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Abstract of the Dissertation

Limits of Hodge structures via D-modules

by

Qianyu Chen

Doctor of Philosophy

in

Mathematics

Stony Brook University

2022

This dissertation contains two parts. In the first part, we construct the limiting mixed

Hodge structure of a degeneration of compact Kähler manifolds over the unit disk with a

possibly non-reduced normal crossing central fiber via holonomic D-modules, which generalizes

Steenbrink’s geometric construction of limits of Hodge structures. Our limiting mixed Hodge

structure does not carry a Q-structure; instead, we use sesquilinear pairings on D-modules

to construct a canonical polarization on the limiting mixed Hodge structure as a replacement.

The associated graded quotient of the weight filtration of the limiting mixed Hodge structure

can be computed by the cohomology of the cyclic coverings of certain intersections of

components of the central fiber. We also generalize the local invariant cycle theorem to this

setting.

In the second part, we study how the V -filtration along a subvariety of arbitrary codimen-

sion and the Hodge filtration on a mixed Hodge module interact with each other, generalizing

the theory for hypersurfaces. In particular, we can describe Hodge module theoretic restriction

functors in terms of this V -filtration. As applications, we give a Hodge theoretic proof of

Skoda’s theorem on multiplier ideals.
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Chapter 1

Introduction

Based on the work of Hodge [Hod41], Hodge theory studies the linear algebra data, called

Hodge structure, on cohomology groups of complex varieties, developed by Deligne [Del71a;

Del71b; Del74], Griffiths [GS75] and others. It was Schmid who started the study of the

asymptotic behavior of degeneration of variation of Hodge structure [Sch73]. For a 1-parameter

family of compact Kähler manifolds, the cohomology of each smooth fiber carries a polarizable

Hodge structure. This leads to the following two interesting questions:

1. How does the family of Hodge structures on the cohomology groups of smooth fibers

degenerate?

2. How does the cohomology of the central fiber relate to that of nearby fibers?

These are two classical and central questions in Hodge theory. Before Saito’s theory

of mixed Hodge modules [Sai88; Sai90], Schmid showed the existence of a limiting mixed

Hodge structure for an abstract polarized variation of Hodge structure over the unit disk

[Sch73] using Lie theoretic methods. For the variation of Hodge structure coming from a

semistable family of Kähler manifolds over a 1-dimensional base, the limiting mixed Hodge

structure was first established by Steenbrink [Ste76] whose construction is equivalent to

Schmid’s in [Sch73] but purely geometric. A consequence of Steenbrink’s construction is
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the local invariant cycle theorem, which is a piece in the Clemens-Schmid sequence [Cle77].

It says that for a semistable degeneration of compact Kähler manifolds, the monodromy

invariant cohomology as a mixed Hodge structure of the smooth fiber is coming from the

cohomology of the total space. The local invariant cycle theorem was first proved by Deligne

in an algebraic setting when the base is a scheme [Del71b, Theorem 4.1.1] and later treated

in [Ste76], [Cle77] and [GN90] for a semistable Kähler degeneration. The local invariant cycle

theorem puts a strong constraint on the topology of the degeneration and it reads off the

geometric information of the possible central fiber. For example, it was used to classify the

semistable degeneration of K3 surfaces [Kul77].

The theme of this thesis is to study the degeneration of variation of Hodge structure

via the theory of D-modules. Invented in Japan and France, D-modules, are modules over

the ring D of differential operators. It has its origins in the field of algebraic analysis,

which means the study of partial differential equations with algebraic tools. The famous

Riemann-Hilbert correspondence proved by Kashiwara and Mebkhout [Kas84; Meb84] states

there is an equivalence of categories between the category of regular holonomic D-modules

and the category of perverse sheaves. It builds a bridge from algebra and analysis to topology

leading us to several applications in various fields in mathematics. Saito’s theory [Sai88;

Sai90] of mixed Hodge modules relates Hodge theory and D-modules.

We give a conceptually simpler construction of the limiting mixed Hodge structure for

the degenerations of Kähler manifolds over the unit disk, using the theory of holonomic

D-modules in Chapter 2. Although the Q-structure is absent, our method enables us to

bypass the semistable reduction. This means we can compute the limiting mixed Hodge

structure for arbitrary degeneration of Kähler manifolds over the unit disk by embedded log

resolution of the central fiber. We also prove the local invariant cycle theorem in this more

general setting.

Chapter 3 is contained in joint work with Bradley Dirks [CD21], where the objects

we focus on are two interesting filtrations of mixed Hodge modules: Hodge filtration and
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V -filtration. A (mixed) Hodge module, roughly speaking, is a filtered regular holonomic

D-module which is a (graded-)polarizable variation of (mixed) Hodge structure over a locally

closed subset. Hodge filtration is useful in algebraic geometry since it allows one to study

canonical sheaves by the package of Hodge modules. V -filtration is topological filtration

indexed by the eigenvalues of the Euler vector field along a submanifold. Deligne came up

with a formal algebraic way of formalizing and generalizing the classical ideas of studying the

degeneration of algebraic varieties to perverse sheaves [Del68], which led to the notions of

nearby and vanishing cycles functors. Then V -filtration was introduced by Kashiwara [Kas83]

and Malgrange [Mal83] to translate nearby and vanishing cycles to the regular holonomic

D-modules. Recently, the relation between Hodge filtration and V -filtration become more

interesting because the projects started by Mustaţă and Popa on Hodge ideals [MP19]. One

of the technical tools used by Mustaţă and Popa is the compatiblity of Hodge filtration

and V -filtration in codimension 1. We generalize this compatibility to Hodge filtration and

V -filtration in higher codimension in this thesis.

Our result is also interesting internal to the theory of mixed Hodge modules. The

definition of mixed Hodge modules is given inductively by “restriction” to hypersurfaces

using V -filtrations in codimension 1. This makes restriction of Hodge modules to subvarieties

in higher codimension have to be done in terms of hypersurfaces. However, the V -filtration

exists in any codimension and we wanted to know if we can characterize the restriction

functors 1-step directly by V -filtration in higher codimension. We generalize what Saito did

in codimension 1 to higher codimension and describe of the restriction functors in terms of

V -filtration in higher codimension.

We proceed to introduce the two parts of this thesis in more detail.
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1.1 Limits of Hodge structures

Before stating the main theorem, we briefly review the relative log de Rham complex for a

proper holomorphic morphism f ∶X → ∆ from a complex manifold of dimension n + 1 to the

unit disk smooth away from the origin. Let Y be the central fiber and suppose that Y only

has simple normal crossing support. Then we define ΩX(logY ) (resp. Ω∆(log 0)) to be the

sheaf of one-forms with log pole along Y (resp. 0). Let ΩX/∆(logY ) = ΩX(logY )/f∗Ω∆(log 0)

be the sheaf of relative log one-forms, which is locally free. Then the relative log de Rham

complex is

Ω●+n
X/∆(logY ) = {OX → Ω1

X/∆(logY ) → ⋯ → Ωn
X/∆(logY )}

placed in degrees −n,−n + 1, . . . , 0. Steenbrink proved that Rkf∗Ω●+n
X/∆

(logY ) is the Deligne’s

canonical extension of the flat connection Rkf∗Ω●+n
X/∆

∣∆∗ over the punctured disk ∆∗ with

eigenvalues of the residue operator R in [0,1). It follows the limiting mixed Hodge struture

lives on the central fiber Rkf∗Ω●+n
X/∆

(logY ) ⊗ C(0), where C(0) is the residue field of the

origin. Our first theorem is as follows:

Theorem A. Notation as above and assume that X is Kähler. Let Rn (resp. Rs) denote

the nilpotent (resp. semisimple) part of the Jordan-Chevalley decomposition of the residue

operator R on ⊕kHk(X,Ω●+n
X/∆

(logY )∣Y ). Then each eigenspace of Rs on

⊕
k,`

grW` H
k(X,Ω●+n

X/∆(logY )∣Y )

underlies a limiting polarized bigraded Hodge-Lefschetz structure over C of central weight n,

where W● =W●(Rn) is the monodromy filtration associated to Rn.

A polarized bigraded Hodge-Lefschetz structure is essentially a direct sum of polarized

Hodge structures of different weights preseerved by an sl2(C) × sl2(C)-action. In the setting

of Theorem A, the sl2(C) × sl2(C)-action is induced by the operator Rn and 2π
√
−1L

where L = ω∧ is the Lefschetz operator for a Kähler form ω. In particular, each summand
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grW` H
k(X,Ω●+n

X/∆
(logY )∣Y ) is a Hodge structure of weight n + k + ` and there are two Hard

Lefschetz type isomorphisms of Hodge structures:

• for k ≥ 0, ` ∈ Z

(2π
√
−1L)

k
∶ grW` H

−k(X,Ω●+n
X/∆(logY )∣Y ) → grW` H

k(X,Ω●+n
X/∆(logY )∣Y )(k) and

• for ` ≥ 0, k ∈ Z

R`
n ∶ grW` H

k(X,Ω●+n
X/∆(logY )∣Y ) → grW−`H

k(X,Ω●+n
X/∆(logY )∣Y )(−`).

Theorem A implies that each Hk(X,Ω●+n
X/∆

(logY )∣Y ) still underlies a limiting mixed Hodge

structure of weight n + k whose weight filtration is given by W● =W●(Rn) when the central

fiber is non-reduced. The associated graded quotient of the weight filtration of the limiting

mixed Hodge structure can be computed by the cohomology of the cyclic coverings of certain

intersections of components of the central fiber.

We will prove that there exists a filtered holonomic D-module (M, F ) whose de Rham

complex is filtered isomorphic to the Ω●+n
X/∆

(logY )∣Y . Indeed,M is the cokernel of a canonical

morphism

Ωn−1
X/∆(logY )∣Y ⊗DX → Ωn

X/∆(logY )∣Y ⊗DX .

Locally, choosing a trivialization of Ωn
X/∆

(logY ), (M, F ) is isomorphic to

DX/(t,D1,D2, . . . ,Dk, ∂k+1, . . . , ∂n)DX

with the filtration induced by the order filtration on DX shifted by degree −n where t =

ze00 z
e1
1 ⋯z

ek
k is the locally defining equation of Y and Di = e−1

i zi∂i − e−1
0 z0∂0. The monodromy

logarithm is the left multiplication by e−1
0 z0∂0 in the local presentation. The main difficulty

of Steenrbink’s approach is to construct the monodromy filtration on Ω●+n
X/∆

(logY )∣Y over Q.

With the help of D-modules, the monodromy filtration is easy to derive by local calculation

on the single D-module M.
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Instead of proving the monodromy filtration defined over Q, we provide a sesquilinear

pairing on M, taking values in the sheaf of currents CX on X, by a device of Mellin

transform, which only involves symbolic computation, to avoid a messy topological argument.

The sesquilinear pairing can be viewed as a renormalization of the intersection pairing

∫Xt ∶ ωXt ⊗C ωXt → CXt on the nearby fibers Xt for t ∈ ∆∗; for example, if Y is reduced, the

pairing on M is induced by

Ress=0
ε(n + 2)

(2π
√
−1)n+1 ∫∆

∣t∣2sdt
t
∧ dt̄
t̄ ∫Xt

∶ Ωn
X/∆(logY ) ⊗C Ωn

X/∆
(logY ) → CX ,

where the constant scalar ε(n + 2)(2π
√
−1)−(n+1) depending on the dimension is used to make

the pairing independent of the choice of orientation.

As an application of Theorem A, we establish the local invariant cycle theorem when Y is

non-reduced.

Theorem B. Suppose we are in the same setting as in Theorem A. Then the following

sequence of mixed Hodge structures is exact:

H`+n(Y,C) H`(X,Ω●+n
X/∆

(logY )∣Y ) H`(X,Ω●+n
X/∆

(logY )∣Y )(−1).R

In other words, all cohomology classes invariant under the monodromy action comes from the

cohomologies of Y .

Steenbrink later pointed out that the limiting mixed Hodge structure he constructed

only depends on the log structure associated with the semistable family f ∶X →∆ [Ste95].

Inspired by the idea in [Ste95], Fujisawa extended Steenbrink’s results in [Ste76; Ste95] to

semistable Kähler families over the polydisk and to the log geometry setting [Fuj99; Fuj08;

Fuj14]. Recently, Nakkajima announced a simpler proof of Fujisawa’s results [Nak21].

Assume that X is Kähler of dimension n + 1 and Y = ∑i∈I eiYi where the Yi’s are smooth

components and I a finite index set. The strategy for proving Theorem A is as follows.
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We shall first give a different proof of the local freeness of Rkf∗Ω●+n
X/∆

(logY ) which only

uses the fact that the residue along the origin has eigenvalues in [0, 1) (Theorem 2.2.2). Then

we translate the data of the relative log de Rham complex to the D-module side (see §2.3):

Theorem C. There exists a filtered holonomic DX-module (M, F●M) whose de Rham

complex DRXM with the induced filtration F●DRXM is isomorphic to Ω●+n
X/∆

(logY )∣Y with

the stupid filtration in the derived category of filtered complex of C-vector spaces. Moreover,

there exists an operator R ∶ (M, F●M) → (M, F●+1M) whose eigenvalues are in [0,1) ∩Q

such that DRXR can be identified with the residue operator on Ω●+n
X/∆

(logY )∣Y via the above

isomorphism.

Next we will investigate the Jordan block of the operator R. Let M≥α (resp. M>α) be

the submodule of M spaned by the generalized eigen-modules ker(R − λ)∞ for λ ≥ α (resp.

λ > α). Let Mα =M≥α/M>α. Note that Mα is canonically isomorphic to ker(R − α)∞ and

therefore Rα = R −α acts nilpotently on Mα. Using an idea of Saito [Sai90], we filter Mα by

F`Mα =
F`M∩M≥α +M>α

M>α

, for ` ∈ Z.

The filtration F●Mα is different from the naive one F●M∩ ker(R − α)∞. The reason why we

do not use the naive filtration is that F●Mα not only gives the correct weight but is also easy

to work out. We prove that any power of the operator Rα is strict with respect to F●Mα.

Namely, for every ` ≥ 0, we have the relation R`
αF●Mα = F●+`M∩ R`

αMα (Theorem 2.4.1

for the case Y is reduced and Theorem 2.6.5 for the general case). This implies that the

monodromy filtration W●Mα and F●Mα interacts very well. Note that the monodromy

filtration associated to Rα is the same as the one of Rn on Mα, the nilpotent part of R in

Jordan-Chevalley decomposition. We have the induced good filtrations

F●WrMα = F●M∩WrMα and F●grWr Mα = F●WrMα/F●Wr−1Mα.

Denote by Pα,` = kerR`+1
α ∩ grW` Mα the `-th primitive for ` ≥ 0, which is isomorphic to

kerR`+1
α

kerR`
α + imRα ∩ kerR`+1

α

.

7



We endow it with the induced good filtration F●Pα,` = im (F●M∩ kerR`+1
α → Pα,`). As a

corollary of the strictness of every power of Rα, the Lefschetz decomposition of grWMα

respects the good filtrations, i.e.

F●grWr Mα = ⊕
`≥0,− r

2

R`
αF●−`Pα,r+2` for r ≥ 0.

See Theorem 2.4.6 for the case Y is reduced and Theorem 2.6.8 for the general case. This

corollary suggests that it suffices to study the hypercohomology of each primitive part. The

primitive parts will be the source for the pure polarized Hodge structures.

We will construct a sesquilinear pairing Sα ∶ Mα ⊗CMα → CX using the Mellin transfor-

mation [Sab02], where Mα is the naive conjugation of Mα and CX is the sheaf of currents.

Both Mα ⊗CMα and CX canonically carry DX ⊗C DX-module structures where DX denotes

the sheaf of anti-holomorphic differential operators and the sesquilinear pairing is just a

morphism of DX ⊗C DX-modules. See the MHM project [SS] by Sabbah and Schnell for

systematical treatment of complex variation of Hodge structure via sesquilinear pairings. The

sesquilinear pairings on Mα is an analogy of a polarization on a Hodge structure: a complex

polarized Hodge structure of weight n can be described as a filtered vector space (V,F ●)

with a Hermitian pairing S such that (−1)n−pS is a Hermitian inner product on F p ∩Gn−p

where Gn−p is the S-orthogonal complement of F p+1. The sesquilinear pairing Sα induces

the second filtration on the hypercohomology of DRXMα. We refer to the §2.1.1 for the

definition of sesquilinear pairings on D-module.

The operator Rα is self-adjoint with respect to the pairing Sα ∶ Mα ⊗CMα → CX , i,e,

Sα(−,Rα−) = Sα(Rα−,−). See §2.5 for the case that Y is reduced §2.7 for the general case.

This implies we have an induced pairing on the associated graded modules:

Sα,r ∶ grWr Mα ⊗C grW−rMα → CX .

Then PRαSα,r = Sα,r ○ (id ⊗C Rr
α) defines a sesquilinear pairing on the primitive part Pα,r.

8



Theorem D. The cohomologies of the de Rham complex of Pα,r

⊕
`∈Z
H`(X,DRXPα,r)

together with the filtration induced by F●Pα,r and the sesquilinear pairing induced by PRαSα,r

determine a polarized Hodge-Lefschetz structure of central weight n + r with sl2(C)-action

induced by 2π
√
−1L.

A polarized Hodge-Lefschetz structure basically is a direct sum of Hodge structures of

different weights preserved by an sl2(C)-action. This notion is motivated by the direct sum

of all the cohomologies of a compact Kähler manifold. We refer to §2.1.3 for the definition

of polarized Hodge-Lefschetz structures. To illustrate the idea of Theorem D, assume for a

moment that Y is reduced so the endomorphism R is nilpotent and this implies thatM=M0.

Denote by Y J = ⋂i∈J Yi for any non-empty subset J of I. Let τJ ∶ Y J → X be the closed

embedding and τ (r+1) ∶ Ỹ (r+1) = ∐#J=r+1 Y
J → X be the natural morphism for every r ≥ 0.

For simplicity, suppose Pr = P0,r. We will show that there exists a filtered isomorphism

(Theorem 2.4.7)

φr ∶ (Pr, F●Pr) → τ
(r+1)
+ ωỸ (r+1)(−r).

Here, the Tate twist of a filtered D-module is (N , F●N)(−r) = (N , F●+rN). Moreover, the

isomorphism respects the pairing PRSr on Pr (Theorem 2.5.5):

PRSr(−,−) =
(−1)r
(r + 1)!τ

(r+1)
+ SỸ (r+1)(φr−, φr−),

where SỸ (r+1) is the standard pairing on ωỸ (r+1) . Therefore, the k-th hypercohomology of

the de Rham complex DRXPr is isomorphic to Hn−r+k(Ỹ (r+1),C)(−r) as polarized Hodge

structures of weight n + r + k. Summing all the hypercohomology groups of DRXPr, we get a

polarized Hodge-Lefschetz structure of central weight n + r with sl2(C)-action induced by

2π
√
−1L.

In contrast to the case when Y is reduced, if Y is non-reduced, we shall construct cyclic

coverings of Y J whose degree depends on the multiplicity of Yj in Y for j ∈ J . Then the
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primitive part Pα,r will be identified with the eigenspace of the intersection cohomology of

the cyclic coverings under the Galois action (Theorem 2.6.13), and the identification also

respects the sesquilinear pairing (Theorem 2.7.10). As a direct consequence, we obtain

Theorem E. Let V α
`,k =H`(X, grWk DRXMα) be the relabelling of the first page of the weight

spectral sequence. Then V α = ⊕k,`∈Z V
α
`,k is a polarized bigraded Hodge-Lefschetz structure

of central weight n with the polarization induced by Sα and sl2(C) × sl2(C)-action induced

by 2π
√
−1L and Rα. Moreover, the differential d1 of the first page of weight spectral is a

differential of polarized bigraded Hodge-Lefschetz structure.

By a formal argument of Guillén and Navarro Aznar [GN90], which follows some ideas of

Deligne and Saito, we have

Corollary F. We have the following statements:

1. the Hodge spectral sequence degenerates at FE1;

2. the weight spectral sequence degenerates at WE2;

3. the α-generalized eigenspace of the bigraded vector space

WE2 = ⊕
`,k∈Z

grW` H
k(Y,Ω●+n

X/∆(logY )∣Y )

with respect to R is a polarized bigradged Hodge-Lefschetz structure of central weight n

with polarization induced by Sα and sl2(C) × sl2(C)-action induced by 2π
√
−1L and Rα.

Note that the third statement in the above Corollary is equivalent to the Theorem A;

therefore, we finish the proof of Theorem A. See Theorem 2.5.6 and Corollary 2.5.7, when Y

is reduced. See Theorem 2.7.11 and Corollary 2.7.12, when Y is allowed to be non-reduced.
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1.2 On Hodge filtration and V-filtration

The original Kashiwara and Malgrange’s theory of V -filtration is in codimension one. Let

t ∶ X → A1 be a regular function and Z be the central fiber. For any regular holonomic

right D-module M, we can associate it with a functorial filtration V●M along Z such that

DZ-module grVαM is regular holonomic. Indeed, the nearby and vanishing cycle ofM is given

by grVαM for α ∈ [−1, 0] and the index α is determined by the eigenvalues of the monodromy.

The nearby cycle and vanishing cycle of filtered DX-modules is an input in the definition

of mixed Hodge modules [Sai88; Sai90]. If a filtered DX-module (M, F ) underlies a mixed

Hodge module, then

(V1) t ∶ FpVαM→ FpVα−1M is bijective for α < 0,

(V2) ∂t ∶ FpgrVα−1M→ Fp+1grVαM is isomorphism for α > 0.

We also have two distinguished triangles in the derived category of mixed Hodge modules:

i∗M grV−1M grV0M i∗M[1] and i!M grV0M grV−1M i!M[1]∂t t

where i ∶ Z →X is the closed embedding; see also the nice survey [Sch14].

The V -filtration along a higher codimension submanifold is induced by deformation to the

normal cone. However, grVαM is even not coherent in general for a holonomic D-module M.

This is a major difference in the theory of higher codimension. The generalization of (V1),

(V2) and the above distinguished triangles to higher codimension was not known and we

formulate and prove the generalization in higher codimension in the second part of this thesis.

Now we give the general definition of V -filtration. Let t = (t1, t2, . . . , tr) ∶ X → Ar be a

smooth morphism from a smooth variety to the affine r-space Ar and let Z be the fiber over

the origin. Assume there exist global vector fields ∂1, ∂2, . . . , ∂r on X dual to the 1-forms

dt1, dt2, . . . , dtr. We define a Z-indexed filtration on DX by

VkDX = {P ∈ DX ∶ P ⋅I j
Z ⊆ I j−k

Z for all j},
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where IZ is the ideal sheaf of Z. Then the V -filtration on a D-module M along Z is the

exhaustive, increasing Q-indexed filtration uniquely characterized by the following:

1. VαM⋅ VkDX ⊆ Vα+kM for all k ∈ Z, α ∈ Q,

2. VαM⋅ VkDX = Vα+kM for all k ∈ Z≤0, α≪ 0,

3. each VαM is coherent over V0DX ,

4. the operator θ − α is nilpotent on grVαM, where θ ∶= ∑r
i=1 ti∂i is the Eular vector field.

We generalize the above properties of V -filtration in codimension 1 to the V -filtration

along subvarieties of arbitrary codimension and the statement is formulated by certain

Koszul-type complexes. For any filtered regular holonomic DX-moduleM, define Koszul-type

complexes

Aα(M) = {(VαM, F ) tÐ→
r

⊕
i=1

(Vα−1M, F ) tÐ→ ⋯ tÐ→ (Vα−rM, F )}

placed in degrees 0,1, . . . , r,

Bα(M) = {(grVαM, F ) tÐ→
r

⊕
i=1

(grVα−1M, F ) tÐ→ ⋯ tÐ→ (grVα−rM, F )}

as the quotient Aα/A>α and

Cα(M) = {(grVα−rM, F [r]) ∂tÐ→
r

⊕
i=1

(grVα−r+1M, F [r − 1]) ∂tÐ→ ⋯ ∂tÐ→ (grVαM, F )}

in degrees −r,−r + 1, . . . , 0, where V●M is the V -filtration along Z and F [i]k = Fk−i. Our first

theorem in this direction is a generalization of (V1) and (V2):

Theorem G. If the filtered DX-module (M, F ) underlies a mixed Hodge module, then the

Koszul-like complexes

1. the complex Aα(M) is filtered exact if α < 0;

2. the complex Cα(M) is filtered exact if α > 0.
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As a very special case of Theorem G, we give a Hodge-theoretic proof of a theorem of

Skoda. See [Laz04] for the background on the multiplier ideal sheaves and a proof of Skoda’s

theorem. Let f1, f2, . . . , fr be the generators of a coherent ideal a on X and let ι ∶X →X ×Ar

be the graph of f1, . . . , fr. Then by [BMS06, Theorem 1], the OX-module FrV c+ει+OX is the

multiplier ideal J (X,ac) for ε > 0 sufficient small where V ●ι+OX is the V -filtration along

X × {0}. The the exactness of Ac−n+ε(ι+OX) when c ≥ n by Theorem G gives:

Corollary H (Skoda). Let a be a coherent ideal of OX and J (X,ac) be the multiplier ideal.

Then we have

J (X,ac) = aJ (X,ac−1)

for any c ≥ dimX.

To simplify the notation, denote B(M) ∶= B0(M) and C(M) ∶= C0(M). The second

main theorem says that we can give a comparison between i!M (resp. i∗M) in the derived

category of mixed Hoge modules and B(M) (resp. C(M)) where i ∶ Z →X is the embedding

of the central fiber of f ∶X → Ar.

Theorem I. Let (M, F,L,K) be a mixed Hodge module where F is the Hodge filtration, L

is the weight filtration and K is the Q-structure of the DX-module M i.e. DRXM≃ K⊗C Q.

Then we have:

1. the complexes B(M) and C(M) together with the filtrations W induced by the relative

monodromy filtration W = W (θ − α,grVαL●M) on grVαM are mixed Hodge complexes,

i.e. the DZ-modules H`grWk B(M) and H`grWk C(M) are polarizable Hodge modules of

weight k + ` for any k, ` and

grWk B(M) ≃⊕
`

H`grWk B(M)[−`] and grWk C(M) ≃⊕
`

H`grWk C(M)[−`]

in the derived category of filtered D-modules;

2. the complex B(M) (resp. C(M)) is isomorphic to (i!M, F ) (resp. (i∗M, F )) in the

derived category of filtered D-modules with Q-structures;
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3. moreover,

grWk H`B(M) ≃ grWk+`H`i!M and grWk H−`C(M) ≃ grWk−`H−`i∗M

as polarizable Hodge modules.

The reason why we do not get the distinguished triangles in the derived category of mixed

Hodge modules is that we directly use the monodromy filtrations relative to LgrV0M without

the shift in Saito’s definition of vanishing cycles.

Theorem I simplifies, in a way, the calculation of the functors i! and i∗ of mixed Hodge

modules [Sai90]. For example, if i is the embedding of the origin in A2, Saito’s definition of i!

is

i+i
!M= {M→M(∗D1) ⊕M(∗D2) →M(∗D1 +D2)}

placed in degrees 0,1,2 where D1,D2 are the two coordinate axes. The weight filtration

of M(∗Di) is uniquely determined by some gluing conditions on the weight filtration on

M and the relative monodromy filtration on the unipotent vanishing cycle of M along Di.

Theorem I says one can bypass the gluing construction of the weight filtration on M(∗Di)

by looking at the V -filtration directly.

To prove Theorem G, we first do the case when (M, F●) underlies a polarizable pure

Hodge module. Because pure Hodge modules have strict support decomposition, we are in

two situations:

(a) the support of M is contained in Z;

(b) there is no sub-Hodge module of M whose support is contained in Z.

Case (a) will directly follow from the definition. For case (b), we will pass to the blow-up and

reduce the problem to the codimension one case. Let π ∶ X̂ → X be the blow-up of Z and

E be the exceptional divisor. Let (M̂, F●M̂) be the minimal extension of (M, F●M)∣X∖Z

along E, which also underlies a pure Hodge module by the structure theorem of Hodge
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modules [Sch14]. By the direct image theorem of Hodge modules, (M, F●M) is a direct

summand of π+(M̂, F●M̂). Therefore, it suffices to prove the statement for π+(M̂, F●M̂).

Then we factor π ∶ X̂ →X into the graph embedding iπ ∶ X̂ → X̂×X and the second projection

p ∶ X̂ ×X →X and study the direct images of (M̂, F●M) under these two morphisms. The

graph embedding case has no homological algebra involved and in the case of the projection,

we use the bistrctness proved by Budur, Mustaţă and Saito [BMS06] and Hard Lefschetz

[Sai88, p. 2.14] on the direct images.

The strategy of proof for the pure case does not work for mixed Hodge modules because

there is no decomposition theorem for mixed Hodge modules. Instead, we use deformation

to the normal cone to get the compatibility among the Hodge filtration, V -filtration, and

weight filtration. From the compatibility, we reduce the proof to the pure case.

As for the proof of Theorem I, we first deal with the case when (M, F ) underlies a

polarizable Hodge module as we did in the proof of the pure case for Theorem G. In this case,

we heavily use the semisimplicity of polarizable pure Hodge modules. To do the mixed case

we need a theorem of Deligne [Del93] in his personal letter to Cattani and Kaplan, which

roughly states that there exists a unique functorial splitting of the associated graded of the

relative monodromy filtration. The proof reduces to the pure case by Deligne’s Theorem.
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Chapter 2

Limits of Hodge structures

2.1 Preliminaries

2.1.1 Filtered D-modules with sesquilinear pairings

We will work with right D-modules unless further specified. Let Z be a complex manifold

of dimension n and denote by Ωp
Z the sheaf of holomorphic p-forms and TZ the sheaf of

holomorphic tangent vectors fields. For a filtered DZ-module we mean a pair (N , F●N)

where N is a coherent DZ-module and F●N is a good filtration. Occasionally we will abuse

notations and say N also denotes the filtered DZ-module if the filtration is clear. Denote by

grFDZ = ⊕`∈Z grF` DX the associated graded algebra and grFN = ⊕`∈Z grF` N the associated

graded module. Note that grFN is a coherent grFDZ-module. Let T ∗Z = SpecZgrFDX be

the algebraic cotangent bundle and T ∗
VZ the geometric conormal bundle of a subvariety V

in Z. The characteristic variety of N is the support of grFN on T ∗Z and is denoted by

char(N). The characteristic cycle of N is the cycle associated to the coherent sheaf grFN

on T ∗Z and is denoted by cc(N). Neither the characteristic variety nor the characteristic

cycle depend on the choice of the filtration [HTT08]. For example, the canonical bundle ωZ
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is naturally a holonomic DZ-module with action

α.ξ = −d(ξ ⌟ α)

for local sections ξ ∈ TZ and α ∈ ωZ . It also naturally has a good filtration

F`ωZ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ωZ , ` ≥ −n;

0, ` < −n.
(2.1.1)

Then one can compute cc(ωZ) = [T ∗
ZZ] which is the cycle of the zero section of the cotangent

bundle. We call N a holonomic DZ-module if dim char(N) = n. See more details in [HTT08].

A Tate twist of filtered DZ-module is defined to be N(−r) = (N , F●+rN) for any r ∈ Z.

Denote by Db(Z,C) the bounded derived category of complexes with values in finite

dimensional C-vector spaces and Db(Z,D) the bounded derived category of DZ-modules.

Denote by Db
h(Z,D) the full subcategory of Db(Z,D) whose objects are complexes with

holonomic cohomologies. For a morphism f ∶ Z →W between complex manifolds, denote by

Rf∗,Rf! ∶ Db(Z,C) →Db(W,C) the derived pushforward and proper pushforward functors

respectively and Rkf∗,Rkf! the k-th cohomology functors respectively. For anyN ● ∈ Db(Z,D),

the pushforward functor and the proper pushfoward functor f+, f† ∶ Db(Z,D) →Db(W,D)

are by definition, respectively

f+N ● = Rf∗ (N ●
L⊗

DZ
DZ→W) and f†N ● = Rf! (N ●

L⊗
DZ

DZ→W) ,

where DZ→W = f∗DW is the transfer module. In fact, the functor f† preserves the holonomicty,

i.e., f† ∶ Db
h(Z,D) → Db

h(W,D) (see [HTT08]). Of course if f is proper or proper on the

support of N then f+ = f†. The de Rham complex of N is

DRZN =def N ⊗
−●

⋀TZ = {N ⊗
n

⋀TZN → N ⊗
n−1

⋀ TZ → ⋯→ N}

with N is in degree 0. If without further indication, tensor products are always taken over

O-modules. Some authors also call it Spencer complex. The de Rham complex of ωZ

ωZ ⊗
−●

⋀TZ = {ωZ ⊗
n

⋀TZωZ → ωZ ⊗
n−1

⋀ TZ → ⋯→ ωZ}
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is isomorphic to the usual de Rham complex DRZOZ = Ωn+●
Z of Z under the isomorphisms

ωZ ⊗
p

⋀TZ → Ωn−p
Z , ω ⊗ ∂J ↦ (−1)n−j1+⋯+n−jpdzJ̄ , (2.1.2)

where ∂J is a local section of ⋀pTZ , J is ordered index set and J̄ is the complement with

the natural ordering, and ω = dz1 ∧ dz2 ∧⋯ ∧ dzn. If F●N is a good filtration, the de Rham

complex is also filtered:

F`DRZN = F`+●N ⊗
−●

⋀TZ = {F`−nN ⊗
n

⋀TZN → F`−n+1N ⊗
n−1

⋀ TZ → ⋯→ F`N} .

The direct image functor and the de Rham functor commute ∶ Rf! ○DRZ = DRW ○ f† [MS,

Corollary 4.4.4].

A sesquilinear pairing S on DZ-module N is a DZ,Z-module morphism S ∶ N ⊗CN → CZ .

Here, DZ,Z = DZ ⊗C DZ for DZ is the sheaf antiholomorphic differential operators, N is the

stupid conjugate of N as a DZ-module and CZ is the sheaf of currents on Z with natural

DZ,Z-module structure. We have the proper pushforward functor similarly as above on

DZ,Z-modules and also call it f†:

f†(−) =def Rf!(−
L⊗

D
Z,Z

DZ,Z→W,W ),

where the transfer module DZ,Z→W,W =def f∗DW,W . Because of the natural morphism f†CZ →

CW , we can pushforward the sesquilinear pairing to get

H 0f†Sk ∶ H kf†N ⊗C H −kf†N →H 0f†N ⊗CN → CW .

If f is a closed embedding then f+S ∶ f+N ⊗C f+N → CW . If W is a point, then we have an

induced pairing on the complex

f†S ∶ DRZ,ZN ⊗CN → DRZ,ZCZ ≃ C[2n],

where DRZ,ZN ⊗CN ≃ DRZN ⊗C DRZN . Taking cohomology at 0-th degree yields, for each

k ∈ Z,

Hk
c (Z,DRZN)⊗H−k

c (Z,DRZN) →H0
c (Z,DRZ,ZN ⊗CN) →H2n

c (Z,C) ≃ C. (2.1.3)
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Example 2.1.1. The DZ-module ωZ carries a natural pairing SZ ∶ ωZ ⊗C ωZ → CZ ,

⟨SZ(m′,m′′), η⟩ = ε(n + 1)
(2π

√
−1)n ∫Z

ηm′ ∧m′′, (2.1.4)

for m′,m′′ local sections of ωZ , η a test function on Z and ε(k) = (−1) k(k−1)
2 . The coefficient

ε(n+1)

(2π
√
−1)n

in the definition is chosen so that ε(n+1)

(2π
√
−1)n

m ∧m = ∣m∣2 is a positive current for any

local section m of ωZ and elimination the choice of orenation (see more details in §2.1.3).

The pairing SZ ∶ ωZ ⊗C ωZ → CZ yields a collection of pairings

Hk
c (Z,DRZωZ) ⊗CH−k

c (Z,DRZωZ) → C.

2.1.2 Logarithmic connections

If D = ∑aiDi is a simple normal crossing divisor on Z for ai ≥ 0, denote by ΩZ(logD) the

sheaf of meromorphic differential 1-forms with logarithmic poles along Dred = ∑Di and denote

by Ωp
Z(logD) = ⋀p ΩZ(logD) the meromophic p-forms with logarithmic pole along D. Each

Ωp
Z(logD) is a locally free OZ-module.

In our convention, the de Rham complex of Z is DRZOZ

Ω●+n
Z = {OZ → ΩZ → Ω2

Z → ⋯→ Ωn
Z}[n].

The log de Rham complex is

Ω●+n
Z (logD) = {OZ → ΩZ(logD) → Ω2

Z(logD) → ⋯ → Ωn
Z(logD)}[n].

We will follow the Koszul sign rule: for a chain complex C● with differential d, the shifted

complex C●+n = C●[n] equipped with differential (−1)nd. We define residue along Di by

(see [EV92, p. 2.5])

ResDi ∶ Ω●+n
Z (logD) → Ω●+dimDi

Di
(log(D −Di)∣Di),

dzi
zi

∧ α ↦ α∣Di ,

where zi is the local defining equation of Di and dzi
zi
∧ α is a local section of Ω●+n

Z (logD). It

factors through

Ω●+n
Z (logD)∣Di → Ω●+dimDi

Di
(log(D −Di)∣Di).
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By abuse of notations, we still call the above morphism ResDi . Let DJ = ∩j∈JDJ and

DJ = ∑j∈J Dj . Then we have a collection of residue maps, by choosing an order on the indices

and successively applying ResDj for j ∈ J ,

ResDJ ∶ Ω●+n
Z (logD) → Ω●+dimDJ

DJ (log(D −DJ)∣DJ ).

