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Abstract of the Dissertation
Real WDVYV Relations for Symplectic 4-Manifolds
by
Xujia Chen
Doctor of Philosophy
in
Mathematics
Stony Brook University

2021

For symplectic 4-manifolds with a real structure, Welschinger (2003) showed that counts of
real rational pseudo-holomorphic curves, with appropriate signs, are well-defined invariants.
They are called Welschinger invariants and are analogues of Gromov-Witten invariants in
the real setting. In 2007, Solomon proposed two WDVV-type relations for them, which
determine these numbers recursively in many good cases. They are real analogues of the
usual WDVV relation.

We establish Solomon’s WDVV-type relations by implementing Georgieva’s suggestion to
lift homology relations from the Deligne-Mumford moduli spaces of stable real curves. This
is accomplished by lifting judiciously chosen cobordisms realizing these relations. Our topo-
logical approach provides a general framework for lifting relations via morphisms between
not necessarily orientable spaces.
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1 Introduction

The WDVV relation [19] 22] for genus 0 Gromov-Witten invariants completely solves the
classical problem of enumerating complex rational curves in the complex projective space P".
Invariant counts of real rational J-holomorphic curves in compact real symplectic fourfolds,
now known as Welschinger invariants, were defined in [29] and interpreted in terms of counts
of J-holomorphic maps from the disk D? in [24]. J. Solomon announced two distinct WDV V-
type relations for these counts in February 2007 and outlined an approach to their proof in
the general spirit of the original proof of the complex WDVV relation in [22]. However,
the outline of the proof described in [25] left a number of conceptual points mysterious and
clearly required a major technical effort to implement.

The proof of the complex WDV'V relation in [22] involves defining a count of J-holomorphic
maps in a symplectic manifold (X, w) for every cross-ratio @ of four points on P! and show-
ing that this count does not depend on w. This is also the strategy used in the alternative
proof of a WDV V-type relation for counts of real rational curves passing through conjugate
pairs of points only (no real point constraints) in [I0]. The complex WDVV relation can
alternatively be viewed as a direct consequence (at least conceptually) of two specific points,
w; and @y, of the Deligne-Mumford moduli space Mgy ~ P! of stable complex genus 0
curves with 4 marked points determining the same element of HO(HM). This perspective
is suitable for lifting homology relations in any dimension from moduli spaces of curves to
moduli spaces of J-holomorphic maps and has proved instrumental to studying the structure
of complex Gromov-Witten invariants as in [I3, 27]. This is also the strategy used in the
primary proof of a WDV V-type relation for counts of real rational curves passing through
conjugate pairs of points in [10]. In all of these settings, the moduli spaces of curves and
maps are closed and oriented.

1.1 Lifting homology relations

In Spring 2014, P. Georgieva suggested that WDV V-type recursions for the real genus 0
invariants of [29] might be obtainable by lifting

(R1) a zero-dimensional homology relation on the moduli space RM ; o ~RP? of stable real
genus 0 curves with 1 real marked point and 2 conjugate pairs of marked points and

(R2) the one-dimensional homology relation on the moduli space Rﬂ(w,g of stable real
genus 0 curves with 3 conjugate pairs of marked points discovered in [10]

to the moduli spaces My, (B;.J) of real rational J-holomorphic maps constructed in [9].
Unlike in the complex case and in the real case considered in [10], major conceptual issues
arise in lifting relations from RM()’LQ and Rﬂop,g to ﬁm(B ;J) and in translating any lifted
relations into invariant counts of curves because the moduli spaces ﬁm(B ;J) are generally
not orientable. The present paper deals with these issues by lifting homology relations along
with bounding cobordisms for them to cuts of My ;(B;J) along certain hypersurfaces.



We first re-interpret the disk counts of [24] in the spirit of Steenrod homology [26] in
terms of counts of real J-holomorphic maps with marked points decorated by signs as in [9].
We then lift homology relations, along with suitably chosen bounding chains T, from RMOJ,Q
and R M g 5 to the bordered moduli spaces §J\tk7l;l* (B; J) obtained by cutting My ;(B; J) along
hypersurfaces that obstruct the relative orientability of the forgetful morphisms

f1722 ﬁk,l(B; J) I RMOJ’Q and f0731 ﬁkJ(B; J) e RMO,Ujg. (11)

The simple topological Lemma expresses the wall-crossing effects on the lifted relations
in 9My,,(B;J) in terms of the intersections of the boundary of 9, 4+ (B; J) with T. This
allows us to obtain the two WDV V-type relations for the map counts depicted in Figure
on page [10, with the left-hand sides representing the initial relations in RMg ; 5 and RMg g 3
and the right-hand sides representing the wall-crossing corrections. The first two relations
of Theorem are obtained by using the two relations of Figure [1| with the divisors H;
and H, as the first two non-real constraints and points as the remaining constraints. The
last relation of Theorem is obtained by using the second relation of Figure [1| with the
divisors Hy, Hy, and Hjs as the first two non-real constraints and points as the remaining
constraints.

By the comparison between the curve counts of [29] and the map counts of [24] established
in [§], the relations of Theorem are equivalent to the relations for the former stated in
[6, Theorem 1]. They completely determine Welschinger invariants of P? and its blowups,
as shown in [25] and [14], respectively. For the ease of use, these results are summarized
in [6]; the low-degree numbers obtained from the three relations for Welschinger invariants
and listed in [6] agree with [2, 3, 5, [I5, 16, 17, 18, B1].

The relations of [6, Theorem 1] for Welschinger invariants are the same as implied by
the statements of Theorem 8, Proposition 10, and Theorem 11 in [25]. The relations of
Theorem for the map invariants in the present paper involve the same terms as the
difference between equations (6) and (7) in [25] and the symmetrization of equation (5)
n [25], but different signs. The comparison between the curve counts of [29] and the disk
counts of [24] established in [§] likewise differs by sign from the claim of [25, Thm. 11]. The
two sign discrepancies, which do not appear to be due to the formulations of the definitions
of the disk invariants in the present paper and [24], 25], precisely cancel out to yield the same
recursions for Welschinger invariants.

This paper presents a general approach for pulling back a relation by a morphism
f: 91— M between two spaces which is not necessarily relatively orientable. The lifted
relation then acquires a correction which doubly covers a “non-orientability” hypersurface
in M. This approach should be applicable in many other settings. It has already been used
in [7] to obtain WDV V-type relations for real symplectic sixfolds.

1.2 Main theorem

Let (X,w,¢) be a compact real symplectic manifold, i.e. w is a symplectic form on X so
that ¢*w = —w. The fixed locus X? of the anti-symplectic involution ¢ on X is then a
Lagrangian submanifold of (X,w). We denote by Hs(X) the quotient Hy(X) of Hy(X;7Z)
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modulo torsion, by 7, the space of w-compatible (or -tamed) almost complex structures .J
on X, and by J¢ < J,, the subspace of almost complex structures J such that ¢*J=—.J. Let

a(X,w)=c(TX,J)e H*(X)

be the first Chern class of T'X with respect to some Je€ J,; it is independent of such a choice.
For Be Hy(X), define

1, if2l=¢,(B)-1,
l,(B)={c1(X,w),B)—1€Z, {(B) =
(B) < i ) > (Bh {O, otherwise.
For J e J¢ and B € Hy(X), a subset C = X is a genus 0 (or rational) irreducible J-
holomorphic degree B curve if there exists a simple (not multiply covered) J-holomorphic
map

u: Pt — X st. C=u(P), uP']=B. (1.2)

Such a subset C'is called a real rational irreducible J-holomorphic degree B curve if in addition
¢(C)=C.

From now on, suppose that the (real) dimension of X is 4. The (tangent bundle of the)
fixed locus X® then admits a Pin~-structure p. Let Be Hy(X) and 1€ Z>° be such that

k=(,B)-2leZ>". (1.3)

For a generic J € J2, there are then only finitely many real rational irreducible J-holomorphic
degree B curves €' < X intersecting a connected component X% of X% at infinitely many
points and passing through k points in X? and [ points in X — X? in general position.
According to [24, Thm. 1.3], the number of such curves counted with appropriate signs
determined by p is independent of the choices of J and the points. We denote this signed
count of genus 0 curves by Ng:’l’(X ). If the number & in is negative, we set Ng:‘; (X?)=0.

We denote by Ng’fl’ the sum of the numbers Ng’?()z' ) over the connected components X
of X?.

Suppose B € Hy(X) and ¢,(B) = 0. For a generic J € J,, there are then only finitely
many rational irreducible J-holomorphic degree B curves C' passing through ¢, (B) points in
general position. The number of such curves counted with appropriate signs is independent
of the choices of J and the points. This is the standard (complex) genus 0 degree B Gromov-
Witten invariant of (X,w) with ¢,(B) point insertions; we denote it by Na. If £,(B) <0, we
set N =0.

For B, B’ € Hy(X), we denote by B-xB’ € Z the homology intersection product of B
with B" and by B%eZ the self-intersection number of B. Define

0: Hy(X) — Hy(X), 3(B) = B—6.(B), H*(X)? = {HecH*X): ¢*H=—H}.

Theorem 1.1. Suppose (X,w, ¢) is a compact real symplectic fourfold, p is a Pin™ -structure
on X, X? is a connected component of X?, and H,, Hy, Hy € HQ(X)(f are such that
<H1H2,X>=1 and H1H3=0. Let ZEZZO and BEHQ(X)
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(RWDVV1) Ifl=1 and {,(B)—2l=1 (i.e. k=1), then

NEH(X?) = =2 By(H,, BY(Ha, By Y, N3
B'eHz(X)
o(B')=B

- > 2)(B XB)<H1’B/><H2’B/>( (Bl’)>NB'Ngopz e (X7)

Bo,BIEHQ(X)—{O}
Bo+0(B')=B

< s om0

B1 BQEHQ(X) {0}
B1+B2=B
l1+1la=1—1,11,12=0

(' fgf;lf))fvzﬁh<>?¢>N§;22<)?¢>.

RWDVV2) If 1 =2, then

VIR = N BB B

Bo,B/EHQ(X)*{O}
Bo+0(B')=B

N = i e

n Z<Hz,31><ll1 ><<H1,B2>< fgf);l?l_J

Bl,BQEHQ(X)*{O}
B1+Bs=B
l1+l2=1-2,11,12=0

B)—2l
(0 ))N&*’h(ﬂ)zvg:w(x%.
(RWDVV3) Ifl>1, then

(H;3, BYNER(X?) = > 2B By xB')(Hj, B’>< 1 B,))
B(),B,EHQ(X)—{O}
Bo+d(B')=B

X (<H27BO><H3>B/>_<H3aBO><H27B/>>N§’NEOPZ 1—4,(B ,)()\(/Vﬁ)

+ Y (Hy, Bi)((Hs, Bi)(H>, By)—(Hy, B )(H;, By))
Bl,BQEHQ(X)—{O}

Bi1+B>=B
l1+la=1—1,11,12=0

I=1\ [ 1o(B) =20\ rop + on vy /5
" ( I )(zw<Bl>—zh)NBfll<X PN (X).



Taking the difference between the relations of Theoremu for Ng cpa(X ?) with £,(B,) >

0 small yields relations involving the invariants Ng . B.,O(X ?) without conjugate pairs of
marked points. In some cases, the resulting relations determine these numbers; see [25], [14].

Remark 1.2. We define the invariants Ngi’;(X ) via the moduli spaces of real maps con-
structed in [9]. This definition of Ngi’;(X ) differs by a power of 2 from the definitions
in [24, 25], but agrees in absolute value with the invariants Ngl (X?) of [29].

Remark 1.3. Welschinger invariants of real symplectic fourfolds (X, w, ¢) with disconnected
fixed loci X often vanish; see Theorem 1.3 and Remark 1.1 in [4]. As suggested by E. Bru-
gallé, Theorem and its proof readily adapt to Welschinger invariants with finer notions
of the curve degree B such as those taken in

Hy(X, X?) = Hy(X, X% Z) /{b+ ¢ (b): be Hy(X, X9, Z)} .
As explained in [9], Section 2.2], there is a well-defined doubling map
0o Hy(X, X9) — Hy(X;Z)° .

If the curve degrees B are taken in Hy(X, X?), the sums in Theorem should then be
taken over B’ and B; in Hy(X;Z)—{0} and Hy(X, X?), respectively. The doubling map 0
should be replaced by the composition

All appearances of B and B; (but not B’) inside (-) and (-) should become 94 (B) and 04, (B;),
respectively. The resulting formulas yield relations in particular for the modification of
Welschinger invariants which originates in [I7, Prop. 1].

The relations of Theorem correspond to the partial differential equations (4.82)
and (4.76) in [I] for the generating functions given by (4.68) and (4.72), respectively, if
H?(X)? is all of H*(X). These two PDEs are the same as the differential equations (3)
and (4) in [25]. The first generating function in [I] is essentially the same as the generating
function @ in [25] if H?(X) is one-dimensional (the latter does not distinguish between curve
classes B with the same ¢, (B)). However, the coefficients in the second generating function
differ from the coefficients in the generating function 2 in [25] by factors of 2 and i, even if
H?(X) is one-dimensional. The former is due to the scaling discrepancy in the definitions
of the real invariants indicated in Remark [1.2] while the latter reflects the sign difference
between the relations of Theorem and their analogues in [25] mentioned in Section [1.1]

1.3 Outline of the proof

Theorem follows from the two relations for nodal map counts represented by Figure
and from Propositions and 5.7 In order to simplify the notation for the remainder for
the paper, we denote X¢ by X?, Ng’f; (X?) by Nﬁ:’l’, and the moduli space of real rational
degree B J-holomorphic maps with £ real marked points and [ conjugate pairs of marked
points that send the fixed locus of the domain to X¢ by ﬁk,z(B; J). If the fixed locus of ¢
is connected, there is no clash with the notation above.

5



We denote by 7 the standard conjugation on P!, i.e.
T:IEDl —>P15 7—([20,21]) = [2_172_0]

For every real rational irreducible J-holomorphic degree B curve contributing to Ng’f, there
exists a J-holomorphic map u: P! — X as in such that uwor=¢ou. Thus, the num-
ber Ng’f is a signed cardinality of the subset of the moduli space 9M,,;(B; J) of real rational
degree B J-holomorphic maps sending the k£ real marked points and the first points in the
[ conjugate pairs of marked points to generic points in X? and X, respectively.

The domain and target of the evaluation morphism
ev:ﬁk,l(B;J) —>Xk7lE(X¢)k><Xl (1.4)

may not be relatively orientable, but it becomes relatively orientable after removing certain
codimension 1 strata from the domain (i.e. the pull-back of the first Stiefel-Whitney class w;
of the target is the w; of the domain). We cut 9, ;(B; J) along these codimension 1 strata

to obtain a bordered manifold i)/ﬁm(B :J) and give
ev: ﬁk,l(B§ J) — Xk,l

a relative orientation. The codimension 1 strata of 9 ;(B;J) consist of curves with two
components and one real node.

The forgetful morphisms 1' we encounter take values in the subspaces M;’,l’ of R M v
of real curves with non-empty fixed locus; /V;,,l, is a proper subspace of RM 4 v if and only

if k’=0. We choose a bordered hypersurface T in Wk/,l/ whose boundary consists of curves
with three components and a conjugate pair of nodes and a relative orientation on the inclu-
sion of T into ﬂ;r Let Cc X}, be a generic constraint consisting of divisors and points
so that the maps

ev X frp 53\%[(3; J) — X XMZ/J, and (cy: CxYT — X, xﬂ;@l,
are transverse and
dim My (B; J) + dim (Cx T) = dim (X, x My, ) + 1.
With the relative orientations above, the signed counts of the intersection points of
(C1) evxfp p with the boundary of tc.y and

(C2) the boundary of ev x fp y with tc.y

are well-defined and equal.

The first count above decomposes into curve-counting invariants similarly to the complex
case. The second count can also be decomposed, based on the following observations:

e most boundary strata of 53\719,1(3 ; J) get contracted by evxfy  and thus do not contribute

to [(C2);



e some boundary strata that do not get contracted do not intersect T via f; due to our
choice of Tcm',w and thus do not contribute to |[(C2)| either;

e intersecting the remaining boundary strata with T via fip has the effect of specifying
the position of the node (relative to the marked points) on the component of the curve
carrying the first conjugate pair of marked points.

These statements are explained in the proof of Corollary at the end of Section [5.3| and
in the proof of Proposition in Section The equality of the counts and ‘ then
translates into [RWDVVT)| in the case (£',1') = (1,2) and into [RWDVV2)| and(RWDVV3)|
in the case (k',1')=(0,3).

The paper is organized as follows. Section [2]is a detailed version of the above outline of
the proof of Theorem The notions of relative orientations, pseudocycles with relative
orientations (called Steenrod pseudocycles), and intersection signs between them are defined
in Section [3} this section also contains all relevant observations concerning these notions.
Section {4 describes in detail the hypersurfaces T in the Deligne-Mumford spaces MIQ and
m&?, used in the proof of Theorem Section 5| sets up the notation relevant to the map
spaces My ;(B; J), states the propositions that are among the main steps in the proof of
Theorem [I.I| and deduces this theorem from them and the lemmas of Section [1.4] The
(somewhat technical) proofs of these propositions are deferred to Section |§|

2 Summary of the proof of Theorem [1.1

The numbers Ng”’; = Ng’f()z' ?) appearing in Theorem arise from the moduli space

ﬁk,z(B ;J) of genus 0 real degree B J-holomorphic maps to X that take the fixed locus of
the domain to the chosen topological component X¢ of the fixed locus of ¢. This moduli
space has no boundary if

k+2Z +# {ws(X),B) € Zs. (2.1)

By [24], a Pin~ -structure p on X? can be used to specify a relative orientation of the restriction
of the total evaluation morphism to the main stratum DMy ;(B; J) of My, (B; J) if
holds. Since My, (B;J) is generally disconnected, there are a number of systematic ways of
doing so, some of which we index by [* € Z*° with [* <[. By [24] again, these orientations
extend across some codimension 1 boundary strata S, but not others. In our setup, the
“[*-orientation” 0,,+ on the restriction of to My (B; J) extends over a such stratum S
if and only if a certain Z-valued invariant ¢ (S) of S is congruent to 0 or 1 mod 4; see
Lemma 5.1

If k,1€Z?° and Be Hy(X) satisfy , the path in 91;(B; J) determined by a generic
path of collections of k points in X¢ and [ points in X—X?¢ and of almost complex structures
Jy€ J? does not cross the codimension 1 boundary strata S with €y(S) congruent to 2 or 3
mod 4. This fundamental insight, formulated in terms of moduli spaces of disk maps in [24],



along with the above orientation statements established the invariance of the counts Ng”l’
and has since been used to construct numerical invariants in some other settings.

The image of each codimension 1 stratum S with €y(S) congruent to 2 or 3 mod 4
under is of smaller dimension than §. Along with the orientation statements above,
this implies that the restriction of to the complement ﬁ,:l;o(B ; J) of the closures S of
these strata is a codimension 0 Steenrod pseudocycle with respect to the orientation o,,; see
Proposition . The number Ng:’; is the degree deg(ev, 0,,) of this pseudocycle.

The orientations on the restriction of to My, (B; J) relevant to lifting relations
from ./\_/112 and ﬂg’?, to My (B; J) are the orientations op+ of Lemma with I* =2, 3,
as we would like to apply the lifted relations with two and three divisor insertions. The
relevant restriction of shrinks the codimension 1 strata S with € (S) congruent to 2
or 3 mod 4, but not with (S)=2. In order to deal with this issue, we cut MMy ;(B; J) along
the closures S of the strata S with €x(S) congruent to 2 or 3 mod 4. We obtain a moduli

space ﬁk,l;l* (B; J) with boundary consisting of double covers S of these strata. The relative
orientation 0,,+ extends to a relative orientation 0,,+ of the total evaluation morphism

ev: My (B J) —> Xy, (2.2)

induced by (|1.4)).

