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Abstract of the Dissertation

The Irreducibility of the Spaces of Genus-0 Stable Maps and

Quasimaps to Complete Intersections in Projective Space

by

Prithviraj Chowdhury

Doctor of Philosophy

in

Mathematics

Stony Brook University

2021

The work of Harris, Roth and Starr shows the irreducibility of the Kontsevich space for

smooth low degree hypersurfaces in projective space. In this dissertation, we generalize their

result to smooth complete intersections in projective space in instances where the dimension

of the projective space is large compared to the multidegree of the complete intersection.

Moreover, we use our results and methods of Starr and Tian to show the irreducibility of

the space of Quasimaps to every complete intersection within the same multidegree range.
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1 Introduction and Outline of Results

In [11], the authors prove that, over an algebraically closed field k of characteristic 0, the

Kontsevich moduli space M0,r(X, e) of genus-0 stable maps of degree e to a general hyper-

surface X ⊂ Pn of degree d is irreducible of the expected dimension (n+ 1− d)e+ (n− 4),

if n+1
2 > d and n > 2. The proof is an induction argument for which the base case uses

the flatness of the evaluation map for pointed lines. Suppose that X ⊂ Pn is a projective

variety. We denote by F0,1(X), the subscheme of the two step flag variety F ((1, 2), n + 1)

which parameterizes pairs (p, L) where p is a point and L is a line such that p ∈ L ⊂ X.

The evaluation map is the morphism:

ρX : F0,1(X) −→ X

defined by ρX(p, L) = p . When X is a general hypersurface with n+1
2 > d, the map ρX is

flat with fiber dimension n−d−1, which equals the expected dimension. This flatness result

and a version of Mori’s Bend-and-Break lemma prove that every irreducible component of

M0,r(X, e) has the expected dimension. The final step is a combinatorial argument that all

the irreducible components are equal. There is also related work for the parameter space of

lines on hypersurfaces by Riedl and Yang in [19].

In this thesis we extend the proof of the flatness of the evaluation map to pointed lines on

complete intersections satisfying a system of inequalities (A), described in section 4.2. By

PVd we denote a projective space parameterizing c-tuples of homogeneous polynomials of

degree d1, d2, ..., dc up to scalar multiplication. Thus, an open subset of PVd parameterizes

complete intersections of multidegree (d1, d2, ..., dc). If X is a complete intersection defined

by the tuple (F1, F2, · · ·Fc), we abuse notation and say X ∈ PVd. We prove the following

theorem:

Theorem 4.1. Fix a non-increasing sequence of positive integers (d1, d2, ..., dc). If these

integers satisfy the system (A) of inequalities, for a general complete intersection X ∈ PVd

the morphism

ρX : F0,1(X) −→ X

is flat with fiber dimension n− (d1 + d2 + ...+ dc)− c

Using this new flatness result and the technique outlined above, we give a new proof

of the irreducibility of the space of stable maps to a general complete intersection X of

multidegree (d1, ..., dc). This is different from the original proof in [1] by Beheshti and

Kumar. Our methods further generalize to conclude flatness of the evaluation map for

k-planes containing a given k − 1 plane.

Formally, suppose X ⊂ Pn is a projective variety. Let F ((1, 2, · · · , r + 1), n + 1) be the

partial flag variety parameterizing flags of projective linear subspaces (Λ0,Λ1, ...,Λr). Let
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F0,1,2,...,r(X) be the subscheme of F ((1, 2, · · · r + 1), n + 1) which parameterizes flags of

projective linear subspaces (Λ0,Λ1, ...,Λr) contained in X. Consider the map

ρrX : F0,1,2,...,r(X) −→ F0,1,2,...,r−1(X)

defined by ρrX(Λ0,Λ1, ...,Λr) = (Λ0,Λ1, ...,Λr−1). We prove the following generalization of

Theorem 4.1:

Theorem 11.1. Let X be a general complete intersection of type (d1, d2, ..., dc). Set 1 ≤

r ≤ n. For sufficiently large n and for r chosen small relative to n,the following is true:

For a general flag Λ0 ⊂ Λ1 ⊂ ... ⊂ Λr−2 and for every r − 1-plane Λr−1 such that

Λ0 ⊂ ... ⊂ Λr−2 ⊂ Λr−1, the set of r planes Λr containing Λr−1 has the expected dimension.

Equivalently, the map

ρrX : F0,1,2,...,r(X) −→ F0,1,2,...,r−1(X)

is flat over an open dense subset of F0,1,2,...,r−1(X) where the first r − 2 components in the

flag are general.

Finally, In section 3, we extend the result of [21], to complete intersections. We use this

along with results of [5] and the results from previous sections to prove the following for the

space of quasimaps:

Theorem 12.3. For every smooth complete intersection X ⊂ Pn of multidegree

d = (d1, d2, ..., dc), for n sufficiently large, the space of quasimaps to X, Yn,e(X) is irreducible

of the expected dimension.

Throughout this thesis, we will assume that our base field k is algebraically closed and

has characteristic 0. Our results show that for a general complete intersection of multide-

gree (d1, d2, ..., dc) satisfying our system of inequalities, the Gromov-Witten invariants are

enumerative.

2 Some Background on Stacks

2.1 Introduction

In this section, we provide a very brief introduction to the notion of algebraic stacks. Our

main goal is to extend certain geometric notions of schemes to stacks, e.g irreducibility,

properness, smoothness, etc. Both [6] and [16] develop the foundational theory of stacks

used in this thesis.
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2.2 Stacks

Definition 2.1. Let C be a category with fiber products. A Grothendieck topology on

C is the datum of a set Cov(X) of coverings of X for each X ∈ Obj(C), comprising a

collection of morphisms {Xi −→ X}i∈I such that:

1. If Y −→ X is an isomorphism,then {Y −→ X} ∈ Cov(X)

2. If {Xi −→ X}i∈I ∈ Cov(X) and Y −→ X is a morphism, then

{Xi ×X Y −→ Y }i∈I ∈ Cov(Y )

3. If {Xi −→ X}i∈I ∈ Cov(X) and for each i ∈ I, {Vij −→ Xi}j∈Ji ∈ Cov(Xi), then

for every possible (i, j) ∈ Πi∈I{i} × Ji, {Vij −→ Xi −→ X} ∈ Cov(X).

A category C with a Grothendieck topology is called a site. This generalizes the notion

of a topology on a set.

Example Consider a topological space X and the category, Op(X) of open subsets of

X, with the morphisms in Hom(U, V ) being inclusion if U ⊂ V and empty otherwise.

For U ∈ Obj(Op(X)), we may define Cov(U) to be the collections {Ui −→ U} such that

U =
⋃
i Ui. In particular, if X is a scheme, then the usual Zariski topology on X defines a

site on Op(X), called the small Zariski site.

Definition 2.2. Let p : C −→ S be a functor. We say C is fibered in groupoids over S

if the following conditions hold:

1. For every morphism f : V −→ U in S and every x ∈ Obj(C) such that p(x) = U ,

there exists a morphism φ : y −→ x in C such that p(y) = V and p(φ) = f . In other

words, for every lift of U , there is a lift of V .

2. For every pair of morphisms φ : Y −→ X and ψ : Z −→ X in C and any morphism

f : p(Z) −→ p(Y ) such that p(φ) ◦ f = p(ψ) there exists a unique lift χ : Z −→ Y of

f such that φ ◦ χ = ψ.

If p : C −→ S is a category fibered in groupoids, we assume that for every morphism

f : A −→ B in S, and every object E over B, we have chosen a lifting fE : f∗E −→ E of f

with target E.

Definition 2.3. If X ∈ S is an object, the category, S/X of morphisms to X has mor-

phisms {Y −→ X} as its objects. The morphisms in S/X are given by commutative trian-

gles.

Sending {Y −→ X} to Y turns this into a fibered category over S.

Definition 2.4. A presheaf on a category C is a functor

F : Cop −→ Sets

3



Suppose now that C is a site. In the case that C is the category of open subsets of a

topological space as above, this notion is exactly equivalent to that of a presheaf on the

aforementioned topological space.

Suppose p : C −→ S is a category fibered in groupoids as above and that U ∈ Ob(S). We

will denote by C(U) the category whose objects are E ∈ Ob(C) such that p(E) = U and

whose morphisms are f : E −→ E′ in C such that p(f) = idU .

Definition 2.5. Suppose X ∈ Ob(S) and let x, x′ ∈ Ob(C) such that

p(x) = p(x′) = X. We define the presheaf

Isom(x, x′) : (S/X)op −→ Set

as follows. For any morphism f : Y −→ X, we choose pullbacks f∗x, f∗x′ and set Isom(x, x′)(f :

Y −→ X) = IsomC(Y )(f
∗x, f∗x′).

To define stacks, we will need two further important notions, namely those of a sheaf on

a site and a descent datum, which we now explain.

Definition 2.6. A presheaf is a sheaf if for every object U ∈ C and covering {Ui −→ U}i∈I ,

the sequence:

F (U) −→
∏
i∈I

F (Ui)⇒
∏
i,j∈I

F (Ui ×U Uj)

is exact.

Note that to say this sequence is exact, means that F (U) can be identified as the equalizer

of the two maps on the right. Once again, in the case when C is the category of open sets

of a topological space, this notion coincides with that of a sheaf on the topological space.

Consider a scheme X with its Zariski topology. Given a vector bundle E on X, For an

open covering Xi −→ X, if Ei is the restriction of E to Xi, we can reconstruct E from the

Ei’s and the induced isomorphisms between the Ei and Ej on overlaps. Notice that the

isomorphisms satisfy the cocycle condition. Using this as a motivating example, we define

a descent datum.

We will denote by pr1 : X ×X −→ X and pr2 : X ×X −→ X, the canonical projections to

X. Suppose we are given a category fibered in groupoids

p : C −→ B, where B has a Grothendieck topology.

Definition 2.7. Given a category fibered in groupoids p : C −→ B as above, a descent

datum (Ei, fij) for S ∈ Ob(B) consists of an open covering in B, {Si
gi−→ S}i∈I and for each

i, an object Ei ∈ C(Si) such that for each i, j there exists an isomorphism fi,j : pr∗1Ei −→

pr∗2Ej in C(Si ×S Sj) such that the for any three indices i, j, k, the following diagram is

commutative in C(Si ×S Sj ×S Sk):

4



pr∗3Ek

pr∗1Ei

pr∗2Ej

The maps in the above diagram are the pullbacks of the fpq-s along the appropriate

projections.

Definition 2.8. With the same setup as above, suppose that we have an object E of C(S).

The trivial descent datum is descent datum (E, idE) with respect to the cover {S idS−−→ S}.

Definition 2.9. With the same setup as above, suppose that we have an object E of C(S)

and an open cover {Si
gi−→ S}i∈I . We have a descent datum on the family of objects g∗iE,

by pulling back the trivial descent datum (E, IdE) on {S idS−−→ S} via the map natural map

{Si
gi−→ S} −→ {S idS−−→ S}. We call this the canonical descent datum on the family g∗iE

and denote it by (g∗iE, can).

Definition 2.10. Consider a descent datum (Ei, fij) with respect to the covering {Si
gi−→

S}i∈I of S. We say that (Ei, fij) is an effective descent datum if there exists an object

E ∈ C(S) such that (Ei, fij) is isomorphic to the canonical descent datum (g∗iE, can).

For a more general definition, see [16, Chapter 4].

We can now finally define a stack:

Definition 2.11. A category fibered in groupoids p : F −→ C is a stack if the following

hold:

1. For any X ∈ C and objects x, y ∈ F (X), the presheaf Isom(x, y) on C/X is a sheaf.

2. Every descent datum is effective.

2.3 Deligne Mumford Stacks and Geometric Properties:

We now come to the main kind of stack that we will use for the rest of our discussion. The

additional notion that we will need to define Deligne Mumford stacks is representability.

For Deligne-Mumford Stacks, we will be able to talk about its geometric properties such

as irreducibility, dimension, etc. The first step in this direction is to understand the stack

associated with a given scheme. By S, we will denote the category of schemes.

Definition 2.12. Let S be a scheme. To S, we associate the category of S-schemes,

Sch/S. Its objects are morphisms of schemes with target S, i.e., morphism of the form

T −→ S. Given two objects T −→ S and T ′ −→ S, a morphism between them in Sch/S is

a morphism h : T −→ T ′ of S-schemes that commutes with the two maps to S.

Definition 2.13. Let p : X −→ S be a stack over S. We say that X is representable by

a scheme S, if it is equivalent to Sch/S.

5



Definition 2.14. A morphism of categories over S is a covariant functor commuting

with the projection to S.

To every 1-morphism f : Sch/S −→ X of categories over S, we associate the object

f(id : S −→ S). Suppose that in particular S and T are schemes and f : S/T −→ Sch/S is

a morphism of categories. Then f(id : S −→ S) is itself a morphism g : T −→ S of schemes,

and f is completely described by g and vice versa. In other words, we can understand

all morphism of schemes with target S by looking at morphisms of categories with target

Sch/S, and hence the category Sch/S encodes all the information about the scheme S itself.

This justifies the abuse of notation. After this, we will interchangeably use S to denote both

the scheme and the category Sch/S.

Definition 2.15. Suppose f : X −→ Y and g : Z −→ Y are morphisms of stacks over a

base category S. We define the fiber product, X ×Y Z as the following category:

1. The objects are triples (A,B, α) where A ∈ X, B ∈ Z. and α : f(A) −→ g(B) is a

morphism in the same fiber of Y over S.

2. Given two triples (A,B, α) and (A′, B′, α′), a morphism between them is a pair (β :

A −→ A′, γ : B −→ B′), in the fibers of X and Z respectively such that g(γ) ◦ α =

α′ ◦ f(β).