A log connection ∇ with poles along D on a coherent OZ-module F is a C-linear morphism

∇ ∶ F → ΩZ(logD) ⊗ F satisfying the Leibniz rule ∇fs = df ⊗ s + f∇s for f local section of

OZ and s local section of F . One can extend standardly ∇ to a complex

F ΩZ(logD) ⊗ F ⋯ Ωn
Z(logD) ⊗ F .∇ ∇∇ ∇

If the above is a chain complex, i.e., ∇2 = 0 we say (F ,∇) is an integrable log connection. For

any integrable log connection ∇ ∶ F → ΩZ(logD)⊗F , we call the morphism ResDi∇ ∶ F → F∣Di
induced by ResDi ∶ ΩZ(logD) → ODi its residue along Di. Note that ResDi is OZ-linear and

factors through again F∣Di → F∣Di .

An integrable log connection is same as a left DZ(logD)-module, where DZ(logD) is the

sub-algebra of DZ generated locally by the differential operators P such that P ⋅ID ⊂ ID.

Here, we denote by ID the ideal sheaf of the normal crossing divisor D. Then we can extend

the definition of residues of a log connection as follows. The sheaf ODi = OZ/IDi naturally has

a left DZ(logD)-module structure because IDi is also stable under by the DZ(logD)-action

by the naive reason. Let F● be a complex of integrable log connections. Then the complex

F●
L⊗

OZ
ODi

is a complex of DZ(logD)-modules because taking tensor products over OZ is closed in the

category of DZ(logD)-modules and one can resolve either F● or ODi using locally DZ(logD)-

free resolutions. The `-th cohomology H `(F● ⊗L ODi) is indeed ODi-module equipped with

an integrable log connection. The residue of of this log connection is ODi-linear and is called

the the `-th residue of the complex F●.
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As in the case of D-module, the sheaf ωZ(logD) = Ωn
Z(logD) carries a canonical right

DZ(logD)-module structure and we have the left to right transformation F ↦ ωZ(logD)⊗F

for any left DZ(logD)-module F . Moreover, we have the following analog

Theorem 2.1.2. The log de Rham complex of DZ(logD)

{DZ(logD) → ΩZ(logD) ⊗DZ(logD) → ⋯ → Ωn
Z(logD) ⊗DZ(logD)} [n]

is a resolution of ωZ(logD) as right DZ(logD)-modules. The Spencer complex of DZ(logD)

DZ(logD) ⊗
n

⋀TZ(logD) → DZ(logD) ⊗
n−1

⋀ TZ(logD) → ⋯ → DZ(logD)

is a resolution of OZ as left DZ(logD)-modules.

For any integrable log connection F , it induces a complex of right DZ-modules,

{F ⊗DZ → ΩZ(logD) ⊗ F ⊗DZ → ⋯→ Ωn
Z(logD) ⊗ F ⊗DZ}[n]. (2.1.5)

In fact, it is nothing but the log de Rham complex of F ⊗DZ as a left DZ(logD)-module.

Lemma 2.1.3. The log de Rham complex of F ⊗DZ is a DZ-module resolution of

ωZ(logD) ⊗ F ⊗
DZ(logD)

DZ .

Proof. By the above theorem, we have

ωZ(logD) ⊗ F ⊗
DZ(logD)

DZ ≃ ωZ(logD) ⊗ F ⊗
DZ(logD)

(DZ(logD) ⊗
−●

⋀TZ(logD)) ⊗DZ

= ωZ(logD) ⊗ F ⊗
−●

⋀TZ(logD) ⊗DZ

≃ Ω●+n
Z (logD) ⊗ F ⊗DZ .

The last isomorphism follows from that the contraction ωZ(logD)⊗⋀−●TZ(logD) ≃ Ω●+n
Z (logD).

Example 2.1.4. We will use the following fact: the complex of right DZ-modules

{DZ → ΩZ(logD) ⊗DZ → ⋯→ Ωn
Z(logD) ⊗DZ}[n]
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is a filtered resolution of ωZ(∗D) = ∪k∈ZωZ(kD), equipped the induced filtration by Ωn+●
Z (logD)⊗

F`+n+●DZ . In fact, it is well-known that the inclusion Ωn+●
Z (logD) → Ωn+●

Z (∗D) is a fil-

tered quasi-isomorphism [Del71b]. The inclusion extends to a filtered quasi-isomorphism

Ωn+●
Z (logD)⊗DZ → Ωn+●

Z (∗D)⊗DZ . Since Ωn+●
Z (∗D)⊗DZ is a filtered resolution of ωZ(∗D),

we conclude the proof. It follows that, for f ∶ Z →W ,

f†ωZ(∗D) = Rf!(ωZ(∗D) ⊗LDZ DZ→W ) = Rf!Ω
n+●
Z (logD) ⊗DW .

In particular, if f is a closed embedding then f! = f+ is right exact and f† = H 0f†, which

means

{DW → f+ΩZ(logD) ⊗DW → ⋯→ f+Ωn
Z(logD) ⊗DW}[n]

is a resolution of f†ωZ(∗D). We put the induced filtration to make it a filtered resolution

and denote by

f†(ωZ(∗D), F●ωZ(∗D)) = (f†ωZ(∗D), F●f†ωZ(∗D)),

or for simplicity just f†ωZ(∗D).

The DZ-module looks like L ⊗DZ for L is a OZ-module is called induced DZ-module.

For example, we have seen ΩdimZ+●
Z ⊗DZ and Ω(logD)dimZ+●

Z ⊗DZ are complexes of induced

DZ-modules.

2.1.3 Polarized Hodge-Lefschetz structures

The goal of this subsection is to introduce polarized bigraded Hodge-Lefschetz structures.

The prototype of polarized Hodge-Lefschetz structures one should keep in mind is the graded

vector space consisting of cohomologies of a compact Kähler manifold. Polarized bigraded

Hodge-Lefschetz structures are the degenerations of polarized Hodge-Lefschetz structures.

We begin with the convention on Hodge structures and we only consider complex Hodge

structures.
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A Hodge structure of weight n is a finite dimensional vector space V with two decreasing

filtrations F ● and G● satisfying

V = F p ⊕Gn+1−p,

for each p ∈ Z. Let V p.q = F p ∩Gq for p + q = n. Then the above definition is equivalent to

V = ⊕
p+q=n

V p,q.

A morphism of Hodge structures is just a morphism of vector spaces such that it preserves

the two filtrations. A polarization on the Hodge structure (V,F ●,G●) is a non-degenerated

hermitian pairing S ∶ V ⊗C V → C such that

1. F p is orthogonal to Gn+1−p with respect to S for every p ∈ Z;

2. (−1)qS(−,−) is hermitian inner product on V p,q.

Remark 2.1.5. A polarized Hodge structure of weight n is completely determined by the

triple (V,F●V,S) because

Gn+1−pV = {a ∈ V ∶ S(a, b) = 0 for all b in F pV } = F pV ⊥S .

We will also call the triple (V,F●V,S) a polarized Hodge structure.

Remark 2.1.6. A Tate twist (V,F ●, S)(r) on a polarized Hodge structure (V,F ●, S) is the

triple (V,F ●+r, (−1)rS), for any integer r.

Now let us move on to the geometric case. It is well-known that the k-th cohomology

group of a compact Kähler manifold Z has Hodge decomposition

Hk(Z,C) = ⊕
p+q=k

Hp,q(Z)

and thus it is a Hodge structure of weight k. Fix a choice of
√
−1. Let Z be a compact Kähler

manifold of dimension n, and let h be any Kähler metric on Z. We denote the Kähler form

by ω = −Imh ∈ A2(Z,R) and denote its cohomology class by [ω] ∈H2(Z,R); note that this
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depends on the choice of
√
−1 through the function Im ∶ C→ R. The choice of

√
−1 endows

the two-dimensional real vector space C with an orientation on Z. The induced orientation

on Z has the property that

∫
Z

ωn

n!
= vol(Z) > 0.

The integral also depends on the orientation, hence on the choice of
√
−1. To remove the

dependence, instead of the usual integral, we should use

1

(2π
√
−1)n ∫Z

∶ A2n(Z,C) → C.

Of course we still have

1

(2π
√
−1)n ∫Z

(2π
√
−1ω)n
n!

= vol(Z).

Let L = [w]∧ be the Lefschetz operator for a Kähler class [w]. Then for k ≤ dimZ the

primitive part

PLH
k(Z,C) =def kerLdimZ−k ∩Hk(X,C)

is a polarized Hodge structure of weight k with the polarization

S(a, b) = ε(n − k + 1)
(2π

√
−1)n ∫Z

(2π
√
−1L)n−ka ∧ b,

for a, b ∈ PLHk(Z,C) because of the Hodge-Riemman bilinear relation.

If we consider the cohomology groups all together, we will get the Hodge-Lefschetz

strcuture of central weight n. Denote by (X,Y,H) the sl2(C)-triple, i.e.,

[X,Y] = H, [H,X] = 2X, [H,Y] = −2Y.

In the Lie group SL2(C), we have the Weil element w = eXe−YeX with the property that

w−1 = −w, and under the adjoint action of SL2(C) on its Lie algebra, one has the identities

wHw−1 = −H, wXw−1 = −Y, wYw−1 = −X

From this, one deduces that eX = we−XeY = eYweY. Now A●(Z) becomes a representation of

sl2(C) if we set

X = 2π
√
−1L and Y = (2π

√
−1)−1Λ
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and let H act as multiplication by k − n on the subspace Ak(Z). The reason for this (non-

standard) definition is that it makes the representation not depend on the choice of
√
−1.

It is easy to see how w acts on primitive forms. Suppose that α ∈ An−k(Z) satisfies Yα = 0.

Then wα ∈ An+k(Z). If we now expand both sides of the identity

eXα = eYweYα = eYwα

into power series, and then compare terms in degree n + k, we get

wα = Xk

k!
α.

This formula is the reason for using w (instead of the otherwise w−1): there is no sign on the

right-hand side.

A Hodge-Lefschetz structure is linear algebra data encoding both representation theoretic

and Hodge theoretic information. Recall that a finite dimensional sl2(C)-representation is a

graded vector space V = ⊕`∈Z V` satisfying the following three equivalent conditions.

1. each graded piece V` is the `-eigenspace of H;

2. the morphism X` ∶ V−` → V` is an isomorphism for each ` ≥ 0;

3. the morphism Y` ∶ V` → V−` is an isomorphism for each ` ≥ 0.

Example 2.1.7. For any finite dimensional vector space V together with a nilpotent operator

N , there exists a so-called monodromy filtration W● uniquely determined by the following

two conditions

• for each ` ∈ Z, N ∶W` →W`−2;

• the induced operator N ` ∶ grW` → grW
−` is an isomorphism for each ` ≥ 0.

Let grW = ⊕`∈Z grW` . The `-th primitive part PNgrW` = kerN `+1 ∩ grW` consists of the classes

of generators of cyclic subspaces of V of dimension ` as C[N]-modules for ` ≥ 0. For each
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generator v, we have N `+1v = 0 but N `v ≠ 0 and also v is not a image of N . Therefore, we

have the identification

PNgrW` = kerN `+1

kerN ` + imN ∩ kerN `+1
.

Furthermore, we have the Lefschetz decomposition grW` = ⊕k≥0NkPNV`+2k. Taking N = Y, the

Lefschetz structure and the grading uniquely determines the operator X such that (X,Y,H)

is a sl2(C)-triple by the relation XYk = k(` − k + 1)Yk−1 on PNgrW` . Thus grW naturally is a

representation of sl2(C).

By Hard Lefschetz theorem, for any compact Kähler manifold the vector space

⊕
`∈Z
HdimZ+`(Z,C)

is a representation of sl2(C) by setting X = 2π
√
−1L the Lefschetz operator, Y = (2π

√
−1)−1Λ

the adjoint operator. But because of the Lefschetz operator of is of type (1, 1), we actually have

X ∶Hk(Z,C) →Hk+1(Z,C)(1) is a morphism of Hodge structures and X` ∶HdimZ−`(Z,C) →

HdimZ+`(Z,C)(`) is an isomorphism of Hodge structures. This leads to the following definition:

a Hodge-Lefschetz structure of central weight n is a sl2(C)-representation V = ⊕`∈Z V` with

two filtrations F ●V and G●V such that

1. each graded piece (V`, F ●V`,G●V`) is a Hodge structure of weight n + `;

2. the operator X ∶ (V`, F ●V`,G●V`) → (V`+2, F ●+1V`+2, ,G●+1V`+2) is a morphism of Hodge

structures such that

X` ∶ (V−`, F ●V−`,G
●V−`) → (V`, F ●V`,G

●V`)(`)

is an isomorphism of Hodge structures;

3. the operator Y ∶ (V`, F ●V`,G●V`) → (V`−2, F ●−1V`−2,G●−1V`−2) is a morphism of Hodge

structures such that

Y` ∶ (V`, F ●V`,G
●V`) → (V−`, F ●V−`,G

●V−`)(−`)

is an isomorphism of Hodge structures.
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It follows from the definition the primitive part PXV` is a sub-Hodge structure for each ` < 0.

Let V` =HdimZ+`(Z,C) and V = ⊕`∈Z V`. It follows that V is a Hodge-Lefschetz structure of

central weight dimZ. Hodge-Lefschetz structure interplays well with the Hodge-Riemann

bilinear relation. A polarization on a Hodge-Lefschetz structure V of central weight n is a

hermitian symmetric paring S ∶ V ⊗C V → C such that

1. the restriction S∣V`⊗CV−k is zero for ` + k ≠ 0;

2. S(X−,−) = S(−,X−) and S(−,Y−) = S(Y−,−);

3. S−`(X`−,−) is a polarization on PXV−`, or equivalently, S` ○ (id ⊗w) is a polarization

on V` where S` ∶ V` ⊗ V−` → C is the restriction of S.

Note that w ∶ Vk → V−k(−k) is automatically an isomorphism of Hodge structures (of

weight n + k). We first prove an auxiliary formula. Suppose that a ∈ V−` is primitive, in the

sense that X`+1a = 0( and ` ≥ 0). Then Ya = 0, and from we−X = eXe−Y, we get we−Xa = eXa,

and after expanding and comparing terms in degree ` − 2j, also

w
Xj

j!
a = (−1)j X`−j

(` − j)!a (2.1.6)

since w2 acts on V−`+2j as (−1)−`+2j = (−1)`, this formula is actually symmetric in j and ` − j,.

Lemma 2.1.8. If V is a Hodge-Lefschetz structure, then w ∶ Vk → V−k(−k) is an isomorphism

of Hodge structures.

Proof. Any a ∈ Vk has a unique Lefschetz decomposition

a = ∑
j≥max(k,0)

Xj

j!
aj

where aj ∈ Vk−2j satisfies Y aj = 0. (We only need to consider j ≥ k in the sum because

X2j−k+1aj = 0, which implies that Xjaj = 0 for j < k.) Suppose further that a ∈ V p,q
k , where

p + q = n + k. Then Xiaj ∈ V p+i,q+i
k+2i , and by descending induction on j ≥ max(k,0), we deduce
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that aj ∈ V p−j,q−j
k−2j . In other words, the Lefschetz decomposition holds in the category of Hodge

structures.

We can now check what happens when we apply w. Using (2.1.6), we find that

wa = ∑
j≥max(k,0)

w
Xj

j!
aj = ∑

j≥max(k,0)

(−1)j Xj−k

(j − k)!aj ∈ V
p−k,q−k
−k

and so w is a morphism of Hodge structures. The same calculation shows that w−1 is also a

morphism of Hodge structures. It follows that w is an isomorphism of Hodge structures.

The definition of polarized Hodge-Lefschetz structure of central weight n is redundant. In

fact the definition is equivalent to a tuple (V,X, F ●, S) for V = ⊕`∈Z V`, F ● is a decreasing

filtration, X ∶ (V`, F ●) → (V`+2, F ●+1), and S is a Hermitian pairing such that

(pHL1) for each ` ≥ 0, X` ∶ F ●V−` → F ●+`V` is an isomorphism;

(pHL2) S(X−,−) = S(−,X−) and S∣V`⊗CV−k vanishes except for k = −`;

(pHL3) the triple (PXVj, F●, S ○ (Xj ○ id )) is a porlarized Hodge structure of weight n − j.

The condition (pHL1) in the above definition indicates the Lefschetz decomposition respects

the filtration F ●. Therefore Y is determined uniquely and also filtered. The second condition

implies that S(Y−,−) = S(−,Y−). The third condition says that S ○(id ⊗w) is non-degenerate

on F pV` ⊗ F pV−`. Therefore, we also get the following concrete description of the Hodge

structure on V`: for p + q = n + `

V p,q
` = {a ∈ F pV` ∶ S`(a, b) = 0 for all b ∈ F p−`+1V−`},

GqV` = {a ∈ V`, S`(a, b) = 0 for all b ∈ F n−q+1V−`}.

Example 2.1.9. For a compact Kähler manifold Z of dimension n, let V` =Hn+`(Z,C) and

V = ⊕`∈Z V`. Then V together with X = 2π
√
−1L and Y = (2π

√
−1)−1Λ and with the natural

filtration is a Hodge-Lefschetz structure of central weight n. By Hodge-Riemann bilinear

relation, taking

S`(a, b) =
ε(n + ` + 1)
(2π

√
−1)n ∫Z

a ∧ b̄ = ε(`)(−1)`n ε(n + 1)
(2π

√
−1)n ∫Z

a ∧ b̄ (2.1.7)

29



for a ∈ V` and b ∈ V−` gives a polarization on V . The polarized Hodge-Lefschetz structure V

is determined by the filtered DZ-module ωZ together with the sesquilinear pairing SZ . The

graded piece V` is just `-th hypercohomology of DRZωZ with induced filtration F ●V` given by

the image of H`(Z,F−●DRZωZ). And the polarization Sk is given by ε(k) times the pairing

Hk(Z,DRZωZ) ⊗H−k(Z,DRZωZ) H0(Z,DRZ,ZωZ ⊗C ωZ) H0(Z,DRZ,ZCZ) ≃ CSZ

We can work out the pairing explicitly. Note that we have a commutative diagram

DRZ,ZωZ ⊗C ωZ DRZ,ZOZ ⊗C OZ

DRZ,ZCZ DRZ,ZDbZ

S D

where the upper horizontal arrow is the isomorphism induced by (2.1.2) and similarly the

lower horizontal arrow is defined on the terms in degree −k,

CZ ⊗OZ,Z̄

k

⋀TZ,Z̄ → Ω2n−k
Z,Z̄

⊗OZ,Z̄ DbZ

by the following rule: write a current locally as Dω ∧ ω̄, with a distribution D and denote by

∂J = ⋀J ∂j and dxJ̄ = ⋀i∉J dxi for an ordered index subset J of I; then

(Dω ∧ ω̄) ⊗ ∂J ∧ ∂̄K ↦ (−1)(j1+⋯+jp)+(k1+⋯+kq)(−1)nqdxJ̄ ∧ dxK̄ ⊗D (2.1.8)

where #J = p and #K = q, and p+ q = k. The sign factor is explained by the number of swaps

that are needed to move everything into the right place, which is (2n − j1) +⋯ + (2n − jp) +

(n − k1) +⋯ + (n − kq). We can now derive a formula for the induced pairing

DRZOZ ⊗C DRZOZ → DRZ,Z̄DbZ . (2.1.9)

For the two local sections α = dxJ̄ and β = dxK̄ , under the isomorphism DRZOZ ≅ DRZωZ

in (2.1.2), the (n − p)-form α goes to

(−1)np(−1)j1+⋯+jp ⋅ ω ⊗ ∂J .
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and the (n − q)-form β goes to

(−1)nq(−1)k1+⋯+kq ⋅ ω ⊗ ∂K .

The pairing SZ on DRZωZ takes those two sections to

(−1)n(p+q)(−1)(j1+⋯+jp)+(k1+⋯+kq)S(ω,ω) ⊗ ∂J ∧ ∂̄K (2.1.10)

where SZ is defined in (2.1.4). Now SZ(ω,ω) =DZω ∧ ω̄, where D is the distribution

DZ = ε(n + 1)
(2π

√
−1)n ∫Z

Under the isomorphism in (2.1.8) the section (2.1.10) therefore goes to

(−1)npdxJ̄ ∧ dxK̄ ⊗DZ = (−1)n(degα−n)α ∧ β̄ ⊗DZ

The formula we have just derived also works for smooth forms, of course. In other words, the

same formula can be used to extend (2.1.9) to a pairing on the de Rham complex of smooth

forms. The resulting pairings on cohomology are, assuming Z is compact

Hn+k(Z,C) ⊗Hn−k(Z,C) → C, (α,β) ↦ (−1)n(degα−n) ε(n + 1)
(2π

√
−1)n ∫Z

α ∧ β̄, (2.1.11)

which coincides with the pairing (2.1.7) precisely.

2.1.4 Polarized bigraded Hodge-Lefschetz structures

In the paper, what we really consider is the degeneration of “variation of Hodge-Lefschetz struc-

tures” of a family of compact Kähler manifolds. As it turns out the limit of the degeneration is

a bigraded Hodge-Lefschetz structure. We begin to define polarized bigraded Hodge-Lefschetz

structures. Similarly to the case of sl2(C)-representation, a sl2(C) × sl2(C)-representation is

a bigraded vector space V = ⊕`,k∈Z V`,k satisfying the following three equivalent conditions:

1. each bigraded piece V`,k is the `-th eigenspace of H1 and k-th eigenspace of H2;
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2. for each `, k ∈ Z we have X1 ∶ V`,k → V`+2,k and X2 ∶ V`,k → V`,k+2 plus isomorphisms

X`1 ∶ V−`,k → V`,k and Xk2 ∶ V`,−k → V`,k;

3. for each `, k ∈ Z we have Y1 ∶ V`,k → V`−2,k and Y2 ∶ V`,k → V`,k−2 plus the isomorphism

Y`1 ∶ V`,k → V−`,k and Yk2 ∶ V`,k → V`,−k.

A bigraded Hodge-Lefschetz structure of central weight n is a sl2(C)×sl2(C)-representation

V = ⊕`,k∈Z V`,k with two filtrations F ●V and G●V such that

1. the bifiltered vector space (V`,k, F ●V`,k,G●V`,k) is a Hodge structure of weight n + ` + k;

2. the two operators X1 ∶ (V`,k, F ●,G●) → (V`+2,k, F ●+1,G●+1) and X2 ∶ (V`,k, F ●,G●) →

(V`,k+2, F ●+1,G●+1) are morphisms of Hodge structures such that

X`1 ∶ (V−`,k, F ●,G●) → (V`,k, F ●,G●)(`) and Xk2 ∶ (V`,−k, F ●,G●) → (V`,k, F ●,G●)(k)

are isomorphisms of Hodge structures.

3. the two operators Y1 ∶ (V`,k, F ●,G●) → (V`−2,k, F ●−1,G●−1) and Y2 ∶ (V`,k, F ●,G●) →

(V`,k−2, F ●−1,G●−1) are morphisms of Hodge structures such that

Y`1 ∶ (V`,k, F ●,G●) → (V−`,k, F ●,G●)(−`) and Yk2 ∶ (V`,k, F ●,G●) → (V`,−k, F ●,G●)(−k)

are isomorphisms of Hodge structures.

A polarization on a bigraded Hodge-Lefschetz structure V = ⊕`,k∈Z V`,k of central weight

n is a hermitian symmetric pairing S ∶ V ⊗C V → C such that

1. the restriction S∣V`,k⊗CVi,j
∶ V`,k ⊗C Vi,j → C vanishies except for ` = −i and k = −j;

2. S(X1−,−) = S(−,X1−) and S(−,Y2−) = S(Y2−,−);
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3. S`,k(X`1−, (−Y2)k−) is a polarization on the bi-primitive part P−`,k = kerX`+1
1 ∩ kerYk+1

2 ∩

V−`,k, or equivalently, S`,k(−,w1w2−) is a polarization on V`,k, where S`,k is the restriction

of S on V`,k ⊗ V−`,k and wi = eXie−YieXi for i = 1,2.

This is the practical definition because in the later application X1 will be the 2π
√
−1L and

Y2 will be, up to a scalar, the logarithmic of the monodromy for the degeneration. Similiarly

to the case of Hodge-Lefschetz structure, we have a simpler definition.

Theorem 2.1.10. A polarized bigraded Hodge-Lefschetz structure of central weight n on a

filtered bigraded vector space (V = ⊕`,k V`,k, F ●V ) is uniquely determined by the following:

(pbHL1) for every `, k ∈ Z we have two operators X1 ∶ (V`,k, F ●) → (V`+2,k, F ●+1) and

Y2 ∶ (V`,kF ●) → (V`,k−2, F ●−1) such that

X`1 ∶ F ●V−`,k → F ●+`V`,k and Yk2 ∶ F ●V`,k → F ●−kV`,−k are isomorphisms;

(pbHL2) a collection of Hermitian pairings S`,k ∶ V`,k ⊗C V−`,−k → C such that

S`,k(X1−,−) = S`+2,k(−,X1−) and S`,k(−,Y2−) = S`,k−2(Y2−,−);

(pbHL3) the triple (P−`,k, F ●P−`,k, S ○ (X`1 ⊗ (−Y2)k)) is a polarized Hodge structure of

weight n − ` + k where F ●P−`,k = kerX`1 ∩ kerYk2 ∩ F ●V−`,k is the bi-primtive part.

Then the Hodge structure on Vj,k can be described as: for p + q = n + j + k

V p,q
j,k = {a ∈ F pVj,k ∶ Sj,k(a, b) = 0 for all b ∈ F p−j−k+1V−j−k},

GqVj,k = {a ∈ Vj,k ∶ Sj,k(a, b) = 0 for all b ∈ F n−q+1V−j,−k}.

The proof is simple and is left to the reader. Later when we construct the limiting mixed

Hodge structure, the polarized bigraded Hodge-Lefschetz structure naturally comes up from

the first page of weight spectral sequence associated to a mixed Hodge complex. Modeled on

the properties of the differential of spectral sequence we give the following definition:
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A differential of a polarized bigraded Hodge Lefschetz structure (V,F ●,X1,Y2, S) is a

linear map d ∶ V → V such that

1. d ∶ (Vj,k, F ●) → (Vj+1,k−1, F ●) and d2 = 0;

2. d is skew-symmetrc with respect to S, i.e., S(d−,−) + S(−, d−) = 0;

3. [X1, d] = 0 and [Y2, d] = 0.

Remark 2.1.11. In fact, the above three conditions imply that d is a morphism of Hodge

structures d ∶ V p,q
j,k → V p,q

j+1,k−1. A vector a ∈ GqVj,k means that S(a, b) = 0 for all b ∈ F n−q+1V−j,−k.

Then S(da, b) = S(a, db) = 0 for all b ∈ F n−q+1V−j−1,−k+1, indicating da belongs to GqVj+1,k−1.

The main result of this subsection is the following version of Deligne’s lemma, showed by

Guillén and Navarro Aznar.

Theorem 2.1.12 ([GN90, (4.5)]). The cohomology kerd/imd of a polarized differential

bigraded Hodge-Lefschetz struture is again a polarized bigraded Hodge-Lefschetz structure.

Proof. Let C ∶ V → V be the operator that acts as (−1)q on the subspace V p,q
j,k in the Hodge

decomposition of each Vj,k. Since d is a morphism of Hodge structures, we have [d,C] = 0.

The fact that S is a polarization means that the Hermitian pairing

h+ ∶ V ⊗C V → C, h+(a, b) = S (Ca,w1w2b)

is positive-definite on V . Let d∗ be the adjoint of d with respect to h+. Fix a ∈ Vj,k and

b ∈ Vj,k,:

h+(da, b) = S (Cda,w1w2b) = S (dCa,w1w2b)

= −S (Ca, dw1w2b) = −S (Ca,w1w2 ⋅w−1
2 w−1

1 dw1w2 ⋅ b) = h+ (a, d∗b) ,

i.e. the adjoint d∗ = −w−1
2 w−1

1 dw1w2.

In addition to the two relations in the definition of differential

[X1, d] = 0 and [Y2, d] = 0
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we obtain from the grading another two relations

[H1, d] = d and [H2, d] = −d.

With respect to the sl2(C) × sl2(C)-action on EndC(V ), the element d therefore has weight

(+1,−1), and is primitive with respect to the action by Y1 and X2. Define

d1 = [Y1, d] and d2 = − [X2, d] .

The reason for the minus sign is that we have [Y2, d] = 0. Then d1 has weight (−1,−1), and

is primitive with respect to the action by X1 and X2; this gives

[H1, d1] = −d1, [X1, d1] = d, [Y1, d1] = 0, w1d1w−1
1 = d

[H2, d1] = −d1, [Y2, d1] = 0.

Similarly, d2 has weight (+1,+1), and therefore

[H2, d2] = d2, [X2, d2] = 0, [Y2, d2] = −d, w2d2w−1
2 = d

[H1, d2] = d2, [X1, d2] = 0.

Therefore, d∗ = − [Y1, d2] = [X2, d1] ∈ EndC V . It has weight (−1,+1), and is primitive with

respect to X1 and Y2. From this, and the identities we already have, we deduce the following

set of relations:

[H1, d∗] = −d∗, [X1, d∗] = d2, [Y1, d∗] = 0, w1d∗w−1
1 = −d2

[H2, d∗] = d∗, [X2, d∗] = 0, [Y2, d∗] = −d1, w2d∗w−1
2 = −d1.

We can check that the (formal) Laplace operator

∆ = dd∗ + d∗d ∈ EndC(V )

is invariant under the action of sl2(C) × sl2(C). For example,

[X1, dd∗] = X1dd∗ − dd∗X1 = dX1d∗ − d (X1d∗ + d2) = −dd2

[X1, d∗d] = X1d∗d − d∗dX1 = (d∗X1 − d2)d − d∗X1d = −d2d
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from which we conclude, using d2 = 0, that

[X1,∆] = − (dd2 + d2d) = −(d (dX2 −X2d) + (dX2 −X2d)d) = 0

The other three commutators can be checked similarly. On the other hand, ∆ is also a

morphism of Hodge structures: the reason is that

d ∶ Vj,k → Vj+1,k−1, Y1 ∶ Vj,k → Vj−2,k(−1), X2 ∶ Vj,k → Vj,k+2(1)

are all morphisms of Hodge structures, and ∆ is obtained by composing them in some order.

It follows that ker ∆ ⊆ V is a bigraded Hodge-Lefschetz structure, polarized by the restriction

of S. Because of the canonical isomorphism ker ∆ ≃ kerd/imd as bigraded Hodge-Lefschetz

structures, the induced pairing by S on kerd/imd is also a polarization. This concludes the

proof.

2.2 Log relative de Rham complex

Let f ∶ X → ∆ be a proper holomorphic morphism smooth away from the origin whose

central fiber Y is simple normal crossing but not necessarily reduced. Assume X is Kähler

of dimension n + 1 and Y = ∑i∈I eiYi where Yi’s are smooth components and I a finite index

set. Let t be a parameter on ∆ and z0, z1, z2, ..., zn a local coordinate system on X such that

t = ze00 z
e1
1 ⋯z

ek
k such that e0, e1, ..., ek ≥ 1. Then we have Ω∆(log 0) = O∆ ⋅ dtt and ΩX(logY ) is

locally generated by

e0
dz0

z0

, e1
dz1

z1

, ..., ek
dzk
zk
, dzk+1, dzk+2, ..., dzn

over OX . Denote by ξ0, ξ1, ..., ξn the image of the above generators in ΩX/∆(logY ), respectively.

As a quotient of ΩX(logY ), the sheaf ΩX/∆(logY ) is generated by ξ0, ξ1, ..., ξn, but under

the relation

ξ0 + ξ1 +⋯ + ξn = 0 because f∗
dt

t
= e0

dz0

z0

+ e1
dz1

dz1

+⋯ + ek
dzk
zk
.
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Let TX/∆(logY ) be the dual bundle of ΩX/∆(logY ). It is a subsheaf of TX , generated by

Di =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

ei
zi∂i −

1

e0

z0∂0, 1 ≤ i ≤ k

∂i, i > k,
(2.2.1)

where ∂i is the local section of TX dual to dzi in ΩX . It follows that D1,D2, ...,Dn is the

dual frame of ξ1, ξ2, ..., ξn.

2.2.1 A “log connection”

We shall construct an operator in EndDb(∆,C) (Rf∗Ω●+n
X/∆

(logY )) which should be regarded a

“log connection”. Note that we have the following short exact sequence of OX-modules

0→ f∗Ω∆(log 0) ⊗Ω●+n
X/∆(logY ) → Ω●+n+1

X (logY ) → Ω●+n+1
X/∆ (logY ) → 0.

Under the identification dt
t ∧ ∶ OX → f∗Ω∆(log 0), the above short exact sequence becomes

0 Ω●+n
X/∆

(logY ) Ω●+n+1
X (logY ) Ω●+n+1

X/∆
(logY ) 0.

dt
t
∧

Here, the morphism dt
t ∧ ∶ Ωk

X/∆
(logY ) → Ωk+1

X (logY ) works as [α] ↦ dt
t ∧ α which does

not depend on the representative of [α]. Let Cone● = Ω●+n
X (logY ) ⊕ Ω●+n

X/∆
(logY ) be the

mapping cone of dt
t ∧ ∶ Ω●+n−1

X/∆
(logY ) → Ω●+n

X (logY ). In our convention, the differential δ of

the mapping cone works as δ(α, [β]) = ((−1)ndα + dt
t ∧ β, (−1)nd[β]), where d is the usual

exterior derivative on Ω●
X(log ) and by abuse of notation, also d denotes the induced differential

on Ω●
X/∆

(logY ). Then we have the following diagram:

Cone● Ω●+n
X/∆

(logY )

Ω●+n
X/∆

(logY )

q

p

p○q−1
(2.2.2)

where q ∶ Cone● → Ω●+n
X/∆

(logY ), (α, [β]) ↦ [α] is a quasi-isomorphism and p is the second

projection. Therefore we have the morphism p ○ q−1 in EndDb(X,C) (Ωn+●
X/∆

(logY )). For any

local section g ∈ O∆, the multiplication by g is an endomorphism of Ω●+n
X/∆

(logY ) because it

is f−1O∆-linear.
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Lemma 2.2.1. The operator ∇ = (−1)n−1p○q−1 satisfies [∇, g] = tg′ in EndDb(X,C) (Ω●+n
X/∆

(logY )),

where g′ denotes the derivative of g ∈ O∆.

Proof. It is equivalent to show that [p ○ q−1, g] = (−1)ntg′. Define g(α, [β]) = (gα, g[β] +

(−1)n−1tg′[α]) for any (α, [β]) ∈ Cone● and g ∈ f−1O∆. We shall show that g is an endomor-

phism of Cone●, i.e., gδ(α, [β]) = δg(α, [β]). This follows from that

gδ(α, [β]) = g ((−1)ndα + dt
t
∧ β, (−1)nd[β])

= ((−1)ngdα + gdt
t
∧ β, (−1)ngd[β] − tg′d[α])

and

δg(α, [β]) = δ (gα, g[β] + (−1)n−1tg′[α])

= ((−1)ndgα + dt
t
∧ (gβ + (−1)n−1tg′α), (−1)nd(g[β] + (−1)n−1tg′[α]))

= ((−1)ngdα + gdt
t
∧ β, (−1)ngd[β] − tg′d[α]) .

It is easy to see that g ○ q = q ○ g so that q−1 ○ g = g ○ q−1. Therefore,

[p ○ q−1, g] = p ○ q−1 ○ g − g ○ p ○ q−1 = [p, g] ○ q−1

But [p, g](α, [β]) = p(gα, g[β] + (−1)n−1tg′[α]) − g[β] = (−1)n−1tg′[α]. It follows that

[p ○ q−1, g] ○ q(α, [β]) = [p, g](α, [β]) = (−1)n−1tg′ ○ q(α, [β]).

By inverse q we prove the statement.

Because of the identification dt
t ∧ ∶ O∆ → Ω∆(log 0), what we really get is a morphism in

Db(X,C)

∇ ∶ Ω●+n
X/∆(logY ) → f∗Ω∆(log 0) ⊗Ω●+n

X/∆(logY )

such that ∇g = g∇+ dt
t ⊗ tg′ ∈ EndDb(X,C)(Ω●+n

X/∆
(logY )) for any local section g ∈ O∆. Running

the similar construction, we obtain an induced C-linear (in fact f−1O∆-linear) endomorphism

[∇] on Ω●+n
X/∆

(logY )∣Y in Db(X,C) satisfying the following diagram.
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Ω●+n
X/∆

(logY ) Ω●+n
X/∆

(logY ) Ω●+n
X/∆

(logY )∣Y Ω●+n
X/∆

(logY )[1]

Ω●+n
X/∆

(logY ) Ω●+n
X/∆

(logY ) Ω●+n
X/∆

(logY )∣Y Ω●+n
X/∆

(logY )[1]

∇+1

t

∇ [∇] (∇+1)[1]

t

Since Ω●+n
X/∆

(logY ) is f−1O∆-linear, each cohomolgy Rkf∗Ω●+n
X/∆

(logY ) is a coherent O∆-

module. Taking direct image, we get C-linear morphisms between distinguished triangles in

Db
coh(∆,O∆):

Rf∗Ω●+n
X/∆

(logY ) Rf∗Ω●+n
X/∆

(logY ) Rf∗Ω●+n
X/∆

(logY )∣Y Rf∗Ω●+n
X/∆

(logY )[1]

Rf∗Ω●+n
X/∆

(logY ) Rf∗Ω●+n
X/∆

(logY ) Rf∗Ω●+n
X/∆

(logY )∣Y Ω●+n
X/∆

(logY )[1]

Rf∗∇+1

t

Rf∗∇ Rf∗[∇] Rf∗(∇+1)[1]

t

(2.2.3)

where the morphism

Rf∗∇ ∶ Rf∗Ω●+n
X/∆(logY ) → Rf∗Ω

●+n
X/∆(logY )

satisfies [Rf∗∇, g] = tg′ ∈ EndDb(∆,C) (Rf∗Ω●+n
X/∆

(logY )) for any local sections g ∈ O∆.

