —>TzX

and i, W;Sp(M) ~ W B(M) by the fact that the retraction constructed in the proof of
Theorem 3.3.1 also preserves the filtration W B(M). Recall that Sp(M) is the specialization

of M introduced in 3.4.

Pure case. We first prove the case when (M, F,K) is a polarizable Hodge module of
weight w. If M is supported on Z then B(M) ~i,gry’ M in the (F,W)-bifiltered category
and therefore, the theorem follows easily. Now assume that the support of M is not contained
in Z. Let m: X - X be the blow up along Z and M be the minimal extension of M to X
from X — E ~ X — Z. Then we can factor the blow-up into the graph embedding followed by
the smooth projection

Xy Xxx 25 X
The proof consists of two steps:

Step 1. We show that B,-1 (im/\//T) is a mixed Hodge complex.

In fact, the complex B,1, (z',H./T/l\) together with the monodromy filtration is quasi-
isomorphic to Bg (/T/l\ ) locally, where E is the exceptional divisor of . Note that, although

E' is not defined by a global function, we can make the complex Bg (JT/l\ ) well-defined by
gy M® O(-E)|g - gr¥, M.

As we can see in the proof of Theorem 3.6.1: the formula (3.6.2) is compatible with the
monodromy filtration, i.e.
Fggrwgrgimx/l\: Z Z Fg_kgrwgrg_kg+f/l\8§23§3---8,‘?”
k>0 ag+az+--ar=Fk
But since Bg (f\/l\ ) is a mixed Hodge complex, and this property (like the property of being a

Hodge module) is local, it follows that B,-1 (im./T/l\ ) is also a mixed Hodge complex. Due to
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the decomposition theorem of polarizable Hodge modules, the module M is a summand of
HOp, i, M. Therefore, we reduce the proof to the following.

Step 2. We prove that if Bj,-1; (M) is a mixed Hodge complex for a polarizable Hodge
module M of weight w on Y x X, where p:Y x X — X is the second projection proper over

the support of M, then Bz (H!p, M) is a mixed Hodge complex of weight w + ¢ for any ¢ € Z.

In fact, we have

ps (g} Bpriz(M)) = @ p. (Higr) By12(M)) [i]

i€

« @ Wp. (Ml By (M) [-i -]

i,j€Z
in the derived category of filtered Z-modules. On the other hand, we also have the decompo-

sition in the derived category of filtered Z-modules by Lemma 3.5.3(d):

ps (gr}) Byiz(M)) = @ Fio[-1],

LeZ,

where 7} , = H'p,gr) B) , ,(M). This implies

Fro = PH Fro[-i] (3.7.1)

A
and H'Fy., is a polarizable Hodge module of weight w + k + ¢+ (. For each k we have a weight

spectral sequence

E (k) = H¥p gtV BY, (M) = E% (k) = grgHi+jp+B§_1Z(M)

-7 P

so that E7 (k) = Fk Note that by the bistrictness proved in [BMS06], we have

—5,J+j"
EQ (k) = gt B (M p. M).
We gather some facts deduced from the deformation to the normal bundle argument

(Lemma 3.5.3):

1. the spectral sequence degenerates at the second page;
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2. the induced filtration WH+ p+B;;,1 ,(M) is the monodromy filtration on
HiIp, BE (M) = (gr M ip, M)W
3. lastly, E27(k) is a summand of E/ (k) in the category of filtered Z-modules.

Therefore, the differential d; on the first page induces a double complex

d1 dl
= Flii1 —>7:ke—>5’:k 1041 —> =

Let T be the total complex of this double complex. Then by (3.7.1) and semisimplicity, T

decomposes into

EB{—>,H Frat o1 oy gy ' Fre Dy gy ' Fre-1,01 ﬂ>}[—Z]

o (3.7.2)
z@?‘[ﬁll}llfk_.’g“[—i - 7]

7,7

in the derived category of filtered Z-modules. On the other hand, by the claim (¢) above,

we also have another decomposition in the derived category:

T~ EBH Focere[-7]-

Since ’Hélfk_.,m. gry ]BZ(’H“JerM) the decomposition (3.7.2) implies grkW_].BZ(’l-l“ijrM)
decomposes into the direct sum of its cohomology in the derived category of filtered Z-modules
and the cohomology Higr)" By (H!p, M) is of weight w + ¢+ k +4. It is easy to see that the

decomposition is compatible with Q-structures and therefore, we conclude the proof.

