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Abstract of the Dissertation

On moduli spaces or Ricci-flat 4-manifolds

by

Jiasheng Teh

Doctor of Philosophy

in

Mathematics

Stony Brook University

2022

Einstein metrics have long been considered as the canonical metrics in Rieman-
nian geometry. The moduli space of Einstein metrics constitutes a diffeomor-
phism invariant of the underlying closed smooth manifold. In dimension four,
they exhibit a balance between the rigidity of the constant sectional curvature
metrics in low dimensions and the flexibility coming from higher dimensions.
We show that the moduli spaces of Einstein metrics for a certain family of
closed 4-manifolds, the ones which admit a locally hyperKaehler metric, are
all path-connected. This is achieved by defining a period map and proving
a Torelli-type theorem. In addition, we investigate the existence of almost
complex structures and semi-complex structures on these 4-manifolds. Using
the representation of the holonomy group, the Teichmüller spaces of all closed
oriented flat 4-manifolds are also computed.
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1 Introduction

1.1 Einstein metrics

A Riemannian metric g on a closed smooth manifold M is said to be Einstein
if it satisfies the Einstein equation

Ric = λg, (1.1)

for some constant λ. In the context of general relativity, this condition is
equivalent to the vacuum Einstein field equation with cosmological constant.

According to [1], [8] and [27], it has always been geometers’ dream to find a
canonical metric on a given smooth manifold M so that all the topological
data can be captured by the geometry. The dream came true in dimension
2, for the uniformization theorem states that every closed oriented surface
admits a Riemannian metric of constant sectional curvature. In dimension 3,
however, a general 3-manifold does not carry any Einstein metrics. Thurston’s
geometrization conjecture asserts that a 3-manifold can be decomposed into a
family of components, each equipped with a geometric structure. The three ge-
ometric structures with Einstein metrics are of paramount importance among
the eight Thurston geometries. If the dimension is at least 5, the quest for
canonical metric might very well be intractable. As pointed out by Gromov
in [27], the topology of the group of self-diffeomorphisms D(M) is usually be
very wild and disorderly. There is also the computational issue of the funda-
mental group, which causes the gradient flow of any appropriate functional on
closed curves to badly behave. The final blow is the existence of exotic smooth
structures, as brought to light by Milnor in [65]. This somehow shows that
the Einstein condition is too flexible and predicts a proliferation of Einstein
metrics. This is partially confirmed by the discovery of many inequivalent fam-
ilies of Einstein structures on higher dimensional spheres and other familiar
manifolds by Böhm [13] and Boyer-Galicki-Kollár [14].

There is a slim chance that such a geometrization program can be carried out
for 4-manifolds and one expects the geometric structures with Einstein metrics
to play a central role. Although the structure of D(M) is more rigid than the
higher dimensional case, we still run into the aforementioned difficulties of
the existence of exotic smooth structure and the computation of fundamental
group. Another reason Einstein metrics in dimension 4 exhibit much more
flexibility than in low dimensions is that they do not necessarily have constant
sectional curvature. Thus the geometry and topology of 4-manifolds are vastly
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more complicated. On the flip side, in order for Einstein metric to qualify as a
candidate for canonical metric, we hope that there are not too many of them
on a given closed smooth 4-manifold. This paper is a very modest attempt to
show that the moduli spaces of Einstien metrics are indeed rigid in some sense
for a special class of Ricci-flat 4-manifolds. Sadly, despite the success in low
dimensions, whether a geometrization program exists for 4-manifolds remains
an enigma. The geometry of gauge fields, comprises Donaldson’s theory for
self-dual instantons and Seiberg-Witten theory for monopoles, is still the most
effective tool to study the topology of 4-manifolds.

For a compact smooth manifold M , the Einstein moduli space is defined as
the quotient

E(M) = {Einstein metrics on M}/(D(M)× R+),

where the group of self-diffeomorphisms D(M) acts by pulling back and R+

acts by rescaling. The Einstein moduli space E(M) admits a ramified cover
known as the Teichmüller space T (M), obtained from the above definition if
we replace D(M) by the subgroup of diffeomorphisms isotopic to the identity
D0(M)

T (M) = {Einstein metrics on M}/(D0(M)× R+).

There are three fundamental questions an inquisitive geometer could pose.

Question 1. Existence: Is E(M) non-empty? If so, can one produce an ex-
plicit construction?

Question 2. Uniqueness: What is the global structure of E(M)?

Quesiton 3. Compactification: What are the different completions or degen-
erations of E(M)? What are the relations between different compactifications?

Let us now do a quick survey of some known results that address the above
three questions. Besson-Courtois-Gallot showed, via a volume entropy compar-
ison theorem, that the standard constant sectional curvature metric on a com-
pact quotient of the 4-dimensional real hyperbolic space H4 is the unique Ein-
stein metric up to homothety and isometry [11]. In particular, their work gave
a new proof of the Mostow rigidity theorem. LeBrun obtained an analogous
uniqueness result in [53] for the compact quotient of complex hyperbolic space
CH2/Γ by showing a Riemannian generalization of the Bogomolov-Miyauka-
Yau inequality. We remark here that this paper marked the beginning of a
series of papers by LeBrun, who pioneered the approach of using Seiberg-
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Witten theory to show many rigidity and non-existence results for Einstein
metrics. The Einstein moduli spaces for the compact quotients of real and
complex hyperbolic space in dimension 4 therefore consist of a single point.

Regarding Question 2, if the Einstein metric is not unique, then the next
question we ask is the number of components of M . This modified question
is unfortunately not very easy to answer. Consider the unit 4-sphere with the
standard round metric g. It is known that any Einstein metric isotropic to g
must coincide with g. Thus asking whether we can find a new Einstein metric
is equivalent to asking if there are other new components in E(S4).

We state here two cases in which the Einstein moduli space is explicitly known.
An Einstein metric on a 4-torus T 4 must be flat. The Einstein moduli space is
then the moduli space of flat metrics, which can be identified with the quotient
SO(4)\SL(4,R)/SL(4,Z) [8]. The other case is that of K3 surfaces. Kodaira
showed that all K3 surfaces are diffeomorphic to a quartic in P3, so it makes
sense to consider E(M) for a K3 surface M . From the work of Kobayashi-
Todorov in [40], the Einstein moduli space of a K3 surface is an open subset
in Γ\ SO(3, 19)/ SO(3) × SO(19), where Γ is the automorphism group of the
the integral lattice H2(M,Z). These two classes of manifolds constitute the
Calabi-Yau manifolds in complex dimension 2.

Now we review some constructions of Einstein metrics on Fano surfaces, more
precisely the 10 different 4-manifolds that arise as del Pezzo surfaces. Page con-
structed in [71] an explicit Einstein metric with cohomogeneity 1 on CP2#CP2

and an isometric U(2)-action. An interesting new Einstein metric with an iso-
metric T 2-symmetry was later discovered by Chen-LeBrun-Weber [19] on the
two-point blow-up CP2#2CP2. This metric is Hermitian-Einstein and con-
formal to a Kähler metric but is non-Kähler itself. Odaka-Spotti-Sun gave a
beautiful solution to Question 3 for del Pezzo surfaces in [70]. They showed
that the Gromov-Hausdorff compactification of degree d Kähler-Einstein del
Pezzo surfaces is homeomorphic to certain algebro-geometric moduli space.
Their theorem recovers Tian’s result [78] on the existence of Kähler-Einstein
metric for a certain family of del Pezzo surfaces. It was proved by LeBrun in
[56] and [57] that all the known examples of del Pezzo surfaces sweep out a
connected component of E(M).

In the realm of Kähler geometry, the existence of Kähler-Einstein metric for
compact Kähler manifolds is the most important problem. Let (M,J) be
a compact Kähler manifold with Kähler form ω. The Einstein equation is
commonly written as

Ric(ω) = λω, (1.2)
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where Ric(ω) is the Ricci form of the metric. A Riemannian metric that is both
Kähler and Einstein is called a Kähler-Einstein metric. The de Rham cohomol-
ogy class of ω is proportional to the first Chern class ofM , 2πc1(M) = [Ric(ω)].
Calabi conjectured around 1954 that a large class of complex manifolds with
c1(M) < 0 or c1(M) = 0 admit Einstein metrics. This conjecture was later
extended to the case c1(M) > 0 by Yau, Tian and Donaldson.

Theorem 1.1. Let M be a compact Kähler manifold with Kähler form ω so
that 2πc1(M) = λ[ω].

1. (Aubin, Yau). If c1(M) < 0, then there is a unique Kähler metric ω′ ∈ [ω]
such that Ric(ω′) = λω′.

2. (Yau). If c1(M) = 0, then there is a unique Kähler metric in ω′ ∈ [ω]
such that Ric(ω′) = 0.

3. (Chen-Donaldson-Sun) If c1(M) > 0, then there is a unique Kähler met-
ric ω′ ∈ [ω] such that Ric(ω′) = λω′ if and only if M is K-stable.

The complex manifolds in the first case are of general type, while in the second
case a manifold with a Ricci-flat Kähler metric is called a Calabi-Yau manifold.
The complex manifolds in the last case are the Fano varieties. Theorem 1.1
has far-reaching consequences in algebraic geometry, especially in the moduli
theory of varieties. Since the advent of string theory and supersymmetry, we
have seen a revitalized interest in the study of Einstein metrics, in particu-
lar the Calabi-Yau and G2-metrics. They appear as the small fibers of 10 or
11-dimensinal supersymmetric space-time. Ongoing vibrant and intense inves-
tigations about conjectural relations between Calabi-Yau manifolds in mirror
symmetry further consolidates the role of Calabi-Yau manifolds as the primary
objects of study in modern geometry. Despite considerable attention and ef-
fort, we still have no explicit construction of non-trivial Calabi-Yau metrics on
compact manifolds at present. All the available examples are done by gluing
construction.

We now return to Question 3. The study of the compactification of the Ein-
stein moduli space for 4-manifolds were initiated by Anderson, Bando, Kasue
and Nakajima. They showed that the completion EGH(M) of E(M) with
respect to the Gromov-Hausdorff topology is locally compact. EGH(M) com-
prises the unit-volume Einstein orbifold associated to M . Intuitively, this
completion should be understood as filling in the missing lower dimensional
components in the interior of E(M), as opposed to reaching a boundary where
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E(M) comes to an end. Moreover, E(M) need not be compact, as exemplified
by EGH(T

4). Thus, to obtain genuine compactifiaction, one has to allow the
Gromov-Hausdorff distance to go in infinity. Motivated by the Teichmüller
theory for Riemann surfaces, Anderson developed a theory of completion with
respect to the L2 metric on E(M). The completion EL2(M) now contains not
only the Einstein orbifolds, but also new components known as cusps, where
for the latter case convergence is done through the pointed Gromov-Hausdorff
topology. For a K3 surface M , the L2 completion is precisely the quotient
Γ\ SO(3, 19)/ SO(3)× SO(19), which is non-compact.

1.2 Local structure of the moduli space

In this section, we will endeavor to expound on the deformation theory for
Einstein metrics. Thanks to the works of Berger, Ebin and Koiso, the Einstein
moduli space is locally a finite-dimensional Hausdorff real analytic subset with
singularities. The key property at play here that ensures the finiteness is the
ellipticity of our operator involved.

We begin by giving a brief acccount of some major ingredients in the Kodaira-
Spencer-Kuranishi theory for deformation of complex structures. Let M be
a compact complex manifold. Denote the holomorphic tangent bundle of M
by TM and the sheaf of sections of TM by ΘM . Assume π : X → B is a
family of deformations of M , in other words, π is a proper holomorphic sub-
mersion whose central fiber π−1(0) is isomorphic to M . An application of the
Ehressmann theorem shows that all fibers are diffeomorphic, but with possi-
bly varying almost complex structures. The data about complex structures of
each fiber can be succinctly encoded by a section φ of Γ0,1(TM), the space of
TM -valued (0, 1)-form. Here the section φ depends holomorphically on t ∈ B
by our set-up. Locally, with respect to coordinates zi on M , it has the form

φ(t) =
∑
α,β

φβ
α(z, t)dz̄

α ⊗ ∂

∂zβ
(1.3)

If we differentiate this section φ(t) with respect to a tangent vector v ∈ T0B,
the resulting section is ∂̄-closed, hence is an element in H1(M,ΘM). Thus, we
obtain the Kodaira-Spencer map f : T0B → H1(M,ΘM), defined by

v =
∑
γ

aγ
∂

∂tγ
7→ v · φ =

∑
α,β,γ

aγ
∂φα

β

∂t
(z, 0)dz̄α ⊗ ∂

∂zβ
, (1.4)
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which is often interpreted as the derivative of complex structures for a defor-
mation.

The first question one could ask is whether the almost complex structure
arises from φ(t) is an honest complex structure. By the Newlander-Nirenberg
theorem, the integrability condition is equivalent to φ solving the Maurer-
Cartan equation

∂̄φ+
1

2
[φ, φ] = 0. (1.5)

One approach to tackle this problem is to first express φ as a formal power
series and solve the Maurer-Cartan equation inductively. The second step is
then to show that this formal solution converges in a small neighborhood of
0 ∈ B. This is indeed the method adopted in the proof of the main existence
theorem [44].

Theorem 1.2 (Kodaira, Nirenberg, Spencer). Let M be a compact complex
manifold. If H2(M,ΘM) = 0, then there exists a family of deformations of M,
π : X → B such that

1. B is a small ball in Cn centered at 0 and π−1(0) = M , where dim
H1(M,ΘM) = n.

2. The Kodaira-Spencer map is an isomorphism.

The next natural question is if one could always find a universal family for a
compact complex manifold M that contains arbitrary small deformations of
M . To be more precise, a family of deformations π : X → B is said to be
complete if for any other deformation ν : X′ → B′ of M with ν−1(a) = M ,
there exists a neighborhood U of a and a map h : U → B such that ν−1(U)
is biholomorphic to the pullback B ×B X′. Kodaira and Spencer [45] gave a
sufficient and necessary condition as follows.

Theorem 1.3 (Kodaira, Spencer). A family of deformations of a compact
complex manifold M , π : X → B with central fiber π−1(0) =M is complete at
0 if and only if the Kodaira-Spencer map is surjective at 0.

For a complete family of deformations, if in addition the map h is unique, then
we call such a family π : X → B a universal deformation. However, if only
the derivative of h is unique, then the complete family is said to be a versal
deformation. The main theorem is as below [43], [50].
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Theorem 1.4 (Kodaira, Spencer, Kuranishi). A compact complex manifold
M always has a versal deformation.

One could define a map K : H1(M,ΘM) → H2(M,ΘM), sending a represen-
tative φ ∈ Γ0,1(TM) to ∂̄φ + 1

2
[φ, φ], the left hand side of the Maurer-Cartan

equation 1.5. Kuranishi’s tactic is to apply the Banach space implicit func-
tion theorem to show that the preimage K−1(0) in a neighborhood of 0 in
H1(M,ΘM), a possibly singular complex analytic subset, is the versal defor-
mation of M . This complex analytic subset is commonly referred to as the
Kuranishi family of M by algebraic geometers and the map K is called the
Kuranishi map.

Due to the above structure theorems, we hope the reader would readily accept
the nomenclature of callingH1(M,ΘM) the deformation space andH2(M,ΘM)
the obstruction space.

Let us now return to the study of Einstein moduli space on a closed smooth
manifold M . The following material is mostly taken from [8]. Let M be the
set of Riemannian metrics on M while let M1 ⊂ M be the subspace consists
of metrics with unit-volume . In order to describe the local structure of E(M),
a preliminary step is to obtain a submanifold transversal to the orbit of D(M)
in M1. The ensuing is the slice theorem of Ebin [25], proved in his thesis.

Theorem 1.5 (Ebin). Fix a Riemannian metric g on M , there exits a real
analytic submanifold Sg containing g such that the following properties are
satisfied.

1. Iso(g) · Sg = Sg.

2. For any f ∈ D(M), if f ∗Sg ∩ Sg ̸= ∅, then f ∈ Iso(g).

3. There is a neighborhood U of the identity coset in D(M)/Iso(g) and
a local cross-section φ : U → D such that φ : U × Sg → M1 is a
diffeomorphism.

We call Sg a slice to the action of D(M). Assume from now on g is an Einstein
metric. The collection of Einstein metrics lying in Sg is said to be the premoduli
space of Einstein metrics around g, denoted by Pg. It is clear that dividing
this premoduli space by the action of the isometry group would recover the
Einstein moduli space.