Suppose k, 1€ Z7" and Be Hy(X) are as in (1.3)), ¥’ <k, and I* <I'<[+1*—1 so that there
are well-defined forgetful morphisms

flc/,l’ : ﬁk,ﬂrl*fl;l* (B, J) — ﬂ;',l/ and fk/,l’ : mk71+l*,1;l* (B, J) — m;,l/ . (23)
An [*-tuple h=(Hy, ..., Hix) of divisors in X cuts out the subspace
é\ki:lJrl*fl;h(B; J) = gﬁk,Hl*—l;l* (B; J) X Hl X, .. X Hl*

of maps with the first [* non-real marked points lying on Hy, ..., Hjx. The relative orienta-
tion 0y,+ of and the orientation oy, on Hyx...x Hjs induce a relative orientation 0y, of
the evaluation morphism R

€Vh: ZI:lJrl*fl;h(B; J) — Xy

at the remaining marked points. A tuple p of points in X, ; and a bordered compact real
hypersurface TCM;/J/ determine an embedding

——T
Jor: T —> Xjyo1 x My, 0

Under appropriate regularity assumptions, the fiber product Mey, 5,/ ). for ©OF

(evh, firwr) - 281 (B; J) — Xy x My
with fp.y is a compact one-dimensional manifold with the boundary

oM

Su .
k7l+l*_1;h(B’ J) (evlufk’,l’) Xfp%'r aT

o (aZI:Hl*A;h(B; J)) (evn,fr 1) Xfp;rT'

€Vh »fk’}[’)7fp;'r

(2.4)

8



The relative orientation 0,5, and a co-orientation 05 on T determine signs of the points on

the right-hand side of (2.4]) so that

= +
‘ZI:ZJrl*fl;h(B; J) (thafk/,z/)Xfp:T aT’ﬁp;h,aocT

2.5)
im Y =2 . + (
= (_1)d ‘(aZl:l+l*fl;h(B’ J)) (thvfk’,l’)Xfp;T fr‘ﬁﬂp;h,aﬁr )

where | - |* denotes the signed cardinality; see Lemma [3.5]

Since only the strata S of az)?tk,H,*_l;,*(B; J) with q*(g) = 2 are not shrunk by 1}
only the strata R R R
Sh=(SxHyx..xHpx) 02X 10(B;J)

of ZA,:lH*_l;h(B; J) with el*(g) =2 contribute to the right-hand side of 1} Since Sy, is a
double cover of the subspace
Shc SxHx...xHpx

of maps with the first [* non-real marked points lying on Hq, ..., Hx, we conclude that
% . * . +
‘(&Zk,lﬂ*—l;h(B’ ‘]» (evh,fk’,z/)xfp;T T‘aﬁp;h,ogﬂ =2 Z‘(Sh) (evmfk’,l')xfp;“f T‘aﬁp;h,o% :
el*(S)=2

The moduli space M;,yl/ contains codimension 1 strata .S; with ¢ < I’ parametrizing
marked curves with two real components so that one of the components carries only the i-th
conjugate pair of marked points. We establish Theorem by applying with certain
bordered compact hypersurfaces T in HIQ%RIPQ and in the three-dimensional orientable

manifold Mg,g so that T is disjoint from the closure S; of Sj.

The moduli space M@ contains two points P* corresponding to the two marked curves
consisting of one real component and one conjugate pair of components; see the diagrams on
the left-hand side of the first row in Figure . We take T in Miz—gl to be a path from P~
to P* as in Lemma In this case, (2.5)) is represented by the first row in Figure [
The labels €x(S) =2 and NY under the diagrams on the right-hand side indicate that only
“intersections” of some strata of two-component maps with T contribute to this relation.
These intersections arise from the last part of the boundary in and thus contribute
twice each (with the same sign). The strata of two-component maps whose contributions
are described as being insignificant due to sign cancellations in [25, p10] do not appear in
our approach at all.

The one-dimensional strata of m73 that parametrize marked curves consisting of one
real component and one conjugate pair of components come in three pairs I' with i=1,2,3;
see the diagrams on the left-hand side of the second row in Figure The closures T; of
these strata with ¢=2, 3 bound a compact oriented surface T in ﬂg73~§1 as in Lemma .
In this case, is represented by the second row in Figure . The curves represented by
the diagrams on the right-hand side in this relation again arise from the last part of the
boundary in (2.4)).

We apply the relations represented by Figure [1] with the divisors Hy, Hy as the first two
non-real insertions and points as the remaining insertions; we also apply the second relation
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Figure 1: The relations on stable maps induced via ([2.5)) by lifting codimension 2 relations
from MLQ and ./\/lg)?); the curves on the right-hand sides of the two relations are constrained

by the hypersurfaces T in MIQ and MS,S'
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with the divisors H;, Hs, H3 as the first three non-real insertions. The normal bundle to
the strata of maps represented by the three-component curves in this figure is canonically
oriented. Thus, the restriction of the total evaluation map to these strata inherits a
relative orientation from its restriction to 9y ;(B;J). The proof of [10, Prop. 4.2 readily
applies to express the associated counts of nodal maps in terms of the real map counts Ng’f
and the complex map counts N3 ; see Proposition

The map counts represented by the two-component curves in Figure|l|are more elaborate.
Each stratum Sy of such maps is the fiber product of the evaluation morphisms

eVna: 21 EZk1+1,ll;h1(Bl§ J) — X% and €Vnd - ZQEZk2+1,12;h2(BQ; J) — X

at the nodal points from moduli spaces associated with the two components, for a split of h
into an [{-tuple h; and an [3-tuple hy. The condition €x(S) =2 implies that each of the
total evaluation morphisms

evin : Z{ EZkl,ll;l‘u (Bl; ‘]) - Xkl,ll—lik and (26)

eVh,= (€Vh,, €Vna) 1 2o — Xpyp1 s =Xy iz X X?
is a map between spaces of the same dimensions. The latter implies that (2.1) with (k, B)
replaced by either (ki, By) and (k2+1, Bs) holds. Thus, the maps evy, and evy, have well-

defined degrees deg(evy, , 0p:n,) and deg(evy,, 0p:n,) With respect to the relative orientations
induced by the Pin™-structure p and the orientations of Hy,..., H;x. These degrees are

10



related to the map counts Nglpll—l* and Ng’;h_l* (with k; and ky+1 real point insertions,
) 1 ) 2
respectively) via the divisor relation ([5.14]).

A crucial consequence of our choices of the hypersurfaces T cM;g is that the restriction
of the first morphism in (2.3)) to Sy, factors through a morphism

fl: Zl — H;’,l’
if €+(S)=2 and Smf,;,}l,('f) # (J; see Corollary . Thus,
(Sh) (thﬂfk/,u)xfp;T T = ((Zl) (eVlhl 7f1)><fp1;'r T) €Vnd ><evnd eVEQ]- <p2>7 (27)

for a split of p into a k;-tuple p; and a ko-tuple ps. The equality above holds set-theoretically;
Lemma compares the signs on the two sides. The morphism evy, on the right-hand side
of this equality denotes the composition of (2.6 with the natural projection

f: Zhl - lell
dropping the real marked point corresponding to the node. Thus,
(Z1) (evh, )X forir T = {Ul €Z; |evll:11(p1) fi(ur)e T}%
Lemma compares the signs on the two sides. Since this set is finite, (2.7)) implies that
+
\(Sh) (evh,fk/’l/)xfp;r T‘aﬁp;h,o% = OC(S, T) deg(evill, Op;h1) deg(evh27 0p§h2)
for some a(S,T)eZ determined by § and Y. This leads to a decomposition of the nodal

map counts associated with the two-component diagrams in Figure [1| into sums of pairwise
products of the real map counts Ng’?; see Proposition .

3 'Topological preliminaries

3.1 Relative orientations

For a real vector space or vector bundle V', let A(V) EAE{’DV be its top exterior power. For
a manifold M, possibly with nonempty boundary ¢ M, we denote by

AM) = \(TM) = APTM — M

its orientation line bundle. An orientation of M is a homotopy class of trivializations of A\(M).
By definition, A(pt) = R. We identify the two orientations of any point with +1 in the
obvious way.

11



For submanifolds S’ .S < M, the short exact sequences

TM|s

0—TS —TM|s— NS= T3 — 0  and
/ TS‘S/ /_TM‘S/ _TM|S’
0= NsS'=Fg —NS="7g NSls =g
of vector spaces determine isomorphisms
)\(M)}S ~ AMS)RANS) and ANS') ~ A(NsS)RANS) |S, (3.1)

of line bundles over S and S’, respectively. A co-orientation of S in M is an orientation
of N'S. We define the canonical co-orientation 0$,, of M in M to be given by the outer
normal direction.

For a fiber bundle fy: M — M’ we denote by TM" = ker dfp, its vertical tangent
bundle. The short exact sequence

0—> TM? —> TM I 5% TM' — 0 (3.2)
of vector bundles determines an isomorphism
AM) = FUAM QAT M) (3.3)

of line bundles over M. The switch of the ordering of the factors in . from (| is
motivated by Lemma 3.1 _ (1)| below and by the inductive construction of the orlentatlons 0%
on the real Deligne-Mumford moduli spaces M, ks 10 Section

If f: Z—>Y is a continuous map between two smooth malrufolds7 possibly with boundary,
let

Af)=FAY)QANZ) — 2.
A relative orientation of f is an orientation on the line bundle A(f). For a relative orientation o
of f and uw e Z, we denote by o, the associated homotopy class of trivializations of the
fiber A, (f) over u and the associated homotopy class of isomorphisms A, (Z) — A (Y). If
in addition o’ is a relative orientation of another continuous map ¢g: Y — Z, we denote by
00’ the relative orientation of go f corresponding to the homotopy class of the compositions

AMi(Z) = Apy (V) — Ag(ru)) (Z)

of isomorphisms in the homotopy classes o0, and o’f(u) for each ue Z.

We identify an orientation o on a manifold Z with a relative orientation of Z—pt in
the obvious way. For a submanifold & < Z, we identify a co-orientation 0§ on S with a
relative orientation of the inclusion ts: § — Z via the first isomorphism in . IfS'cS
is also a submanifold with a co-orientation 0%, in S, then the relative orientation 0% 0% of
the inclusion

Lsr: Sl — S — Z

corresponds to the co-orientation of &’ in Z induced by the co-orientations 0§ and 0%, via
the second isomorphism in (3.1f). If fo;: M — M’ is a fiber bundle, we similarly identify
an orientation 0%, of TM" with a relative orientation of fys via (3.3)).

12



If f, 0, S, and 0% are as above, we denote by o|s the restriction of the trivialization

of A(f) determined by o to S and define
05 = 050 (3.4)

to be the relative orientation of A(f|s) induced by 0 and 0%. If Z is a manifold with boundary,
let
0(Z,0) = (0Z,00) = (0Z,05z0) . (3.5)

If Y is a point (and so o and do are orientations on Z and 0Z, respectively), this convention
agrees with [28, p146] if and only if the dimension of M is odd. If § ={P} is also a point,
then the projection isomorphism TpZ — NS is orientation-preserving with respect to o
and o§ if and only if

050 = +1;
this is the M, T ={pt} case of Lemma below.

If 0 is a relative orientation of f: Z—Y and ue Z is such that d, f is an isomorphism,

we define
1, ifd,feoy;
6u(0) +1, 1 feo
—1, ifd,f¢o,.
If g: Y — Z and 0o’ are also as above and dy(,)g is an isomorphism as well, then

5,(00") = 5,(0)8 7. (0") . (3.6)

If yeY is a regular value of f and the set f~!(y) is finite, we define

W= Ylsalo).

uef~1(y)

Let fo: M —> M’ be a fiber bundle. If T < M is a submanifold and P €Y, then the
differential dp(faq|y) is an isomorphism if and only if the composition

TpM
T =AY (3.7)

Tp./\/l”Ekerdpr — TPM -
is. If Mj is another manifold, then
fM XidMQZ MXMQ I M/XMQ

is also a fiber bundle and T x My € M7 x Mj is a submanifold; see the first diagram in
Figure 2l The differential of

T Mx My — M (3.8)
induces a commutative diagram
ker{fM X isz}v N(T X Mz)
dﬂlj ldﬂ’l
i TM" TiNT

13



T s Moo Mx My —28M2 pgr M, FUT) ez 2z
S N
¢ M I M ¢ M2 A

Figure 2: The maps of Lemmas [3.1] and

of vector bundle homomorphisms. Since the vertical arrows above are isomorphisms, they
pull back a vertical orientation 0%, of o to a vertical orientation 7jo%, of fi( xida, and a
co-orientation o5 of T to a co-orientation 7jo05 of T x Msy. We note the following.

Lemma 3.1. Suppose fa: M — M’ is a fiber bundle with an orientation 0%, on TM?,
T c M is a submanifold with a co-orientation 0%, and P €Y is such that dp(fpml|y) is an
1somorphism.

(1) The isomorphism is orientation-preserving with respect to oY%, and o5 if and only
if sp(050%,) =+1.
(2) If My is another manifold, m is as in (3.§), and Pye My, then

s(p,py) ((m705) (m}0%)) = sp(050%).

Suppose that fz : Z — Z’ is another fiber bundle, f,f are maps as in the second
diagram in Figure [2so that it commutes, and 0% and o0}, are orientations on T'Z" and T'M?",
respectively. If ue Z is such that the restriction

duf: T2 =ker d,fz — TpyM" (3.9)

is an isomorphism, we define s,(f,0%,0%,) to be +1 if this isomorphism is orientation-
preserving with respect to the orientations 0% and 0%, and to be —1 otherwise. If PeT are
as above, u€ f~1(P), and the homomorphisms and are isomorphisms, then f is
transverse to T at u, f~}(Y)c Z is a smooth submanifold near u, the composition

T.2

T.2"=kerd,fz — T, 2 — ————=N,f (T
erd,fz T.7-1(T) N7 (1)
is an isomorphism, and d,g descends to an isomorphism
T.2 TpM

dug: Nuf 1 (1) = =NpY

Tof(Y) TpY

and thus pulls back a co-orientation 0§ on T < M to a co-orientation f*o$ on f~}(Y)cZ
near 1.

Lemma 3.2. Let fp, T, P, 0%, and 0% be as in Lemma [3.1 Suppose in addition that
fz: Z—> Z' is another fiber bundle with an orientation 0% on TZ", f, f' are maps so that
the second diagram in Figure@ commutes, and uwe f~1(P). If the homomorphism s an
isomorphism, then

5. ((1%05)0%) = 5,1, 0%, 0% ) (05:0%)

14



3.2 Intersection signs

For continuous maps f: Z—Y and g: T — Y between manifolds with boundary, define
Mg = ZpxgT = {(u, P)e ZxXT—(0Z)x(0Y): f(u)=g(P)},
fXYg:Mf,g—)Y7 nyg(U,P):f(U):g(P)

We call two such maps f and g strongly transverse if they are smooth and the maps f and f|sz
are transverse to the maps g and g|sy. The space My, is then a smooth manifold and

dim Ms, +dimY = dim Z 4+ dim T,
My = (Z2—0Z) pxg(0Y) L (0Z) px 4 (T—0T). (3.10)

Suppose in addition that
f=(f1,f2)12—>YEXXM, gz(gl,gg)IT—>X><M7 (311)

0; is a relative orientation of fi, and 0, is a relative orientation of gs; see the second rows in
the diagrams of Figure B For (u, P)e Mj,, such that the homomorphism

T.ZO&TpY — Trw)Y =TypY, (v,w) — duf(v)+dpg(w), (3.12)

is an isomorphism, we define (f,01),-p(g,02) to be +1 if the top exterior power AP of
this isomorphism lies in the homotopy class determined by (0;), and (02)p and to be —1
otherwise. If My, is also finite, let

‘Mfag‘i = Z(fﬂol)u'P(g,UQ)-

01,02
(u,P)GMf,g

Suppose T < M is a bordered submanifold with co-orientation 0%, g;: T — X is a
constant map, and g: T — M is the inclusion. Then,

Myg = {(u; fa(u) :ue fy (V)0 f 1 (91(1)) = (02) n fy 1 (0T) -

If in addition f is strongly transverse to g, then f,'(Y)< Z is a smooth submanifold with
co-orientation f*o05 and the restriction

fii () — X

is a submersion. Along with the relative orientation 07 on fi, f505 induces a relative orien-
tation (f30%)o; on this restriction as in (3.4). If in addition S < M is another submanifold
strongly transverse to T, then the homomorphism

TS|rns . TM|xns
T(TﬁS) TT’TQS

Ns(TnS) =NT|rns

of vector bundles is an isomorphism. The co-orientation 0% of T in M then restricts to a
co-orientation 05 |y~s. In such a case,

vag = vaQ'Tr\S :

The following observations are straightforward.
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) - x 2T X M My <22 5y,

A -

X x M g oY

Figure 3: The maps of Lemma with g=(z, go) for some z€ X.

Lemma 3.3. Suppose Z,7, X, M, f,q, fi, gi,01,05% are as above (with Y < M and g, con-
stant),

dim Z+dim T = dim X +dim M ,
and f is strongly transverse to g.
(1) For every ue fy (1) fr ' (g1(T)),

(f:01) u patu) (9, 05) = (~1) DD, (05 )o1).

(2) Suppose S < M is another submanifold strongly transverse to Y and fo(Z) < S. For
every (u, P)e My gy s,

(fv 01) u'P (g, U%) = (_].)(COdimS)(COdimT) (f7 01) u'P (g|TmS> OCT’TmS)

with the intersection on the right-hand side above taken in X xS

(3) Suppose M, 1, and myo% are as in Lemmal3. 4(2) and the second diagram in Figure E

commutes. For every (u, P)EMngldM )

(f,01) up (9xidag,, w05 ) = (1) @mADAmD(f o)) 5 (g, 0%).

Let e;: 21— X' and ey: Z,— X’ be strongly transverse maps so that
Z =My e, = {(ur,u2) €21 x Zo—(021) x (025): €1(u1) = e2(us)} < Z1x 2y
is a smooth submanifold. For each u= (u,us)€ Z, the short exact sequence
0 —T,2 —T,2:0T,2 — Ty X =Tty X — 0,
(v1,v9) —> dy,ea(ve)—dy, e1(v1),
of vector spaces induces an isomorphism
(2 )®/\( ea(ug) X/) ~ A (Z21) @Ay, (22) .

Combined with relative orientations 01; and 09 of

fu: 2 — Xy and (2, fi2): 2o — X' x Xy,
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X’/ AL—f>X1><)L><M g>$
~

Z="—X" Sf5(m)

X2

Figure 4: The maps of Lemma |3.4] with x; € X; corresponding to the constant map gy;.

this isomorphism determines a homotopy class of isomorphisms

)‘U(Z)® )‘62(u2) (TX,) - >\f11(u1)<X1)®)‘(eg(u2),f12(u2)) (X, X XQ)

(3.13)
- >‘f11(u1) <X1)®)‘f12(u2) (X2)®)‘ (TGQ(U2)X/)

The homotopy class of trivializations in (3.13)) corresponds to a relative orientation (011) ¢,X e,
012 of the restriction

flf(f11Xf12)‘ZZZ—>X1><X2.

For a map fy: 2, — M, let fy: Z — M also denote the composition of f, with the
projection to Z;. If in addition go: T—> M is the embedding of a (possibly bordered)
submanifold, g1;: T — X are constant maps with values x; and x, respectively,

fE(fn,f12,f2)3 Z— X1 xXoxM, and 95(911,912,92)1 T — XixXogxM,
then
Mf’g == {(ul,uQ,P) ((ul’P)’u2>eMell]w(f11af2)y(911’92)’eQ‘foI(IQ)};

see the diagram in Figure [4]

Lemma 3.4. SUppOS@ Zh Z27 Z7 Xl? X17 X27 MJ Ta €i, flia f27 fa 91i, 92,9, 01; are as CLbOU@, 0%‘
18 a co-orientation on T,

dim Z;+dim T = dim X; +dim M, dim Z5 = dim X’ +dim X5,
the maps ey and ey are strongly transverse, and the maps f and g are strongly transverse. If
((ulv P)’ uQ) € ((Zl) (f117f2)x(g11,92)T) e1Xes f1_21 (912(T))7
then

(f> (011) e1Xes 012) (u1,u2) 'fz(m)(ga 0%‘)
= (—1)(dlmX2)(COdlmT+dlmX/) (((flla f2)7 011) u1” fo(ur) ((glla 92)7 OEI”))EUQ (012) :
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3.3 Steenrod pseudocycles

Let Y be a smooth manifold, possibly with boundary. For a continuous map f: Z—Y, let
QAfN= [V(E-K)
KcZ cmpt

be the limit set of f. A Zs-pseudocycle into Y is a continuous map f: Z—Y from a
manifold, possibly with boundary, so that the closure of f(Z) in Y is compact and there
exists a smooth map h: Z'— Y such that

dim 2’ < dim Z-2, Q(f) < h(Z), f(0Z) < (oY)uh(Z').

The codimension of such a Zs-pseudocycle is dimY —dim Z. A continuous map f Z—Y
from a manifold, possibly with boundary, is a bordered Zs-pseudocycle with boundary f :
Z—Y if the closure of f(Z) in Y is compact,

z2coZ,  Jlz=f
and there exists a smooth map h: Z'—>Y such that
dim 2’ <dimZ-2,  Qf)ch(Z'), f(OZ-2Z)c (3Y)Uuh(Z').

Given f as above, the choice of Z c 0Z is generally not unique, and the restriction of ]? to
any such Z need not be a Zs-pseudocycle. If Z is one-dimensional, then Z is compact and
f(0Z—Z)coY.

Two bordered Zs-pseudocycles ﬁ: Z,—Y and .}\/‘2: Z,—Y as above are transverse if
e the maps fl and fg are strongly transverse and

e there exist smooth maps ?Ll : Z~{ —Y and %2 : Z~§ — Y such that %1 is transverse to fg
and fo 23,> Do is transverse to fi and f

02, and
dim 2! < dim Z,-2, dimZ, <dimZ,-2, Q(fi) € l(Z]), Qfs)<ho(ZD).