2.2.2 Residue

In the above situation, one should regard Rf∗[∇] as the residue of Rf∗∇. More generally, let

F● be a complex of O∆-modules with a morphism ∇ ∈ EndDb(∆,C)(F●) such that [∇, g] = tg′ for

any g ∈ O∆. Let G● be the mapping cone of t ∶ F● → F●, which computes to F●⊗LC(0). Then

by the axioms of triangulated categories [HTT08], there exists an operator R ∈ EndDb(∆,C)(G●)

making the following diagram commute in Db(∆,C).

F● F● G● = F● ⊗L C(0) F●[1]

F● F● G● = F● ⊗L C(0) F●[1]

∇+1

t

∇ R (∇+1)[1]

t

We call the operator R a residue of ∇. Note that the axioms of triangulated categories

cannot guarantee that the filling is unique. However, the eigenvalues of R` only depends on
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∇, where R` denotes the induced operator on the cohomology H ` (F● ⊗L C(0)). First, every

object in Db
coh(∆,O) splits, meaning that F● ≃ ⊕`∈Z H `F●[−`], since there are no Exti for

i ≥ 2 between two coherent sheaves over a curve. It follows that the morphism ∇ breaks up

into sum of morphism consisting of diagonal morphism ∇` ∶ H `F●[−`] →H `F●[−`] which

is an actual log connection and off-diagonal morphism H `F●[−`] →H mF●[−m] but only

for ` >m. Thus the eigenvalues of R` are determined by ∇` and ∇`+1. When F● is a locally

free sheaf centered at degree zero and ∇ is the usual log connection. Then above definition

coincides with the usual definition of the residue of ∇.

Returning to our case, the natural choice of a residue of Rf∗∇ is R = Rf∗[∇] because of

the diagram (2.2.3): by the projection formula, we have

Rf∗Ω
●+n
X/∆(logY ) L⊗

O∆

C(0) = Rf∗ (Ω●+n
X/∆(logY ) L⊗

f−1O∆

f−1C(0)) = Rf∗ (Ω●+n
X/∆(logY )∣Y ) .

Our main result concerning the relative log de Rham complex is the following.

Theorem 2.2.2. The higher direct image R`f∗Ω●+n
X/∆

(logY ) is locally free for each ` ∈ Z.

Moreover, there exists a canonical isomorphism for every p ∈ ∆

R`f∗Ω
●+n
X/∆(logY ) ⊗C(p) ≃H`(X,Ω●+n

X/∆(logY )∣Xp), where C(p) is the residue filed at p.

We first present two preliminary theorems.

Theorem 2.2.3. The operator R` has eigenvalues in [0,1) ∩Q for each ` ∈ Z.

Proof. Later in §2.3 (Theorem 2.3.3) we will show that in fact [∇] satisfies p([∇]) = 0 for

p(λ) =∏
i∈I

ei−1

∏
j=0

(λ − j

ei
).

Hence so is R`f∗[∇] and this implies the eigenvalues are in [0,1) ∩Q.

Alternatively, by Grothendieck spectral sequence

Ep,q
2 = Rpf∗H

q(Ω●+n
X/∆(logY )∣Y ) ⇒ Rp+qf∗(Ω●+n

X/∆(logY )∣Y ),
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it suffices to show that the induced operator Rpf∗H q[∇] on Rpf∗H qΩ●+n
X/∆

(logY )∣Y has

eigenvalues in [0,1) ∩Q for each q ∈ Z since Ep,q
∞ is a sub-quotient of Ep,q

2 . The following is

proved by Steenbrink [Ste76, Proposition 1.13]:

Lemma 2.2.4. The stalk of H qΩ●+n
X/∆

(logY )∣Y at a point u is generated by the germs

(tae ξi1 ∧ ξi2 ∧⋯ξiq+n)u for all 0 ≤ a < e and all 0 ≤ i1, i2, ..., iq+n ≤ n over the ring C{t 1
e }/tC{t 1

e }

where e is the gcd of e0, e1, ..., ek and C{t 1
e } is the ring of convergent power series with the

variable t
1
e .

We will elaborate the proof of the lemma later. Temporarily admitting the lemma, then

H q[∇]u(t
a
e ξi1 ∧ ξi2 ∧⋯ξiq+n)u = (a

e
t
a
e ξi1 ∧ ξi2 ∧⋯ ∧ ξiq+n)u,

meaning that the eigenvalues of H q[∇] are 0, 1
e ,

2
e , ...,

e−1
e ∈ [0, 1) ∩Q in a neighborhood of u.

This implies that there exists an open neighborhood U containing u and a polynomial pU(λ)

whose roots are in [0,1) ∩Q such that pU (H q[∇]) = 0 over U . By the properness of Y , we

can take a finite open covering U = {Ui} of Y such that p(H q[∇]) = ∏i pUi(H q[∇]) = 0. It

follows that p(Rpf∗H q[∇]) = 0, meaning eigenvalues of Rpf∗H q[∇] in [0,1) ∩Q.

Proof of Lemma 2.2.4. We will actually prove the original statement of [Ste76, Proposition

1.13] that, in the same notations as in the lemma, the stalk at a point u of H qΩ●+n
X/∆

(logY )

is generated by germs

(tae ξi1 ∧ ξi2 ∧⋯ξiq+n)u

for all a ∈ Z≥0 and all tuples 0 ≤ i1, i2, ..., iq+n ≤ n over C{t 1
e } The lemma is a direct corollary.

The complex of stalks Ω●+n
X/∆

(logY )u can be identified with the Kozul complex of operators

D1,D2, ...,Dn on OX,u putting in degree −n,−n + 1, ...,0. Define GjΩ`
X/∆

(logY )u to be the

submodules of Ω`
X/∆

(logY )u spanned by the germs

ξi1 ∧ ξi2 ∧⋯ ∧ ξi` for #{m ∶ im ≤ k} ≥ j.

41



Then {G`Ω●
X/∆

(logY )u}`∈Z is a decreasing filtration of Ω●
X/∆

(logY )u. The associated spec-

tral sequence has Er,●
0 = grrGΩr+●

X/∆
(logY )u. Notice that grrGΩr+●

X/∆
(logY )u can be identi-

fied with direct sums of Koszul complex of operators Dk+1,Dk+2, ...,Dn on OX,u, so Er,`
1 =

Hr+`(grrGΩ●
X/∆

(logY )) = 0 for ` ≠ 0 and Er,0
1 is spanned by germs

ξi1 ∧ ξi2 ∧⋯ ∧ ξi` such that #{im ≤ k} = j

over C{z0, z1, ..., zk}, thanks to the usual Poincaré lemma. Consequently, the spectral sequence

degenerates at E2 with Er,0
2 = H r(Ω●

X/∆
(logY ))u. Now E●,0

1 is the Koszul complex of

operators D1,D2, ...,Dk on C{z0, z1, ..., zk}. Because each Di for 0 ≤ i ≤ k is a homogenous

differential operator, E2 can be computed monomial by monomial.

For simplicity let ξi1,i2,...,ir = ξi1 ∧ ξi2 ∧⋯ ∧ ξir . Now I claim that a cocycle

v = ∑
i1<i2,...<ir

ci1,i2,...,irz
a0
0 z

a1
1 ⋯zakk ξi1,i2,..,ir ∈ E

r,0
1

is cohomologous to zero if Aj ∶= aj/ej−a0/e0 ≠ 0 for some 1 ≤ j ≤ k. Note thatDj(za0
0 z

a1
1 ⋯zakk ) =

Ajz
a0
0 z

a1
1 ⋯zakk for every 1 ≤ j ≤ k. Since v is a cocycle, the coefficients satisfy

r

∑
`=1

(−1)`ci1,i2,...,î`,...,ir+1
Ai` = 0. (2.2.4)

Assume that not all Aj’s are zero for 1 ≤ j ≤ k then A = ∑A2
i is non-zereo. Then the number

di1,i2,...,ir−1 =
k

∑
α=1

Aα
A
cα,i1,i2,...,ir−1 .

is well-defined. Here we extend standardly that cσ(i1),σ(i2),..,σ(ir) = sign(σ)ci1,i2,...,ir for any

permutation σ. Then the element

∑
i1<i2<...<ir−1

di1,i2,...,ir−1z
a0
0 z

a1
1 ⋯zakk ξi1,i2,...,ir−1
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in Er−1,0
1 has coboundary

k

∑
α=1

∑
i1<...<ir−1

Aαdi1,i2,...,ir−1z
a0
0 z

a1
1 ⋯zakk ξα,i1,i2,...,ir−1

= ∑
i1<...<ir

r

∑
`=1

(−1)`Ai`di1,i2,...,î`,...,irz
a0
0 z

a1
1 ⋯zakk ξi1,i2,...,ir

= ∑
i1<...<ir

k

∑
α=1

r

∑
`=1

(−1)`Ai`Aα
A

cα,i1,i2,...,î`,...,irz
a0
0 z

a1
1 ⋯zakk ξi1,i2,...,ir

applying (2.2.4) = ∑
i1<...<ir

k

∑
α=1

A2
α

A
c,i1,i2,...,irz

a0
0 z

a1
1 ⋯zakk ξi1,i2,...,ir = v.

We conclude the claim. Therefore, Er,0
2 is generated over C by za0

0 z
a1
1 ⋯zakk ξi1,i2,..,ir with

Di(za0
0 z

a1
1 ⋯zakk ) = 0.

That is, za0
0 z

a1
1 ⋯zakk = ta/e for some a. Hence, we conclude the lemma.

Theorem 2.2.5. Let F● be a complex of O∆-modules with coherent cohomologies, equipped

with a log connection, i.e an operator

∇ ∈ EndDb(∆,C) (F●) such that [∇, g] = tg′

for ant local holomorphic function g where g′ is the derivative of g. Assume that the residue R`

of ∇ defined in the beginning of this subsection acting on each cohomology H ` (F● ⊗L C(0))

has eigenvalues in [0,1). Then every H `(F●) is locally free.

Proof. By the definition of residue, we have the morphism of distinguished triangles

F● F● F● ⊗L C(0) F●[1]

F● F● F● ⊗L C(0) F●[1]

∇+1

t

∇ R (∇+1)[1]

t

in Db(∆,C). Taking cohomologies gives

⋯ H `−1 (F● ⊗L C(0)) H ` (F●) H `(F●) H ` (F● ⊗L C(0)) ⋯

⋯ H `−1 (F● ⊗L C(0)) H `(F●) H `(F●) H ` (F● ⊗L C(0)) ⋯

R`

t

∇+1 ∇ R`+1

t

(2.2.5)
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For simplicity, fix ` and let H = H `(F●) and denote by ker t the kernel of the morphism

t ∶ H →H . It suffices to prove that ker t is trivial on H . We are going to show that ker t is

a subset of tkH for all k ≥ 0 and thus, by Krull’s theorem ker t is zero.

It follows from the diagram (2.2.5) that ∇+ 1 on ker t and ∇ on H /tH have eigenvalues

in [0,1). Therefore, there exists a polynomial b1(s) ∈ C[s] with roots in [0,1) such that

b1(∇)H ⊂ tH ,

and another a polynomial b2(s) ∈ C[s] with eigenvalues in [0,1) such that

b2(∇ + 1)ker t = 0.

Suppoe v is an element in ker t∩ tkH for some k ≥ 0. It follows that v = tkv1 for some v1 ∈ H .

Because the roots of b1(s − k) are bigger then the roots of b2(s + 1), the two polynomials

b1(s − k) and b2(s + 1) are relative prime. We deduce that there exist p(s), q(s) ∈ C[s] such

that

1 = p(s)b1(s − k) + q(s)b2(s + 1).

Therefore, combining the fact that b2(∇ + 1)v vanishes,

v = p(∇)b1(∇ − k)v + q(∇)b2(∇ + 1)v = p(∇)b1(∇ − k)tkv1.

Because of the identity (∇ − k)tk = tk∇, the above is equivalent to

v = tkp(∇ + k)b1(∇)v1.

Because b1(∇)v1 = tv2 for some v2 ∈ H , substituting in the last equality yields

v = tkp(∇ + k)b1(∇)v1 = tkp(∇ + k)b1(∇)tv2 = tk+1p(∇ + k + 1)b1(∇ + 1)v2 ∈ tk+1H .

We proved that v is also an element in tk+1H . By induction and Krull’s theorem we conclude

the proof.

Now we can immediately finish
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Proof of Theorem 2.2.2. The complex Rf∗Ω●+n
X/∆

(logY ) with Rf∗∇ satisfies the condition of

Theorem 2.2.5. Therefore, each cohomology R`f∗Ω●+n
X/∆

(logY ) is locally free. The second

statement in the theorem follows from the the locally freeness of R`f∗Ω●+n
X/∆

(logY ) plus the

Grauert’s base change theorem.

2.3 Transfer to D−modules

Lemma 2.2.4 implies the restriction of the relative log de Rham complex on Y is semi-

perverse. Indeed, it is even perverse, showed in [Ste76, §2]. Therefore, there should be

a regular holonomic D-module whose de Rham complex is the restriction of the relative

log de Rham complex on Y , in the view of Riemann-Hilbert correspondence established by

Kashiwara [Kas84] and Mebkhout [Meb84]. The stupid filtration should also translates to a

coherent filtration from Hodge theoretic point of view. Then the endomorphism [∇] in the

derived category can be captured by an endomorphism of a D-module. This enable us to

study the relation between the filtration and [∇] much easier and cleaner. In this section, we

will construct the filtered D-module and the endomorphism.

2.3.1 Construction of filtered holonomic DX-modules

Since TX/∆(log) is a subsheaf of TX , the multiplication by sections in TX/∆(logY ) induces a

morphism DX → ΩX/∆(logY ) ⊗DX , with P ↦ ∑k
i=1 ξi ⊗DiP locally. The morphism extends

to a filtered complex of DX-modules

Ωn+●
X/∆(logY ) ⊗DX = {DX → ΩX/∆(logY ) ⊗DX → ⋯→ Ωn

X/∆(logY ) ⊗DX}[n] (2.3.1)

with filtration F` (Ωn+●
X/∆

(logY ) ⊗DX) given by

Ωn+●
X/∆(logY )⊗F`+n+●DX = {F`DX → ΩX/∆(logY )⊗F`+1DX → ⋯→ Ωn

X/∆(logY )⊗F`+nDX}[n].

Let M̃ be the 0-th cohomology of Ωn+●
X/∆

(logY )⊗DX and F`M be the OX-submodule induced

by the the filtration F` (Ωn+●
X/∆

(logY ) ⊗DX).
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Theorem 2.3.1. The complex Ωn+●
X/∆

(logY ) ⊗DX is a filtered resolution of a filtered DX-

module (M̃, F●M̃).

Proof. Notice that grF (Ωn+●
X/∆

(logY ) ⊗DX) = Ωn+●
X/∆

(logY )⊗grFDX , can be identified locally

with the Koszul complex associated to the regular sequence D1,D2, ...,Dn over the ring

grFDX . It follows that Ωn+●
X/∆

(logY ) ⊗ grFDX is acyclic. Therefore, each graded peace

grF` (Ωn+●
X/∆

(logY ) ⊗DX) is acyclic. We deduce inductively that F` (Ωn+●
X/∆

(logY ) ⊗DX) is

also acyclic; this can be seen from the long exact sequence associated to the short exact

sequence

0→ F`−1 (Ωn+●
X/∆(logY ) ⊗DX) → F` (Ωn+●

X/∆(logY ) ⊗DX) → grF` (Ωn+●
X/∆(logY ) ⊗DX) → 0.

Taking direct limit, we conclude that Ωn+●
X/∆

(logY )⊗DX is a resolution of M̃. The long exact

sequence also implies the 0-th cohomology of F` (Ωn+●
X/∆

(logY ) ⊗DX) is isomorphic to F`M̃.

This completes the proof.

Remark 2.3.2. Note that Ωn+●
X/∆

(logY ) ⊗DX is a complex of (f−1O∆,DX)-bimodules because

Ωn+●
X/∆

(logY ) is f−1O∆-linear. It follows that M̃ is also a (f−1O∆,DX)-bimodule. Note we

have two different actions of t on M̃ due to the bimodule structure. We usually use the left

multiplication by t. One can think of M̃ as a flat family assembling the D-module iXp+ωXp

of the smooth fibers Xp for p ∈ ∆ and a specialization M = M̃/tM̃ because using the left

f−1O∆ structure, we have filtered isomorphisms

C(p) ⊗ M̃ ≃ C(p) ⊗Ωn+●
X/∆(logY ) ⊗DX ≃ Ωn+●

X/∆(logY )∣Xp ⊗DX ≃ iXp∗Ω
n+●
Xp ⊗DX ≃ iXp+ωXp ,

where iXp ∶Xp →X is the closed embedding of the smooth fiber Xp.

Remark 2.3.3. The theorem also says by choosing the local trivialization ξ1 ∧ ξ2 ∧⋯ ∧ ξn of

Ωn
X/∆

(logY ), M̃ can be identified locally with DX/(D1,D2, ...,Dn)DX and grFM̃ can be

identified locally with grFDX/(D1,D2, ...,Dn)grFDX .
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Remark 2.3.4. Let DX/∆(logY ) be the subalgebra of DX generated by TX/∆(logY ). One

can show that M̃ is nothing but

ωX/∆(logY ) ⊗
DX/∆(logY )

DX .

And the filtration F●M̃ is induced from F●ωX/∆(logY ), where F`ωX/∆(logY ) is ωX/∆(logY )

for ` ≥ −n and is zero otherwise. To keep the proof elementary, we avoid talking about

DX/∆(logY )-modules.

Theorem 2.3.5. The complex Ωn+●
X/∆

(logY )∣Y ⊗ DX is a filtered resolution of a filtered

holonimic DX-module (M, F●M).

Proof. Because of the bimodule structure, we have Ωn+●
X/∆

(logY )∣Y ⊗DX is the cokernel of the

left multiplication by t on Ωn+●
X/∆

(logY ) ⊗DX . Therefore, the first part of the statement is

equivalent to t ∶ M̃ → M̃ is injective. It suffices to prove that t ∶ grFM̃ → grFM̃ is injective

because the multiplication by t is a filtered morphism. But this follows from t,D1,D2, ...,Dn

is a regular sequence over the ring grFDX . It also follows that grFM is isomorphic locally to

grFDX/(t,D1,D2, ...,Dn)grFDX . This means the characteristic variety of M is cut out by

t,D1,D2, ...,Dn ∈ OT ∗X and thus, the characteristic variety is of dimension n + 1. This proves

the holonomicity of M.

Remark 2.3.6. Similarly to the case of M̃, the DX-module M is just

ωX/∆(logY )∣Y ⊗
DX/∆(logY )

DX

with the filtration F●M induced by (F●ωX/∆(logY )) ∣Y .

2.3.2 Properties of M

We first calculate the characteristic cycle ofM which is important for later when we identifying

the primitive part of grWM. Then we prove that the de Rham complex of M with the

induced filtration recover Ω●+n
X/∆

(logY )∣Y with the stupid filtration. Lastly, we translate the

operator [∇] ∈ EndDb(X,C)(Ω●+n
X/∆

(logY ))∣Y to an operator R on M
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Theorem 2.3.7. The characteristic cycle of M is

cc(M) = ∑
J⊂I

∑
j∈J

ej [T ∗
Y JX] ,

where [T ∗
Y J
X] is the cycle of the conormal bundle of Y J in T ∗X and ei is the multiplicity of

Y along each component Yi for i ∈ I.

Proof. The statement is local and we identifyM with DX/(t,D1,D2, ...,Dn). We first describe

the characteristic variety of M. The support of grFM as a sheaf on T ∗X is defined by the

radical of the ideal (t,D1,D2, ...,Dn)grFDX . In fact, zi∂i for 0 ≤ i ≤ k is in the radical because

(zi∂i)e0+e1+⋯+ek ≡ (z0∂0)e0(z1∂1)e1⋯(zk∂k)ek ≡ t∂e00 ∂
e1
1 ⋯∂

ek
k ≡ 0 mod (t,D1,D2, ...,Dn)grFDX .

Therefore, char(M) is cut out by tred, z0∂0, z1∂1, ..., zk∂k, ∂k+1, ..., ∂n, where tred = z0z1⋯zk. It

follows that char(M) = ⋃J⊂I T ∗
Y J
X.

Denote by p(Z) the prime ideal defining a integral subvariety Z. Let mJ be the length

of grFMp(T ∗
Y J

X) as an Artinian grFDX,p-module . Then cc(M) = ∑J∈ImJ [T ∗
Y J
X]. For

simplicity let us assume J = {0,1,2, .., µ} and by abuse of notation we also the prime ideal

p = p(T ∗
Y J
X) of the variety T ∗

Y J
X is locally generated by z0, z1, ..., zµ, ∂µ+1, ∂µ+2, ..., ∂n over

grFDX in some local coordinate system. Notice that

grFDX,p/(t,D1,D2, ...,Dn)grFDX,p = grFDX,p/(D′
0,D

′
1, ...,D

′
n)grFDX,p

where

D′
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
e0+e1+⋯+eµ
0 , for i = 0

1

ei
zi −

1

e0

z0
∂0

∂i
, for 1 ≤ i ≤ µ

1

ei
∂i −

1

e0

z0
∂0

zi
, for µ + 1 ≤ i ≤ k

∂i, for i > k,

(2.3.2)

because ∂0, ∂1, ..., ∂µ, zµ+1, zµ+2, ..., zk are invertible in grFDX,p. Therefore, grFMp can be

identifies with

C{z0}/(ze0+e1+⋯+eµ0 ).
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Then mJ = dimCC{z0}/(ze0+e1+⋯+eµ0 ) = ∑j∈J ej. This completes the computation.

Remark 2.3.8. The above theorem verifies that cc(M) = limp→0 cc(ip+ωXp) = limp→0 [T ∗
Xp
X]

as cycles in algebraic cotangent space T ∗X for p ∈ ∆∗ where ip ∶Xp →X the closed embedding

of the smooth fiber. In fact, one can show that C(p) ⊗ grFM̃, using the left f−1O∆-module

structure, is isomorphic to grF ip+ωXp as in Remark 2.3.2. Refer to [Gin86a] for general results

about the characteristic cycles of specializations of holonomic D-modules.

Corollary 2.3.9. The de Rham complex DRXM together with filtration F●DRXM is

isomorphic to Ωn+●
X/∆

(logY )∣Y with the stupid filtration in the derived category of filtered

complexes of sheaves of C-vector spaces.

Proof. We have showed that F` (Ωn+●
X/∆

(logY ) ⊗DX) is a resolution of F`M. Therefore, the

total complex of F`+∗ (Ωn+●
X/∆

(logY ) ⊗DX) ⊗⋀−∗TX is quasi-isomorphic to F`+∗M⊗⋀−∗TX ,

which is exactly F`DRXM. It remains to show the total complex also quasi-isomorphic to

F`Ωn+●
X/∆

(logY ). This follows from that

F`+∗ (Ωn+●
X/∆(logY ) ⊗DX) ⊗

−∗

⋀TX = Ωn+●
X/∆(logY ) ⊗ F`+n+● (DX ⊗

−∗

⋀TX)

≃ Ωn+●
X/∆(logY ) ⊗ F`+n+●OX

= F`Ωn+●
X/∆(logY ).

Here, F`OX = OX for ` ≥ 0 and otherwise it is zero.

Theorem 2.3.10. The endomorphism ∇ ∈ EndDb(X,C)Ω
n+●
X/∆

(logY ) in Lemma 2.2.1 transfers

to a filtered morphism

∇ ∶ (M̃, F●M̃) → (M̃, F●+1M̃), [[α] ⊗ P ] ↦ (dt
t
∧)−1 {d(α⊗ P )}

where α ∈ Ωn
X(logY ) and P ∈ DX so that [α] ⊗ P ∈ Ωn

X/∆
(logY ) ⊗DX . Moreover, restriction

on Y yields a filtered morphism

R ∶ (M, F●M)→ (M, F●+1M)
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such that

∏
i∈I

ei−1

∏
j=0

(R − j

ei
) = 0. (2.3.3)

Proof. The morphism dt
t ∧ ∶ Ωn+●

X/∆
(logY ) → Ωn+1+●

X (logY ) extends to the corresponding

complexes of induced DX-modules

dt

t
∧ ∶ Ωn+●

X/∆(logY ) ⊗DX → Ωn+1+●
X (logY ) ⊗DX .

Let Cone●⊗DX be the mapping cone of the above morphism. We get a diagram of complexes

of DX-modules similarly to (2.2.2) and taking 0-th cohomology we get the following.

H 0 (Cone● ⊗DX) M̃

M̃

q

p
p○q−1

(2.3.4)

where abuse of notation, still denote by p and q the induced morphisms from diagram (2.2.2).

Now q is an isomorphism of DX-modules. Let [α⊗P, [β]⊗Q] be a class in H 0(Cone●⊗DX)

for any α⊗ P ∈ Ωn
X(logY ) ⊗DX and [β] ⊗Q ∈ Ωn

X/∆
(logY ) ⊗DX . Then

δ (α⊗ P, [β] ⊗Q) = ((−1)nd(α⊗ P ) + dt
t
∧ β ⊗Q, (−1)nd([β] ⊗Q)) = 0.

Here, the sign factor (−1)n shows up due to we follow the Koszul sign rule. Because

dt
t ∧ ∶ Ωn

X/∆
(logY ) → Ωn+1

X (logY ) is an isomorphism, we have

[β] ⊗Q = (−1)n−1(dt
t
∧)−1{d(α⊗ P )}.

Therefore, q−1 ∶ M̃ →H 0(Cone●⊗DX) is given by [[α]⊗P ] ↦ [α⊗P, (−1)n(dtt ∧)−1{d(α⊗P )}].

Then we have

∇ = (−1)n−1p ○ q−1 ∶ [[α] ⊗ P ] ↦ (dt
t
∧)−1{d(α⊗ P )}.

Restricting to Y we have the induced operator R on M. If α = ξ1 ∧ ξ2 ∧⋯ ∧ ξn then

R[ξ1 ∧ ξ2 ∧⋯ ∧ ξn ⊗ P ] = (dt
t
∧)−1 (d(e1

dz1

z1

∧ e2
dz2

z2

∧⋯ ∧ dzn ⊗ P))

= (dt
t
∧)−1 (e0

dz0

z0

∧ e1
dz1

z1

∧ e2
dz2

z2

∧⋯ ∧ dzn ⊗
1

e0

z0∂0P)

= [ξ1 ∧ ξ2 ∧⋯ ∧ ξn ⊗
1

e0

z0∂0P ] .
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We see that RF●M⊂ F●+1M. The reason for ∇F●M̃ ⊂ F●+1M̃ is similar. To prove the last

statement, we work locally and identifyM with DX/(t,D1, ...,Dn) via the local trivialization

ξ1 ∧ ξ2 ∧ ⋯ ∧ ξn of Ωn
X/∆

(logY ). Then for P ∈ DX , R[P ] = [ 1
e0
z0∂0P ]. In fact, because

of the relation D1,D2, ...,Dn, the left multiplication by 1
e0
z0∂0 on M is the same as the

multiplication by 1
ei
zi∂i for 1 ≤ i ≤ k. It follows from the identity

(z∂)(z∂ − 1)⋯(z∂ − `) = z`+1∂`+1

for any ` ≥ 0 that

∏
i∈I

ei−1

∏
j=0

(R − j

ei
)[P ] = ∏

i∈I

ei−1

∏
j=0

( 1

ei
zi∂i −

j

ei
)[P ] = ∏

i∈I

1

eeii
zeii ∂

ei
i [P ] = t∏

i∈I

1

eeii
∂eii [P ]

= 0 ∈ DX/(D1,D2, ...,Dn, t)DX .

This completes the proof.

Remark 2.3.11. Note that ∇ ∶ M̃ → M̃ is also can be identified with the left multiplication

by 1
ei
zi∂i for i ≤ k, by choosing the trivialization of Ωn

X/∆
(logY ), because of the relations

Di = 1
ei
zi∂i − 1

e0
z0∂0 for 1 ≤ i ≤ k. This means for any function g ∈ f−1O∆, we have [∇, g] = tg′

where t and g are local sections of f−1O∆ acting on the left of M̃. This makes M̃ a

(f−1D∆(log 0),DX)-bimodule. Using Godement resolution, the direct image Rf∗DRXM̃ is

a complex of left D∆(log 0)-modules. Similarly, as we already saw in the proof, locally the

morphism R ∶ M → M can be identified with left multiplication by 1
ei
zi∂i for 0 ≤ i ≤ k,

meaning [R,g] = tg′ = 0 for g local sections of f−1O∆ acting left on M.

Remark 2.3.12. The DX-module M is even regular holonomic. Even though it is irrelevant

for our purpose, we can also checkM is regular using the definition. Recall that a holonomic

right DZ-module N is called regular if there exists a good filtration F●N such that for any

σ ∈ grFDZ vanishing on the charateristic variety of N one has grFNσ = 0. In the case of M,

define locally

G`M= ∑
r,k≥0

RkF`+rMtrred
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where tred = z0z1⋯zk. This is a finite sum because M is supported on t = 0 and R has a

characteristic polynomial. It follows that G● is a good filtration for M. I claim that G●M

gives the filtration in the definition of the regularity. Since the characteristic variety of

M is locally cut out by tred, z0∂0, ..., zk∂k, ∂k+1, ..., ∂n (see Theorem 2.3.7) it suffices to check

that G`Mtred ⊂ G`−1M, G`Mzi∂i ⊂ G`M for 0 ≤ i ≤ k and G`M∂i ⊂ G`M for k + 1 ≤ i ≤ n.

It is clear that G`Mtred ⊂ G`−1M. Due to locally grFM = grFDX/(t,D1,D2, ...,Dn)grFM,

it follows that grFMDi = 0 for 1 ≤ i ≤ n. In particular, grFM∂i = 0 for k + 1 ≤ i ≤ n, i.e.

F`M∂i ⊂ F`M for k + 1 ≤ i ≤ n. Therefore, for k + 1 ≤ i ≤ n, because [tred, ∂i] = 0,

G`M∂i = ∑
r,k≥0

RkF`+rMtrred∂i ⊂ ∑
r,k≥0

RkF`+rMtrred = G`M.

Since [trred, zi∂i] = (zi∂i − r) trred, and [zi∂i, F`DX] ⊂ F`DX , we have

RkF`+rMtrredzi∂i = RkF`+rM(zi∂i − r) trred ⊂ Rk (zi∂iF`+rM+ F`+rM) trred.

But locally R has the same effect as the left multiplication by one of 1
ei
zi∂i for 0 ≤ i ≤ k.

Hence,

Rk (zi∂iF`+rM+ F`+rM) trred = Rk+1F`+rMtrred +RkF`+rMtrred.

It follows that G`Mzi∂i ⊂ G`M for 0 ≤ i ≤ k.

In fact, later we will see thatM is an extensions of regular holonomic DX-modules which

will again prove thatM is regular (see Theorem 2.4.7 for the reduced case and Theorem 2.6.13

for the general case).

2.4 Reduced case: Strictness and the weight filtration

We begin to study the weight filtration W●M induced R on M. For simplicity to state the

results and illustrate the ideas, we assume Y is reduced in §2.4 and §2.5. The general case will

be treated in §2.6 and §2.7. Since Y is reduced, the multiplicity ei of irreducible component

Yi is 1 and R is nilpotent. Recall that the weight filtration of the nilpotent operator R is

uniquely characterized by the following two properties:
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• for each ` ∈ Z, R ∶W`M→W`−2M;

• the induced operator R` ∶ grW` M→ grW
−`M is an isomorphism for each ` ≥ 0.

2.4.1 Strictness of R

Let F●WrM= F●M∩WrM be the induced filtration for every integer r. In fact, the good

filtration and the weight filtration interact nicely because of the following theorem.

Theorem 2.4.1. The power of R is strict on (M, F●M), i.e., RaFbM= Fa+bRaM.

Proof. The strictness is a local property; therefore, we can assumeM= DX/(t,D1,D2, ...,Dn)DX

and R is left multiplication by z0∂0 on it, recalling that Di = zi∂i − z0∂0 for 1 ≤ i ≤ k and

Di = ∂i for k + 1 ≤ i ≤ n. It is clear that RaFbM is contained in Fa+bRaM. It suffices to

show that for every RaP ∈ Fa+bM, we can find an element Q ∈ FbM such that RaP = RaQ.

Assume P ∈ F`M. If ` ≤ b then there is nothing to prove. Thus, we consider the situation

that ` > b. Then the class of RaP vanishes in grFa+`M. In fact, we have the following lemma:

Lemma 2.4.2. Denote by [R] the induced operator on grFM. Then ker[R]r+1 is locally

generated by the classes of all degree k − r monomials dividing t = z0z1⋯zk.

We can easily check that monomials of degree k − r dividing t is in ker[R]r+1. Indeed,

it is already true that monomials of degree k − r dividing t is in kerRr+1. Without loss of

generality, we only need to check this for the monomial zr+1zr+2⋯zk:

Rr+1zr+1zr+2⋯zk = z0∂0z1∂1⋯zr∂rzr+1zr+2⋯zk = t∂0⋯∂k = 0 ∈ M.

We will prove the opposite direction after finishing the proof of the theorem. Going back to

the proof of the theorem, by the above lemma,

P = ∑
J⊂I,

#J=k−a+1

zJQJ +Q`−1
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where zJ = ∏j∈J zj, QJ ∈ F`M and Q`−1 ∈ F`−1M. But Ra kills the monomials zJ of degree

k − a + 1 dividing t. It follows that RaP = RaQ`−1. Iterating the procedure, we eventually

find an element Q ∈ FbM such that RaP = RaQ with Q ∈ FbM.

Proof of Lemma 2.4.2. Note that we are over the commutative ring grFDX . We proceed by

induction on r. Let P ∈ grFDX be a representative of an element in ker[R]r+1. When r = 0,

we have

z0∂0P = tQ0 +
n

∑
i=1

DiQi.

Then tQ0 ∈ (∂0, ∂1, ..., ∂n)grFDX . Notice that t, ∂0, ∂1, ..., ∂n is a regular sequence over grFDX .

We have Q0 = ∑n
i=0 ∂iQ

′
i. This implies

z0∂0P =
k

∑
i=0

t

zi
zi∂iQ

′
i +

n

∑
j=k+1

t∂jQ
′
j +

n

∑
i=1

DiQi

=
k

∑
i=0

t

zi
z0∂0Q

′
i +

k

∑
i=1

Di(Qi +
t

zi
Q′
i) +

n

∑
j=k+1

Dj(Qj + tQ′
j),

from which we conclude that z0∂0(P−∑k
i=0

t
zi
Q′
i) ∈ (D1,D2, ...,Dn)grFDX . Because z0∂0,D1,D2, ...,Dn

is again a regular sequence, we see that P −∑k
i=0

t
zi
Q′
i ∈ (D1,D2, ...,Dn)grFDX . This concludes

the base case for the induction.

Assume the statement is true for the cases when the exponent is less then r + 1. Let

zJ = ∏j∈J zj. Now for [P ] ∈ ker[R]r+1, we have [R][P ] is in ker[R]r. By induction,

z0∂0P = ∑
#J=k−r+1,

J⊂I

zJQJ +
n

∑
i=1

DiQi. (2.4.1)

Fix an index subset J of I such that #J = k−r+1. Then zJQJ is in the submodule generated

by zi for i ∈ I ∖J and ∂j for j ∈ J and k < j ≤ n over grFDX . Since zi for i ∈ I ∖J , ∂j for j ∈ J

and k < j ≤ n and zJ form a regular sequence, we have

QJ = ∑
i∈I∖J

ziQ
′
i +∑

j∈J

∂jQ
′
j + ∑

k<`≤n

∂`Q
′
`.

Therefore, it follows that

zJQJ = ∑
i∈I∖J

zJziQ
′
i +∑

j∈J

(zJ
zj
z0∂0Q

′
j +Dj

zJ
zj
Q′
j) + ∑

k<`≤n

D`zJQ
′
`.
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Then substuiting in (2.4.1), we deduce that

z0∂0 (P −∑
j∈J

zJ
zj
Q′
j) − ∑

i∈I∖J

zJziQ
′
i

is in the submodule generated by degree k − r + 1 monomials dividing t except zJ , and

D1,D2, ...,Dn over grFDX . It follows that we can reduce the monomials of degree k − r + 1

dividing t in the right-hand side equation (2.4.1) one by one and at the last step, we get

z0∂0 (P − P ′) −Q′, where P ′ is a linear combination of degree k − r monomials dividing t and

Q′ is a linear combination of k − r + 2 monomials dividing t, is in the submodule generated by

D1, ...,Dn over grFDX . But ker[R]r−1 is generated by classes represented by degree k − r + 2

monomials dividing t by induction hypothesis. It says that the class of P − P ′ is in ker[R]r

and by induction it is generated by degree k − r + 1 monomials dividing t. Therefore, P is a

linear combination of degree k − r monomials dividing t. This completes the proof.

Corollary 2.4.3. The kerRr+1 is also generated by degree k − r monomials dividing t if one

identifies M locally with DX/(t,D1,D2, ...,Dn)DX .

Proof. It suffices to show that grF kerRr+1 is generated by degree k − r monomials dividing t.