A fiber product of stacks satisfies a universal property similar to that as the fiber product

of schemes. See [6] for a formal statement.

We define the corresponding notion of representability for a morphism of stacks over S.

Definition 2.16. Let f : X −→ Y be a morphism of stacks over a category S. We say that

the morphism f is representable if for every morphism S −→ Y , the fiber product S×Y X

is representable by a scheme.

The composition of representable morphisms is representable, as is the base change of a

representable morphism (See [20]). In the case of morphisms of schemes, we can talk about

their geometric properties such as smoothness, properness, open and closed immersions, etc.

If said property is stable under base change in the category of schemes, we can extend this

notion to a representable morphism of stacks.

Definition 2.17. Suppose a property P of morphisms of schemes is stable under base change

and local on the target. Let f : X −→ Y be a representable map of stacks. We say that f

has the property P if for every morphism S −→ Y with S being the stack associated to a

scheme, the morphism S ×Y X −→ S has the property P.

The meaning of local in the previous definition will depend on context. We will work

only with Deligne Mumford stacks in this thesis and for us, by local we will mean local in

the etale topology. Notice that because of representability, S ×Y X −→ S is an actual map

of schemes which allows us to check the property P . Some examples of P that come up

6



frequently are flatness, finiteness, being etale, etc. This will also come up in our discussion

in the following context- we will often say X is a closed(resp. open) substack of the stack

Y. By this, we will mean that there is a morphism of stacks i : X −→ Y that is representable

by a closed(resp. open) immersion of schemes.

Definition 2.18. Let S be a scheme and let X/S be a stack over S. X is an algebraic

stack if the following hold:

1. The diagonal ∆ : X −→ X ×S X is representable.

2. There exists a smooth surjective representable morphism π : U −→ X, where U is a

scheme.

Definition 2.19. Suppose X/S is an algebraic stack as above with quasi-finite and unram-

ified diagonal map ∆. If the map π : U −→ X can be chosen to be etale, we say that X is a

Deligne-Mumford stack.

The Deligne Mumford stacks that we will discuss will have an associated scheme called

the coarse moduli space. See [9] a detailed description.

Lemma 2.1. For an algebraic stack X , if we have a morphism from a scheme φ : X −→ X ,

then φ is representable.

Proof. Suppose that Y −→ X is a morphism with Y a scheme. We have the Cartesian

diagram:

X ×X Y X × Y

X X × X∆

The bottom arrow is representable, since X is algebraic, and hence, the top arrow is repre-

sentable. But since X×Y is itself a scheme, we see that X×X Y is representable by a scheme.

Thus, by the definition of representability of morphisms, φ : X −→ X is representable.

We have already seen how to extend geometric ideas for morphisms of schemes to mor-

phisms of stacks that are representable. In the case of Deligne-Mumford stacks, it is possible

to do so even when a given morphism is not representable by a map of schemes.

Definition 2.20. Suppose that X and Y are Deligne-Mumford stacks. Suppose that

f : X −→ Y

is a morphism of Deligne Mumford stacks that is not necessarily representable. Let P be a

property that is etale local on the source and target. For every etale morphism φ : X −→ X ,

if the composition f ◦φ : X −→ Y has the property P , then we say that f has the property

P .

In the case where f is itself representable, the definitions coincide). Using this, we will

frequently talk about the fiber dimension of a morphism of Deligne Mumford Stacks( Since

fiber dimension is preserved by etale base change).

7



Some other important considerations for us are the geometric properties of the stacks

themselves. Of particular interest are the properties of irreducibility, smoothness and di-

mension. We briefly outline the ideas in the context of the Deligne Mumford stacks we will

encounter in the remainder of this thesis. More general definitions can be found at [20].

In our discussion, for every Deligne-Mumford Stack, there is an associated scheme known

as the coarse moduli space, which we define in the next section. By the dimension of a stack,

we will mean the dimension of its coarse moduli space in the usual sense of the dimension

of schemes.

The geometric property of properness readily generalizes to stacks as follows:

Definition 2.21. Suppose that X is a Deligne Mumford stack over an algebraically closed

field Spec(k) of characteristic 0. X is proper if it is locally finitely generated over Spec(k)

and for every discrete valuation ring R with quotient field K, there exists a field extension

K ′ of K and a valuation ring R′ ⊂ K ′ which is a finite extension of R and dominates R,

such that every morphism Spec(K ′) −→ X extends uniquely to a morphism Spec(R′) −→ X .

Given a Deligne Mumford stack X , let us consider an etale chart of our stack U −→ X ,

and a map Spec(k) −→ X , where k is an algebraically closed field of characteristic 0. There

exists a lift of this map from Spec(k) to the etale chart U , which gives us a point in U .

Now, suppose we are given another etale chart V , and we get a further lift of this lift, and

a point in V . Moreover we have a map of local rings from the point in U to the local ring

at the point in V . Continuing this process, we can take a direct limit of this system of local

rings. The ring we obtain is called the Henselized local ring of the stack X at the geometric

point Spec(K) and it is independent of the choice of etale charts.

Definition 2.22. If this Henselized local ring is an integral domain at every geometric point

of the stack, we say that the stack is locally unibranch.

This is a generalization of the notion of a unibranch scheme.

There are two notions of irreducibility associated to a Deligne Mumford stack, one of

which involves its coarse moduli space, while the second can be phrased in terms of the

property of being unibranch.

Definition 2.23. A Deligne Mumford stack X is irreducible if its coarse moduli space is

irreducible as a scheme.

The second notion is as follows:

Definition 2.24. A conneced Deligne Mumford stack X is unibranch if the stack is ev-

erywhere locally unibranch.

A Deligne Mumford stack which is unibranch is necessarily irreducible as well. The

property of being unibranch implying irreducibility extends to schemes as well. Concretely,

8



we can look at the Henselized local rings of a connected scheme. If these Henselized local

rings are integral domains, then the scheme is irreducible.

We know that a locally finitely generated, separated k scheme X is smooth over Spec(k)

iff all of its local rings are regular. A Noetherian local ring R is regular if and only if

its Henselization Rh is regular. Thus, a separated and connected scheme is smooth iff

the Henselized local ring at every point is regular. This motivates our definition for the

smoothness of a Deligne Mumford Stack:

Definition 2.25. A Deligne Mumford Stack X over Spec(k) which is locally finitely gener-

ated is smooth if its Henselized local ring at every point is regular.

Definition 2.26. A Deligne Mumford Stack X over Spec(k) is connected if its coarse

moduli space is connected.

As we know, a smooth scheme X over Spec(k) which is connected is necessarily irre-

ducible since its Henselized local rings (and consequently its local rings) are regular. We

note that the same is true for stacks: a smooth, connected stack is necessarily irreducible.

Definition 2.27. A scheme X is a local complete intersection if its local ring at every

point is a local complete intersection ring (That is,the quotient of a regular local ring by a

regular sequence).

It is true that a Noetherian local ring is a complete intersection ring iff its Henselization

is. This leads us to the following definition of a complete intersection stack:

Definition 2.28. A Deligne Mumford stack X is a complete intersection stack if its

Henselized local ring at every point is a complete intersection ring.

Just as in the case of schemes, this definition implies that a smooth Deligne Mumford

Stack is a local complete intersection stack. These notions are relevant for us since in Section

2, we will prove in that a certain Deligne Mumford stack is an irreducible, local complete

intersection stack by showing that it is smooth.

2.4 The Kontsevich Moduli Stack

The stacks that are relevant to our discussion are the Kontsevich Moduli spacesM0,m(X,β),

which we now define.

Definition 2.29. A stable map with r marked points is a triple (C, f, x1, ..., xr) where

C is a proper, reduced,connected, at worst nodal curve, x1, x2, ..., xr distinct, nonsingular

points of C and a morphism f : C −→ X which satisfies the following stability condition- if f

is constant on any component of C then that component must have at least 3 distinguished

points. (By distinguished points, we mean either the marked points xi or nodal points).

Definition 2.30. A family of n-pointed stable maps to X is a tuple

(π : C −→ B, h : C −→ X, p1, p2, ..., pn) where π is a flat morphism, h is a morphism of
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schemes and each pi is a section of π such that for every closed point b ∈ B, (Cb, h|Cb
, p1(b), p2(b), ..., pn(b))

is a stable map with n marked points.

Definition 2.31. Given two families (π : C −→ B, h : C −→ X, p1, p2, ..., pn) and (π′ : C ′ −→

B, h′ : C ′ −→ X, p′1, p
′
2, ..., p

′
n) of stable maps over B, a morphism of families of stable maps

is a fiber preserving isomorphism F : C −→ C ′, such that

• h′ ◦ F = h

• F ◦ pi = p′i

This defines a category of families of stable maps.

We define Mg,n(X,β) to be the Lax 2-functor which associates to a scheme Y the

groupoid of families of stable maps to π : C −→ Y over Y - i.e. the fiber over each closed

point y ∈ Y is a curve Cy of genus g with a stable map h : Cy −→ X - such that h∗([Cy]) = β

in H2(X,Q). To this Lax 2- functor, we can associate a stack which we also denote by

Mg,n(X,β). Mg,n(X,β) is a Deligne Mumford stack called the Kontsevich Moduli space.

We will be interested in the case of genus 0 curves only.

If X is projective over Spec(k), and in our case it always will be, Mg,n(X,β) is proper

and of finite type over Spec(k). If the Picard number of X is 1, as it will be when X ⊂ Pn

is a complete intersection ( which are our objects of interest), every integral curve will be

the multiple of the class of a line. So if [l] is the class of a line in H2(X,Q), any β can be

expressed as e.[l], and we will denote M0,n(X, e.[l]) simply as M0,n(X, e).

M0,n(X, e) is equipped with a universal family U −→M0,n(X, e) as well as a morphism

h : U −→ X. For i = 1, 2, ...,m, we also have sections s1, s2, ..., sm of U which correspond to

the marked points on a given stable curve. Moreover, for each j, we have the j-th evaluation

map evj :M0,n(X, e) −→ X, which is the composition h ◦ sj .

Suppose now that X is a projective scheme over C. Then there exists a projective scheme

M0,m(X,β) and a natural transformation of functors:

φ :M0,m(X,β) −→ Hom(−,M0,m(X,β))

such that

• The induced map

φ(Spec(C)) :M0,m(X,β)(Spec(C)) −→ Hom(Spec(C),M0,m(X,β))

is a set bijection.

• If Z is a scheme and f : M0,m(X,β) −→ Hom(−, Z) is a natural transformation of

functors, then there exists a unique morphism of schemes γ : M0,m(X,β) −→ Z such
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that f = γ̃ ◦ φ, where γ̃ is the natural transformation γ̃ : Hom(−,M0,m(X,β)) −→

Hom(−, Z) induced by γ.

This is the definition in [9]. M0,m(X,β) is the aforementioned coarse moduli space associated

to the Deligne Mumford stack M0,m(X,β).

Definition 2.32. In the situation above, we say that M0,m(X,β) coarsely represents the

functor M0,m(X,β).

.

3 Overview of Gromov-Witten Theory

3.1 Introduction

As mentioned in the introduction, the results of this thesis are motivated by questions of

enumerativity in Gromov Witten Theory. In this subsection, we provide a broad overview

of Gromov-Witten Theory and explain the implications of our results in this field. For more

details, see [17, Section 1 1
2 ]. Gromov-Witten Theory is a method of counting the number of

curves on a smooth projective variety X over C satisfying some set of incidence conditions.

The subject has roots in symplectic geometry and topological strings.

We consider the moduli space of stable maps M0,n(X, e) over C, where X is a smooth

projective variety. As mentioned in the previous section, this is a proper Deligne Mumford

stack. It is important to have a proper space to obtain counts that are deformation invariant.

Recall that M0,n(X,β) parameterizes families of stable maps to X, and as such, allows us

to view curves on X as being parameterized by maps f : C −→ X.

3.2 Gromov Witten Invariants and Curve Counting

Given a Deligne-Mumford stack X over Spec(k) with a perfect obstruction theory, we have

an associated integer known as the virtual (or expected) dimension. The virtual dimension

provides a lower bound for the dimension of X . Given a projective variety X as above, the

Deligne-Mumford stackM0,n(X,β) has a naturally defined perfect obstruction theory and,

as such, virtual dimension equal to
∫
β
c1(TX) + n+ dimX − 3. For more details, see [2].

The main aspect of the perfect obstruction theory is the construction of the virtual fun-

damental class, carried out in [2]. In this paper, given a separated Deligne Mumford Stack

X over k, Behrend and Fantechi construct a class in the rational Chow Group Ad(X ), where

d is the virtual dimension of X , which they define to be the virtual fundamental class. In

particular, this class exists for M0,n(X,β). We can also think of it as an element

[M0,n(X,β)]vir ∈ H∗(M0,n(X,β))

via the cycle class map.
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With this in mind, our goal is to count curves on X. Recall that we have n evaluation

maps evi :M0,n(X,β) −→ X. For a stable map (C, f, x1, x2, ..., xn), the evaluation map evi

maps (C, f, x1, x2, ..., xn) to f(xi). To get curve counts, we could hope to integrate certain

cohomology classes over the fundamental class of M0,n(X,β). The problem though is that

M0,n(X,β) is often reducible with components of various dimensions and is not smooth. In

such cases, it does not make sense to talk about a fundamental class. To circumvent this

issue, we instead work with the virtual fundamental class.

Suppose we have subvarieties V1, V2, ..., Vn in X. Let αi be the Poincare dual of the

homology class of Vi. Pulling back αi via the i-th evaluation map, we get a class γi = ev∗i αi.