In such a case,
fl X Yf2 f1 f2 — Y

is a bordered Zy-pseudocycle with boundary (3.10)).

A Steenrod pseudocycle into Y is a Zy-pseudocycle f: Z—Y along with a relative ori-
entation o of f. A bordered Zy-pseudocycle f: Z—Y with boundary f and a relative
orientation ¢ of f is a bordered Steenrod pseudocycle with boundary (f, o) if do=o0. If (f,0)
is a codimension 0 Steenrod pseudocycle, then the number

deg(f,0) = ) su(0) (3.14)
uef=1(y)

is well-defined for a generic choice of y € Y and is independent of such a choice. We call
this number the degree of (f,0). It vanishes if (f,0) bounds a bordered Steenrod pseudocy-

cle (f,3).
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Lemma 3.5. Suppose Z,T, X, M.Y, f,q, fi, gi, 01,00 are as in and just below and
such that
dimZ +dimY =dimY + 1.

If f and g are transverse bordered Zs-pseudocycles, then Z;x ,(0Y) and (0Z);x,T are finite
sets and

|Z2p¢g (D)}, = (DIT(02) px, X[, - (3.15)

01,502 -
Proof. By the transversality and dimension assumptions, M, is a compact one-dimensional
manifold and

6Mf,g = fog<aT) L (62) fXgT.

In particular, the two sets on the right-hand side above are finite. By a direct computation,
this equality respects the orientations with the orientation on the last fiber product modified
by (—1)°4mZ and for a suitably chosen orientation on the left-hand side. Alternatively,
(3.15)) is equivalent to

|Z5x g (O1)| . = (—1)@mD |y o (97)

01,002

i

02,001

The sign in this statement must be symmetric in dim Z and dim Y, depend only on their
parity, be +1 if both dimensions or codimensions are even, and be —1 for linear maps from
intervals to R. O

4 Moduli spaces of stable curves

4.1 Main stratum and orientations

For keZ>°, let [k]={1,...,k}. If in addition k >3, we denote by My the Deligne-Mumford
moduli space of stable rational curves with k& marked points. For k,! € 77" with k+20> 3,
we denote by ./\/l;l the Deligne-Mumford moduli space of stable real genus 0 curves

C = (%, (@ier), (2752 iem), @) (4.1)

with k real marked points, [ conjugate pairs of marked points, and an anti-holomorphic
involution ¢ with separating fixed locus. This space is a smooth manifold of dimension
k+2l—3, without boundary if £ > 1 and with boundary if £ = 0. The boundary of MS,I
parametrizes the curves with no irreducible component fixed by the involution; the fixed locus
of the involution on a curve in é‘ﬂal is a single node. The strata of /VSJ parametrizing
curves with two invariant irreducible components sharing a real node are of codimension 1,
but are not part of aﬂg,l. The moduli space ﬂ;l is orientable if and only if k=0 or k421 <4;
see [9, Prop. 1.5].

The main stratum M, of M;,z is the quotient of
{((wi)ie[kz], (2+ Z_)ie[l])i %6517 Z{iepl—sl» Z;FZT(Z;)a

RNt}
t gt o i
T #Tj, 2, #2575 %; Vz;éj}
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by the natural action of the subgroup PSLIC < PSL,C of automorphisms of P! commuting
with 7. The topological components of Mj ; are indexed by the possible distributions of the
points z;” between the interiors of the two disks cut out by the fixed locus S* of the standard
involution 7 on P! and by the orderings of the real marked points z; on S*.

If k+20>4 and i€[k], let o o
fIl[f,l;i: Mk,l - Mk—l,l (4.2)

be the forgetful morphism dropping the i-th real marked point. The restriction of fIlSl;i to the
preimage of Mj_, ; is an S'-fiber bundle. The associated short exact sequence (3.2 induces
an isomorphism

AME) * BEAME 1) e (kerdiE) (4.9
If k+20>5 and i€|[l], we similarly denote by
Freyizi ml,z - M;,l—l (4.4)

the forgetful morphism dropping the i-th conjugate pair of marked points. The restriction
of frui to M, is a dense open subset of a P'-fiber bundle and thus induces an isomorphism

AME) = FEa A (MG _))| Mh@k(ker dFisi)| M, (4.5)
For each Ce M7 ; as in (4.1)),
ker def ~ T, P!

is canonically oriented by the complex orientation of the fiber P! at 2. We denote the
resulting orientation of the last factor in (4.5)) by o

Suppose [€ Z* and Ce M, is as in (4.1) with ¥ =P". Let D? c CcP' be the disk cut
out by the fixed locus S* of 7 which contains z;". We orient S'<D? < C in the standard way
(this is the opposite of the boundary orientation of D? as defined in Section . If k+20>4
and i€ [k], this determines an orientation o} of the fiber

ker defy s ~ Ty, S"
of the last factor in (4.3) over f;,.,(C). This orientation extends over the subspace
STk —-—T
Mk,l;i - Mk,l

consisting of curves C as in (4.1]) such that the real marked point x; of C lies on the same
irreducible component of ¥ as the marked point z;".

Let (21,%j,), - - -, %j,(c)) be the ordering of the real marked points of C starting with x;
and going in the direction of the standard orientation of S'. We denote by dg(C) € Z, the
sign of the permutation sending

we: {2,...,k} —{2,... k}, we(i) = ji(C).
If k=0, we take 0gr(C)=0. For [*€][l], let
55 (C) = [{ie[l]—[I*]: 2 ¢DL}| + 2Z € Zs.
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Figure 5: The structure of MS’Q

In particular, 0g(C) =0 if £ <2 and 6;f(C) =0. The functions dg and §;+ are locally constant
on Mj .
The space M7, :M{l is a single point; Wﬁake 01,1 =+1 to be its orientation as a plus
point. We identify the one-dimensional space ./\/1872 with [0, o] via the cross ratio
It W S S L W

¥o,2° HS,Z - [0700]7 90([(2;7217)7(2;7227)]) = T : st - ’Z+—Z+’2 ) (46)
2 1 2 1 1 2

see Figure [5| This identification, which is the opposite of [10, (3.1)] and [12, (1.12)], deter-
mines an orientation 02 on ./\/1672.

We now define an orientation oy; on Mf, for [€ Z* and k+[ >3 inductively. If k>1,
we take o0;; to be so that the i = k case of the isomorphism is compatible with the
orientations 0y, 051, and of on the three line bundles involved. If I =2, we take o, to
be so that the i =1 case of the isomorphism is compatible with the orientations oy,
0ki-1, and o;". By a direct check, the orientations on M7 5 induced from Mg, via {}
and M7, via are the same. Since the fibers of fy ;.| My, are even-dimensional, it follows
that the orientation o;; on M;J is well-defined for all [eZ* and keZ>° with k420> 3. This
orientation is as above [9, Lemma 5.4].

For [*€[l], we denote by o4+ the orientation on M;l which equals oy at C if and only
if 0g(C)=05%(C). The next statement is straightforward.

Lemma 4.1. The orientations oy« on My, with k,1€ ZZ° and I* €[l] such that k+21>3
satisfy the following properties:

(oml) if Ce Mf ., the isomorphism with (k,i) replaced by (k+1, jx+1(C)) respects

the orientations o.q1 0%, Ok %, and 0]}§+1 at C;

(00m2) the isomorphism with (1,1) replaced by (I+1,1* +1) respects the orientations
Okl4150% 1, Ok %, and Ul—thrl;

(o13) the interchange of two real points x; and x; with 2<1i,j <k preserves oy ;

omd) if Ce M7, the interchange of the real points x1 and x;, ¢y with 2<i1<k preserves oy ;.;x
k,l 3i(C) b
at C if and only if (k—1)(i—1)e2Z;
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(om5) if Ce Mj,; and the marked points z and z;“ are not separated by the fized locus S!
of C, then the interchange of the conjugate pairs (2", z;") and (2, 2;) preserves o, i
at C;

+

(0,16) the interchange of the points in a conjugate pair (2;", z; ) with I* <i <l preserves oy . ;

(oM7) the interchange of the points in a conjugate pair (2], z;) with 1* <i <I* reverses oy 1 ;

(om8) the interchange of the points in the conjugate pair (21,27 ) preserves o+ if and
only if

k
k+#0 and l—l*;(2> mod2 or k=0 and [—1* =1 mod 2.

4.2 Codimension 1 strata and degrees

The (open) codimension 1 strata of ﬂ;l—éﬂgl correspond to the sets {(K1, Ly), (K2, Lo)}
such that

[l{] = Kju Ko, [l] = Liu Lo, |K1|+2‘L1’ > 2, |K2’+2|L2‘ = 2.

The stratum S corresponding to such a set parametrizes marked curves C as in (4.1]) so
that the underlying surface ¥ consists of two real irreducible components with one of them
carrying the real marked points z; with 7 € K; and the conjugate pairs of marked points
(2}, 27) with i€ L; and the other component carrying the other marked points. A closed

codimension 1 stratum S is the closure of such an open stratum S. Thus,

A~ T T el ~ el T
S~ Mg M ema S~ Mg e X Mgy 41,1 (4.7)

Let [eZ*. If S is a codimension 1 stratum of M;,z_am,z and Ce S, we denote by P}
the irreducible component of C containing the marked points z;", by P} the other irreducible
component, and by S{ <P} and S3 <P} the fixed loci of the involutions on these components.
For r=1,2, we then take K, (S) and L,(S) to be the set of real marked points and the set
of conjugate pairs of marked points, respectively, carried by P! and define

k(S) =|K.(S)| and  1.(S) =|L.(9)].

For i€(l], we denote by o .
S; ./\/l;l and  5;c M;,l

the open codimension 1 stratum parametrizing marked curves consisting of two real spheres
with the marked points z;" on one of them and all other marked points on the other sphere
and its closure, respectively.

If gCM;l—ﬁﬂ;l is a closed codimension 1 stratum different from Sy, let

fs: S — Mkl(S),ll(S) kaQ(S)H,lQ(S) (4-8)
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denote the composition of the second identification in (4.7)) with the forgetful morphism

f]Ille: m/<~‘1(5)+1,ll(5) - Mkl(s)vll(s)

as in (4.2)) dropping the marked point nd corresponding to the node. The vertical tangent

bundle of §.1|s is a pullback of the vertical tangent bundle of §%| M 5y s1a(s) and thus inherits
201

an orientation from the orientation o, of the latter specified in Section we denote the
induced orientation also by o%;. Tt extends over the subspace

S*Cgcm’l

of curves C so that the marked point nd of the first component of the image of C under (4.7))

lies on the same irreducible component of the domain as the marked point corresponding

+
to 2.

Let Tcmyl be a bordered hypersurface. If k+2/>4 and i€ [k], we call T regular with
respect to fy,; if Tcﬂzl’;, ﬂ,f’l;i(T—T) is contained in the strata of codimension at least 2,
i.e. the subspace of m;u @rametrizing curves with at least two nodes, and f;.,(0T) is
contained in the union of (9M,Z_U and the strata of codimension at least 2. By the last
two assumptions, f]}f,z;i’T is a Zs-pseudocycle of codimension 0; see Section . By the first
assumption, the orientation o of the last factor in (4.3 and a co-orientation 0 on T induce
a relative orientation 0505 of fi.;|r; see the paragraph above Lemma 3.1 Let

deg]} (T, Ugr) = deg (fIE,l;z”T, U%U]ZR)
be the degree of the Steenrod pseudocycle ( ]}f’lﬂ-h, 05.05); see (3.14)).

Suppose in addition that .S Cm;l—ﬁﬂ;l is a codimension 1 stratum. We call T regular
with respect to S if T and 0T are transverse to S in H;ﬁ,,

ThS ~ T, XM@(S)H@(S)

under the second identification in 1) for some T; < MZTS)H,h(S);nd» fs.i (T—=7_)NS)
is contained in the strata of codimension at least 2 of the target of fs.;, and fs.1(0YT N S)
is contained in the union of the boundary and the strata of codimension at least 2 of the
target of fg.;. By the first and the last two assumptions, fs.1|y~g is a Zs-pseudocycle of
codimension 0. By the first assumption, a co-orientation 0% on T in m,z determines a
co-orientation
05 = OCT‘TrS

on TnS in S. By the second assumption, T n.S < S*. By the first two assumptions, S #5;
if YnS# @ and that 0§ and the orientation oF; of the fibers of the restriction of to S
specified above induce a relative orientation 0505, of fs.1|y.g. Let

degg (T, 05) = deg(fsiilrng, 050n) = deg(Fsitlrag, 05 50ma)-

We call a bordered hypersurface T < M;jl regular if T — Y is contained in the strata
of codimension at least 2 and T is regular with respect to the forgetful morphism f]}f’l;i for

every i€ [k] and with respect to every codimension 1 stratum S c./V;l—(')’/V;J. For such a
hypersurface, YT nS; = &.
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4.3 Strata orientations

Suppose [ =2 and k+2]>5. The moduli space m,l contains codimension 2 strata I' that
parametrize marked curves C as in so that the underlying surface ¥ consists of one real
component Pj and one pair P} of conjugate components; see Figure . We do not distinguish
these strata based on the ordering of the marked points on the fixed locus S] < P§ of the
involution. For such a stratum T, let [o(T"), Ic(T") € ZZ° be the number of conjugate pairs of
marked points carried by Pj and P UPY | respectively. In particular,

le(T) =2 and Lo(T)+1c(T) = L.
The closure I' of I' decomposes as
T~ My o1 X Moery+ - (4.9)
We call a codimension 2 stratum as above primary if the marked point z;” of the curves C

in I is carried by PL UP?L.

For a primary codimension 2 stratum I' and C € T, we denote by P! the irreducible
component of C carrying the marked point z;". In this case, we choose the identification (4.9)
so that

(orl) the second factor on the right-hand side parametrizes the irreducible component P}
with its marked points so that the node z¢ separating it from P} is the first marked
point,

(or2) the node z3 separating Pj from P} is the first marked point in the first conjugate pair
of marked points in the corresponding element in the first factor on the right-hand
side, and

(or3) the remaining conjugate pairs of points and the real points in the first factor on the
right-hand side are numbered in the same order as on the left-hand side.

If in addition [*€[l], let I(T") (resp. I*(I")) be the number of marked points z; with i€ [l*]
carried by P§ (resp. P1). The second factor in is canonically oriented (being a complex
manifold). We denote by or,+ the orientation on I' obtained via the identification from
the orientation oy ;1 )11 on M ), times (—1)=m),

With the identification as above, let
Ty, Ty r— Wk,lo(r)ﬂaﬂ&lc@“)ﬂ
be the projections to the two factors. Denote by
Lf — My and  LF — Mo )4

the universal tangent line bundles at the first point of the first conjugate pair of marked points
and at the first marked point, respectively. The normal bundle NT consists of conjugate
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smoothings of the two nodes of the curves in I'. Thus, it is canonically isomorphic to the
complex line bundle
Lr =T LEQcmLE — T,

The next observation is straightforward.

Lemma 4.2. Suppose k,l1€Z7° and I*€[l] are such that k+20>3. Let Fcﬂ;l be a primary
codimension 2 stratum. The orientation of. on NT induced by the orientations oy, 4+ on ME,
and op x on I agrees with the complex orientation of Lr.

Suppose now that [eZ" and S is a codimension 1 stratum of N;l—aﬂg,l. For r=1, 2,
let
K, (S) c [k], L,.(S) < [l], and  k,(S),1,(9)ez>°

be as in Section [£.2] Define

r(S) = 1, %kaOOl"lEKl(S);
2, if 1e Ky(9);

thus, the real marked point z; lies on Sj(s) if k>1.

For [*e[l] and r=1,2, define
L(S) = L(S)nll],  I(S) = [LE(S)].

An orientation 0%, of the normal bundle NeS of S in M;l at Ce S determines a direction
of degeneration of elements of M7 ; to C. The orientation oy ;;x on Mp, limits to an orien-
tation oy +,c of A\¢ (ﬂ;l) obtained by approaching C from this direction. Along with 0%,
O 1;1+,c determines an orientation o, Ok LC of A¢(.S) via the first isomorphism in . If in
addition [5(S5) =1, let i*€ L3(.S) be the smallest element. The two directions of degeneration
of elements of M7, to C are then distinguished by whether the marked points 2, and 2k of

the degenerating elements lie on the same disk D? or not. We denote by og; the orientation
of N¢S which corresponds to the direction of degeneration for which 27, 27, € D% and by o,
the opposite orientation. Let Uil;l*;c and 0;{1*;0 be the orientations of Ac(m,z) and A¢(S),
respectively, induced by ogij—g as above.

A topological component S, of S is characterized by the distribution of the points z;"
with ¢ € L,.(S) between the interiors of the two disks cut out by the fixed locus S} in each

component P! of the domain of the curves in S and by the orderings of the real marked
points x; with i€ K,(S) on S!. Thus,

S~ Mux My @ My, (s)41,(5) X My (s)+1.5(5) (4.10)

for some topological components M; and M, of the moduli spaces on the right-hand side
above. We choose this identification so that

(0g1) the orderings of the conjugate pairs of marked points on the two sides are consistent,
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(052) the nodal point on each of the irreducible components on the left-hand side corresponds
to the first real marked point in the associated factor on the right-hand side.

If in addition I3(S) > 1 and i* € L(S) is the smallest element as before, we denote
by o0gg+ the orientation on S obtained via the identification from the orientations
Oy (§) 1.1 ()% (5) ON MR (59111 (5) AN Oy (8)11,12(8):2 (5) O M (5) 4115y The orientation ogyx
does not depend on the orderings of the real points on S{ and Si. In this case, both fixed
loci S} = P! are canonically oriented. For a topological component S, of S, let j;(S,)€Z>°
be the number of real marked points that lie on the oriented arc of Srl( 9) between the nodal
point of ]P)}n(s) and the real marked point x; of any CeS,; if k=0, we take j;(Ss)=0. Define

Ogx(9) = 1, 02 (8:) = (k=1)71(Ss) + (r(S) — 1) kL (S)ka(S),

5ae(S) = (S)—13(S), 07 (S) = (k—1)7i(Su)+ (’““?“) (r(8)=1)(k=1).

Lemma 4.3. Suppose k,1€Z>° and I*€[l] are such that k+21>3. Let S*Cm;l—ﬁm;’l be
a topological component of codimension 1 stratum such that I5(S)>=1. The orientations 0;—”;1*

and ogyx on A(S)|s, are the same if and only if 5%;[*(5) ~k+0z (S«) mod 2.
Proof. For r=1,2, let
L=10(5), T=01(0S),  k=k(S5), Jj1=5(5%)

IfI*=1{=2and k=0, S=5,=2955 is a point and o0g,;+ =+1. The claim in this case thus holds
by the definition of the orientations 0g 2,2 =092 on Mg , and og% on N'S. Since the orientation
00,1 =00, with [ >3 (resp. 01,y =07, with [ >2) is obtained from the orientations 0¢;_1,;—1
(resp. 01,-14-1) and o;, it follows that the claim holds whenever [* =1 and k=0.

Let Ce S, be as in (4.1). Suppose I* <l and k=0. Let I§ and [§ be the numbers of the
marked points z; of C with i€ [l]—[l*] on the same disk as z;” and on the same disk as z},
respectively. By definition,

16415
it 20;“
1§+ (la—1E—13)

lC
Ol,ll;lﬂMl = (_1) 101J1;11‘M1 ) 0;;l* = (_1)
lC — —
Ul,lg;l§‘|M2 = (_1) 201,l2§l2‘/\42 ) OS;Z* = (_1) OS;Z :
Thus, the claim in this case follows from the [*=1[ case above.
Suppose k>0, S’ Mg, is the image of S under the forgetful morphism
f: Mz,z - Mg,z

dropping all real marked points, C'=§(C), and (Cj,C})e M| x M}, is the corresponding pair
of marked irreducible components (with 1 real marked point each). Let (z;,, ..., ;) be the
ordering of the real marked points on S along its canonical direction starting from the first
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point after the node and (z;,, ... ,xjkz) be the analogous ordering of the real marked points
on 521. The orientation og,+ on 7¢S is obtained via isomorphisms

kl k2
(TeS, 05%) ~ (Tey MY, 014,05 ) @ P, S1 @ (Tey My, 044,08 ) ® DTy, S5
m=1 m=1
k1 ko
~ (TC’IML Ul,ll;lf)@(Tchlga 01,12;z§) @ @Tzims%@ @ijmS% (4.11)

m=1 m=1

k1 k2
~ (TC/S/, US’;Z*) @ ®T$im511@ @Twa‘mS?l
m=1 m=1

from the standard orientations on S] and S5 determined by the marked points z;" and z7%.
The second isomorphism above is orientation-preserving because the dimension of Te; M is
even.