Notice that grF kerRr+1 is contained in ker[R]r+1, since [R]r+1 vanishes on grF kerRr+1. In

fact, we have grF kerRr+1 = ker[R]r+1 because degree k − r monomials dividing t are also in

grF kerRr+1.

2.4.2 The weight filtration

The results concerning the weight filtration and Lefschetz decomposition are formal and we

will work on the abstract setting.

Theorem 2.4.4. Let N ∶ (G, F●) → (G, F●+1) be a nilpotent operator on a filtered D-module

(G, F●). Asume that every power of N satisfies strictness, i.e., NaFbG = Fa+bNaG for a ≥ 0

and b ∈ Z. Then the induced operator N r ∶ F`grWr G → F`+rgrW−rG is an isomorphism for r ≥ 0,

where W● is the weight filtration induced by N .

55



Proof. It suffices to prove that for any b ∈ F`+rW−rG, we could find a′ ∈ F`WrG such that

a = N ra′. Because W−rG ⊂ N rG, let N ra = b for some a. Then by strictness, there exists

a′ ∈ F`G such that N ra′ = N ra ∈ W−rG. It follows that a′ ∈ WrG. Indeed, if a′ ∈ Wr+kG for

some k > 0 such that a′ ≠ 0 ∈ grWr+kG. Then N r+ka′ = 0 ∈ grW
−r−kG because N ra′ = 0 ∈ grW

−r+kG,

from which we conclude that a′ ∈ F`Wr+k−1G. Thus, iterating the procedure, a′ is actually in

F`WrG. We conclude the proof.

Let Pr =def ker (N r+1 ∶ grWr G → grW−r−2G) be the primitive part of grWG, which can be

identified with

kerN r+1

kerN r +N kerN r+2
.

See Example 2.1.7. Recall the Lefschetz decomposition:

grWr G = ⊕
`≥0,− r

2

N `Pr+2` for any r ∈ Z.

There are two possible ways to define the filtration on Pr: first we have the natural filtration

F`Pr induced from the inclusion Pr → grWr G and second we can also define the filtration using

F` kerN r+1 + kerN r +N kerN r+2

kerN r +N kerN r+2
.

But indeed, the two different methods result in the same filtration because of the strictness.

Let m ∈ F`Wr + Wr−1 such that N r+1m ∈ W−r−3 so that represents a class in F`Pr. It

suffices to find an element in F` kerN r+1 representing the same class as m in F`Pr. Let

m = m1 +m2 for m1 ∈ F`Wr and m2 ∈ Wr−1. It follows that N r+1m1 ∈ F`+r+1W−r−3 because

both N r+1m,N r+1m2 ∈ W−r−3 and m1 ∈ F`Wr. Since N r+3 ∶ F`−2Wr+3 → F`+r+1W−r−3 is

surjective, there exists x ∈ F`−2Wr+3 such that N r+3x = N r+1m1 ∈ F`+r+1W−r−3. See the proof

of the above theorem. It follows that m1 −N2x ∈ F` kerN r+1 represents the same element as

m in F`Pr ⊂ F`grWr .

Corollary 2.4.5. The Lefschetz decomposition of grWG respects filtrations, i.e.

F●grWr G = ⊕
`≥0,− r

2

N `F●−`Pr+2` for any r ∈ Z.
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Returning to our situation, it follows that:

Theorem 2.4.6. The induced operator Rr ∶ F`grWr M → F`+rgrW−rM is an isomorphism.

Therefore, the Lefschetz decomposition of grWM respects filtrations, i.e.

F●grWr M= ⊕
`≥0,− r

2

R`F●−`Pr+2` for any r ∈ Z.

2.4.3 Identifying the primitive part Pr

Recall that Y J = ∩j∈JYj for a subset J of the index set I and Ỹ (r+1) is the disjoint union of

Y J such that the cardinality of J is r + 1. The morphism τ (r+1) ∶ Ỹ (r+1) →X is the natural

morphism induced by the closed embeddings τJ ∶ Y J →X.

Theorem 2.4.7. There exists a canonical filtered isomorphism φr ∶ (Pr, F●Pr) → τ
(r+1)
+ ωỸ (r+1)(−r).

Proof. Denote by DJ the normal crossing divisor Y J ∩ YI∖J on Y J . The residue morphism

ResỸ (r+1) ∶ Ω●+n+1
X (logY )∣Y → ⊕

#J=r+1

Ω●+n−r
Y J (logDJ)

extends to a morphism of complexes of filtered induced DX-modules

ResỸ (r+1) ∶ Ω●+n+1
X (logY )∣Y ⊗DX → ⊕

#J=r+1

Ω●+n−r
Y J (logDJ) ⊗DX .

Denote by Hk the k-th cohomology H k (Ω●+n+1
X (logY )∣Y ⊗DX). Taking 0-th cohomology of

the above yields, by Example 2.1.4

ResỸ (r+1) ∶ H0 → ⊕
#J=r+1

τJ+ωY J (∗DJ)(−r).

Since the morphism dt
t ∧ ∶ Ω●+n

X/∆
(logY ) → Ω●+n+1

X (logY ) also extends to the complexes of

induced DX-modules, we have a short exact sequence of DX-modules

0 Ω●+n
X/∆

(logY )∣Y ⊗DX Ω●+n+1
X (logY )∣Y ⊗DX Ω●+n+1

X/∆
(logY )∣Y ⊗DX 0.

dt
t
∧

Considering the associated long exact sequence

0 H−1 M

M H0 0

R
dt
t
∧

(2.4.2)
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we have the morphism dt
t ∧ ∶ M → H0 and it vanishes on the image of R. To motivate the proof,

let me do some local calculation. Let ζ = dz1
z1
∧ dz2

z2
∧⋯ ∧ dzk

zk
∧⋯ ∧ dzn represent a local frame

of Ωn
X/∆

(logY )∣Y . Then a local section of M is represented by ζ ⊗ P for P a local section

DX . Then ResỸ (r+1)
dt
t ∧ ζ ⊗ P is a section of ⊕#J=r+1 Ωn−r

Y J
(logDJ) ⊗DX . Post-composing

with the projection

⊕
#J=r+1

Ωn−r
Y J (logDJ) ⊗DX → ⊕

#J=r+1

τJ+ωY J (∗DJ)(−r),

we make the morphism explicit:

ResỸ (r+1) ○
dt

t
∧ ∶ M → ⊕

#J=r+1

τJ+ωY J (∗DJ)(−r), [ζ ⊗ P ] ↦ [ResỸ (r+1)
dt

t
∧ ζ ⊗ P ].

Let ζ⊗zJP represent a class in kerRr+1 for some fixed ordered index subset J with #J = r+1,

where zJ = ∏j∈I∖J zj (Corollary 2.4.3). Its image under the above morphism only contained in

the component τJ+ωY J (∗DJ)(−r) because zJ vanishes on other components. Thus, the image

is the class represented by

ResỸ r+1

dz0

z0

∧ dz1

z1

∧⋯dzk
zk

∧⋯ ∧ dzn ⊗ zJP = ±dzJ
zJ

∧ dzk+1 ∧⋯dzn ⊗ zJP ∈ Ωn−r
Y J (logDJ) ⊗DX ,

(2.4.3)

where
dz
J

z
J
= ⋀j∈I∖J dzj

zj
and the sign depends on the order of J . In fact, from the calculation

we see that the image does not have any pole along DJ , so it is contained in the subsheaf

consisting of classes represented by Ωn−r
Y J

⊗ DX . This means that the class of (2.4.3) in

τJ+ωY J (∗DJ)(−r) is also contained in the image of the inclusion

τJ+ωY J (−r) → τJ+ωY J (∗DJ)(−r), [dzJ ∧ dzk+1 ∧⋯dzn ⊗ P ] ↦ [dzJ
zJ

∧ dzk+1 ∧⋯dzn ⊗ zJP ].

See Example 2.1.4. It follows that we obtain a factorization ρr ∶ kerRr+1 → τ
(r+1)
+ ωY (r+1)(−r).

In conclusion, we have the following commutative diagram.

kerRr+1 τ
(r+1)
+ ωY (r+1)(−r)

M H0 ⊕#J=r+1 τJ+ωY J (∗DJ)(−r)

ρr

dt
t
∧ Res
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For a local section ζ ⊗ zKP where zK = ∏i∈K zi a monomial of degree k − r + 1, representing

a class in kerRr, its image under ρr is indeed zero because zK annihilates all Ωn−r
Y J

(logDJ)

for index subset J such that #J = r + 1. This implies the morphism ρr kills kerRr. The

morphism ρr also kills RkerRr+2, because by (2.4.2) dt
t ∧ vanishes on the image of R. Thus it

factors through

φr ∶ Pr =
kerRr+1

kerRr +RkerRr+2
→ τ

(r+1)
+ ωY (r+1)(−r).

The morphism φr is filtered surjective because for dzJ̄ ∧ dzk+1 ∧⋯ ∧ dzn ⊗ P ∈ Ωn−r
Y J

⊗ F`DX

representing a class in F`τJ+ωY J (−r) with #J = r + 1, we can find a lifting class represented

by ζ ⊗ zJP in F` kerRr+1. It follows that

cc(Pr) ≥ cc(τ (r+1)
+ ωY (r+1)) = ∑

#J=r+1

[T ∗
Y JX] .

Summing up the inequalities gives

∑
r≥0

(r + 1)cc(Pr) ≥ ∑
r≥0

(r + 1) ∑
#J=r+1

[T ∗
Y JX] = ∑

J⊂I

(#J) [T ∗
Y JX] .

On the other hand, by the Lefschetz decomposition and Theorem 2.3.7, we have

∑
J⊂I

(#J) [T ∗
Y JX] = cc(M) = cc(grWM) = ∑

r≥0

(r + 1)cc(Pr).

Therefore, all inequalities must be equalities, i.e. cc(Pr) = cc(τ (r+1)
+ ωỸ (r+1)). It follows that

φr is a filtered isomorphism [HTT08, Proposition 3.1.2].

2.5 Reduced case: Sesquilinear pairing on M and

limiting mixed Hodge structure

2.5.1 Sesquilinear pairing

We begin to construct the last data we need for the limiting mixed Hodge structure –

Sesquilinear pairing. In the sense that M is the specialization of iXt+ωXt for t ≠ 0, the
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sesquilinear S ∶ M ⊗CM → CX should also be the specialization of iXt+SXt , where SXt is

defined in §2.1. Presumably one would expect that the pairing

⟨S([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩ = lim
t→0

⟨iXt+SXt(ζ1 ⊗ P1, ζ2 ⊗ P2), η⟩

= lim
t→0

ε(n + 1)
(2π

√
−1)n ∫Xt

P1P2η ∧ ζ1 ∧ ζ2

should work on M for ζi ⊗ Pi, i = 1,2 sections of Ωn
X/∆

⊗DX over local chart U representing

classes of M, and η is a test function over U . But one could check that the integral

∫Xt P1P2 (η) ζ1∧ζ2 could have order (− log ∣t∣2)k near the origin where k + 1 is the number of

components that intersect in U , so the limit may not exist. To avoid the issue, we use a

Mellin transform device (see [Sab02, 4.E]): locally

⟨S([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩ =def Ress=0
ε(n + 2)

(2π
√
−1)n+1 ∫X ∣t∣2sP1P2η

dt

t
∧ ζ1 ∧

dt

t
∧ ζ2

= Ress=0
ε(2)

2π
√
−1
∫

∆
∣t∣2sdt

t
∧ dt
t

( ε(n + 1)
(2π

√
−1)n ∫Xt

P1P2η ∧ ζ1 ∧ ζ2)

= Ress=0
ε(2)

2π
√
−1
∫

∆
∣t∣2sdt

t
∧ dt
t
⟨iXt+SXt(ζ1 ⊗ P1, ζ2 ⊗ P2), η⟩.

The last expression in the definition in some extent explains that S is the specialization of

iXt+SXt and the 0-current Ress=0
ε(2)

2π
√
−1 ∫∆ ∣t∣2s dtt ∧ dt

t is doing the job of renormalization of

iXt+SXt for t ≠ 0. In fact, for any test function g on ∆, we have

Ress=0
ε(2)

2π
√
−1
∫

∆
∣t∣2sdt

t
∧ dt
t
g = g(0).

We have not check that S is well-defined, but let us do an example to see how the Mellin

transform works.

Example 2.5.1. Suppose Y is smooth, then R is identical zero and M≃ iY +ωY , by Theo-

rem 2.4.7. Thus, the pairing S should recover the natural pairing SY . In local coordinates

t = z0 and for any local sections ζi⊗Pi = dz1 ∧ dz2 ∧⋯∧ dzn⊗Pi of Ωn
X/∆

(logY )⊗DX , i = 1, 2
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over local chart U ,

⟨S([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩ = Ress=0
ε(n + 2)

(2π
√
−1)n+1 ∫X ∣t∣2sP1P2(η)

dt

t
∧ ζ1 ∧

dt

t
∧ ζ2

= Ress=0∫
X
∣t∣2s−2P1P2(η)

n

⋀
i=0

√
−1

2π
dzi ∧ dzi

integration by parts on t and t̄ = Ress=0∫
X

∣t∣2s
s2

∂0∂0 (P1P2(η))
n

⋀
i=0

√
−1

2π
dzi ∧ dzi.

Because the Laurent expansion of s−2∣t∣2s is ∑∞
`=0 (log ∣t∣2)` s`−2, the above continuously equals

to, by Poincaré-Lelong equation [GH14, Page 388]

∫
X

log ∣t∣2∂0∂0 (P1P2(η))
n

⋀
i=0

√
−1

2π
dzi ∧ dzi = ∫

Y
P1P2(η)

n

⋀
i=1

√
−1

2π
dzi ∧ dzi

= ε(n + 1)
(2π

√
1)n ∫Y

P1P2(η)ζ1 ∧ ζ2

= ⟨iY +SY ([ζ1 ⊗ P1], [ζ2 ⊗ P2]), η⟩.

We can take a cleaner point of view. In the case Y is smooth, the form P1P2(η)ζ1∧ζ2 is

smooth in the neighborhood of Y . It follows that iXt+SXt extends smoothly to t = 0 and the

limit of iXt+SXt is exactly iY +SY .

When Y has several smooth irreducible components, the idea of computation is similar

to the above. Now we begin to establish the statements needed to ensure S is well-defined.

For any test function η over an arbitrary open subset U of X and two sections m1,m2 in

H0 (U,Ωn
X/∆

(logY ) ⊗DX), the (2n+2)-form dt
t ∧m1∧ dt

t ∧m2(η) is smooth away from Y but

with poles along Y supported in U . Locally, saymi = ζ⊗Pi for ζ = dz1
z1
∧ dz2z2 ∧⋯

dzk
zk
∧dzk+1∧⋯∧dzn

and i = 1,2, the (2n + 2)-form dt
t ∧ m1 ∧ dt

t ∧m2(η) is just P1P2(η)dtt ∧ ζ ∧ dt
t ∧ ζ. Let

F (s) = F (s,m1,m2, η) be the meromorphic continuation via integration by parts of the

following function

ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2sdt

t
∧m1 ∧

dt

t
∧m2(η).

The function F (s) is holomorphic when Re s > 0 and has potential poles at non-positive

integers. Note that F (s) is independent of local coordinates. We are only interested in the

polar part of the function F (s) at s = 0.
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Theorem 2.5.2. The polar part of F (s) at s = 0 only depends on the classes of m1 and m2

in M.

Proof. Let {ρλ} be a partition of unity of the open covering {Uλ} by local charts. Then

F (s) = ∑
λ

ε(n + 2)
(2π

√
−1)n+1 ∫Uλ

∣t∣2sdt
t
∧m1 ∧

dt

t
∧m2(ρλη).

Since ρλη is a test function over Uλ, without loss of generality, we can assume U itself

is a local chart. It follows that we can assume that mi = ζ ⊗ Pi for i = 1,2 and ζ =
dz1
z1
∧ dz2

z2
∧⋯dzk

zk
∧ dzk+1 ∧⋯ ∧ dzn. We begin with some properties of F (s).

Lemma 2.5.3. Under the assumption that mi = ζ ⊗ Pi for ζ = dz1
z1
∧ dz2

z2
∧ ⋯ ∧ dzk

zk
∧ ⋯ ∧ dzn

and for i = 1,2, the followings are valid.

1. the order of the pole of F (s) at s = 0 is at most k + 1;

2. if Pi = tP ′
i for one of i = 1,2, then F (s) is holomorphic at s = 0;

3. for 0 ≤ j ≤ k we have,

F (s, ζ1 ⊗ P1, ζ2 ⊗ zj∂jP2, η) = F (s, ζ1 ⊗ zj∂jP1, ζ2 ⊗ P2, η) = −sF (s, ζ1 ⊗ P1, ζ2 ⊗ P2, η).

Proof of the lemma. The Laurent expansion of F (s) at s = 0 is

F (s) = ∫
X
∣zI ∣2s−2P1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi), where zI =∏

i∈I

zi

= ∫
X

∣zI ∣2s
s2k+2

∂I∂IP1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi), where ∂I =

k

∏
i=0

∂i

=
∞

∑
`=0

s`−(2k+2)

`! ∫
X
(log ∣zI ∣2)

`
∂I∂IP1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

The order of the pole at s = 0 is at most k + 1: if ` < k + 1, the form

(log ∣zI ∣2)
`
∂I∂IP1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is actually exact because one of ai’s must be 0 in the expansion of (log ∣zI ∣2)` into a linear

combination of ∏k
i=0 (log ∣zi∣2)ai with ∑k

i=0 ai = ` < k + 1. This proves (1).
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Suppose that P1 = tP ′
1. Then the function

F (s) = ∫
X
∣zI ∣2s−2tP ′

1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

is well-defined at s = 0 because the form

1

zI
P ′

1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is integrable. The same argument works for the case when P2 = tP ′
2. This proves (2).

Now we turn to the last statement

F (s, ζ ⊗ P1, ζ ⊗ zj∂jP2, η)

= ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2szj∂j(P1P2η)

dz0

z0

∧ dz1

z1

∧⋯ ∧ dzn ∧
dz0

z0

∧ dz1

z1

∧⋯ ∧ dzn

=∫
X
∣zI∖{j}∣2s−2zs−1

j zsj∂jP1P2η
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

integration by part on dzj = − s∫
X
∣zI ∣2s−2P1P2η

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= − sF (s, ζ ⊗ P1, ζ ⊗ P2, η).

The same argument works for F (s, ζ⊗zj∂jP1, ζ⊗P2, η) = −sF (s, ζ⊗P1, ζ⊗P2, η). This proves

(3).

Returning to the proof of the theorem, if one of ζ⊗Pi is dz1
z1
∧ dz2
dz2

∧⋯dzk
zk
∧dzk+1∧⋯∧dzn⊗tP ′

i ,

the above lemma (2) says F (s) is holomorphic. If one of ζ ⊗ Pi is dz1
z1
∧ dz2
dz2

∧⋯dzk
zk

∧ dzk+1 ∧

⋯ ∧ dzn ⊗DiP , then the (3) above lemma says F (s) is in fact 0.

For any sections α,β ∈ M, let {ρλ} be a partition of unity of the open covering {Uλ} by

local charts such that α,β lifts to α̃λ, β̃λ over Uλ in Ωn
X/∆

(logY ) ⊗DX . The above theorem

just says that the pairing S ∶ M⊗CM→ CX given by

⟨S(α,β), η⟩ =def Ress=0∑
λ

F (s, α̃λ, β̃λ, ρλη)

is well-defined and does not depend on the choice of partition of unity. By the above lemma

we also have the following.
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Corollary 2.5.4. The operator R is self-adjoint with respect to S, i.e. S ○ (R ⊗C id ) =

S ○ (id ⊗C R).

Because the self-adjointness, we have induced pairings on the graded quotient Sr ∶

grWr M⊗C grW−rM→ CX for every integer r. Denote by PRSr the pairing

Sr ○ (id ⊗C R
r) ∶ Pr ⊗C Pr → CX .

Theorem 2.5.5. The isomorphism φr ∶ (Pr, F●Pr) → τ
(r+1)
+ ωỸ (r+1)(−r) in Theorem 2.4.7

respects the sesquilinear pairings up to a constant (−1)r(r + 1)!−1, i.e.

PRSr(α,β) =
(−1)r
(r + 1)!τ

(r+1)
+ SỸ (r+1)(φrα,φrβ)

for any local sections α,β ∈ Pr.

Proof. Because the problem is local, it suffices to prove the theorem for α and β are represented

by

dz1

z1

∧ dz2

z2

∧⋯dzk
zk

∧ dzk+1 ∧⋯ ∧ dzn ⊗ zKi

and #Ki = k − r for i = 1, 2 over a local chart U respectively. Recall that zK = ∏j∈K zj . Let η

be a test function over U . We have

⟨PRSr(α,β), η⟩ = ⟨S(α,Rrβ), η⟩ = Ress=0(−s)r ∫
X
∣zI ∣2s−2zK1zK2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

If α ≠ β, the above is in fact zero. Indeed, for v ∈K2 ∖K1, by choosing Rr = ∏i∈I∖K1∖{v} zi∂i,

⟨PRSr(α,β), η⟩ = ⟨S(Rrα,β), η⟩ = Ress=0∫
X
∣zI ∣2s−2 t

zv
zvη̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi),

where η̃ = ∂I∖(K1∖{v})zK2(zv)
−1
η is a smooth test function. The function

∫
X
∣zI ∣2s−2 t

zv
zvη̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is holomorphic at s = 0 because

1

zI

zv
zv
η̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)
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is integrable.

Therefore, we reduce the proof to the case when α = β represented by

dz1

z1

∧ dz2

z2

∧⋯ ∧ dzk
zk

∧⋯ ∧ dzn ⊗ zK .

We shall prove that

PRSr(α,α) =
(−1)r
(r + 1)!τ

K
+ SY K(φrα,φrα),

where K is the complement of K in I. Without loss of generality, we can assume K =

{r + 1, r + 2, ..., k}. Then

PRSr(α,α) = Ress=0(−s)r ∫
X
∣zK ∣2s−2

k

∏
j=r+1

∣zj ∣2sη
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= (−1)rRess=0s
−(r+2)∫

X

k

∏
i=0

∣zi∣2s∂K̄∂K̄(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi), where ∂K̄ =

r

∏
i=0

∂i

= (−1)r
(r + 1)! ∫X (log

k

∏
i=0

∣zi∣2)
r+1

∂K̄∂K̄(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

(⋆) = (−1)r
(r + 1)! ∫X

r

∏
i=0

log ∣zi∣2∂K̄∂K̄(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= (−1)r
(r + 1)! ∫Y K η

n

⋀
i=r+1

(
√
−1

2π
dzi ∧ dzi) (Poincaré-Lelong equation [GH14, Page 388])

= (−1)r
(r + 1)!τ

K
+ SY K(ResY K

dt

t
∧ α,ResY K

dt

t
∧ α).

The equality (⋆) holds because if we expand (log∏k
i=0 ∣zi∣2)

r+1
as a linear combination of

∏k
i=0 (log ∣zi∣2)ai with ∑k

i=0 ai = r + 1, the only possible non-exact form among

k

∏
i=0

(log ∣zi∣2)
ai
∂K̄∂K̄(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi),

is (∏r
i=0 log ∣zi∣2)∂K̄∂K̄(η)⋀ni=0(

√
−1

2π dzi ∧ dzi). Note that while ResY K depends on the order of

the index sets K and I, the pairing

(−1)r
(r + 1)!τ

(r+1)
+ SỸ (r+1)(φrα,φrβ) =

(−1)r
(r + 1)!τ

K
+ SY K(ResY K

dt

t
∧ α,ResY K

dt

t
∧ α)

does not because the sign will cancel out. We complete the proof.
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2.5.2 Constructure of the limiting mixed Hodge structure

We are going to show that the triple (DRXM, F,W ) gives a mixed Hodge complex. Unlike

the Q-mixed Hodge complex considered by Deligne [Del71b], where the rational structure is

a required input, we do not have this piece of information in our situation. We will redo the

Deligne’s argument on mixed Hodge complex by sesquilinear pairings. It also worths to point

out that the sesqiuilinear pairing makes one check the first page weight spectral sequence

of DRXM is a polarzed bigraded Hodge-Lefschetz structure easier than the case in [GN90],

where they need to decompose the differential d1 on the first page into a combinatorial

differential and a sum of Gysin morphisms.

We first set up the pairing on each page of the weight spectral sequence abstractly. Let

N be a holonomic DZ-module equipped with a sesquilinear pairing S ∶ N ⊗C N → CZ on a

complex manifold Z. Assume that N has compact support. Let N be a nilpotent operator on

N such that S ○ (id ⊗CN) = S ○ (N ⊗C id ). Let W●N be the monodromy filtration associated

to N on N . Denote by Ei,j
r be the weight spectral sequence convergent to grW−iH

i+j(Z,DRZN)

with Ei,j
1 =H i+j(Z,grW−iDRZN). By abuse of notation, denote by Sk the induced pairing

Hk(Z,DRZN)⊗CHk(Z,DRZN) →H0(Z,DRZ,ZN ⊗CN) →H0
c (Z,DRZ,ZCZ) ≃ C

multiplying a sign factor ε(k). Let a be a local section of (DRZN)−j−1
and b be a local

section of (DRZN)i. Then

D(a⊗C b) = da⊗C b + (−1)−j−1a⊗C db

for D a differential on DRZ,ZN ⊗CN . Applying S, we find that

DS(a, b) = S(da, b) + (−1)−j−1S(a, db). (2.5.1)

Since the differential d is compatible with the weight filtration, we have an induced pairing

E1(S)k on the first page Ei,j
1 of the weight spectral sequence by the pairing

Hk(Z,grW−iDRZN)⊗CHk(Z,grWi DRZN) →H0(Z,DRZ,ZgrW−iN⊗CgrWi N) →H0(Z,DRZ,ZCZ)
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multiplying a sign factor ε(k). Then by equation (2.5.1) we obtain

0 = ε(−j)E1(S)−j(d1a, b) + ε(−j − 1)(−1)−j−1E1(S)−j−1(a, d1b),

since DSa⊗C b is cohmologous to zero. Working out the sign, the above is equivalent to

E1(S)−j(d1a, b) +E1(S)−j−1(a, d1b) = 0,

i.e. the differential d1 is skew-symmetrc with respect to E1(S). It follows that we have an

induced pairing on the second page: E2(S)k ∶ Ei,k−i
2 ⊗E−i,−k+i

2 → C since E2 = kerd1/Imd1.

Again, it follows from the equation (2.5.1), the differential d2 is skew-symmetric with respect

to E2(S). By an inductive argument, we get the induced pairing Er(S) ∶ Er ⊗Er → C on the

r-th page of the weight spectral sequence Er ⊗Er → C such that dr is skew-symmetric with

respect to Er(S) for every r ≥ 1.

Next, let L = [ω]∧ be a Lefschetz operator for a Kähler class [ω] ∈H1(Z,ΩZ) ∩H2(Z,R)

on Z which can be thought as a morphism L ∶ C→ C[2] in Db(Z,C) and so is X = 2π
√
−1L.

Therefore, we obtain a morphism X ∶ DRZN → DRZN[2]. Let us work out the relation

between the sesquilinear pairing Sk and the operator X. By funtorailty, we have the following

commutative diagram in Db(Z,C).

DRZ,ZN ⊗CN DRZ,ZCZ DRZ,ZDbZ A●Z ⊗DbZ [2 dimZ]

DRZ,ZN ⊗CN [2] DRZ,ZCZ [2] DRZ,ZDbZ [2] A●Z ⊗DbZ [2 dimZ + 2]

S

X⊗Cid

≃

X

≃

X X

S[2] ≃ ≃

Similarly, we have S[2] ○ (id ⊗C X) = XS. It follows from X +X = 0 on A●Z ⊗Db[2 dimZ] that

ε(k)Sk(X−,−) + ε(k − 2)Sk−2(−,−) = 0, i.e. Sk(X−,−) = Sk−2(−,X−). (2.5.2)

Returning to our situation, we begin to construct a polarized bigraded Hodge-Lefschetz

structure on

grWH●(X,DRXM).
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Fix a Kähler class [ω] on X and let L = [ω]∧ ∶ DRXM→ DRXM[2] be the Lefschetz operator

and X1 = 2π
√
−1L as the discussion above. Relabel the first page of the weight spectral

sequence by

V`,k =H`(X,grWk DRXM) = W
E−k,`+k

1 .

Let V = ⊕`,k∈Z V`,k with filtration F●V induced by F●M. Denote by Ei(R) the induced

operator by R on WEi and let Y2 = E1(R). Denote by S`,k for `, k ∈ Z, the induced pairing

on V`,k ⊗ V−`,−k

H`(X,grWk DRXM)⊗H−`(X,grW
−kDRXM)→H0(X,DRX,XgrWk M⊗CgrW

−kM)→H0
c (X,DRX,XCX) ≃ C.

multiplying a sign factor ε(`). Let d1 be the differential of E1. In terms of relabeling, we have

d1 ∶ (V`,k, F●V`,k) → (V`+1,k−1, F●V`+1,k−1).

Theorem 2.5.6. The tuple (V,X1,Y2, F●V,⊕Sj,k, d1) gives a differential polarized bigraded

Hodge-Lefschetz structure of central weight n.

Proof. Let us first check the conditions in Theorem 2.1.10 one by one. It is clear that two

operators X1,Y2 are commute. Moreover, we have Y2 ∶ (V`,k, F●V`,k) → (V`,k−2, F●+1V`,k−2) such

that

Yk2 ∶ F●V`,k → F●+kV`,−k,

is an isomorphism by Theorem 2.4.6. Denote by PY2V−j,r the Y2-primitive part kerYr+1
2 ∩V−j,r =

H−j(X,DRXPr). It follows from Theorem 2.4.7 that (PY2V−j,r, F●PY2V−j,r) is filtered isomor-

phic to H−j(Ỹ (r+1),DRỸ (r+1)ωỸ (r+1))(−r) via φr. Therefore, X1F●PY2V−j,r ⊂ F●−1PY2V−j+2,r and

by Hard Lefschetz,

Xj1 ∶ F●PY2V−j,r → F●−jPY2Vj,r

is an isomorphism. It follows from the Lefschetz decomposition of Y2 that Xj1 ∶ F●V−j,r →

F●−jVj,r is an isomorphism. This proves (pbHL1) in Theorem 2.1.10. (pbHL2) follows from

the equation (2.5.2).
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Because the operator R self-adjoin with respect to S by Corollary 2.5.4, we have

Sj,r(−,Y2−) = Sj,r+2(Y2−,−). By Theorem 2.5.5, the morphism φr identifies PY2S−j,r =def

S−j,r(−,Yr2−) with (−1)r

(r+1)!SỸ (r+1),−j. Recall that

SỸ (r+1),j(a, b) =
ε(n − r + j + 1)
(2π

√
−1)n−r ∫

Ỹ (r+1)
a ∧ b̄, for a ∈Hn−r+j(Ỹ (r+1)) and b ∈Hn−r−j(Ỹ (r+1)),

and that SỸ (r+1),j(X
j
1−,−) is a polarization on Hn−r−j

prim (Ỹ (r+1),C). The bi-primitive part P−j,r =

kerXj1 ∩ kerYr2 ∩ V−j,r together with the induced filtration F●P−j,r and the sesquilinear pairing

Sj,r(Xj1−, (−Y)r2−) is identified with the polarized Hodge structure Hn−r−j
prim (Ỹ (r+1),C)(−r) via

φr. This proves (pbHL3).

It remains to prove that d1 is a differential of the bigraded Hodge-Lefschetz structure V .

Clearly, we have

[d1,X1] = [d1,Y2] = 0

because d1 is induced by the differential of DRXM and d1 preserves F●. The differential d1

is skew-symmetric with respect to ⊕j,r Sj,r is formally follows the discussion at the beginning

of this subsection. Thus, we finished checking that d1 is a differential.

Corollary 2.5.7. We have the following

1. the Hodge spectral sequence degenerates at FE1,

2. the weight spectral sequence degenerates at WE2,

3. The tuple (⊕`∈Z grWH`(X,DRXM), F,X1,Y2) together with the pairing induced by

⊕Sj,k is a polarized bigradged Hodge-Lefschetz structure of central weight n.

Proof. We slightly modify the idea of cohomological mixed Hodge complex in [Del71b] for

statement (1) and (2). I claim that the k-th weight spectral sequence V k
`,r =def

WEk−r,`+r

together with the induced filtration F● and the induced pairing Sk`,r ○ (id ⊗w) ∶ V k
`,r ⊗V k

`,r → C

is a polarized Hodge structure of weight n + ` + r and the differential dk ∶ V k
`,r → V k

`+1,r−k is a

morphism of Hodge structures. Indeed, the differential dk is skew-symmetric with respect to
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the sesquilinear pairing, i.e. Sk`,r(dk−,−)+Sk`+1,r−k(−, dk−) = 0. Therefore, if (−1)qSk`,r○(id ⊗w)

for q = n + ` + r − p is a Hermitian inner product on

(V k
`,r)

p,q = {a ∈ F pV k
`,r ∶ Sk`,r(a, b) = 0 for all b ∈ F p−`−r+1V k

−`,−r}

then (−1)qSk+1
`,r ○ (id ⊗w) is also a Hermitian inner product on

(V k+1
`,r )p,q = {a ∈ F pV k+1

`,r ∶ Sk+1
`,r (a, b) = 0 for all b ∈ F p−`−r+1V k+1

−`,−r}.

In particular, we have the decomposition

V k+1
`,r = ⊕

p+q=n+`+r

(V k+1
`,r )p,q

and the morphism dk ∶ (V k
`,r)

p,q → (V k+1
`,r )p,q is compatible with the decomposition. See

Remark 2.1.11. By induction the claim is proved. It follows that dk vanishes for k ≥ 2 by it is

a morphism of Hodge structures of different weights, which proves (2).

Since each bigraded piece V`,r = H` (X,grWr DRXM) is pure Hodge structure of weight

n + r + `, the two vector spaces H` (X,grFgrWr DRXM) and V`,r is isomorphic. Moreover, the

isomorphism is compatible with d1, because d1 respects F● and

grWr grFDRXM= grFgrWr DRXM.

Taking cohomology of d1, we obtain that grWr H
` (X,grFDRXM) is isomorphism to grWr H

` (X,DRXM).

It follows from the dimension reason thatH` (X,grFDRXM) is isomorphic toH` (X,DRXM),

which is exactly the degeneration of Hodge spectral sequence at FE1.

The statement (3) follows from Theorem 2.1.12.

The third statement in the above corollary ensures that the weight filtration on the

hypercohomology of DRXM is the monodromy weight filtration of the nilpotent operator

R, i.e. RW●H`(X,DRXM) ⊂ W●−2H`(X,DRXM)(−1) and Rr ∶ grWr H
`(X,DRXM) →

grW−rH
`(X,DRXM)(−r) is a filtered isomorphism. We proved Theorem A for the case when

Y is reduced.
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2.6 Non-reduced case: Generalized eigenspace Mα

and the weight filtration

Now we move to the general situation. Recall that we have introduced the notations: the

index set I consisting of indices of irreducible components of Y and ei is the multiplicity of

Y along the component Yi.

2.6.1 The generalized eigen-modules Mα

We begin with studying the generalized eigen-modules ker(R−α)∞ of the morphism R in the

category of filtered DX-modules. The generalized eigen-modules are naturally sub-modules

of M and one can put the induced filtration on it. However, this filtration does not match

with the expected weight of the mixed Hodge structure and is difficult to study. Instead, we

use the idea of Saito in [Sai90]: one regards the generalized eigen-module as a sub-quotient

of M and puts the induced filtration on it. It turns out the filtration behaves nice. Now let

us begin to settle some definitions.

Define M≥α = ker∏λ≥α(R − λ)∞, M>α = ker∏λ>α(R − λ)∞ and Mα = M≥α/M>α. Then

Mα is canonically isomorphic to the generalized eigen-module ker (R − α)∞. Endow Mα the

filtration F●Mα induced from (M, F●M),

F●Mα =
M≥α ∩ F●M
M>α ∩ F●M

.

There are parallel definitions on the relative log de Rham complex. Denote by C● =

Ω●+n
X/∆

(logY ) ⊗OY for simplicity. Define sub-complexes of C● by

C●
≥α = C● ⊗OX(−⌈αY ⌉), C●

>α = C● ⊗OX(−⌊αY ⌋ − YRed) and C●
α = C●

≥α/C●
>α,

where YRed is the associated reduced divisor of Y . Notice that if we let Iα be the subset of I

consisting of all i such that αei is an integer, then

C●
α = C●

≥α ⊗OYIα
, where YIα = ∑

i∈Iα

Yi.
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One can check C●
α is a generalized eigen-perverse sheaves of the residue [∇]. Since OX(−⌈αY ⌉)

is preserved by relative log differential TX/∆(− logY ), the multiplication by relative log differ-

entials gives a morphism, recalling that D1,D2, ...,Dn are local generators of TX/∆(− logY )

dual to the local generators ξ1, ξ2, ..., ξn of ΩX/∆(logY ),

OX(−⌈αY ⌉) ⊗DX → ΩX/∆(−⌈αY ⌉) ⊗DX ,

z
⌈αe⌉
I ⊗ P ↦∑

j

ξj ⊗Djz
⌈αe⌉
I ⊗ P = ∑

j

ξj ⊗ z⌈αe⌉I (Dj + αj) ⊗ P,
(2.6.1)

where, using the multi-index notation, z
⌈αe⌉
I = ∏i∈I z

⌈αei⌉
i denotes the local generator of

OX(−⌈αY ⌉) and define αi = [Di, z
⌈αe⌉
I ]/z⌈αe⌉I = ⌈αei⌉/ei −⌈αe0⌉/e0. The morphism extends to a

complex Ωn+●
X/∆

(logY )(−⌈αY ⌉)⊗DX , which is a subcomplex of Ωn+●
X/∆

(logY )⊗DX (see (2.3.1)).