Mized case. By Lemma 3.7.2 below, there exists a functorial splitting
grVary M = gr'grfer! M,

with respect to ti,ts,...,t, which implies gtV B(M) ~ gtV B(grt M). Therefore, we reduce

the proof to the case where M underlies a pure Hodge module. O]

We collect some corollaries of Deligne’s Theorem which we have already applied in the

previous theorem and will apply these results in the proof of Theorem 3.7.7. The proof is

135



based on [Sai90, p. 1.5] and a Theorem of Deligne 3.7.10. For the purpose of the exposition,

we postpone the proof to the end of this section.

Lemma 3.7.2. Let M, M’ be mized Hodge modules on a smooth variety X and V be the
V -filtration along a smooth subvariety Z. Let L be the filtration on grY induced by the weight

filtration and W = W (0 — «, L) be the relative monodromy filtration on gr¥ . Then we have:

1. For any local defining equation f of Z, the induced filtered morphism
fi(eWera M, F) > (gr'grg M, F)
splits into f: grarlegry M — grtWerlgr¥ M.
2. For any local vector fields & normal to Z, the induced filtered morphism
¢: (g gra M, F) > (g1 grg s M, F-1])
splits into & : (gr"erlegrY M, F) - (grtWerlgrV, M, F[-1]).
3 If T : M — M’ is a morphism of mixed Hodge modules, then the filtered morphism
gr'"' T (gr' gy M, F) > (gt gry M', F)

splits into grW'T : (grWerterY M, F) - (grWerlgr¥ M’ F).

Now we turn to the complex C'(M). The filtration W, C(M) also carries a Q-structure.
In fact, it follows from Proposition 3.3.8 and the fact that the retraction constructed in

Theorem 3.3.1 respects the filtration W that
DszkC(M) ~ DRZp+WkSp(M) o p*WkSp/C ®Q C

where p : T, X — Z is the projection. Therefore, we can simply modify the proof of

Theorem 3.7.1 to prove the following.
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Theorem 3.7.3. Let (M, F,L,K) be a mized Hodge module on a smooth variety X and Z
is a smooth subvariety. Then Cz(M) together with the relative monodromy filtration is also

a mized Hodge complex.

By a formal argument in [Del71b], we conclude:

Corollary 3.7.4. The Hodge spectral sequences of B(M) and C(M) degenerate at the first

page while the weight spectral sequences degenerate at the second page.

3.7.2 Comparison to the restriction functors

The goal of this part is to prove Theorem I(b):

Theorem 3.7.5. If (M, F) is a graded polarizable mized Hodge module then the complex
B(M) (resp. C(M)) is isomorphic to (' M, F) (resp. (i*M,F)) in the derived category of

filtered Z-modules with Q-structures.

Proof. Note that the Q-structure has already been handled in Theorem 3.7.1.

1. We first deal with the complex B(M). Recall that, as we introduced the proof of
Theorem 3.3.6, the functor i,7'M can be defined by the the Koszul complex in the derived

category of mixed Hodge modules (see the proof of [Sai90, Prop. 2.19]):
K(M)z{Me@M(*Zi)*-"*M(*Zzi)} (3.7.3)
i1

placed in degrees 0,1,...,r. Moreover, the complex K (M) is isomorphic to i,gry K (M) in

the derived category of (F,W)-bifiltered Z-modules because Lemma 3.3.7 also holds in the
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derived category of mixed Hodge modules. Consider the double complex BK(M):

gry M

00

~

~

> (gr‘_flM)’"

61

67—1

LLgM(xZ) —2s @7 (e, M(+Z;))"

s

~

gty M (5 Sy Z0) —2 (grV, M(x Sy Z))"

01

5r—1

01

~

6r—1

\
7

\

~

4

> gr¥ M

i1 gt M(*Z;)
(3.7.4)

~

grl, M(+ Xiey Zi)

whose uppermost row is BK%(M) = B(M) and leftmost column is BK (M) = gry K(M).
The total complex of BK (M) is (F, W)-bifiltered quasi-isomorphic to gry K (M) because
grV K (M) is (F,W)-bifiltered acyclic for a < 0 and Lemma 3.5.4. On the other hand, the
total complex of BK(M) is also F-filtered quasi-isomorphic to B(M) because each row
BK¥(M) is F-filtered acyclic when i # 0 by Corollary 3.7.4 and Theorem 3.3.6. We conclude
that gry K(M) and B(M) are isomorphic in the derived category of F-filtered Zz-modules.
But gry K (M) is (F, W)-bifiltered quasi-isomorphic to #'(M, F,W). We conclude the proof

of this part.