We think of the Poincare dual of γi as the homology class of stable maps for which f(xi) ∈ Vi.

Consider the cup product γ1 ^ γ2 ^ ... ^ γn. Extending our intuition from the pre-

vious paragraph, this expression parameterizes stable maps f such that f(xi) ∈ Vi where

(x1, x2, ..., xn) is the tuple of points associated to the stable map. Once we let the points

vary, we can think of this term as parameterizing stable maps f : C −→ X such that f(C)

intersects Vi.

We now pair with the virtual fundamental class to compute:

NX
0,β(α1, α2, ..., αn) =

∫
[M0,n(X,β)]vir

γ1 ^ γ2 ^ ... ^ γn ∈ Q

These quantities are called the genus-0 Gromov-Witten Invariants. We interpret them as

counts of rational curves intersecting the cycles Vi. Mathematicians such as Schubert studied

classical invariants such as - How many rational curves in Pn intersect each of a specified yet

general collection of linear subspaces? Gromov Witten Theory is often applied to classical

questions like these. In such situations, the γi-s are powers of the hyperplane class. It is,

however, often the case that the Gromov Witten invariants are not enumerative. That is,

this number doesn’t really count what we hope it will. But under certain assumptions, we

do actually recover the naive count using this computation.

Let X be a smooth complete intersection in Pn of type d = (d1, d2, ..., dc). Suppose that

the Moduli spaceM0,n(X,β) is irreducible of the expected dimension and has an open dense

subset which parameterizes smooth embedded curves in X. In this situation, the virtual

fundamental class equals the fundamental class of M0,n(X,β). Moreover for such an X,

each γi is a power of the hyperplane class and The Gromov Witten invariants are indeed

enumerative. That is to say, they agree with the classical invariants studied by Schubert et-

al. The main result of this thesis proves that for a general smooth complete intersection X of

degree (d1, d2, ..., dc) in Pn satisfying the system of polynomial inequalities (A),M0,n(X,β)

is irreducible of the expected dimension. Hence, in the context of Gromov Witten Theory,

it shows that the Gromov Witten invariants are enumerative.

12



4 Lines on Complete Intersections

4.1 Notation

We begin by fixing notation. Let U be a vector space of dimension n + 1 over a field

k. By Pn, we will mean the projective space PU = Proj(⊕∞j=0Sym
j(U∗)), whose closed

points correspond to 1 dimensional vector subspaces of U . Let us consider a fixed c-tuple

d = (d1, d2, ..., dc) of positive integers. Consider the vector space Vd =
∏c
i=1H

0(Pn, O(di)).

Thus, the points of Vd are c-tuples of homogeneous polynomials of the form (F1, F2, ..., Fc)

with Fi ∈ H0(Pn, O(di)). Let PVd be the projective space associated to this vector space. We

note that an open subset of PVd parametrizes all complete intersections of type (d1, ..., dc)

in Pn.

Let F ((1, 2), n + 1) ⊂ Pn × G(2, n + 1) be the partial flag variety, parametrizing flags

of the form (p, L) with p ∈ L. For a given projective variety X, let F0,1(X) parameterize

pairs (p, L) ∈ Pn ×G(2, n+ 1) such that p ∈ L ⊂ X. Let X ⊂ PVd × Pn be the subscheme

parametrizing points pairs (X, p) with p ∈ X. For tuples When we restrict to an open subset

of PVd, X is a complete intersection of type (d1, d2, ...dc).

Let F0,1(X ) ⊂ PVd × F ((1, 2), n + 1) be the subvariety parametrizing triples (X, p, L)

with p ∈ L ⊂ X. Consider the projection maps:

π0 : PVd × F ((1, 2), n+ 1) −→ PVd (1)

π1 : PVd × F ((1, 2), n+ 1) −→ Pn (2)

π2 : PVd × F ((1, 2), n+ 1) −→ G(2, n+ 1). (3)

At the level of closed points, the map (π0, π1)|F0,1(X ) : F0,1(X ) −→ PVd × Pn sends the pair

(X, p, L) with p ∈ L ⊂ X to the pair (X, p) and as such, it factors through X . We denote

by ρ the induced morphism:

ρ : F0,1(X ) −→ X .

Given a complete intersection X ∈ PVd we have the fiber map,

ρX : F0,1(X) −→ X

4.2 A system of polynomial inequalities

In this brief subsection, we state a system of polynomial inequalities with rational coefficients

which, when satisfied, allow us to conclude the flatness of the map ρX . To write down our

system in a compact and readable way, it is convenient to use Young Diagrams.
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Suppose we have a non-increasing finite sequence of integers, (d1, d2, ..., dc). A Young

Diagram of type (d1, ..., dc) consists of a finite collection of cells arranged in rows. The i-th

row has di cells. So for example, for the sequence of integers (4, 3, 1) we have the following

Young Diagram:

.

Given a Young Diagram as above, one can construct the conjugate Young Diagram by

reflecting it along the main diagonal. The length of the i-th row in the transposed Young

Diagram is the number of di which are greater than or equal to i. That is, for Young diagram

λ of type (a1, a2, ..., ak), its conjugate is a Young diagram λ∗ of type (b1, b2, ..., ba1) where

bj = |{i|ai ≥ j}|. In the example listed above, the conjugate Young Diagram is as follows:

.

In our case, the non-increasing sequence of integers will be the multidegrees(arranged

in the necessary order) of the polynomials defining a complete intersection in Pn. Given a

complete intersection of type (d1, ...dc), with d1 ≥ d2 ≥ ... ≥ dc, we draw the corresponding

Young Diagram and look at its conjugate. We will denote by (b1, ..., bd1), the sequence of

integers corresponding to this conjugate. Now that we have fixed notation, we can state the

aforementioned inequalities.

We denote by (A), the following system of inequalities:

I1 : n− (d1 + d2 + ...+ dc)− c ≥ 0

Ie :

(
n− b1 − b2 − · · · − be + e

e

)
≥ n− c+ 1, for e = 2, 3, ..., d1.

Example We consider the case when each di = 2. The system then reduces to the

following-

n− 2c− c ≥ 0(
n− 2c+ 2

1

)
≥ n− c+ 1

The second inequality can be written as:

(n− 2c+ 2)(n− 2c+ 1)

2
≥ n− c+ 1

A straightforward computation shows that this inequality is satisfied whenever n+1
2 −

√
n+1
2 ≥

c.
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It is often the case that some of the inequalities in this system are redundant. We believe

that in specific cases, for example when we have runs of the form di = di+1 = ... = dj = d,

this system can be greatly simplified using approximations for the binomial coefficients.

4.3 Generic Flatness of the map ρX

For any closed subscheme X of a projective space Pr, we will denote by S(X) the homoge-

neous coordinate ring of X. We will need the following lemmas.

Lemma 4.1. Let X ⊂ Pm be a subscheme of dimension l. The Hilbert Function of X, hX

is greater than or equal to that of a linear subvariety of the same dimension.

Proof. We use the method in [10, Remark 13.10]. Pick a plane Λ disjoint from X and choose

homogeneous co-ordinates [Z0, Z1, ..., Zm] on Pm such that Λ is given by Z0 = Z1 = ... =

Zl = 0. Then consider the projection

πΛ : X −→ Pl

This map must be surjective, and as such we have an inclusion of the homogenous co-

ordinate ring k[Z0, Z1, ..., Zl] into the homogenous co-ordinate ring S(X) of X in Pm. This

inclusion respects degrees. Thus, we get

hX(r) ≥
(
l + r

r

)

Lemma 4.2. The incidence scheme F0,1(X ) is smooth.

Proof. This is a standard argument using homogeneity. Recall that Pn is the projective space

parameterizing 1 dimensional linear subspaces of the vector space U . By definition, F0,1(X )

is a closed subscheme of F ((1, 2), n+ 1)× PVd. Denote by pr1 and pr2 the projections from

F0,1(X ) to the first and second factor respectively. Inside the product F ((1, 2), n+1)×PVd,

F0,1(X ) is the zero scheme of the section σ of pr∗2O(1)⊗pr∗1
⊕c

i=1 Symdi(S∨) determined by

the universal c-tuple (F1, · · · , Fc) of global sections Fi of Symdi(U∨ ⊗OG(2,n+1)). Here S∨

is the universal rank 2 locally free quotient of the trivial free sheaf U∨ ⊗ OG(2,n+1) on the

Grassmanian G(2, n + 1). We are abusing notation here slightly - Symdi(S∨) is a sheaf on

G(2, n + 1). But there is a natural projection from F ((1, 2), n + 1) to G(2, n + 1), and via

this projection, we pull back Symdi(S∨) to F ((1, 2), n+ 1). We can then pull back further

by pr1 to make sense of pr∗1
⊕c

i=1 Symdi(S∨). The section σ is linear on every fiber of pr1

over a point of F ((1, 2), n+ 1), and thus the fibers of pr1 are projective linear spaces of the

factor PVd. Moreover, the pushforward via pr1 of σ is adjoint to a morphism w of locally

free sheaves from
⊕c

i=1 Symdi(S) to the trivial locally free sheaf V ∨d ⊗OF ((1,2),n+1), and the

zero scheme of the σ equals the relative Proj over F ((1, 2), n+ 1) of the symmetric algebra

of the cokernel of w. Denote the cokernel of w by F . Note that F is a coherent sheaf.
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This coherent sheaf F is equivariant under the natural action of the automorphism group

PGl(n + 1) of Pn on F ((1, 2), n + 1). There is a maximal dense open subset, say V ⊂

F ((1, 2), n + 1) over which F is locally free. Since F is equivariant under the action of

PGl(n+ 1), V is invariant under the action of PGl(n+ 1) on F ((1, 2), n+ 1). But we know

that the action of PGl(n+1) on F ((1, 2), n+1) is transitive, and so the only non-empty open

subset of F ((1, 2), n+ 1) which is invariant under this action is the whole space. Thus, F is

locally free on F ((1, 2), n+ 1), which implies that F0,1(X ) is a projective space bundle over

the F ((1, 2), n+ 1). Being a projective bundle over a smooth base, F0,1(X ) is smooth.

Let U ⊂ X be the set:

U = {(X, p) ∈ X |dim(ρ−1(X, p)) ≤ n− (d1 + d2 + ...dc)− c}.

U is Zariski open, by [12, Ch 2,Ex 3.22].

Lemma 4.3. The fiber ρ−1(X, p) is non empty for every (X, p) ∈ U .

Proof. We note that ρ−1(X, p) can be identified as the subscheme F (X, p) of G(2, n + 1)

parametrizing lines on X passing through p.

Suppose the point p parametrizes the 1 dimensional vector subspace W of our original

vector space U . Then the set of lines passing through p in Pn is parametrized by a certain

Schubert cycle σ in G(2, n+ 1). One observes that this Schubert cycle is isomorphic to the

projective space:

P = P(U/W )

Thus, F (X, p) is the subscheme of P consisting of lines lying on X. Recall that X =

V (F1, · · · , Fc). Thus, X is the intersection of the hypersurfaces V (Fi), for i = 1, 2, ..., c. Let

us choose homogenous co-ordinates [x0, x1, ..., xn] on Pn such that p = [0, 0, 0, ..., 1]. Let us

now do a power series expansion of the polynomials F1, F2, ..., Fc around the point p in this

co-ordinate system. We thus have:

F1 = xd1n F1,0 + xd1−1
n F1,1 + ...+ F1,d1

F2 = xd2n F2,0 + xd2−1
n F2,1 + ...+ F2,d2

.

.

.

Fc = xdcn Fc,0 + xdc−1
n Fc,1 + ...+ Fc,dc
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where each Fi,j is a homogeneous polynomial of degree j in the co-ordinates x0, ..., xn−1.

Note,the fact that p lies on X imposes the restriction Fi,0 = 0 for i = 1, 2, ..., c.

A line L through p can be written parametrically in our co-ordinate system as the set

{[a0s, a1s, ..., an−1s, t]|[s, t] ∈ P1}. Plugging these into the defining equation F1 of the

hypersurface V (F1), we see

F1(a0s, a1s, ..., an−1s, t) = sd1−1tF1,1(a0, a1, ..., an−1) + ...+ F1,d1(a0, ..., an−1)

So, the line L lies on V (F1) iff F1,j(a0, a1, ..., an−1) = 0 for j = 1, 2, ..., d1. So, F (V (F1), p)

is defined by d1 homogenous equations in the n− 1 dimensional projective space P . Hence,

F (V (F1), p) is non empty and dim F (V (F1), p) ≥ n − d1 − 1. Arguing similarly for each

i = 2, 3, ..., c, we see that dim F (V (Fi), p) ≥ n− di − 1. Moreover,

F (X, p) = F (V (F1, p)) ∩ F (V (F2, p)) ∩ ...F (V (Fc, p))

By our hypothesis n− (d1 + d2 + ...+ dc)− c ≥ 0. Hence, using induction and [12] [Chapter

1, Theorem 7.2], F (X, p) is non empty and has dimension greater than or equal to n− (d1 +

d2 + ...+ dc)− c.

We now state and prove the main theorem of this section.

Theorem 4.1. Fix a non-increasing sequence of positive integers (d1, d2, ..., dc). If these

integers satisfy the system (A) of inequalities, for a general complete intersection X ∈ PVd

the morphism

ρX : F0,1(X) −→ X

is flat with fiber dimension n− (d1 + d2 + ...dc)− c.

Proof. Let π : X −→ Pn be the projection map. We note that X is projective bundle over

Pn. Indeed, consider the evaluation map:

ev : Vd ⊗OPn −→ ⊕ci=1O(di).