Tensoring OY on the left gives C●
≥α ⊗DX by the above definition. Further tensoring OYIα

on

the left, we obtain the complex of induced DX-modules C●
α ⊗DX with the filtration defined

by

F` (C●
α ⊗DX) = C●

α ⊗ F`+n+●DX .

The following two theorems give the description of the generalized eigen-modules in terms of

complexes of the induced DX-modules.

Theorem 2.6.1. The complex C●
α ⊗DX is filtered acyclic and the characteristic cycle of the

0-th cohomology is

cc (H 0 (C●
α ⊗DX)) = ∑

J⊂I

(#Iα ∩ J) [T ∗
Y JX] .

Proof. Similarly to the proof of Theorem 2.3.1 and Theorem 2.3.5, the associated graded

grF (C●
α ⊗DX) locally is the Koszul complex of the regular sequence (tα,D1,D2, ...,Dn) over

grFDX , where tα = ∏i∈Iα zi is the defining equation of YIα . It follows that grF (C●
α ⊗ DX)

is acyclic and therefore, C●
α ⊗DX is filtered acyclic. We also get that grFH 0(C●

α ⊗DX) is

locally represented by

ζα⊗ grFD/(tα,D1,D2, ...,Dn)grFDX , where ζα = z⌈αe⌉I

dz1

z1

∧ dz2

z2

∧⋯∧ dzk
zk

∧ dzk+1 ∧⋯∧ dzn.

(2.6.2)
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As the calculation in Theorem 2.3.7, we get the characteristic cycle is ∑J⊂I (#Iα ∩ J) [T ∗
Y J
X].

Theorem 2.6.2. There exists a canonical filtered isomorphism

ψα ∶ (H 0 (C●
α ⊗DX) , F●H 0 (C●

α ⊗DX)) (Mα, F●Mα).∼ (2.6.3)

In particular, the characteristic cycle cc(Mα) = ∑J⊂I (#Iα ∩ J) [T ∗
Y J
X].

We first study M≥α and M>α locally by pointing out their cyclic generator. In principal,

this always can be done because every holonomic DX-module locally is cyclic.

Lemma 2.6.3. Locally, M≥α is generated by z
⌈αe⌉
I , and M>α is generated by z

⌊αe⌋+1
I where

1 = (1,1, ...,1) ∈ ZI .

Proof. Let us first check that z
⌈αe⌉
I ∈ M≥α. It suffices to check that it is in

ker∏
i∈I

ei−1

∏
j=⌈αei⌉

(R − j

ei
).

This is follows from direct calculation:

∏
i∈I

ei−1

∏
j=⌈αei⌉

(R − j

ei
)z⌈αe⌉I =∏

i∈I

ei−1

∏
j=⌈αei⌉

(R − j

ei
)z⌈αei⌉i =∏

i∈I

ei−1

∏
j=⌈αei⌉

( 1

ei
zi∂i −

j

ei
)z⌈αei⌉i

=∏
i∈I

1

e
ei−⌈αei⌉
i

zeii ∂
ei−⌈αei⌉
i = t∏

i∈I

1

e
ei−⌈αei⌉
i

∂
ei−⌈αei⌉
i = 0 ∈ M.

Because R satisfies the identity (2.3.3),M≥α is also equal to the image of ∏i∈I∏⌈αei⌉−1
j=0 (R− j

ei
).

It follows from

∏
i∈I

⌈αei⌉−1

∏
j=0

(R − j

ei
)(1) =∏

i∈I

⌈αei⌉−1

∏
j=0

( 1

ei
zi∂i −

j

ei
) = z⌈αe⌉I ∏

i∈I

1

e
⌈αei⌉
i

∂
⌈αei⌉
i

that z
⌈αe⌉
I ∏i∈I ∂

⌈αei⌉
i generates M≥α. We deduce that z

⌈αe⌉
I generates M≥α. The similar

argument works for M>α.

Proof of Theorem 2.6.2. It follows from the above lemma that Mα is locally isomorphic to

ζ ⊗ (z⌈αe⌉I ,D1,D2, ...,Dn)DX/(z⌊αe⌋+1I ,D1,D2, ...,Dn)DX
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where ζ = dz1
z1
∧ dz2

z2
∧⋯ ∧ dzk

zk
∧⋯ ∧ dzn so that ζα = z⌈αe⌉I ζ. Since H 0(C●

α ⊗DX) by (2.6.1) is

locally isomorphic to

ζα ⊗DX/(tα,D1 + α1,D2 + α2, ...,Dn + αn)DX ,

the multiplication H 0(C●
α⊗DX) →Mα, ζα⊗P ↦ ζ ⊗ z⌈αe⌉I P is well-defined, does not depend

on the coordinate and therefore, gives a filtered morphism

ψα ∶ (H 0(C●
α ⊗DX), F●H 0(C●

α ⊗DX)) (Mα, F●Mα).

The surjectivity is clear from the local description. It follows that cc (H 0 (C●
α ⊗DX)) ≥

cc(Mα). Summing over all the rational numbers α in [0,1) gives

∑
α

cc (H 0 (C●
α ⊗DX)) ≥ ∑

α

cc(Mα) = cc(M).

On the other hand, by Theorem 2.3.5 and Theorem 2.6.1, the DX-moduleM is also successive

extensions of H 0 (C●
α ⊗DX) for α ∈ Q ∩ [0,1). Thus,

∑
α

cc (H 0 (C●
α ⊗DX)) = cc(M).

This forces that ψα must be isomorphism and therefore, filtered injective.

It remains to show that

F`ψα ∶ F`H 0(C●
α ⊗DX) F`Mα, (2.6.4)

is sujective. Suppose that z
⌈αe⌉
I P ∈ DX is a representative of a class in F`Mα. Then we can

write

z
⌈αe⌉
I P = P ′ +

n

∑
i=1

DiQi + z⌊αe⌋+1I T

for P ′ ∈ F`+nDX and T,Qi ∈ DX . It follows that

z
⌈αe⌉
I (P − tαT ) = P ′ +

n

∑
i=1

DiQi

By the regular sequence argument of Theorem 2.3.5, we can assume that P −tαT is in F`+nDX .

Then the class represented by P − tαT in H 0(C●
α ⊗DX) is actually in F`H 0(C●

α ⊗DX) by

the local formula. Therefore, we find a lifting represented by P in F`H 0(C●
α ⊗DX) of the

class of z
⌈αe⌉
I P in F`Mα. We conclude the proof.
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Without loss of generality, we can assume by abuse of notation that locally Iα = {0, 1, ..., µ}

so that tα = z0z1⋯zµ. Let Rα be the induced operator (R − α) on (Mα, F●Mα). One easily

gets a nice local formula of Rα:

Corollary 2.6.4. The endormorphism Rα of Mα acts locally as ψα ○ (id ⊗ 1
ej
zj∂j) ○ (ψα)−1

for any j ∈ Iα.

Proof. Because R − α acts on the left hand side of the identification (2.6.2) by the left

multiplication by 1
e0
z0∂0 − α, the statement follows from

Rα [ζ ⊗ z⌈αe⌉I ] = [ζ ⊗ ( 1

ej
zj∂j − α)(z⌈αe⌉I )]

=[ζ ⊗ (( 1

ej
⌈αej⌉ − α) z⌈αe⌉I + z⌈αe⌉I ( 1

ej
zj∂j))]

=ψα[ζz⌈αe⌉I ⊗ ( 1

ej
zj∂j)] = ψα ○ (id ⊗ 1

ej
zj∂j) ○ ψ−1

α [ζα ⊗ 1] .

This completes the proof.

By the local formula of Rα, it is obvious that Rα ∶ (Mα, F●Mα) → (Mα, F●+1Mα) is a

filtered morphism.

2.6.2 Striness of Rα

Similar to the reduced case, every power of Rα is strict.

Theorem 2.6.5. The power of the endomorphism Rα on (Mα, F●Mα) is strict:

Ra
αFbMα = Fa+bRa

αMα, for any a ∈ Z≥0 and b ∈ Z. (2.6.5)

Let [Rα] be the endomorphism on grFMα induced by Rα. To prove the above theorem,

we need the following statement on ker [Rα] ⊂ grFMα.

Lemma 2.6.6. ker [Rα]r+1
is locally generated by monomials of degree µ − r that divid tα.
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Proof of Theorem 2.6.5. Temporarily admitting this lemma, let Rr+1
α m be an element in

F`+r+1Mα. Assume that m ∈ FkMα. If k > ` then the projection of Rr+1
α m vanishes in

grFk+r+1Mα. It follows from the lemma that m can be written as

m = ∑
#J=µ−r,
J⊂Iα

zJmJ +
n

∑
i=1

DiQi +m′, for zJ =∏
j∈J

zj

where Qi,m′ ∈ Fk−1Mα. Because for every J ⊂ Iα of cardinality r + 1 we can arrange

Rr+1
α zJ = ∏

j∈Iα∖J

1

ej
zj∂jzJ = tα ∏

j∈Iα

1

ej
∂j = 0 ∈ Mα

it follows that Rr+1
α m is equal to,

∑
#J=µ−r,
J⊂Iα

Rr+1
α zJmJ +Rr+1

α (
n

∑
i=1

DiQi +m′) = ∑
#J=µ−r,
J⊂Iα

tαm
′
J +

n

∑
i=1

(Di + α)Rr+1
α Qi +Rr+1

α (m′ −
n

∑
i=1

αQi)

=Rr+1
α (m′ −

n

∑
i=1

αQi) ∈ Mα.

But now m′ −∑n
i=1αQi ∈ Fk−1Mα. Iterating the above argument one can find m̃ ∈ F`Mα such

that

Rr+1
α m = Rr+1

α m̃.

This completes the proof of the theorem.

Proof of the lemma. The proof is essentially the same as the reduced case. Note that we are

now working over the commutative ring grFDX . We prove by induction on r. Let P ∈ grFDX

represent an element of ker[Rα]r+1. When r = 0, we have

1

e0

z0∂0P = tαQ0 +
n

∑
i=1

DiQi recalling that tα = z0z1⋯zµ. (2.6.6)

Then tαQ0 is in the ideal generated by ∂0, ∂1, ..., ∂µ, zµ+1∂µ+1, zµ+2∂µ+2, ..., zk∂k, ∂k+1, ...∂n over

grFDX . Because tα together with ∂0, ∂1, ..., ∂µ, zµ+1∂µ+1, zµ+2∂µ+2, ..., zk∂k, ∂k+1, ...∂n form a

regular sequence in grFDX , Q0 can be written as,

Q0 =
µ

∑
a=0

∂aQa +
k

∑
b=µ+1

zb∂bQb +
n

∑
c=k+1

∂cQc.
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Substuiting in (2.6.6)

1

e0

z0∂0

⎛
⎝
P −

µ

∑
a=0

ea
tα
za
Qa −

k

∑
b=µ+1

ebtαQb

⎞
⎠
∈ (D1,D2, ...,Dn)grFDX .

Now because (z0∂0,D1,D2, ...,Dn) is a regular sequence in grFDX , P is a linear combination

of tα/za for a ∈ {0,1, ..., µ} and D1,D2, ...,Dn over grFDX . This concludes the case when

r = 0.

Assume the statement is true for the case when the exponent is less than r. Because [Rα]

sends the class of P to ker[Rα]r, by induction hypothesis we have

1

e0

z0∂0P = ∑
#J=µ−r+1,

J⊂Iα

zJQJ +
n

∑
i=1

DiQi recalling that zJ =∏
j∈J

zj. (2.6.7)

Fixing a subset J , then zJQJ is in the submodule generated by za for a ∈ Iα ∖ J , ∂b for

b ∈ J , zc∂c for c ∈ I ∖ Iα and ∂d for d ∉ I over grFDX . Because the elements za, ∂b, zc∂c, ∂d for

a ∈ Iα ∖ J, b ∈ J, c ∈ I ∖ Iα, d ∉ I together with zJ form a regular sequence in grFDX , we deduce

that

QJ = ∑
a∈Iα∖J

zaQa +∑
b∈J

∂bQb + ∑
c∈I∖Iα

zc∂cQc +∑
d∉I

∂dQd.

Substituting in (2.6.7), we deduce that

1

e0

z0∂0 (P − (∑
b∈J

eb
zJ
zb
Qb + ∑

c∈I∖Iα

eczJQc)) − ∑
a∈Iα∖J

zJzaQa

is in the submodule generated by degree µ − r + 1 monomials dividing tα except zJ and by

D1,D2, ...,Dn over grFDX . This means we can reduce zJQJ one by one for each J on the

right-hand side of the equation (2.6.7) and at the last step we find that 1
e0
z0∂0(P − P ′) is a

linear combination of degree µ − r + 2 monomials dividing tα and D1,D2, ...,Dn, where P ′ is

a linear combination of degree µ − r monomials dividing tα.

Note that the left multiplication by 1
e0
z0∂0 has the same effect as applying [Rα] on grFMα.

Therefore, the class represented by P − P ′ is in ker[Rα]r since degree µ − r + 2 monomials

dividing tα is in ker[Rα]r−1. By induction hypothesis the class represented P − P ′ is a linear

combination of degree µ − r + 1 monomials dividing tα. Therefore, the class represented by P
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in grFMα is a linear combination of degree µ − r monomials dividing tα. This completes the

proof.

Corollary 2.6.7. The kerRr+1
α is also generated by degree µ− r monomials dividing tα if one

identifies Mα locally with DX/(tα,D1,D2, ...,Dn)DX .

The proof is the same as the one of Corollary 2.4.3

2.6.3 The weight filtration

Now the weight filtration of each generalized eigen-modules interacts well with the good

filtration because of the strictness. Recall that since Rα is nilpotent on Mα, it induces a

Z-indexed filtration W●Mα. We filtered the sub-module WrMα by the induced filtration

F●WrMα = F●Mα ∩WrMα. Let

Pα,r =
kerRr+1

α

kerRr
α +Rα kerRr+2

α

be the r-th primitive part of grWMα with the filtration defined by

F`Pα,r =
F` kerRr+1

α + kerRr
α +Rα kerRr+2

α

kerRr
α +Rα kerRr+2

α

.

As the formal proof in Theorem 2.4.6, we have

Corollary 2.6.8. The induced operator Rr
α ∶ F`grWr Mα → F`+rgrW−rMα is an isomorphism.

Therefore, the Lefschetz decomposition of grWMα respects filtrations, i.e.

F●grWr Mα = ⊕
`≥0,− r

2

R`
αF●−`Pα,r+2` for any r ∈ Z.

2.6.4 Summands of the primitive part Pα,r

Recall that Y J = ⋂j∈J Yj and YJ = ⋃j∈J Yj for any subset J of I and ej is the multiplicity of

Yj in Y . Like the reduced case that Pr decomposes into the direct images of ωY J (−r) for all

index subset sJ of cardinality r+1 (Theorem 2.4.7), the primitive part Pα,r of the generalized
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α-eigemodule also decomposes into direct images of certain filtered DY J -modules Vα,J(−r) for

all J of cardinality r + 1 such that ejα for every j ∈ J is an integer. The filtered DY J -modules

Vα,J comes from cyclic coverings so that Pα,r carries the Hodge theory of the cyclic coverings.

In fact, by a well-know construction in [EV92, §3] the direct image of the de Rham complex of

a cyclic covering decomposes into log de Rham complexes of line bundles. A line bundle with

an integrable log connection also can be viewed as a log D-module. This suggests that the

D-modules Vα,J is generated by a certain log D-module Vα,J . If Y is reduced and α = 0, Vα,J

is just ωY J . We shall construct auxiliary log D-modules Vα,J whose log de Rham complex

will be used to construct the D-module Vα,J , without using cyclic cover. The cyclic coverings

are involved only when we study the Hodge theory of those D-modules. We fix a rational

number α ∈ [0,1) to simplify the notations and let Iα be a subset of indices consisting of i

such that αei is an integer.

Denote by L the line bundle OX (−∑i∈Iα
ei
N Yi), where N is the greatest common divisor of

ei for i ∈ Iα. In this notation, OX (−⌈αY ⌉) = LαN (−∑i∈I∖Iα⌈αeiYi⌉). Because the line bundle

OX(Y ) can be trivialized by a global section, we get an isomorphism of OX-modules:

LN = OX (− ∑
i∈Iα

eiYi) → OX ( ∑
i∈I∖Iα

eiYi) . (2.6.8)

Choose a local section l of L such that lN ↦∏i∈I∖Iα z
−ei
i under (2.6.8). Now we shall put a

log connection ∇ on

OX(−⌈αY ⌉) = LαN (− ∑
i∈I∖Iα

⌈αeiYi⌉) .

First we define, using the product rule

∇lN
lN

= N∇l
l
= ∑
i∈I∖Iα

−ei
dzi
zi

(2.6.9)

due to (2.6.8). Then, let s = lαN ∏i∈I∖Iα z
⌈αei⌉
i be the local frame of OX(−⌈αY ⌉). Noting that

αN is a non-negative integer, the induced log connection works as

∇s
s

= ∇(lαN ∏i∈I∖Iα z
⌈αei⌉
i )

lαN ∏i∈I∖Iα z
⌈αei⌉
i

= αN∇l
l
+ ∑
i∈I∖Iα

⌈αei⌉
dzi
zi

= ∑
i∈I∖Iα

(⌈αei⌉ − αei)
dzi
zi

= ∑
i∈I∖Iα

{−αei}
dzi
zi
,

(2.6.10)
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where {−} denotes the function of taking fractional part. Putting in more standard form,

∇s = ∑
i∈I∖Iα

{−αei}
dzi
zi

⊗ s.

This log connection is integrable and has poles along Yi for i ∈ I ∖ Iα with eigenvalues {−αei}.

We endow the line bundle OX(−⌈αY ⌉) with this integrable log connection ∇.

Fix a subset J of Iα with #J = r+1 so that dimY J = n−r. The pullback of (OX(⌈−αY ⌉),∇)

by the inclusion τJ ∶ Y J → X gives an integrable log connection (V ,∇) = (Vα,J ,∇) on Y J

with poles along E = Eα,J the pullback of YI∖Iα . Moreover, the log de Rham complex of

(V ,∇)

{V → ΩY J (logE) ⊗ V → ⋯→ Ωn−r
Y J (logE) ⊗ V }[n − r],

induces a complex of DY J -modules

{V ⊗DY J → ΩY J (logE) ⊗ V ⊗DY J → ⋯→ Ωn−r
Y J (logE) ⊗ V ⊗DY J}[n − r], (2.6.11)

which is nothing but the log de Rham complex of V ⊗DY J . It follows from Lemma 2.1.3

that the complex is a resolution of

V = Vα,J =def ωY J (logE) ⊗ V ⊗
D(Y J ,E)

DY J .

We endow V with the filtration F`V = F`Vα,J induced the subcomplex

{V ⊗ F`DY J → ΩY J (logE) ⊗ V ⊗ F`+1DY J → ⋯→ Ωn−r
Y J (logE) ⊗ V ⊗ F`+n−rDY J}[n − r].

It is clear that F●V is a good filtration. For example, if α = 0, then E is empty and V is

just OY J so that V = ωY J as DY J -modules. Since the eigenvalues of the log connection are

in (0,1) if poles exist, the log de Rham complex of (V ,∇) is the minimal extension R!∗V

of the local system V consisting of the flat sections of ∇ on V over Y J ∖ YI∖J (see [EV92,

p. 1.6]). Later we will put a sesquilinear pairing on V and all the data will yield a pure Hodge

structure of the log de Rham complex of V .

Lemma 2.6.9. The de Rham complex DRY JV together with the filtration F●DRY JV is

isomorphic to the log de Rham complex Ωn−r+●
Y J

(logE) ⊗ V with the stupid filtration in the
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derived category of filtered complexes of C-vector spaces. In addition, V is holonomic and the

characteristic cycle of V is

cc(V) = ∑
K⊂I∖Iα

[T ∗
Y K∪JY

J] .

Proof. We can choose the local frame s of V such that

∇s = ∑
i∈I∖Iα

dzi
zi

⊗ {−αei}s

where zi is the defining equation of Ei for each i. Therefore, the complex (2.6.11) locally is

the Koszul complex over DY J associated to the sequence

x1∂1 + {−αe1}, x2∂2 + {−αe2}, ..., xp∂p + {−αep}, ∂p+1, ∂p+2, ..., ∂n−r,

for some rearrangement of coordinates and under the trivialization of V given by s. It

follows that the associated graded of (2.6.11) is the Koszul complex associated to the regular

sequence

x1∂1, x2∂2, ..., xp∂ν , ∂p+1, ∂p+2, ..., ∂n−r

over grFDY J . Thus, the complex (2.6.11) is filtered acyclic. By the similar argument

in Theorem 2.3.5, the DY J -module V is holonomic and the charateristic cycle cc(V) =

∑K⊂I∖Iα [T ∗
Y K∪JY J].

Moreover, we have isomorphisms in the derived category of complexes of C-vector spaces:

F`DRV = F`+∗V ⊗
−⋆

⋀TY J ≃ Ωn−r+●
Y J (logE) ⊗ V ⊗ F`+n−r+●+∗DY J ⊗

−⋆

⋀TY J

≃ Ωn−r+●
Y J (logE) ⊗ V ⊗ F`+n−r+●OY J .

Since F`OY J is OY J or vanishes if ` < 0, the complex Ωn−r+●
Y J

(logE) ⊗ V ⊗ F`+n−rOY J is the

stupid filtration on the log de Rham complex on V . We conclude the proof.

We also need an auxiliary DY J -module V∗α,J to identify the primitive part Pα,r which plays

the role as ωY J (∗DJ) in the counterpart for the reduced case (Theorem 2.4.7). The log de

Rham complex of (V ,∇) can be enlarged into

{V → ΩY J (logD)⊗V → ⋯→ Ωn−r
Y J (logD)⊗V }[n − r], for D =DJ the pullback of the divisor YI∖J .
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It is quasi-isomorphic to Rj∗V for j ∶ Y J ∖ YIα → Y J is the open immersion. By the similar

process of the above, it induces a filtered acyclic complex of DY J -modules

{V ⊗DY J → ΩY J (logD) ⊗ V ⊗DY J → ⋯→ Ωn−r
Y J (logD) ⊗ V ⊗DY J}[n − r]. (2.6.12)

Let V∗ = V∗α,J be the 0-th cohomology of the above complex and endow it with the filtration

such that F`V∗ = F`V∗α,J is induced by the subcomplex

{V ⊗ F`DY J → ΩY J (logD) ⊗ V ⊗ F`+1DY J → ⋯→ Ωn−r
Y J (logD) ⊗ V ⊗ F`+n−rDY J}[n − r].

We naturally get an induced morphism (V , F●V) → (V∗, F●V∗) from the inclusion of the log

de Rham complexes.

Lemma 2.6.10. The canonical morphism (V , F●V) → (V∗, F●V∗) is injective, whose image

is generated by the monomials defining D −E.

Proof. Suppose x1x2⋯xp is the local defining equation of E and x1x2⋯xq is the local defining

equation of D for q ≥ p + 1. Since V is locally generated by the class of

p

⋀
i=1

dxi
xi

∧ dxp+1 ∧⋯ ∧ dxn−r ⊗ s⊗ 1

and V∗ is locally generated by the class of

q

⋀
i=1

dxi
xi

∧ dxq+1 ∧⋯ ∧ dxn−r ⊗ s⊗ 1,

the image is generated by the class of ⋀qi=1
dxi
xi
∧ dxq+1 ∧ ⋯ ∧ dxn−r ⊗ s ⊗ xp+1xp+2⋯xq. The

morphism locally is

DY J /(x1∂1 + r1, ..., xp∂p + rp, ∂p+1, ..., ∂n−r)DY J → DY J /(x1∂1 + r1, ..., xq∂q + rq, ∂q+1..., ∂n−r)DY J ,

with [P ] ↦ [xp+1xp+2⋯xqP ] where r1, r2, ..., rp are the eigenvalues of ∇ on V and rp+1 = rp+2 =

⋯ = rq = 0. Since

Ωn−r
Y J (logE) ⊗ V = F−(n−r)V → F−(n−r)V∗ = Ωn−r

Y J (logD) ⊗ V
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is injective, by induction, it suffices to show that grFV → grFV∗ is injective. Due to the

complexes (2.6.11) and (2.6.12) is filtered acyclic, the morphism on the associated graded

modules works as, in the local representation,

grFDY J /(x1∂1, ..., xp∂p, ∂p+1, ..., ∂n−r)grFDY J → grFDY J /(x1∂1, ..., xq∂q, ∂q+1..., ∂n−r)grFDY J ,

with [P ] ↦ [xp+1xp+2⋯xqP ]. By induction on the number of components of D −E, we can

assume q = p + 1. Let P ∈ grFDY J represent a class in the kernel. Then

xqP =
q

∑
i=1

xi∂iPi +
n−r

∑
j=q+1

∂jPj ∈ grFDY J .

Subtracting xq∂qPq on the both sides yeilds

xq(P − ∂qPq) =
q−1

∑
i=1

xi∂iPi +
n−r

∑
j=q+1

∂jPj ∈ grFDY J .

Since xq, x1∂1, ..., xq−1∂q−1, ∂q+1, ..., ∂n−r is a regular sequence over grFDY J ,

(P − ∂qPq) =
q−1

∑
i=1

xi∂iP
′
i +

n−r

∑
j=q+1

∂jP
′
j ∈ grFDY J .

We find that P is a linear combination of x1∂1, x2∂2, ..., xp∂p, ∂p+1, ..., ∂n−r over grFDY J . We

conclude the proof.

Remark 2.6.11. One can use Riemann-Hilbert correspondence to conclude that V is the

minimal extension of V ∣Y J∖D and V∗ is the ∗-extension of V ∣Y J∖D, which is overkill in our

situation. The above argument also showed the strictness, i.e., F`V = F`V∗ ∩ V .

Putting in more general notations and summarizing what we have proved in the above

two lemmas:

Theorem 2.6.12. The filtered DY J -module (Vα,J , F●) is holonomic whose de Rham complex

DRY JVα,J together with the induced filtration is isomorphic to the log de Rham complex

Ωn−r+●
Y J

(logEα,J) ⊗ Vα,J with the stupid filtration in the derived category of filtered complexes

of C-vector spaces and whose characteristic cycle is

cc(Vα,J) = ∑
K⊂I∖Iα

[T ∗
Y K∪JY

J] .
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The canonical filtered morphism (Vα,J , F●Vα,J) → (V∗α,J , F●V∗α,J) is injective and the image is

generated by the monomial defining the divisor DJ −Eα,J .

2.6.5 Identifying the primitive part Pα,r

Now we are going to identify the r-th primitive part (Pα,r, F●Pα,r) with a direct sum of

Vα,J(−r) for J ranging over subsets Iα of cardinality r+1. The argument is parallel to the one

of the reduced case (Theorem 2.4.7), replacing M by Mα, R by Rα, ωY J by Vα,J , ωY J (∗DJ)

by V∗α,J , the complex Ωn+●
X/∆

(logY )∣Y by C●
α = Ωn+●

X/∆
(logY )(−⌈αY ⌉)∣YIα and the log de Rham

complex Ωn−r+●
Y J

(logDJ) by Ωn−r+●
Y J

(logDJ) ⊗ Vα,J .

Theorem 2.6.13. Let Vα,r = ⊕J τJ+ Vα,J for J running over the subsets of Iα of cardinality

r + 1, where τJ ∶ Y J ↪ X is the closed embedding. Then there exists an isomorphism

φα,r ∶ (Pα,r, F●Pα,r) → Vα,r(−r) in the category of filtered DX-modules.

Proof. Because the log connection (2.6.8) we constructed on OX(−⌈αY ⌉) has zero residue on

Yi for i ∈ Iα, we have the residue morphism between log de Rham complexes.

ResY J ∶ Ω●+n+1
X (logY ) ⊗OX(−⌈αY ⌉)∣YIα → Ω●+n−r

Y J (logDJ) ⊗ Vα,J , where DJ is the pull back of YI∖J

for J ⊂ Iα of cardinality r + 1, up to a sign depending on the order of the indices. Denote

by B●
α the log de Rham complex Ω●+n+1

X (logY ) ⊗OX(−⌈αY ⌉) of OX(−⌈αY ⌉). The residue

morphism ResY J extends to a morphism of the complexes of induced DX-modules

ResY J ∶ B●
α∣YIα ⊗DX → Ω●+n−r

Y J (logDJ) ⊗ Vα,J ⊗DX .

Let H`α be the `-th cohomology of B●
α∣YIα ⊗DX . Then we have an induced morphism ResY J ∶

H0
α → V∗α,J by taking cohomology. Let Resα,r = ⊕ResY J ∶ H0

α → V∗α,r(−r) where V∗α,r = ⊕J V∗α,J
for J running over cardinality r + 1 subsets of Iα. Because dt

t ∧ ∶ Ω●+n
X/∆

(logY )(−⌈αY ⌉) →

Ω●+n+1
X (logY )(−⌈αY ⌉) also extends to the complexes of the induced DX-modules, we obtain

a short exact sequence

0 C●−1
α ⊗DX B●−1∣YIα ⊗DX C●

α ⊗DX 0.
dt
t
∧
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The associated long exact sequence gives

0 H−1
α Mα

Mα H0
α 0.

Rαdt
t
∧

(2.6.13)

By pre-composing dt
t ∧, we get a morphism

Resα,J ○
dt

t
∧ ∶ Mα → V∗α,r(−r), [ζα ⊗ P ] → [Resα,J

dt

t
∧ ζα ⊗ P ].

Recall that every element in Mα is locally represented by ζα ⊗ P for ζα = z⌈αe⌉I
dz1
z1
∧ dz2

z2
∧⋯ ∧

dzk
zk

∧⋯ ∧ dzn given that locally I = {0, 1, . . . , k}, and P ∈ DX . By Corollary 2.6.7, every class

in kerRr+1
α is represented by ζα ⊗ zJP for some ordered index subset J of Iα of cardinality

r + 1 and J is the complement of J in Iα and zJ = ∏j∈J zj. Thus, its image under the

above morphism only contained in the component V∗α,J(−r) because zJ vanishes on other

components. The image is the class represented by

Resα,J
dz0

z0

∧dz1

z1

∧⋯∧dzk
zk

∧⋯∧dznz⌈αe⌉I ⊗zJP = ±dzI∖J
zI∖J

∧dzk+1∧⋯∧dzn⊗sα,J⊗zJP ∈ Ωn−r
Y J ⊗Vα,J⊗DX ,

(2.6.14)

where sα,J is the local frame of Vα,J by restricting z
⌈αe⌉
I and the sign is depending on the

order of J . It also follows from the calculation that the image does not have pole along

the pull-back of YJ . So it is contained in the subsheaf consisting of classes represented by

Ωn−r
Y J

(logEα,J) ⊗ Vα,J ⊗DX , where Eα,J is the pull-back of YI∖Iα so that DJ − Eα,J is the

pull-back of YJ . This means that the image of the class represented by (2.6.14) is also in the

image of the canonical inclusion:

τJ+ Vα,J(−r) ↪ τJ+ V∗α,J(−r),

[dzJ ∧
dzI∖Iα
zI∖Iα

∧ dzk+1 ∧⋯ ∧ dzn ⊗ sα,J ⊗ P ] ↦ [dzJ
zJ

∧ dzI∖Iα
zI∖Iα

∧ dzk+1 ∧⋯ ∧ dzn ⊗ sα,J ⊗ zJP ].

See Theorem 2.6.12. Therefore, the morphism kerRr+1
α → V∗α,r(−r) constructed above factors

through Vα,r(−r). Summarizing, we have the following diagram.

kerRr+1
α Vα,r(−r)

Mα H0
α V∗α,r(−r)

ρα,r

dt
t
∧ Resα,r
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In fact, the kernel of ρr contains kerRr
α: for an element in kerRr

α locally represented by

ζα ⊗ zKP for K a subset of Iα such that the cardinality of Iα ∖K is r, its image under ρα,r is

zero because zK annihilates all Ωn−r
Y J

(logDJ) ⊗ Vα,J for any J ⊂ Iα of cardinality r + 1. The

morphism ρα,r also kills Rα kerRr+2
α because dt

t ∧ vanishes on the image of Rα by (2.6.13). It

follows that ρα,r factors through a filtered morphism

φα,r ∶ Pα,r =
kerRr+1

α

kerRr
α +Rα kerRr+2

α

→ Vα,r(−r).

For dzJ ∧
dzI∖Iα
zI∖Iα

∧ dzk+1 ∧ ⋯ ∧ dzn ⊗ sα,J ⊗ P ∈ Ωn−r
Y J

(logEα,J) ⊗ Vα,J ⊗ F`DX representing a

class in F`τJ+ Vα,J(−r) where J ⊂ Iα of cardinality r + 1, we can find a lifting represented by

ζα ⊗ zJP in F` kerRr+1
α , which means

F` kerRr+1
α → F`+rVα,r

is surjective, i.e. the morphism φα,r is filtered surjective. It remains to prove that φα,r is

injective. We prove that φα,r is an isomorphism by counting the characteristic cycles as in

Theorem 2.4.7. Because φα,r is surjective, one gets

cc(Pα,r) ≥ cc(Vα,r).

It follows from Corollary 2.6.12 that

cc(Vα,r) = ∑
J⊂Iα,

#J=r+1

cc(τJ+ Vα,J) = ∑
J⊂Iα,

#J=r+1

∑
K⊂I∖Iα

[T ∗
Y J∪KX] = ∑

J⊂I,
#J∩Iα=r+1

[T ∗
Y JX] .

One the other hand, by the Lefschetz decomposition and Theorem 2.6.2,

∑
J⊂I

#(J ∩ Iα) [T ∗
Y JX] = cc(Mα) = cc(grWMα) = ∑

r≥0

(r + 1)cc(Pα,r) ≥ ∑
r≥0

(r + 1)cc(Vα,r)

= ∑
r≥0

∑
J⊂I,

#J∩Iα=r+1

(r + 1) [T ∗
Y JX] = ∑

J⊂I

#(J ∩ Iα) [T ∗
Y JX] .

It follows that all inequalities above are equalities and in particular,

cc(Pα,r) = cc(Vα,r)

from which we conclude that φα,r is an isomorphism between the underlying DX-modules.

Plus it is filtered surjective, we conclude that φα,r is filtered isomorphism.
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2.7 Non-reduced case: Sesquilinear pairing and

limiting mixed Hodge structure

2.7.1 Kähler package of cyclic covering

To accomplish our goal, we need to show that the sum of all hypercohomologies of the complex

Ω●
Y J (logEα,J) ⊗ Vα,J[n − r]

has a polarized Hodge-Lefschetz structure and hard Lefschetz so that the hypercohomology of

the de Rham complex of the primitive part Pα,r will inherit the properties by Theorem 2.6.12

and Theorem 2.6.13. For this, we need to use the geometry of cyclic coverings.

We first give another description of the integrable log connection (2.6.8) using cyclic

coverings. Fix a rational number α in [0,1), Because the isomorphism,

LN = OX (− ∑
i∈Iα

eiYi) → OX ( ∑
i∈I∖Iα

eiYi) ,

we obtain a cyclic covering πα ∶ Xα → X by taking the N -th roots out of ∑i∈I∖Iα eiYi and

normalizing it. The direct image πα∗OXα decomposes into eigenspaces with respect the Galois

action as well as the direct image of exterior differential πα∗OXα → πα∗ΩXα [EV92, Theorem

3.2]. The line bundle

LαN (− ∑
i∈I∖Iα

⌈αeiYi⌉) ,

is the α-eigenspaces of πα∗OXα for some suitable choice of a generator of the Galois group.

Because the decomposition respects the exterior differential, we obtained an integrable log

connection with eigenvalues {αei} along Yi for each i ∈ Iα. Note that Xα might not be

smooth.

Let J ⊂ Iα of cardinality r + 1. Since Y J is not contained in YI∖Iα , the fiber product

Y J
α =Xα×XY J is again a cyclic covering of Y J by taking the N -th roots out of ∑i∈I∖Iα eiYi∩Y J .
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Let πJα ∶ Y J
α → Y J be the second projection.

Y J
α Xα

Y J X

πJα πα

τJ

(2.7.1)

We conclude that (Vα,J ,∇) is the α-eigenspace of πJα∗(OY Jα
, d). The log de Rham complex of

(Vα,J ,∇) is a summand of the direct image of the de Rham compolex πJα∗Ω
●+n−r
Y Jα

of Y J
α .

We shall work in the general setting and adopt the convention in [EV86] and [EV92].

Let L be a line bundle on a Kähler manifold Z with a Kähler form ω and D = ∑i νiDi be

a simple normal crossings divisor such that for some N > 1 one has LN = OZ(D). Define

L(j) = Lj(−⌊ jDN ⌋) for 1 ≤ j ≤ N − 1. One puts an integrable logarithmic connection on L(j)

with poles along D(j), where

D(j) = ∑
jνi
N

∉Z

Di.

Let ι ∶ U ↪ Z be the complement of D and V is the underlying local system of L∣U . Let

τ ∶ Z ′ → Z be the cyclic covering obtained by first taking N -th root out of D then taking the

normalization and π ∶ Z̃ → Z ′ be a log resolution of singularity equivariant with respect to the

Galois group Gal (Z ′/Z) = ⟨σ⟩ and let E be the simple normal crossing exceptional divisor.