For any Riemannian metric g ∈ M, the tangent space of M at g is the space of
symmetric 2-forms Γ(S2T ∗M). The action of the diffeomorphism group D(M)

7



breaks this space into two orthogonal pieces. Indeed, for any vector field X on
M , differentiating the one parameter of metrics exp(tX)∗g with respect to t
yields LXg. Notice that if ζ is a 1-form, then we have the identity δ∗gζ =

1
2
Lζ#g,

where δ∗g : Γ(T ∗M) → Γ(S2T ∗M) is the adjoint of the divergence operator δg.
So the tangent space to the orbit of D(M) is simply Imδ∗g . The operator δ∗g is
known to be over-determined elliptic. The image Imδ∗g is therefore closed and

TgM = Im(δ∗g)⊕Ker(δ). (1.6)

The extra condition on the normalization of volume means that a tangent
vector to M1 corresponds to a h ∈ Γ(S2T ∗M) whose total trace

∫
M
trghvolg

vanishes. As a consequence, Im(δ∗g) is contained in TgM1 and we have a
decomposition on TgM1 as

TgM1 = Im(δ∗g)⊕ (Ker(δ) ∩ TgM1). (1.7)

The slice transversal to the action of D(M) has the second component as its
tangent space.

Before proceeding further, we introduce two more definitions. We call E(g) =
Ricg − 1

n
S(g)g the Einstein operator, where S(g) is the total scalar curvature

of g. The premoduli space is then Sg ∩ E−1(0). An infinitesimal Einstein
deformation of an Einstein metric g is a tensor h ∈ S2T ∗M contained in
Ker(δg) ∩ TgM1 ∩Ker(E ′), or equivalently h satisfies the three conditions

E ′
g(h) = 0, δg(h) = 0,

∫
M

trghvolg = 0. (1.8)

We denote the space of such tensors as ϵ(g) = 0.

Berger and Ebin showed in [10] that the derivative of the Einstein operator
E ′

g(h) = 0 can be rewritten as (∇∗∇− 2R̊g)h = 0, where ∇ is the Levi-Civita
connection and Rg is the curvature acting on S2T ∗M . A quick corollary of
this result is ϵ(g) must be finite-dimensional, for the operator ∇∗∇ − 2R̊g is
elliptic.

Theorem 1.6 (Berger-Ebin). The space of infinitesimal Einstein deforma-
tions is finite-dimensional.

Having examined the deformation theory of complex structures, one reason-
ably expects to show analogous local structure theorems for Einstein metrics.
In particular, we anticipate an existence theorem for Einstein metrics by using
formal power series or the implicit function theorem to find solutions to the

8



equation E(g) = 0. But there is one more constraint at play here, the image
of the Einstein operator satisfies

βg(E(g))) = 0, (1.9)

where βg is the Bianchi operator δg + 1
2
dtrg. Thus, the above equation is also

considered as part of the integrability condition, in addition to E(g) = 0.

Let g(t) =
∑∞

m=0 t
m/m! · gm be a one-parameter formal series of metrics and

let

E(g(t)) =
∞∑

m=0

tm

m!
Em(g0, · · · , gm) = E(g0) +

∞∑
m=1

Em
g0
(g1, · · · , gm),

where Em is a polynomial in gi for each m, with degree one in gm. Differenti-
ating Em with respect to t at 0 gives

Em+1(g0, · · · , gm+1) =
m−1∑
i=0

∂

∂gi
Em(g0, · · · , gm) · gi+1 + Em(g0, · · · , gm−1, gm+1)

= Am+1(g0, · · · , gm) + E1(g0, gm+1),

where we have used induction and Am+1 is a polynomial in variables g0, · · · , gm.
If E1 is surjective, then we could solve for Em = 0, which of course gives a
formal solution.

But E1
g0

need not be surjective. In this case, suppose there exists a linear
operator Φg0 depending smoothly on g such that Im(E1

g0
) ⊂ Ker(Φg0). Thus

every formal power series g(t) starting with g0 satisfies

Φg(t)(
d

dt
E(g(t)) = 0. (1.10)

We want to construct a formal solution to the Einstein equation under the
restriction 1.10. Assume we have found g0, · · · , gm so that Ei

g0
(g1, · · · , gi) = 0

for i = 0, · · · ,m. In order to find gm+1 that solves Em+1(g0, · · · , gm + 1) = 0,
we plug g(t) =

∑m
0 t

i/i! · gi into

dm

dtm
Φg(t)(

d

dt
E(g(t))) = 0. (1.11)

A straightforward computation applying the Leibniz’s rule and the inductive
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hypothesis yields
Φg0(A

m+1
g0

(g1, · · · , gm)) = 0. (1.12)

So Em+1(g0, g1, · · · , gm+1) = 0 is equivalent to

E1
g0
(gm+1) = −Am+1

g0
(g1, · · · , gm). (1.13)

For each m, it has a solution whenever the image Im(E1
g0
) coincides with

Ker(Φg0). The space Ker(Φg0)/Im(E1
g0
) is called the obstruction space for the

Einstein condition, where Φg0 is usually chosen to be the Bianchi operator. Yet
the situation here is a little unsatisfactory as we do not have a similar result
as Theorem 1.2 in the story for complex structure. This is demonstrated by
the next result of Koiso.

Theorem 1.7 (Koiso). Within TgM1 for a unit-volume Einstein metric g,
there is an orthogonal decomposition Ker(βg) = Im(E ′

g)⊕ ϵ(g).

What immediately follows is that the deformation space is isomorphic to the
obstruction space. In most cases, the obstruction space is non-vanishing. By
considering the second order derivative of E(g), Koiso showed in [47] that the
symmetric metric on CP2n × S2 is isolated in the moduli space E(M). But
the deformation space is non-zero and all the infinitesimal deformations are
not integrable. This result shows that in general one should not expect the
deformation space ϵ(g) to be the tangent space of the premoduli space Pg.
The tangent space to Pg is a subspace of ϵ(g), as confirmed by the next result,
proved using the implicit function theorem.

Theorem 1.8 (Koiso). Let g be a unit-volume Einstein metric on M , then
the space of infinitesimal Einstein deformations ϵ(g) can be exponentiated into,
within Sg, a finite-dimensional real analytic submanifold W such that W con-
tains the premoduli space at g, Pg as a real analytic subset.

However, under the assumption that our metric is Kähler-Einstein with van-
ishing first Chern class, each infinitesimal Einstein deformation is integrable
and the deformation space agrees with the tangent space to Pg, see [46].

Theorem 1.9 (Koiso). Suppose g is a Kähler-Einstein metric on (M,J) such
that c1(M) = 0 and (M,J) has a smooth deformation in H1(M,ΘM). In this
case, the Einstein deformation space ϵ(g) is the tangent space of the premoduli
space Pg. In a small neighborhood of g in Pg, any Einstein metric is Kähler
with respect to some nearby complex structure of J .
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If the scalar curvature s is strictly negative or identically zero, the identity
component of the isometry group Iso0(g) acts trivially on Pg. The Einstein
moduli space can then be obtained as the quotient of the premoduli space by
the finite group Iso(g)/Iso0(g), so it has the structure of a finite-dimensional
Hausdorff orbifold.

1.3 Summary of results

Our goal in this paper is to investigate the topological properties of the Einstein
moduli space for each manifold appearing in the rigidity case above. More
precisely, the main result is the following.

Theorem 1.10. Let M be a closed oriented smooth 4-manifold which admits a
locally hyperKähler metric, then the Einstein moduli space E(M) is connected.

Let us give a short summary of each section. In section 2 we introduce the
locally hyperKähler manifolds and explain how they appear naturally in the
rigidity case of the Hitchin-Thorpe inequality. In section 3, we compute the
Teichmüller spaces of flat metrics on all closed oriented Riemannian manifolds
in dimension 2,3 and 4, starting from the ones on flat tori. In section 4,
we investigate the existence of almost complex structure and semi-complex
structure on flat manifolds. In sections 5, we review the moduli theory of
complex structures and the theory of hyperKähler metrics on K3 surfaces. In
section 6, we show a Torelli theorem and surjectivity for the polarized moduli
space on an Enriques surface. Using this result, we prove that the Einstein
moduli space on an Enriques surface must be path-connected. In section 7,
we show a similar connectedness result for Einstein moduli space on a Hitchin
manifold. The strategy is to perform a hyperKähler rotation to reduce the case
to the one on Enriques surface. Moreover, a Hitchin manifold does not admit
any complex structure, but we show there is a Torelli theorem for semi-complex
structure.
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2 Locally hyperKähler manifolds

2.1 The Ricci decomposition of curvature tensor

For a general Riemannian n-manifold (M, g), the curvature operator is a self-
adjoint operator R : Λ2 → Λ2 defined in terms of the Riemann curvature
tensor

g(R(u ∧ v), x ∧ y) = R(u, v, x, y), (2.1)

for u, v, x, y ∈ TM . The curvature operator R is a section of S2Λ2T ∗M since
it is self-adjoint. There is a natural way of breaking up R into three irreducible
pieces for the action of O(n) as follows.

Suppose (V, g) is an n-dimensional vector space with a metric. This vector
space V should be identified with the cotangent space T ∗

pM at any point
p ∈M . Due to the Bianchi identity, the curvature tensor lives in the kernel of
the map b : S2Λ2V → S2Λ2V defined as

b(R)(u, v, x, y) =
1

3
(R(u, v, x, y) +R(v, x, u, y) +R(x, u, v, y)). (2.2)

We call RV := Ker(b) the space of algebraic curvature tensors. R(V ) is an
O(n)-module as b is GL(n)-equivariant.

Another operator we need for the decomposition is the Ricci contraction c :
S2Λ2V → S2V , given by

c(R)(u, v) = trR(u, ·, v, ·). (2.3)

The Kulkarni-Nomizu product, on the other hand, yields an element of S2Λ2V
by pairing two elements of S2V , defined as

(a⃝∧ b)(u, v, x, y) = a(u, x)b(v, y)+a(v, y)b(u, x)−a(u, y)b(v, x)−a(v, x)b(u, y).

For n ≥ 4, we have a decomposition of the O(n)-module RV into three irre-
ducible components as

RV = SV ⊕ EV ⊕WV, (2.4)
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where

SV = Rg⃝∧ g,

EV = g⃝∧ S2
0V,

WV = Kerc ∩Kerb.

Here S2
0V consists of traceless symmetric 2-tensors. WV is called the space of

Weyl tensors.

According to 2.4, the curvature operator can be decomposed into

R =
s

2n(n− 1)
g⃝∧ g +

1

n− 2
r̊⃝∧ g +W, (2.5)

where r̊ = r− s
n
g is the traceless Ricci tensor, s is the scalar curvature and W

is the Weyl part of R, known as the Weyl curvature tensor.

2.2 Special feature of four-dimensional geometry

Let (V, ⟨ , ⟩) be an oriented vector space of dimension n with a positive-
definite inner product. This in turn induces inner products on the p-forms
ΛpV . Denote the volume form of unit norm by ω. The Hodge star operator
∗ : ΛpV → Λn−pV is defined by the identity

α ∧ ∗β = ⟨α, β⟩ · ω, (2.6)

where α, β ∈ ΛpV .

For an oriented Riemannian manifold (M, g) of dimension n, the above point-
wise construction can be applied to the bundle of p-forms Λp on M . If the
dimension is even, say n = 2m, then the Hodge star operator acting on Λm

satisfies ∗2 = (−1)m. In the particular case of dimension four, ∗ is an involution
on the bundle of two-forms Λ2. Λ2 then decomposes into

Λ2 = Λ+ ⊕ Λ−, (2.7)

where Λ± are the ±1-eigenspaces of ∗. Sections of Λ+ are called self-dual
2-forms, whereas sections of Λ− are called anti-self-dual 2-forms.

This decomposition is intrinsically connected with the fact that SO(4) is not
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a simple Lie group. Under the adjoint action of SO(4), the Lie algebra

so(4) ∼= so(3)⊕ so(3) (2.8)

splits into two irreducible components. Now Λ2R4 is isomorphic to so(4) as
SO(4)-modules, so 2.8 induces a decomposition of Λ2. Since the Hodge star
operator is SO(4)-equivariant, this splitting coincides with 2.7 by the Schur’s
lemma.

As is beautifully explained in [4], [8] and [59], this decomposition has a pro-
found impact on the geometry of dimension four. From the previous section,
we have seen that R can be broken into three irreducible pieces. Thanks to
2.7 and 2.8, the curvature operator can be further partitioned into four blocks

R =

(
W+ + s

12
r̊

r̊ W− + s
12

)
, (2.9)

where W± are the trace-free part of the corresponding blocks, acting on Λ±.
To sum up, it allows the Weyl curvature tensor defined in 2.5 to split into
self-dual and anti-self-dual parts as W = W+ ⊕W−.

2.3 Locally hyperKähler metrics

A hyperKähler manifold is a Riemannian manifold (M, g) of dimension 4m
whose holonomy group Hol(g) is contained in the compact symplectic group
Sp(m). The Lie group Sp(m) can be described as the subgroup of GL(m,H)
which perserves the standard Hermitian form on Hm, where H here denotes
the quaternions. The metric g is called a hyperKähler metric. A second
characterization of a hyperKähler manifold is a Riemannian manifold (M, g)
which is Kähler with respect to three complex structures I, J,K, satisfying
the identity for imaginary quaternions

I2 = J2 = K2 = IJK = −1. (2.10)

Such a quadruplet (I, J,K, g) is said to be a hyperKähler structure on M . For
any a, b, c ∈ R such that a2+b2+c2 = 1, the linear combination aI+bJ+cK is
also a covariantly constant complex structure on M compatible with g. There
is therefore an S2-worth of complex structures on M , with respect to which g
is Kähler. We call the operation of changing complex structures within this
2-sphere while keeping the underlying metric g fixed a hyperKähler rotation
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on M . The three associated Kähler forms are

ω1(X, Y ) = g(IX, Y ), ω2(X, Y ) = g(JX, Y ), ω3(X, Y ) = g(KX,Y ).
(2.11)

The complex 2-form ω+ = ω2 + iω3 is a holomorphic symplectic form of type
(2, 0) with respect to the complex structure I. The equivalence of the above
two definition can be seen as follows. Let i, j, k ∈ H be the basic quaternions
satisfying 2.10, then h = g + iω1 + jω2 + kω3 is a H-valued Hermitian form.
The subgroup of GL(m,H) that preserves h is precisely Sp(m), so Hol(g) is
contained in Sp(m). Conversely, if a tensor on R4m is invariant under Sp(m),
it gives rise to a covariantly constant tensor on M via parallel transport. One
can then construct three complex structures I, J,K on M as in 2.10, see [38]
for more details.

In the particular case of dimension 4, the symplectic group Sp(1) conincides
with the special unitary group SU(2). In other words, the Calabi-Yau 4-
manifolds are precisely the hyperKähler manifolds. The following theorem is
well-known.

Theorem 2.1. Let (M, g) be a compact hyperKähler 4-manifold, then M en-
dowed with any complex structure aI + bJ + cK compatible with g is biholo-
morphic to a complex torus or a K3 surface.

Proof. First, the canonical bundle KM of M with respect to aI + bJ + cK is
trivial, so all the plurigenera Pn(M) = h0(M,O(Kn)) equal 1. It implies the
Kodaira dimension of M , κ(M) is zero. By the Enriques-Kodaira classification
of compact complex surfaces, M is either a K3 surface, an Enriques surface, a
complex torus, a hyperelliptic surface, or a Kodaira surface. However, a Ko-
daira surface is never Kähler and the canonical bundle of an Enriques surface
or a hyperelliptic surface is non-trivial. Thus we conclude that M is a complex
torus or a K3 surface.

An oriented Riemannian manifold (M, g) is said to be locally hyperKähler if
the universal cover (M̃, g̃) equipped with the covering metric is hyperKähler.
From Theorem 2.1, each such (M̃, g̃) must be a complex torus or a K3 surface
with a hyperKähler metric. Our main interest in this paper is the class of
locally hyperKähler 4-manifolds. If a Riemannian 4-manifold is simply con-
nected, then the metric is hyperKähler if and only if it is Ricci-flat Kähler.
This specifically reveals that a locally hyperKähler metric must be Ricci-flat,
hence Einstein. Since the Kähler property is not preserved by covering map
in general, we will see that some locally hyperKähler 4-manifolds are indeed
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non-Kähler. In fact, there exist locally hyperKähler 4-manifolds that do not
admit any integrable complex structures. Nonetheless, most of them do admit
almost complex structures, except for the class of Hitchin manifolds, which
will be defined in the next section.