Let F be the kernel of the map ev. Then F is a locally free sheaf. We form the pro-

jective bundle PF . The closed points of PF parameterize tuples (F1, F2, ..., Fc, p) where

(F1, F2, ..., Fc) ∈ PVd such Fi(p) = 0 for i = 1, 2, ..., c. Thus, PF = X . The fiber over p ∈ Pn

can be viewed as a linear subvariety inside PVd corresponding to complete intersections con-

taining p, once we restrict to the appropriate open subset of PVd. So X is a smooth scheme

and U , being an open dense subset of a smooth scheme, is also smooth.

Let U be as in lemma 4.3. By definition of U , the fiber dimension of

ρ|ρ−1(U) : ρ−1(U) −→ U
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is constant and equal to n− (d1 +d2 + ...+dc)− c. Since F0,1(X ) is smooth, by Lemma 4.2,

so is the open subset ρ−1(U) ⊂ F0,1(X ). In particular, the source of the above morphism

is Cohen Macaulay. Moreover the target U is smooth by our previous arguments and as

such, is a regular scheme. As we mentioned above, the dimension of the fiber of ρ over U is

constant. So by [15, Theorem 23.1] , ρ is flat over U .

Let Y ⊂ X be the complement of U . Y precisely consists of pairs (X, p) such that the

map

ρX : F0,1(X) −→ X

does not have the expected fiber dimension. Note, Y is a closed subscheme of a projective

scheme, and as such, if we show that π0|Y : Y −→ PVd is not surjective then its image

must be a proper closed subset of the the target. In other words, there is a dense open

subset of PVd consisting of complete intersections for which ρX does have the expected fiber

dimension and is flat.

Let us denote by e the codimension of Y in X . Note that the fiber dimension of

π0 : X −→ PVd

is n − c. To show that π0|Y : Y −→ PVd is not surjective, it is sufficient to show that

e ≥ n− c+ 1. Note that X also has a natural projection map to Pn,

π1 : X −→ Pn

given by π1(X, p) = p. We note that e ≥ codim(Y ∩ π−1
1 (p), π−1(p)). To prove that

e ≥ n− c+ 1, it is thus sufficient to show that

codim(Y ∩ π−1
1 (p), π−1

1 (p)) ≥ n− c+ 1.

We now return to the problem at hand. Let us choose homogenous co-ordinates [x0, x1, ..., xn]

on Pn such that p = [0, 0, 0, ..., 1] and do a power series expansion of the polynomials

F1, F2, ..., Fc around the point p as in lemma 4.3. As before, we have:
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F1 = xd1n F1,0 + xd1−1
n F1,1 + ...+ F1,d1

F2 = xd2n F2,0 + xd2−1
n F2,1 + ...+ F2,d2

.

.

.

Fc = xdcn Fc,0 + xdc−1
n Fc,1 + ...+ Fc,dc

where each Fi,j is a homogeneous polynomial of degree j in the co-ordinates x0, ..., xn−1.

The point p lying on our complete intersection X in this co-ordinate system forces Fi,0 =

0 for i = 1, 2, ..., c. Moreover, in the projective space P parametrizing lines through p

mentioned above, the Fano Scheme F (X, p) is defined precisely by the equations Fi,j for

1 ≤ i ≤ c and 1 ≤ j ≤ di.

We note that the fiber π−1
1 (p) can be identified with subscheme of PVd parametrizing

complete intersections containing p. This is in fact a linear subspace of PVd of codimension

c. As such, it is a projective space of dimension c lower than the dimension of P . For

brevity, we denote this space by Hp. The subscheme Y ∩ π−1
1 (p) is precisely the locus of

complete intersections containing p, for which the equations Fi,j cut out something of higher

than expected dimension (or equivalently, lower than expected codimension) in P .

We now follow the induction argument outlined in [11] to show that the locus Y ∩π−1
1 (p)

indeed has codimension greater than or equal to n−c+1 in π−1
1 (p) as long as our inequalities

are satisfied.

As mentioned above, F (X, p) = V (F1,1, ..., F1,d1 , F2,1, ..., F2,d2 , ..., Fc,dc). The order of the

defining equations is irrelevant, and as such, we may rearrange them to group them together

by degree. In other words, we may write

F (X, p) = V (F1,1, F2,1..., Fb1,1, F1,2, F2,2, ..., Fb2,2, ..., Fbd1 ,d1)

Here, all the linear terms are written first and by our comments in section 1.2, there are b1

of them. Immediately after the linear terms, we have the quadratic terms and as before,

there are b2 of them. We continue this process until we end with the bd1 terms of degree

d1. [A small note here: We might as well assume all bi ≥ 2, because if not, then the zero

locus of the linear Fi-s is just a linear subspace in Pn and as such, is a projective space of

lower dimension. In this case, we would run the same argument on this lower dimensional

projective space, where bi ≥ 2 is satisfied for all i ].

It is useful to view the construction of F (X, p) ⊂ P as an iterated process, which we now

describe.
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Let us look at the zero scheme V (F1,1) ⊂ Hp. Then, let us restrict F2,1 to V (F1,1)

and look at its zero set inside V (F1,1). This is precisely equal to V (F1,1, F2,1). We

then restrict F3,1 to this subscheme and look at its zero set, which will of course be

V (F1,1, F2,1, F3,1). We repeat this procedure until we have cycled through all of the linear

polynomials.

Once we have cycled through all of the linear parts, we have the subscheme V (F1,1, ..., Fb1,1).

We then look at the quadratic parts. We begin by restricting the first quadratic polyno-

mial F1,2 to V (F1,1, ..., Fb1,1) and looking at its zero set, whereby we have constructed

V (F1,1, ..., Fb1,1, F1,2). We then repeat this with each of the Fj,2, for j = 1, 2, ..., b2. We

continue this process, cycling through all the homogeneous parts of a given degree, and

subsequently moving to the next degree until we have exhausted all the degree Fi,j . At the

end of this process,we have constructed F (X, p).

For the Fano scheme is to have higher than expected dimension, it must happen at some

stage of this iterative process that one of the Fi,j when restricted to the previous subscheme

fails to cut out something of the correct codimension. We now explicitly describe the locus

of such ‘bad’ tuples (F1, F2, ..., Fc).

Let Bi,j be the subscheme which parametrizes c-tuples (F1, ..., Fc) inside Hp where Fi,j fails

to cut out a subscheme of the correct codimension when restricted to the previous subscheme

in the iterative process. Thus,

Y ∩Hp = ∪i,jBi,j

Let us begin by looking at the polynomial F1,1. This is, by definition, a linear polynomial

in n variables. This fails to cut out a codimension 1 subvariety inside P if it is identically

0. Thus, B1,1 parametrizes those tuples (F1, F2, ..., Fc) such that F1,1 ≡ 0. This happens

precisely when all the n coefficients of F1,1 are 0. But the coefficients of F1,1 are co-ordinates

in the projective space Hp, and thus B1,1 is a linear subvariety of Hp defined by n linear

equations, and as such, satisfies

codim(B1,1, Hp) ≥ n

Let us now look at the open complement of B1,1, i.e., Hp \B1,1.

For (F1, F2, ..., Fc) ∈ Hp \B1,1, F1,1 does not vanish identically, and therefore, V (F1,1) is a

subscheme of dimension (n−1)−1 in P . We now restrict F2,1 to each irreducible component

of V (F1,1) [Note, V (F1,1) is itself irreducible, being a linear subvariety, But once we cycle

through all the linear parts and move to higher degree, this will no longer be the case. So

for the sake of consistency, we mention irreducible components at this stage.] The only way

F2,1 does not cut out a codimension 1 subscheme of V (F1,1) is if it vanished identically on

some irreducible component, say C1 of dimension (n− 1)− 1 of V (F1,1). This is equivalent

to saying that the image of F2,1 in the homogeneous co-ordinate ring S(C1) of C1 is 0 under
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the projection morphism from S(P ).

The fact that F2,1 has degree 1 implies that its image must lie in the degree 1 part of

S(C1). If we expand the image of F2,1 in (S(C1))1 in terms of a basis, then the coefficients

will be linear polynomials in the coefficients of F2,1. The image of F2,1 being 0 entails that

these linear polynomials must all vanish. That is to say, B2,1 \B1,1 is cut out in Hp \B1,1

by the vanishing of these linear polynomials. The number of such linear polynomials equals

the dimension of the vector space (S(C1))2. By Lemma 4.1,

hC1
(1) ≥

(
n− 2 + 1

1

)

The above restriction on the Hilbert Function tells us that there are at least
(
n−2+1

1

)
such

linear conditions. Thus,

codim(B2,1 \B1,1, Hp \B1,1) ≥
(
n− 2 + 1

1

)

We now look at the quasiprojective variety Hp \ (B1,1 ∪ B2,1). For c-tuples (F1, ..., Fc) ∈

Hp \ (B1,1 ∪B2,1), V (F1,1, F2,1) has dimension n− 3. We now restrict F3,1 to V (F1,1, F2,1).

By the exact same argument as before F3,1 being in the bad locus B3,1 entails that F3,1

vanishes identically on some irreducible component of dimension (n − 3) of V (F1,1, F2,1).

Just as before, this is equivalent to the image of F3,1 being 0 in the degree 1 part of the

coordinate ring of the irreducible component. As before, we translate this into the vanishing

of some linear polynomials in the coefficients of F3,1. Hence, B1,3 is defined by the vanishing

of linear polynomials. By Lemma 4.1 there are at least
(
n−3+1

1

)
such conditions. Hence,

codim(B3,1 \ (B1,1 ∪B2,1), Hp \ (B1,1 ∪B2,1) ≥
(
n− 3 + 1

1

)
.

Continuing this procedure until we exhaust all b1 linear parts and repeatedly applying

Lemma 4.1, We will get that

codim((Bi,1 \ (

j=i−1⋃
j=1

Bj,1)), (Hp \ (

j=i−1⋃
j=1

Bj,1)) ≥
(
n− i+ 1

1

)
for i = 1, 2, ..., b1

Note that the smallest lower bound for codimension occurs at the last step in the process,

since the binomial coefficient
(
m
s

)
decreases with m if s is held fixed.

The smallest lower bound for the codimension is
(
n−c+1

1

)
= n− c+ 1. Thus, at every step,

the codimension of the bad locus inside Hp is larger than or equal to n − c + 1, which is

what we required.

Let ∆1 =
j=b1⋃
j=1

Bj,1. For tuples (F1, ..., Fc) ∈ Hp \ ∆1, V (F1,1, F2,1, ..., Fb1,1) has di-

mension precisely n − b1 − 1. We now look at the quadratic parts. Restrict F1,2 to

V (F1,1, F2,1, ..., Fb1,1) and look at each irreducible component. F1,2 fails to cut out a sub-
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scheme of codimension 1 if and only if the restriction of F1,2 to some irreducible compo-

nent,say C2, of V (F1,1, F2,1, ..., Fb1,1) vanishes identically. Again, this can be expressed in

terms of the image of F1,2 being 0 in the homogeneous co-ordinate ring S(C2) of C2. The

only difference from the case of the linear parts, is that the image of F1,2 lies in the vector

space (S(C2))2, i.e., the degree 2 part of the grading. As before, this translates to the

vanishing of linear equations in the coefficients of F1,2 and hence, B1,2 \ ∆1 is defined by

the vanishing of linear equations in Hp \ ∆1. The number of linear equations equals the

dimension of (S(C2))2 as a vector space. Again, by Lemma 4.1, hC2
(2) ≥

(
n−c−1+2

2

)
. Hence,

the vector space dimension of (S(C2))2 is at least
(
n−c−1+2

2

)
Thus,

codim(B1,2 \∆1, Hp \∆1) ≥
(
n− c− 1 + 2

2

)

Now we remove (B1,2∪∆1) and look at the open complement Hp \ (B1,2∪∆1). For c-tuples

of polynomials in this locus, V (F1,1, ..., Fb1,1, F1,2) has dimension (n− bi − 1)− 1. We now

iterate this process for all of the quadratic polynomials and repeatedly use lemma 4.1. As

mentioned earlier, because the binomial coefficients
(
m
s

)
are decreasing in m if s is held

fixed, we will get the least codimension at the last step, namely,

codim(Bb2,2 \ (

j=b2−1⋃
j=1

Bj,2 ∪∆1), Hp \ (

j=b2−1⋃
j=1

Bj,2 ∪∆1)) ≥
(
n− b1 − b2 + 2

2

)

By our system (A) of polynomial inequalities,
(
n−b1−b2+2

2

)
≥ n − c + 1, which is what we

required. We now remove the locus ∆2 =
j=b2⋃
j=1

Bj,2 ∪∆1 and for c-tuples of polynomials in

the complement, we cycle through the cubic terms as before. We then repeat the process

as necessary, until we have exhausted all the homogeneous parts.

We keep in mind that for each degree e between 1 and d1, the smallest codimension of the

bad locus will occur when we reach the last homogenous polynomial of degree e. Lemma

4.1 ensures that the codimension is at least as large as
(
n−b1−b2−...−be+e

e

)
. At every stage,

our system (A) of polynomial inequalities ensures that the codimension of the bad locus is

at least n− c+ 1.

Thus, for a general X ∈ PVd, we know that the fiber dimension of

ρX : F0,1(X) −→ X

equals n− (d1 + d2 + ...+ dc)− c. Also, we know that ρ is flat over U . Using the argument

in the proof of [7], Theorem 2.1, we conclude that ρX : F0,1(X) −→ X is flat for a general X

with fiber dimension n− (d1 + d2 + ...+ dc)− c. Thus, the proof is complete.
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5 Graphs and Trees

In the remainder of the paper, we will show that for a general complete intersection of

multidegree (d1, d2, ..., dc) satisfying the polynomial inequalities (A), the Kontsevich space

of stable maps M0,r(X, e) is an irreducible complete intersection stack of the expected

dimension. To do so, we will use the technique discussed in [11]. To this end, it is necessary

to introduce the notions of stable A-graphs and trees, which is done in the following section.