2. Next, we deal with the complex C(M). The functor i,i* M can be computed by the

the Koszul complex

K;(/\/l):{/\/l (!ZZi) —>'“—>EBM(!Z¢)—>M} (3.7.5)
i=1 i=1

placed in degrees —r, —=r+1, ..., 0. Moreover, the complex K(M) is isomorphic to i, gry K,(M)

in the derived category of (F,W)-bifiltered Z-modules because Lemma 3.3.7 also holds in

the derived category of mixed Hodge modules. Consider the double complex C'K,(M)

Sr

5—r+1

6-1

grv,. M y o > (gr¥ M) > gry M
L 5 s . 5 ,
@i gr, M(1Z;) d ” - @y (g, M1 Z))" — @i grgM(!Zi)
AN AN AN (3.7.6)
T 5—r 5—r+1 r r 6—1 r
gtV M(1 Y01 Z;) ” y (erV MO T Z0) — grg M(Y X0 Zi)
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whose uppermost row is CKY(M) = C(M) and leftmost column is COK (M) = gry K,(M).
The total complex of C'K (M) is (F, W)-bifiltered quasi-isomorphic to gry K,(M) because
grV Ki (M) is (F,W)-bifiltered acyclic for « < 0. On the other hand, the total complex
of CK\(M) is also F-filtered quasi-isomorphic to C'(K) because each row CK}(M) is F-
filtered acyclic when ¢ # 0 because of Corollary 3.7.4 and Theorem 3.3.6. We conclude that
gry Ki(M) and C(M) are isomorphic in the derived category of F-filtered Zz-modules.
Finally, gry K,(M) is bifiltered quasi-isomorphic to *(M, F,W). We conclude the proof of

this part. O

Remark 3.7.6. If one is just interested in the isomorphisms
(B(M),F)~(i'M,F) and (C(M),F)=(i*M,F)

in the derived category of filtered Z-modules, there is a way to bypass mixed Hodge complexes
as are used in Theorem 3.7.1 and Theorem 3.7.3. To prove (B(M), F) ~ (i*M, F’), we just
need to show that (B(M(x*Z%;)), F') is filtered acyclic for any Z; as in the proof Theorem 3.7.5.
For this we consider M(*Z; + ) on the blow-up 7 : X - X along Z where M is the minimal
extension of M|x_z, 7. is the strict transform of Z; and E is the exceptional divisor. Note that
T M(xZ;+ E) = M(%Z;). Tt follows from the computation in the proof of Theorem 3.6.1 that
B(ir, M(+Z;+ E)) is filtered acyclic where i, : X - X x X is the graph embedding because of
the fact that one of the Koszul differentials is filtered bijective. We can conclude by applying

ps to B(ix, M(+Z; + E)) and the bistrictness result for smooth, projective morphisms. The
same idea works for the filtered acyclicity of (C(M(*Z;)), F).

3.7.3 Finishing the proof
We now prove the last part of Theorem I:

Theorem 3.7.7. If M is a graded polarizable mized Hodge module and W 1is the filtration

on B(M) and C(M) induced by the relative monodromy filtration on gr¥ M, then
gri H' B(M) = grjl, H'iy M and  gr) HC(M) = i)l /H i M
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as polarizable Hodge modules for £ > 0.

Proof. 1. We first focus on the complex B(M). We shall prove the following as a preparation:

Lemma 3.7.8. The complex Higr)¥ BK (M) is exact for £ #0 and any k € Z and the natural

nclusion

Her)¥ BK (M) = kergr}¥ §y — gr}’ gry K (M)
is a filtered quasi-isomorphism, where BK (M) is defined in (3.7.4).
Proof of the lemma. We first prove that the inclusion
ker gr'' 6y — gr'ery K (M)

is a bifiltered quasi-isomorphism. By Lemma 3.7.2, the double complex gr'¥ BK (M) decom-

poses into

grWerlgrty M ——— (grtWerlgr¥, M)" > e » grWarlerV M

~ ~ v

D, grWerkgry M(«Z;) - @i (grWerlgrV M(+Z;))" + - + @i, grWarlgrV, M(+Z;)

~ ~ Vv

grWerlerd M(» Y0, Zi) + (grWerlgrY M(» X0, Zi))" + -+ geWarlgrV M(x X0, Z;)

where L is the filtration induced by the weight filtration on K (M). Since the category of
polarizable Hodge modules on an algebraic variety is semisimple, the cohomology Hgr’ K (M)
is a summand of gr® K*(M). It follows that gr'Vgr) Hler’ K (M) is contained in H* ker gr'V'd,

because the support of gr'Very Hfegr K (M) is contained in Z. Then due to the fact that
Worl Heer! K(M) - H ker gtV &,

is injective, we conclude that ker gr'Vdy - gr'Vgry K (M) is an isomorphism.
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Next, we prove that the complex HigrlV BK (M) is exact for £ > 0. By Theorem 3.7.1,

the total complex of gr'V BK (M) decomposes into

D Hjer" BK(M)[-1].