2.4 The Hitchin-Thorpe Inequality

A striking result of Hitchin in this direction gives a restriction on the topology
of Einstein manifolds.

Theorem 2.2 (Hitchin-Thorpe). Let M be a compact oriented four-dimensional
smooth manifold. If M carries an Einstein metric, then

2χ+ 3τ ≥ 0, (2.12)

where χ denotes the Euler characteristic of M and τ denotes the signature of
M . The equality is satisfied if and only if M covered by a flat torus or M is
covered by a K3 surface equipped with a hyperKähler metric.

The above inequality was independently discovered by Hitchin and Thorpe
[77], whereas the equality case was proved by Hitchin [32].

The proof of Theorem 2.2 relies on the use of Gauss-Bonnet theorem in di-
mension four

χ(M4) =
1

8π2

∫
M

(
s2

24
+ |W+|2 + |W−|2 − |̊r|2)dµ, (2.13)

and the signature formula

τ(M4) =
1

12π2

∫
M

(|W+|2 − |W−|2)dµ. (2.14)

Here W+ is the self-dual Weyl curvature and r̊ is the trace-free Ricci tensor
as defined in section 2.2. By the above identities, one sees that

2χ+ 3τ =
1

4π2

∫
M

(
s2

24
+ 2|W+|2 − r̊2) ≥ 0, (2.15)

since r̊ = 0 by the Einstein condition.

It is worth pointing out that prior to the discovery of the inequality 2.15, Berger
showed that χ(M) ≥ 0 for every Einstein 4-manifold M with equality if and
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only if M is flat. This observation is a quick corollary of the Gauss-Bonnet
formula above and the decomposition 2.9.

Combining Berger’s theorem with Theorem 2.1 from the last section, we can
rephrase the rigidity result of Hitchin as below.

Proposition 2.3 (Hitchin). A closed oriented Einstein 4-manifold M satisfies
2χ+ 3τ = 0 if and only if M is locally hyperKähler.

Lemma 2.4. If an oriented Einstein 4-manifold saturates the inequality 2.15,
then the bundle of self-dual 2-forms Λ+ is flat.

Proof. First, from the expression in 2.15, W+ and s must vanish. The curva-
ture operator R of the Levi-Civita connection on TM then maps Λ2 = Λ+⊕Λ−

to Λ−. Let R̃ ∈ Γ(Λ2 ⊗ End(Λ2)) be the curvature of the induced connection
on Λ2. For any 2-form σ on M and any vector fields u, v ∈ Γ(TM),

[R̃(u ∧ v)σ](·, ·) = −[σ(R(u ∧ v)·, ·) + σ(·,R(u ∧ v)·)]. (2.16)

Using the orthogonality of Λ+ and Λ−, we have the decomposition R̃ = R̃+ +
R̃−, where R̃+ and R̃− are the curvatures of Λ+ and Λ− respectively. If σ is
a self-dual 2-form, one checks easily that R̃+(u ∧ v)σ = 0, so Λ+ is flat.

Consider the pull-back metric on the universal cover (M̃, g̃). Since M̃ is simply-
connected and Λ+ is flat, Λ+ is a trivial bundle spanned by three linearly
independent parallel 2-forms. In section 2.2, we have seen that there is a
splitting of Λ2 = Λ+⊕Λ− as an SO(4)-module, or equivalently so(4) ∼= su(2)⊕
su(2) with respect to the adjoint action. We now show that the holonomy
group of M̃ is a subgroup of SU(2). To this end, Spin(4) = SU(2)×SU(2) acts
on so(4) via adjoint representation, in the same way as SO(4). To be more
precise, we have the factorization

Spin(4)

Ad &&

π // SO(4)

Ad′

��
Aut(so(4)),

(2.17)

where π is the natural quotient map with kernel {(1, 1), (−1,−1)}. Thus, the
pre-image G = π−1Hol(g̃) acts trivially on the first factor of su(2) and we
deduce that G ⊂ {±1} × SU(2). The holonomy group Hol(g̃) = π(G) is then
indeed a subgroup of SU(2). M̃ is therefore a hyperKähler manifold.
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Assume that M̃ is non-compact. Then M̃ must contain a geodesic line be-
cause M̃ covers a compact manifold. Using the Cheeger-Gromoll splitting
theorem, M̃ = N ×R decomposes into a direct Riemannian product, where N
is Ricci-flat and simply connected. But a Ricci-flat metric is necessarily flat in
dimension 3, so M̃ is flat. This result, together with the Bieberbach theorem,
shows that M is finitely covered by a flat 4-torus.

Now we are left with the case that (M̃, g̃) is a compact Ricci-flat manifold.
Fix a complex structure J compatible with g̃, and let ρ(·, ·) = Ric(J ·, ·) be the
Ricci form. Since (M̃, J, g̃) is Kähler, the Levi-Civita connection coincides with
the Chern connection on TM̃ . The curvature of the corresponding induced
connection on the canonical bundle KM̃ satisfies

R(u, v) = i · ρ(u, v), (2.18)

so we immediately getKM̃ is flat. Our assumption on the simply-connectedness
of M̃ then implies KM̃ can be trivialised by a parallel section. Hence M̃ is a
K3 surface.

As we will see in section 3, finding the complete list of compact flat 4-manifolds
requires one to classify the so-called torsion-free 4-dimensional crystallographic
groups. While this is a seemingly daunting group theoretic task, the class of
locally hyperKähler manifolds finitely covered by a K3 surface comprises only
three diffeomorphism types. To resolve the latter problem, suppose p : M̃ →
M is a covering map of degree d such that M̃ is a K3 surface. Here d is also
the order of the group Γ of deck transformations. The constraints imposed by
the following the identities

24 = χ(M̃) = d · χ(M), −16 = τ(M̃) = d · τ(M) (2.19)

limit the values of d to be either 1,2,4 or 8. If d = 8, then χ(M) = 3 and
b2 = 1. But this contradicts τ(M) = 2.

For any complex structure J compatible with g̃ on M̃ , by a point-wise com-
putation, the Kähler form ω = g̃(J ·, ·) can be verified to be a self-dual 2-form.
In this way, the sphere bundle SΛ+ parametrizes the set of complex struc-
tures compatible with g̃ on M̃ . By the Bochner’s formula 3.3, b1(M̃) is the
dimension of parallel harmonic 1-forms on M̃ . Taking into account the action
of Γ, b1(M) is the dimension of parallel harmonic 1-forms on M̃ preserved by
Γ. Thus both b1(M̃) and b1(M) vanish. Likewise, b+(M̃) is the dimension of
parallel harmonic self-dual 2-forms on M̃ and b+(M) is the dimension of the
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subspace of the former preserved by Γ. As b1(M) = 0, the dimension is

b+(M) =
χ+ τ

2
− 1. (2.20)

If d = 2, then b+(M) = 1. This means that, by the correlation pointed out
above, there is exactly a pair of complex structures {±J} preserved by Γ. The
group Γ is then generated by a holomorphic involution with respect to the
complex structures ±J . M is the quotient of a K3 surface (M̃, J) by a free
holomorphic Z2-action, so M is an Enriques surface.

For the case d = 4, we will show that Γ must be the Klein four-group. Assume
the contrary that Γ is the cyclic group Z4, say generated by γ. Because M̃
is spin, the oriented orthonormal frame bundle PSO(M̃) = PSO(TM̃) admits
an equivariant 2-fold cover ξ : PSpin(M̃) → PSO(M̃), which is itself a principal
Spin(4)-bundle. γ acts on M̃ by isometry, hence it also acts on PSO(M̃). This
in turn induces a lifting of γ, denoted by γ′ on PSpin(M̃). Yet this induced
action does not satisfy γ′4 = 1. Indeed, if this were true, PSpin(M̃)/Γ would be
a principal Spin(4)-bundle for M and M would be a spin manifold. However,
τ(M) = −4 should then be divisble by 16 due to the Rokhlin’s theorem.
Thus M is spinc but not spin. Under such circumstance, the induced action
is subject to γ′4 = −1. We can define an action on the principal Spinc(4)-
bundle PSpin(M̃) ×Z2 S

1 by sending (x, y) 7→ (γ′x, eiπ4y). What follows is that
we have an associated Dirac operator on M whose index equals the Â-genus.
But Â(M) can be easily computed to be −1/2, so there is no free isometric
Z4-action on a K3 surface with an Einstein metric.

Remark 2.5. There have been several improvements of the Hitchin-Thorpe
inequality, see [28], [41], [55] and [59].
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3 Flat Riemannian manifolds

3.1 The Bieberbach theorems

We start by reviewing some basic facts in Riemannian geometry.

Theorem 3.1. Let (Mn, g) be a compact flat n-dimensional Riemannian man-
ifold and let Rn be equipped with the standard flat metric gst. Then (Mn, g)
is isometric to Rn/Γ, for some subgroup Γ of the isometry group of (Rn, gst),
which acts freely and properly discontinuously.

Choose an orthonormal basis in TpM , then we can identify TpM with (Rn, gst).
Since M is flat, the exponential map expp : TpM −→ M becomes a local
isometry. Hence (TpM, ⟨·, ·⟩) can be viewed as the universal cover ofM with the
fundamental group of M , Γ acting freely and properly discontinuously. This
yields two Γ-equivariant isometries, which fit into the commutative diagram
below

(TpM, ⟨·, ·⟩)
expp

��

ϕ̃ // (Rn, gst)

��
(M, g)

ϕ // (Rn/Γ, gst)).

(3.1)

Note that each element in Γ must act by isometry on Rn, so Γ is a subgroup of
the isometry group of (Rn, gst), i.e. the Euclidean group E(n) := O(n)⋉Rn. By
the above theorem, finding all compact flat Riemannian manifolds is equivalent
to determining all such Γ ⊂ E(n) that acts properly discontinuously and freely.

This problem is a special case of the first part of the three well-known ques-
tions under the Hilbert’s eighteenth problem. It was answered affirmatively by
Bieberbach in 1910. It asks whether there are finitely many essentially differ-
ent discrete subgroups Γ ⊂ E(n) such that the coset space E(n)/Γ is compact.
We call such Γ ⊂ E(n) an n-dimensional crystallographic group or an n-space
group.

The action of a generic crystallographic group contains fixed points, and its
quotient Rn/Γ is an orbifold. Space groups whose quotients are Riemannian
manifolds correspond to those which are torsion-free. Suppose a discrete group
acts isometrically and properly, then the action free exactly when it is torsion-
free.
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Consider now the Euclidean group E(n) = O(n) ⋉ Rn. There is a natural
projection map α : E(n) −→ O(n). The image of a space group Γ is a finite
group, called the point group of Γ, or the holonomy group if Γ is torsion-free.
The kernel of α is the translation part Zn ⊂ Rn of Γ. Thus Γ admits a short
exact sequence

1 Zn Γ Φ 1.i α

What we just mentioned is part of the three Bieberbach theorems.

Theorem 3.2 (Bierberbach). Let Γ be an n-space group, then

1. Γ can be described as an extension of a finite subgroup Φ ⊂ O(n) by n
linearly independent translations Zn ⊂ Rn.

2. Let Γ′ be a space group that is isomorphic to Γ, then Γ′ is related to Γ
via conjugation by an affine transformation.

3. For each n, there are only finitely many isomorphism classes of space
groups.

Conversely, a theorem of Zassenhaus showed that each Γ obtained from such
extension can be embedded as a discrete subgroup of E(n). So Hilbert’s prob-
lem reduces to figuring out the number of extension of Φ by Zn, which is the
size of H2(Φ,Zn) .

Example 3.3. In dimenison 1, there are two crystallographic groups, the
translations Z and the infinite dihedral group Z ⋊ Z2. The orbit spaces of
which are the 1-torus and the 1-orbifold with two singularities that resemble
R/Z2 respectively.

Example 3.4. In dimension 2, the 17 crystallographic groups are also known
as the wallpaper groups. These wallpaper groups arise as the symmetries
of 2-dimensional repetitive tiling. There are two torsion-free crystallographic
groups: Z2 which yields the torus T 2, and Γ := ⟨e1, e2 , 12e1 + diag(1,−1)⟩
which gives the Klein bottle.

Example 3.5. In dimension 3, the 219 space groups are of great interest
in the study of crystals. They were first classified by Barlow, Fedorov and
Schoenfliess in the 1890s. The 10 torsion-free spaces groups were found by
Hantzsche and Wendt.
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Example 3.6. In dimension 4, Brown, Bülow, Neubüser, Wondratschek and
Zassenhaus showed that there are 4783 examples. The 74 torsion-free space
groups were computed by Calabi, Lambert and Wolf.

Remark 3.7. Each statement in Theorem 3.2 has a geometric manifestation
in terms of orbifolds, see [12].

3.2 Teichmüller space of metrics

Now given any flat metric g on T n, we know by Theorem 3.1 that g is isometric
to gst := dy1⊗dy1+· · ·+dyn⊗dyn via a diffeomorphism T n ∼= Rn/⟨v1, · · · , vn⟩.
Here ⟨v1, · · · , vn⟩ denotes the group of translations generated by vi ∈ Rn and
yi denotes the coefficient of vi. Let {e1, · · · , en} be the standard orthonormal
basis of Rn and let xi be the coefficient of ei, then we can construct a map
ϕ : Rn/⟨e1, · · · , en⟩ −→ Rn/⟨v1, · · · , vn⟩ by sendingx1...

xn

 7−→
(
v1, · · · , vn

)
·

x1...
xn

.

Note vj = αij is meant to be a column vector. The pullback of g now has the
form

g̃ := ϕ∗g =
∑
i,j

α1idxi ⊗ α1jdxj + · · ·+
∑
i,j

αnidxi ⊗ αnjdxj

=
∑
j

∑
i

α2
ijdxj ⊗ dxj +

∑
i ̸=j

∑
k

αkiαkjdxi ⊗ dxj

=
∑
i

(vi · vi)dxi ⊗ dxi +
∑
i ̸=j

(vi · vj)dxi ⊗ dxj.

The above computation shows that flat metrics on T n can be described by
n(n + 1)/2 parameters in (R+)n × Rn(n−1)/2. In matrix form, the parameters
are as follows: 

ζ11 ζ12 · · · ζ1n
ζ22 · · · ζ2n

. . . ...
ζnn

,
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with vi · vi = ζii ∈ R+ and vi · vj = ζij ∈ R for i ̸= j. Denote this space by
M(T n).

To obtain the Teichmüller space, we need to divide the space M(T n) by the
action of D0(T

n)×R+. Yet it is not hard to see that D0(T
n) acts trivially on

M(T n), so the Teichmüller space coincides with M(T n), up to homothety,

T (T n) = M(T n)/R+. (3.2)

Let Mn be an n-dimensional compact flat Riemannian manifold. By the first
Bierberbach theorem 3.2, Mn is finitely covered by a flat n-torus T n. So, flat
metrics on Mn are the flat metrics descends from T n that are invariant under
the action of the holonomy group Φ of Mn.

3.3 Affine structures

Our discussion can be understood in the context of affine structures. An affine
structure on a smooth manifold M is a maximal atlas {(Uα, ψα)} of charts
ψα : Uα → Rn whose transition functions ψα ◦ ψ−1

β are affine transformations.
Parallel translation on M yields a flat torsion-free connection on the tangent
bundle TM . Conversely, taking the exponential map of a torsion-free flat
connection recovers the above affine charts. The third characterization of an
affine structure is given by using the notion of a (G,X)-structure on M . Let X
be a real affine space and let G = Aff(X). An affine structure is equivalent to
the datum of a group homomorphism H : π1(M, p) → G and a developing map
D : M̃ → X, where M̃ is the universal cover of M , H is the monodromy of the
(G,X)-structure. The developing map is obtained via analytic continuation
of charts along paths in M and is equivariant D(γ · p) = H(γ) · D(p). It is
unique up to composition with an element of G.

We say that a (G,X)-structure is complete if D : M̃ → X is a covering
map. It is convenient to work with a complete (G,X)-structure since we can
reconstruct the underlying manifold M as the quotient X/H if X is connected,
where H is the monodromy group. For an affine manifold M , completeness
of the (G,X)-structure corresponds precisely to the geodesic completeness of
the torsion-free flat connection on TM . If, in addition, X is a Riemannian
manifold and G ⊂ Iso(X), then a (G,X)-structure is complete if and only if X
is geodesically complete with respect to the Riemannian metric. Thus, every
Bieberbach manifold is a complete affine manifold.
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Remark 3.8. The map H : π1(M) → G is called the holonomy in [79], but
we avoid this terminology here since the image of H differs from the holonomy
group of the corresponding affine connection.