5.1 Notation

Definition 5.1. A graph τ is the datum of a 4-tuple (Fτ ,Wτ , jτ , δτ ), where

(1) Fτ is a finite set called the set of flags,

(2) Wτ is a finite set of called the set of vertices

(3) jτ : Fτ −→ Fτ is an involution

(4) δτ : Fτ −→Wτ is a map called the evaluation map.

In addition, we have the set Sτ ⊂ Fτ of tails, which are the fixed points of the involution

jτ . The set Eτ of edges is the quotient of Fτ \ Sτ by the action of jτ . For a vertex v ∈Wτ

the valence of v is defined to be the cardinality of the set δ−1
τ (v). For simplicity, we will

write Flag(τ), V ertex(τ), Tail(τ) and Edge(τ) for Fτ , Wτ , Sτ and Eτ respectively.

A graph τ can be realized geometrically as a 1 dimensional CW-complex |τ | in the fol-

lowing way:

To each element of V ertex(τ) t Tail(τ) we associate a 0-simplex. The 1-simplices cor-

respond to elements of Edge(τ)t Tail(τ). Consider a 1-simplex [0, 1] associated to an edge

{f, f̄}. The point 0 is glued to the 0 simplex δτf and the point 1 is glued to the 0-simplex

δτ f̄ . Conversely, for a 1-simplex [0, 1] associated to a tail f , 0 is glued to the 0 simplex δτf

and 1 is glued to the 0-simplex f .

Definition 5.2. A tree is a graph for which the associated simplicial complex satisfies

H1(|τ |,Z) = 0. This is equivalent to saying that |τ | has no closed loops.

Definition 5.3. An A-graph (τ, βτ ) is a graph τ , together with a map

βτ : V ertex(τ) −→ N ∪ {0}

which we call the A-structure map. We shall write τ instead of (τ, βτ ) to simplify notation.

An A-graph τ is said to be stable if for each vertex v ∈ V ertex(τ) such that βτ = 0, the

valence of v is at least 3.
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Definition 5.4. For an A-graph τ , we associate the following integers:

β(τ) =
∑
v∈τ

β(v)

E(τ) = max
v∈τ

β(v)

5.2 Some important examples of A-graphs

1. One important example of a graph is the empty tree, τ∅. This is the tree with under-

lying vertex set, V ertex(τ) = ∅.

2. For each pair of non-negative integers r and e, consider the tree τr with one vertex,

i.e., V ertex(τr) = {v}, and Tail(τr) = {f1, f2, ..., fr}. In this case, we define the

A-structure by setting β(v) = e. We refer to this A-graph as τr(e). Thus, τr(e) is a

stable graph iff either e ≥ 0 or r ≥ 3.

3. For a pair of non-negative integers r1, r2, let τr1,r2 be the graph obtained by joining

the vertices v1 and v2 of the two trees τr1 and τr2 by a single edge. If in addition we

have A-structure maps of the individual trees λr1(e1) and τr2(e2) as in example (2),

we can define an A-structure on τr1,r2 by setting β(v1) = e1 and β(v2) = e2.

5.3 The Category of A-graphs

As in the paper by [3], we can define a category whose objects are stable A-graphs, in which

morphisms are compositions of the following two basic types.We refer the reader to [3] for

the precise definitions.

A contraction α : σ → τ is a pair of maps:

αV : V ertex(σ)→ V ertex(τ)

αF : Flag(τ)→ Flag(σ)

such that αV is surjective and αF is injective, such that for w ∈ V ertex(τ), β(w) =∑
v∈α−1

v (w) β(v). A contraction α collapses edges of σ to obtain τ , while preserving ad-

jacency, i.e., the image of two vertices joined by an edge in the source are also joined by an

edge in the target.

A combinatorial morphism α : τ ←↩ σ is the inclusion of the subgraph σ into τ . We adopt

the convention used in [11] and write the arrow backwards. (We will justify this notation

shortly.)
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6 Prestable Curves, A-graphs and strict τ-maps

Definition 6.1. A prestable curve with r marked points is a tuple of the form (C, {x1, , ..., xr})

where C is a proper, reduced,connected, at worst nodal curve and x1, x2, ..., xr distinct, non-

singular points of C.

Suppose we are given a pre-stable curve (C, {x1, x2, ..., xr}) of arithmetic genus 0. To it,

we associate an dual graph ∆(C, x) as follows:

To each irreducible component of Ci of C, we associate a vertex vi. Two vertices are

joined by an edge if the irreducible components corresponding to them meet at a node. The

tails correspond to the marked points of the curve. One observes that this graph is in fact

a tree.

Let (X,L) be a polarized variety.

Definition 6.2. A pre-stable map is a pair

((C, {x1, x2, ..., xr}), h : C −→ X)

where (C, {x1, x2, ..., xr}) is a pre-stable curve and h : C −→ X is a morphism of schemes

over C.

To a pre-stable map h as above, we can associate an A-graph ∆(C, x, h). The under-

lying graph is simply ∆(C, x). For each vertex v of ∆(C, x), we look at the corresponding

irreducible component Cv. Define the A-structure by setting β(v) = deg(h∗(L)|Cv
). We say

the pre-stable map ((C, {x1, x2, ..., xr}), h : C −→ X) is stable if the A-graph ∆(C, x, h) is

stable.

Definition 6.3. Let X be a variety, L a line bundle on X and τ a stable A-graph. A strict

τ -map is the datum:

((Cv), (hv : Cv −→ X), (qf ))

defined as follows:

• (Cv) is a set of rational curves parameterized by v ∈ V ertex(τ)

• (hv : Cv −→ X) is a set of morphisms of C-schemes parameterized by v ∈ V ertex(τ)

• (qf ) is a set of closed points qf ∈ Cδf parameterized by f ∈ Flag(τ)

and satisfying the following conditions:

• For v ∈ V ertex(τ) the degree of h∗v(L) as a line bundle on Cv is βτ (v),

• for f1, f2 ∈ Flag(τ) distinct flags with δf1 = δf2, qf1 6= qf2

• for f ∈ Flag(τ), we have hδf (qf ) = hδf (qf ).
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Definition 6.4. A family of strict τ -maps over a base B is a tuple (π, h, q) where,

• πv : Cv −→ B is a set of smoooth, proper morphisms, one for each vertex v of τ ,

whose fibres are rational curves.

• h is a collection of maps hv : Cv −→ X such on each geometric fiber of πv, h∗v(L) has

degree β(v).

• q is a collection of maps qf : B −→ Cδf such that:

1. πδf ◦ qf = idB, i.e. qf is a section of piδf .

2. If f and f ′ are distinct flags, qf is disjoint from q′f .

3. if f2 = jτ (f1), then hδf1 ◦ qf1 = hδf2 ◦ qf2

Definition 6.5. If ξ = (π, h, q) and η = (π′, h′, q′) are two families of strict τ maps over

the same base, a morphism of families of strict τ-maps φ : ξ −→ η is a collection of

isomorphisms φv : Cv −→ C ′v indexed by V ertex(τ) such that:

• h′v ◦ φv = hv

• φδf ◦ qf = q′f

We can define the composition of morphisms in the obvious way. Given a scheme S, the

category of families of strict τ maps over S is thus a groupoid. Given a morphism of schemes

u : S′ −→ S, we can pull back families of strict τ maps over S′ to S by considering the

pullback along u. In this way, we have the functorM(X, τ) from the category of C-schemes

to the category of groupoids which associates to each scheme the families of strict τ maps

over that scheme.

One can observe that M(X, τ) is a stack in groupoids over C. We refer the reader to [3]

for a more detailed construction. In what follows, we will outline what is necessary for our

discussion. The first property to note is that whenX is projective and L is ample,M(X, τ) is

a Deligne-Mumford stack [11, Theorem 3.10], and has a modular compactificationM(X, τ)

corresponding to the irreducible components degenerating to a reducible curves.

Definition 6.6. Suppose X is a projective variety and τ is a stable A-graph. Define the

evaluation map

evf :M(X, τ) −→ X

by sending a family (π, h, q) of strict τ -maps to hδf ◦ qf .

We note that M(X, τ0(1)) is just the classical Fano variety F0,1(X), and the evaluation

map is the morphism ρX in Theorem 4.1.

Given a projective variety X, and a contraction α : σ −→ τ of A-graphs, the functor

M(X,α) : M(X,σ) −→ M(X, τ) forgets the labelling of some components of the domain

curve. By M(X,α), we will mean its restriction to the open substack M(X, τ) .
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Given a combinatorial morphism φ : τ ←↩ σ, the contravariant functor

M(X,φ) :M(X, τ) :−→M(X,σ)

is the forgetful morphism that remembers those components of τ -maps contained in σ.

The fact that this functor is contravariant explains our convention of drawing the arrow

backwards.

7 Flatness and Dimension results for M(X, τ)

Let (X,L) be a polarized variety in Pn with KX
num
= mL we define the expected dimension

of M(X, τ) to be the positive integer

dim(X, τ) = −mβ(τ) + dimX − 3 + #Tail(τ)−#Edge(τ) (4)

We say that LCI(X, τ) holds ifM(X, τ) is a local complete intersection stack of dimension

exactly dim(X, τ). As we prove later,M(X, τ) is automatically a local complete intersection

stack if every irreducible component has the expected dimension.

Theorem 7.1. Every irreducible component of M(X, τ) has dimension at least dim(X, τ).

Proof. The proof is exactly identical to that of [11]. The key idea is to show that M(X, τ)

is an open substack of the relative morphism-stack. The result of [13][Thoerem 2.17.1], then

gives a lower bound on the dimension of the scheme of morphisms which establishes the

aforementioned result.

Given a stable A-graph τ and complete intersection X in Pn, we say that FE(X, τ) holds

if the evaluation map has the fiber dimension dim(X, τ)−dim(X). We will see momentarily,

that in this case, the evaluation map is also flat.

Lemma 7.1. For a complete intersection X ⊂ Pn,

1. M(X, τ) is a local complete intersection stack iff every irreducible component has the

expected dimension.

2. The evaluation map is flat iff FE(X, τ) holds.

Proof. For both the above claims, one of the directions is obvious. For the harder direction,

we outline the main idea of the proof given in [11]. Suppose that X is defined Pn by

polynomials of F1, F2, ..., Fc degree d1, ..., dc. The defining equations of X give a section

of the vector bundle O(d1) ⊕ O(d2)... ⊕ O(dc). M(Pn, τ) is smooth by [3]. Consider the

universal curve π : C −→ M(Pn, τ). If h : C −→ Pn is the universal map, the sections Fi

pull back to a give section σ of π∗(h
∗(O(d1) ⊕ O(d2)... ⊕ O(dc))) whose vanishing locus is

exactly M(X, τ).
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If every irreducible component ofM(X, τ) has the expected dimension, then its codimen-

sion equals the rank of the locally free sheaf π∗(h
∗(O(d1)⊕O(d2)...⊕O(dc))), which proves

that it is a local complete intersection. If FE(X, τ) holds, then in particular LCI(X, τ)

holds. In this case, the evaluation map is a dominant morphism from a Cohen Macaulay

scheme to a smooth scheme of constant fiber dimension. Thus by using the Local Flatness

Theorem [15, Theorem 23.1], we conclude that the evaluation map is flat.

We end this section with the following result, which appears as [11] [Proposition 4.8].

Lemma 7.2. Suppose that τ is a stable A-graph with E(τ) = E. If for e=0,...,E we have

FE(X, τ1(e), f), then for every flag f ∈ Flag(τ) we have that FE(X, τ, f) holds.

The proof uses induction on the number of vertices. We refer the reader to [11] for

details.

8 The irreducible components of M(X, τ)

In this section, we summarize the results in [11, Section 5]. The last result of the previous

section gave us a criterion for checking the flatness of the evaluation map for a general stable

A- graph τ . Here, we will reduce this to checking a finite number of cases. We will also use

specializations to better understand the irreducible components of M(X, τ).

We have the following version of Bend-and-Break:

Lemma 8.1. [11, Lemma 5.1] Let X be a projective variety and let τ be a stable A-graph.

If f1, f2 ∈ Flag(τ) then there is no complete curve C in any fiber of the map

evf1,f2 :M(X, τ2(e)) −→ X ×X

This allows us to conclude the following:

Lemma 8.2. If X ⊂ Pn is a complete intersection. Suppose that FE(X, τ1(e), f1) holds

for e < E and that every irreducible component of M(X, τ1(E)) has dimension at least

2dim(X). Then FE(X, τ1(e), f1) holds.

Definition 8.1. Let X ⊂ Pn be a complete intersection of multidegree (d1, d2, ..., dc). We

define the threshold degree of X to be

E(X) =

⌊
n+ 2− c

n+ 1− d1 − d2 − ...− dc

⌋
(5)

As promised, we will now reduce checking flatness of the evaluation map for complete

intersections to a finite number of cases.

Lemma 8.3. Let X ⊂ Pn be a complete intersection of multidegree (d1, d2, ..., dc) and let

τ be a stable A-graph. If FE(X, τ1(e), f1) holds for every 1 ≤ e ≤ E(X), then for every

f ∈ Flag(τ), FE(X, τ, f) holds.
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Proof. By Lemma 7.2, to establish FE(X, τ, f), it is sufficient to show FE(X, τ1(e), f1) for

e = 1, ..., E(τ). Suppose FE(X, τ1(e), f1) holds for 1 ≤ e ≤ E(X). By Theorem 4.1, for

e > E(X), we have that every component of M(X, τ1(e)) has dimension at least

n+ 1− (d1 + d2 + ...+ dc)e− (n− c− 3) + 1 ≥ 2n− 2c

which is the dimension of X, since X is a complete intersection. So by repeated applications

of lemma 8.2, we have FE(X, τ1(e), f1) for e ≤ E(τ). Thus, we are done.