Let C e M, be a smooth marked curve close to C from the direction of degeneration
determined by 05 and C'=§(C). Let (1, Tig. - 7%%) be the ordering of the real marked

points of C along the standard direction of S' determined by 27 (5) The orientation 03,
at C is obtained via isomorphisms

k
(TeS, 05 ) ®(NeS, 057) ~ (TeMi ., ongar) ~ (T Mg, 00000 ) ® DT L S*
m=1 "

k
~ (T, 050 ) ©(Ne S, 057 ) © DT, 5 (4.12)

m=1

k
~ (1) (TerS', 050 ) © DT, S'® (NS, 057).
m=1 m

By (4.11)), (4.12)), and the k=0 case above, the claim in the general case holds if dz (S,) has
the same parity as the parity of the permutation

(i1, thyy Gy oo i) — (iE=1,45,...,17) (4.13)

plus the parity of ky in the minus case, since the tangent spaces T, S; then enter with the
reversed orientations.

Suppose (S5)=1. The plus case of (4.13)) then moves the indices (i1, ...,i;) to the end
preserving their order. The parity of this permutation is

0x (Si) = ji (k—j7) = (k—1)j; mod 2.
The minus case of (4.13)) is the composition of the permutation

(jl:"'aij) - (jkzv"'>j1) (414)

with the transposition in the plus case. This adds an extra ky(ky—1)/2 to the parity.
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Suppose 7(S) = 2. The plus case of (4.13) then moves (jj1 =1,...,j,) to the front
preserving their order. The parity of this permutation is

5%(5*) = (k‘g—]i) (k1—|—]£> = (k‘—l)ji—i—klk’g mod 2.

The minus case of (4.13)) consists of the permutation (4.14)) followed by moving (j 41, .-, j1)
to the front of the entire k tuple. The parity of this permutation plus ko is

Ry +1 . . . kot 1
O (54) = < ) ) + (71+1) (k=1=j1) = (k=1)j; + k=1 + < . ) |
This establishes the claim. 0

4.4 Bordisms in MIQ and Wg,g

The two relations of Theorem are proved by applying with the hypersurfaces T
ﬂ;z and T CM,S of Lemmas |4.4] and below. These hypersurfaces are regular, in the
sense defined at the end of Section 4.2 and in particular are disjoint from the codimension 1
stratum S; of the moduli space. We determine the degrees of these hypersurfaces with
respect to the other non-boundary codimension 1 strata and with respect to the forgetful
morphism f]52;1 in the first case. These degrees are essential for computing the right-hand
side of ; see Proposition

Orientations are interpreted below as relative orientations of maps to a point; see Sec-
tion 3.1} All notation for the codimension 1 strata and the degrees is as in Section[4.2] For a
primary codimension 2 stratum I" of m,l, we denote by of the canonical orientation on NT
as in Lemma and by or; the orientation on I' as in the first half of Section Since
Ok, = 0k 11 for k :O, 1,

or, = O%Okl (4.15)

in the cases of Lemmas 4.4/ and . Let P*eMj, be the three-component curve so that z;
and 23 lie on the same irreducible component.

Lemma 4.4. There exists an embedded closed path T < M’Q with a co-orientation 0% so
that Y s a regular hypersurface and

o(Y,05) = (P*,0%:)u(P,05%-), degi(T,0%) =1, degg,(Y,05)=-1.  (4.16)
Proof. Since (P*,0p+.) is a +-point, gives
OfgiOLQ = +1. (417)

Let /Y/l/ig ~ 52 be the space obtained by contracting S to a point P. By [9, Lemma 5.4], the

orientation 0; » on M7, extends over M7 ,; this can also be readily seen from the definitions.
The morphisms ﬂ%;l and f; 2.2 descend to smooth maps

R AT AAT AT AT
f1,2;1- 1,2 > M0,2 and fi22: Ml,z > M1,1 .

28



We can identify Mb with S? <R3 and MSQ with [—1,1] so that P =(+£1,0,0) and f},,
is the height function. The fibers of ff,,, over M, are then the circles of constant latitude.
The orientation o}t of the fibers of f]Eg;l |m7, specified in Section |4.1f extends over the equator

Sy~ S By Lemma

01’2‘/\/(71'72 = (01500’2) }MIJ . (418)

Let T c ./Y/l/i2 be a meridian running from P~ to P* disjoint from Py and oy be its
canonical orientation. Thus, the restriction

f]E2;1: (T/a UT’) — (Mg,w 00,2)

is an orientation-preserving diffeomorphism. We take 0%, to be the orientation of N’ so
that the projection
(ker dfy 5.1, 07) — (NY',0%)

is an orientation-preserving isomorphism. By (4.18)) and Lemma (3.1}(1)]
oy =050,  and  degf (Y, 0%) =deg(f} oy |1, 05 07) = 1. (4.19)

By Lemma [4.10,,42)| the orientation 0y » corresponds to the natural orientation of the com-
plex coordinate z; with 2z =0 and z; =1 fixed. Thus, 0%, is the negative rotation in the

25 -coordinate. Along S, it corresponds to the negative rotation of the node. Thus,

degSQ(T/’ 0%/) Edeg (f0,2;2|’r’m§27 0%‘/0]§d) = —1.

Since the outer normal co-orientation 0%, of 0T’ agrees with the restriction of o+
N oY g
at P*, ie.

(03*1‘/0’1") pt = il,

the first statement in (4.19) gives

=+l

(OST’UCT’) pi0172|pi = ogT’ p+ 01

Comparing with (4.18]), we conclude that

pt

(0807) s = 05

i.e. the first equality in (4.16)) with YT replaced by Y’ holds as well.

We take T < ﬂ;z to be the preimage of Y’ under the blowdown map (which is a
diffeomorphism on a neighborhood of T) and 0% to be the pullback of 0%.. O

The moduli space M&g is a 3-manifold with the boundary
aﬂg,&; = §;3+ U §;3_ U §2—3+ U §2_3_ )

where

++ _hg 2
Si;_ i M074 ~ S
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Figure 6: Elements of open codimension 1 and 2 strata of ﬂg,g, with {7, 7} ={2,3} in the
first diagram and {7, j, k} ={1,2, 3} in the other four.

is the closure of the open codimension 1 stratum S%i of curves consisting of a pair of
conjugate spheres with the marked points z;" and z;—r on the same sphere as z{"; see [10),

Fig. 4] and the first diagram in Figure @ There are four primary codimension 2 strata
I, with i = 2,3, in ﬂg?g. The closed interval f;r (resp. ', ) is the closure of the open

codimension 2 stratum '} (resp. I';) of curves consisting of one real sphere and a conjugate
pair of spheres so that the real sphere carries the marked points z;" and the decorations *
of the marked points on each of the conjugate spheres are the same (resp. different); see the
last pair of diagrams in Figure [6] Let

f’:r =TI u (fj mgz) c f:
be the complement of the endpoints of fj :

Lemma 4.5. There exist a bordered surface Tcﬂag with a co-orientation o5 and a one-
dimensional manifold fy’cﬂgﬁ with a co-orientation oS, so that T is transverse to all open
strata of M&B not contained in any ff with1=2,3, T is a reqular hypersurface, and
c _ - + c - + c M— c M— c / c
o(T,0%) = (T3, oF;) u(Ty, —OF;) u (T3, oF;) u(Ty, —org) v (v, 0%), (4.20)

Y ©dMys,  degg (Yo%) =1, degg,(T,0%) = —1.

Proof. For i = 2,3, z7 moves in (I'/,0p+,) (resp. (I';,0p0-5)) from the node separating

the sphere carrying z; (resp. z;7) to the other node. Each closed interval fii intersects S;
transversally at one point P;* and does not intersect S; for j=1,2,3 with j#i. It intersects
8HS’3 at its endpoints; we denote the starting point by P;—r_ and the ending point by P’ii+.
By [10, Section 3], the orientation 093 =0¢3;3 on Mg 5 extends over Mg’g.

By [10, Remark 3.5], Mg,?) is the blowup of a bordered manifold /\75,3 at a point ;) with
the exceptional divisor S;. Denote by

CAAT AT
p: Moz — Mg,
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the blowdown map. The morphisms fy 3.2 and o 3.3 descend to smooth maps
f0’3;2: M873 — mg and f073;33 Mg’g I Hg’z . (421)

Since S is disjoint from the four spheres of ﬁﬂag and the four intervals f;t with i=2,3, pis
a diffeomorphism on neighborhoods of these spaces. We denote the images of these intervals
and the twelve points Pf, Pfi on them under p in the same way. The spaces

Sy=p(S,) ~ 12~52 and S3=p(S3) ~ 12
are the fibers of §g 3.3 and o 3.2, respectively, over the curve consisting of two real components,
which corresponds to 1€(0, co] under the identification ¢g o in (4.6)).

Setting (2, z; ) = (0, ), we obtain a natural identification

MG —0MG s ~ {((25,25), (25 23)) € (PY: 2 =7(27), (25, 25) #(0,0) }/~,

+

The condition z;” =7(z;) implies that the points z;” and z; lie on a great arc through the

poles z; =0 and z; =00 (or lie at z{"). The blowup point P, in this identification corresponds
to the point [(1,1), (1,1)]. The projections (4.21)) in this identification are given by

f073;i([(Z;7 ZQ_)a (Z;a 23_)]) = [(07 OO)’ (Z;;iﬁ '25_71)]

In particular, the fiber of o3, over a point of [(0,00), (27, 25_,)] of ﬂg’z—ﬁﬂaz can be
identified via z;” with P! by choosing z ,eR*.

The space /Y/l/ag—ﬁﬁ/l/g,g is covered by two charts

R* XPI - MS,S_f(I;)Q(&MS,z)v (T27 Z3) - [(7“2, 1/T2)’ (237 1/2_3)]7

—_ . (4.22)
P! xR — M6,3_f(;,i1’);3(aM0,2)a (227 Tg) - [(Z27 1/2_2)7 (T3’ 1/7’3)].
In these charts,
w02 (Foz:3(r2, 23)) = 1/r3, Sy = {(r2, 23) ERY xP": ry =1}, (4.23)
@072(f073;2(22, Tg)) = ]_/’I“g, 53 = {(ZQ, T3)€]P)1 XR+ L ry3= ]_}

The overlap map between the two charts,
R*xC* — C*xR™, (ro,r3e”) —> (rae™,13),

is orientation-preserving with respect to the standard orientations og+ on R* and op1 on P
We take 0g3 to be the orientation on MG, opposite to the orientation determined by og-+
and op1 via the two charts in (4.22)). Since the map

(R+, 0R+) — (R+, —0R+), T2 — ©o,2 (f0,3;3(7’2; 23))7 (4-24)

31



is orientation-preserving for each z3 € P! fixed, Lemma |4.1{02)| and (4.15)) give

~

ok
00:3‘ﬂ573—§1 =D 003

_ ac X
M-8 Orra = Onsdug. (4.25)

The moduli space ﬂg,g is a submanifold of ﬂ076. By [21, Appendix D.4,5], the four
cross-ratios

-kt
CRL,: Mjy — P, CRL, ([( z*)ie[3]])=z2 4. a4

Z P2

R
extend over ﬂgﬁ and descend to smooth maps from ./\\//1673. The subspace
T < My, —{Pf*, Pt}
where all four cross-ratios take values in
RP' = [0, 0]/ —00~ a0 (4.26)
is an orientable surface, as explained in the next paragraph. The boundary of Y’ consists of

the complement of two points in a circle on each boundary sphere of dMG ;.

The intersections of T’ with the charts 1) are given by

R xRP' — T 5}, (0My,), (ra,r3) —> [(ra, 1/72), (r3, 1/r3)],

- o (4.27)
R]P)l xRt — T —f&é;?,(a./\/l()g), (7’2, TS) - [(7“2, 1/7’2), <T37 1/T3>]

An element [(25, 25), (25, 257)] of /\\//1673—(3/91/673 belongs to T’ if and only if all four points
zFeP! with i = 2,3 lie on a great circle through 2; and z;. The structure of T along
8./\/10 3 is described by the local coordinates of [10, Remark 3.5] with zeR. The overlap map

between the charts

(7“2,7’3), if 7“3€]R+;

R* xR* — R*xR™*, To,T3) —>
(2 3> {(—7“2,—7’3), if TgeR_;

is orientation-preserving with respect to the orientation og+ on R™ and the orientation ogp:
on RP! induced by the standard orientation of [—c0, ] via (4.26). We take o0, to be the
orientation on Y’ determined by og+ and ogp via the two charts in (4.27).

The surface Y/ contains the four open intervals
=P p )

with =2, 3; the closures of these intervals connect the components of the closure of oY'. In

the two charts (4.22)),
F; = {(ro, z3) eR* xP': 23=0}, f‘; {(r2, 23) eR* xP": 25 =00},

o

f‘; = (ZQ,T3)€P1XR+ ZQ—O}, Fg = { ZQ,TS EPlXR+ ZZ_OO}
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The cut T’ of Y’ along the four open intervals has two components, ?*AandA?*. They are
distinguished by whether CR;;"(C) lies in R* or R~ for the elements C of T'—0Y’, i.e. whether
the points z; lie on the same great arc through 2; and 2;" as the points 23 or on the opposite
arc.

Let Y/ =T+ and v =T A0Y’. The former is a surface with boundary
oY = f‘;uf‘;uf‘gufg uy'.

By 1’ and 1} this surface intersects §2 and 53 transversely along the closed line
segments given by

[y=T'nS, = {(re, 23) ERT xP': ry =1, 23€[0, 0]},
fg ET/ﬁ:g/g = {(ZQ,Tg)E]PlXRJF: 7"321, 226[0, OO]}

in the charts (4.22). For ¢=2,3, let oy be the opposite of the orientation on lv“z given by the
rs_;=|25_;| coordinate. The restriction

fo,3i: (fz, o ) — (Hg,yoog) (4.28)

is then an orientation-preserving diffeomorphism (because (4.24)) is orientation-preserving).

We denote by oy and 0%, the restrictions of the orientation o5, and the co-orientation o,
to T', by o0, the boundary orientation on 7’ induced by ovy/, and by o, the orientation on
N+ determined by 6o 3 and o.,. Thus,

oy = 05,003, 0, = (05y01) |, = 05,803 - (4.29)

At the point Py ef; , fQ, the orientation Opy,3 ON f; is the opposite of the orientation given
by the ro-coordinate (because z; moves from z; = o0 to z; = 0); see Figure . Since the
natural isomorphisms

(TP; \fg, 0f2) — (N’TﬁT’|P2+, OgT’) and (TP;F;, OF;;S)@)(TP; \fg, OfQ) — (TP; T’7 OT/)

are orientation-preserving,

60T/\P2+ = (OBT/OT’) Py = 01‘;;3 Py

Since the right-hand side of
(Y, o) = (19‘;, Ur;;s) v (F:J{? _Urg;s) v (f2_> OF;;a) U (f‘g, _°F§;3) U (7, 0y)

is an oriented loop and the equality above respects the orientations at Py, it follows that
this equality respects the orientations everywhere. Combining it with the second equality

in (4.25) and the first and last equalities in (4.29)), we obtain (4.20)) with T replaced by 1’.

We now compute the degree
deg (fo,z:l, 0% |, 0ha) € Z (4.30)
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Figure 7: The surfaces T’ and S, in /\\//16’3; the dotted arcs indicate the four components of
~ oY,

of fo,3i|p, With respect to the co-orientation 0%, |5 on I'; in S; and the natural orientation o
of the fibers of

R .3 g AT
f073;i S, Nf1,2;1- Si ~M1,2 > Mo,z

over Mj, as in the proof of Lemma . By Lemma [4.1f(0(2), the orientation 05, on

§Z- o, },,;i(/\/lgg) is given by the z5_;-coordinate under the corresponding identification in (4.23)).
Since the diffeomorphism is orientation-preserving, it follows that the vertical orienta-
tion ok, on 51 is given by the negative rotation in the z5_;-coordinate. Since the charts
are orientation-reversing with respect to 6o 3 and the charts are orientation-preserving
with respect to 0s,, the orientation 0%, on NY’ is given by the negative rotation in the
zz-coordinate in the first chart in and the positive rotation in the z9-coordinate in the
second chart in (4.22). Thus, the projection

(ker d{fO,B;i‘éi  0na) Fi—(P*

is an orientation-preserving isomorphism and the number in (4.30)) is (—1)%; see Lemma|3.1(1)|

The surface Y’ is transverse to S;nS,, but passes through Py. Let (T”,0%,) be a co-

) — (NT/, (—1)20%/) Iv‘,'f{Pii}

oriented surface in ./V/l/a3 obtained from (Y, 05,) by a small deformation around P, so that Y”

is still transverse to 5115, and Py¢ Y. We take T Cﬂgs to be the preimage of T” under the
blowdown map p (which is a diffeomorphism on a neighborhood of T) and 05 =p*0%.,. O
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Remark 4.6. We could have taken Y'=7" in the proof of Lemma [4.5] to avoid Py, but with
Oyr=—0% ‘T/.

5 Real GW-invariants

5.1 Moduli spaces of stable maps

Let (X,w, ®) be a real symplectic manifold and k,l€Z>° with k+2[>3. We denote by sz’f’

the space of pairs (J,v) consisting of J e J¢ and a real perturbation v of the 0, -equation
as in [9, Section 2]. For (J, y)e”HZ’fﬁ, a real genus 0 (J,v)-map with k real marked points and
[ conjugate pairs of marked points is a tuple

u= (u: Y— X, («Ti)ie[k]a (Zj>zf)i€[l]’0) (5-1)
such that
C= (2, (xi)iew), (57,2 )iem, 0) (5.2)

is a real genus 0 nodal curve with complex structure j, k real marked points, and [ conjugate
pairs of marked points and u is a smooth map satisfying

uoo = ¢ou, 5Juzzl d,u+Jod,uoj) =v(z,u(z)) V zeX.
2

Such a map is called simple if the restriction of u to each unstable irreducible component of
the domain is simple (i.e. not multiply covered) and no two such restrictions have the same
image.

For B e Hy(X) and (J,v) € 7—[‘;;’;5, we denote by My ;(B; J,v) the moduli space of the
equivalence classes of stable real genus 0 degree B (J,v)-maps with k real marked points
and [ conjugate pairs of marked points that take the fixed locus of the domain to the chosen
topological component X ¢ of the fixed locus of ¢. modulo the reparametrizations. Let

ﬁ:l(B; J,v) c ﬁkyl(B; Jov) and My (B;J,v) < ﬁz’l(B; J,v)

be the subspace of simple maps and the (virtually) main stratum, i.e. the subspace consisting
of maps as in (5.1]) from smooth domains 3, respectively.

The forgetful morphisms
fII§+1,l;i: HZH,I — H;za ie[k+1], and friy1q: MZ,:H — MZJ, ie[l+1],
induce maps
]llffl,l;i: H:f—’ﬂﬁzz and TSTRRE H:f—’HZz(ip
respectively. For each VG’H;:”? , we also denote by

fIl§+1,l;i: ﬁk+1,l(B§ J, f]llifl,l;iy) - ﬁk,l(BQ Jv),

= : = (5.3)
fk,z+1;i3 mk,l-ﬁ-l(B; J, fk;,z+1;i’/) - imk,l(B; J, V)
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the forgetful morphisms dropping the i-th real marked point and the i th conjugate pair of
marked points, respectively. The restriction of the second morphlsm in (5.3) to My 41 (B; J, 1 11.47)
is a dense open subset of a P!-fiber bundle. We denote by o] the relatlve orientation of this
restriction induced by the position of the marked point z;".

For ce Z*, a (virtually) codimension ¢ stratum S of My, (B; J,v) is a subspace of maps
from domains X with precisely ¢ nodes and thus with ¢+1 irreducible components isomorphic
to P!. It is characterized by the distributions of

e the degree B of the map components u of its elements u as in ([5.1)),
e the k real marked points, and

e the [ conjugate pairs of marked points

between the irreducible components of . There are two types of codimension 1 strata
distinguished by whether the fixed locus X7 of (X, o) consists of a single point or a wedge of
two circles. These two types are known as sphere bubbling and disk bubbling, respectively. If &
and B satisfy (2.1), as is the case if holds, then the fixed locus X7 of the domain (X, o)
of every eleme of ﬁk,l(B ;J,v) is a circle or a tree of two or more circles. In this case,
sphere bubbling does not occur.

Suppose [€Z* and S is a codimension 1 disk bubbling stratum of My, ;(B; J,v). We define
Ki(S), Ko(S) € [k], Li(S), La(S) € [I],  ki(S), ka(S), 11(S), o(S) € Z°

analogously to K,.(S), L.(S), k.(S),,(S) in Section We denote by B;(S) e Hy(X) the
degree of the restriction of the map components u of the elements u of S to the irreducible
component P} of the domain carrying the marked points 2" and by By(S)e€ Ha(X) the degree
of the restriction of u to the other irreducible component P} of the domain. Let

S c ﬁw(B; J,v)

be the virtual closure of S, i.e. the subspace of maps u as in so that the domain > can
be split at a node into two connected (possibly reducible) surfaces, ¥; and X, so that the
degree of the restriction of the map component u of u to ¥ is Bi(S), the real marked points
x; with i€ K;(8S) lie on 1, and so do the conjugate pairs of marked points z;° with i€ L;(S).