Remark 3.9. There exist closed affine manifolds which are not complete.

Example 3.10. Let X := C2 \ {0} and let Φ = {λn : |λ| > 1} be the group
generated by multiplication by λ. Since Φ lies in Aff(C2), the quotient space
M := X/Φ inherits an affine structure. M is known in complex geometry as the
Hopf surface. However, this affine manifold M is not complete as the geodesics
directed towards the origin can not be extended. As a consequence, there is
no Riemannian metric on M that is compatible with the affine connection ∇.
Notice that the holonomy group Hol(M,∇) = Φ ∼= Z is infinite.

Example 3.11. Let P = □ABCD be a quadrilateral in R2. By performing
orientation-preserving similar transformations, we can identify the opposite
edges of P , gluing

−→
AB with

−−→
DC and

−−→
AD with

−−→
BC. This produces an affine

structure on the two-torus as similar transformations are affine. For a generic
choice of P , the affine structure is not complete with Hol(∇) ∼= Z2. We refer
the reader to [79] for a picture of the developing map.

We now give a more conceptual justification of our computation in section 3.2.
Let V be an n-dimensional vector space, then V inherits a natural affine struc-
ture. Given a closed flat manifold Mn, the associated crystallographic group
Γ can be regarded as a subgroup of Aff(V ). Once we fix the affine structure,
which is equivalent to a torsion-free affine connection, a compatible metric on
V can be identified with a positive definite inner product on V . Each compati-
ble metric is flat with ∇ as the Levi-Civita connection. The Teichmüller space
of flat metrics compatible with this affine structure is therefore a convex open
subset of Sym2V ∗ invariant under the action of the holonomy group Hol(Γ).
Fix a basis of V , then a positive-definite inner product on V is then a positive-
definite symmetric matrix. GL(n) acts on an inner-product by similarity with
stabilizer a conjugate of the orthogonal group O(n). Each orbit can then be
represented by a unique upper triangular matrix.
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3.4 Low dimension

3.4.1 Dimension two

From the previous section, the only compact flat 2-manifolds are the tori and
the Klein bottles.

1. Torus T 2: The Teichmüller space TT 2
∼= (R2

+ × R)/R+
∼= R2. From now

on, denote the g = αdx1 ⊗ dx1 + βdx1 ⊗ dx2 + βdx2 ⊗ dx1 + γdx2 ⊗ dx2
by the following matrix: (

α β
γ

)
.

2. Klein bottle K: A space group whose orbit space equals K is Γ :=
⟨e1, e2 , 12e1 + diag(1,−1)⟩. Let ϕ := 1

2
e1 + diag(1,−1), then a metric on

K satisfies ϕ∗g = g, i.e. (
α −β

γ

)
=
(
α β

γ

)
.

So β = 0 and TK
∼= R2

+/R+
∼= R.

Remark 3.12. The metrics on flat 2-orbifolds can be computed in the same
way.

3.4.2 Dimension three

There are 10 homeomorphism classes of closed flat 3-manifolds. Denote the six
orientable ones by M1, · · · ,M6 and the four non-orientable ones by N1, · · · ,N4.
We order these flat 3-manifolds according to the numbering given by Hantzsche-
Wendt and Wolf, see [81].

1. M1 = T 3: TT 3
∼= (R3

+ × R3)/R+
∼= R5. As in the two-dimensional case,

denote a metric g by α β γ
µ ν

θ

.
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2. M2: a crystallographic group can be chosen to be Γ := ⟨e1, e2, e3, γ =
diag(1, 1,−1) + (1

2
, 0, 0)⟩. γ∗g = g givesα −β −γ

µ ν
θ

 =

α β γ
µ ν

θ

.

It follows that β = 0 and γ = 0 and TM2
∼= (R3

+ × R)/R+
∼= R3.

3. M3: Γ = ⟨e1, e2, e3, γ =

1 0 0
0 0 −1
0 1 −1

+

1
3

0
0

⟩. γ∗g = g is equivalent to

α γ −β − γ
θ −ν − θ

µ+ 2ν + θ

 =

α β γ
µ ν

θ

.

We get γ = β = 0 and θ = µ = −2ν, so TM3
∼= R2

+/R+
∼= R.

4. M4 : Γ = ⟨e1, e2, e3, γ =

1 0 0
0 0 −1
0 1 0

+

 1
4

0
0.

⟩. γ∗g = g gives

α γ −β
θ −ν

µ

 =

α β γ
µ ν

θ

.

Solving the system, one obtains β = γ = ν = 0 and µ = θ, so TM4
∼=

R2
+/R+

∼= R.

5. M5 : Γ = ⟨e1, e2, e3, γ =

1 0 0
0 0 −1
0 1 1

+

1
6

0
0

⟩. γ∗g = g gives

α γ −β + γ
θ −ν + θ

µ− 2ν + θ

 =

α β γ
µ ν

θ

.

So β = γ and θ = µ = 2ν and TM5
∼= R2

+/R+
∼= R.
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6. M6: Γ = ⟨e1, e2, e3, γ1 =

1 0 0
0 −1 0
0 0 −1

+

1
2

0
0

 , γ2 =

−1 0 0
0 1 0
0 0 −1

+0
1
2
1
2

⟩.

γ∗i g = g givesα −β −γ
µ ν

θ

 =

α β γ
µ ν

θ

 =

α −β γ
µ −ν

θ

.

This is also known as the Hantzsche-Wendt manifold. From the above
equalities, we deduce β = γ = ν = 0 and so TM6

∼= R3
+/R+

∼= R2.

Remark 3.13. The Teichmüller space of flat metrics in dimension three was
first computed by Kang [39].

3.5 Dimension four

Now we consider the family of compact oriented flat four-manifolds. Given
such a closed flat M = R4/Γ, to compute the Teichmüller space TM , we need
to know the action of its holonomy group Φ on R4. By the Maschke’s theorem,
the group algebra R[Φ] is semisimple, in other words, every finite-dimensional
representation of Φ over R is completely reducible. So it suffices to figure out
the irreducible representations of Φ.

The representation theory of finite groups over R is similar to the represen-
tation theory over its splitting field C, but is slightly more involved. A rep-
resentation over R or C is determined by its character theory. As in the
complex case, there is a decomposition R[Φ] ∼= ⊕iEnd(Vi) known as the Artin-
Wedderburn theorem. This gives the sum of squares formula

|Φ| =
∑
i

dim2Vi
∥χVi

∥2
,

where Vi’s are the irreducible representations. Recall that a complex rep-
resentation is irreducible if and only if ∥χV ∥2 = 1. But for a real irreducible
representation, ∥χV ∥2 = 1 is not always true. The corresponding irreducibility
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criterion for a real representation is

∥χ∥2 + ν(χ) = 2,

where ν(χ) := 1
|G|

∑
g∈G χ(g

2) is the Frobenius-Schur indicator. Using the
above formulas and the orthogonality relation of characters, we can check if
a list of irreducible representations are complete. There is a more elaborate
theory of Brauer that tells us the number of irreducible representations over
R equals the sum of the number of irreducibles over C with real character
values and the number of pairs of irreducibles over C with conjugate non-real
character values.

Let b1 denote the first Betti number of M . Recall the Bochner’s formula for
1-form µa

(dd∗ + d∗d)µa = ∇∗∇µa +Rabg
bcµc, (3.3)

where Rab is the Ricci curvature of g. If µ is harmonic, then (dd∗+d∗d)µa = 0.
Since we are considering flat manifolds, the Ricci curvature Rab is identically
zero. Hence we obtain ∇∗∇µa = 0. A straightforward integration by parts
then shows that µa must be parallel. This implies b1 is precisely the dimension
of parallel harmonic 1-forms on M . So the holonomy group Φ acts trivially
on this subspace of R4 of dimension b1. It turns out in dimension 4, all the
27 orientable closed flat manifolds have b1 ≥ 1. So Φ acts non-trivially on a
subspace of dimension n ≤ 3. We show that under such circumstance, the
irreducible representations are uniquely determined by the holonomy group
Φ of Γ. An immediate corollary is that any two compact oriented flat four-
manifolds with isomorphic holonomy groups have diffeomorphic Teichmüller
spaces. Note that this does not hold in higher dimension in general since a
crystallographic group can have different irreducible decompositions.

For the 27 closed oriented flat four-manifolds, we use the holonomy groups
and H1(Z) computed by Lambert, Ratcliffe and Tschantz in [51].

Theorem 3.14. Let (M, g) be a compact oriented flat four-manifold. Then the
Teichmüller space of flat metrics on M is determined by its holonomy group
Φ. More precisely, the following holds

1. If Φ = {1}, then TM
∼= R9.

2. If Φ = Z2, then TM
∼= R5.

3. If Φ is one of Z3, Z4 or Z6, then TM
∼= R3.

4. If Φ = Z2 × Z2, then TM
∼= R3.
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5. If Φ is one of the dihedral groups D3, D4 or D6, then TM
∼= R2.

6. If Φ = A4 the alternating group of order 12, then TM
∼= R.

The proof goes in the same way as in dimension 2 and 3, except we use only
the holonomy group and the first betti number of M to deduce the action of
Γ up to equivalence.

1. O1 = T 4: TT 4
∼= (R6 ×R4

+)/R+
∼= R9. As before denote a generic metric

by the matrix 
α β γ η

µ ν ζ
τ φ

ω


2. O2,O3: The holonomy group Φ ∼= Z2 = ⟨r⟩ and H1(Oi) ∼= R2. There are

two one-dimensional irreducible representations of Z2, given by r 7→ 1

and r 7→ −1. We can assume a generator is r =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

.

r∗g = g gives


α β −γ −η

µ −ν −ζ
τ φ

ω

 =


α β γ η

µ ν ζ
τ φ

ω

,

so γ = η = ν = ζ = 0 and TO2
∼= (R4

+ × R2)/R+
∼= R5.

3. O4,O5: The holonomy group Φ ∼= Z3 = ⟨r⟩ and H1(Oi) ∼= R2. The
irreducibles include the trivial representation and the two-dimensional
anti-clockwise rotation with angle 2π/3. After changing basis, a genera-

tor can be chosen to be r =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 −1

. r∗g = g gives
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α β η −γ − η

µ ζ −ν − ζ
τ −ω − φ

τ + 2φ+ ω

 =


α β γ η

µ ν ζ
τ φ

ω

.

The parameters then satisfy γ = η = 0, ζ = ν = 0, τ = ω = −2φ, so
TO4

∼= (R3
+ × R)/R+

∼= R3.

4. O6,O7: The holonomy group Φ ∼= Z4 = ⟨r⟩ and H1(Oi) ∼= R2. There are
two one-dimensional irreducibles and one two-dimensional irreducible:
r 7→ 1, r 7→ −1 and r 7→ anti-clockwise rotation by angle π/4. A

generator can be chosen to be r =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

. r∗g = g requires


α β η −γ

µ ζ −ν
ω −φ

τ

 =


α β γ η

µ ν ζ
τ φ

ω

,

so γ = η = ν = ζ = φ = 0 and τ = ω. We obtain TO6
∼= (R3

+ ×R)/R+
∼=

R3.

5. O8: The holonomy group is Z6 = ⟨r⟩ and H1(Oi) ∼= R2. There are
two one-dimensional irreducibles: r 7→ ±1 and two two-dimensional irre-
ducibles: the anti-clockwise rotation by π/6 and π/3. Since the action of

Φ is faithful and orientation-preserving, we can pick r =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 1


as a generator. Then equating the pullback metric r∗g = g,


α β η −γ

µ ζ −ν + ζ
ω −φ+ ω

τ − 2φ+ ω

 =


α β γ η

µ ν ζ
τ φ

ω

.

Solving the system yields γ = η = ν = ζ = 0 and τ = ω = 2φ, so
TO8

∼= (R3
+ × R)/R+

∼= R3.
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6. O9, · · · ,O17: The holonomy group is the Klein four-group Φ ∼= Z2 ×
Z2 = ⟨r, s⟩ and H1(Oi) ∼= R. There is a total of four one-dimensional
irreducibles: the four combinations of r 7→ ±1 and s 7→ ±1. We can

assume r =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1.

 and s =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1.

 A generic

metric on Oi is subject to
α β −γ −η

µ −ν −ζ
τ φ

ω

 =


α β γ η

µ ν ζ
τ φ

ω

 =


α −β γ −η

µ −ν ζ
τ −φ

ω

 .

So β = γ = η = ν = ζ = φ = 0 and TOi
∼= R4

+/R+
∼= R3.

7. O18, · · · ,O20: The holonomy group is the dihedral group of order 6
D3 = ⟨r, s⟩ with rotation r and reflection s. The first homology group
is H1(Oi) ∼= R. There are two one-dimensinal irreducibles and one
two-dimensional representation. The one-dimensional irreducibles are
the trivial one and r 7→ 1, s 7→ −1. The two dimensional irreducible
is the standard one. Up to equivalence, the generators must be r =
1 0 0 0
0 1 0 0

0 0 −1
2

−
√
3
2

0 0
√
3
2

−1
2

 and s =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

. r∗g = g = s∗g yields

two equations
α β 1

2
(−γ +

√
3η) −1

2
(
√
3γ + η)

µ 1
2
(−ν +

√
3ζ) −1

2
(
√
3ν + ζ)

1
4
(τ − 2

√
3φ+ 3ω) 1

4
(
√
3τ − 2φ−

√
3ω)

1
4
(3τ + 2

√
3φ+ ω)

 =


α β γ η

µ ν ζ
τ φ

ω

 =


α −β −γ η

µ ν −ζ
τ −φ

ω

 .

Then γ = η = ζ = ν = φ = β = 0, so TOi
∼= R3

+/R+
∼= R2.

8. O21 · · · ,O24: The holonomy group is D4 = ⟨r, s⟩ with r denotes the rota-
tion and s denotes the reflection. The first homology group H1(Oi) ∼= R.
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There are four one-dimensional irreducibles given by r 7→ ±1, s 7→ ±1
and a standard two-dimensional irreducible representation. The genera-
tors can be chosen to be

r =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 and s =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . r∗g = g = s∗g imposes


α β η −γ

µ ζ −ν
ω −φ

τ

 =


α β γ η

µ ν ζ
τ φ

ω

 =


α −β γ −η

µ −ν ζ
τ −φ

ω

 .

So TOi
∼= R3

+/R+
∼= R2.

9. O25: The holonomy group is D6 = ⟨r, s⟩ and H1(O25) ∼= R. D6 has
four one-dimensional irreducible representations, given by the combina-
tions of r 7→ ±1 and s 7→ ±1, and two two-dimensional irreducibles.
One is the standard two-dimensional representation of D6 and the other
is obtained from the composing D6 7→ D3 (r 7→ r2, s 7→ s) with the
standard representation of D3. The generators can be chosen to be

r =


1 0 0 0
0 1 0 0

0 0 1
2

−
√
3
2

0 0
√
3
2

1
2

 and s =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

. r∗g = g = s∗g gives


α β 1

2
(γ +

√
3η) 1

2
(−

√
3γ + η)

µ 1
2
(ν +

√
3ζ) 1

2
(−

√
3ν + ζ)

1
4
(τ + 2

√
3φ+ 3ω) 1

4
(−

√
3τ − 2φ+

√
3ω)

1
4
(3τ − 2

√
3φ+ ω)

 =


α β γ η

µ ν ζ
τ φ

ω

 =


α −β −γ η

µ ν −ζ
τ −φ

ω

 .

We get β = γ = η = ν = ζ = φ and τ = ω, so TO25
∼= R3

+/R+
∼= R2.

10. O26, O27: The holonomy group is the alternating group A4
∼= V4 ⋊ Z3

and H1(Oi) ∼= R, where V4 is the Klein four-group. If we view A4 as
subgroup of S4 acting on {1, 2, 3, 4}, then V4 ⊴ A4 can be identified with
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{(12)(34), (13)(24), (14)(23), (1)} and Z3 = ⟨(123)⟩. A4 is generated by
r = (12)(34) and s = (123). Over the reals, A4 has three irreducibles,
with degree one, two and three respectively. The action of Φ must be
equivalent to the three-dimensional irreducible given by the permutation
on {e1, e2, e3, e4}. This has one-dimensional fixed subspace Span{e1 +

e2 + e3 + e4}. So the action is equivalent to r =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and

s =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

. r∗g = g = s∗g gives


µ β ζ ν

α η γ
ω φ

τ

 =


α β γ η

µ ν ζ
τ φ

ω

 =


τ γ ν φ

α β η
µ ζ

ω

 .