Definition 8.2. A stable A-graph τ is said to be basic if for every v ∈ V ertex(τ), β(v) ≤

E(X) or equivalently, if E(τ) ≤ E(X).

Definition 8.3. For a stable A graph τ define the degree zero subgraph τ0 to be the

maximal subgraph τ0 of τ such that every vertex of τ0 has degree 0, i.e.,

V ertex(τ0) = {v ∈ V ertex(τ)|β(v) = 0}

Flag(τ0) = {f ∈ Flag(τ)|δτf ∈ V ertex(τ0)}

Definition 8.4. A contraction α : σ −→ τ is said to be a nice contraction if it induces

an isomorphism between the degree 0 subgraphs of σ and τ , i.e. σ0 ∼= τ0

We can now state the most important result of this section:

Theorem 8.1. [11, Theorem 5.10] Let X ⊂ Pn be a complete intersection and τ be a stable

A-graph. Let M ⊂ M(X, τ) be an irreducible component. Suppose that FE(X, τ1(e), f1)

holds for 1 ≤ e ≤ E(X). Then there exists a nice contraction φ : σ −→ τ and an irreducible

component N ⊂M(X,σ) such that σ is basic and that N ⊂M .

9 Properties of the evaluation Morphism

In this section, we will deduce some important properties of the evaluation map. In partic-

ular, we will show that the general fiber is irreducible and we will use it to show a corre-

spondence between nice contractions and the irreducible components of the stack M(X, τ)

To this end, we will need the following results:

Lemma 9.1. For a general complete intersection X ∈ Pn of type (d1, ..., dc), with d1 +d2 +

...+ dc ≤ n− 1 there is a line l such that the normal bundle Nl/X is of the form

Ol(1)n−1−(d1+d2+...+dc) ⊕O(d1+d2+...+dc)−c
l

Proof. Consider the incidence correspondence

{(l,X)|l ⊂ X} ⊂ G(2, n+ 1)× PVd
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parametrizing pairs (l,X) of a line and a complete intersection containing the line. Suppose

that X = V (F1, F2, ..., Fc), where Fi has degree di in keeping with our choice of notation.

We then have an exact sequence of locally free sheaves:

0 −→ Nl/X −→ Ol(1)n−1 −→ (NX/Pn)|l −→ 0 (6)

Moreover, note that since X is a complete intersection in Pn, NX/Pn = ⊕c1OX(di) Recall,

by Grothendieck’s lemma, that Nl/X = ⊕n−c−1
1 Ol(ai) for some integers ai.Let us now

twist down the equation (1) by Ol(−1) and take the long exact sequence of cohomology

corresponding to it. We will then have the following map as a part of the exact sequence:

H0(l, Ol)
n−1 α−→ H0(l, (NX/Pn(−1))|l) (7)

i.e., we have the map

H0(l, Ol)
n−1 α−→ ⊕c1H0(l, Ol(di − 1))

We choose co-ordinates [x0, ..., xn] on Pn such that l = V (x2, ..., xn) and do a power series

expansion to say:

Fi =

n∑
2

xjFi,j

In these co-ordinates the matrix of α is given by ((Fi,j)|l)n×c. Taking X general, we can

say that this matrix has full rank, and hence, that α is surjective. This means that the next

term in the exact sequence, i.e., H1(l, Nl/X(−1)) is zero. By our previous arguments, since

Nl/X = ⊕n−c−1
1 Ol(ai), we must have each ai = 0 or 1.

Lemma 9.2. In characteristic 0, for a general complete intersection X in Pn, F0,1(X) is

smooth and the general fiber of evf is irreducible.

Proof. We note that we have the projection map as previously defined:

ρ = (π0, π1) : F0,1(X ) −→ X

which sends tuples (X, p, L) to tuples to (X, p). For a given pair (X, p), the fiber π−1
0 (X, p) =

F0,1(X). We argued in the proof of Theorem 4.1 that X is smooth, being a projective bundle

over a smooth base. Note that F0,1(X ) is a projective bundle over the partial flag variety

F ((1, 2), n+1). Therefore, F0,1(X ) is smooth. By our arguments in the proof of theorem 4.1,

the map ρ is dominant. Thus, applying [12, Chapter 3, Theorem 10.7] we conclude that the

general fiber π−1
0 (X, p) is smooth and therefore, F0,1(X) is smooth for general X. Finally,

by previous arguments, the fiber of evf is a complete intersection of ample hypersurfaces in

a projective space of dimension n− 1. Hence, the fiber of evf is connected by [12, Chapter

3, Exercise 5.5]

We now invoke the methods used in [11, Section 6].

Definition 9.1. For a smooth subvariety X ⊂ Pn we say that B(X, τ, f) holds if:
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1. FE(X, τ, f) holds.

2. The general fiber of the evaluation map evf is irreducible.

3. There is a point [h : C −→ X] on M(X, τ) which is free, i.e., h∗TX is generated by

global sections.

With this setup, we have the following:

Lemma 9.3. For a general complete intersection X of multidegree (d1, d2, ..., dc) satisfying

our system (A) of inequalities, B(X, τ1(1), f1) holds.

Proof. Indeed, 1) of B(X, τ1(1), f1) holds by Theorem 4.1. 2) follows from the lemma 9.2

above. Finally, 3) follows from lemma 9.1, since our system of inequalities necessitates that

d1 + d2 + ...+ dc < n− 1.

Lemma 9.4. Let X ⊂ Pn be a smooth subvariety which satisfies B(X, τ1(e), f1) for e =

1, 2, ..., E. Let τ be an A-graph such that E(τ) ≤ E. Then we have:

1. For each flag f ∈ Flag(τ), we have B(X, τ, f)

2. M(X, τ) is an irreducible stack.

Proof. This is just a restatement of [11, Proposition 6.8] and the proof is identical.

Lemma 9.5. Let X ⊂ Pn be a smooth subvariety which satsisfies B(X, τ1(e), f1) for e =

1, 2, ..., E. Let τ be an A-graph such that E(τ) ≤ E. Suppose in addition that

α : τ −→ σ

is a contraction. Then the morphism

M(X,α) :M(X, τ) −→M(X,σ)

maps a general point of M(X, τ) to a smooth point of M(X,σ).

Proof. This is [11, proposition 6.8].

Suppose that we have a smooth subvariety X ⊂ Pn satisfying B(X, τ1(e), f1) for e =

1, 2, ..., E and α : τ −→ σ is a contraction. Lemma 9.4 tells us thatM(X, τ) is an irreducible

stack and lemma 9.5 tells us that M(X,α) maps a general point of M(X, τ) to a smooth

point of M(X,σ).

We know by Theorem 8.1 that given an irreducible component M ⊂ M(X,σ) there is a

nice contraction β : γ −→ σ and an irreducible component N ⊂M(X, γ) such that A ⊂M .

So in particular, for the contraction α : τ −→ σ above, M(X, τ) is an irreducible stack by

lemma 9.4 and it only has 1 irreducible component i.e., N =M(X, τ) itself. So, we can say

that the image of the irreducible component N is a subset of M . Lemma 9.5 tells us that a

31



general point of the image of N is smooth. Hence, N is contained in a unique irreducible

component of M(X,σ). Summing up, we have shown that:

• Every irreducible component M of M(X,σ) contains a basic component N

• As long as B(X, τ1(e), f1) holds for e = 1, 2, ..., E the basic components of N are

contained in unique irreducible components.

In the above situation, for each nice contraction α : τ −→ σ we can look at the unique

irreducible component M(α) containing the image of M(α). Finally, we have proposition

6.9 of [11]

Lemma 9.6. Suppose X ⊂ Pn is a smooth complete intersection of threshold degree E(X)

satisfying:

1. B(X, τ1(1), f1) holds,

2. FE(X, τ1(e), f1) holds for e = 1, 2, ..., E(X)

3. M(X, τ) is irreducible for e = 1, ..., E(X)

Then we have:

1. For every basic A-graph τ with E(τ) ≤ E, and each flag f ∈ Flag(τ), B(X, τ, f) holds.

2. For each stable A-graph τ and every contraction α : σ −→ τ of a basic A graph σ there

is a unique irreducible component M(α) of

overlineM(X, τ) which contains the image of M(X,α). Moreover, M(α) is smooth

of the expected dimension at a general point of the image.

3. M(X, τ0(e)) is the union of irreducible components M(α) as α : σ −→ τ ranges over

nice contractions such that E(σ) ≤ 1.

Hence, to understand the irreducible components ofM(X, τ) it is sufficient to determine

the nice contractions α : σ −→ τ with E(σ) ≤ 1

10 Equating Irreducible Components

In this section, we will follow the technique outlined in [11] to conclude that all the irreducible

components of M(X, τ) are equal. Hitherto, we have estabilished that for every stable A

graph τ each irreducible component ofM(X, τ) corresponds to a nice contraction α : σ −→ τ

with E(σ) ≤ 1. We will now show that all such nice contractions are isomorphic to each

other.

Let X ⊂ Pn be a complete intersection satisfying the conditions of lemma 9.6. Suppose

B(X, τ1(e), f1) holds for e = 1, 2, ..., E with E ≥ E(X). For a stable A-graph τ , let SE(τ)

be the set of isomorphism classes of nice contractions α : σ −→ τ with E(σ) ≤ E.Define

two nice contractions σ and σ′ to be related if there exists a contraction ε : σ −→ σ′ with
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α = α ◦ ε. This defines an equivalence relation on the set SE(τ). We notice that if α and α′

are equivalent, then the irreducible components M(α) and M(α′) corresponding to α and

α′ are equal. We will now show that there is only one such equivalence class, and hence,

only one irreducible component of M(X, τ).

Definition 10.1. Given X ⊂ Pn a smooth complete intersection as above, we define the

modified threshold degree to be E′(X) = max(E(X), 2).

Theorem 10.1. Let X be a smooth complete intersection satisfying B(X, τ1(e), f) for e =

1, 2, ..., E′(X). Then SE′(X)(τ0(e)) is a singleton set - i.e., M(X, τ0(e)) is irreducible.

Proof. We will proceed by showing that all the nice contractions in the set SE′(X)(τ0(e))

are equivalent to the nice contraction αe : σe −→ τ0(e) where σe is a path, i.e., there

are no vertices of degree greater than 2. We note that if we have any nice contraction

β : σ −→ τ0(e) then the number of vertices of σ is at most e.

We define the length of a path to be the number of vertices in the path and the diameter

of a graph to be the maximum length of the paths in that graph. We note that if a graph

with k vertices has diameter k, then the graph has to be path. We will use the fact to

prove the assertion made in the previous paragraph. We have already stated that any nice

contraction β : σ −→ τ0(e) has at most e vertices. If σ has diameter e, then we are done.

If not, we will construct a nice contraction γ : σ′ −→ τ0(e) which is related to β which has

diameter strictly larger than that of σ. We can thus iterate this process until we attain a

nice contraction with diameter of the source equal to e, i.e. until we obtain a path.

Now suppose we have a nice contraction α : σ −→ τ0(e) with E(σ) = 1. Let us choose a

maximal path s in σ. If s 6= σ, then there is at least vertex v in s with valence at least 3.

Pick an edge x which passes through v and is not an edge in the path s. Consider the nice

contraction ε : σ −→ ρ which contracts the edge x to a single vertex. The nice contraction

α factors through ρ as αρ : ρ −→ τ0(e).

The image of s is a path sρ which contains v. Construct a nice contraction ε : σ′ −→ τ as

follows. We consider a path s′ of length diam(s) + 1 with a nice contraction that collapses

two adjacent vertices w1 and w2 to v. To get σ′, we attach the subgraph ρ \ sρ of ρ to

s′ suitably. The attachment is done by adding edges such that the vertices of sρ that are

adjacent to vertices in ρ \ sρ are also adjacent in σ′. Then there is a unique nice contraction

ε : σ′ −→ τ such that ε restricted to s′ is the contraction of the two vertices w1 and w2 above

and is an isomorphism from σ′ \ s′ −→ ρ \ sρ. Define α′ to be αρ ◦ ε. Then α′ : σ′ −→ τ0(e)

is a nice contraction with diam(σ′) = diam(σ) + 1. Thus, using the iterative argument

mentioned earlier, we are done.

Corollary 10.1. With the same hypotheses as the previous Theorem, for each stable A-

graph τ we have:
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• M(X, τ) is an integral, local complete intersection stack of the expected dimension and

M(X, τ) is the unique dense stratum in the Behrend-Manin decomposition.

• For each flag f ∈ Flag(τ), B(X, τ, f) holds.

• For each contraction α : σ −→ τ , M(X, τ) is smooth at the general point of the image

M(X,α) :M(X,σ) −→M(X, τ).

Proof. The proof is identical to that of [11]. We only emphasize the fact that sinceM(X, τ)

has the expected dimension, it is a local complete intersection stack by previous statements.

Since it is generically smooth, it is reduced. So M(X, τ) is an integral, local complete

intersection stack of the expected dimension.

Theorem 10.2. Suppose (d1, ..., dc) satisfy our system of polynomial inequalities (A). For

every such complete intersection X of multidegree (d1, d2, ..., dc), the modified threshold de-

gree is E′(X) = 2. For a general such complete intersection M(X, τ) is an irreducible,

local complete intersection stack of the expected dimension and hence M(X, τ), being the

unique dense stratum in the Behrend-Manin decomposition, is also irreducible of the expected

dimension.