If in addition I*€[l], let
LY(S) = Ly(S)n[I"],  L3(S) = La(S)n[I7], [(S) = [LI(S)],  15(S) = [L3(S)].
e (S) = <01(X, W)732(5)> - (k2(8)+2(l2(5)—l§(5))) :

In particular,

Uy (B1(8)) + L., (Ba(S)) = 1 <IHS) < L(S)
k(8)+k2(8)=k, 11(3)+12(5)=z, 15(S)+1

We denote by o
ME (B J,v) < M, (B; J,v)
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the subspace of simple maps that have no nodes, or lie in a codimension 1 stratum & with
g1#(8)=0,1 mod 4, or have only one conjugate pair of nodes. Let fmk 11#(B; J,v) be the space
obtained by cutting 9t l(B J,v) along the closures S of the codimension 1 strata S with

g1#(8)=2,3 mod 4. Thus, smk 1+ (B; J, v) contains a double cover of S for each codimension 1
stratum S of 9y, (B; J, 1/) with +(S) = 2,3 mod 4; the union of these covers forms the

(virtual) boundary of i/D\Tk’l;l*(B; J,v). Let
q: D/J\tk’l;l* (B; J,v) —> My, (B; J,v) (5.4)
be the quotient map. We denote by
M, s (B; J,v) © My (Bs J, v) (5.5)
the subspace of simple maps that

e have no nodes, or
e have only one real node, or

e have only one conjugate pair of nodes.

The boundary 893\{]:[;1* (B; J,v) of this subspace consists of double covers S* of the sub-
spaces S* of simple maps of the codimension 1 strata S of 9M,,,(B; J,v) with g (S) = 2,3
mod 4.

For each ie[k], let

ev],f{: ﬁk,l(B; J,v) — X, eV]ZR([u, () jefk]» (=5 25 )jell] a]) = u(z;),

J 7]

be the evaluation morphism for the i-th real marked point. For each i€[l], let

evi: My (B; J,v) — X, evi ([u, (z)) e, (2525 )jem o) = u(z),

be the evaluation morphism for the positive point of the i-th conjugate pair of marked points.

Let
k !

eVEHeVF Xl_[evj : ﬁm(B; Jv) — Xk,lE(X¢)k % X (5.6)
i=1 i=1

be the total evaluation map. We also denote by
ev;: ﬁk,l;l*(BQ Jv) — X? evy : D/D\Tkyl;l*(B; Jv)— X,
ev: g/j\’tk:,l;l* (B, J, I/) I XkJ (57)
the compositions of the evaluation maps above with the quotient map ¢ in (5.4). We will use

the same notation for the compositions of the first three evaluation maps with all obvious
maps to My, (B; J,v).

For [*€[l] and a tuple
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of maps, define

l*

fhl Mh = HHZ e Xl*, fh((yz)ze 1% ) = (hl(y’))ze[l*]’ (59)

i=1
Z,:l;h(B; J,v) = {(u, (Yi)iep )eimk”*(B J,v)x My: evi (u)= hi(yi)Vie[l*]}.
We denote by
EVi,lih - Zl:l;h (B§ J, ’/) — X (5.10)
the map induced by (5.6). Orientations on H; determine an orientation oy, on M. Along
with the symplectic orientation o, of X and a relative orientation o, of

ev: MY (B; J,v) — X, (5.11)

the orientation o), determines a relative orientation 00,01 of ([5.10)).

A dimension n pseudocycle h: H — X in the usual sense determines an element [h]
of H,(X;Z); see [32]. If in addition B is a homology class in X in the complementary
dimension, let

h-xB = (PDx([h]),B) € Z

denote the homology intersection product of [h] with B. If h and B are not of complementary
dimensions, we set /» xB =0. The next two statements follow readily from [24]; see Section[6.2]

Lemma 5.1. Suppose (X, w gzﬁ) is a real symplectic fourfold, k ZGZ>O with k+21=3, I*€[l],
Be Hy(X), and (J,v) e’Hk, is generic. If k and B satzsfy , then a Pin™ -structure p
on X? determines relative orientations 0y x and 0yx of the maps

ev: My« (B; J,v) — Xy and  ev: 97?2,;;1*(3; Jv) — Xk, (5.12)
respectively, with the following properties:

(0p1) the restrictions of opx and 0y« to My, (B; J,v) are the same;
(0,2) the restrictions of opgx 410, and 0fs 4 0px to My i1 (B J,§7 4 1% V) are the same;
0,3) the interchange of two real points x; and x; preserves 0y.x;

p g j P;

(0,4) if ueMy (B; J,v; )?d’) and the marked points z; and z are not separated by the fixed
locus S of the domain of u, then the mterch(mge of the conjugate pairs (z;,z;) and
(2, 2; ) preserves opx at u;

(0,5) the interchange of the points in a conjugate pair (z;, z;) with I* <i<l preserves oy,

R

(0,6) the interchange of the points in a conjugate pair (z;7, z;) with 1* <i<I* reverses oy ;

177

(0,7) the interchange of the points in the conjugate pair (=1, 21 ) reverses opx if and only if

ly(B) = k+2(1-1*) mod 4;
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(0p,8) if k,1,1*=1 and B=0, (ev xidx, 0px0,) is a Steenrod pseudocycle of degree 1.

Proposition 5.2. Suppose (X,w,®) is a real symplectic fourfold, p is a Pin~ -structure
on X, 1eZ*, I*€[l], and Be Hy(X) are such that

k=0,(B) — 2(1—1*) > max(0,3—21). (5.13)

Let h=(h;)icp+) be a tuple of pseudocycles of codimension 2 in general position. For a generic

choice of (J, I/)E?‘[;::ld), the map (5.10) with the relative orientation oy oy 1s a codimension 0
Steenrod pseudocycle. If B#0, then

1%
deg (eV]ng;l17 Op.* Oh) = ( th ‘XB> Ng:’lj—l* . (514)
i=1

5.2 Decomposition formulas

Let (X, w, ¢) be areal symplectic fourfold, p be a Pin~-structure on X, k, k', 1€ Z>° ', 1* €[]
with
K<k and K+20 >3, (5.15)

B e Hy(X), and (J,v) € HZ? . If k and B satisfy 1) there is a well-defined forgetful
morphism o —
fk’,l’: 9j’tkz,l(B; J7 V) I Mk/}ll (5].6)

which drops the last k— & real marked points and the last [—{’ conjugate pairs from the
nodal marked curve associated with each tuple u as in (5.1)) and contracts the unstable
irreducible components of the resulting curve. Let h as in be a tuple of smooth maps
from oriented manifolds and

P= ((pEQ)ie[k]a (pj)ie[l]f[l*]) € Xpj—ix= (X¢)k X (X—X¢)l_l*- (5-17)

Let I'c M, , be a primary codimension 2 stratum and of be its canonical co-orientation

as in Lemma [4.2l We denote by
Mri(B; J,v) < f/?}l/(r) - ﬁk,l(B; J,v)

the subspace consisting of maps from three-component domains. The domain of every ele-
ment u of My, (B; J,v) is stable and thus u is automatically a simple map. Define

Zf:k,l;h(B; J; V) = {(u, (yz)ze[l*]) EZl:l;h(B; J7 y) : uemF;k,l(B; J’ I/)}
For generic choices of (J,v) and h,
Zlf;k,l;h(B; ’]7 l/) - Z/:l;h(B; J, V)

is a smooth submanifold of a smooth manifold with the normal bundle canonically isomorphic
to i yNT. We denote by

Orph = (fzf,l'of“) (Up;l*oh)
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the relative orientation of the restriction
eVrh th;k,l;h(B; Jv) — Xpi# (5.18)
of (5.10) determined by f}, ,of and the relative orientation oyg«op of (5.10), with 0y« as in

Lemma [5.1} see Section
With [o(T), ic(T), 15 (T) € Z>° as at the beginning of Section and Be Hy(X), define

1, ifk'=k=1, lo(T)=0;

0, otherwise.

IHr === (o(T)={5(1) € Z7°; (Bikyr = {

Let L§(T') < [I*] be the subset indexing the conjugate pairs of marked points (z;7, z;) with
i€[l*] carried by the real component of the curves in I'. Define

hixhj, if [LE(T)|=1e(D), L&) ={i, j};
0, otherwise.

Le(T) = [IF]=Lo(T),  (hppr = {

Proposition 5.3. Suppose (X,w,®) is a real symplectic fourfold, p is a Pin™ -structure
on X, K 1€Z>°, I'e[l], I*e[l'], and Be Hy(X) are such that

k=0,(B) — 2(1—1*) — 2 > max(0, 3—21) (5.19)

and holds. Let ch;,l’ be a primary codimension 2 stratum, h as in be a tuple
of pseudocycles of codimension 2 with ¢.[h;|=—[h:] for every i€[l*], and p be as in .
If the elements of h and p are in general position and (J, V)EIH;::ZQS 1S generic, then p is a
reqular value of and the set evfﬁl(p) 1s finite. Furthermore,

i B, =2 e [Jhex) SN

ie[l*] B'eH>(X)
3(B)=B

+ (W)ps.p < | -XB> Ng¥ e + > 2fw<B’><l*>r<(BO.XB’)

ieLF(T) Bo,B'eH2(X)—{0}
By+d(B')=B
= X A7oip
th xBo th xB’ [+ N Npti e o,y |-
ieLd (T) ieLE (T ) < >

(5.20)

Remark 5.4. The domain of ([5.18]) can be completed to a Steenrod pseudocycle by adding in
the codimension 1 strata of its closure. This implies that the set ev;;h(p) is finite for a generic

+ is the degree of this pseudocycle. The proof of Proposition

Olpsh
in Section instead identifies eth(p) with a finite subset of the cross product of two
moduli spaces with the signed cardinality given by the right-hand side of (5 -

choice of p and |evr, h(P)
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Suppose S is an open codimension 1 stratum of ﬁk7l(B; J,v). Let

Kr<8) < [k]a LT’(S) < [l]v L:(S) - [l*]7 kr(s)v lr(S)’ l:(S),El* (S) € Z, BT‘(S) € HQ(X)

be as in Section and S* S be the subspace of simple maps. With M), given by (5.9)),
define

S;lk: {( <y1>zel*)68 XMh ev; ( ):hl(yZ)Vze[l*]}
The (virtual) normal bundles N'S of S in M, (B; J,v) and NS of Sf in

zk,l;h(B;J, I/) = {( (yz)ze 1ES )ei)ﬁkl(B J I/)XMh ev; ( ):hz(yl)Vze[l*]}

are canonically isomorphic.

If ue Sf;, an orientation og,,, of VS determines a direction of degeneration of elements
of the main stratum of Zklh(B J,v) to u. The relative orientation op,«op of (5.10) - ) limits
to a relative orientation op.p., of

Vi Zrin(B; J,v) — Xpg o (5.21)

at u obtained by approaching u from this direction. Along with 0§, 0pnu determines a
relative orientation dog 0pnu of the restriction

€VS:h - S]: — Xk,lfl* (522)
of evy . via the first isomorphism in (3.1]).

Lemma 5.5. Suppose (X,w,®), p,k,,I*, B, and (J,v) are as in Lemma and h as
mn (@ 18 a generic tuple of smooth maps from oriented manifolds. If k and B satisfy ,
S is an open codimension 1 stratum Ofﬁk ((B; J,v), and ueS;:, then the relative orientation
003 Op:hiu of at u does not depend on the choice of 0%, if and only if €x(S) = 2,3

mod 4.
The relative orientation o,,+0p of the restriction of ((5.21)) to
EDTM;h(B; J, V) = {( (%)ze £ )Egﬂkl(B J I/) XMh ev, ( ) h (yz) VZE[Z*]}

extends across Sy if and only if Ope  0p:nu depends on the choice of o, for every uesy. In
particular, the first statement of Lemma is an immediate consequence of Lemma [5.5] If
imkl(B J,v) is cut along S and S* is the double cover of §* in the cut, then (?oc ,Op:hou 18

the boundary relative orientation induced by o0,,+01, at one of the copies U of u in

S = { (W, (Ws)iep1) €S* x M evit (W) = hi(ys) Vi [1*]}; (5.23)

we then denote it by dopna. If €+(S)=2,3 mod 4, we abbreviate dyg, 0p:nu a8 00pniu-

Remark 5.6. While Lemma follows readily from [24, Prop. 5.3|, it is also immediately
implied by our Lemmas and (which are also needed to establish Proposition
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below). The terms we(¢(d”)) in [24, (17),(18)] appear to be extra (they are omitted in the
key invariance argument on [24, p53]). The first equation in [24] with

pld") = 0, (Ba(S)), k' =ka(S), 1" =1(S)=15(S)

compares the two possibilities for 3og,u0p;h;u when k=0 or the real marked point x; lies on

the same component of u as the marked points 2 ; the second equation treats the remaining

case. The right-hand side of the latter reduces to the right-hand side of the former if (2.1))

holds. The right-hand side of [24, (17)], without the wy(1(d”)) term, in turn reduces to
(") =K =20 () =K' —20=1) | en(S)(em(S)—1)

5 1~ 5 +1 mod 2;

the last expression vanishes (i.e. the two orientations are the same) if and only if ¢« (S) =2, 3.
The stratum S satisfies exactly one of the following conditions:

(S0) Ka(S)[W] =@ and Lu(S)n[V] = @

(S1) |K2(S)n[K']|=1 and Lo(S)n[l'] = &;

(82) there exists a codimension 1 stratum SCM;J such that fx (S)cS.

We call a pair (S, T) consisting of S as above and a (possibly bordered) hypersurface T cﬂ;l
admissible if one of the following conditions holds:

(S17T) Ky (S)n[k]={i}, La(S)n[I'| = &, and T is regular with respect to il ;.;;

S2Y) there exists a codimension 1 stratum S < M, , such that wr(S)c S and T is regular
k'l ;
with respect to S.

The notions of T being regular with respect to fﬂ,f,yl,;i and S are defined in Section
For Tcm,7l,, define

fp;yi T — Xk,lfl* XM;/’Z/, fp;T(P) = (p, P), (524)
Shior = { (w0, P)eSEx T evspn(u) =p, frr(u) = P} (5.25)

If (§,7) is an admissible pair and 0% is a co-orientation on T, we denote by deg(S, 0%)€Z
the corresponding degree deg) (T, 0%) or degg(Y, 0%) defined in Section .

Proposition 5.7. Suppose (X, w, ¢), p, k, k', 1,1*,I', B,p,h are in as Pmposition
S c ﬁk,l(B, J, l/) and T c M;/J/

form an admissible pair, and 0% is a co-orientation on Y. If ex(S) =2, the elements of h
and p are in general position, and (J, y)e?—l‘,‘;’f’ 1S generic, then

3 47 T
(eVS;h, fk’,l’) . S;; — XkJ_l* XMk’,l’ and fp;T: T — XkJ_l* X Mk",l’
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are transverse maps from manifolds of complementary dimensions and the set Sy v is finite.
Furthermore,

‘Slﬂ;,p;Y‘:gp;h,u% = —(— 1>dldeeg S, 0% ( th xBi( >< th xBa( >

zeL* zeL*

¢P ¢P
X N/ $)108) 178 N Ba(8) da(8)-15(5)"

(5.26)

Due to the condition g (S) =2,
k1(S) = 0o (Bi(S) —2(11(S)—1{(S)) and  ko(S)+1 = £, (Ba(S)) —2(1(S) - 15(S)),

i.e. the second irreducible component of the maps in § passes through an extra real point.

Remark 5.8. The crucial property of (S, T) used in the proof is that the condition fi;(u)eY
in ((5.25) factors through

S — My, (s)+1,1(5) (Bi(S); J, 1) X Miy(8)+1,0(5) (Ba(S); J, 1)
— My, (5)+1,(8) (B1(S); I, 1)

for a good choice of v. Thus, Lemma applies.

5.3 Proof of Theorem (1.1

Fix (X,w,¢), p, and B as in Theorem [L.1] take k as in (L.3) and {* € {2,3}, and choose

generic tuples
h=(h;: Hi—’X)ie[l*] and  p=((p)iem) (0 )iep+ix—11-117]) € X1
so that each h; is a codimension 2 pseudocycle,
ly(B) = 2l+k, and hi-xhs = 0. (5.27)

We deduce the three relations of Theorem , with Ngi’l’(X %) replaced by Ng;fl’ and the left-
hand sides multiplied by h;-x hs, from Propositions and and several lemmas stated
so far.

For (K',1')=(1,2),(0,3) such that ¥’ <k and I'<I+{*—1, we denote by
fk:’,l’ . gj\tk,l+l*—1;l* (B, J, l/) — M;W

the composition of (5.16) and the quotient map ¢ in (5.4) with [ replaced by [+1*—1. For a
stratum S of My %1 (B; J, v), let

S* = ¢ (8% c ﬁk,mz*—u*(B; J,v).
With the notation as in , let
My = Hy x...x Hpx,
ZI:HI* y h(B; J,v) = {(u, Yty .- 791*)653}1:”1*—1;1*(33 J,v)x My: evi(u)=h;(y;) Vze[l*]}.
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For (J,v)e H:lﬁ %1 generic, the relativeA orientation 0.+ of Lemma and the orientation oy
of My, determine a relative orientation o0y, of the map

. 2 .
EVE,i+i*¥—1;h Zk,m*,l;h (37 J, V) - Xk,lfl

induced by (5.6 with [ replaced by [+{*—1.

Below we take T < MZ,J, to be the bordered compact hypersurfaces of Lemmas 4.4
and with their co-orientations 0. For a stratum S of ﬁk75+l*_1(B; J,v), let

Sppr © S* X MyxT and gf‘; = Z\I:Hl*fl;h (B; J,v)n (3’* x Mp,)
be as in and , respectively, and
Sior = {(8,P)eSEx T eviys1n(@) =p, frow (W) =P}.
We establish the next two statements at the end of this section.

Lemma 5.9. For a generic choice of (J, V)e’}-[‘,;ﬁl*_l, the map

(er-,lJrl*fl;h’ flc’,l’) . Z\]:lJrl*il;h(B; J, V) —_— Xk,lfl Xm;/yl/ (528)
1s a bordered Zo-pseudocycle of dimension 41+ 2k—2 transverse to .

Corollary 5.10. For a generic choice of (J, y)e?—[‘,jﬁl*_l,

ZX (B Jv)x T

(Vg 1% 13000k 17 )5 foir c

is a compact one-dimensional manifold with boundary and

<o T = | ]S prs (5.29)
€% (S)=2

(aél:m*q;h(B? J, V>)

(evk,l+l*71;h7fk’,l’)

with the union taken over the codimension 1 strata S of ﬁ,ﬂﬂ*_l(B; J,v) that satisfy ei-

ther or above Proposition [5.7

In our case, YnS; = . If Sf . # & and S satisfies|(S2)| then S#S;. Combined with the
assumption that (', ") is either (1,2) or (0, 3), this implies that the pair (S, Y) is admissible
in the sense defined above Proposition whenever S contributes to the right-hand side

of (529).

The identity (2.5)) follows from Lemma [3.5] We use Corollary and Proposition [5.7 to
express the right-hand side of this identity, i.e. the signed cardinality of (5.29)), in terms of

the real invariants Ng’,’jl,. We use Lemma 3q|(1) and Proposition [5.3| to express the left-hand

side of 1} in terms of the real invariants Ng’,pl, and the complex invariants Ng,. Setting
the two expressions equal and dividing by 2, we obtain the two identities of Theorem [I.1]
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Proof of |(RWDVV1). We take [*=2. Since k,[>1 in this case, the morphism
fi,2: ZI:Hl;h(B; Jv) — MIQ

is well-defined. Let Piemzz, TCW,Q, 0%+, and 05 be as in the statement of Lemma, .
Let A® (resp. Ajy) be the collection of the codimension 1 strata S of 9;.1(B; J,v) with
€2(S) = 2 such that the irreducible component P} carrying (27 ,2;) (resp. the other com-
ponent P}) of the maps in S carries the conjugate pair (25,25 ), but not the real marked

point z;. Each such stratum is doubly covered by a stratum S of é’g)\TLH;Q(B; J,v).

By Corollary and Proposition [5.7, half of the right-hand side of (2.5]), not including
the sign in front, equals

Z‘Sﬁ,pﬁ‘aiap;h,a% +S§‘S§,pﬂf‘jap;h,o§ - Z (hl x B1 <8))(h2 x By (S)) Ng;p(S),ll(5)—2Ng;p(5),12(5)
Se AR €Az Se A%

®; ;
D (hx Bi(S)(ha-x Ba(S) N5y 118)-1 Vo) in(s)-1°
SE.AQ

Summing over all splittings of Be Hy(X) into By and B, of [—1 conjugate pairs of points
into sets of cardinalities [y and I, and of k—1 real points into sets of cardinalities ¢,,(B;)—2l;,
we obtain

Lias +
5‘ (aZI:l-&-l;h(B; J)) (er,l+1;h7fk/7l/)Xfp;T T’aap;h,ogf

I 1\ /Lo(B)—20—1\ « s s
- Z (h1 X Bl)(hQ .XBl) l ( (B:)—2l NgillNgﬁlQ
1 w 1 1
Bl,BQEHQ(X)*{O}
B1+B;=B (5.30)

l1+1l2=1-1,11,12=0

-1\ [ {,(B)—2l—1 . .
-y (hl.XBl)(hQ.XBQ)( l )(E (SB ;_% _1>Ng’1‘thg;ﬁl2.
Bi,BaeHa(X)—{0} ! wi=l !
B1+By=B

l14+1l2=1-1,11,12=0
We note that [; =1;(S)—2 in the A} sum above and [, =1;(S)—1 in the A, sum, because
the subtractions from [;(S) correspond to the insertions of the divisors Hy, Hy; the meaning
of I, is analogous.