So we obtain α = τ = µ = ω and β = γ = ν = η = φ = ζ. The
Teichmüller space TO ∼= (R× R+)/R+

∼= R.

An algebraic description of the Teichmüller space of flat metrics was given in
the elegant work of Bettiol, Derdzinski and Piccione [12].

Theorem 3.15 (Bettiol, Derdzinski, Piccione). Let O be a closed flat orbifold
and let Wi, 1 ≤ i ≤ l, be the isotypical components of the orthogonal rep-
resentation of its holonomy group. Then the Teichmüller space together with
homothety is

R+ × TO ∼=
l∏

j=1

GL(nj,Kj)

O(nj,Kj)
,

where R+ acts by rescaling. Each Kj stands for R, C or H, according to the
irreducibles in Wi being real, complex or quaternionic type.

This theorem allows one to read off the Teichmüller space once the representa-
tion of the holonomy group Φ is known. We will use their method to verify our
theorem about the Teichmüller spaces of closed oriented flat four-manifolds.

1. O1 = T 4: Φ = {1} acts trivially on R4. So Φ has one isotypical compo-
nent consists of four trivial irreducibles and TT 4

∼= GL(4,R)
O(4)

/R+
∼= R9.
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2. O2,O3: Φ ∼= Z2. Φ has two isotypical components. One consists of two
one-dimensional trivial representations and the other consists of two one-
dimensional sign representations. So TOi

∼= [GL(2,R)
O(2)

× GL(2,R)
O(2)

]/R+
∼= R5.

3. O4, · · · ,O8: Φ is one of Z3, Z4 or Z6. In this case, each of the action of
the holonomy group has two one-dimensional trivial representations and
a two-dimensional rotation, which is of complex type since ∥χV ∥2 = 2.
So TOi

∼= [GL(2,R)
O(2)

× GL(1,C)
U(1)

]/R+
∼= R3.

4. O9, · · · ,O17: Φ ∼= Z2 × Z2. The action of Φ has four distinct one-
dimensional irreducible representation. The Teichmüller space TOi

∼=
[GL(1,R)

O(1)
× GL(1,R)

O(1)
× GL(1,R)

O(1)
× GL(1,R)

O(1)
]/R+

∼= R3.

5. O18, · · · ,O25: Φ is one of the three dihedral groups D3, D4 and D6.
There are three isotypical components. Each action of Φ decomposes
into the trivial one-dimensional representation, the sign representation
and the standard two-dimensional representation. The standard two-
dimensional representation is of real type since ∥χV ∥2 = 1. So TOi

∼=
[GL(1,R)

O(1)
× GL(1,R)

O(1)
× GL(1,R)

O(1)
] ∼= R2.

6. O26,O27: The action of Φ ∼= A4 decomposes into the trivial one-dimensional
representation and the irreducible three dimension representation, which
is of real type since ∥χV ∥2 = 1. So there are two isotypical components
and TOi

∼= [GL(1,R)
O(1)

× GL(1,R)
O(1)

]/R+
∼= R.

3.6 Period map for metrics

We now describe the period map picture for the flat torus T 4. Let R4 be its
universal cover and let g0 =

∑i=4
i=1 dxi ⊗ dxi be the standard flat metric. First,

the second cohomology can be easily computed H2(T 4,R) = Λ2H1(T 4,R) =
R6 using the Künneth formula. We claim that b+ = b− = 3. To see this,
observe that

θ1 = dx1∧dx2+dx3∧dx4, θ2 = dx1∧dx3+dx4∧dx2, θ3 = dx1∧dx4+dx2∧dx3

are self-dual harmonic two-forms on R4 which descend to T 4. Likewise we
define anti-self-dual harmonic two-forms on T 4

θ4 = dx1∧dx2+dx4∧dx3, θ5 = dx1∧dx3+dx2∧dx4, θ6 = dx1∧dx4+dx3∧dx2.
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Alternately, one could start with two-forms defined at a point as above then
parallel transport to the whole torus T 4. This is well-defined as the holonomy
group of T4 is trivial. It follows that b+ = b− = 3.

Fix a flat metric g on T 4, the corresponding self-dual harmonic two-forms
H+(g) in H2(X,R) is an oriented and maximal positive three-dimensional
subspace. There is then a natural period map from the Teichmüller space PT :
T (T 4) → Gr+3 (H

2(T 4,R)) to the Grassmannian of oriented positive definite
three-planes. Furthermore, the group of self-diffeomorphisms D(T 4) acts on
the Teichmüller space T (T 4), so we have the following diagram

T (T 4)

π

��

PT // Gr+3 (H
2(T 4,R))

��
E(T 4)

PE // ΓT 4 \ SO+(3, 3)/ SO(3)× SO(3),

where ΓT 4 is the isometry group of H2(T 4,Z) with its intersection form.

Analogs of the above period maps will be used extensively in the following
sections.

3.7 Relation with Kähler geometry

Remark 3.16. Let M be a compact oriented flat four-manifold. The fact
that Euler characteristic vanishes χ(M) = 0 follows from the Gauss-Bonnet
formula 2.13. This means that b1 is greater than zero. On the other hand, the
Bochner theorem gives an upper bound for b1 = dimH1(M,R) ≤ dimM = 4.
We further note that b1 cannot be three. If there are three linearly independent
parallel harmonic one-forms µ1, µ2, µ3 on M , we can define another one-form
ν using the metric by requiring ν to be perpendicular to all the µi’s. This ν
is also parallel and harmonic, so b1 = 4 in this case. To sum up, there are
exactly three possible values for the first Betti number b1 on a compact flat
oriented four-manifold.

Theorem 3.17. A compact flat oriented four-manifold M is Kähler if and
only if b1 = 2 or 4.

Proof. If M is Kähler, there is a decomposition H1(M,C) = H1,0(M) ⊕
H0,1(M), with H1,0(M) = H0,1(M). Putting together this observation with
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Remark 3.16, we see that b1 = 2 or 4. Conversely, let M be a compact ori-
ented flat manifold with b1 = 4. The holonomy group Hol(M) is then trivial.
If b1 = 2, then Hol(M) is reduced to SO(2). In both cases, the holonomy
group is contained in the unitary group U(2), so M is Kähler.

We will illustrate the compact flat four-manifolds in Theorem 3.17 with b1 = 2
using seven classes of compact complex surfaces known as the hyperelliptic
surfaces. A hyperelliptic surface is a complex surface (E × F )/G, where E,
F are elliptic curves, G is a finite group acting freely on E × F such that G
belongs to the group of translations of E and F/G ∼= P1. It is immediate from
definition that every hyperelliptic surface is finitely covered by an Abelian
variety. A hyperelliptic surface is also called bi-elliptic since its Albanese
morphism is an elliptic fibration to an elliptic curve. There is a classification
result due to Bagnera-de Franchis. For E ∼= C/Γ, every hyperelliptic surface
is one of the following.

Types Γ G Action of G on E
Ia Any Z2 e 7→ −e
Ib Any Z2 ⊕ Z2 e 7→ −e, e 7→ e+ e1, −e1 = e1
IIIa Z⊕ Zω Z3 e 7→ ωe
IIIb Z⊕ Zω Z3 ⊕ Z3 e 7→ ωe, e 7→ e+ e1, ωe1 = e1
IIa Z⊕ Zi Z4 e 7→ ie
IIb Z⊕ Zi Z4 ⊕ Z2 e 7→ ie, e 7→ e+ e1, ie1 = e1
IIIc Z⊕ Zω Z6 e 7→ −ωe

The above table is taken from [6], with ω denoting a primitive cube root
of unity. The holonomy groups for hyperelliptic surfaces of types {Ia, Ib},
{IIIa, IIIb}, {IIa, IIb}, {IIIc} are Z2, Z3, Z4, Z6 respectively. All these holon-
omy groups are subgroups of SO(2) ⊂ U(2), so all such complex surfaces are
Kähler. Nevertheless, they are not contained in SU(2). Hence none of them
is hyperKähler. One could also verify this fact by considering the canonical
bundle. In fact, the order of the canonical bundle is exactly the size of the
holonomy group. These seven families of hyperelliptic surfaces correspond to
the compact flat oriented manifolds O2, · · · ,O8 in the proof of Theorem 3.14.
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4 Almost complex structures and semi-complex
structure on flat manifolds

In this section, we digress briefly to discuss two generalizations of integrable
complex structures. LetM be a compact oriented smooth manifold. An almost
complex structure J on M is a section of the bundle Γ(TM ⊗T ∗M) such that
J2 = −1 on TxM for every x ∈M .

Proposition 4.1. For a Bieberbach manifold M , b1 = 1 if and only if b+2 = 0.

Proof. From the formulas for Euler characteristic 2.13 and signature 2.14, we
obtain b+2 = b1 − 1.

To prove the next theorem, we will need the following result.

Proposition 4.2 (Wu). A compact oriented four-manifold W admits an al-
most complex structure J with c1(W,J) = h if and only if

1. h2 = 2χ+ 3τ

2. h ≡ w2 mod 2

Lemma 4.3. A Bieberbach manifold M with b1 = 1 admits an almost complex
structure.

Proof. It is sufficient to check the existence of an h ∈ H2(M,Z) satisfying
the two criteria in Wu’s theorem. Our assumption b1 = 1 implies that b2 = 0.
Hence H2(M,Z) consists only of torsion elements, h2 = 0 is then obvious. The
existence of a lift of w2 is automatic since every oriented four manifold admits
a spinc structure.

Theorem 4.4. All Bieberbach manifolds admit almost complex structure.

Proof. From Remark 3.16, the first Betti number of M must have value either
1, 2 or 4. The Bieberbach manifolds with b1 even were shown to be Kähler in
Theorem 3.17. The remaining case b1 = 1 follows from the above lemma.

A semi-complex structure on M is a one-dimensional subbundle L ⊂ TM ⊗
T ∗M such that in a neighborhood of any point p ∈ M , L is spanned by an
integrable complex structure, see [61]. Suppose M is equipped with a semi-
complex structure, then locally near any point, the subbundle L is generated
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by two complex structures J and −J . M therefore naturally has an atlas of
charts whose transition functions are either holomorphic or anti-holomorphic.
There is an alternative way to describe a semi-complex structure which is
very convenient for our purpose. Take the line bundle L in the definition and
define M ′ to be the sphere bundle of L, which is evidently a complex manifold.
Interchanging the two sheets gives rise to a free anti-holomorphic action on M ′.
Conversely, a complex manifold with a free anti-holomorphic involution yields
a semi-complex structure. Thus, a semi-complex manifold is equivalently a
complex manifold together with a free anti-holomorpic involution.

Example 4.5. A non-orientable surface (X, [g]) with a fixed conformal class
of metrics does not admit any compatible almost complex structure. But there
exists a unique semi-complex structure on X compatible with [g].

Proposition 4.6. An oriented Bieberbach manifold M whose holonomy group
is a dihedral group has a semi-complex structure.

Proof. We will use the notation employed in the preceding section. The possi-
ble holonomy groups Φ are D2, D3, D4 and D6. Choosing an appropriate set
of basis, the rotation r and reflection s has the following form.

r =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 and s =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

Now let M̃ be the smooth manifold T 4/⟨r+ v⟩ and let M = T 4/⟨r+ v, s+w⟩,
where v and w are translations so that r + v and s + w belong to the corre-
sponding Bieberbach group. M̃ is naturally a complex surface with holonomy
group ⟨r⟩. The quotient map q : M̃ → M then exhibits M̃ as a double cover
of M obtained via the action of an anti-holomorphic involution.

Remark 4.7. The double cover M̃ is in fact a hyperelliptic surface. Our
proof shows that oriented Bieberbach manifolds with holonomy groups D2, D3,
D4 and D6 are covered by hyperelliptic surfaces of types {Ia, Ib}, {IIIa, IIIb},
{IIa, IIb}, {IIIc}, respectively.

Lemma 4.8. If an oriented Bieberbach manifold M4 is a complex manifold,
then it is of Kähler type.
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Proof. Such a flat manifold M is finitely covered by a complex torus. Every
complex torus is of Kähler type as the first Betti number is even. Using
an averaging argument, one could show that any complex manifold finitely
covered by a Kähler manifold is itself of Kähler type.

Proposition 4.9. An oriented Bieberbach 4-manifold M does not admit any
semi-complex structure if the holonomy group of M is the alternating group
A4.

Proof. First, notice that Hom(π1(M),Z2) = H1(M,Z2) = Z2. Thus, M has a
non-trivial double cover. We can see this more explicitly. Since the first Betti
number b1 = 1, there exists a fibration f :M → S1 whose fiber is flat. Now S1

has a natural double cover p : S1 → S1, so the pullback bundle p∗M is a double
cover of M . Assume the contrary that M has a semi-complex structure. Then
there is a double cover M̃ →M which is a complex manifold. Pulling back the
standard metric on M , we see that M̃ is flat, so M ∼= R4/Γ and M̃ ∼= R4/Γ̃ for
some torsion-free Bieberbach groups Γ and Γ̃. A complex Bieberbach manifold
must be of Kähler type by Lemma 4.8. Theorem 3.17 in turn gives b1 = 2
or 4. This implies M̃ is either a complex torus T 4 or a hyperelliptic surface.
The holonomy group of Γ̃ is then one of {1}, Z2, Z3, Z4 or Z6. The covering
involution σ is naturally an isometry, so it belongs to Γ. Now we can write
it as σ = A + v, where A ∈ O(4) and v ∈ R4. From our construction, A and
the holonomy group Hol(Γ̃) generate the holonomy group Hol(Γ) of M . We
can eliminate the case that Hol(Γ̃) = Z6 because A4 has no subgroup of order
6. Finally, if Hol(Γ̃) is either {1}, Z2, Z3 or Z4, |⟨Hol(Γ̃), σ⟩| ≤ 8 < 12. This
gives the required contradiction.

We will give another proof of the above theorem by analyzing our problem
through the lens of affine structures, see section 3.3 for definition.

Take an oriented Bieberbach manifold whose holonomy group is A4. Assume
that M is equipped with a semi-complex structure, so there is a double cover
π :M ′ →M which is a complex manifold. M ′ admits a finite cover θ : N →M ′

diffeomorphic to the four-torus T 4. N inherits a complex structure from M ′ by
pulling back. To endow N with an affine structure, we consider the Albanese
morphism ϕ : N → Alb(N) ∼= H0(N,Ω1

N)
∗/H1(N,Z). The Albanese variety is

itself a complex torus of complex dimension h1,0 = 2. By the universal property
of the Albanese variety, we easily see that ϕ is a biholomorpshim. Hence we
have the isomorpshim N ∼= Alb(N) ∼= C2/Λ for some full-rank lattice Λ.
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Notice that C2/Λ is a Kähler manifold with a torsion-free flat connection ∇,
a complex structure J and a flat metric g, each compatible with one another.

N

θ
��

∼= // C2/Λ
α

ww
β

��

M ′

π
��
M

(4.1)

Lemma 4.10. Biholomorphisms and anti-biholomorphisms of C2/Λ are affine.

We omit the proof of this lemma as it is shown in many texts in complex
analysis.

Now the covering transformations for α : C2/Λ → M ′ are biholomorphic, so
must be affine by Lemma 4.10. This implies the affine structure on C2/Λ
descends to M ′. Since the group of covering transformations is finite, we can
define a new metric g′ by averaging, i.e. g′ =

∑
µ µ

∗g. This new metric is
invariant under the action of all covering transformations, so g′ descends to a
metric on M ′. The triplet (∇, J, g′) on M ′ is again pairwise compatible.

Next, we will apply similar arguments for the covering β : C2/Λ → M . All
covering transformations of β are affine by Lemma 4.10 as they are either
biholomorphic or anti-biholomorphic map. Unlike the preceding case α : C2 →
M ′, the complex structure does not descend to M . But the compatibility
between the semi-complex structure, the torsion-free affine connection and the
metric persists. A semi-complex structure can be viewed as a section Φ of
the bundle End(TM) ⊗ End(TM). Indeed, we simply define Φ to be J ⊗ J
locally. Then ∇Φ = 0 follows from ∇J = 0. We define a new metric g̃ on
M by averaging over the covering transformations as before. This metric is
locally Kähler on M . As a consequence, the holonomy group of M belongs to
(U(2)⋊ Z2) ∩ SO(3), giving a contradiction.
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5 HyperKähler metrics on K3 surfaces

In this section, our goal is to review the moduli theory of complex structures
and Einstein metrics for K3 surfaces.