Z̃ Z ′ Zπ

η

τ

Note that Z̃ is Kähler because it is a resolution of subvariety of the geometric line bundle of

L, which is Kähler, although the induced Kähler class does not relate well with ω on X. The

pullback η∗ω is only positive over Ũ = η−1(U), but one can still cook up a Kähler class by

adding a small multiple of the first Chern class Θ ∈ H2(Z̃,Z(1)) of the relative ample line

bundle of the projective morphism π ∶ Z̃ → Z ′. We can assume Θ is invariant under σ by

averaging it.

Lemma 2.7.1. Notations as above, the cohomology class [η∗ω] + λ(2π
√
−1)−1Θ ∈H1,1(Z) ∩

H2(Z,R) is an invariant Kähler class for λ is a sufficient small positive number.
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Proof. Let D̃i be the strict transformation of τ−1(Di) and si ∈ H0(Z̃,OZ̃(D̃i)) whose zero

locus is D̃i. Let hi be a Hermitian metric on each line bundle OZ̃(D̃i) and ρi be sufficient

small positive bump function supported in a small neighborhood of D̃i for each i. Then the

(1,1)-form

η∗ω +∑
i

√
−1

2π
∂∂̄ρihi(si, si)

is positive on Z̃ −E but only semi-positive over E. However, the class (2π
√
−1)−1Θ is positive

over E. Therefore, for λ sufficient small positive, the class of

η∗ω +∑
i

√
−1

2π
∂∂̄ρihi(si, si) + λ(2π

√
−1)−1Θ

is a Kähler class. But ∂∂̄ρihi(si, si) is exact. The cohomology class of above just equals

[η∗ω] + λ(2π
√
−1)−1Θ in H1,1(Z̃) ∩H2(Z,R). It is invariant because both [η∗ω] and Θ are

invariant.

Lemma 2.7.2. The hypercohomology Hk (Z,Ω●
Z(logD(j)) ⊗ L(j)−1) is a summand of ξ−j-

eigenspace of Hk(Z̃), and thus it is a sub-Hodge structure of weight k.

Proof. It follows from (1.6) in [EV86] that Rι!V−j, Rι∗V−j and Ω●
Z(logD(j)) ⊗ L(j)−1

are all

quasi-isomorphic. Taking hypercohomology gives canonical isomorphisms

Hk(Z,Ω●
Z(logD(j)) ⊗ L(j)−1) ≃Hk

c (U,V−j) ≃Hk(U,V−j).

Because η is étale over U , Hk(U,Vj) (resp. Hk
c (U,Vj)) is a ξj-eigenspace of Hk(Ũ ,C) (resp.

Hk
c (Ũ ,C)) for the cyclic action σ, where ξ is a N -th root of unity. Then the canonical

morphisms of mixed Hodge structures

Hk
c (Ũ) →Hk(Z̃) →Hk(Ũ) (2.7.2)

respect the eigenspaces decomposition because we make Z̃ equivariant. We complete the

proof.

Lemma 2.7.3. Let X = 2π
√
−1L where L = [ω]∧ is the Lefschetz operator on Z. The

following two statements hold:
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1. Hard Lefschetz is valid on the hypercohomolgy, i.e.

Xk ∶HdimZ−k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1) →HdimZ+k (Z,Ω●

Z(logD(j)) ⊗ L(j)−1) (k)

is an isomorphism of Hodge structures.

2. The pairing

(m′,m′′) ↦ ε(dimZ + k + 1)
(2π

√
−1)dimZ ∫

Z̃
η∗ (XdimZ−km′ ∧m′′) (2.7.3)

is a polarization on the primitive part of Hk (Z,Ω●
Z(logD(j)) ⊗ L(j)−1), where η∗ (XdimZ−kα ∧ β)

is the top form determined by the inclusion η∗ΩdimZ
Z (logD(j)) ⊗ L(j)−1 ⊂ ωZ̃.

Proof. Let L̃ = [η∗ω + λΘ]∧ be the Lefschetz operator on Z̃. Then the Hard Lefschetz on Z̃

says

X̃k ∶HdimZ−k(Z̃) →HdimZ+k(Z̃)(k)

is an isomorphism, where X̃ =def 2π
√
−1L̃. Because L̃ is invariant and respects the morphisms

in (2.7.2), the above isomorphism is compatible with eigenspaces decomposition, it follows

that

X̃k ∶HdimZ−k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1) →HdimZ+k (Z,Ω●

Z(logD(j)) ⊗ L(j)−1) (k) (2.7.4)

is injective by Lemma 2.7.2. In fact, the ξi-eigenspace of Hk
c (Ũ) is orthogonal to the ξj-

eigenspace of H2 dimZ−k(Ũ) with respect to Poincaré pairing unless i + j ≡ 0 (modN): for a

in the ξi-eigenspace of Hk
c (Ũ) and b in the ξj-eigenspace of H2 dimZ−k(Ũ) then

ξi∫
Ũ
a ∧ b = ∫

Ũ
σ∗a ∧ b = ∫

Ũ
a ∧ (σ−1)∗b = ξ−j ∫

Ũ
a ∧ b,

which means ∫Ũ a ∧ b is zero unless i + j ≡ 0 (modN). It follows from Poincaré duality on

Hk
c (Ũ)×H2 dimZ−k(Ũ) that the ξi-eigenspace of Hk

c (Ũ) is Poincaré dual to the ξ−i-eigenspace

of H2 dimZ−k(Ũ). On the other hand, since the ξi-eigenspace is complex conjugate to the

ξ−i-eigenspace, the ξi-eigenspace of Hk
c (Ũ) and the ξi-eigenspace of H2 dimZ−k(Ũ) have the

same dimension. It follows that the morphism (2.7.4) is an isomorphism.
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The operator L̃ has the same effect as η∗L over H●
c (Ũ), because Θ is supported on E.

Therefore,

Xk ∶HdimZ−k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1) →HdimZ+k (Z,Ω●

Z(logD(j)) ⊗ L(j)−1) (k)

is an isomorphism. We conclude (1). It also follows that η∗ identifies the primitive part of X

HdimZ−k
prim (Z,Ω●

Z(logD(j)) ⊗ L(j)−1)

with the primitive part of X̃

ker (X̃k+1 ∶HdimZ−k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1) →HdimZ+k+2 (Z,Ω●

Z(logD(j)) ⊗ L(j)−1)) .

Thus, HdimZ−k
prim (Z,Ω●

Z(logD(j)) ⊗ L(j)−1) is a sub-Hodge structure of HdimZ−k
prim (Z̃). And the

restriction of the polarization is again a polarization. This proves (2).

The above two lemmas indicate that the sum of hypercohomologies

⊕
k∈Z

Hk (Z,Ω●
Z(logD(j)) ⊗ L(j)−1)

is a polarized sub-Hodge-Lefschetz structure of ⊕k∈ZHk(Z̃,C). In practice, it is more

convenient to make the polarization independent of the resolution of singularities and intrinsic

on Z. Heuristically, the local system V−j over U inherits a pairing from CŨ and it has a

Hodge theoretic extension on its canonical extension. First, we can resolve Ω●
Z(logD(j)) using

A●Z(logD(j)), the complex of C∞-forms with log poles along D(j). Note that we have the

inclusion of sheaves

AdimZ+k
Z (logD(j))⊗L(j)−1∧AdimZ−k

Z (logD(j)) ⊗ L(j)−1 ⊂ A2 dimZ
Z ⊗L(j)−1(D(j))⊗

C
L(j)−1(D(j)).

Since LN ≃ OZ(D), picking local section of l such that lN = ∏i x
−νi
i we can put a canonical

singular Hermitian metric on L by setting the weight function as

∣l∣h =∏
i

∣xi∣−νi/N , where xi is the local defining equation of Di.
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Then the induced singular Hermitian metric on L(j)−1(D(j)) = L−j(⌊ jDN ⌋ +D(j)) locally is

RRRRRRRRRRR
l−j∏

i

x
−⌊jµi/N⌋

i ∏
jνi/N∉Z

x−1
i

RRRRRRRRRRRh
=∏

i

∣xi∣jνi/N−⌊jνi/N⌋ ∏
jνi/N∉Z

∣xi∣−1 =∏
i

∣xi∣−{−jνi/N}.

For any smooth top form Υ with values in L(j)−1(D(j)) ⊗C ⊗L(j)−1(D(j)) we can associate

an integrable top form (Υ)h = fg∣s∣2h vol(Z) by fixing a volume form vol(Z) on Z and

writing locally Υ = fs⊗ gsvol(Z) for s a local fram of L(j)−1(D(j)). Therefore, we obtain a

well-defined pairing,

AkZ(logD(j)) ⊗ L(j)−1 ∧AkZ(logD(j)) ⊗ L(j)−1 →C,

(m′,m′′) ↦ε(dimZ + k + 1)
(2π

√
−1)dimZ ∫

Z
(XdimZ−km′ ∧m′′)

h
.

(2.7.5)

Since η ∶ Z̃ → Z is generic finite, it follows from

∫
Z̃
η∗ (XdimZ−km′ ∧m′′) = N ∫

Z
(XdimZ−km′ ∧m′′)

h

that (2.7.5) induces the same polarization in the statement (2) of the above lemma except

for the constant N .

Applying to our situation yields that Vα,J(Eα,J) carries a canonical singular Hermitian

metric ∣ − ∣h with local weight functions ∏j∈I∖Iα ∣zj ∣−{αej} restricted on Y J , where zi is the

defining equation of Yi. Provided the above two lemmas, the sum of hypercohomologies

⊕
k∈Z

Hk (Y J ,Ω●+dimY J

Y J (logEα,J) ⊗ Vα,J)

is a polarized Hodge-Lefschetz structure of central weight dimY J for any non-empty subset

J of Iα. Similarly to Example 2.1.9 this is also determined by the filtered DY J -module

(Vα,J , F●Vα,J) with the sesquilinear pairing Sα,J ∶ Vα,J ⊗C Vα,J → CY J is given by

([s1 ⊗ P1] , [s2 ⊗ P2]) ↦
ε(dimY J + 1)
(2π

√
−1)dimY J ∫Y J (P1P2−) (s1 ∧ s2)h (2.7.6)

for local sections of Vα,J (see (2.7.1)) represented by si ⊗ Pi such that si local sections of

ωY J (logEα,J) ⊗ Vα,J = ωY J ⊗ Vα,J(Eα,J)
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and Pi is a differential operator i = 1, 2. Here, (s1∧s2)h is the top form induced by the singular

Hermitian metric on Vα,J(Eα,J). Summarizing the results we proved in this subsection:

Corollary 2.7.4. With notations as above, the direct sum of all hypercohomologies of the

de Rham complex of (Vα,J , F●Vα,J) underlies a polarized Hodge-Lefschetz structure of central

weight dimY J with the Hodge filtration induced by F●Vα,J and with the polarization, on degree

k, given by the following induced pairing scaled by ε(k),

Hk(Y J ,DRY JVα,J) ⊗H−k(Y J ,DRY JVα,J) H0(Y J ,DR
Y J ,Y J

Vα,J ⊗C Vα,J)

H0(Y J ,DR
Y J ,Y J

CY J ) C.
Sα,J

≃

Remark 2.7.5. We cannot make the Hodge structure in the above corollary over Q because

there is no eigenvalue decomposition of Q-structure.

2.7.2 Sesquilinear pairing

As in the reduced case, we need a sesquilinear pairing to construct the limiting mixed Hodge

structure. In fact, the construction for the reduced case still works with a little modification.

Note that for any test function η over a local chart U and two local sections ζ1 ⊗ P1, ζ2 ⊗ P2

of H0 (U,Ωn
X/∆

(logY )(−⌈αY ⌉) ⊗DX), the function

t↦ ε(n + 1)
(2π

√
−1)n ∫Xt

P1P2(η)ζ1 ∧ ζ2.

may have order approximately at most ∣t∣2α (− log ∣t2∣)k near t = 0 where k + 1 is the number

of components of YIα that intersect in U . This suggests that we can define the pairing Sα on

Mα by

⟨Sα([ζ1 ⊗ P1], [ζ2 ⊗ P2]), η⟩ =def Ress=−α
ε(n + 2)

(2π
√
−1)n+1 ∫X ∣t∣2sP1P2(η)

dt

t
∧ ζ1 ∧

dt

t
∧ ζ2

= Ress=−α
ε(2)

2π
√
−1
∫

∆
∣t∣2sdt

t
∧ dt
t

( ε(n + 1)
(2π

√
−1)n ∫Xt

P1P2(η)ζ1 ∧ ζ2) .

Again, we have not check that Sα is well-defined but let us do some local calculations to see

what is going on.
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Example 2.7.6. Suppose Y = 2Y0 for Y0 is a smooth manifold and t is equal to z2
0 on X.

Then R satisfies the equation R(R − 1
2) = 0. We deduce that M has two eigenspaces M0 and

M 1
2

by (2.3.3). Then for any local sections ζi⊗Pi = dz1∧dz2∧⋯∧dzn⊗Pi of Ωn
X/∆

(logY )⊗DX ,

i = 1,2 representing classes of M0, the calculation of the pairing S0([ζ1 ⊗ P1], [ζ2 ⊗ P2]) is

exactly as in the reduced case and as it turned out

S0([ζ1 ⊗ P1], [ζ2 ⊗ P2]) = iY0+
SY0 ([ζ1 ⊗ P1], [ζ2 ⊗ P2]) .

By Theorem 2.6.3M 1
2

is locally generated by the class represented by dz1∧dz2∧⋯∧dzn⊗z0.

Now for any local sections ζ ⊗ z0Pi = dz1 ∧ dz2 ∧⋯ ∧ dzn ⊗ z0Pi representing classes of M 1
2
,

we have

⟨S 1
2
([ζ ⊗ z0P1], [ζ ⊗ z0P2]), η⟩ = Ress=− 1

2
∫
X
∣z0∣4sP1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= ∫
X

1

2
log ∣z0∣2∂0∂0P1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

by Poincaré-Lelong equation [GH14, Page 388] = ∫
Y0

1

2
P1P2(η)

n

⋀
i=1

(
√
−1

2π
dzi ∧ dzi)

= 1

2
⟨iY0+

SY0([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩

= 1

2
⟨iY0+

S 1
2
,{0}([ζ1 ⊗ z0P1] , [ζ2 ⊗ z0P2]), η⟩,

Recall S 1
2
,{0} defined in (2.7.6): since we have the isomorphism OY0(2Y0) = OY0(Y ) ≃ OY0

there exists a canonical singular Hermitian metric (this case is smooth) ∣ − ∣h on OY0(−Y0) by

setting the local frame z0 has norm 1 so that

iY0+
S 1

2
,{0}([ζ1 ⊗ z0P1] , [ζ2 ⊗ z0P2]), η⟩

= ∫
X
∣z0∣2hP1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi) = iY0+

SY0([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩.

The above equality can also be explained as follows: the cyclic covering constructed by

taking out of the second root of the constant section of OY0(2Y0) ≃ OY0 has two connected

components and each component is isomorphic to Y0.

Let η be a test function over an open subset U . For any two sections m1,m2 ∈

H0(U,Ωn
X/∆

(logY )(−⌈αY ⌉) ⊗ DX), the (2n + 2)-form dt
t ∧ m1 ∧ dt

t ∧m2 is smooth of out-
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side Y and has pole along Y . Locally, the (2n + 2)-form just is ∣zI ∣2⌈αe⌉P1P2(η)dtt ∧ ζ ∧ dt
t ∧ ζ,

where mj = ζ⊗z⌈αe⌉I Pj for ζ = dz1
z1
∧ dz2
z2
∧⋯∧ dzk

zk
∧⋯∧dzn and j = 1, 2. Let F (s) = F (s,m1,m2, η)

be the meromorphic extension of

ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2sdt

t
∧m1 ∧

dt

t
∧m2(η)

via integration by parts. The function F (s) is well defined when Re s > −α and has a pole at

s = −α. We only care about the polar part of F (s) at s = −α.

Theorem 2.7.7. The polar part of F (s) at s = −α is only depends on the classes of m1 and

m2 in Mα.

Proof. Let {ρλ} be a partition of unity of the open covering {Uλ} by local charts. Then

F (s) = ∑
λ

ε(n + 2)
(2π

√
−1)n+1 ∫

Uλ
∣t∣2sdt

t
∧m1 ∧

dt

t
∧m2(ρλη).

Since ρλη is a test function over local chart Uλ, we can assume U itself is a local chart. We

assume k + 1 components of Y intersect in U .

Lemma 2.7.8. Under the assumption that mi = ζα ⊗ Pi for ζα = z⌈αe⌉I
dz1
z1

∧ dz2
z2

∧ ⋯ ∧ dzk
zk

∧

dzk+1 ∧⋯ ∧ dzn and for i = 1,2, the followings are valid.

1. the order of the pole of F (s) at s = −α is at most k + 1;

2. if Pi = tαP ′
i for one of i = 1,2, then F (s) is holomorphic at s = −α;

3. for 0 ≤ j ≤ k we have,

F (s, ζα ⊗ P1, ζα ⊗
1

ej
zj∂jP2, η) =F (s, ζα ⊗

1

ej
zj∂jP1, ζα ⊗ P2, η) = −(s + ⌈αej⌉

ej
)F (s, ζ1 ⊗ P1, ζ2 ⊗ P2, η).
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Proof of the lemma. We work out Laurent series of F (s) at s = −α:

F (s) = ∫
X
∣zI ∣2se+2⌈αe⌉−2⋅1P1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= ∫
X
∣zI ∣2(s+α)e−2⋅1∣zI ∣2{−αe}P1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= ∫
X
(s + α)−2(k+1)∣zI ∣2(s+α)eη′

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi) where η′ = ∂I∂I (∣zI ∣2{−αe}P1P2η)

=
∞

∑
`=0

1

`!
(s + α)`−2(k+1)∫

X
(log ∣zI ∣2e)`η′

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

When ` < k + 1, then the form

(log ∣zI ∣2e)`η′
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

is actually exact because one of the ai must be zero in the expansion of (log ∣zI ∣2e)` into the

linear combination of ∏k
i=0 (log ∣zi∣2ei)ai such that ∑k

i=0 ai = `. Therefore, the order of the pole

at s = −α is at most k + 1.

When P1 = tαP ′
1, the form

∣zI ∣2(s+α)e−2⋅1∣zI ∣2{−αe}tαP ′
1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is integrable when s = −α where {−αe} is the multi-index such that {−αe}i = {−αei}.

Therefore, F (s) is holomorphic at s = −α. It is the same when P2 = tαP ′
2.

Lastly, by linearity we can assume that P1 = P2 = 1.

F (s, ζα ⊗ 1, ζα ⊗
1

ej
zj∂j, η) =

ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2s ( 1

ej
zj∂jη)

dt

t
∧ ζα ∧

dt

t
∧ ζα

=∫
X
∏

i∈I∖{j}

∣zi∣2sei+2⌈αei⌉−2z
sej+⌈αej⌉−1
j

1

ej
z
sej+⌈αej⌉
j ∂0η

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

=∫
X
−(s + ⌈αej⌉

ej
)∏
i∈I

∣zi∣2sei+2⌈αei⌉−2η
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= − (s + ⌈αej⌉
ej

) ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2sηdt

t
∧ ζα ∧

dt

t
∧ ζα.

= − (s + ⌈αej⌉
ej

)F (s, ζα ⊗ 1, ζα ⊗ 1, η).

(2.7.7)

The other equality in (3) holds similarly. We complete the proof of the lemma.
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Returning to the proof of theorem. Since Mα is locally represented by

ζα ⊗DX/(tα,D1 + α1,D2 + α2, . . . ,Dn + αn)DX

(see the proof of Theorem 2.6.2), and (2) and (3) in the lemma say that when one of m1 and

m2 is in

ζα ⊗ (tα,D1 + α1,D2 + α2, . . . ,Dn + αn)DX

then F (s) is holomorphic since αi equals ⌈αei⌉/ei − ⌈αe0⌉/e0 for 1 ≤ i ≤ k and equals zero

otherwise.

For two sections γ1, γ2 ∈H0(U,M) and any test function η over U , we define the pairing

Sα ∶ Mα ⊗CMα → CX by

⟨Sα(γ1, γ2), η⟩ = Ress=−α∑
λ

F (s, γ̃1, γ̃2, ρλη),

where {ρλ} is a partition of unity with respect to an open covering by local charts {Uλ} such

that γi has a local lifting of γ̃i over Uλ for i = 1, 2. It is obvious that Sα is DX,X-linear. Thus,

it is a sesquilinear pairing. As a corollary of Lemma 2.7.8, we have

Corollary 2.7.9. We have Sα ○ (id ⊗C Rα) = Sα ○ (Rα ⊗C id ).

Because of the corollary, the sesquilinear pairing Sα induces pairings on the associated

graded quotient of the weight filtration

Sα ∶ grWk Mα ⊗C grW
−kMα → CX ,

as well as on the primitive part

PRαSr = Sα ○ (id ⊗C R
r
α) ∶ Pα,r ⊗C Pα,r → CX .

Theorem 2.7.10. The isomorphism φα,r ∶ (Pα,r, F●Pα,r) → Vα,r(−r) in Theorem 2.6.13

respects the sesquilinear pairings up to a constant scalar. More concretely,

PRαSr(m1,m2) = ⊕
J⊂Iα,

#J=r+1

(−1)r
(r + 1)!CJ

τJ+Sα,J(φα,rm1, φα,rm2)
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for any local sections m1,m2 ∈ Pα,r and CJ = ∏j∈J ej, where the pairing Sα,J ∶ Vα,J ⊗C Vα,J →

CY J is defined in (2.7.6).

Proof. Because of the linearity and the generators of Pα,r are all monomials dividing tα of

degree µ−r Corollary 2.6.7, it suffices to prove the theorem in the case when mi is represented

by

ζα ⊗ zKi = z
⌈αe⌉
I

dz1

z1

∧⋯ ∧ dzk
zk

∧⋯ ∧ dzn ⊗ zKi

where Ki ⊂ Iα with #Ki = µ − r and i = 1,2. Let η be a test function over U . Then we have

⟨Sα(m1,R
r
αm2), η⟩ = Ress=−α(−(s + α))r ∫

X
∣zI ∣2se+2⌈αe⌉−2⋅1zK1zK2

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

If m1 ≠ m2, then the above is zero. Indeed, for v ∈ K2 ∖ K1 by choosing Rr
α = 1 ⊗

∏i∈I∖K1∖{v}
1
ei
zi∂i,

⟨S(Rr
αm1,m2), η⟩ = Ress=−α∫

X
∣zI ∣2se−2⋅1∣zI ∣2⌈αe⌉

tα
zv
zvη̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

where η̃ = C−1
I∖K1∖{v}

∂I∖K1∖{v}zK2(zv)
−1
η is a smooth function with compact support. The

function

∫
X
∣zI ∣2se−2⋅1∣zI ∣2⌈αe⌉

tα
zv
zvη̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is holomorphic at s = −α because by setting s = −α the form

∣zI ∣−2αe−2⋅1∣zI ∣2⌈αe⌉
tα
zv
zvη̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi) = ∣zI∖Iα ∣−2{αe} 1

tα

zv
zv
η̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is integrable.

Therefore, we reduce the proof to the case when m1 =m2 =m represented by ζα⊗ zK . We

shall prove that

Sα(m,Rr
αm) = (−1)r

(r + 1)!CK
τK+ Sα,K(φα,rm,φα,rm),

where K is the complement of K in Iα. Without loss of generality, we can assume that

K = {r + 1, r + 2, ..., µ} and K = {0,1, ..., r} so that zK = zr+1zr+2⋯zµ. We have

⟨S(m,Rr
αm), η⟩ = Ress=−α(−(s + α))r ∫

X
∣zK ∣2(s+α)eK ∣zI∖K ∣2seI∖K+2⌈αeI∖K⌉−2η

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi),

(2.7.8)
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where, for any index subset J ⊂ I, the j-th component the multi-index eJ is ej if j ∈ J or zero

otherwise, and the j-th component of ⌈αeJ⌉ is ⌈αej⌉ if j ∈ J or zero otherwise. Integration by

parts for {dzi, dz̄i}i∈K , the identity (2.7.8) equals to

Ress=−α(−(s + α))r ∫
X

∣zIα ∣2(s+α)eIα
C2
K
(s + α)2r+2

∣zI∖Iα ∣2seI∖Iα+2⌈αeI∖Iα ⌉−2 (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

(2.7.9)

=Ress=−α
(−1)r

C2
K
(s + α)r+2 ∫X ∣t∣2(s+α) ∏

j∈I∖Iα

∣zj ∣−2{αej} (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi), (2.7.10)

where ∂K∂K = ∏j∈K ∂j∂j. Because of the expansion

∣t∣2(s+α) = exp (log ∣t∣2 (s + α)) =
∞

∑
`=0

(log ∣t∣2)` (s + α)`
`!

,

we find that (2.7.10) is equal to

(−1)r
C2
K
(r + 1)! ∫X (log ∣t∣2)r+1 ∏

j∈I∖Iα

∣zj ∣−2{αej} (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi) (2.7.11)

The expansion of (log ∣t∣2)r+1
is a linear combination of

∏
i∈I

(log ∣zi∣2)
ai

for all partitions ∑i∈I ai = r + 1, but the differential form

∏
i∈I

(log ∣zi∣2)
ai ∏
j∈I∖Iα

∣zj ∣−2{αej} (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is exact unless ai ≠ 0 for any i ∈K, which is equivalent to ai = 1 for i ∈K and ai = 0 for i ∉K.

It follows that (2.7.11) is equal to

(−1)r
CK(r + 1)! ∫X ∏

j∈K

log ∣zj ∣2 ∏
j∈I∖Iα

∣zj ∣−2{αej} (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).
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We deduce from Poincáre-Lelong equation [GH14, Page 388] that the above continues to

equal to

(−1)r
(r + 1)!CK

∫
Y K

∏
j∈I∖Iα

∣zj ∣−2{αej}η
n

⋀
i=r+1

(
√
−1

2π
dzi ∧ dzi) (2.7.12)

Since φα,Km = ±dzI∖KzI∖K
∧ dzk+1 ∧⋯ ∧ dzn ⊗ sα,K ∈ ωY K(Eα,K) ⊗ Vα,K , it follows that

(φα,Km ∧ φα,Km)h = ∏
j∈I∖Iα

∣zj ∣−2{αej}
n

⋀
i=r+1

(
√
−1

2π
dzi ∧ dzi)

from which we conclude that (2.7.12) is equal to

(−1)r
(r + 1)!CK

∫
Y K

η(φα,Km ∧ φα,Km)h =
(−1)r

(r + 1)!CK
⟨Sα,K(φα,Km,φα,Km), η⟩.

See (2.7.6). The theorem is proved.

2.7.3 Construction of the limiting mixed Hodge structure

We begin to construct a polarized bigraded Hodge-Lefschetz structure on grWH●(X,DRXMα).

Fix a Kähler class ω on X and let L = ω∧ ∶ DRXMα → DRXMα[2] be the Lefschetz operator

and X1 = 2π
√
−1L. Relabel the graded pieces of the first page of the weight spectral sequence

by

V α
`,k =H`(X,grWk DRXMα) =

W
E−k,`+k

1 .

Let V α = ⊕`,k∈Z V
α
`,k with the filtration F●V α induced by F●Mα. Denote by Ei(Rα) the

induced operator by Rα on WEi and let Y2 = E1(Rα). Denote by S`,k the induced pairing on

V α
`,k ⊗ V α

−`,−k

H`(X,grWk DRXMα)⊗H−`(X,grW
−kDRXMα) →H0(X,DRX,XgrWk Mα⊗CgrW

−kMα) →H0
c (X,DRX,XCX) ≃ C,

modifying by a sign factor ε(`). Let d1 be the differential of the first page of the spectral

sequence. In terms of relabeling we have

d1 ∶ (V α
`,k, F●V

α
`,k) → (V α

`+1,k−1, F●V
α
`+1,k−1).

Exactly same to Theorem 2.5.6 and Corollary 2.5.7 in the reduced case, we conclude that
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Theorem 2.7.11. The tuple (V α,X1,Y2, F●V,⊕Sj,k, d1) gives a differential polarized bigraded

Hodge-Lefschetz structure of central weight n.

Corollary 2.7.12. We have the following

1. Hodge spectral sequence degenerates at FE1;

2. the weight spectral sequence degenerates at WE2;

3. the tuple (⊕`∈Z grWH`(X,DRXMα),X1,Y2, F●) together with the pairing induced by Sα

is a polarized bigradged Hodge-Lefschetz structure of central weight n.

The last statement in the above corollary implies that the induced weight filtration on

H`(X,DRXMα) is the monodromy filtration associated to Rα on H`(X,DRXMα). We

established Theorem A.

2.8 Application

2.8.1 Hard Lefschetz

The following is a consequence of the bigraded Hodge-Lefschetz structure

Theorem 2.8.1. The Lefschetz operator induces an isomorphism between O∆-modules

(2π
√
−1L)

k
∶ F`R−kΩ●+n

X/∆(logY ) ≃ F`−kRkΩ●+n
X/∆(logY ) for any integer `.

As a result, we have the following decomposition in the derived category of coherent O∆-

modules:

Rf∗F`Ω
●+n
X/∆(logY ) ≃⊕

k∈Z
F`R

kf∗Ω
●+n
X/∆(logY )[−k] for any integer `.

Proof. The first statement follows from the Hard Lefschetz on each fiber

(2π
√
−1L)

k
∶ F`R−kΩ●+n

X/∆(logY ) ⊗C(p) ≃ F`−kRkΩ●+n
X/∆(logY ) ⊗C(p),
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for every p ∈ ∆. The second statement follows from the first one plus the main theorem

in [Del68].

2.8.2 Invariant cycle theorem

Now we shall give the proof of Theorem B, which is equivalently to the following statement:

Theorem 2.8.2. We have the following exact sequence of mixed Hodge structures

H` + n(Y,C) H`(X,DRXM) H`(X,DRXM)(−1).R

Of course one can try to show that kerR is the filtered DX-module such that the

hypercohomologies of its de Rham complex computes the cohomologies of Y . But we would

like to keep the proof elementary so we will just show that the first page of the weight spectral

sequence computing the hypercohomology of DRX kerR is the same to the one computing

the cohomology of Y up to a constant scalar; this will prove the theorem because both weight

spectral sequences degenerate at the second page. See [GS75, (4.2)] or [Ste76, (3.5)] for the

weight filtration of H`(Y,C)

Proof. Note that kerR is contained in M0. Therefore, W−jkerR = RjkerRj+1 for j ≥ 0 and

vanishes for j < 0 where W =W (R) on M0. It follows that grW−jkerR is isomorphic to ωỸ (j+1)

for j ≥ 0 by Theorem 2.6.13. Because grW−jkerR is a summand of grW−jM0 for j ≥ 0 by the

Lefschetz decomposition on grWM0, we have the following short exact sequence of Hodge

structures on the first page of the weight spectral sequences:

0 H`+●(X,grW−j−●DRXkerR) H`+●(X,grW−j−●DRXM0) H`+●(X,grW−j−2−●DRXM0)(−1) 0.R

The associated long exact sequence gives the relation between the second page of the spectral

sequences:

⋯ grW−jH
`(X,DRXkerR) grW−jH

`(X,DRXM0) grW−j−2H
`(X,DRXM0)(−1) ⋯.
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Now it remains to prove that H`(X,DRXkerR) and H` + n(Y,C) are isomorphic as mixed

Hodge structures. It suffices to check that they coincide at the first page of weight spectral

sequence since they degenerate at the second page. We have the following commutative

diagram where the leftmost column is the E1-page spectral sequence of kerR and all the

horizontal arrows are isomorphisms of mixed Hodge structures.

H`(X,grW−jDRXkerR) H`(X,DRXτ
j+1
+ ωỸ (j+1)) H`(Ỹ (j+1),Ωn−j+●

Ỹ (j+1))

H`+1(X,grW
−(j+1)

DRXkerR) H`+1(X,DRXτ
j+2
+ ωỸ (j+2)) H`+1(Ỹ (j+2),Ωn−j+1+●

Ỹ (j+2) )

φ0,r○(R
j)−1

d1

≃

≃

≃

(2.8.1)

We shall identify the the rightmost vertical arrow with the differential of the first page of the

weight spectral sequence of H`+n(Y,C) via diagram chasing.

grW−j kerR⊗⋀pTX τK+ ωY K ⊗⋀pTX Ωn−j−p

Y K

grW
−(j+1)

kerR⊗⋀p−1 TX ⊕ji∈J τ
K∩{ji}
+ ωY K∩{ji} ⊗⋀p−1 TX ⊕ji∈J Ωn−j−p

Y K∩{ji}

[±Rjζ0 ⊗ zIz−1
K ⊗ ∂J] ±dzK̄ ⊗ ∂J dzK̄∖J

[±Rj+1ζ0 ⊗∑ji∈J ejizIzKzji
−1 ⊗ ∂J∖{ji}] ⊕ji∈J ±dzK̄ ⊗ ∂J∖{ji} ±∑ji∈J ejidzK̄∖J

≃

d

≃

d

Starting from the upper-right corner, let dzK̄∖J = ⋀i∈K̄∖J dzi be a local section of Ωn−j−p

Y K
where

K is an ordered index set of cardinality j + 1, K̄ is the complement of K in I and J ⊂ K̄ of

cardinality p. Then ±dzK̄ ⊗ ∂J is the image in τK+ ωY K ⊗⋀pTX via the inclusion

Ωn−j−p

Y K
= ωY K ⊗

p

⋀TY K → τK+ ωY K ⊗
p

⋀TX ,

where ∂J = ⋀j∈J ∂j. Its preimage under the isomorphism

φ0,K ○ (Rj)−1 ∶ grWj kerR⊗
p

⋀TX = RjkerRj+1 ⊗
p

⋀TX → P0,−j ⊗
p

⋀TX → τK+ ωY K ⊗
p

⋀TX

is the class represented by ±Rjζ0 ⊗ zIz−1
K ⊗ ∂J , where ζ0 = dz0

z0
∧ dz1

z1
∧⋯ ∧ dzk

zk
∧ dzk+1 ∧⋯ ∧ dzn

and P0,−j is the (−j)th-primitive part of grWM0. It maps to the class of ±Rj+1ζ0 ⊗
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∑ji∈J ejizI(zKzji)
−1 ⊗ ∂J∖{ji} by the differential of DRXkerR. By reverse the above pro-

cedure, ±Rj+1ζ0∑ji∈J ejizI(zKzji)
−1 ⊗ ∂J∖{ji} corresponds to ±∑ji∈J ejidzK̄∖J restricting on

⊕ji∈J Ωn−j−i−p

Y K∩{ji} . Therefore, the morphism d1 in the diagram (2.8.1), up to a scalar factor, can

be identified with the pullback

H` (Ỹ (j+1),Ωn−j+●

Ỹ (j+1)) →H`+1 (Ỹ (j+2),Ωn−j−1+●

Ỹ (j+2) ) ,

which is the differential of the WE1-page of H`+n(Y,C). This completes the proof.
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Chapter 3

Hodge filtration and V-filtration

3.1 Preliminaries

3.1.1 Kashiwara-Malgrange V -filtrations

We begin with a review of the theory of V -filtrations introduced by Kashiwara and Malgrange.

For more details, see [Sai88, Section 3.1] and [Sch14, Section 9] for the case of a hypersurface

and [BMS06, Section 1.1] for the case of higher codimension.

Let (t1, . . . , tr) ∶X → Ar be a smooth regular function, with fiber Z over the origin. We

define a Z-indexed filtration on DX by

VkDX = {P ∈ DX ∶ P ⋅I j
Z ⊆ I j−k

Z for all j}.

A Q-indexed filtration V ●M is discrete and left-continuous if ⋂α<β V α = V β for all β ∈ Q,

and if there exists some ` ∈ Z>0 such that the subspace V α is constant for all α ∈ (m` , m+1
` ],

for any m ∈ Z.

Given a coherent left DX-module M, a Kashiwara-Malgrange V -filtration on M along Z

(see [Kas83], [Mal83]) is an exhaustive, decreasing Q-indexed filtration which is discrete and

left-continuous such that, if θ ∶= ∑r
i=1 ti∂ti is any locally defined Euler vector field along Z,

the filtration must satisfy:
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1. VαM⋅ VkDX ⊆ Vα+kM for all k ∈ Z, α ∈ Q,

2. VαM⋅ VkDX = Vα+kM for all k ∈ Z≤0, α≪ 0,

3. each VαM is coherent over V0DX ,

4. the operator θ − α is nilpotent on grVαM, where θ ∶= ∑r
i=1 ti∂i is the Eular vector field.

It is an easy exercise to see that there can be at most one V -filtration on any coherent DX-

module M. We say that a module M which has a Q-indexed V -filtration is Q-specializable.

Any morphism between Q-specializable modules is strict with respect to the V -filtration.

Moreover, if

0→M′ →M→M′′ → 0

is a short exact sequence of DX-modules, andM has a V -filtration, then the induced filtrations

on M′ and M′′ satisfy the properties of the V -filtration.

Example 3.1.1. (a) Let E be an OX-coherent DX-module. Then V kE ∶= Ik−rZ ⋅ E satisfies

the properties of the V -filtration. For example,

θtαm = (∣α∣ + θ)tαm,

(b) (Kashiwara’s equivalence) Assume M is supported on Z, so by Kashiwara’s equivalence

(see [HTT08, Section 1.6]), there exists a coherent DZ-module N such that M=∑α∈Nr N∂αt .

Then

VkM= ∑
∣α∣≤k

N∂αt .

For us, it will also be important to understand the case when (M, F ) ≅ i+(N , F ) as a

filtered D-module. For left D-modules, the pushforward of a filtered module has filtration

defined as

Fpi+(N , F ) = ∑
α∈Nr

Fp−∣α∣−rN∂αt .

From this, we see easily that

FpVki+(N , F ) = ∑
∣α∣≤k

Fp−∣α∣−rN∂αt .
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This last example leads to an important property of the V -filtration.