By Lemma and Proposition , half of the left-hand side of (2.5)) equals

eVl (P) :_r I (P1-xha) N3+ 2PD73(BY (hy - B)(ho-x B) ZNJ)B(’
PTipsh B’eH»(X)
o(B')=B

/ -1 ;
+ 24P (ByxB) (h-x B)(ha-x B') (E (B’)) Ny Ng1 o)
Bo, B'eH3(X)—{0} ’
Bo+o(B')=B

Equating this expression with the negative of ([5.30)), as dictated by ([2.5]), we obtain the first
identity in Theorem with the left-hand side multiplied by h;-x ho. O
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Proof of |(RWDVV2). We again take [*=2. Since [>2 in this case, the morphism
fo,3: ZI:Hl;h(B; Jv) — Mg,?,

is well-defined. Let T'f, T, ycﬂ;?,, 07+, 0%, and o, be as in the statement of Lemma .

Let Ay (resp. As3) be the collection of the codimension 1 strata S of 9My.1(B; J,v) with
€2(S) =2 such that P} (resp. P}) carries the conjugate pair (23, 25 ), but not (25, 25 ).

By Corollary and Proposition , half of the right-hand side of ([2.5)) equals

Z}Sﬁ,p;T’;p;h,@ + Z‘Sﬁ,p;ﬂjop;h,o% - Z(hl'XBl (S))(thBl (8)) Ng;p(S),ll(3)—2Ng;p(3),12(5)
SeA; SeAs SeA3

®; ?;
— Y (hx BuS)(hax BaS) NG s 11511 Nors) 1a(s) -1
SeAs

Summing over all splittings of Be Hy(X) into By and By, of [-2 conjugate pairs of points into
sets of cardinalities [; and 5, and of k real points into sets of the appropriate cardinalities,
we obtain

1 ~
§| (@Z;:l_,_l;h(B; J)) (V4105w 17)

=2\ [ o(B) =21\ s o
= Z(hl'xBl)(hz'xB1)< I, )(ﬁw(Bl)—2l1>Ngf’hNgf’lQH

Bl7B2€H2(X)_{O}

B1+B>=B (5.31)
l1+1la=1—2,11,12=0

[—2 l,(B)—2l : :
— Z(hl'XBl)(hQ'XBZ)( I )(&J( 1)—2l1—2) Ngﬁll+1Ng;p,l2‘

Bl,BQEHg (X)—{O}
B1+B2=B
l1+1l2=1—-2,11,12=0

+
T
Tpix T 00p:n,0%

We note that {1 =10,(S)—2 in both sums above, because [1(S)—1 includes the conjugate pair
(24 ,23) in the Ay sum; this pair is included into l5(S) in the A3 sum.

By Lemma and Proposition [5.3] half of the negative of the left-hand side of (2.5)
equals

‘eVF;};h(p)}gF;;p;h - }evrg;h(p)‘%;;p;h = (hl'XhQ)NgE
! [—2 i
+ Z 9lw(B )(BO-XB') (h1 ~XB/)(h2-XB/) (f (B’)) Nl);/Ng;il—l—fw(B’)
Bo,B'eHy(X)—{0} w
Bo+o(B')=B

) -2 A
£, (B")—-1 X 7%
_ 22 (B") (Bo-XB’)(hl-XB’)(hz-xBo) <£ (B/)_l)NB,NBO‘fle(B,).
Bo,B'eHs(X)—{0} ¢

Bo+o(B')=B

Equating this expression with the negative of (5.31)), we obtain the second identity in The-
orem with the left-hand side multiplied by h;-x ho. O
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Proof of |(RWDVVS3). We now take [*=3. Since [>1 in this case, the morphism
fos: kl+2h<B Jv) — Mog

is well-defined. Let 'Y, T, cﬂg,g, 07+, 0%, and o, be as in the statement of Lemma .

Let A, (resp. Asz) be the collection of the codimension 1 strata S of My 40(B; J,v) with
€3(S) =2 such that P} (resp. P}) carries the conjugate pair (23, 23 ), but not (25, 25 ).

By Corollary and Proposition , half of the right-hand side of ([2.5)) equals

+ +
* - * T
2 ’Sh’P;T‘aop;h,oﬁr + Z \Shyp;Tlaop;h,o%

SE.AQ SE.Ag

- 2}4 (hl x B (S))(h2 x B (8)) (h3 X B2<‘5)) NET(S),ll(5)—2Ng;2p(8),l2(3)—1
Se 3

_SEA (h1-x Bi(S))(hax B1(S)) (ha x Ba(S) Nis) 11 (812 Nbs) 1a(s) 1
€.A2

Summing over all splittings of Be Hy(X) into B; and Bs, of [—1 conjugate pairs of points into
sets of cardinalities [; and o, and of k real points into sets of the appropriate cardinalities,
we obtain
1,2y +
5 ’ (azk,l-i-Q;h(B; ‘])) (eVk,it25hsfr 1) X forr T’aﬁp;h,ofr
I—1\/( 4,(B)—2l & .
= hi-x Bi)(hy-x By) (hs-x B “ NGP, NP
3 (s ) B a8 (1) (5073 Y v,

Bl,BQEHQ(X)*{O}

Bi+By=B (5.32)
li+l2=1-1,11,12=0

-1\ [ ¢,(B)-2I : :
— Y (hxBi)(hsx By) (h2.XB2)( z ><€ (59 ;_% )Ng;ﬁhNggfb .
B1,B2eH2(X)—{0} 1 w 1 1
B1+By=B
l1+1l2=1-1,11,12=0
We note that I; =14(S)—2 and Iy =1[3(S)—1 in both sums above, because the subtractions
from [1(S) and I5(S) correspond to the insertions of the divisors Hy, Ha, Hj.

By Lemma [3.3|(1)| Proposition and the last equation in (5.27)), half of the negative
of the left-hand side of ({2.5)) equals

_ + - x ;
‘eVF;l,h<p)‘0F§r,p,h - ‘evr‘3—17h(p)‘or‘;,}’vh - (hl 'XhQ) (h3'X B) Ngj;
/ l 1
+ Z ot (B )(BO'XB,) (hl X B/)(hQ'XB/) <h3'XBO) (g (B’)) NB'Ngopl 1-£,(B’)
By,B’eH2(X)—{0}
Bo+3(B')=B

-1 )
— Z 0B Bo xB') (h1-x B')(h3-x B') (h2-x Bo) <€ (B’)) Nl)%(’Ngil—l—éw(B’) :
Bo,B'e Ha(X)—{0} ¢
Bo+D(B/) B

Equating this expression with the negative of (5.31)), we obtain the last identity in Theo-
rem [1.1] with the left-hand side multiplied by Ay -x hs. O

47



Proof of Lemma[5.9. 1t is sufficient to show that
(ev, Frr) s M e re (B Jv) —> Xpgpe 1 x My (5.33)
is a bordered Zs-pseudocycle of dimension 41+ 2k+2(*—1) transverse to

Fupe s My x T — Xy x My, (5.34)
fhu'-’;T(yla ey Yk, P) = (hl(yl)a cee 7hl*(yl*)7p7 P)

Since dimg X =4, (¢;(X,w), B")>1 for every B'e€ Hy(X)—{0} which can be represented by
a J-holomorphic map u: P! — X for a generic Je J2.

For a stratum S of §J\tk,l+l*—1;l* (B; J,v), we denote by §* = S the subspace of simple maps
and by ¢(S*) the number of nodes of maps in S. The image of S under f ; is contained in
a stratum S of m’,l’ with ¢(SY)<¢(S). For a generic choice of (J,v), S*< S is a smooth
manifold of dimension

dimS* = 0, (B)+2(l+1*—1)+k — ¢(S) = 4l +2k+2(I*—1) — ¢(S) . (5.35)
The image of S—S* under
(v, farr) s My grs 1 (B; Jv) —> Xpgire 1 x My (5.36)
is covered by smooth maps from manifolds S’ with
dim S < 0, (B)+2(1+1*—1)+k — 2 — ¢(S8Y) = 4l +2k+2(I* —2) — ¢(SY); (5.37)

see [23], Section 3] and [33] Section 3.4].

The space ﬁz,m*q;l* (B; J,v) consists of the main stratum 9y, 4+ 1.+ (B; J, v) and the
subspaces §* of the strata S with either one real node only or one conjugate pair of nodes
only. Such strata have disjoint open neighborhoods in m:,lﬂ*—l;l* (B; J,v). Thus, the gluing
maps as in [20] for these strata can be chosen so that their images do not overlap. Along with
the smooth structure of My, ;4% _1.#(B; J,v), these maps then determine a smooth structure

on ﬁ:lﬂ*fl-l* (B; J,v) with respect to which the map ({5.33)) is smooth.

Since the space g/j\tk,Hl*—l;l*(B; J,v) is compact,

Q ((GV, fk’,l’)

(B;J,u)) = {(GV, fk/7l/)}(mk,l+l*_1;l* (B, J, l/) —Dﬁ:’lﬂ*fl;l* (B, J, V)) .

(5.38)
The complement on the right-hand side above consists of the subspaces §* of the strata S
with ¢(S) =2 nodes and of the subspaces S—S8* with ¢(S)>1. Combining this with
and , we conclude that the left-hand side of is covered by smooth maps from
manifolds of dimension at most 4{+2k+2(l*—2). Thus, is a bordered Zs-pseudocycle
of dimension 41+2k+2(1*—1).

For a generic (J,v), the restriction

amx
mk,l+l*71;l*

(ev, o) : 8 — Xpiix_1xSY (5.39)

48



of (5.36) to &* is transverse (in the target above) to fnpy for every given submanifold
T < &Y. Along with the smoothings of the nodes, this implies that (5.33) is transverse
to fhp:xr. Since

Firwr (OO 1 (B3 Jv)) 0 0T = &
with our choices of T, we conclude that the restriction of (5.33)) to 8§J\TZM*71;I*(B; J,v) is
transverse to ([5.34)) and to the restriction of ((5.34)) to the boundary My x 0T of its domain.

Since the image of f; ;s is disjoint from 5m,7l, it is also disjoint from the limit set

QT) =TT

of T (Q(Y) is empty in the case of Lemma and consists of 8 points in 8mg73 in the
case of Lemma . It remains to show that smooth maps from manifolds of dimensions
at most 41+2k+2(l*—2) covering the right-hand side of can be chosen so that they
are transverse to and to the restriction of to Mpx0dY. If ¢(S)>2 and S is

not a stratum of fm:lﬂ*_l,l* (B; J,v), i.e. the maps in § do not just contain a conjugate

pair of nodes, then the transversality of T to every stratum of MZ,J,—@T, the transversality

of (5.39) to funp.y for every given submanifold Y’ =SV, and (5.35)) imply that
{(ev, fk/J/)}(S*) M fh;p;T (Mh X T) = @ (540)
For any stratum S of §J\tk7l+l*_1;l*(3; J,v), the image of & —S8* under l} is covered by

smooth maps
hgli S/ I Xk,l+l*—1 xSV

satisfying (5.37); these maps are transverse (in the target above) to fn.py for every given
submanifold Y/ S for a generic (J,v). This implies that (5.40) holds with §* replaced by
S—S8*. Thus, the bordered Zsy-pseudocycle ((5.33)) is transverse to ((5.34)). n

Proof of Corollary[5.10. For a codimension 1 stratum S of My, ;x4 (B; J,v) and r =
1,2, let
k. = k.(S), L. =1(S), Ir=105(S), B, = B.(S) (5.41)

be as in Section . Suppose that S* is a stratum of 553\11’;”[*_1;[*(3; J,v), ie.
€% (8) = <61(X7 w), B2>—2(l2—l;) —]{?2

is congruent to 2 or 3 modulo 4.

Since TnS; =, (1, k1) # (1,0) if gﬁ,p;r #@. 1f By=0, l5,l5 =1, and kg =0, then
€x(S) =0, contrary to the assumption on S above. Suppose By =0, Iy =1, and I3, ko =0. For
good choices of v (still sufficiently generic), the restriction to S* of with [ replaced by
[+1*—1 then factors as

3\* — mk+1,l+l*72 (B; J, Vl) X ml,l(os J, 0) - Xk,l+l*72 x X — Xk,l+l*fl .

Thus, cSA’ﬁ’p;Y = (I for generic choices of h and p. Suppose By =0, I, =0, and ky =2. For good
choices of v, the restriction to S* of 1) with [ replaced by [+1*—1 then factors as

S*— M1 061 (B; J,v1) xM30(0; J,0) —> Xp_oyp—1 % A% — Xy,
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where A% c (X?)? is the diagonal. Thus, §f’;p;T = (J for generic choices of h and p.

We can thus assume that either B, #0 or 2l,+k, >3 for r=1,2. For good choices of v,
the restriction to &* of |) with [ replaced by [+[*—1 then factors as

O . .
S* — My, p1.,(Brs J, v1) X Mgy i1, Bas J, v2)
. / . /
— My 1,(B; T, v1) X My 1, (Bas I, v5) — Xy g X Xy gy — Xeao1 -

Thus, §ﬁ7p;r = (f for generic choices of h, p, and (J,v) unless
Co(By) +2(l =15 +kp = 4(L—13) +2k,  Vr=1,2.
Since
ly(B1)+0y(By) = 0,(B)—1=2l+k—1, ki+ko=Fk, L+l=1+0"-1, I[F+I5=1,
and €+(S)=2,3 mod 4, it follows that x(S)=2 and
lo(By) = 2(li—1]) + k. (5.42)

If § satisfies above Proposition , the restriction to S* of the composition of 1)
with the projection to the product Xy, ;, x M;/J, factors as

3* — mlirl,ll(Bl; J, Vl) ><5mk2+1,12(32; J, Vz) - mkl,ll(Bn J, V{) - Xk1,11 Xm',l'-

Since the restriction of :5.33; to S* is transverse to 1) and Y is a real hypersurface,
5.42)) then implies that S = . n

6 Proofs of structural statements

6.1 Orienting the linearized J-operator

For u as in (5.1)), let

D}, T(u) ={¢eT(S;u*TX): {oo=dgol}
— I (u) = {CeD(Z;(T7%,)) "' @cu*(TX, J)): (odo = dpo(}

be the linearization of the {0;—v}-operator on the space of real maps from (3, 0) with its
complex structure j. We define

l k k
)‘E(X> = @)‘(Tu(zj)X)ﬂ AHE(X) = /\(@Tu(%)Xd)) = @)‘(Tu(%)X(b)’

=1

Aa(D5,) = det Df Aa(DF, X) = NX) " @ALX) @A (DT,);

Jrsu o
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the summands and the factors in the definition of AX(X) are not ordered. By [I1, Appendix],
the projection

ADS,X) = | J{upxAa(D],, X) — Mey(B; J,v) (6.1)

ueﬁk’l (B;J,v)

is a line orbi-bundle with respect to a natural topology on its domain.
For ie[k] and ueMy(B; J,v) with the associated marked curve C as in (5.2)), let

be as in Section [4.1} The next statement is a consequence of the orienting construction of
[24, Prop. 3.1], a more systematic perspective of which appears in the proof of [8, Thm. 7.1].

Lemma 6.1. Suppose (X,w, @) is a real symplectic fourfold, 1€ Z*+, ke Z>° with k+21 >3,
B e Hy(X), and (J,v) € 7-[‘,:7’[1’. If k and B satisfy , then a Pin~ -structure p on X
determines an orientation opD on the restriction of to My 1(B; J,v) with the following
properties:

(ofl) the interchange of two real points x; and x; preserves of;
(02) if we My (B; J,v), the interchange of the real points w1 and ;) with 2 <i <k
preserves 0 at u if and only if (k—1)(i—1)€2Z;

0P3) ifueMy (B; J,v; X?) and the marked points z;" and 2z are not separated by the fized
p ) i j _
locus S of the domain of u, then the interchange of the conjugate pairs (z;, z;) and

i 0 %
+ - D .
(zf,2; ) preserves o, at u,

(054) the interchange of the points in a conjugate pair (2, z;) with 1<i<l preserves 05;

(0{?5) the interchange of the points in the conjugate pair (z,, 2] ) preserves 0{,3 if and only if

k#0 and (,(B)=2,3 mod4 or k=0 and (,(B) =0 mod 4;

(0{?6) ifk, [, 1*=1, B=0, and v is small, then opD 15 the orientation induced by the evaluation
at xq.

Proof. Let u be as in . For the purposes of applying [8, Thm. 7.1], we take the distin-
guished half-surface D* P! to be the disk so that dD? is the fixed locus S* of 7 and z;" € D?.
A Pin~-structure p on X? then determines an orientation 0%, on the line )JE(X)*@)\u(Dﬁy)
varying continuously with u. Since ogR does not depend on the conjugate pairs of marked
points, except for zi which determines D?, oy satisfies |(0,’3)[ and |(0,’4)l By the CROri-
ent 1p property in [8, Section 7.2], o satisfies|(0,°1)} |(0,’2)} and (0,’5)l By the CROrient 5b
and 6b properties in [8, Section 7.2], it also satisfies (|(0,’6)). Along with the symplectic ori-

entations of Tu(zf)X , of;’R determines an orientation of on Xu(Diy, X) varying continuously

with u. Since the complex dimension of X is even, 0,? also satisfies all six properties. O]
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Suppose now that [eZ* and S is an open codimension 1 stratum of ﬁk,l(B; J,v). Define

(S) = {1, if k=0 or 1€ K1(S);

2, if 1e Ky(S).

An orientation 0., of NS determines a direction of degeneration of elements of 9 ;(B; J, v)
to u. The orientation of on 1) limits to an orientation ogu of XU(D?W, X) by approaching u

from this direction. The orientation 0{3“ is called the limiting orientation induced by p

and 0%, in [8, Section 7.3]. If in addition /5(S) > 1, the possible orientations ogi of NS are
distinguished as above Lemma . We denote by ogf the limiting orientation of XU(D?W X)
induced by p and ogi

The domain of each element u € S consists of an irreducible component P{ carrying
the marked points z;" with fixed locus S} and another irreducible component P} with fixed
locus S3. The fixed locus S} splits P! into two disks. Let S, =& be the subspace of all maps
with fixed distributions of the marked points z;" with i€[l] between the four disks and with
fixed orderings of the marked points z; with i€ [k] and the nodal points on the two fixed loci.
We call such a subspace a substratum of S. If ko (S)+2[5(S) =2, i.e. the marked domain ([5.2))
of every element uesS is stable, then the image of S under the forgetful morphism

kaI ﬁk’l(B, J, V) I m;l
is contained in a codimension 1 stratum &Y. In such a case, a substratum S, of S is given by
S =80 fi)(S))

for some topological component S of §V.

For good choices of v, there are a natural embedding
S — My x My © My (8)+1,0(8) (BL(S); I 1) X Miy(8)+1,10(5) (B2(S); J, v2) (6.2)

for some unions 9ty and 9, of topological components of the moduli spaces on the right-hand
side above and forgetful morphisms

fod : My (8)+1,0(8) (B1(S); J,v1) — My (s).(5) (B1(S); J, 1),

. (6.3)
fod : My (8)+1,12(85) (B2(S); I, v2) —> Mg (8).0(5) (Ba(S); J, 1)

dropping the real marked points corresponding to the nodal points nd on the two components.
We choose the embedding in (6.2)) so that it satisfies |(051) and [(052)|in Section For an

element ue S, we denote by

w; € My, (s)21.0(8) (Bi(S); Jv1)  and s € Myy(s)11,(5) (B2(S); J, 1)
the pair of maps corresponding to u via (6.2]). Let

11/1 € mkl(‘g)h(s) (Bl (S), J, V{) and u’2 € mkg(S),lg(S) (BQ(S); J, Vé)
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be the images of u; and uy under the forgetful morphisms in (6.3)).

Suppose k and B satisfy (2.1)), I5(S) =1, and i* € Ly(S,) is as above Lemma [4.3] For each
uedS,, the exact sequences

0— D?u u Vi ®DJV2 us T Tu(nd)X¢ - Oa (517 52) - gQ(nd)_€1<nd)v (64)
0— D?,V;u Df?yl uy @DJV2 Tu(nd)X¢ - Oa (517 52) - g?(nd) _51 (Hd),
of Fredholm operators determine isomorphisms

Aa(D5,) @M Tunay X°) ~ A (D],) @, (D7)
Aa(D5,) @M Tunay X°) ~ Ay (DF,,) @ (D7)

If €+(S) € 2Z (for any I* € [l]), a Pin~-structure p on X? determines homotopy classes of
isomorphisms

(6.5)

Mg (D5,) — A5 ()OAS (X) and A, (D5,) — A% (X)®AS, (X);

see Lemma[6.1] Combining these isomorphisms with the first isomorphism in (6.5, we obtain
a homotopy class of isomorphisms

/\ ( Jl/)@/\( u(nd) X¢) ~ )\ (X) A
Ay (X)®
~ A“E(X )®>\S(X)®>\(Tu(nd)X¢) .