A compact connected complex surface X is called a K3 surface if it is simply
connected and has trivial canonical bundle. Since c1(X) = 0 and b1 = 0,
by the Riemann-Roch theorem, we get c2(X) = 24, so H2(X,Z) is torsion-
free with rank 22. From the Hirzebruch signature formula, we see that the
signature τ(X) equals -16. Hence H2(X,Z) is an indefinite unimodular lattice
with signature (3,19). But such a lattice is unique up to isometry, so we must
have H2(X,Z) ∼= E8(−1)⊕2⊕U⊕3. Here E8(−1) is the negative definite rank 8
lattice equipped with the inner product coming from the Cartan matrix of E8

and U is the rank 2 hyperbolic lattice, with inner product given by
(
0 1
1 0

)
.

From now on, let L denote the K3 lattice E8(−1)⊕2 ⊕ U⊕3.

5.1 Moduli space of complex structures

The material here is taken from [36]. The local structure of the moduli space
of complex structures for K3 surfaces is known to be smooth from the Kodaira-
Spencer theory as the obstruction space H2(X, TX) = 0. However, the global
structure is vastly more complicated and badly behaved. To probe the struc-
ture of this moduli space, we will appeal to the theory of period map and the
period domain. The latter parametrizes the Hodge structures of the corre-
sponding K3 surface.

Definition 5.1. The open subset of the following quadric in P21

Ω := {x ∈ P(LC) : (x, x) = 0, (x, x) > 0}

is called the period domain associated with L.

By a famous theorem of Siu [75], every K3 surface X is Kähler. So the coho-
mology of X admits a decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

For a K3 surfaceX0, a marking is a choice of lattice isomorphism φ : H2(X0,Z) →
L. Let f : X → S be the Kuranishi family of X0. Then a chosen marking φ
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induces canonical markings for all fibers H2(Xs,Z) ∼= L. In other words, the
locally constant system R2f∗Z ∼= H2(X0,Z) is constant.

The local Torelli theorem, attributed to Andreotti and Weil by Kodaira, marks
the beginnning of the study of moduli theory for K3 surfaces, see [42], [36] and
[6].

Theorem 5.2 (Local Torelli Theorem). The local period map PS : S → P(LC)
sending

s 7→ [φC(H
2,0(Xs))], (5.1)

is a local isomorphism, where LC := L⊗ZC and φC are both complexifications.

The moduli space of marked K3 surfaces is defined to be

N = {(X,φ)}/ ∼,

where (X,φ) ∼ (X ′, φ′) if there is an isomorphism f : X −→ X ′ such that
φ ◦ f ∗ = φ′. N can be given a complex manifold structure as follows. For a
marked K3 surface (X,φ), let X → S be its universal Kuranishi family. We
take the collection of these Kuranishi families as complex charts on N . By
the local Torelli theorem, S can be embedded in Ω via the local period map.
Suppose X′ → S ′ is the Kuranishi family for some (X ′, φ′), then we can glue
S and S ′ according to their images in the period domain if PS(S)∩PS′(S ′) is
non-empty.

Remark 5.3. N is non-Hausdorff, as shown by Atiyah in [3]. Consider the
quadric cone Q in C4 defined by z1z4 − z2z3 = 0. Blowing up Q gives a
birational morphism Q̃→ Q with exceptional divisor P1×P1. Q̃ is isomorphic
to the bundle O(−1,−1) → P1 × P1. Denote the homogeneous coordinates of
the first P1 by [α : β], the second one by [µ : ν]. Then elements of O(−1,−1)

can be represented by the matrix
(
αµ αν
βµ βν

)
. If we project onto the first P1,

the resulting threefold W1 is isomorphic to the bundle O(−1) ⊕ O(−1) →
P1. Similarly, projecting onto the second factor yields a threefold W2 that is
isomorphic to O(−1)⊕O(−1) → P1. This construction produces a birational
map W1 99K W2 which cannot be extended to a morphism. This example
is known as a flop in birational geometry. Atiyah’s construction shows we
can blow up a node in two different ways and get two distinct families of K3
surfaces. However, these two families are related by a flop and agree outside
one point on the base. Hence N cannot be Hausdorff.
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The two foundational results that form the backbone of the moduli theory for
K3 surfaces are the global Torelli Theorem and the surjectivity of the period
map. We state them here for they will be used repeatedly in the following
sections.

Theorem 5.4 (Global Torelli Theorem). Two K3 surfaces X and X ′ are
isomorphic if and only if there exists a Hodge isometry H2(X,Z) ∼= H2(X ′,Z).
If ϕ : H2(X ′,Z) → H2(X,Z) is an effective Hodge isometry then ϕ is induced
by a unique isomorphism f : X → X ′.

The above theorem implies that the global period map P is generically injec-
tive, which means P is injective on a Zariski open subset on each component
of N . The Torelli Theorem can be deduced from the fact that the monodromy
group of a fixed K3 surface has index 2 in the group of isometries O(H2(X,Z)),
which in turn shows that N has exactly two components. The Torelli theorem
for algebraic K3 surfaces was discovered by Piatetski-Shapiro and Shafarevich
[72]. The case for general complex K3 surfaces is due to Burns and Rapoport
[16].

Theorem 5.5 (Surjectivity of the period map). The global period map

P : Ni → Ω, (5.2)

is surjective, where Ni is any connected components of N .

The Calabi-Yau theorem is important in the theory of K3 surfaces for it implies
any K3 surface can be given a hyperKähler structure. This is used by Todorov
in [80] to attain a proof of the surjectivity theorem. Subsequent proofs are
given by Looijenga [62] and Huybretchs [37].

5.2 Einstein metrics on K3 surfaces

First, we note that, by Theorem 2.2, any Einstein metric on a K3 surface is
necessarily hyperKähler. Second, any K3 surface was shown by Kodaira to be
deformation equivalent to a quartic in P3, so in particular there is a unique
diffeomorpshim type for K3 surfaces. Thus, to study the Einstein moduli
space on K3 surfaces, there is no loss of generality by considering the space of
hyperKähler metrics on a fixed K3 surface X.

We will go along with the convention in [16], [40] and [63].
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Definition 5.6. Take an [x] ∈ Ω, we define

∆(x) = {δ ∈ L : (δ, x) = 0, (δ, δ) = −2},

V (x) = {ω ∈ LR : (ω, x) = 0, (ω, ω) = 1},

V∆(x) = {ω ∈ V (x) : (ω, δ) ̸= 0 for every δ ∈ ∆}.

∆(x) is called the set of roots associated with x. Geometrically, if we identify
L with H2(X,Z) for some K3 surface X, then either δ or −δ is effective by
the Riemann-Roch theorem. V (x) and V∆(x) contain the Kähler classes with
unit norm.

Next, we introduce marked polarized space and the polarized period domain.

Definition 5.7. The polarized period domain is defined to be

KΩ = {(ω, [x]) ∈ LR × Ω : ω ∈ V (x)},

KΩ0 = {(ω, [x]) ∈ LR × Ω : ω ∈ V∆(x)}.

KΩ0 is an open subset in KΩ.

Definition 5.8. The moduli space of marked polarized K3 surfaces is

M = {(X,ω, φ) : ω a unit-norm Kähler class on X,φ a marking}/ ∼,

where (X,ω, φ) ∼ (X ′, ω′, φ′) if there exists an isomorphism f : X → X ′ such
that f ∗ω′ = ω and φ ◦ f ∗ = φ′. This allows us to define the polarized period
map PM : M → KΩ by sending (X,ω, φ) 7→ (φR(ω), [φC(H

2,0(X))]).

Definition 5.9. The Teichmüller space of marked K3 manifolds with smooth
hyperKähler metrics is defined as

N = {(X, g, φ) : g a unit-volume hyperKähler metric on X}/ ∼,

where (X, g, φ) ∼ (X ′, g′, φ′) if there exists a diffeomorphism f : X → X ′

such that f ∗g′ = g and φ ◦ f ∗ = φ′. We can define a period map PN :
N → Gr+3 (LR) by sending (X, g, φ) 7→ φ(H+(g)), where H+(g) is the space of
self-dual harmonic two-forms on X.

Remark 5.10. Definition 5.8 admits a generalization to incorporate K3 sur-
face with ADE singularities, i.e. compact connected complex surface with sim-
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ple singularities whose minimal resolution is a K3 surface. Denote the moduli
space of marked polarized ADE K3 surfaces as M̃ and the corresponding po-
larized period map as PM̃ : M̃ → KΩ. Similarly, we can extend definition
6.14 to include orbifold hyperKähler metrics. Denote the Teichmüller space of
marked ADE K3 surfaces with orbifold Ricci-flat metrics by Ñ and the period
map as PÑ : Ñ → Gr+3 (LR), see [40] for details.

The ensuing result combines the Torelli theorem and Surjectivity of period
map for the marked polarized K3 surfaces.

Theorem 5.11 (Looijenga). The polarized period map PM : M → KΩ0 is a
bijection.

If we include the orbifold K3 surfaces with ADE singularities M̃, the above
bijection also extends. This M̃ is the completion of M with respect to the
Gromov-Hausdorff topology or the L2-metric of Anderson. The polarized pe-
riod map PM̃ is an isometry between the L2-metric on M̃ and the locally
symmetric metric on KΩ.

Theorem 5.12 (Morrison). The polarized period map PM̃ : M̃ → KΩ is a
bijection.

Building on Morrison’s work, Kobayashi and Todorov gave an explicit descrip-
tion of the moduli space of orbifold Einstein metrics on a K3 surface X.

Theorem 5.13 (Kobayashi,Todorov). PÑ : Ñ → Gr+3 (LR) is a bijection. The
orbifold Einstein moduli space

Ẽ = {(X̃, g̃) : X̃ an ADE K3 surface with orbifold Ricci-flat metric g̃}/ ∼

is therefore diffeomorphic to

Γ \ SO+(3, 19)/ SO(3)× SO(19),

where Γ is the isometry group of the K3 lattice.

The set of orbifold metrics with simple singularities is a countable union of
submanifolds of codimension 3 [40]. Removing this set we see that the Einstein
moduli space for a K3 surface is connected.

Theorem 5.14. The Einstein moduli space E(X) for a K3 surface X is path-
connected.

45



Proof. First, we note that the above period maps fit into the following diagram

M

α

��

PM // KΩ

π
��

N
PN // Gr+3 (LR),

(5.3)

where α : (X,ω, φ) 7→ (X, g, φ) is obtained via the Calabi-Yau theorem and π :
(ω, [x]) 7→ (ω,Re(x), Im(x)). By Theorem 5.11, Theorem 5.12 and Theorem
5.13, it suffices to show that the image of KΩ \KΩ0 under π has codimension
three in Gr+3 (LR). But

KΩ0 = KΩ \
⋃

δ2=−2

δ⊥ × [δ⊥ ⊕ i · δ⊥].

So for each δ ∈ L with δ2 = −2, π(δ⊥×[δ⊥⊕i·δ⊥]∩KΩ) = Gr+3 (δ
⊥
R ) ⊂ Gr+3 (LR)

is a submanifold in Gr+3 (LR) of codimension three. Since PN : N → Gr+3 (LR)
is a bijection onto its image, from the diagram (5.3),

N ∼= Gr+3 (LR) \
⋃

δ2=−2

Gr+3 (δ
⊥
R ),

so N is path-connected. Now observe that there is a natural action of Γ on N so
that the quotient forgets the markings. Hence N/Γ ∼= E(X) is path-connected
as well.

Remark 5.15. One could define a period map for metric without using the
markings as follows. Fix a hyperKähler metric g on a K3 surface X, the corre-
sponding self-dual harmonic two-forms H+(g) in H2(X,R) is an oriented and
maximal positive three-dimensional subspace. This yields a well-defined map
from the Teichmüller space P : T (X) → Gr+3 (H

2(X,R)) to the Grassmannian
of oriented positive definite three-planes. Considering the action of D(X), we
get another map and the following diagram

T (X)

π

��

PT // Gr+3 (H
2(X,R))

��
E(X)

PE // Γ \ SO+(3, 19)/ SO(3)× SO(19),

where Γ is the isometry group of the K3 lattice, H2(X,Z) with its intersection
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form.
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6 Locally hyperKähler metrics on Enriques sur-
faces

An Enriques surface Y is a compact connected surface such that the irreg-
ularity q(Y ) = 0 and the canonical bundle KY has square K⊗2

Y = OY but
KY ̸= OY . Every Enriques surfaces is projective and admits an elliptic fibra-
tion over P1.

By the condition K⊗2
Y = OY , Y does not admit non-zero global holomorphic

two-form and the first Chern class satisfies c1(Y )2 = 0. Hence the geometric
genus pg(Y ) vanishes and χ(OY ) = 1. Using the Noether’s formula, we obtain
the Euler characteristic χ(Y ) = 12. On the other hand, H1(Y,Z) contains
a non-trivial two-torsion element so Y admits an unramified double cover
ϖ : X → Y such that KX = ϖ∗KY = OX . From χ(X) = 2χ(Y ) = 24, the
Noether’s formula yields q(X) = 0, i.e. dimH1(X,OX) = 0. X is therefore a
K3 surface. The above argument shows that every Enriques surface Y arises
as the quotient of a K3 surface by a Z2 action generated by a holomorphic
involution ρ on X. The signature of Y is τ(Y ) = 1/2 · τ(X) = −8. H2(Y,Z) is
then a unimodular indefinite lattice of signature (1, 9), soH2(Y,Z) = E8(−1)⊕
U .

6.1 Moduli space of complex structure

The theory of Enriques surfaces can be subsumed under the theory of algebraic
K3 surfaces. For an Enriques surface Y , the Hodge number H2,0(Y ) = 0, so
one has to pass to its universal cover X to define a period map for the complex
structure. For all the universal covers X are algebraic, we expect the period
domain for Enriques surface to be a proper subset of the period domain Ω
for K3 surfaces that is invariant under the action of the involution. Take
any holomorphic two-form α on X, then ρ∗α = −α since Y has no non-zero
global holomorphic two-form. Suppose γ ∈ H2(X,Z) is a two-cycle such that
ρ∗γ = γ, then ∫

γ

α =

∫
ρ∗γ

ρ∗α, (6.1)

implying the integral must vanish. The complex structure on Y is captured
by the period over cycles with ρ∗γ = −γ.

Theorem 6.1 (Horikawa). Any two Enriques surfaces are deformation equiv-
alent.
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Deformation equivalence is important for the theory of Enriques surfaces as
it allows one to have a “canonical ”involution for the induced action ρ on
H2(X,Z) after choosing a suitable marking. This was observed by Horikawa
in [34]. Recall the K3 lattice is

L = E8(−1)⊕ E8(−1)⊕ U ⊕ U ⊕ U.

Let ζ : L→ L be the involution sending

(x, y, u, v, w) 7−→ (y, x, v, u,−w),

then the +1-eigenlattice L+ and the −1-eigenlattice L− are{
L+ = {(x, x, y, y, 0) ∈ L} = E8(−2)⊕ U(2),

L− = {(x,−x, y,−y, z) ∈ L} = E8(−2)⊕ U(2)⊕ U.
(6.2)

Proposition 6.2 (Horikawa). For each Enriques surface Y , let X be its cover-
ing K3 surface X and ρ be the covering involution. Then there exists a lattice
isomorphism φ : H2(X,Z) → L such that

φ ◦ ρ∗ = ζ ◦ φ. (6.3)

We will now introduce the appropriate marked moduli spaces and period do-
mains for Enriques surfaces.

Definition 6.3. A marked Enriques surface is a pair (Y, φ), where Y is an
Enriques surface and φ : H2(X,Z) → L an isomorphism such that φ◦ρ∗ = ζ◦φ.

Definition 6.4. The moduli space of marked Enriques surfaces is defined to
be

NE = {(Y, φ) : φ : H2(X,Z) → L an isomorphism such that φ◦ρ∗ = ζ◦φ}/ ∼,

where (Y, φ) ∼ (Y ′, φ′) if there is a biholomorphic f : X −→ X ′ satisfying
f ◦ ρ = ρ′ ◦ f and φ ◦ f ∗ = φ′.

Definition 6.5. The period domain of Enriques surfaces is defined to be

ΩE := {x ∈ P(L− ⊗Z C) : (x, x) = 0, (x, x) > 0}.
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We have a natural global period map PNE
: NE → ΩE sending (Y, φ) 7→

φ(H2,0(X)).

Theorem 6.6 (Global Torelli Theorem). The isomorphism class of an En-
riques surface is uniquely determined by its period point.