Proof. We note firstly that for a general such X, by lemma 9.3, B(X, τ1(1), f1) holds. We

note that by Lemma 8.3, FE(X, τ1(2), f1) holds and hence, so does LCI(X, τ1(2), f1). Since

M(X, τ0(2)) is the unique dense stratum in the Behrend-Manin decomposition, to show that

it is irreducible, it is sufficient to show that M(X, τ0(2)) is irreducible. This is immediate

from the fact there is a unique nice contraction from α2 : σ2 −→ τ0(2) with E(σ2) = e and

our earlier remarks relating the irreducible components of such a stack to nice contractions.

Note that in the case mentioned in the statement of the theorem, the modified threshold

degree is given by E′(X) = 2. Noting that a general complete intersection is smooth and

using the fact that we have established B(X, τ1(1), f1), we use Lemma 9.6 to conclude that

B(X, τ1(2), f1) holds. We may now apply Corollary 10.1 to conclude that for every stable

A graph, M(X, τ) is irreducible.

Note that in particular, by Theorem 10.1, we have showed thatM(X, τ0(e)) is irreducible

for a general complete intersection X satisfying (A).

11 Generalizing the inductive argument to k-planes

In the previous section, the main result generalizes the induction argument in [11] from the

case of pointed lines on a hypersurface to pointed lines on a complete intersection. In this

section, we bootstrap to make a similar conclusion about a the space of k-planes contained

in a complete intersection X. The key idea is to inductively use Theorem 4.1.
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11.1 Setup

Let us recall that for a fixed vector space U of dimension n + 1 over our field k, by Pn,

we will mean the projective space PU = Proj(⊕∞j=0Sym
j(U∗)). For each 1 ≤ r ≤ n +

1 by F ((1, 2, ..., r), U), we mean the partial flag variety parametrizing projective flags of

subspaces:

Λ0 ⊂ Λ1 ⊂ ... ⊂ Λr−1 ⊂ Pn

Moreover, we note that for each r, the flag variety F ((1, 2, ..., r), U) comes with a natural

projection morphism down to the flag variety of r− 1 flags. This natural projection simply

forgets the r-plane in the flag Λ0 ⊂ Λ1 ⊂ ... ⊂ Λr−1 and projects down to Λ0 ⊂ Λ1 ⊂ ... ⊂

Λr−2.

Lemma 11.1. Let

Pr : F ((1, 2, ..., r + 1), U) −→ F ((1, 2, ..., r), U)

be the aforementioned natural projection. Each fiber of Pr is isomorphic to a projective space

of dimension n− r.

Proof. Let Λ0 ⊂ Λ1 ⊂ ... ⊂ Λr−1 be an arbitrary but fixed point in F ((1, 2, ..., r), U). The

fiber P−1
r (Λ0 ⊂ Λ1 ⊂ ... ⊂ Λr−1) is the set of all r-flags which have first r components

equal to Λ0 ⊂ Λ1 ⊂ ... ⊂ Λr−1. This is equivalent to specifying all projective r planes in Pn

containing the r − 1 plane Λr−1. As in Lemma 1.1, these are parametrized by a Schubert

cycle in G(r + 1, n + 1). This Schubert cycle isomorphic to projective space P(U/Λr−1),

where Λr−1 is the r dimensional subspace of the vector space U corresponding to Λr−1.

Let X denote the scheme parametrizing pairs (X, p) of a point and a complete intersection

X containing the point p. Consistent with our earlier notation, we denote by F0,1,2,...,r(X )

the subscheme of F ((1, 2, ..., r + 1), U), parametrizing flags contained in X, i.e. flags such

that Λ0 ⊂ Λ1 ⊂ ... ⊂ Λr ⊂ X. In addition, for a given complete intersection X, we will use

F0,1,2,...,r(X) to denote all r flags contained in X. The argument showing the smoothness

of F0,1(X ) extends almost verbatim to show that F0,1,2,...,r(X ) is also smooth for each r.

The natural projection Pr : F ((1, 2, ..., r + 1), U) −→ F ((1, 2, ..., r), U) induces a map

ρr : F0,1,2,...,r(X ) −→ F0,1,2,...,r−1(X )

Given a complete intersection X, we denote by

ρrX : F0,1,2,...,r(X) −→ F0,1,2,...,r−1(X)

the fiber map of ρ.
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11.2 Flatness and dimension result for ρrX

Theorem 11.1. Fix a sequence of positive integers (d1, d2, .., dc) as in Theorem 4.1. Let

X be a general complete intersection of multidegree (d1, d2, ..., dc). Set 1 ≤ r ≤ n. For

sufficiently large n and r chosen small relative to n,the following is true:

For a general flag Λ0 ⊂ Λ1 ⊂ ... ⊂ Λr−2 and for every r − 1-plane Λr−1 such that

Λ0 ⊂ ... ⊂ Λr−2 ⊂ Λr−1, the set of r planes Λr, which are contained in X, and them-

selves contain Λr−1 has the expected dimension. Equivalently, the map

ρrX : F0,1,2,...,r(X) −→ F0,1,2,...,r−1(X)

is flat over an open dense subset of F0,1,2,...,r−1(X) where the first r − 2 components in the

flag are general.

Proof. As we mentioned before, for each s, the varieties F0,1,2,...,s(X ) are smooth. Thus, by

the local flatness theorem [15, Theorem 23.1], showing the flatness of ρsX is equivalent to

showing that the fiber dimension is constant and is equal to the expected dimension. This

is precisely what we will show.

Let us fix an r, 2 ≤ r ≤ n. For a point (X,Λ0, ...,Λr−2,Λr−1) ∈ F0,1,2,...,r−1(X ), the fiber

(ρr)−1(X,Λ0, ...,Λr−2,Λr−1) is a subscheme of the fiber

(Pr)
−1(Λ0, ...,Λr−2,Λr−1). Specifically, it is the subscheme parameterizing r-planes Λr con-

tained in X, for which Λr−1 ⊂ Λr. For simplicity, let us call this subscheme Ar. Similarly,

inside the fiber (Pr−1)−1(Λ0, ...,Λr−2),over the point (Λ0, ...,Λr−2), we have the correspond-

ing subschemeAr−1, parameterizing r−1 planes Λr−1 such that Λr−1 ⊂ X and Λr−2 ⊂ Λr−1.

Ar−1 is of course equal to (ρr−1)−1(X,Λ0, ...,Λr−2)

By what we proved in Lemma 11.1 we know that (Pr)
−1(Λ0, ...,Λr−1) is isomorphic

to the projective space P(U/Λr−1) and also that (Pr−1)−1(Λ0, ...,Λr−2) is isomorphic to

P(U/Λr−2). By definition, a point p ∈ P(U/Λr−2) corresponds to an r − 1-plane, say Λp in

Pn which contains Λr−2. We now make the following obvious, but crucial observation - a line

L in P(U/Λr−2) containing p corresponds to an r-plane in Pn, containing the r − 1-plane

Λp. Moreover, every r-plane in Pn, containing a fixed r − 1-plane, corresponds to a line

containing a point in P(U/Λr−2). So there is a one to one correspondence between r-planes

containing a fixed r − 1 plane in Pn and pointed lines in P(U/Λr−2). Finally, the pointed

lines in P(U/Λr−2) that are contained in Ar, correspond to r planes Λr containing an r− 1

plane such that Λr ⊂ X. In other words, Ar is isomorphic to the space of pointed lines

contained in Ar−1. With this in mind, we now use induction.

The base case, r = 1, is precisely Theorem 4.1. To rephrase Theorem 4.1 in our new

notation, the map ρX : F0,1(X) −→ X is the map ρ1
X . We fix a point Λ0 ∈ X. As in
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Theorem 1.1, because of homogeneity, this same argument works irrespective of the choice

of Λ0. The fiber (ρ1
X)−1(Λ0) is A1 and concretely, it parameterizes pointed lines on X,

i.e. A0. The proof of Theorem 1.1 then shows that if n is large enough to satisfy our

system (A) of polynomial inequalities, then for general X, A1 has the expected dimension,

i.e., A1 is itself a complete intersection inside P(U/Λ0). Moreover, as we saw earlier, if

(F1, F2, ..., Fc) are the homogeneous polynomials defining X ⊂ Pn, the defining equations

of A1 are obtained by taking the Taylor expansion of the Fi-s around the point Λ0.

Now, suppose we have proved this for all r ≤ k. Let us now consider the map ρk+1
X :

F0,1,2,...,k+1(X) −→ F0,1,2,...,k(X). We have, by the induction hypothesis, that for a general

flag (Λ0,Λ1, ...,Λk−2), Ak has the correct dimension, i.e., is a complete intersection inside

the projective space P(U/Λk−1). (As before,its defining equations are obtained by doing

a Taylor expansion of the defining equations of Ak−1 around Λk−1). However, we note

that for a subset of k − 1-flags (Λ0,Λ1, ...,Λk−1), Ak is singular, despite having the correct

dimension. For these Ak’s, Ak+1 will fail to have the correct dimension, since the linear

part of the Taylor expansion will be identically 0. Of course, the set of such bad k− 1-flags

is parameterized by a closed subset of the partial flag variety F ((1, 2, ..., k), U).

Let us now look at k − 1-flags contained in the open complement of this bad subset. As

mentioned above, Ak+1 is the scheme of pointed lines on Ak. Its defining equations are

obtained by taking the Taylor expansion of the defining equations of Ak around the point

Λk. We noted earlier that Ak is a complete intersection in a projective space of dimension

n − k, (namely P(U/Λk−1)) and we know its defining equations and multidegree. If n is

chosen large enough that our system of polynomial inequalities is satisfied when n is replaced

by n − k and (d1, d2, ..., dc) is replaced by the multidegree of Ak, then we can mimic the

proof of Theorem 4.1, after removing the subset of “bad” k − 1-flags. Thus, on the open

subset of good k− 1-flags, Ak+1 has the correct dimension, i.e. it is a complete intersection.

It is always possible to do so when n is large and k is small compared to n.

We note that the genericity of the first part of the flag becomes relevant only for flags of

length 3 or higher, which is why did not have to address this in Theorem 4.1. This completes

the proof.

12 Irreducibility of the space of Quasimaps

12.1 Outline

Using the results of section 1, we prove an irreducibility result about the space of quasimaps

into a complete intersection X of type (d1, d2, ..., dc). We refer the reader to [18] and [14]

for more details on the space of quasimaps.
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Unlike in [14], we consider quasi maps that are unparameterized- that is, we do not

parameterize the domain of the quasimap (To obtain unparameterized quasimaps from pa-

rameterized ones, we quotient by the automorphism group of the domain curve). The key

difference from section 1 is that we are able to conclude irreducibility for the space of

quasimaps into every complete intersection X (provided our inequalities hold) - not just a

general one. We follow the technique used by Jason Starr and Zhiyu Tian for hypersurfaces.

12.2 Setup

We outline a construction for the space of quasimaps:

By the Universal property of projective space, a morphism φ : P1 −→ Pn is defined by n+1

global sections of OP1(e) which do not vanish simultaneously. It is helpful to think about

these global sections as the co-ordinate functions of φ. Concretely, suppose [x0, x1, ..., xn]

and [s, t] are homogeneous co-ordinate systems on Pn and on P1 respectively. We will have

φ([s, t]) = [φ0(s, t), φ1(s, t), ..., φn(s, t)]

where the homogeneous polynomials φj are precisely the aforementioned global sections of

OP1(e). So, given a morphism φ as above, we have a vector space homomorphism

φ̃ : H0(Pn, OPn(1)) −→ H0(P1, OP1(e))

which sends the co-ordinate xj to φj([s, t]). Conversely, given a vector space homomorphism

φ̃ as above, we can define a map φ : P1 −→ Pn, provided we the polynomials φj([s, t]) do

not vanish simultaneously. So, there is a correspondence between morphisms φ : P1 −→ Pn

and elements of an open subset of Hom(H0(Pn, OPn(1)), H0(P1, OP1(e))). A morphism φ

obtained as above is defined to be a quasimap. Of course, it is unique up to scaling by

an element of the underlying field k. Thus, we may instead consider the projective space

PH = P(Hom(H0(Pn, OPn(1)), H0(P1, OP1(e)))). By what we have discussed, there is a

correspondence between the closed points of an open subset (To be precise, the open subset

where the φj([s, t]) do not simultaneously vanish) of PH and morphisms φ : P1 −→ Pn. The

automorphism group PGl(2) of P1 acts on the domain by reparameterizations. The action

of this automorphism group on the domain induces an action on PH.

Definition 12.1. The space of quasimaps into Pn is defined to be the GIT quotient of

PH by this action, i.e., Yn,e = PH//PGl(2).

We thus have a quotient map

π : PH −→ Yn,e

Given a subvariety X ⊂ Pn, we construct the space of quasimaps into X as follows. A

quasimap φ : P1 −→ X is simply thought of as a quasimap into Pn whose image lies inside
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X. The condition for the image of φ to lie in X is easy to see - the defining equations of X

must vanish identically when the co-ordinate functions of φ are plugged into them. So in

particular, suppose X ⊂ Pn is a complete intersection with defining equations F1, F2, ..., Fc.

Given an arbitrary (n + 1)-tuple of homogenous polynomials φ0(s, t), φ1(s, t), ..., φn(s, t),

we plug them in to each Fi and gather coefficients. For each i and j, we will obtain

e.di + 1 homogeneous polynomials in the coefficients of φj . The common zero locus of

these (e.
∑c
i=1 di + c) polynomials, which we call AX , is precisely the locus parameterizing

quasimaps whose image is contained in X. We will abuse notation and use AX to also mean

the intersection of AX with the open set of semi-stable points in PH.