Lemma 3.1.2. Assume ϕ ∶ N →M is a morphism between two specializable modules, such

that ϕ∣U ∶ N ∣U →M∣U is an isomorphism, where U = X −Z. Then ϕ ∶ V >0N → V >0M is an

isomorphism.

Proof. Let K = ker(ϕ),C = coker(ϕ). The assumption implies these are supported on Z,

so by the previous example, V >0K = 0 and V >0C = 0. Hence, taking V >0 of the long exact

sequence

0→K → N →M→ C → 0,

we get

0 = V<0K → V<0N → V<0M→ V<0C = 0,

proving the claim.

3.1.2 Saito’s Main Theorems about Hodge Modules

In this section, we state two essential theorems in Saito’s theory of mixed Hodge modules.

The first main result is the behavior of mixed Hodge modules with respect to the

pushforward functor for a projective morphism f ∶ Y →X. For more details and proofs, see

[Sch14, Section 16] or [Sai88, Section 5.3].

We say a morphism ϕ ∶ (M, F ) → (N , F ) is strict if FpN ∩ im(ϕ) = ϕ(FpM). We say

that a filtered complex (K●, F ) is strict if all differentials are strict.

For example, a monomorphism i ∶ A ↪ B is strict iff the filtration on A is the induced

filtration from B. The main utility of strictness is that, if (K●, F ) is a filtered complex with

strict differentials, then Hk(FpK●) → Hk(K●) is injective for all k ∈ Z. Hence, we can define

a filtration F on Hk(K●), and strictness allows us to commute Hk with Fp.

We begin now with the statement of the direct image theorem in the pure case:
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Theorem 3.1.3 ([Sai88, Thm 5.3.1]). Let f ∶ Y → X be a projective morphism of smooth

complex varieties, let M be a pure Hodge module on Y of weight w. Let ` ∈H2(X,Z) be the

class of a relatively ample divisor over Y . Then

1. f+(M, F ) is strict and Hif+(M, F ) underlies a Hodge module on X of weight w + i.

2. `i ∶ H−if+(M, F ) → Hif+(M, F )(i) is an isomorphism for all i ≥ 0.

As an application, if X is a smooth projective variety, f ∶X → ∗ is the constant map, then

the strictness of f+(M, F ) recovers the fact that the Leray spectral sequence degenerates at

E1.

Also, as a formal consequence of the second part of the theorem (see [Del68, Prop. 2.1]),

one recovers the decomposition theorem, i.e., an isomorphism in the derived category

f+(M, F ) ≅⊕
k∈Z
Hkf+(M, F )[−k].

Remark 3.1.4. The strictness of f+(M, F ) in part (a) of Theorem 3.1.3 still holds if we assume

M is a mixed Hodge module. One particular application of Theorem 3.1.3 will be when

the map f ∶ Y = Z ×X →X is a smooth, projective projection from a product and (M, F )

underlies a mixed Hodge module. In this case, the D-module pushforward f+(M) is given by

the relative de Rham complex (see [HTT08, Prop. 1.5.28])

K● = {M⊗
dimZ

⋀ TZ
dÐ→M⊗

dimZ−1

⋀ TZ
dÐ→ . . .

dÐ→M}

and this complex is filtered, given by

FpK
● = {Fp−dimZM⊗

dimZ

⋀ TZ
dÐ→ Fp−dimZ+1M⊗

dimZ−1

⋀ TZ
dÐ→ . . .

dÐ→ FpM} .

Then strictness tells us that the induced map

Rkf∗(FpK●) → Rkf∗(K●) = Hkf∗(M)

is injective, and defines the Hodge filtration on this cohomology module.
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The second main theorem is called the “structure theorem for polarizable Hodge modules”.

Let Z ⊆X be an irreducible closed subset. A Hodge module M on X has strict support

Z if the underlying D-module has no sub or quotient D modules supported on a proper

subset of Z. See [Sch14, Exercise 10.2] for a characterization of this property in terms of

the V -filtration along a hypersurface. See also our generalization of this property to higher

codimension in Corollary 3.3.3 and Corollary 3.3.4.

Built into the definition of the category of pure Hodge modules is the property that every

pure Hodge module has a decomposition by strict support, meaning, for any M pure on X, we

have

M = ⊕
Z⊆X

MZ ,

where the direct sum ranges over irreducible closed subsets of Z, MZ ≠ 0 for only finitely

many Z, and each MZ is a pure Hodge module with strict support Z. See [Sch14, Theorem

11.7] for a characterization of this property in terms of the V -filtration. See our generalization

of this property to higher codimension in Corollary 3.3.5.

The structure theorem gives a description of those pure Hodge modules with strict support

Z: they are generically given by (polarizable) variations of Hodge structure on Z. See [Sch14,

Section 15].

Theorem 3.1.5. Let X be a smooth complex algebraic variety, Z ⊆X an irreducible subset.

Then

1. Every polarizable variation of Hodge structure of weight w − dimZ on a Zariski open

subset of Z extends uniquely to a polarizable Hodge module on X of weight w with strict

support Z.

2. Every Hodge module with strict support Z arises in this way.

The difficult claim is to extend a polarizable VHS to a Hodge module with strict support

on Z. This result will be used to identify certain Hodge modules as strict support direct
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summands of other Hodge modules.

3.1.3 Conventions for Shifting the Hodge Filtration

We refer to [Sch14] for all conventions regarding the Hodge filtration and weight filtration

when applying functors to mixed Hodge modules when considering right D-modules. As

noted at the beginning of Section 2.1, these conventions may differ if we want to use left

D-modules instead. For convenience, we will list here those conventions for left D-modules.

Tate Twist : Let (M, F ) be a filtered DX-module. Then we define (M, F )(k) for any

k ∈ Z, the Tate twist of (M, F ) by k, to be (M, F [k]), where F [k]p(M) = Fp−k(M).

Smooth pullbacks : See Remark (4.4.2) and Formula (2.17.3) in [Sai90]. Let p ∶X × Y → Y

be a smooth surjective morphism of relative dimension r = dimX between smooth varieties.

Let M̃ = p∗(M) as an O-module (which is also the D-module pullback, see [HTT08, Sect.

1.3]). If (M, F ) is a filtered left DY -module, let FpM̃ = p∗(FpM).

If M is a mixed Hodge module with underlying filtered DY -module M, then the pullback

p∗(M) ∈DbMHM(X × Y ) has underlying filtered DX×Y -module

(M̃, F●) (3.1.1)

lying in cohomological degree r, and p!(M) ∈ DbMHM(Y ) has underlying filtered DX×Y -

module given by

(M̃, F●[r]) (3.1.2)

lying in cohomological degree −r. The weight filtration is given by

W●p
∗(M)[r] = p∗(W●−rM)

W●p
!(M)[−r] = p∗(W●+rM).

Nearby and Vanishing Cycles : Let X = {t = 0} ⊆ Y be a smooth hypersurface defined by

the global function t. Let M be a holonomic DY -module. We define

ψt,λ(M) = grVλ (M) for λ ∈ [−1,0), φt,λ(M) = ψt,λ(M) for λ ∈ (−1,0) and φt,1(M) = grV0 (M),
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where V ●M is the V -filtration of M along X.

If (M, F ) is a filtered holonomic DX-module, then the filtration on nearby and vanishing

cycles is defined to be

Fpψt,λ(M) = FpVλM
FpV<λM

for λ ∈ [−1,0], and Fpφt,1(M) = Fp+1V 0M
Fp+1V<0M

. (3.1.3)

Just as the Hodge filtration includes a shift based on if λ = 1 or λ ∈ (0,1), so does the

weight filtration (see [Sch14, Sect. 20]. We make note of it here for later use: the weight

filtration W●φt,λ(M) for (M,W●) a D-module underlying a mixed Hodge module is defined

to be the relative monodromy filtration (as defined in Subsection 3.5 above) of L●φt,λ(M)

along the nilpotent operator N = ∂tt − λ. here, L●φt,λ(M) is defined as

Lkφt,1(M) = gr0
V (WkM), and Lkφt,λ(M) = grVλ (Wk+1M) for λ ∈ (−1,0). (3.1.4)

3.2 Normal crossing type

For the codimension one case, it is essentially immediate from the definition that the maps

t ∶ V αM→ V α+1M (resp. ∂t ∶ grα+1
V M→ grαVM) are isomorphisms for all α ≠ 0. The following

example shows that, for codimension larger than one, the correct generalization of this

property should concern Koszul-like complexes in the t1, . . . , tr (resp. ∂t1 , . . . , ∂tr).

Let M be an algebraic regular holonomic left D2-module of normal crossing type along

the two axes on A2, where D2 is the Weyl algebra over A2. For details on normal crossing

type modules, see [Sai90, Section 3]. Let (x, y) be the coordinate system on A2. Define

Mα,β = ker(∂xx − α)∞ ∩ ker(∂yy − β)∞ for (α,β) ∈ Q2. Because of the assumption that M is

of normal crossing type, we have the identity

⊕
α,β∈Q2

Mα,β =M

and each Mα,β is a finite dimensional vector space over C. Then one can easily check the
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V -filtration along the origin is given by

V kM= ⊕
α+β≥k

Mα,β,

and grαVxgrβVyM = Mα,β where VxM is the V -filtration along {x = 0} and VyM is the V -

filtration along {y = 0}. Then the double complex

grkVM grk+1
V M

grk+1
V M grk+2

V M

x

y y

x

= ⊕
α+β=k

⎛
⎜⎜⎜⎜
⎝

Mα,β Mα+1,β

Mα,β+1 Mα+1,β+1

x

y y

x

⎞
⎟⎟⎟⎟
⎠

(3.2.1)

is exact if k ≠ 0 because one of x and y must be bijective in a summand by the properties of

V -filtration in codimension one. If k = 0, the above double complex is quasi-isomorphic to

M0,0 M1,0

M0,1 M1,1

x

y y

x

which is isomorphic to i!ZM. Since the total complex of the double complex is just the Koszul

complex

grkVM (grk+1
V M)2

grk+2
V M,

(x,y) (
y
−x)

we proved a version of generalization of the properties of V -filtration in codimension one that

the above Koszul complex is isomorphic to i!ZM when k = 0 and is exact when k ≠ 0. The

similar statement regarding the complex

grk+2
V M (grk+1

V M)2
grVkM

(∂x,∂y) (
∂y
−∂x)

is left to the readers.

If (M, L) underlies a mixed Hodge module of normal crossing type where L is the weight

filtration thenMα,β carries a relative mondromy filtration W =W (∂xx+ ∂yy −α−β,LMα,β).

In fact, we have the relation W =W (∂xx−α,W (∂yy −β,L)) by [Sai90, p. 3] since we assume

M is of normal crossing type. It follows that, if k = 0, the result of applying grW to the
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complex (3.2.1) is quasi-isomorphic to

grWM0,0 grWM1,0

grWM0,1 grWM1,1

x

y y

x

but the upper-horizontal and left-vertical morphisms are zero by [Sai90, p. 1]. This is the

motivation for using mixed Hodge complexes in Theorem I.

3.3 Topological properties of V-filtration

In this section we first prove some basic properties of V -filtrations along a smooth subvariety.

The analogous statements for a codimension 1 subvariety appear in [Sai88, Section 3]. Now let

us fix the notation. Let X be a smooth variety and Z be a smooth subvariety of codimension

r globally defined by regular functions t1, t2, . . . , tr. Assume there exist global vector fields

∂1, ∂2, . . . , ∂r dual to the 1-forms dt1, dt2, . . . , dtr. Let M be a right holonomic DX-module

along Z and V●M be the V -filtration along Z. Recall that we have introduced the following

notation: for a right holonomic DX-module M, we define

Aα(M) = {VαM→ (Vα−1M)r → ⋯→ Vα−rM} , in degrees 0,1, . . . , r;

Bα(M) = {grVαM→ (grVα−1M)r → ⋯→ grVα−rM} , in degrees 0,1, . . . , r;

Cα(M) = {grVα−rM→ (grVα−r+1M)r → ⋯→ grVαM} , in degrees − r,−r + 1, . . . ,0.

Theorem 3.3.1. The complexes Bα(M) and Cα(M) are exact for α ≠ 0.

Proof. We shall construct a retraction on the complex Bα(M), i.e. a series of morphisms

s` ∶ (grVα−`M)(
r
`
) → (grVα−`+1M)(

r
`−1

)

such that s`+1 ○ d` + d`−1 ○ s` = θ + ` where d is the differential of the complex Bα(M). Note

that the collection {θ + `} gives an endomorphism of the complex Bα(M). Let

(grVα−1M)r =
r

⊕
i=1

grVα−1Mei
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where e1, e2, ..., er is a standard basis such that the Koszul differential works as

d` (η ei1 ∧ ei2 ∧⋯ ∧ ei`) =
r

∑
i=1

ηti ei ∧ ei1 ∧ ei2 ∧⋯ ∧ ei` ,

where η is a local section of grVα−`M. Now we can define the morphism

s` (η ei1 ∧ ei2 ∧⋯ ∧ ei`) =
r

∑
j=1

η∂j e
∗
j (ei1 ∧ ei2 ∧⋯ ∧ ei`),

where {e∗1, e∗2, . . . , e∗r} is the dual basis. It follows that

(s`+1 ○ d` + d`−1 ○ s`)η e1 ∧ e2 ∧⋯ ∧ e`

=s`+1

r

∑
i=1

ηti ei ∧ e1 ∧ e2 ∧⋯ ∧ e` + d`−1

r

∑
j=1

η∂jp(θ + ` − 1) e∗j (e1 ∧ e2 ∧⋯ ∧ e`)

=
r

∑
k=1

r

∑
i=1

ηti∂k e
∗
k(ei ∧ e1 ∧ e2 ∧⋯ ∧ e`) +

r

∑
a=1

r

∑
j=1

η∂jta ea ∧ e∗j (e1 ∧ e2 ∧⋯ ∧ e`)

=η (
r

∑
i=1

ti∂i + `) e1 ∧ e2 ∧⋯ ∧ e`

=η(θ + `) e1 ∧ e2 ∧⋯ ∧ e`.

Because θ + ` = (θ − (α − `)) + α, the scalar multiplication by α is equal to the nilpotent

operator θ−(α − `) on the `-th cohomology of Bα(M). This can happen for α ≠ 0 if and only

if the `-th cohomology vanishes. We conclude that the complex Bα(M) is exact for α ≠ 0.

The proof of the exactness of the complex Cα(M) is similar and we leave the rest of the

proof to the readers.

Theorem 3.3.2. The complex Aα(M) is exact for α < 0.

Proof. Let H be the hypersurface defined t1 = 0, let i ∶H →X be the closed immersion and

j ∶X ∖H →X be the open immersion. Considering the distinguished triangle

i+i
!M→M→ j+j

∗M→ i+i
!M[1]

in the derived category of holonomic DX-modules, the problem is reduced to two cases: (a)

M =M(∗H) and (b) M = H0
HM.
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(a) Suppose that M=M(∗H), then the right multiplication by t1 is a bijection on M.

Consider another filtration UαM= Vα−1Mt−1
1 . We find that UαM also satisfies the definition

of the V -filtration, which forces, by the uniqueness of V -filtration,

UαM= VαM= Vα−1Mt−1
1 .

In other words, we have a bijection t1 ∶ VαM→ Vα−1M. By the property of Koszul complex,

it follows that Aα(M) is exact for any α.

(b) Suppose that M=H0
HM, then by Kashiwara’s equivalence, we have M=N[∂1] for

some holonomic DH-module N . It is obvious to verify (see Example 3.1.1) the V -filtration of

M is given by

VαM= ∑
k≥0

Vα−kN∂k1

for any α, where V●N is the V -filtration of N along Z. The complex in Aα(M) is the same

as the total complex of of the double complex

∑
k≥0

⎛
⎜⎜⎜⎜⎜
⎝

Vα−kN∂k1 (Vα−k−1N∂k1)r−1 ⋯ Vα−k−r+1N∂k1

Vα−k−1N∂k1 (Vα−k−2N∂k1)r−1 ⋯ Vα−k−rN∂k1 .

t1 t1 t1

⎞
⎟⎟⎟⎟⎟
⎠

Notice that the horizontal complexes are the Koszul complexes induced by t2, t3, . . . , tr

Aα−i(N) = {Vα−iN (Vα−i−1N)r−1 ⋯ Vα−i−r+1N}.

for i = k, k + 1. By an induction argument on the dimension, we conclude the proof.

We give some elementary applications of Theorem 3.3.1 and Theorem 3.3.2. As a

consequence we give a criterion for when M has strict support decomposition along Z.

Corollary 3.3.3. A DX-module M with a V -filtration along Z has no submodules supported

on Z if and only if grV0M
tÐ→⊕r

i=1 grV−1M is injective.

Proof. If m ∈ M is such that mti = 0 for all i, then m ∈ V0M. Indeed, m ∈ VλM for some

λ ∈ Q. If λ ≤ 0, we are done. Otherwise, considering the short exact sequence

0→ A<λ(M) → Aλ(M) → Bλ(M) → 0,
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by acyclicity of B−λ(M) for λ ≠ 0, the left-most map being injective implies m ∈ V<λM. Since

the V -filtratoin is desrete, by induction we know that m ∈ V0M. This means that M has no

submodules supported on Z if and only if ⋂rt=1 ker(ti ∶ V0M→ V−1M) vanishes.

Since A>0(M) is acyclic, it follows from the short exact sequence and the snake lemma

0→ A<0(M) → A0(M) → B0(M) → 0.

that ⋂rt=1 ker(ti ∶ grV0M → grV−1M) = ⋂rt=1 ker(ti ∶ V0M → V−1M), which concludes the

proof.

Corollary 3.3.4. Let M′ be the smallest submodule of M such that M′∣U ≅M∣U . Then

M/M′ ≅ i+coker(
r

⊕
i=1

grV−1M
∂tÐ→ grV0M) .

In particular, the morphism ⊕r
i=1 grV−1M → grV0M is surjective if and only if M has no

quotients supported on Z.

Proof. Note that M′ = VλM⋅DX for any λ < 0. Indeed, we know that VλM′ = VλM if λ < 0,

as they restrict to the same module on X −Z. Thus, VλM⋅DX = VλM′ ⋅DX ⊆M′. For the

other inclusion, note that (VλM ⋅DX)∣U = M∣U , because the V -filtration is all of M away

from Z. Hence, by minimality of M′, we get the desired equality.

Note thatM/M′ is supported on Z, so by Kashiwara’s equivalenceM/M′ = i+grV0 (M/M′),

where i ∶ Z →X is the inclusion. We know grV0 (M/M′) = grV0 (M)/grV0 (M′) and

grV0 (M′) = V0M∩M′

V<0M
,

because V<0M= V<0M′ and V●M∩M′ = V●M′ by the uniqueness of the V -filtration. Thus,

the claim reduces to proving

V0M∩M′ =
r

∑
i=1

V−1M∂ti + V<0M.

In fact, we can define inductively a filtration U●M′ by UλM′ = ∑r
i=1Uλ−1M∂ti + U<λM

for λ ≥ 0 and UλM′ = VλM′ for λ < 0. Note that VλM′ = VλM for λ < 0 is discrete so U●M′
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is well-defined. Since M′ = V<0M⋅DX , the filtration U●M is exhausted. Then it is easy to

check that U●M′ satisfies all the characterization of V -filtration, i.e. U●M′ = V●M′ which

concludes the proof.

We prove here an analogue of the fact from the codimension one case that you can test if

a module has a strict support decomposition by looking at φf,1 as f ∈ OX varies.

Corollary 3.3.5. Let M be a DX-module admitting a V -filtration along Z. Then there

exists a decomposition M=M′ ⊕M′′ with supp(M′) ⊆ Z and M′′ having no submodules or

quotient modules supported on Z if and only if

grV0 (M) = (
r

⋂
i=1

ker(ti ∶ grV0M→ grV−1M)⊕(
r

∑
i=1

grV−1M∂ti) .

Proof. For the “only if” part, by the previous lemma we know grV0M′′ = im(∂zi) and

⋂ri=1 ker(ti ∶ grV0M′′ → grV−1M′′) = 0. Also, by Kashiwara’s equivalence, we know M′ satisfies

grV−1M′ = 0. By taking gr0
V of the equality M=M′ ⊕M′′, we conclude.

For the other implication, note that we must certainly set M′ = H0
Z(M), as this is the

maximal submodule of M supported on Z. Let M′′ = V<0M ⋅DX , which we know is the

smallest submodule such that M′′∣U =M∣U , and satisfies

M/M′′ = i+(coker(
r

⊕
i=1

grV−1M
∂tiÐ→ grV0M) .

By the assumption, this cokernel is isomorphic to ⋂ri=1 ker (ti ∶ grV0M→ grV−1M), and so

M/M′′ ≅M′. But the inclusion M′ →M splits this quotient map, yielding the direct sum

M≅M′ ⊕M′′,

which proves the claim.

For convenience, denote by B(M) = B0(M) and C(M) = C0(M). To close this section,

we give a comparison of the restriction i∗M and i!M with B(M) and C(M) for i ∶ Z →X.
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Theorem 3.3.6. With notation as above, the complex B(M) (resp. C(M)) is isomorphic

to i!ZM (resp. i∗M) in Db
rh(DZ), where iZ ∶ Z →X is the closed embedding.

Proof. Let Zi be the hypersurface defined by ti = 0. Then the complex iZ+i
!
ZM can be

expressed by the Koszul complex

K(M, Z1, Z2, . . . , Zr) = {M→
r

⊕
i=1

M(∗Zi) → ⋯ →M(∗
r

∑
i=1

Zi)} (3.3.1)

placed in degrees 0, 1, . . . , r where the morphism is induced by natural morphismsN → N(∗Zi)

for any regular holonomic DX-module N . Similarly, the complex iZ+i
∗
ZM can be expressed

by the Koszul complex

K!(M, Z1, Z2, . . . , Zr) = {M(!
r

∑
i=1

Zi) → ⋯ →
r

⊕
i=1

M(!Zi) →M} (3.3.2)

placed in degree −r,−r + 1, . . . ,0, where the morphism is induced by the natural morphisms

N(!Zi) → N for any regular holonomic DX-module N .

Lemma 3.3.7. Let γ ∶X →X×Ar be the graph embedding of f and iH ∶H =X×{0} →X×Ar

be the closed embedding of the central fiber. Then we have natural isomorphisms

1. γ+K(M, Z1, Z2, . . . , Zr) ≃ iH+K(M, Z1, Z2, . . . , Zr) and

2. γ+K!(M, Z1, Z2, . . . , Zr) ≃ iH+K!(M, Z1, Z2, . . . , Zr)

in the derived category of regular holonomic DX×Ar-modules.

Proof of the lemma. Let M̃ = M⊠ ωAr be the pullback of M to X ×Ar. Denote by Dj be

the divisor on X ×Ar defined by fj − tj = 0 for j = 1, 2, . . . , r and denote by Hj be the divisor

on X ×Ar defined by tj = 0. Then we have

K (M̃,D1,D2, . . . ,Dr) ≃ γ+M and K (M̃,H1,H2, ..,Hr) ≃ iH+M.
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It follows that

K(M̃,D1,D2, . . . ,Dr,H1,H2, . . . ,Hr) =K (K (M̃,D1,D2, . . . ,Dr) ,H1,H2, . . . ,Hr)

≃K(γ+M,H1,H2, . . . ,Hr)

≃ γ+K(M, Z1, Z2, . . . , Zr).

On the other hand,

K(M̃,D1,D2, . . . ,Dr,H1,H2, . . . ,Hr) =K (K (M̃,H1,H2, . . . ,Hr) ,D1,D2, . . . ,Dr)

≃K(iH+M,D1,D2, . . . ,Dr)

≃ iH+K(M, Z1, Z2, . . . , Zr).

We conclude the first statement of the lemma. The second statement is similar, we leave it

to the reader.

Returning to the proof of the theorem, denote by BS(N) = B(N) if we want to emphasize

the V -filtration is along a subvariety S. Since taking grVα is exact for the V -filtration along

H, by the above lemma,

grVα γ+K(M, Z1, Z2, . . . , Zr) ≃ grVα iH+K(M, Z1, Z2, . . . , Zr)

It follows from the fact that iH+K(M, Z1, Z2, . . . , Zr) is supported on H that

grVα iH+K(M, Z1, Z2, . . . , Zr) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, α < 0;

K(M, Z1, Z2, . . . , Zr), α = 0.

Therefore, the complex BH (γ+K(M, Z1, Z2, . . . , Zr)) is isomorphic to K(M, Z1, Z2, . . . , Zr).

Due to the relation BHγ+ = iZ+BZ , we have the isomorphism

iZ+BZ(K(M, Z1, Z2, . . . , Zr)) ≃K(M, Z1, Z2, . . . , Zr).

Then the theorem follows from BZ(K(M, Z1, Z2, . . . , Zr)) ≃ BZ(M). This is because

BZ (K(M, Z1, Z2, . . . , Zr)) = {BZ(M) →
r

⊕
i=1

BZ(M(∗Zi)) → ⋯ → BZ (M(∗
r

∑
i=1

Zi))}
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and BZ(N(∗Zi)) is exact for any regular holonomic DX-module N and any i = 1, 2, . . . , r by

part (a) in the proof of Theorem 3.3.2.

The statement about C(M) just follows from applying Proposition 3.3.8 to TZX → Z

and Theorem 3.3.1. Indeed, Sp(M) is monodromic on TZX, and it is not hard to show that

σ∗(Sp(M)) = i∗(M), where σ ∶ Z → TZX is the zero section of the normal bundle.

Proposition 3.3.8 ([Gin86b, Proposition 10.4]). For a monodromic DE-module M, there

are quasi-isomorphisms

p+M≃ i∗M, p†M≃ i!M

where p ∶ E → Z is a vector bundle and i ∶ Z → E is the zero section.

Remark 3.3.9. Lemma 3.3.7 also holds in the derived category of mixed Hodge modules. If

M underlies a mixed Hodge module, then M̃ in the proof of Lemma 3.3.7 underlies a mixed

Hodge module as well. It follows that (3.3.1) and (3.3.2) are complexes of mixed Hodge

modules by Saito’s theory [Sai90] so every isomorphism in the proof of Lemma 3.3.7 extends

to the derived category of mixed Hodge modules.

Remark 3.3.10. Using the previous theorem, we can rephrase the results of Lemma 3.3.5 and

Lemma 3.3.4 respectively as H0i!M= 0 iff Hom(i+N ,M) = 0 for all N supported on Z, and

H0i∗M= 0 iff Hom(M, i+N) = 0 for all N supported on Z.

We can describe the vanishing of other cohomologies in terms of Ext groups, similar to

the characterization of vanishing of local cohomology for O-modules. Specifically, the result

is

H−ji∗M= 0 for all 0 ≤ j ≤ k ⇐⇒ Extj(M, i+N) = 0 for all N supported on Z,0 ≤ j ≤ k

Hji!M= 0 for all 0 ≤ j ≤ k ⇐⇒ Extj(i+N ,M) = 0 for all N supported on Z,0 ≤ j ≤ k.

The proofs of these are not hard, and we leave them to the reader.
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3.4 Deformation to the Normal Cone

This section is devoted to studying the specialization construction, which goes through the

deformation to the normal cone. See for example, Section 2.30 of [Sai90] and Section 1.3 of

[BMS06].

Let Z ⊆X be defined by the ideal sheaf IZ ⊆ OX , and consider the variety

X̃ ∶= SpecX (⊕
i∈Z
I−iZ ⊗ ui) ,

along with the smooth morphism u ∶ X̃ → A1 = Spec(C[u]). The fiber u−1(0) is isomorphic

to TZX, the normal cone of Z in X, and so we call this a deformation to the normal cone.

Over the open subset Gm ∶= A1 − {0}, the map is isomorphic to the smooth projection

X ×Gm → Gm. Wee will also consider the smooth morphism p ∶ X ×Gm → X of relative

dimension 1. Let j ∶X ×Gm ↪ X̃ be the open immersion. It is the complement of the smooth

divisor TZX = u−1(0).

X ×Gm = X̃∗ X̃ TZX X̃∗ X̃

Gm A {0} X

j j

p
ρ

For any M ∈ MHM(X), define Sp(M) ∶= ψuj+(p∗(M)[−1]) ∈ MHM(TZX). Here the shift

by [−1] comes from the relative dimension of p. As explained in [BMS06], the underlying

D-module is

Sp(M) = ⊕
χ∈Q∩[0,1)

grχVM,

where we take the associated graded of V ●M, the V -filtration along Z of the DX-module M

underlying M .

3.5 Admissiblity

For convenience, we recall the definition of the relative monodromy filtration, see Section 1

of [Sai90] for details.
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Let L be a finite increasing filtration on an object M ∈ C, an exact category which we take

to be embedded in some abelian category A. Let S ∶ C → C be an additive automorphism of

the category, which extends to A.

Let N ∶ (M,L) → S−1(M,L) be a filtered morphism such that N i = 0 for i≫ 0. Here the

filtration L on SjM is defined as Lk(SjM) = Sj(LkM) for any j ∈ Z, k ∈ Z. Then there is at

most one finite, increasing filtration W =W (N,L) of (M,L), called the relative monodromy

filtration which satisfies:

1. N ∶ (M ;L,W ) → S−1(M ;L,W [2]) is a filtered morphism,

2. N i ∶ grWk+igrLkM → grWk−igrLkM is an isomorphism for all i > 0.

Here, recall that an increasing filtration is shifted as W [j]● = W●−j. We shall take C the

category of filtered D-modules and S the shifting of the filtration.

In the theory of mixed Hodge modules, the objects are defined to satisfy the admissble

condition: if (M,W ) is a mixed Hodge module with its weight filtration and g ∈ OX is any

locally defined regular function, then

1. the relative monodromy filtration for ψg(M,W ) exists for the nilpotent monodromy

operator on this nearby cycle, with Li = ψg(Wi+1M). Similarly, one assumes the

existence of the relative monodromy filtration on φg,1(M,W ), with Li = φg,1(WiM)

defined without a shift.

2. the three filtrations are compatible

0→ F`VαWi−1M→ F`VαWiM→ F`VαgrWi M→ 0,

where V is the V -filtration along g.

In the setting of higher codimension, say Z is a smooth subvariety defined by t1, . . . , tr,

it is an easy exercise using the specialization construction to see that the V -filtration along
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Z satisfies a similar property. The associated graded modules grVχ (M) also have nilpotent

operators, given by θ − χ = ∑r
i=1 ti∂ti − χ.

Lemma 3.5.1. Suppose that the triple (M, F,W ) underlies a graded polarizable mixed Hodge

module, then the three filtrations F,V,W are compatible, i.e., the following sequence is exact

0→ F`VαWi−1M→ F`VαWiM→ F`VαgrWi M→ 0.

Proof. We first recall the setting in Section 3.4: let X̃ = SpecX (∑i∈Z I iZ ⋅ u−i) be the defor-

mation to the normal cone along Z, where IZ is the ideal sheaf of Z and I iZ = 0 where

i < 0. Let ρ ∶ X̃ → X, p ∶ X̃∗ → X be the two structure morphisms and j ∶ X̃∗ → X̃ is the

open immersion. Let M̃ = j+p∗M. Then by Saito’s theory [Sai90], there exist filtrations

F●M̃ and W●M̃ on M̃ such that the triple (M̃, F●M̃,W●M̃) underlies a graded polarizable

mixed Hodge module and that j∗F●M̃ = p∗F●+1M and j∗W●M̃ = p∗W●M. It follows from

the compatibility for mixed Hodge modules of the codimension-one case that

0→ F`VαWi−1M̃ → F`VαWiM̃ → F`VαgrWi M̃ → 0, (3.5.1)

where V● is the V -filtration along TZX. Since V<0 only depends on the restriction of a

D-module to X̃∗, it follows that VαWiM̃ = Vαj+p∗WiM for α < 0. On the other hand, the

Hodge filtration on Vα for α < 0 can be calculated by

F`VαWkM̃ = F`VαWkj+p
∗M̃ = j∗p∗F`+1WkM∩ Vαj+p∗WkM.

We obtain, for α < 0,

ρ∗F`VαWiM̃ = ∑
k∈Z

F`+1Vα+k+1WiM⋅ uk.

Similarly, we have, for α < 0,

ρ∗F`VαgrWi M̃ = ∑
k∈Z

F`Vα+k+1grWi M⋅ uk.

Applying ρ∗ to the sequence (3.5.1) for α > 0 yields an exact sequence on X:

0→ ∑
k∈Z

F`Vα+k+1Wi−1M⋅ uk → ∑
k∈Z

F`Vα+k+1WiM⋅ uk → ∑
k∈Z

F`Vα+k+1grWi M⋅ uk → 0.
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Since the morphisms in the above sequence respect the grading, we have

0→ F`VαWi−1M→ F`VαWiM→ F`VαgrWi M→ 0

for every α ∈ Q. We conclude the proof.

Lemma 3.5.2. If (M, F,W ) is a bifiltered DX-module underlying a mixed Hodge module

with the weight filtration W , then the relative monodromy filtration W (θ − χ,L) on grVχM

exists where L●grVχM= grVχ (W●M) is induced by the weight filtration.

Proof. The relative monodromy filtration W =W (u∂u − α,L) exists on grVαM̃ for α ∈ [−1, 0]

because M̃ is a mixed Hodge module. Then applying ρ∗, since WkgrVαM̃ is invariant under

the C∗-action u∂u,

ρ∗WkgrVαM̃ = ∑
i∈Z
WkgrVα+i+1M⋅ ui.

induces a filtration W on each grVα+i+1M. We easily check that WgrVα+i+1M is the relative

monodromy filtration W (θ − α − i − 1, L) if α < 0. Indeed, we have seen that, for α < 0

ρ∗grWk+igrLi grVαM̃ =⊕
i∈Z

grWk+igrLi grVα+i+1M⋅ ui.

The isomorphism (u∂u − α)k ∶ grWk+igrLi grVαM̃ → grW
−k+igrLi grVαM̃ commutes with the C∗-action

so it induces an isomorphism on each graded piece after we apply ρ∗.

Lemma 3.5.3. Let (M, F ) be a filtered D-module underlying a mixed Hodge modules over

projective smooth variety Y ×X. Let p ∶ Y ×X →X be the second projection, Then

1. The spectral sequence associated to the relative monodromy filtration on p+grVχM de-

generates at the second page E2 in the category of filtered D-modules.

2. If (M, F ) underlies a polarizable Hodge module, then Ep,q
2 is a filtered summand of

Ep,q
1 .

3. If (M, F ) underlies a polarizable Hodge module and WgrVχM is the monodromy filtration,

then the image of H`p+WkgrVχM in H`p+grVχM is the monodromy filtration of

grVχH`p+M=H`p+grVχM.
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4. We have the decomposition in the filtered derived category of D-modules

p+(grWk grVχM, F ) ≃⊕
`

(H`p+grWk grVχM, F )[−`]

where WgrVχM is the relative monodromy filtration.

Proof. Because the spectral sequence associated to the relative monodromy filtration WgrVχM̃

degenerates at the second page, the same is true for grVχM thanks to the fact that ρ∗ is an

exact functor. Since polarizable Hodge modules are semisimple [Sai88, p. 5.2.13], Ep,q
2 is a

summand of Ep,q
1 for the spectral sequence associated to the relative monodromy filtration

on grVχM̃. Again because ρ∗ is exact, the same is true for the spectral sequence associatd to

WgrVχM. Lastly, the image of H`W●grVχM̃ in H`grVχM is the monodromy filtration [Sai88,

p. 5.3.4]. Applying ρ∗ for χ > 0 we conclude (c). For (d), since grWgrVχM̃ is a polarizable

Hodge module, we have the decomposition theorem

p̃+(grWk grVχM̃, F ) ≃⊕
`

(H`p+grWk grVχM̃, F )[−`].

Applying ρ∗ for χ > 0 we conclude the proof.

Lemma 3.5.4. For any short exact sequence of mixed Hodge modules

0→M′ →M→M′′ → 0,

the induced sequence

0→ (grVαM′, F,W ) → (grVαM, F,W ) → (grVαM′′, F,W ) → 0

is bifiltered exact, where W is the relative monodromy filtration.

Proof. By the assumption and [Sai90, p. 2.5], we have

0→ (grVαM̃′, F,W ) → (grVαM̃, F,W ) → (grVαM̃′′, F,W ) → 0

is exact for α ∈ [−1, 0). Then the remaining goes like the proof of the above two Lemmas.
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3.6 Proof of the Theorem G

Recall our setting: let X → Ar be a smooth regular map of smooth varietes where Ar is the

affine space of dimension r and let Z be the fiber over the origin. Suppose (t1, t2, . . . , tr) is a

coordinate system on the Ar term and assume there exist global vector fields ∂1, ∂2, . . . , ∂r on

X dual to the one-forms dt1, dt2, . . . , dtr.

We restate Theorem G in terms of right D-modules: for any right filtered regular holonomic

and DX-module M and rational number α, define Koszul-type filtered complexes

Aα(M) = {(VαM, F ) tÐ→
r

⊕
i=1

(Vα−1M, F ) tÐ→ ⋯ tÐ→ (Vα+rM, F )}

placed in degrees 0,1, . . . , r,

Bα(M) = {(grVαM, F ) tÐ→
r

⊕
i=1

(grVα−1M, F ) tÐ→ ⋯ tÐ→ (grVα−rM, F )}

as the quotient Aα/A>α and

Cα(M) = {(grVα−rM, F [r]) ∂tÐ→
r

⊕
i=1

(grVα−r+1M, F [r − 1]) ∂tÐ→ ⋯ ∂tÐ→ (grVαM, F )}

in degrees −r,−r + 1, . . . ,0, where V●M is the V -filtration along Z and F [i]k = Fk−i.