Curiously enough, the period map PNE
: NE → ΩE is not surjective. One can

easily see this by taking a class d ∈ δ⊥∩L−, where δ ∈ L− and δ2 = −2. Such
a d then lies in NS(X). The Riemann-Roch theorem then shows that either
d or −d is effective. But no effective class belongs to L−. Removing these
hyperplanes gives a surjectivity theorem as follows.

Theorem 6.7 (Surjectivity of the period map). The period map

PNE
: NE → Ω0

E = ΩE \
⋃

δ∈L−,δ2=−2

δ⊥

is surjective.

6.2 Polarized period domain

First, we introduce the corresponding marked polarized space and polarized
period domain for Enriques surfaces.

Definition 6.8. The moduli space of marked polarized Enriques surfaces is

ME = {(Y, [ω], φ) : ω a Kähler form on X with [ω]2 = 1, φ ◦ ρ∗ = ζ ◦ φ.}/ ∼,

where (Y, [ω], φ) ∼ (Y ′, [ω′], φ′) if there exists an isomorphism f : X → X ′

such that f ∗[ω]′ = [ω], f ◦ ρ = ρ′ ◦ f and φ ◦ f ∗ = φ′.

Fix a Kähler form ωY on Y , then its pull-back to X, ω satisfies ρ∗ω = ω. For
a global holomorphic two-form α, we know from section 6.1 that ρ∗α = −α,
so ω ∈ L+

R , Re(α) ∈ L−
R and Im(α) ∈ L−

R .

Definition 6.9. The polarized period domain is defined to be

KΩE = {(σ, [x]) ∈ L+
R × ΩE : σ ∈ V (x)},

KΩ0
E = {(σ, [x]) ∈ L+

R × Ω0
E : σ ∈ V∆(x)}.

KΩ0 is an open subset in KΩ.
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This allows us to define the polarized period map PME
: ME → KΩE by

sending (Y, [ω], φ) 7→ (φR([ω]), [φC(H
2,0(X))]).

Proposition 6.10. For any α ∈ NS(X) with ρ∗α = α, α2 > 0 and (α, δ) ̸= 0
for every δ ∈ NS(X) with δ2 = −2, there exists w ∈ W (X) such that ±w(α)
is an ample class and w commutes with ρ∗.

Recall that Nef(X) ∩ CX is a fundamental domain for W (X) acting on CX ,
where CX is the connected component of the positive cone of NS(X)R that
contains an ample class. The above proposition shows that, on top of the
transitivity of the Weyl group action, we enjoy an extra symmetry so that
element w can be chosen to be compatible with the involution ρ∗.

Theorem 6.11 (Torelli Theorem). The polarized period map PME
: ME →

KΩ0
E is an injection.

Proof. To show injectivity, assume (Y, [ω], φ) and (Y ′, [ω′], φ′) are mapped to
the same image (σ, [x]) under PME

. Explicitly, we have

φC(H
2,0(X) = φ′

C(H
2,0(X ′))),

φC(ω) = φ′
C(ω

′).

This means ϕ = φ−1 ◦ φ′ is an effective Hodge isometry satisfying

ϕ ◦ (ρ′)∗ = ρ∗ ◦ ϕ. (6.4)

By the global Torelli theorem 5.4, such an isometry is induced by a unique
isomorphism f : X → X ′. Moreover, f ◦ ρ ◦ f−1 ◦ (ρ′)−1 induces identity on
H2(X ′,Z) by equation 6.4, which implies f ◦ ρ = ρ′ ◦ f . Hence, (Y, [ω], φ) ∼
(Y ′, [ω′], φ′) as defined in definition 6.8.

Theorem 6.12 (Surjectivity). The polarized period map PME
: ME → KΩ0

E

is a surjection.

Proof. Consider the diagram

ME

ν

��

PME // KΩ0
E

κ
��

NE

PNE // Gr+2 (L
−
R),

(6.5)
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where ν : ME → NE forgets the polarization and κ is the projection (σ, [x]) 7→
[x]. First, we show surjectivity. Take (σ, [x]) in KΩ0

E, by Theorem 6.7 there
exists a marked Enriques surface (Y, φ) whose period point is [x]. Let X
be its universal cover and let ρ the covering involution. Since H2,0(Y ) = 0,
the Néron-Severi lattice NS(Y ) = H2(Y,Z)f . By definition of σ, ς = φ−1(σ)
satisfies ρ∗ς = ς, ς2 > 0 and (ς, δ) ̸= 0 for all δ ∈ NS(X) with δ2 = −2. From
ρ∗ς = ς, there exists θ ∈ H2(Y,R) such that π∗(θ) = ς, so ς ∈ NS(X)R. Notice
that each chamber of NS(X)R is an open convex cone, hence the chamber in
which ς lives must contain an element of NS(X). Now using Proposition 6.10,
we can find an element w in the Weyl group such that ±w(ς) lies inside the
ample cone, so is naturally a Kähler class.

Next we show surjectivity directly by mimicking the proof of Proposition 6.10.
Consider the action of the Weyl group on the positive cone CX of H1,1(X,R).
Composing φ with −1 if necessary, we can assume ς = φ−1(σ) is contained in
the positive cone. The Kähler cone for X is

KX = {α ∈ H1,1(X,R) : α ∈ CX and (α,C) > 0 for all rational curve C}.
(6.6)

If ς does not lie inside the Kähler cone, then there exists a C1
∼= P1 such that

(ς, C1) < 0. Let ς1 = ς. Suppose we have found n rational curves C1, . . . , Cn

such that (ςk, Ck) < 0 for each k with

ςk = wk−1(ςk−1) = sρ∗Ck−1
◦ sCk−1

(ςk−1),

where sCi
denotes the Picard-Lefschetz reflection with respect to Ci.

We claim that this procedure must stop after a finite number of steps. Since
Ci + ρ∗Ci is invariant under ρ∗, it is the preimage of a (−2)-curve Di on
Y , π∗(Di) = Ci + ρ∗Ci. Recall every Enriques surface Y admits an elliptic
fibration over P1. Take any smooth fiber F0, then (F0, Di) ≥ 0 for all i. So
there can only be finitely many Di’s not lying in a fiber, else we would have
(ςn, π

∗F0) < 0 for large n, contradicting the fact that ςn is contained in the
positive cone CX .

Now it suffices to rule out the case that some (−2)-curve D appears infinitely
many times as Di in a singular fiber. Every elliptic pencil of an Enriques
surface has exactly two multiple fibers 2F1 and 2F2. This fibration admits a
two-section, an irreducible curve E whose intersection (E,F ) = 2 for all fibers
F . If E is not a smooth rational curve, then it is a half pencil for another
elliptic fibration. By considering this second fibration and repeating the above
argument, one sees that D is allowed to appear only finitely many times in a
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singular fiber. So we may assume E2 = −2. SupposeD lies in the singular fiber
F1. Then F1 contains more than one component, sayD = G1, . . . , Gk, and each
component is a smooth rational curve. From the preceding paragraph, only
finitely many Dj’s coincide with E. E must intersect a component Gi. This
implies Gi appears finitely many times as Di. Thus there exists a (−2)-curve G
that intersects D and is allowed as Di for finitely many i’s. But an immediate
consequence is (ςn, π∗G) → −∞ as n→ ∞, a contradiction. Finally, wk indeed
commutes with ρ∗ as Ck and ρ∗Ck are disjoint. This completes the proof for
surjectivity of PME

.

Corollary 6.13. The polarized period map PME
: ME → KΩ0

E is a bijection.

6.3 Einstein metrics on Enriques surfaces

Now we are ready to show that E(Y ) is path-connected. First, by Theorem
2.2, any Einstein metric on an Enriques surface must be locally hyperKähler.

Definition 6.14. The Teichmüller space of marked Enriques surfaces NE

with a unit-volume Einstein metric g is defined as

{(Y, g, φ) : g unit-volume Einstein on X with ρ∗g = g}/ ∼,

where (Y, φ) is a marked Enriques surface and (Y, g, φ) ∼ (Y ′, g′, φ′) if there
exists a diffeomorphism f : X → X ′ such that f ∗g′ = g, f ◦ ρ = ρ′ ◦ f and
φ ◦ f ∗ = φ′.

The period map for Einstein metrics PNE
: NE → Gr+3 (LR) is defined by

sending (X, g, φ) 7→ φ(H+(g)), where H+(g) is the space of self-dual harmonic
two-forms on X.

Theorem 6.15. The Teichmüller space T (Y ) of Ricci-flat Kähler metrics
on an Enriques surface is an open connected subset in {SO+(1, 9)/ SO(9)} ×
{SO+(2, 10)/ SO(2)×SO(10)}. Hence the moduli space E(Y ) is path-connected
with dimension 29.

Proof. Our strategy is the same as Theorem 5.14. First, consider the following
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digram

ME

µ

��

PME // KΩ0
E

π
��

NE

PNE // Gr+3 (LR),

(6.7)

where µ : (Y, ω, φ) 7→ (Y, g, φ) is defined using the Calabi-Yau theorem and
π : (ω, [x]) 7→ (ω,Re(x), Im(x)). Using Corollary 6.13, we get

PNE
(NE) ∼= π(KΩ0

E).

Note that
KΩ0

E = KΩE \
⋃

δ2=−2

δ⊥ × [δ⊥ ⊕ i · δ⊥].

The eigenlattices are L+ = E8(−2) ⊕ U(2) and L− = E8(−2) ⊕ U(2) ⊕ U by
6.2. Let δ ∈ L = E8(−1) ⊕ E8(−1) ⊕ U ⊕ U ⊕ U have self-intersection −2.
Note that δ must belong to one of the above five summands. Even though
L+ ⊕ L− ⊊ L is a strict proper subset, we do have L−

R ⊕ L+
R = LR. According

to the decomposition in 6.2, δ can be written as δ+ ⊕ δ− = (aδ, aδ, 0, 0, 0) ⊕
(bδ,−bδ, 0, 0, 0), (0, 0, aδ, aδ, 0)⊕ (0, 0, bδ,−bδ, 0) or (0, 0, 0, 0, 0)⊕ (0, 0, 0, 0, δ)
for appropriate a, b ∈ R. In each of the 3 cases, the component in L−

R is
non-zero. The image of π is then

π(δ⊥ × [δ⊥ ⊕ i · δ⊥] ∩KΩE) = π([(δ+)⊥ ∩ L+
R ]⊕ [(δ−)⊥ ∩ L−

R ⊕ i(δ−)⊥ ∩ L−
R ]),

which is a submanifold of codimension at least 2 in π(KΩE). Hence the Ein-
stein moduli space E(Y ) is isomorphic to a connected subset of dimension 29
in

ΓE \ {[SO+(1, 9)/ SO(9)]× [SO+(2, 10)/ SO(2)× SO(10)]}.
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7 Locally hyperKähler metrics on Hitchin man-
ifolds

In this section, we consider the quotient of (X, g), a K3 surface together with
a hyperKähler metric, by a free isometric Z2 × Z2 action. We will see below
that the Z2 × Z2 action is generated by a holomorphic involution ρ and an
antiholomorphic involution τ . Thus the resulting 4-manifold is no longer a
complex surface. Instead, it is the quotient of a real Enriques surface without
real points by the conjugation. We call such a 4-manifold a Hitchin manifold.

Employing the identity 2.19, we can readily compute the signature τ(M) =
1/4 · τ(X) = −4 and Euler characteristic χ(M) = 1/4 · χ(X) = 6. The funda-
mental group of M is Z2 × Z2, so the second integral cohomology H2(M,Z)
is isomorphic to the lattice Z4 ⊕ Z2 ⊕ Z2 with negative definite intersection
form on the free part H2(M,Z)f . The only such unimodular form in dimen-
sion four is (−1)⊕4. This can also be deduced from the powerful Donaldson
diagonalization theorem [24].

7.1 Semi-complex structures

Consider the action of ρ on the space of harmonic self-dual 2-forms H+
g on

X. Since ρ is an involution, it is diagonalizable with eigenvalue ±1. Using
formula 2.20 in section 2.4, ρ has a 1-dimensional eigenspace for the eigenvalue
1 and a 2-dimensional eigenspace for the eigenvalue −1. The same argument
carries over for the action of τ and ρ · τ on H+

g . As ρ and τ commute by
our assumption, they can be simultaneously diagonalized and they take the
following form

ρ∗ =

1
−1

−1

 , τ ∗ =

−1
1

−1

 , (ρ · τ)∗ =

−1
−1

1

 ,

with respect to an orthonormal basis ω1, ω2, ω3 in H+
g ⊂ H2(X,R) using the

intersection form.

Let α1 := ω2 + iω3, α2 := ω3 + iω1 and α3 := ω1 + iω2 and let βi = ωi for
i = 1, 2, 3. Then

ρ∗α1 = −α1 τ ∗α1 = α1, (ρτ)∗α1 = −α1, (7.1)
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so indeed the action ρ is holomorphic, whereas τ and ρτ are antiholomorphic
with respect to the complex structure J1 defined by the holomorphic (2,0)-form
α1. If we replace α1 by α2, then

τ ∗α2 = −α2 (ρτ)∗α2 = α2, ρ∗α2 = −α2, (7.2)

so τ becomes holomorphic while ρ and ρτ are antiholomorphic with respect the
complex structures J2 associated with α2. Finally, ρτ is holomorphic while ρ
and τ are antiholomorphic with respect to the complex structure J3 associated
with α3, for

(ρτ)∗α3 = −α3 ρ∗α3 = α3, τ ∗α3 = −α3. (7.3)

We record our findings as follows.

Proposition 7.1. We can perform hyperKähler rotations σ1 and σ2 on (X, J1)
such that

1. τ is holomorphic, whereas ρ and ρ · τ are antiholomorphic with re-
spect to the new complex structure J2 obtained from σ1 : (ω1, ω2, ω3) 7→
(ω3, ω1, ω2).

2. ρτ is holomorphic, whereas ρ and τ are antiholomorphic with respect to
the new complex structure J2 obtained from σ2 : (ω1, ω2, ω3) 7→ (ω2, ω3, ω1).

The moduli theory for Hitchin manifolds is very much akin to the case of
Enriques surfaces. But a Hitchin manifold M does not carry any complex
structure, as we will see below. Thus there is no point of studying the com-
plex structure. Instead, we will investigate the moduli space of semi-complex
structures on M .

Real Enriques surfaces have been studied extensively by A. Degtyarev and
V. Kharlamov in a series of papers [21], [22], [23], which culminates in a
topological classification of the real parts of all real Enriques surfaces. The
details are described carefully in their book [20] with I. Itenberg. Building on
the previous works of V. Nikulin, the classification is achieved by an arduous
analysis of the action of the two commuting antiholomorphic involutions on
the lattice. A large part of their works boils down to dealing with the difficult
algebraic problem of gluing the eigenlattices of the two actions.

Two Hitchin manifolds M and M ′ are said to be isomorphic if there exists
a biholomorphic map f : X → X ′ such that f ◦ ρ = ρ′ ◦ f and f ◦ τ =
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τ ′ ◦ f . In particular, this implies the semi-complex structures on M and M ′

are isomorphic.

In [22], Degtyarev and Kharlamov showed that any two Hitchin manifolds
are deformation equivalent. This then enables a choice of a canonical action
ζ : L → L for the holomorphic involution ρ, and θ for the antiholomorphic
involution τ .

Definition 7.2. The moduli space of marked Hitchin manifolds NM is defined
to be

{(M,φ) : φ : H2(X,Z) → L a marking with φ◦ρ∗ = ζ ◦φ, φ◦ τ ∗ = θ ◦φ}/ ∼,

where (M,φ) ∼ (M ′, φ′) if there is a biholomorphic f : X −→ X ′ satisfying
f ◦ ρ = ρ′ ◦ f , f ◦ τ = τ ′ ◦ f and φ ◦ f ∗ = φ′.

Next, we define a period map and period domain for Hitchin manifolds, as for
K3 surfaces and Enriques surfaces.

The period domain of Hitchin manifolds ΩM , is defined to be the Grassmanian
of oriented 2-planes in L−+ ⊕ L−−, which is given by a pair (ω2, ω3) ∈ L−+ ⊕
L−−.

The associated period map PM : NM → ΩM for Hitchin manifolds is defined
by sending (M,φ) 7→ φC(H

2,0(X)).

Proposition 7.3. For any α ∈ NS(X) with ρ∗α = α, τ ∗α = −α α2 > 0 and
(α, δ) ̸= 0 for every δ ∈ NS(X) with δ2 = −2, there exists w ∈ W (X) such
that ±w(α) is an ample class and w commutes with ρ∗ and τ ∗, where W (X)
is the Weyl group of the K3 surface.