LeZ,
On the other hand, since gr'VB'K (M) is filtered exact for all i > 0, the total complex
of grt"W BK(M) is filtered quasi-isomorphic to gr'Vgry K (M) which is also filtered quasi-

isomorphic to Higr'V BK (M) as we just proved. This completes the proof of the lemma. [

Returning to the proof of the theorem, we have a weight spectral sequence on BK7(M)
EP =1 W BKI(M) = EP = gt HEM I BKT(M).

which degenerates at E5? by Theorem 3.7.1. The differential of the first page of the spectral

sequence induces morphisms of complexes
Swe = {Hienit BK(M) > Hieril, | BK(M) — -+ > Higril,,  BK (M)}

for any ¢ € Z. By the above lemma, the total complex of Sj, is filtered isomorphic to
HIgrV ,BK (M) and thus, gr}’ ery’ K(M). On the other hand, because of Theorem 3.7.1, the
second page of the weight spectral sequence on B(N') is zero if one of the x; acts bijectively
on a graded polarizable mixed Hodge module N. This means Sy, is also filtered isomorphic

to the first page of the weight spectral sequence of B(M):
Higri BIM) = Higrl,  B(M) > - > Hienll,  B(M),

which is filtered isomorphic to gr}¥ ,gry K (M). If we take cohomology at degree ¢, we conclude
that
etV H B(M) = grll MUK (M)
as polarizable Hodge modules.
2. We deal with the complex C'(M). The proof of the following lemma is parallel to the

one of Lemma 3.7.8 and therefore, we leave it to the readers.
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Lemma 3.7.9. The complex Hsgrl) CK\(M) is ezact for £ 0 and any k € Z and the natural
quotient

gry oty Kj(M) = Higr)¥ CK,(M) = cokergr}’ 6,

s a filtered quasi-isomorphism.
We also have a weight spectral sequence
qu H§+qng0K](M) = qu — ngHp+qCK](M)

which degenerates at the second page by Theorem 3.7.3. The differential of the first page of

the spectral sequence induces morphisms of complexes
Tro = {H5 et 40, CK((M) = Hs M er)ly,, | CK(M) > - = Higr)V ,C (M)}

for any ¢ € Z. By the above lemma, the total complex of T}, is filtered isomorphic to
Hgr}V ,CK\(M) and thus, gr}” er Ki(M). On the other hand, because of Theorem 3.7.3,
the second page of weight spectral sequence on B(N) is zero if N = N(1Z). This means T},

is also filtered isomorphic to the first page of the weight spectral sequence of C'(M):
M5 etil gy C(M) = H5™eril 1 C(M) > - > Higni , O (M)

which is filtered isomorphic to gr}” ery Ki(M). If we take cohomology at degree —¢, we

conclude that

gty HC(M) = gril H Ky(M)

as polarizable Hodge modules. O]

3.7.4 Deligne’s theorem

The aim of this part is to prove Lemma 3.7.2. For this purpose, we generalize, with little effort,
the theorem on relative monodromy filtrations to the abstract setting, proved by Deligne in

his personal letter to Cattani and Kaplan. Then Lemma 3.7.2 will be an immediate corollary.
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Let A be an abelian category and V be an object in A. Let L be a finite increasing
filtration of V and N be a nilpotent endomorphism preserving the filtration L. We will now
assume that the relative weight filtration W = W (N, L) exists and that there is a splitting
operator Y for W, i.e. Y is a semisimple operator on V with eigenvalues in Z such that
Wi = @i E:(Y) where E;(Y) is the i-eigenspace of Y. We say the splitting operator Y

satisfies the admissibility conditions if

[Y,N]=-2N, and YL;cL; foralli. (3.7.7)

Suppose that Y’ is a splitting operator for L that commutes with Y. Then the pair
(No,Y —=Y") determines an sly-representation on V. We will denote the standard sl,-triple
by (e*,e™, H):

[e",e"|=H, [H,e']=-2e", [H,e"]=2e".
Then e = Ny and H =Y -Y’. We call the collection (V,L,N,Y,Y"’) a Deligne-system, a

notion introduced in [Sch01], if in addition
[e",N;]=0, forall j#0

where N; is the j-th ad Y’-homogenous component of N. In other words, N; is ad e”-primitive

in the adjoint representation for j # 0.