X)@N, (X)@AG, (X)
X)X Tuwa) X ) @Xg, (X)@AG, (X) (6.6)

)

3(
A, (

If €+(S) ¢ 27, a Pin~-structure p on X¢ similarly determines a homotopy class of isomor-
phisms

A (DF,) A (Tuwa) X?) ~ A% (X)@AL, (X) @A, (X)®AG, (X)
~ MTuwa X ?) @Ay, (X))@ (X))@, (X) @Ay, (X)
~ A (X)L (X) @A (T X ?).

In either case, we denote the associated orientation on Xu(Diy, X) by 0{?

If 15(S) =1, we choose the embedding (/6.2)) so that the real marked points of the tuples
of u; and uy corresponding to ue S, are ordered by their position on S} =P} and Si <P},
respectively, starting from the node in the counterclockwise direction with respect to z;" € P}

and 25 €P}. We define 05 (S.)€Z as above Lemma [4.3] and set

_ ly(B3(8))—ka(S))(4y(Ba(S)) —kao(S)+1
Lemma 6.2. Suppose (X,w, ), p, k, I, B, and (J,v) are as in Lemma the pair (k, B)
satisfies , and Sy is a substratum of a codimension 1 stratum S of My, (B; J,v) with

15(S) = 1. The orientations o)** and oy on X(D?V,Xﬂg* are the same if and only if
65(8) =6z (Ss) mod 2.
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Proof. Let ueS,. We define r.(S) to be 1 if ¢x(S)€2Z and 2 if €+(S)¢2Z. Let j/(u)eZ>°
be the number of real marked points that lie on the oriented arc of 5’1}6 S) between the node
and the real marked point z; e Sﬂe(s) with the smallest value of 4; if k, (5)(S) =0, we take
ji(u) =0. The marked points z;” € P{ and z; € P} determine the distinguished disks as in
the proof of Lemma By Lemma [6.1§(0,”2), the orientation o]’ at u agrees with the split
orientation of [§, Section 7.4] if and only if (£, (s)—1)j.(u) is even. Thus, [8, Cor. 7.5] implies
the claim for AR(X )*@)\u(Dﬁy). Since the conjugate pairs of marked points have the same

D

effect on o)** and 0., the claim follows. O

6.2 Proofs of Lemmas [5.1| and |5.5| and Proposition [5.2

Suppose (X,w, @), p, k,1,1*, B, and (J,v) are as in Lemma 5.1} the pair (k, B) satisfies (2.1)),
and (J,v) is generic. The exact sequences

0 — ker szf),u;u - Tumtz,l(Bﬂ ‘]7 l/) - T}k,l(u)qu-:,l —0
with u € M, (B; J,v) induced by the forgetful morphism f;; determine an isomorphism

A = ev* A*(X)*®@ev* A° (X)* @A (M} (B; J,v))

~ X(DF,. X)@ff (M)

of line bundles over M} ,(B; J,v). By Lemma , the Pin~-structure p on X induces an ori-
entation of on the first factor on the right-hand side above. Along with the orientation oy, .+
on the second factor defined in Section it determines a relative orientation oy« on the

restrictions of (5.12)) to My ,(B; J,v) via (6.7).

Proofs of Lemmas and By Lemmas [4.1) and [6.1], the relative orientation o,x

above satisfies all properties listed in Lemma wherever it is defined. Every (continuous)
extension of o,x to subspaces of the domains of the maps in satisfies the same prop-
erties. The relative orientation o,,+ automatically extends over all strata of codimension 2
and higher. By Lemma [5.5] it extends over the codimension 1 strata of the two domains as
well. Lemma [5.5]in turn follows immediately from Lemmas [£.3] and O

ev‘mz,jl(B;J,u)) 6.7)

The next observation, which is used in the proof of Proposition [5.2] is straightforward.

Lemma 6.3. Suppose A;; with i, j€[3] are oriented finite-dimensional vector spaces, the rows
and columns in the diagram in Figure[§ are exact sequences of vector-space homomorphisms,
and this diagram commutes. The total number of rows and columns in this diagram which
(do not) respect the orientations is congruent to dim(A,3)dim(As;) mod 2.

Proof of Proposition We continue with the notation in the proof of Lemma[5.9] but
apply it to the strata S of My ,(B; J,v). Let

l*

eV = 1_[eV,TF : M. (B; J,v) —> X" (6.8)

i=1
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0 Az Asy Ass 0

0 0 0

Figure 8: Commutative square of vector spaces with exact rows and columns for the state-
ment of Lemma [6.3]

and h: Z— X" be a smooth map from a manifold of dimension 2* —2 that covers Q(fp).
Let

er,l;h . gk,l;h(BS J, V) {(u, y) Eﬁ]@l(B; J, I/) X Mh . ev[l*] (u) = fh(y)} —’Xk,lfl*> (69)
eVin: Zran(B; J,v)= {(u, 2)eMyy(B; J,v)x Z: evps (u) :h(z)} — X

be the maps induced by ([5.6)).
For each stratum S of My ;(B; J,v), define

Sh = zhl;h(B; J, I/) M (S X Mh), S;; = sz;h(B; J, I/) M (S* X Mh)
For a generic (J, v), the subspace §* of simple maps in § is a smooth manifold of dimension
dim §* =0, (B)+2l+k — ¢(S) = 41— 21" +2k—¢(S) (6.10)

and the restriction of to S* is transverse to f, and to h. Along with (6.10)), the first
transversality property implies that Sf is a smooth manifold of dimension

dim 8¢ = dim S*—20* = 4(1—1*) +2k—¢(S). (6.11)
For every stratum S of 9, ;(B; J,v), there is a smooth manifold S’ and smooth maps
evpr: 8T — X" and eV S — Xp
such that evx is transverse to f, and to h,
evx)(§—=8%) cevpx(S’), and dimS' < l,(B)+2+k —2 =41—20"+2k—2; (6.12)
see [23, Section 3] and [33] Section 3.4]. In particular, the map
eViin: Sp={(1,y) €S x My: evys(u) = fu(y) } — Xpii»
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induced by evy;+ is smooth,

er’l;h (8}1—8{:) (@ er’l;h(Sﬁ), and dlm 81/,1 < 4(l—l*)+2k—2 . (613)

By the reasoning in the proof of Lemma applied to the space ‘J)?Em* (B; J,v) instead of

ﬁ:,m*—u* (B; J,v), 9)?,:1;1* (B; J,v) is a smooth manifold. Along with the first transversality
property after , this implies that is a smooth map between smooth manifolds
of the same dimension. The relative orientation oy« of the first map in and the
orientation oy determine a relative orientation oy x0p of .

Since the space ﬁk,z(B; J,v) is compact,

Q(evkl;h‘z:l‘h(B;va)) C €VE h (Ek,l;h(B; J, V) _ZI:l;h(B; J, 7/))

" (6.14)
UEVE I:h (Zk,l;h(B; J, V)) .

By (6.10), (6.12), and the transversality of the maps evp+; on S* and &’ to h, the last set
above is covered by smooth maps from finitely many manifolds of dimension at most

dim Z¥,,(B; J,v)—2 = 4(1—1*) + 2k — 2. (6.15)

The set - o
Zyun(B; J,v) =2k (B; J,v) € My (B; J,v) x My

consists of the subspaces Sj corresponding to the strata S of 9, (B; J, v) with either ¢(S) =2
nodes or ¢+ (S) =2, 3 mod 2 and of the subspaces S,—S; with ¢(S)>1. By (6.11)) and (6.13)), a
smooth map from manifold of dimension covers evy ;:n(Sh) if ¢(S) =2 and evy j.n (Sv—Sy)
for any stratum S of ﬁk,l(B ; J,v). We show in the next two paragraphs that a smooth map
from manifold of dimension (6.15) also covers evy ., (Si) if S is a stratum of 9 (B; J, v)
with ¢(§)=1 and ¢+(S)=2,3 mod 4. This will conclude the proof of the first claim of the
proposition.

Suppose S is a stratum of My ;(B; J, v) with ¢(S)=1 and k;, l;, [¥, B; are as in (5.41). Let

fh1:]\4h1—))<lik and fh2:]\4h2—)‘)(l;k

be the pseudocycles determined by the maps hq, ..., hy corresponding to the conjugate pairs
of marked points indexed by i€ [I*] that are carried by the first and second components of
the maps in S, respectively. If

EH(S) = <Cl(X, (JJ),BQ>_2(Z2_Z;)_1§2 = (KW(BQ)_Z(ZQ_Z;)_I{Q) +1
is congruent to 2 or 3 modulo 4, then
(Bl,lhkl) # (0,1,0) and (Bg,lg,l;,kg) # (0,1,1,0)

Suppose By =0, lo =1, and I3, ks =0. For good choices of v (still sufficiently generic), the
restriction of to §f then factors as

Sp— ZX (B L) x M1 (05 J,0) — Xpp1ope x XO — Xpy g
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Thus, ev;n(Sy) is contained in a smooth manifold of dimension 4({—0*)+2k—2. Suppose
By =0, l5,l3 =0, and ke = 2. For good choices of v, the restriction of to Sf then
factors as

S;lk I ZI:—Ll;h<B; J, Vl) Xm&o(o; J, O) I kaQ,Zfl* X A?( E— Xk,lfl* s

where A?( < (X?)?% is the diagonal. Thus, evy ;4 (S;) is again contained in a smooth manifold
of dimension 4(1—{*)+2k—2.
We can thus assume that either B; #0 or 2[;+k; >3 for :=1,2. For good choices of v,
the restriction of to S then factors as
Sﬁ - ZI;A;Jl;hl (Bl; ‘]7 Vi) X Z’:'Q,lz;hg(BQ; J, Vé)

evkl,ll;hll Leka,ZQ;hQ

‘X’ﬁ,ll—lik X sz,lz—l;‘ Xk,l—l*‘

Thus, evy.n(Sy) is covered by a smooth map from a manifold of dimension

dim Zk*iJi;hi (B27 J, I/Z)'i‘dlm Xk3—i7 ,lgl:i = gw(-Bz) +2<lz—l;k> +k1 + 4(l3—i — l§_i)+2k3—z’

= 4(1=1")+2k + (C,(B)—2(L;— 1)~ k)

l3—;

for 1=1,2. Since
(Co(B1)=2(lLi—1§)—k1) + (Lu(B2)—2(la—15) = ko) = £,(B)—1-2(1—1")—k = —1,

it follows that evy;n(Sf) is covered by a smooth map from a manifold of dimension (6.15))
unless €x(S) is either 0 or 1. Along with the previous paragraph, this confirms the claim at
the end of the paragraph containing (6.15)).

It remains to establish . We can assume that B # 0 and can be represented by a
J-holomorphic map; thus, {w, B)#0. Let He H*(X;Z) be such ¢*H =—H and {H, B) #0;
such a class H can be obtained by slightly deforming w so that it represents a rational class,
taking a multiple of the deformed class that represents an integral class, and then taking the
anti-invariant part of the multiple. Let h; and hs be two pseudocycles as in the statement
of the proposition representing the Poincare dual of H. By definition,

. 1
Nﬁﬁ_l* = m deg<evk,lfl*+2;(h1,h2)> 0p;20(h1,h2)) .

An implicit implication of a similar definition in [24, Section 4] is that Ngi?_ ;+ does not depend
on the choices of H, hy, and hy. This follows from (6.16)) below, which also implies ([5.14]).

Let k,1,1*, B,h be as in the statement of the proposition and h': H — X be another
codimension 2 pseudocycle in general position. We denote by hh’ the tuple (hy, ..., hysx, ')
and show below that

deg(evkylﬂ;hh/, 0p;l*+10hh/) = (h/)(B) deg(evk,l;h, Oyp. % Oh), (616)
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with evy . as in (9.10) and
. z% . ¢ _
€V I+ 1;hh - Zk,lJrl;hh’(B? J, fk,z+1;z*+1’/) — Xp ) 4+1) = X -

The second forgetful morphism in with ([,4) replaced by (I41,1*+1) induces a
morphism
f: Z:,Hl;hh/(B; J, fl:,lﬂ;l*HV) - Zl:l;h (B; J, V)
so that evy ;4 1;m =evinof. The relative orientations op+ 10wy of evyp1ny and op xop of
evy;n determine a relative orientation o, of f. The number of the preimages

U= (W, (211 2040), 05 Y)

of a generic point
(u,y) € Z2X,(B; J,v) n (Mo (B; J, v) x My,)

under f is finite. For such a preimage u, dgf is an isomorphism. With u as in (5.1)), the
homomorphism
T. P@oT,H —T (e

Fr¥ 1

X =T X, (v,w) —do u(v)+dyh’(w),  (6.17)

Zpx g1 Zpxgn

is an isomorphism. Its domain and target are oriented by the complex orientation of P!
(i.e. the vertical orientation ;5 ,; in the notation of Lemmal5.1f(0,2))), the given orientation oy
of H', and the symplectic orientation o, of X. We set s5 to be +1 if this isomorphism
is orientation-preserving and to be —1 if it is orientation-reversing. We show below that

s (0y) =85. Since
Ylsa=h-xB, (6.18)
uef~! (u,y)

the desired identity (6.16]) then follows from (3.6]).

Let A c X? and A" < (X*)? denote the diagonals. The orientation o,, of X induces
an orientation o on the normal bundle N'A of A and an orientation oi on the normal

bundle NA® of A¥. Define
Zh:Z]:[;h(B;J7V)7 ml:mk,l(B;Jay)7
Zhp = Zl:lﬂ;hh'(BS J, fl:,l+1;l*+1’/>7 My = fkaH(B? J, fl::k,l+1;l*+1’/)'

Let (u,y) and @ be as above. Fix an orientation o on Toyw)Xk;. The differentials of the
obvious maps induce a commutative square in Figure [9] with exact rows and columns. Since
the dimensions of X and H’ are even, the sign sg of is the sign of the isomorphism in
the left column with respect to the orientations o0}, 0}, and 0. Along with the relative
orientation 0,.+ (resp. opy+11) and the orientation oy (resp. onp), 0 induces an orienta-
tion 0(uy) on Tiuy) (M x My) (resp. og on T(9Myy1x Myw)). Since the dimension of H' is
even, Lemma implies that the middle row respects the orientations. Along with
the orientation oy on N'A™ (resp. ofy ™' on NA™*1) 0, (resp. o) induces an orientation
004y ON Tuy)Zn (resp. og on T Zhy) so that the right (resp. middle) column of the diagram
respects the orientations. The bottom row respects the orientations. Lemma[6.3]then implies
that dgf is orientation-preserving with respect to o} and 0( wy) if and only if the isomorphism
in the left column is. The latter is the case if and only if sz =+1. These two statements

imply that sg(0,) = 5. O
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0 T Zniw Truy) Zn 0
0— TZ;HIP’l@Ty/H’ = Ta(OMy g1 X Mipr) —— Ty (9 x My,) — 0
0 NA NAF+ NAF 0
0 0 0

Figure 9: Commutative square of vector spaces with exact rows and columns for the proof

of (51,

6.3 Proof of Proposition 5.7

For K,I' e 7Z7° with k' +2l' < 2, we denote by H:% the set of pairs (J,0) with Je J¢.
We continue with the notation in the statement of this proposition and just above. Let

kr 0,15, B, be as in (5.41]) and
M* = MY (B J,v).

Since (S, T) is admissible, ki +2l; >3 and either ky >1 or I >1. We assume that there exist
1z eHZ’l‘z} . and 1/267-[;:2’?1,12 so that every substratum S, c S admits an embedding as in |)
with v1 =7} .1 ..a¥1 subject to the conditions specified below (6.3) and above Lemma

We first assume that I3 # 0 and take i* € L3(S) to be the smallest element of this set.
By this assumption, the image of & under the forgetful morphism fj; is contained in a
codimension 1 stratum & of M,;l. By Lemma , we can assume that the orientation o
of NS used to define the relative orientation 0oy« = Jog 0+ of is 02" in the notation
of Lemma [6.2]

Forue S, let
u; € My =My, 11y, (31; J, Vl), u’1 € 9ﬁll =My, 1, (31; J, V{)7
uy € My =My 410, (Bg; J, VQ), nd € IP’%,P%, S% c ]P’%,
. ) _n? _n¢ . )
Dﬁ - DJ,l/;ll’ Dﬁl - DJ,Vl;ul - DJ,ui;u’l’ Dﬁ2 - DJ,I/Q;uz

be as above Lemma [6.2] and in Section [4.2l We denote by
C=fruu)eS  c M=M;;,  Ci=fr1(w) e Mi=ML .y,

Ci Efklyll (u/1> € M/ = ;s—l,llv CQ Efkfrl,lz <u2> GMQE £2+1,12

the marked domains of the maps u, u;, uj, and u,, respectively.
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The exact sequence
0— TuS — Ty BT, My — Ty X2 — 0, (&4,&%) — &(nd)—&(nd),  (6.19)
of vector spaces determines an isomorphism
Aa(S)ONMToymay X?) = Ay (1) @Ay, (M) (6.20)

Since €% (S)€27Z, the Pin~-structure p on X? determines homotopy classes 0p and 0yx of
isomorphisms

A () — N5 (X)@AG (X) and A(M) — NE(X)@AS(X),  (6.21)

respectively; see Lemma [5.1] Combining the first homotopy class of isomorphisms above
with the first S'-fibration in (6.3) and the orientation of,; on its vertical tangent bundle
T, MY =T,4S;, we obtain a homotopy class Ep;l;k = ofdop;lf of isomorphisms

Ay () ~ Ay (M) ®T1aST ~ Ay (X)@AG (X)) (6.22)

u

Along with (6.20) and the second homotopy class of isomorphisms in (6.21)), it determines a

homotopy class of isomorphisms
Aa(S)BA Ty X¢) & Ay (X) @Ay, (X) @Ay, (X) @Ay, (X)
< N5 (@A ()N Tuu X*) @ (O@G(X)  (623)
~ A (X)@AG(X)RQN(Tyma) X?) -

~—~

We denote by o‘ps;l*;u the homotopy class of isomorphisms

Aa(S) — A(X) @A (X)

determined by (6.23]). The next lemma is deduced from Lemmas and at the end of
this section.

Lemma 6.4. The orientations 0oy« and of;l* of AMevl|s) are opposite.
We take hy; and hy to be the components of h as in the proof of Proposition [5.2] and
P1 € Xy, g, and P2 € X1, 3
to be the components of pe X}, ;_;+ defined analogously. Let

Zl = Zl:(l+1,l1;h1 (Bla J, l/1>ﬁ (9:)?1 XMh1)7 Z{ = Z];,luhl (Bh J, I/i)ﬂ (Sﬁll XMh1)7
ZQ = Z’;+17l2;h2(32; J, Vg)ﬁ (mtg X Mh2>.

The first forgetful morphism in (6.3)) induces a fibration fz, so that the diagram

fz,

Z Z

ml fnd m,l
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commutes. Since 7z induces an isomorphism between the vertical tangent bundles T'Z7
of fz, and TOY of fna, it pulls back ofy to an orientation 0% on the fibers of fz,. The
relative orientations ofdopﬁ, Opyx, and opgx on

. ooy :
ev: My — Xppy, eV :M — Xy, and ev: My — Xpyp14,

respectively, the orientations o5, of H;, and the symplectic orientation o, on X determine
relative orientations Op.p,, Op:hy, and 0p.p, of

Vit 21— Xy mx, eVt 21— Xy o, and evi,t 2o —> Xpy 1, i
respectively. Since the dimensions of X and H; are even,
ap§h1 = 012):’1013;111 = (Wj%ofd)op;hl : (6'24)
For e Sf, we denote by
ﬁleZl, ﬁaEZ{, i\j.QEZQ

the images of U under the projections induced by the embedding (6.2)), the first forgetful
morphism in (6.3)), and the decomposition

My ~ My, x My, .
The exact sequence
0 — TsSi — Ta, Z210T5, 2 — Tymay X? — 0, (&1,&) — &(nd)—& (nd),
of vector spaces determines an isomorphism
Xa(SH)RONTumay X?) ~ A, (21) @i, (22).