Theorem 3.6.1. With the above notation, assume that (M, F●M) is a filtered holonomic

DX-module underlying a mixed Hodge module. Then

1. the complex F`Aα(M) is exact for α < 0;

2. the complex F`Cα(M) is exact for α > 0.

Proof. By Lemma 3.5.1, we only need to prove the case when (M, F ) underlies a polarizable

Hodge module. If the support of M is contained in Z, then by Kashiwara’s equivalence,

there exists a Hodge module (N , F●N) on Z such that (M, F●M) = i+(N , F●N). One can

easily check that (see Example 3.1.1)

F`VαM=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
i1+i2+⋅+ir≤α

F`−i1−i2−⋯−irN∂i11 ∂
i2
2 ⋯∂irr , α ≥ 0;

0, α < 0.
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Thus, (grV0M, F●grV0M) recovers the filtered DZ-module (N , F●N) and grVαM vanishes

for α < 0. The statement (a) is clear now. The statement (b) follows from the fact that

∂1, ∂2, . . . , ∂r form a regular sequence on the polynomial ring C[∂1, ∂2, . . . , ∂r].

Now we are in the case that no submodule of M is supported in Z. Let X̂ denote the

blowup of X along Z, with exceptional divisor E. Let (M̂, F●M̂) be the minimal extension

of (M, F●M)∣X∖Z over E on X̂. By the structure theorem of Hodge modules (see Theorem

3.1.5), (M̂, F●M̂) underlies a polarizable Hodge module. Then by the decomposition theorem

of polarizable Hodge modules, the filtered holonomic DX-module (M, F●M) is a direct

summand of H0π+(M̂, F●M̂). Thus, it suffices to prove the theorem for H0π+(M̂, F●M̂). Let

π ∶ X̂ →X be the blow up of X along Z and E = π−1Z be the exceptional divisor. Consider

the factorization π = iπ ○ p and the Cartesian diagram

E X̂ ×Z Z

X̂ X̂ ×X X,
iπ

π

p

where iπ ∶ X̂ → X̂ ×X is the graph embedding and p ∶ X̂ ×X → X is the second projection.

Denote by Γπ the graph of π. Since the problem is local on X, we can assume that X is affine

and that (t1, t2, . . . , tr) extends to a coordinate system (t, s) = (t1, t2, . . . , tr, s1, s2, . . . , sn−r)

on X. Note that the blow-up is given by

X̂ = ProjX⊕
i≥0

I iZ , where IZ is generated by t1, t2, . . . , tr.

Let u = [u1 ∶ u2 ∶ ⋅ ⋅ ⋅ ∶ ur] be the homogeneous coordinates on Pr−1. Then X̂ is a sub-

variety of Pr−1
X defined by uitj − ujti = 0 for any 1 ≤ i, j ≤ r. Denote also by (x, y) =

(x1, x2, . . . , xr, y1, . . . , yn−r) the parameter (t, s) on X so that

π(u, t, s) = (t, s) = (x, y).

Define a subvariety

H = {(u, t, s, x, y) ∈ X̂ ×X ∶ uixj − ujxi = 0 for any 1 ≤ i, j ≤ r}

127



with codimension r − 1 in X̂ ×X. Since the graph Γπ is defined by equations t = x and s = y,

it is contained in H. Therefore, we can further factor the graph embedding iπ = f ○ g to get a

Cartesian diagram

E X̂ ×Z X̂ ×Z

X̂ H X̂ ×Xg

iπ

f

where g ∶ X̂ → H and f ∶ H → X̂ ×X are the natural embeddings. Note that X̂ × Z is a

hypersurface in H.

The claim is that the Koszul complex

F`Aα(iπ+M̂) = {F`Vαiπ+M̂ → (F`Vα−1iπ+M̂)r → ⋯→ F`Vα−riπ+M̂} (3.6.1)

is exact if α < 0 where V●iπ+M̂ is the V -filtration of M̂ along X̂ ×Z. The exactness of the

complex 3.6.1 is local so without loss of generality, we restrict everything to the open subset

U ×X where U is the open subset of X̂ defined u1 ≠ 0. The blow-up over U is given in

coordinates by

π ∶ (t1, u2, u3, . . . , ur, s1, s2, . . . , sn−r) ↦ (t1, t1u2, t1u2, . . . , t1ur, s1, s2, . . . , sn−r).

To give a concrete description of iπ+M̂, we make the following local coordinate charge:

wi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 for i = 1

ui for 2 ≤ i ≤ r
, pi =si for 1 ≤ i ≤ n − r,

zi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 for i = 1

xi − uix1 for 2 ≤ i ≤ r
, qi =yi for 1 ≤ i ≤ n − r

so that z2, z3, . . . , zr are the local defining equations of H. It follows from iπ+M̂ = f+g+M̂

that

iπ+M̂ = g+M̂[∂z2 , ∂z3 , . . . , ∂zr].

In fact, a simple calculation using the the chain rule indicates that

∂z2 = ∂x2 = ∂2, ∂z3 = ∂x3 = ∂3, . . . , ∂zr = ∂xr = ∂r.
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Then F`Vαiπ+M̂ can be written as

∑
k≥0

∑
a2+a3+⋯ar=k

F`−kVα−kg+M̂∂a2
2 ∂

a3
3 ⋯∂arr , (3.6.2)

for every α where V●g+M̂ is the V -filtration along X̂ ×Z. Notice that the morphism

F`Vαg+M̂ F`Vα−1g+M̂
x1

is bijective when α < 0 because V●g+M̂ is the V -filtration along X̂ ×Z defined by {x1 = 0} in

H. We deduce that the morphism

x1 ∶ F`−kVα−kg+M̂∂a2
2 ∂

a3
3 ⋯∂arr → F`−kVα−k−1g+M̂∂a2

2 ∂
a3
3 ⋯∂arr

is also bijective for α < 0 and k ≥ 0. It follows that the Koszul complex (3.6.1) is exact when

α < 0.

Similarly, the complex

F`Cα(iπ+M̂) = {F`−rgrVα−riπ+M̂ → (F`−r+1grVα−r+1iπ+M̂)r → ⋯→ F`grVα iπ+M̂} (3.6.3)

is exact for α > 0. By the expression (3.6.2),

F`grVα iπ+M̂ = ∑
k≥0

∑
a2+a3+⋯ar=k

F`−kgrVα−kg+M̂∂a2
2 ∂

a3
3 ⋯∂arr .

Since for each 2 ≤ i ≤ r the morphism

∂i ∶ F`−kgrVα−kg+M̂∂a2
2 ∂

a3
3 ⋯∂arr → F`−kgrVα−kg+M̂∂a2

2 ∂
a3
3 ⋯∂ai+1

i ⋯∂arr

is bijective, the complex (3.6.3) is quasi-isomorphic to,

{F`−1grVα−1g+M̂ F`grVα g+M̂}, placed in degrees r − 1, r.
∂1

which is exact for α > 0 also because again V●g+M̂ is the V -filtration along the hypersurface

X̂ ×Z ⊂H.
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It remains to prove the exactness of (3.6.1) and (3.6.3) are invariant under higher direct

image of p. This is Theorem 3.6.2 below. Applying Theorem 3.6.2 to (3.6.1) gives us that

the Koszul complex

F`Aα(Hkp+iπ+M̂)

={F`VαHkp+iπ+M̂ → (F`Vα−1Hkp+iπ+M̂)r → ⋯→ F`Vα−rHkp+iπ+M̂}

is exact for α < 0 and every k where V●Hkp+iπ+M̂ is the V -filtration along Z. Due to

Hkp+iπ+ = Hkπ+,

we have finished the proof of the first statement in Theorem G. The second statement follows

similarly and we leave it to the readers.

Theorem 3.6.2. Let X be a nonsingular quasi-projective variety and Y be an affine space

with Z an affine subspace defined by x1, x2, . . . , xr. Let (M, F ) be a filtered holonomic

DX×Y -module underlying a polarizable Hodge module. Suppose that the second projection

p ∶X × Y → Y is projective on the support of M. Let V●M be the V -filtration along p−1(Z).

Let V●Hkp+M be the V -filtration along Z for every k.

1. If the complex

F`Aα(M) = {F`VαM→ (F`Vα−1M)r → ⋯→ F`Vα−rM} (3.6.4)

is exact for some α, then the complex F`Aα(Hkp+M) is also exact for every k.

2. Similarly, if the Koszul complex

F`Cα(M) = {F`−rgrVα−rM→ (F`−r+1grVα−r+1M)r → ⋯→ F`grVαM} (3.6.5)

is exact for some α, then the complex F`Cα(Hkp+M) is exact for every k.

Proof. Because of the bistrictness proved in [BMS06] on the complex p+ (M, V●, F●) =

(Rp∗ (M⊗
−⋆

⋀TX×Y /Y ) ,Rp∗ (V●M⊗
−⋆

⋀TX×Y /Y ) ,Rp∗ (F●+⋆M⊗
−⋆

⋀TX×Y /Y )) ,
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we know that the k-th cohomology of HkF`Vαp+M = Rkp∗ (F`+⋆VαM⊗⋀−⋆TX×Y /Y ) is

canonically isomorphic to F`VαHkp+M. It follows from the Hard Lefschetz theorem on the

direct image of polarizable Hodge modules (see part (b) of Theorem 3.1.3) that the morphism

(2π
√
−1L)

k
∶ F`VαH−kp+M→ F`−kVαHkp+M.

is an isomorphism induced by the Lefschetz operator L = ω∧ of a hyperplane class ω on X.

Therefore, we have the decomposition

F`Vαp+M≃⊕
k∈Z

F`VαHkp+M[−k]

in the bounded derived category Db
coh(Y,OY ) of Y . If we apply p+ on (3.6.4), by the above

decomposition, we obtain

F`p+Aα(M) ≃⊕
k∈Z

F`Aα(Hkp+M)[−k]

in Db
coh(Y,OY ). But by the assumption of the lemma, the complex F`p+Aα(M) is exact. It

follows that each summand

F`Aα(Hkp+M) = {F`VαHkp+M→ (F`Vα−1Hkp+M)r → ⋯→ F`Vα−rHkp+M}

in the decomposition is exact. We have thus proved (a).

The proof of (2) is similar. Since we still have the isomorphism from the Hard Lefschetz

theorem

(2π
√
−1L)

k
∶ F`grVαH−kp+M→ F`−kgrVαHkp+M,

we get a decomposition

p+F`Cα(M) ≃⊕
k∈Z

F`Cα(Hkp+M)[−k]

in Db
coh(Y,OY ). The remaining goes like in (a) and is left to the readers.

Remark 3.6.3. One can bypass the decomposition theorem in the above proof by the argument

in Theorem 3.7.5 and the double complexes (3.7.4) and (3.7.6)
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3.7 Proof of the Theorem I

In this section we prove Theorem I and it is more convenient to work with right D-modules.

Recall that the convention for right D-modules is that the V -filtration be indexed increasingly.

The proof is split into three parts: Theorem 3.7.1, Theorem 3.7.5 and Theorem 3.7.7. For

simplicity, we denote by BZ(M) = B0(M) and CZ(M) = C0(M) to emphasize the V -

filtration is along the smooth subvariety Z. If the V -filtration is clear from the context, we

will simply use the notation B(M) or C(M).

3.7.1 Mixed Hodge complex

We first prove that for M underlying a mixed Hodge module the complex B(M) together

with W induced by the relative monodromy filtration is a mixed Hodge complex. A mixed

Hodge complex, roughly speaking, is a bifiltered complex of D-modules (C,F,W ), where F is

a decreasing “Hodge” filtration by O-submodules and W is an increasing “weight” filtration

by D-submodules with Q-structure (CQ,WQ). These data should satisfy DR(C,W ) ≃

(CQ,WQ) ⊗Q C and that

grWk C ≃⊕
`∈Z
H`grWk C[−`]

in the derived category of filtered D-modules. Moreover, (H`grWk C,F ) together with the

induced Q-structure underlies a polarizable Hodge module of weight k + ` for any k and `.

Theorem I(a) is restated as follows:

Theorem 3.7.1. Let M = (M, F,L,K) be a mixed Hodge module on a smooth variety X as

in Theorem I and let Z be a smooth subvariety of X. Then BZ(M) together with the relative

monodromy filtration is a mixed Hodge complex.

Proof. We first remark that B(M) carries a Q-structure. Indeed, by Theorem 3.3.1

DRZB(M) ≃ DRZ(i!M) ≃ i!K ⊗Q C.
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In fact, if W is the filtration on B(M) induced by the monodromy filtration on each grVαM

relative to grVαL●M then WkB(M) also carries a Q-structure. This is because

DRZi
!
ZWkSp(M) ≃ i!ZWkSp(K) ⊗Q C, iZ ∶ Z → TZX

and i!ZWkSp(M) ≃ WkB(M) by the fact that the retraction constructed in the proof of

Theorem 3.3.1 also preserves the filtration WB(M). Recall that Sp(M) is the specialization

of M introduced in 3.4.

Pure case. We first prove the case when (M, F,K) is a polarizable Hodge module of

weight w. If M is supported on Z then B(M) ≃ i+grV0M in the (F,W )-bifiltered category

and therefore, the theorem follows easily. Now assume that the support ofM is not contained

in Z. Let π ∶ X̂ →X be the blow up along Z and M̂ be the minimal extension of M to X̂

from X̂ −E ≅X −Z. Then we can factor the blow-up into the graph embedding followed by

the smooth projection

X̂ X̂ ×X X
iπ p

The proof consists of two steps:

Step 1. We show that Bp−1Z (iπ+M̂) is a mixed Hodge complex.

In fact, the complex Bp−1Z (iπ+M̂) together with the monodromy filtration is quasi-

isomorphic to BE (M̂) locally, where E is the exceptional divisor of π. Note that, although

E is not defined by a global function, we can make the complex BE (M̂) well-defined by

grV0 M̂ ⊗O(−E)∣E → grV−1M̂.

As we can see in the proof of Theorem 3.6.1: the formula (3.6.2) is compatible with the

monodromy filtration, i.e.

F`grWgrVα iπ+M̂ = ∑
k≥0

∑
a2+a3+⋯ar=k

F`−kgrWgrVα−kg+M̂∂a2
2 ∂

a3
3 ⋯∂arr

But since BE (M̂) is a mixed Hodge complex, and this property (like the property of being a

Hodge module) is local, it follows that Bp−1Z (iπ+M̂) is also a mixed Hodge complex. Due to
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the decomposition theorem of polarizable Hodge modules, the module M is a summand of

H0p+iπ+M. Therefore, we reduce the proof to the following.

Step 2. We prove that if Bp−1Z (M) is a mixed Hodge complex for a polarizable Hodge

module M of weight w on Y ×X, where p ∶ Y ×X →X is the second projection proper over

the support ofM, then BZ (H`p+M) is a mixed Hodge complex of weight w + ` for any ` ∈ Z.

In fact, we have

p+ (grWk Bp−1Z(M)) ≃⊕
i∈Z
p+ (HigrWk Bp−1Z(M)) [−i]

≃ ⊕
i,j∈Z
Hjp+ (HigrWk Bp−1Z(M)) [−i − j]

in the derived category of filtered D-modules. On the other hand, we also have the decompo-

sition in the derived category of filtered D-modules by Lemma 3.5.3(d):

p+ (grWk Bp−1Z(M)) ≃⊕
`∈Z
Fk,`[−`],

where F ik,` = H`p+grWk B
i
p−1Z

(M). This implies

Fk,` ≃⊕
i∈Z
HiFk,`[−i] (3.7.1)

and HiFk,` is a polarizable Hodge module of weight w + k + i+ `. For each k we have a weight

spectral sequence

Ei,j
1 (k) = Hi+jp+grW−iB

k
p−1Z(M) ⇒ Ei,j

∞ (k) = grW−iHi+jp+Bk
p−1Z(M)

so that Ei,j
1 (k) = Fk−i,j+j. Note that by the bistrictness proved in [BMS06], we have

Ei,j
∞ (k) = grW−iB

k
Z(Hi+jp+M).

We gather some facts deduced from the deformation to the normal bundle argument

(Lemma 3.5.3):

1. the spectral sequence degenerates at the second page;
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2. the induced filtration WHi+jp+Bk
p−1Z

(M) is the monodromy filtration on

Hi+jp+Bk
p−1Z(M) = (grV−kHi+jp+M)(

r
k
)
;

3. lastly, Ei,j
2 (k) is a summand of Ei,j

1 (k) in the category of filtered D-modules.

Therefore, the differential d1 on the first page induces a double complex

⋯ d1Ð→ Fk+1,`−1
d1Ð→ Fk,`

d1Ð→ Fk−1,`+1
d1Ð→ ⋯.

Let T be the total complex of this double complex. Then by (3.7.1) and semisimplicity, T

decomposes into

⊕
i

{⋯ d1Ð→HiFk+1,`−1
d1Ð→HiFk,`

d1Ð→HiFk−1,`+1
d1Ð→ ⋯}[−i]

≃⊕
i,j

Hjd1
HiFk−●,`+●[−i − j]

(3.7.2)

in the derived category of filtered D-modules. On the other hand, by the claim (c) above,

we also have another decomposition in the derived category:

T ≃⊕
j

Hjd1
Fk−●,`+●[−j].

Since Hjd1
Fk−●,`+● = grWk−jBZ(H`+jp+M), the decomposition (3.7.2) implies grWk−jBZ(H`+jp+M)

decomposes into the direct sum of its cohomology in the derived category of filtered D-modules

and the cohomology HigrWk BZ(H`p+M) is of weight w + ` + k + i. It is easy to see that the

decomposition is compatible with Q-structures and therefore, we conclude the proof.

Mixed case. By Lemma 3.7.2 below, there exists a functorial splitting

grWgrVαM≃ grWgrLgrVαM,

with respect to t1, t2, . . . , tr which implies grWB(M) ≃ grWB(grLM). Therefore, we reduce

the proof to the case where M underlies a pure Hodge module.

We collect some corollaries of Deligne’s Theorem which we have already applied in the

previous theorem and will apply these results in the proof of Theorem 3.7.7. The proof is
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based on [Sai90, p. 1.5] and a Theorem of Deligne 3.7.10. For the purpose of the exposition,

we postpone the proof to the end of this section.

Lemma 3.7.2. Let M,M′ be mixed Hodge modules on a smooth variety X and V be the

V -filtration along a smooth subvariety Z. Let L be the filtration on grVα induced by the weight

filtration and W =W (θ − α,L) be the relative monodromy filtration on grVα . Then we have:

1. For any local defining equation f of Z, the induced filtered morphism

f ∶ (grWgrVαM, F ) → (grWgrVα−1M, F )

splits into f ∶ grWgrLgrVαM→ grWgrLgrVα−1M.

2. For any local vector fields ξ normal to Z, the induced filtered morphism

ξ ∶ (grWgrVαM, F ) → (grWgrVα+1M, F [−1])

splits into ξ ∶ (grWgrLgrVαM, F ) → (grWgrLgrVα+1M, F [−1]).

3. If T ∶ M →M′ is a morphism of mixed Hodge modules, then the filtered morphism

grWT ∶ (grWgrVαM, F ) → (grWgrVαM′, F )

splits into grWT ∶ (grWgrLgrVαM, F ) → (grWgrLgrVαM′, F ).

Now we turn to the complex C(M). The filtration WkC(M) also carries a Q-structure.

In fact, it follows from Proposition 3.3.8 and the fact that the retraction constructed in

Theorem 3.3.1 respects the filtration W that

DRZWkC(M) ≃ DRZp+WkSp(M) ≃ p∗WkSpK ⊗Q C

where p ∶ TZX → Z is the projection. Therefore, we can simply modify the proof of

Theorem 3.7.1 to prove the following.

136



Theorem 3.7.3. Let (M, F,L,K) be a mixed Hodge module on a smooth variety X and Z

is a smooth subvariety. Then CZ(M) together with the relative monodromy filtration is also

a mixed Hodge complex.

By a formal argument in [Del71b], we conclude:

Corollary 3.7.4. The Hodge spectral sequences of B(M) and C(M) degenerate at the first

page while the weight spectral sequences degenerate at the second page.

3.7.2 Comparison to the restriction functors

The goal of this part is to prove Theorem I(b):

Theorem 3.7.5. If (M, F ) is a graded polarizable mixed Hodge module then the complex

B(M) (resp. C(M)) is isomorphic to (i!M, F ) (resp. (i∗M, F )) in the derived category of

filtered D-modules with Q-structures.

Proof. Note that the Q-structure has already been handled in Theorem 3.7.1.

1. We first deal with the complex B(M). Recall that, as we introduced the proof of

Theorem 3.3.6, the functor i+i!M can be defined by the the Koszul complex in the derived

category of mixed Hodge modules (see the proof of [Sai90, Prop. 2.19]):

K(M) = {M→⊕M(∗Zi) → ⋯ →M(∗
r

∑
i=1

Zi)} (3.7.3)

placed in degrees 0,1, . . . , r. Moreover, the complex K(M) is isomorphic to i+grV0 K(M) in

the derived category of (F,W )-bifiltered D-modules because Lemma 3.3.7 also holds in the
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derived category of mixed Hodge modules. Consider the double complex BK(M):

grV0M (grV−1M)r ⋯ grV−rM

⊕r
i=1 grV0M(∗Zi) ⊕r

i=1(grV−1M(∗Zi))r ⋯ ⊕r
i=1 grV−rM(∗Zi)

⋯ ⋯ ⋯ ⋯

grV0M(∗∑r
i=1Zi) (grV−1M(∗∑r

i=1Zi))r ⋯ grV−rM(∗∑r
i=1Zi)

δ0 δ1 δr−1

δ0 δ1 δr−1

δ0 δ1 δr−1

(3.7.4)

whose uppermost row is BK0(M) = B(M) and leftmost column is B0K(M) = grV0 K(M).

The total complex of BK(M) is (F,W )-bifiltered quasi-isomorphic to grV0 K(M) because

grVαK(M) is (F,W )-bifiltered acyclic for α < 0 and Lemma 3.5.4. On the other hand, the

total complex of BK(M) is also F -filtered quasi-isomorphic to B(M) because each row

BKi(M) is F -filtered acyclic when i ≠ 0 by Corollary 3.7.4 and Theorem 3.3.6. We conclude

that grV0 K(M) and B(M) are isomorphic in the derived category of F -filtered DZ-modules.

But grV0 K(M) is (F,W )-bifiltered quasi-isomorphic to i!(M, F,W ). We conclude the proof

of this part.

2. Next, we deal with the complex C(M). The functor i+i∗M can be computed by the

the Koszul complex

K!(M) = {M(!
r

∑
i=1

Zi) → ⋯ →
r

⊕
i=1

M(!Zi) →M} (3.7.5)

placed in degrees −r,−r+1, . . . , 0. Moreover, the complex K!(M) is isomorphic to i+grV0 K!(M)

in the derived category of (F,W )-bifiltered D-modules because Lemma 3.3.7 also holds in

the derived category of mixed Hodge modules. Consider the double complex CK!(M)

grV−rM ⋯ (grV−r+1M)r grV0M

⊕r
i=1 grV−rM(!Zi) ⋯ ⊕r

i=1(grV−r+1M(!Zi))r ⊕r
i=1 grV0M(!Zi)

⋯ ⋯ ⋯ ⋯

grV−rM(!∑r
i=1Zi) ⋯ (grV−r+1M(!∑r

i=1Zi))r grV0M(!∑r
i=1Zi)

δ−r δ−r+1 δ−1

δ−r δ−r+1 δ−1

δ−r δ−r+1 δ−1

(3.7.6)
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whose uppermost row is CK0
! (M) = C(M) and leftmost column is C0K(M) = grV0 K!(M).

The total complex of CK!(M) is (F,W )-bifiltered quasi-isomorphic to grV0 K!(M) because

grVαK!(M) is (F,W )-bifiltered acyclic for α < 0. On the other hand, the total complex

of CK!(M) is also F -filtered quasi-isomorphic to C(K) because each row CKi
! (M) is F -

filtered acyclic when i ≠ 0 because of Corollary 3.7.4 and Theorem 3.3.6. We conclude that

grV0 K!(M) and C(M) are isomorphic in the derived category of F -filtered DZ-modules.

Finally, grV0 K!(M) is bifiltered quasi-isomorphic to i∗(M, F,W ). We conclude the proof of

this part.

Remark 3.7.6. If one is just interested in the isomorphisms

(B(M), F ) ≃ (i!M, F ) and (C(M), F ) ≃ (i∗M, F )

in the derived category of filtered D-modules, there is a way to bypass mixed Hodge complexes

as are used in Theorem 3.7.1 and Theorem 3.7.3. To prove (B(M), F ) ≃ (i!M, F ), we just

need to show that (B(M(∗Zi)), F ) is filtered acyclic for any Zi as in the proof Theorem 3.7.5.

For this we consider M̂(∗Ẑi +E) on the blow-up π ∶ X̂ →X along Z where M̂ is the minimal

extension ofM∣X−Z , Ẑi is the strict transform of Zi and E is the exceptional divisor. Note that

π+M̂(∗Ẑi+E) =M(∗Zi). It follows from the computation in the proof of Theorem 3.6.1 that

B(iπ+M(∗Ẑi+E)) is filtered acyclic where iπ ∶ X̂ → X̂ ×X is the graph embedding because of

the fact that one of the Koszul differentials is filtered bijective. We can conclude by applying

p+ to B(iπ+M(∗Ẑi +E)) and the bistrictness result for smooth, projective morphisms. The

same idea works for the filtered acyclicity of (C(M(∗Zi)), F ).

3.7.3 Finishing the proof

We now prove the last part of Theorem I:

Theorem 3.7.7. If M is a graded polarizable mixed Hodge module and W is the filtration

on B(M) and C(M) induced by the relative monodromy filtration on grVαM, then

grWk H`B(M) ≃ grWk+`H`i!ZM and grWk H−`C(M) ≃ grWk−`H−`i∗ZM
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as polarizable Hodge modules for ` ≥ 0.

Proof. 1. We first focus on the complex B(M). We shall prove the following as a preparation:

Lemma 3.7.8. The complex H`δgrWk BK(M) is exact for ` ≠ 0 and any k ∈ Z and the natural

inclusion

H0
δgrWk BK(M) = ker grWk δ0 → grWk grV0 K(M)

is a filtered quasi-isomorphism, where BK(M) is defined in (3.7.4).

Proof of the lemma. We first prove that the inclusion

ker grW δ0 → grWgrV0 K(M)

is a bifiltered quasi-isomorphism. By Lemma 3.7.2, the double complex grWBK(M) decom-

poses into

grWgrLgrV0M (grWgrLgrV−1M)r ⋯ grWgrLgrV−rM

⊕r
i=1 grWgrLgrV0M(∗Zi) ⊕r

i=1(grWgrLgrV−1M(∗Zi))r ⋯ ⊕r
i=1 grWgrLgrV−rM(∗Zi)

⋯ ⋯ ⋯ ⋯

grWgrLgrV0M(∗∑r
i=1Zi) (grWgrLgrV−1M(∗∑r

i=1Zi))r ⋯ grWgrLgrV−rM(∗∑r
i=1Zi)

where L is the filtration induced by the weight filtration on K(M). Since the category of

polarizable Hodge modules on an algebraic variety is semisimple, the cohomology H`grLK(M)

is a summand of grLK`(M). It follows that grWgrV0 H`grLK(M) is contained in H` ker grW δ0

because the support of grWgrV0 H`grLK(M) is contained in Z. Then due to the fact that

grWgrV0 H`grLK(M) → H` ker grW δ0

is injective, we conclude that ker grW δ0 → grWgrV0 K(M) is an isomorphism.
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Next, we prove that the complex H`δgrWk BK(M) is exact for ` > 0. By Theorem 3.7.1,

the total complex of grWBK(M) decomposes into

⊕
`∈Z
H`δgrWBK(M)[−`].

On the other hand, since grWBiK(M) is filtered exact for all i > 0, the total complex

of grWBK(M) is filtered quasi-isomorphic to grWgrV0 K(M) which is also filtered quasi-

isomorphic to H0
δgrWBK(M) as we just proved. This completes the proof of the lemma.

Returning to the proof of the theorem, we have a weight spectral sequence on BKj(M)

Ep,q
1 = Hp+qδ grW−pBK

j(M) ⇒ Ep,q
∞ = grW−pHp+qδ BKj(M).

which degenerates at Ep,q
2 by Theorem 3.7.1. The differential of the first page of the spectral

sequence induces morphisms of complexes

Sk,` = {H0
δgrWk+`BK(M) → H1

δgrWk+`−1BK(M) → ⋯ → HrδgrWk+`−rBK(M)}

for any ` ∈ Z. By the above lemma, the total complex of Sk,` is filtered isomorphic to

H0
δgrWk+`BK(M) and thus, grWk+`grV0 K(M). On the other hand, because of Theorem 3.7.1, the

second page of the weight spectral sequence on B(N) is zero if one of the xi acts bijectively

on a graded polarizable mixed Hodge module N . This means Sk,` is also filtered isomorphic

to the first page of the weight spectral sequence of B(M):

H0
δgrWk+`B(M) → H1

δgrWk+`−1B(M) → ⋯ → HrδgrWk+`−rB(M),

which is filtered isomorphic to grWk+`grV0 K(M). If we take cohomology at degree `, we conclude

that

grWk H`B(M) ≃ grWk+`H`K(M)

as polarizable Hodge modules.

2. We deal with the complex C(M). The proof of the following lemma is parallel to the

one of Lemma 3.7.8 and therefore, we leave it to the readers.
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Lemma 3.7.9. The complex H`δgrWk CK!(M) is exact for ` ≠ 0 and any k ∈ Z and the natural

quotient

grWk grV0 K!(M) → H0
δgrWk CK!(M) = cokergrWk δ−1

is a filtered quasi-isomorphism.

We also have a weight spectral sequence

Ep,q
1 = Hp+qδ grW−pCK

j
! (M) ⇒ Ep,q

∞ = grW−pHp+qδ CKj
! (M).

which degenerates at the second page by Theorem 3.7.3. The differential of the first page of

the spectral sequence induces morphisms of complexes

Tk,` = {H−r
δ grWk−`+rCK!(M) → H−r+1

δ grWk−`+r−1CK!(M) → ⋯ → H0
δgrWk−`CK!(M)}

for any ` ∈ Z. By the above lemma, the total complex of Tk,` is filtered isomorphic to

H0
δgrWk−`CK!(M) and thus, grWk−`grV0 K!(M). On the other hand, because of Theorem 3.7.3,

the second page of weight spectral sequence on B(N) is zero if N = N(!Z). This means Tk,`

is also filtered isomorphic to the first page of the weight spectral sequence of C(M):

H−r
δ grWk−`+rC(M) → H−r+1

δ grWk−`+r−1C(M) → ⋯ → H0
δgrWk−`C(M)

which is filtered isomorphic to grWk−`grV0 K!(M). If we take cohomology at degree −`, we

conclude that

grWk H−`C(M) ≃ grWk−`H−`K!(M)

as polarizable Hodge modules.

3.7.4 Deligne’s theorem

The aim of this part is to prove Lemma 3.7.2. For this purpose, we generalize, with little effort,

the theorem on relative monodromy filtrations to the abstract setting, proved by Deligne in

his personal letter to Cattani and Kaplan. Then Lemma 3.7.2 will be an immediate corollary.
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Let A be an abelian category and V be an object in A. Let L be a finite increasing

filtration of V and N be a nilpotent endomorphism preserving the filtration L. We will now

assume that the relative weight filtration W =W (N,L) exists and that there is a splitting

operator Y for W , i.e. Y is a semisimple operator on V with eigenvalues in Z such that

Wk = ⊕i≤kEi(Y ) where Ei(Y ) is the i-eigenspace of Y . We say the splitting operator Y

satisfies the admissibility conditions if

[Y,N] = −2N, and Y Li ⊂ Li, for all i. (3.7.7)

Suppose that Y ′ is a splitting operator for L that commutes with Y . Then the pair

(N0, Y − Y ′) determines an sl2-representation on V . We will denote the standard sl2-triple

by (e+, e−,H):

[e+, e−] =H, [H,e−] = −2e−, [H,e+] = 2e+.

Then e− = N0 and H = Y − Y ′. We call the collection (V,L,N,Y, Y ′) a Deligne-system, a

notion introduced in [Sch01], if in addition

[e+,Nj] = 0, for all j ≠ 0

where Nj is the j-th adY ′-homogenous component of N . In other words, Nj is ad e−-primitive

in the adjoint representation for j ≠ 0.

Theorem 3.7.10. Let (V,N,L,Y ) be as above and assume Y satisfies the admissibility

condition (3.7.7). If the set of splitting operators of L commuting with Y is not empty then

there exists a unique splitting operator Y ′ of L such that (V,L,N,Y, Y ′) is a Deligne-system.

Proof. Fix a splitting operator of L commuting with Y . We can modify the splitting of L

by conjugating by an automorphism g such that g respects W and (g − 1)Li ⊂ Li−1, and

consequently, g induces an automorphism on grL. We want to achieve that

[N − ge−g−1, ge+g−1] = 0,
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or equivalently,

[g−1Ng − e−, e+] = 0. (3.7.8)

We find g by successive approximations: if [Ni, e+] = 0 for 0 > i > −k, we take g = 1 + γ−k for

γ−k of degree −k with respect to the L-grading for k ≥ 1. Then to make the k-th L-degree

in (3.7.8) valid, we need

[− [γ−k, e−] +N−k, e
+] = 0,

which is equivalent to

(ad e+) ((ad e−) (γ−k) +N−k) = 0. (3.7.9)

As k − 2 ≥ −1, we can write uniquely N−k = N ′ + (ad e−)N ′′, by the Lefschetz decomposition,

such that N ′ is in the kernel of ad e+ and the adH-degree of N ′′ is k because N−k is of

adH-degree k − 2. Then (3.7.9) becomes

(ad e+) (ad e−) (γ−k +N ′′) = 0.

It follows from the fact that the H-degree of γ−k +N ′′ is k that γ−k has to equal −N ′′. It

remains to show that [γ−k, Y ] = 0, i.e [N ′′, Y ] = 0. By the admissible condition,

(adY )N−k = −2N−k.

Substituting N−k by N ′ + (ad e−)N ′′,

(adY )N ′+(adY )(ad e−)N ′′ = (adY )N ′+(ad e−)(adY )N ′′−2(ad e−)N ′′ = −2N ′−2(ad e−)N ′.

Then we get

(adY + 2)N ′ + (ad e−)(adY )N ′′ = 0.

Applying (ad e−)k−1 yields

(ad e−)k(adY )N ′′ = 0,

which forces (adY )N ′′ = 0. This completes proof.
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The morphisms of a pair of Deligne-systems (V,L,N,Y, Y ′) and (V̂ , L̂, N̂ , Ŷ , Ŷ ′) are the

operators T ∈ Hom(V, V̂ ) such that Ŷ T = TY , N̂T = TN and TL ⊂ L̂ for all i. In fact, the

morphisms of Deligne-systems are functoral:

Corollary 3.7.11. If T is a morphism of a pair of Deligne-systems

(V,L,N,Y, Y ′) and (V̂ , L̂, N̂ , Ŷ , Ŷ ′),

then Ŷ ′T = T Ŷ ′.

Proof. Let T = ∑i≤0 Ti be the adY ′-homogenous decomposition of T . Then the H degree of Ti

is −i because Ŷ T = TY . Suppose that Ti vanishes for i = −1, 2, . . . ,−k + 1. Then (adN)T = 0

gives

[N0, T−k] + [N−k, T0] = 0.

It follows that (ad e+)(ad e−)T−k vanishes since

(ad e+)(ad e−)T−k = [e+, [e−, T−k]] = [e+, [T0,N−k]] = [[e+, T0],N−k] + [T0, [e+,N−k]]

and [e+, T0] = [e+,N−k] = 0. Then T−k must vanish because the H-degree of T−k is k > 0.

Finally we can give

Proof of Lemma 3.7.2. By [Sai90, p. 1.5], we have a canonical splitting

grWk grVαM≃⊕
i∈Z

grWk grLi grVαM.

If we set (V,L,N) = (grWgrVαM, LgrWgrVαM, θ − α) and Y = i on grWi M, then we can apply

Theorem 3.7.10 to this situation: there exists a unique splitting operator Y ′ for L such that

(V,L,N,Y, Y ′) is a Deligne-system. As a consequence, for any local defining equation f of Z,

it follows from Corollary 3.7.11 the induced morphism

f ∶ grWgrVαM→ grWgrVα−1M

commute the splitting operator Y ′ which concludes (a).
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For part (b), it is easy to see that the morphism grWT is a morphism of Deligne’s systems

(grWgrVαM, LgrWgrVαM, θ−α) and (grWgrVαM′, LgrWgrVαM′, θ−α). Then by Corollary 3.7.11,

grWT commutes with the splitting operator Y ′ which concludes (b).
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[Del74] Pierre Deligne. “Théorie de Hodge. III”. In: Inst. Hautes Études Sci. Publ. Math.
44 (1974), pp. 5–77. issn: 0073-8301. url: http://www.numdam.org/item?id=
PMIHES_1974__44__5_0.

[Del93] Pierre Deligne. “Letter to Cattani and Kaplan”. In: 1993.

147



[EV86] Hélène Esnault and Eckart Viehweg. “Logarithmic de Rham complexes and
vanishing theorems”. In: Invent. Math. 86.1 (1986), pp. 161–194. issn: 0020-9910.
doi: 10.1007/BF01391499. url: https://doi.org/10.1007/BF01391499.

[EV92] Hélène Esnault and Eckart Viehweg. Lectures on vanishing theorems. Vol. 20.
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