Theorem 3.7.10. Let (V,N,L,Y) be as above and assume Y satisfies the admissibility
condition (3.7.7). If the set of splitting operators of L commuting with Y is not empty then

there exists a unique splitting operator Y’ of L such that (V,L,N,Y,Y") is a Deligne-system.

Proof. Fix a splitting operator of L commuting with Y. We can modify the splitting of L
by conjugating by an automorphism ¢ such that g respects W and (g - 1)L; c L; 1, and

consequently, g induces an automorphism on gr. We want to achieve that

[N-ge g getg] =0,
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or equivalently,

[9'Ng-e,ef]=0. (3.7.8)

We find g by successive approximations: if [V;,e*] =0 for 0> i > -k, we take g =1 +~_, for
~v_i of degree —k with respect to the L-grading for k£ > 1. Then to make the k-th L-degree
in (3.7.8) valid, we need

[= [k €]+ Ny, e"] = 0,

which is equivalent to

(ade) ((ade™) (7p) + N_y) = 0. (3.7.9)

As k-2 > -1, we can write uniquely N_, = N’ + (ade”)N"”, by the Lefschetz decomposition,
such that N’ is in the kernel of ade* and the ad H-degree of N is k because N_j is of

ad H-degree k —2. Then (3.7.9) becomes
(ade*) (ade™) (v + N") = 0.

It follows from the fact that the H-degree of v, + N is k that v_, has to equal —-N". It

remains to show that [y_x,Y]=0,i.e [N”, Y] =0. By the admissible condition,
(adY)N_ = -2N_.
Substituting N_; by N’ + (ade”)N",
(adY)N'+(adY)(ade”)N" = (adY)N'+(ade”)(adY)N"-2(ade”)N" = -2N'-2(ade™)N".

Then we get

(adY +2)N'+ (ade”)(ad Y)N" = 0.

Applying (ad e™)* 1 yields

(ade”)*(adY)N" =0,
which forces (ad Y )N = 0. This completes proof. O
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o~ e~~~ o~

operators T € Hom(V, V) such that YT = TY, NT =TN and TL c L for all i. In fact, the

morphisms of Deligne-systems are functoral:

Corollary 3.7.11. If T is a morphism of a pair of Deligne-systems

o~ e~ o~~~

(V,L,N,Y,)Y") and (V,L,N,Y.Y'),
then Y'T =TY".
Proof. Let T =¥, T; be the ad Y'-homogenous decomposition of 7. Then the H degree of T;
is —i because YT = TY. Suppose that T} vanishes for i = -1,2,...,~k+1. Then (ad N)T =0

gives

[NQ, T_k] + [N_k,To] =0.
It follows that (ade*)(ade™)T., vanishes since
(adeJr)(adei)T—k = [6+, [eiaT—k]] = [6+a [T(h N—k]] = [[e+7T0]7N—k] + [To, [€+7 N—k]]
and [e*,Ty] = [e*, N_x] = 0. Then 7" must vanish because the H-degree of 7' is k>0. O

Finally we can give

Proof of Lemma 3.7.2. By [Sai90, p. 1.5], we have a canonical splitting

gry gri M = @ er) grfgry M.
1€7,

If we set (V,L,N) = (gr"Wgr¥ M, LgrWegr¥ M,6 — ) and Y =4 on grl¥ M, then we can apply
Theorem 3.7.10 to this situation: there exists a unique splitting operator Y’ for L such that
(V,L,N,Y,Y") is a Deligne-system. As a consequence, for any local defining equation f of Z,

it follows from Corollary 3.7.11 the induced morphism
frggrgM > gt gr M

commute the splitting operator Y’ which concludes (a).
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For part (b), it is easy to see that the morphism gr'V'7T is a morphism of Deligne’s systems
(grWer¥ M, LgrWgr¥ M, 6-«) and (gr'Vgr¥ M’, LgrWer¥ M’ 6—«)). Then by Corollary 3.7.11,

grW'T commutes with the splitting operator Y’ which concludes (b). O]
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