Proof. It is clear that we may assume α lies in the positive cone by considering
−α if necessary. The ample cone of X is

Amp(X) = {α ∈ CX : (α,C) > 0 for all C ≃ P1}.

If α ∈ Amp(X), we are done. If not, then there exists a C1 ≃ P1 such that
(α, d1) < 0, where d1 denotes the class of C1 in NS(X). Let d2 be the class
of ρ(C1). The image τ(C1) is still a holomorphic curve with respect to the
complex structure J1. But since τ is antiholomorphic, τ sends the Kähler cone
KX to −KX and the set of positive roots ∆+ to −∆+, so the class of τ(C1)
with respect to J1 is d3 = −τ ∗d1. The same argument carries over for ρτ(C1),
so the class of ρτ(C1) with respect to J1 is d4 = −ρ∗τ ∗d1. Now C1, ρ(C1),
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τ(C1) and ρτ(C1) are pairwise disjoint, this implies that the composition of
the Picard-Lefschetz reflections w1 = sρτ(C1) ◦ sρ(C1) ◦ sτ(C1) ◦ sC1 commutes
with ρ∗ and τ ∗. This can be easiy checked as follows. First, note that

w1(x) = x+ (x, d1)d1 + (x, d2)d2 + (x, d3)d3 + (x, d4)d4. (7.4)

Applying ρ∗ to w1(x) gives

ρ∗ ◦ w1(x) = ρx+ (x,C1)ρC1 + (x, ρC1)C1 + (x, τC1)ρτC1 + (x, ρτC1)τC1

= ρx+ (ρx, C1)C1 + (ρx, ρC1)ρC1 + (ρx, τC1)τC1 + (ρx, ρτC1)ρτC1

= w1 ◦ ρ∗(x).

Similarly, τ ∗ commutes with w1. The key feature of our choice is that (α, di) <
0 for all i. Indeed,

(α, d2) = (α, ρd1) = (ρα, ρd1) = (α, d1) < 0,

(α, d3) = (α,−τd1) = (−τα,−τd1) = (α, d1) < 0,

(α, d4) = (α,−ρτd1) = (−ρτα,−ρτd1) = (α, d1) < 0.

Now proceed by induction and assume we have found C1, ρ(C1), τ(C1), ρτ(C1),
· · · , Ck, ρ(Ck), τ(Ck), ρτ(Ck). Denote their nodal classes by d1, · · · , d4k. Let
wi = sdi ◦ · · · ◦ sd1 and let αi = wi(α), then for each i

αi+1 = sdi+1
(αi) = αi + (αi, di+1)di+1. (7.5)

But by our construction, (αi, di+1) < 0. Suppose Di is a divisor lying in the
class of di. Using the previous observation, we see that the dimension of the
linear system is non-increasing

dim|Di+1| ≤ dim|Di|. (7.6)

Thus, the dimension stabilizes at some finite n and all the subsequent divisors∑
j≥n(−αj−1, dj)Dj belong to the fixed part of |Dn|. The procedure must

therefore produce an ample class α4k for some finite k.

The above proposition is an adaptation of Propostion 6.10, both of which share
the same underlying philosophy. The proposition implies that, in addition to
the transitivity of the Weyl group action on the chambers of NS(X)R, one
could impose extra symmetries by choosing an element in the Weyl group
which commutes with both involutions.
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Theorem 7.4 (Torelli Theorem). The isomorphism class of a Hitchin mani-
fold M is uniquely determined by its period point.

Proof. Assume we have two marked Hitchin manifolds (M,φ) and (M ′, φ′)
mapping to the same period point. If (X, ρ, τ) and (X ′, ρ′, τ ′) are the universal
covers together with the commuting isometric involutions, then

ζ ◦ φ = φ ◦ ρ∗ and θ ◦ φ = φ ◦ τ ∗, (7.7)
ζ ◦ φ′ = φ ◦ (ρ′)∗ and θ ◦ φ′ = φ′ ◦ (τ ′)∗. (7.8)

Our assumption means that ψ : H2(X ′,Z) → H2(X,Z) defined by the com-
position ψ := ϕ−1 ◦ ϕ′ is a Hodge isometry which is equivariant with the
involutions

ρ∗ ◦ ψ = ψ ◦ (ρ′)∗, τ ∗ ◦ ψ = ψ ◦ (τ ′)∗. (7.9)

Let α′ ∈ H2(X ′,Z) be an ample class invariant under ρ′ and τ ′α′ = −α′, with
respect to the complex structure coming from J ′

1 in 7.1. We can compose ψ
with an ±w where w ∈ W (X) so that α = Ψ(α′) is an ample class on X, with
respect to the complex structure J1. By Proposition 7.3, this Ψ can be chosen
so that it satisfies equation 7.9 in place of ψ. Now Ψ = ±w ◦ ψ becomes an
effective Hodge isometry. By the Torelli theorem for K3 surfaces, Ψ is induced
by a biholomorphic map f : X → X ′. Moreover, ρ ◦ f ◦ ρ−1 ◦ f−1 induces the
identity action on H2(X ′,Z), so it must be identity, which gives ρ′ ◦ f = f ◦ ρ.

If we change the complex structures on both X and X ′ to the complex con-
jugates, f : X → X ′ will remain a biholomorphism. Thus, we can emulate
our argument above and show τ ′ ◦ f = f ◦ τ . This implies M and M ′ are
isomorphic.

Corollary 7.5. The period point of a Hitchin manifold determines the semi-
complex structure.

Note that the involutions ρ and τ act naturally on the polarized period domain
KΩ for K3 surface. The polarized period domain for Hitchin manifold KΩM in
the next section can be defined as the invariant subset of both ρ and τ . KΩ0

M

is then the complement of the hyperplanes
⋃

δ2=−2 δ
⊥ in KΩM . Moreover,

there is natural a forgetful map π : KΩ → Ω. We define Ω0
M to be the image

of KΩ0(M) under such projection.

Theorem 7.6 (Surjectivity of the period map). Each point in Ω0
M is the image

under the period map for some Hitchin manifold.
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7.2 Polarized period domain

Let M be the underlying closed smooth manifold of a Hitchin manifold. Our
main result in this section is that, roughly speaking, the Kähler structures
on M are parametrized by the polarized period domain for M . In order to
probe the structure of the space of marked polarized Hitchin manifolds, we
emulate the story for K3 surfaces by defining a period map to a polarized
period domain. Considering the action of the two involutions, we expect the
polarized period domain for M to be the subset of the polarized period domain
for K3 surfaces that is invariant under the actions. First, we give the following
two definitions.

Definition 7.7. The moduli space of marked polarized Hitchin manifolds
MM is

{(M, [ω], φ) : ω unit-norm Kähler form on X,φ◦ρ∗ = ζ ◦φ, φ◦τ ∗ = θ◦φ}/ ∼,

where (M, [ω], φ) ∼ (M ′, [ω′], φ′) if there exists an isomorphism f : X → X ′

such that f ∗[ω]′ = [ω], f ◦ ρ = ρ′ ◦ f , f ◦ τ = τ ′ ◦ f and φ ◦ f ∗ = φ′.

Definition 7.8. The polarized period domain is defined to be

KΩM = {(σ, [x]) ∈ L+−
R × ΩM : σ ∈ V (x)},

KΩ0
M = {(σ, [x]) ∈ L+−

R × Ω0
M : σ ∈ V∆(x)}.

Define the polarized period map PMM
: MM → KΩ0

M as before, by mapping
(M, [ω], φ) to (φC([ω]), φC(H

2,0(X))).

Theorem 7.9 (Torelli theorem). The polarized period map PMM
: MM →

KΩ0
M is injective.

Proof. Our proof will emulate that of Theorem 6.11 and Theorem 7.4. Assume
(M, [ω], φ) and (M, [ω′], φ′) both map to the same period point. Let (X, ρ, τ)
and (X ′, ρ′, τ ′) be the universal covers with their corresponding involutions,
where X and X ′ are equipped with the complex structure J1 coming from 7.1.
Our assumption means that

φC(ω) = φ′
C(ω

′) and φC(H
2,0(X)) = φ′

C(H
2,0(X ′)). (7.10)
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Together they imply ψ = φ−1 ◦ φ′ is an effective Hodge isometry that is
equivariant

ψ ◦ (ρ′)∗ = ρ∗ ◦ ψ and ψ ◦ (τ ′)∗ = τ ∗ ◦ ψ. (7.11)

The Torelli theorem for K3 surfaces then gives a biholomorphic map f : X →
X ′ which induces ψ. By the first condition in 7.11, ρ′ ◦ f ◦ ρ ◦ f−1 induces
the identity action on H2(C ′,Z), so it must be the identity map. Now if
we change the complex structures on X and X ′ to the conjugate ones, the
map f is still holomorphic with respect to the conjugate complex structures.
Thus, one can repeat the above procedure and show that τ ′ ◦ f = f ◦ τ , so
(M, [ω], φ) ∼ (M, [ω′], φ′).

Theorem 7.10 (Surjectivity). The polarized period map PMM
: MM → KΩ0

M

is surjective.

Proof. Consider the diagram

MM

ν

��

PMM // KΩ0
M

κ
��

NM

PNM // Gr+2 (L
+−
R ),

(7.12)

where ν and κ are the projection maps that forget polarizations. Fix a
(σ, [x]) ∈ KΩ0

M . Since [x] belongs to Ω0
M , we can find a marked Hitchin

manifold (M,φ) by the surjectivity theorem 7.6. From the definition of the
polarized period domain, it is evident that α = φ−1σ are the ±1-eigenvectors
of ρ∗ and σ∗

ρ∗α = α and τ ∗α = −α. (7.13)

In addition, this preimage has non-vanishing pairing (α, δ) ̸= 0 for every δ ∈
NS(X) with δ2 = −2. Here X is assumed to be endowed with the complex
structure J1 in 7.1. Each chamber in NS(X)R is an open convex subset, so
there is always an integral element in the same chamber as α satisfying the
same non-vanishing pairing condition as above. Theorem 7.3 regarding the
transitiviy of the Weyl group action then implies there is a w ∈ W (X) such
that α′ = ±w(α) is lies in the ample cone, so it is a Kähler class on M with
respect to the complex structure J1. Moreover, φ′ = φ ◦±w−1 commutes with
ρ and τ . So the conditions

φ′ ◦ ρ∗ = ζ ◦ φ′ and φ′ ◦ τ ∗ = θ ◦ φ′ (7.14)

still hold. As a consequence, (M,α′, φ′) belongs to the marked polarized mod-
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uli space MM . Finally, we check that indeed φ′(α′) = σ and φ′(H2,0(X)) =
φ ◦ (±w−1)(H2,0(X)) = [x] for H2,0(X) is preserved by any Picard-Lefschetz
reflections.

Corollary 7.11. The polarized period map PMM
: MM → KΩ0

M is a bijection.

Remark 7.12. Theorem 7.9, Theorem 7.10 and Corollary 7.11 are also known
to Degtyarev, Kharlamov and Itenberg, phrased in a modified but equivalent
form, see [20]. Here we take a slightly different route by recovering the theo-
rems for Kähler structures through the ones for complex structures. But the
main idea is still to apply the corresponding theorems for K3 surface.

7.3 Einstein metrics on Hitchin manifolds

First, note that an Einstein metric on a Hitchin manifold must be locally
hyperKähler by Theorem 2.2. Second, all Hitchin manifolds share a single dif-
feomorphism type. Hence, to consider the Einstein moduli space on a Hitchin
manifold, we can instead pass to the hyperKähler metrics on a K3 surface sat-
isfying the symmetries coming from the two commuting covering involutions.

Definition 7.13. The Teichmüller space of marked Hitchin manifolds NM

with unit-volume Einstein metric g is defined as

{(M, g, φ) : g Einstein with ρ∗g = g, τ ∗g = g, φ a marking}/ ∼,

where (M,φ) is a marked Hitchin manifold and (M, g, φ) ∼ (M ′, g′, φ′) if
there exists a diffeomorpshim f : X → X ′ such that f ∗g′ = g, f ◦ ρ = ρ′ ◦ f ,
f ◦ τ = τ ′ ◦ f and φ ◦ f ∗ = φ′.

Theorem 7.14. The Teichmüller space of Ricci-flat Einstein metrics T (M)
on a Hitchin manifold M is an open connected subset in {SO+(1, 5)/ SO(5)}3.
So E(M) is connected with real dimension 15.

Proof. Let Lij = {x ∈ H2(X,Z) : ρ∗x = ix, τ ∗x = jx} be the integral eigen-
lattice of ρ and τ . First, as ρ commutes with τ , H2(X,R) can be decomposed
into simultaneous eigenspaces,

H2(X,R) = L++
R ⊕ L+−

R ⊕ L−+
R ⊕ L−−

R . (7.15)
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Using the Lefschetz fixed point theorem and the Hirzebruch signature formula,
the dimensions of the eigenspaces can be computed to be

dimL++
R = 4 +

1

2
χ,

dimL+−
R = 6− 1

2
χ,

dimL−+
R = 6 +

1

2
(χτ − χρ·τ ),

dimL−−
R = 6 +

1

2
(χτ − χρ·τ ),

(7.16)

where χ is the Euler characteristic of the fixed point set of τ on X/⟨ρ⟩, χτ

and χρ·τ denote the Euler characteristic of the fixed point set of τ and ρ on X
respectively, see [23]. In our case, the Z2 ×Z2 action is free, so the fixed point
sets are all empty and χ = χτ = χρ·τ = 0. It follows that L++

R has dimension 4
with signature −4, each of L+−

R , L−+
R and L−−

R has dimension 6 and signature
−4.

Next, we consider the diagram

MM

µ

��

PMM // KΩ0
M

π
��

NM

PNM // Gr+3 (LR),

(7.17)

where µ : (Y, ω, φ) 7→ (Y, g, φ) is defined using the Calabi-Yau theorem and
π : (ω, [x]) 7→ (ω,Re(x), Im(x)). Corollary 7.11 gives the identification

PNM
(NM) ∼= π(KΩ0

M).

From the previous section, we know that the Kähler class ω1 belongs to L+−
R ,

whereas the real part ω2 lies in L−+
R and the imaginary part ω3 belongs to

L−−
R . Due to

KΩ0
M = KΩM \

⋃
δ2=−2

δ⊥ × [δ⊥ ⊕ i · δ⊥],

it suffices to show that the image under π of each plane δ⊥ × [δ⊥ ⊕ i · δ⊥] with
δ2 = −2 has codimension at least two in π(KΩM).
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Take such a δ ∈ L with self-intersection −2. We can split δ into a direct sum

δ = δ++ ⊕ δ+− ⊕ δ−+ ⊕ δ−−,

according to 7.15. Moreover, from the proof of Theorem 6.15, we have seen that
δ− = δ−+ ⊕ δ−− is always non-zero. Applying Proposition 7.1, we note that
the eigenlattices L+− ∼= L−+ ∼= L−− are isomorphic, for any pair of the triplet
arise as the simultaneous eigenlattices of the holomorphic and antiholomorphic
involutions on H2(X,Z) upon performing hyperKähler rotations by changing
the underlying complex structure from J1 to J2 and J3. This symmetry enables
us to conclude that each of δ+−, δ−+ and δ−− is non-zero. Now, the image of
π, π(δ⊥ × [δ⊥ ⊕ i · δ⊥] ∩KΩM) can be written as

π([(δ+−)⊥ ∩ L+−
R ]⊕ [(δ−+)⊥ ∩ L−+

R ⊕ i(δ−−)⊥ ∩ L−−
R ]),

so it is submanifold of codimension 3 in π(KΩM). Thus indeed T (M) is an
open path-connected subset in{SO+(1, 5)/ SO(5)}3.

Remark 7.15. It can be shown by pure lattice-theoretic method that the
action of τ ∗ on H2(Y,Z) has +1-eigenlattice isomorphic to D4(−1) and −1-
eigenlattice isomorphic to D4(−1)⊕ U .

7.4 Almost complex structure

Let X be an oriented four-manifold with a given almost complex structure
J . Then J induces a spinc structure on X. The index of the Dirac operator
/D = ∂̄ + ∂̄∗ with respect to this spinc structure equals the Todd genus of X,

index( /D) = Todd(X) =
χ(X) + τ(X)

4
. (7.18)

In particular, χ(X) + τ(X) ≡ 0 mod 4.

Theorem 7.16. A Hitchin manifold M does not admit any almost complex
structure.

Proof. χ(M) + τ(M) = 2, which is not divisible by 4.
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