Along with the relative orientations 0y.n, and oy, above, this isomorphism determines a
homotopy class of isomorphisms

Aa(S) @M Tuma X°) ~ A~f( )@, (X)@AG, (X)@AG, (X)
A5 ()G (X)OA(T00) X ) DN (X)OAG, (X)
~ AR( YOG (X) BN Ty X?).
We denote the associated relative orientation of by
05:h = (Op;hy )ndX ndOp:hs - (6.25)
Since the dimensions of X and H; are even, Lemma implies that

(6.26)

[Stpelo |8t prls,
h,p;T aﬂp;h,OT h,p;T 0s; h70T ’

If S and T satisfy above Proposition [5.7| with i€ [k'] as in |(S1Y)] let
Ky=kK-1, U}=10, kiy=1 1,=0, T1=7T, nd=i.
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If S and T satisty |(S27)| and Scmw as in |(S27)] let
ki :k1(3)7 lll =l1(S), k£:k2(s)7 l/2 :l2(8)

and denote by
T ——T —_T
T S~ My X Mgy — Mgy

the projection to the first component in the second identification in (4.7). In this case,

= T -7 T
ThnS ~ Tl XMk/2+17l/2 = Mk/1+1,l’1 XMk’2+1,l/2

Tk . . - . - . .
for some Ty © My/y - The co-orientation 0%.,g on TS in S induced by of is the
. . . 47
pullback by m; of a co-orientation 0% on Ty in My, ;. Let

. Q¥ M
fk/1+1,l’1 =mofpy: Sy — S — Mk’l-i-l,l/l :

In both cases,
dim Y = dim T+ 1—kj,—20}, (6.27)
and the forgetful morphism frr 1 factors as

% fk’1+1,l’1 J—
’Sh — ZI ><Z2 - Zl - -A/lk’lJrl,l’1 :

We define

——T ——T
ft = Fre105ma s Mgy — My i

If § and T satisfy [(S27), and |(3)|in Lemma 3.3 give

‘Sﬁ,p;Y}i = _‘M(

US;haogf

+

eVS;hvfk’,l’)vfp;T|’rm§ °$§h’7riko§‘1 ‘ng
N (6.28)
M :

evs. .
th’fk'1+l,l/1)’qu'r1 gs;h709r1

/

— (-1

the signed fiber products in the second and third expressions above are taken with respect
to X1+ xS and Xj j_jx ¥ ./\/l; L respectively. The first and last expressions in (6.28)) are
the same if S and Y satisfy [[SIT)| By (6.25) and Lemma ,

+ +
‘M(evs;hvfk’ +10 )3 foiry 05:h,05 - ‘M(evm Tt 41,0 )5 fpriy ‘E -hy 105 deg (th2, 0P§h2)' <6'29)
1 1 shoPry 1 1 pihyoTry
By Lemma B3(1)]
+

T o dim Y * c \Y
‘M(evhlvfkll_{_l,[’l)vfpl;'fl Ep;hv"%l - (_1) ' deg(evth;,llH,l,l(Tl)a (fk’l-i-l,l’l 0T1)0p§h1) :

By the first identity in (6.24)) and ({3.6]),

deg(evhl‘f,}lﬂl, (Y1) (fz’1+1,l'locrl)ap;h1) = deg(leyf;,1+1 (1) (fZ;H,ng%l)Uvzl) deg(evill, Op;h1)-
171 1750
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By the second identity in ((6.24])) and Lemma ,
R R R R
5ﬁ(<fz’1+l,l'loc'f1)0%1) = 5ﬁ(fk’1+1,l’17 W;Ond, Ond)sfk/1+1,l'1 (ﬁ)(ogh Ond) = Efk’lﬂ,z/l (ﬁ)(o%l Ond)

for a generic ﬁef,;,:H’l,l(Tl).

Combining the last three equations with (6.27)) and Lemma [3.1f(2)| we obtain

i : !
|M(e"h1vfk’1+1,l’1)’fpmf1 Opihy 9%, - _(_1)d1mT+k2 deg(fM‘Tl’ ochoﬂjd) deg(ev’hl, OP;hl)

= —(=1)Tm T+ deg (T, 0% ) deg(evh,, O, )-
Along with (6.28)) and (6.29)), this gives

|Sﬁ’p;T‘i - (_1)dimT degs (T7 0%) deg (evina 0P§h1) deg (evh27 0P§h2) :

05:h,0%

Combining this equation with (6.26]) and ((5.14)), we obtain ({5.26]).

Suppose (5 = 0. Choose another codimension 2 pseudocycle b’ : H — X in general
position with h'-x By #0. Let

* * . *
S < 28 th (B7 J, fk,l+1;l*+1V)

be the codimension 1 stratum so that fy 4 1.%41(Sf,) =S; and the irreducible component P}
of the maps in this stratum carries the marked points zﬁ +1- The vertical tangent bundle of
the projection

[LARSULRSE Zl:l+1;h(B; J, f:,z+1;z*+1’/) - Zk*,l;h<B§ J,v)

is oriented by the position of z;ﬁ +1; we denote this orientation by 0.

By the 5 #0 case above,

‘S{:h/’pﬂ;’; = — (=)™ Y degy (T, 0%) deg(evl,,, opm, ) (B x Bg)Ng;p’l? : (6.30)

C
p;hh/ 07

Since the dimensions of X and H' are even,
00pniy = 0(050pm0 ) = 0/ (0y0 ) op -
By the reasoning in the proof of ([5.14)), this implies that

= (W-xB2)|Sk 1.

|i
;T 00p:h,05

+
‘Sﬁh’,p;T‘aop;hh,,ogr (6.31)

Combining ((6.30) and (6.31]) with (5.14]), we again obtain (5.26]).

Proof of Lemma [6.4. Fix orientations of T,uayX? and T, X for all i€ [k]. We can
then view all relevant relative orientations as orientations in the usual sense. Let S, S be
the substratum containing u.

The differential of the forgetful morphism f;; induces the first exact square of Figure .
The two spaces in the bottom row are oriented by 0§+ and ogif with the isomorphism between
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them being orientation-preserving. These orientations and the orientations 0{? , Opyx, and
05,1+ determine the limiting orientations ofﬂr on ker D¢, ogr;l* on TyIN*, and ozl;l* on Te M,
respectively. By , the middle row respects these orientations. The middle (resp. right)
column respects the orientations o+ on TS, 0. on T,MM*, and 0%" on M, S (resp. 0&
on TySY, 0/« on TeM, and 0%} on N,SY). Lemma then implies that the top row in
the first exact square of Figure respects the orientations 0‘? " on ker D¢, 00px on T, S,
and o;fv;l* on T,SV.

The differentials of forgetful morphisms induce the second exact square of Figure |10}
The two spaces in the top row are oriented by of, as in Section with the isomorphism
between them being orientation-preserving. The first real marked point of u; is the node,
while the second one (if k; # 0) is the next marked point on the fixed locus S} =P} in the
counterclockwise direction with respect to z;". By [(o,1)] and [(04)|in Lemma[4.1] the right
column thus does not respect the orientations 0%y on 7,457, Ok 41,55 o0 T, My, and oy, g,
on Tey M because

k1 + dllil = 2k1+2l,—3 ¢ 27.

By (6.7), the bottom row respects the orientations o)’ on ker D , 0,2 on Ty D, and o0,
on Tch/y By (6.22)), the middle column respects the orientations 0’y on 7,457, Op,# ON
Ty, My, and o,x on Ty M because

dim Z)ﬁ’l = Ew(31)+2l1+/€1

is even by the assumption that €x(S) =2. Lemma then implies that the middle row
respects the orientations of on ker Dﬁl, Ep;lf on Ty, My, and Ok, 41,0,50% ON Te, My it and
only if

1+ dimker DY = 1+2+(c1(X,w), By)

is even. Since €x(S) =2, we conclude that the middle row in the second exact square of
Figure [10| respects the orientations of on ker Dﬁl, Ep;lik on Ty, My, and 0y, g ,4% on Te, M,y
if and only if k; is even.

The short exact sequences (6.4) and (6.19) and the differential of the forgetful mor-
phism f;; induce the third exact square of Figure . By (6.7), the short exact sequence
of the second summands in the middle row respects the orientations of on ker Dﬁz, Op% ON
Ty My, and 0y, 14 g,0x on Te, M. Along with the conclusion of the previous paragraph and
Lemma , this implies that the middle row respects the orientations 0, @0y, 0,5 @0y,

and 0, 4 17,% @O, 1,,43 if and only if
k1 + (dimker DY) (dim M) = ki + (2+{c1(X,w), Bo)) (k14211 —2)

is even. Since €x(S)=2, this is the case if and only if k; +k1ko€2Z. By Lemma[6.2] the left
column respects the orientations oy ", 0, @®o0,’, and the chosen orientation oy on Ty mq) X ?
if and only if §5(S) =04 (Si) mod 2. Since €x(S) = 2, this is the case if and only if the
number k2+k1k‘2+5§ (S:) is even. By Lemma the non-trivial isomorphism in the right
column respects the orientations 0g. .« and oy, 41,5 @0p, 415,z if and only if 05 (Si) = k+1

mod 2. By 1) the middle column respects the orientations o‘;l*, Ep;lik@Up;l;, and o2,
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1)
0 —— ker Dﬁ TaS TeSY ——0

0 —ker D¢ ——= T, M* ——=Te M ——0

00— NS ——=NeSY —0

0 0 0
0 0 0
0 ———ker D¢ ) TeSY 0

0 —— ker Dﬁl @ker Df:Q — Ty, M BTy, My — T, M BT, My —0

Figure 10: Commutative squares of vector spaces with exact rows and columns for the proof
of Lemma [6.4]
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Combining these statements with Lemma we conclude that the top row does not respect
the orientations ofﬁ, of;l*, and 0%, . because

(k1 +kiko)+ (ko +kika+ 63 (So)) + (k+ 1405 (Sy)) + (dim S¥) (dim X?) =1 mod 2.

Comparing this conclusion with the conclusion concerning the top row in the first exact
square of Figure [10] above, we obtain the claim. O

6.4 Proof of Proposition |5.3

We denote by Hg . the space of pairs (J, ') consisting of J€ 7, and a Ruan-Tian perturba-

tion v/ of the 0,- equatlon if m >3 and take Hf, to be the set of pairs (J,0) with Je J,,. For
B'e Hy(X) and v/ €Hy,,,, we denote by I (B’ J, V') the moduli space of (complex) genus 0
degree B’ (J,v )-holomorphlc maps from smooth domains with m marked points and by

evi: ME (B J,0) — X, ie[m],
the evaluation maps at the marked points. For I < [m], let oc,; be the orientation of
INC (B'; J, V') obtained by twisting the standard complex orientation by (—1)/l. Define
idy, ifi¢l;
o, if iel;
vl ME (B V) — X™, evi(u) = ((@i[(evi(u)))ie[m]).

7

ol X — X, @z:{

We continue with the notation in the statement of Proposition |5.3| and just above. The
co-orientation of. of I' in Mkz/,l’ and the relative orientation oy, of Lemma induce a
relative orientation (f, ,0f)op 4« of the restriction

evr. mr;kl(B; J, l/) —_— Xk,l

of (0.

Fix a stratum S < Mr.;(B; J,v). Let Br be the degree of the restrictions of the maps
in S to the real component P} of the domain and B¢ be the degree of their restrictions to
the component P! of the domaln carrying the marked point z;". Denote by Lo, Lc < [l] the
subsets indexing the conjugate pairs of marked points carried by Pj and PL, respectively.
Let L* < L& be the subset indexing the conjugate pairs of marked points (z;", z;7) of curves
in I so that z; lies on PL. Define

i 7,

Ly =Lg(l), Lg=Le(T), lo=|Lol, le=|Lc|, lg=10T), &=l
By (5.19),
(0= 1) +(le—12) = 1=1%,  (Lu(Bo)— (k+2(10—15)) + 2((Be)— (le—1£) = 0. (6:32)
For a good choice of v, there exist VRGH:”;?] +1» Ve €HY 4, and a natural embedding

ts: 8 —> My x Me =My 11 (Br; J,vr) x4 (Be; J, ve) (6.33)
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satisfying |(or1)| - |(or3)| in Section If Bg #0, we also assume that there exists VﬁQG'H:”;ﬁ
so that the forgetful morphism

fndi SﬁR I gﬁfk Emhlo (B]R; J, VﬁQ) (634)

dropping the conjugate pair corresponding to the node nd (i.e. the first one) is defined.
If Bc # 0, we similarly assume that there exists vp € Hj so that the analogous forgetful
morphism

faa: Me —> M =M (Be; J, 1) (6.35)

is defined. Denote by I < [lc + 1] (resp. I’ < [lc]) the subset indexing the marked points of
a map in M¢ (resp. M) corresponding to the marked points on the left-hand side of (6.33))
indexed by L* under (6.33) (resp. (6.33)) and (6.35])).

For an element ue S, we denote by uge Mg and u, €M the pair of maps corresponding
to u via (6.33). Let ujeMy and u/, e M be the image of uy under (6.34) if Br#0 and the
image of uy under (6.35)) if Bc #0, respectively. The exact sequence

00— TyS — TuomR®Tu+mC - Tu(nd)X — 0, (517 €2> - €2<nd)_£1 (nd>7
of vector spaces determines an isomorphism
)\U(S)®)\(Tu(nd)X) ~ Ay (M) @Ay, (Mc).
The Pin~-structure p on X? determines a homotopy class 0% of isomorphisms
Ay (Mz) — Ag, (X) @G, (X);

see Lemma [5.1] Combining the above two homotopy classes of isomorphisms with the com-
plex orientations of A(Tyma)X) and A7, (X) and the orientation oc,r of Ay, (Mc), we obtain
a homotopy class 0‘1; 1., Of isomorphisms

Y0

Aa(S) — A (X)@AG(X).
Lemma 6.5. The relative orientations (§; ,0f)0px and 0;1;13‘ of AMevr) are the same.

Proof. The proof of Lemma readily adapts using Lemma The relevant analogue of
Lemma [6.2) follows readily from [8, Cor. 7.3]. In light of Lemma [1.2] the (k’,1) = (0, 3) case
of Lemma [6.5] also follows from Lemma 5.2 and Remark 5.3 in [10]; the proof in [10] extends
to arbitrary (k',1'). O

We denote by
hRI ]\4}1]R — Xl(T’ h(C: MhC N X%j Pr € Xk,lo—lg‘a and pc € Xl(c—lé

the components of h and p corresponding to the marked points on P and PL for the maps u
in §. With the notation as in (5.9)), let

Sh = Sevxthh7 Zg = (i)jt]R)eVth]R MhRy Zc = (m(c)elefhc th
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be the corresponding spaces cut out by h and
eve: Zc — Xle—ig
be the evaluation map induced by ev!. The relative orientations 0p.# 11 and og;r of
ev: Mr — X o+1 and evl: Me —> XleHl ,

respectively, the orientations o, of H;, and the symplectic orientation o, on X determine
relative orientations oy, and op..; of the induced maps

%
evR: Zr —> Xy i and eve: Zp — XleTle

respectively.

For ue &y, let Uge Zr and U, € Z¢ be the components of 1 in the corresponding spaces.
The exact sequence

0 — T5Sh — T4, Zr®T5, Zc — Tyma) X — 0 (6.36)
of vector spaces determines an isomorphism
Aa(SwOA Ty X) ~ Ao (Z2)@a, (Z0)
Along with oy, and oy..7, these isomorphisms determine a relative orientation
og;h = (Opihy ) nd X ndOhest (6.37)

of the restriction of (5.18]) to Sp. Since the dimensions of H; and X are even, Lemma
implies that . .
levin(p) mSh};F;P;h = |ev;;L(p)mSh‘;£h . (6.38)

We denote by 0% the co-orientation of § in Zg x Z¢ determined by the symplectic orienta-
tion o, of X via ([6.36)).

If Bg #0 (resp. B¢ #0), we also define
Zﬁ& = (m],R)evth My, (resp. Z(/C = (méc)evf'xthhc)

and denote by U € Z; (resp. W, € Z() the image of Uy (resp. ;) under the forgetful
morphism
fr: Zr — 2 (resp. fc: Zc — Z¢) (6.39)

dropping the marked points corresponding to the nodes. If Br #0 and [ #0, 0% determines
a relative orientation oy of the evaluation map

eV]/R: Zﬁ% — Xkle*lg; (640)
induced by ev. If Be#0, oc,; determines a relative orientation oilc; ;- of the evaluation map
evh: Zf — Xk (6.41)
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induced by ev’".

Since the projections mg and 7¢ in the commutative diagrams

Z]R fr Z ]{g Z(C fc Z é:
L Ak
My — 2 0, M — 1 o,

induce isomorphisms between the vertical tangent bundles of fg, fc, and f,q, they pull back
the relative orientations o, of (6.34) and (6.35)), respectively, to relative orientations o,
of (6.39). Since the dimensions of X and H; are even,

Op;hp = Uﬁgo;;hR = (Wﬁoid)";a;hR and  Op.; = UEULC;I' = (Wéo:fd)oﬁc;lw (6.42)
whenever Bg #0 and B¢ # 0, respectively.
Suppose Bg, Bc#0. By (6.32)), we can assume that

0,(Bg) = k+2(lo—f)  and  £,(Be) = lo—I%; (6.43)

otherwise, either evy'(pr) = & or evg'(pe) = & for a generic p € Xi; . By the first
statement above and Lemma the interchange of the marked points of the elements
in Zg reverses the orientation o0,.,,. This interchange also reverses the vertical orientation og
of the fibration fg. Thus, the orientation o}, on Zp can be defined by the first equation
in if [z =0. By the second equation in (6.43)) and the assumption that ¢ [h;]=—[h;]
for every ie[l*],

+

_ t
levis 1<pc)‘0hc = [(ME) vt (nepe) M ron, = [ [(hi -x Bo)NG; (6.44)
ieLE
see [10, Prop. 4.3].

Since the real dimension of X is 4, the homomorphism
dndu-‘r _dnduo: Tnd]P)(lj@Tnd]P)i_ - Tu(nd)X :Nﬁsh

in the commutative diagram of Figure [L1] is an isomorphism for a generic element u € Sy,.
So is the bottom row in this diagram. The number of the preimages (1iy, 1, ) of a generic
point (ug,uy) of {Zf x Zl}ors under fg x fc is finite. Since the dimensions of T,4P} and
T nd]P’}r are even,
v _ .+ +

Opc = 0pDoc
is the vertical orientation of the fibration fg xfc. By Lemma and the reasoning in the
proof of (5.14]) at the end of Section

S(iio.1,) (050Rc) { T 1}

is the sign of the intersection of uy and u; at nd and the number of such preimages counted

with sign is Bg-x Bc. Along with the commutativity of the square in Figure (11| and ({3.6]),
this implies that

_ + +

b @ISl = (BaxBolevi ()2 fovt (Bl

ol
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TndP(lj@Tnd]p},-
dnat+ —dpauo
dge
0 T5Sh 2 T4, Zr @15, Zc — Tyma) X —=0
dﬁevr‘;hl dg fr@®da  fc
(dﬁf)evlledﬁ’_'_ eve)
T (i) X1 Ty, Zp@®Tw, Z¢

0

Figure 11: Computation of (6.38)) in the Bg, Bc #0 case

Combining this statement with (6.38)), ((5.14]), and (6.44)), we conclude that

evihPInSE = BR.XB(C)< Hhi'XBRX Hhi.XBC) NEP V.

i€l ieLE
Summing this over all possibilities for S with Bg, Bc # 0 that satisfy (6.43]), we obtain the
(By, B') sum in ([5.20)).

Suppose Be =0 and thus Br = B. We can assume that [§ =[c =2; otherwise, Z¢ = for
generic h and p. Thus, Z¢ is a finite collection of points, while the dimensions of Zr and

X x X+ are the same by (6.32) and (5.19). By (6.37) and Lemma with T, M =pt

applied to the left diagram in Figure [12]

+

‘ev;i(p) mSh‘;_rEh = ‘Z‘CE@IHGVHC‘ xevR}*l(pt, p)} (6.45)

By the proof of ([5.14]),

Hevnd erR}*l(Pt, P) ;_;;hRow = ( Hhi-XB) Ngﬁo—lg“ﬂ

T
€Ly

Op;hp Ow

Combining this statement with (6.38) and ([6.45)), we obtain the second term on the right-
hand side of ([5.20)).

Suppose Bg =0 and thus 0(B¢) = B. We can assume that k', k=1 and [y =0; otherwise,
Zr = & for generic h and p. Thus, (B;k)r = 1, the dimensions of Zg and X¢ are the
same, and so are the dimensions of Z¢ and X x X;_;» by (6.32) and (5.19)). By and
Lemma [3.4) with T, M =pt applied to the right diagram in Figure

+

]evilh(p)mSh‘oig;h = |evﬁgl(p$)}il|{evndXGVC}_l(Pt,PC)LC;I%-
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eve EVR

Zc pt Zr X9
vl | | |
X Sp——— o Xy X Sp—— Xy
e‘k] ‘ e‘kt l

ZR eVR XkJil* Z(C eve Xl_l*

Figure 12: Computation of (6.38]) in the B¢ =0 and Bgr =0 cases

Combining this statement with (6.38]), Lemma , and (6.44]), we conclude that
—1 + X —I* X
‘eVF,h<p) mShloF;p;h = < th 'XBC)NBC - 2 < th ‘XB>NBC .

1€[l*] 1€[l*]

Summing this over all possibilities for S with Bg =0, we obtain the first term on the right-

hand side of ([5.20)).
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