Definition 12.2. The space of quasimaps to X is the subscheme Yn,e(X) inside Yn,e,

parameterizing quasimaps to X.

The inverse image of Yn,e(X) in the open subset of semi-stable points is precisely the

subvariety AX .

There is also a second description of the space of quasimaps to Pn as the image of a

contraction from the space of stable maps.

contn,e :M0,0(Pn, e) −→ Yn,e

The construction of this contraction morphism is carried out in [18] as well as in [5]. By our

discussions in Lemma 7.1, we know that for a complete intersection X,M0,0(X, e) is defined

as a subvariety of M0,0(Pn, e) by the equations obtained by plugging in the co-ordinates of

the stable map into the defining equations of X. The image of M0,0(X, e) is precisely the

subvariety Yn,e(X) inside Yn,e. The expected dimension of Yn,e(X) is equal to:

n− c+ e(n+ 1−
c∑
i=1

di)− 3

As in the case of stable maps, the expected dimension is a lower bound on the dimension of

Yn,e(X).

12.3 Irreducibility results

Lemma 12.1. For a general complete intersection X of multidegree (d1, d2, ..., dc) satisfying

our system of polynomial inequalities (A), the space of quasimaps Yn,e(X) is irreducible of

the expected dimension.

Proof. By Theorem 7.2, we know that for a general complete intersection X, M0,0(X, e)

is irreducible. We note that by [5] Theorem 1.8, that Yn,e(X) is the surjective image of

M0,0(X, e) under the contraction contn,e. But the surjective image of an irreducible variety

is also irreducible. Hence, for a general complete intersection X, Yn,e(X) is irreducible.
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Moreover, by [5, Theorem 1.9], contn,e is a birational map. Hence, Yn,e has the same

dimension as M0,0(X, e), which for a general smooth complete intersection X as in the

statement of the lemma, is

n− c+ e(n+ 1−
∑c
i=1 di).

In order to prove our result, we will need to generalize the following result of [21].

Let G(k, n) be the Grassmanian parameterizing linear k planes in Pn. Let PNd//PGl(k+1)

be the moduli space of semistable degree d hypersurfaces in Pk. Let X ⊂ Pn be a degree d

hypersurface. Given a k-plane Λ ⊂ Pn, the map

φ : G(k, n) 99K PNd//PGl(k + 1)

sending Λ to Λ ∩X defines a rational transformation. Theorem 1.1 in [21] states:

Theorem 12.1. If X is a smooth hypersurface, the map φ is dominant if

n ≥
(
d+ k − 1

k

)
+ k − 1

We now extend this result to complete intersections X ⊂ Pn. To this end, we proceed

exactly as in [21]. For a complete intersection of multidegree d = (d1, d2, ..., dc), we define

the integer

Nk(n, d) = n− k −
c∑
i=1

(
di + k − 1

k

)
We then have the following:

Lemma 12.2. Let X be a smooth complete intersection inside Pn. If the integer Nk(n, d) is

nonnegative, then there exists an irreducible component I of F ((1, 2, 3, ..., (k+1)), X) having

the expected dimension equal to

dim(I) =
∑k

0 Nm(n, d). Here, F ((1, 2, 3, ..., (k+1)), X) is the variety parameterizing partial

k flags contained in X.

Proof. The proof in [21] carries over almost ad-verbum. We repeat it only for completeness.

We define I to be the closure of any connected component of Uk, where Uk is the open

subset described in [21, Proposition 2.3]. We need only check that Uk is non-empty. As

in [21], with our notation, this is automatic if ρrX is surjective for r = 1, 2, ..., k. Of course,

as in the proof of Theorem 11.1, The fiber over a given point is defined by the intersection

in Pn−r of divisors, defined by the equations obtained from a Taylor series expansion. As

such, by [12, Chapter 1, Theorem 7.2] if the number of equations defining the fiber is less

than the dimension of the projective space, i.e., (n − r), then the fiber is non-empty. In

other words, the fiber over every point is non-empty if precisely the condition Nk(n, d) ≥ 0

holds.

We now have the analogue of [21, Proposition 1.3].
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Lemma 12.3. Let X be a smooth complete intersection of type d in Pn and let Fk(X) be

the Fano variety of k-planes contained in X. Then there exists an irreducible component C

of Fk(X) having the expected dimension if Nk(n, d) ≥ 0. Moreover, if Nk(n, d) = −1 then

there is a non-empty open subset Uk−1 ⊂ Fk−1(X) such that for every Λk−1 ∈ Uk−1 there

exists no k-plane in X containing Λk−1.

Proof. The proof also works very similarly to the one in [21]. We only outline the idea.

The first part follows immediately from the previous Lemma. For the second part, since

Nk−1(n, d) is non-negative, Uk−1 is non-empty. Moreover, by [21, Proposition 2.3] the map

ρkX : (ρkX)
−1

(Uk−1) −→ Uk−1 is smooth of the expected dimension. As we see, the expected

dimension is negative and hence the (ρkX)
−1

(Uk−1) is empty. Thus, for every Λk−1 ∈ Uk−1,

there is no k-plane in X containing Λk−1.

Finally, we generalize the theorem in [21]. As in the case of hypersurfaces, for a complete

intersection X, we have a rational transformation

φ : G(k, n) 99K PNd1,d2,...,dc//PGl(k + 1)

where PNd1,d2,...,dc //PGl(k + 1) parameterizes complete intersections in Pk and given a

complete intersection X ⊂ Pn, the map φ sends a k-plane Λ to Λ ∩X ⊂ Λ.

Theorem 12.2. Let X be a smooth complete intersection of type d = (d1, d2, ..., dc). If

Nk(n, d) ≥ 0, then the map φ is dominant.

Proof. We build on the technique of the proof of [21, Theorem 1.1]. Let Hk,n be the open

subset of P(Hom(Ck+1,Cn+1)) parameterizing injective matrices. Thus, Hk,n parameterizes

linear embeddings of Pk into Pn. There is a natural action of PGl(k + 1) on Hk,n and the

quotient by this action is the Grassmanian G(k, n). If Fk(X) is the Fano Scheme of k-

planes on X, let its inverse image in Hk,n be F̃k(X). That is, F̃k(X) parameterizes linear

embeddings of Pk into X.

If F1, F2, ..., Fc are the defining equations of X, then for each i restricting Fi gives a global

section of H0(Pk, OPk(di)). We then have a regular morphism

φ̃ : Hk,n −→
c⊕
i=1

H0(Pk, OPk(di))

Let V be the open subset of Hk,n of points where the dimension of the fiber φ̃−1(φ̃(p))

equals dimHk,n −
∑c
i=1 dimH0(Pk, OPk(di)). We note that φ̃ is dominant if and only if V

is nonempty.

We note that F̃k(X) is the fiber of (φ̃)−1(0). Initially, we deal with the case Nk(n, d) ≥ 0.

If this is true,then by Lemma 12.3 there exists an irreducible component C of Fk(X) of the

expected dimension. Thus, the inverse image Ĩ is also an irreducible component of F̃k(X)
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of the expected dimension, or equivalently, the expected codimension. But the expected

codimension is precisely
c∑
i=1

(
di + k

k

)

Thus, the generic point of Ĩ satisfies the fiber dimension condition defining V and in par-

ticular, belongs to V - i.e. V is non-empty.

We note the following:

• The space PH is a projective space of dimension (n+ 1)(e+ 1)− 1 and the locus AX

parameterizing quasimaps to X is defined by (e.
∑c
i=1 di + c) equations. Thus, the

codimension of AX is at most (e.
∑c
i=1 di + c), by [12, Chapter 1, Theorem 7.2]. As

such, AX must intersect all subschemes of PH of dimension greater than or equal to

(e.
∑c
i=1 di + c).

• Suppose L ⊂ Pn is an r-plane in Pn. The subscheme AL corresponds to quasimaps

with image contained in L. But L is itself isomorphic to a projective space of dimension

r. Thus, AL ⊂ PH is in fact the projective space

P(Hom(H0(L,OL(1)), H0(P1, OP1(e))))

of dimension (r + 1)(e+ 1)− 1, linearly embedded in PH. This can also be observed

directly from the defining equations of L by the same method we defined AX . Indeed

there are (n− r) defining equations of L inside Pn, each of degree 1. Thus, the locus

AL is defined by the vanishing of e.(n− r) + (n− r) linear equations in PH and so, is

a linearly embedded (e+ 1)(r + 1)− 1 plane in PH.

• If U, V are subvarieties of Pn, then AU ∩ AV and AU∩V both exactly parameterize

quasimaps with image in U ∩ V . Thus, AU ∩ AV = AU∩V . This too can be observed

directly from the equations defining U and V .

We now make an arbitrary choice for the multidegree (d1, d2, ..., dc) of the complete

intersection X and the degree of the quasimap e and hold them fixed. We say that a

positive integer n satisfies (B) if the following hold:

1. n ≥ 2(e.
∑c

i=1 di+c)

e+1 − 2

2. Nbn2 c(n, d) ≥ 0

3. bn2 c satisfies our system (A) of polynomial inequalities.

Note, the smallest positive integer n0 satisfying (B) is effectively computable and all n ≥ n0

satisfy (B).
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We are now ready to prove our theorem:

Theorem 12.3. For every smooth complete intersection X ⊂ Pn of multidegree

d = (d1, d2, ..., dc), for n ≥ n0 where n0 is the smallest positive integer satisfying (B), the

space of quasimaps to X, Yn,e(X) is irreducible of the expected dimension.

Proof. Let PH and AX be as before. Our goal will be to show that AX is irreducible. If we

show this, then because AX maps surjectively onto Yn,e(X), we will conclude that Yn,e(X)

is irreducible. To do this, we use proof by contradiction.

Suppose that AX is not irreducible. Thus, it must have a finite number of irreducible

components, say V1, V2, ..., Vp. Let us choose an r such that

r ≥
(e.
∑c
i=1 di + c)

e+ 1
− 1

For such an r, by our previous arguments, the dimension of AL for an r-plane L, is

(e + 1)(r + 1) − 1, which is greater or equal to the expected codimension of AX , that is

(e.
∑c
i=1 di + c). So for all such r-planes L, AL must intersect each irreducible component

Vi nontrivially and moreover, and the intersection of AL ∩ Vi has dimension at least

(r + 1)(e+ 1)− 1− e
c∑
i=1

di − c = (r − c) + e(r + 1−
c∑
i=1

di)

Since n satisfies (B), we know that n ≥ 2(e.
∑c

i=1 di+c)

e+1 − 2. We could thus choose r = bn2 c.

For a general r-plane L, L ∩ X is a complete intersection of the same multidegree d

inside L. By our previous remarks, AL ∩ AX = AL∩X is subscheme of AL parameterizing

quasimaps to L ∩X ⊂ L. Moreover, by our assumption AX = ∪pi=1Vi, which implies that

AL∩X = AL ∩AX = AL ∩ (∪pi=1Vi) = ∪pi=1(AL ∩ Vi)

As noted earlier, each AL ∩Vi is nonempty. Thus, AL∩X can be written as the union of the

closed subsets AL ∩ Vi.

However, we know that if we choose r such that Nr(n, d) ≥ 0, then by Theorem 12.2

the map φ is dominant. So, by taking L general, we have that the complete intersection

L ∩X ⊂ L is general. The condition of not being smooth is equivalent to the Jacobian of

the defining equations of L ∩X inside L not having full rank, which is a closed condition.

Therefore, L ∩ X ⊂ L is smooth, since it is general. This can also be observed using an

iterated application of Bertini’s Theorem. Since n satisfies, among other things, the second

condition of (B), choosing r = bn2 c suffices.

Finally, if r is chosen to satisfy our system of polynomial inequalities (A), then by lemma

12.1, the space of quasimaps Yr,e(L∩X) is irreducible for a general L∩X ⊂ L. Again, from
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(B), we may choose r = bn2 c for this to hold true. Note that the fibers of the map

π : P(Hom(H0(L,OL(1)), H0(P1, OP1(e))) −→ Yr,e

are irreducible. Thus, if r is chosen in this way, AL ∩ AX is irreducible of dimension

r − c + e(r + 1 −
∑c
i=1 di) (Since π maps AL ∩ AX surjectively onto Yn,e(L ∩ X) with

irreducible fibers).

We noted earlier that each AL ∩ Vi has dimension at least equal to this same integer.

So if L is general, we see that AL ∩ AX is irreducible of the expected dimension, and each

AL ∩ Vi is a closed subset of AL ∩ AX of the same dimension as the ambient space. So,

by [12, Chapter 1, Exercise 1.10 d] we have that AL ∩ Vi = AL ∩ AX for all pairs i. In

particular, we have that AL∩Vi = AL∩Vj for all pairs of i, j and each AL∩Vi is irreducible.

Let E be the expected dimension of AX , that is, E = n−c+e(n+1−
∑c
i=1 di). We know

that dimVi ≥ E for each i. AL is an (r+1)(e+1)−1- plane in PH. Applying [12, Theorem

7.2], we have that

dimAL ∩ Vi ≥ dimVi − (e+ 1)(n− r) ≥ E − (e+ 1)(n− r)

But we know that AL ∩ Vi = AL∩X has dimension exactly r− c+ e(n+ 1−
∑c
i=1 di). Note

that

E − (e+ 1)(n− r) = n− c+ e(n+ 1−
c∑
i=1

di)− (e+ 1)(n− r) = r − c+ e(n+ 1−
c∑
i=1

di)

and so we see that dimAL ∩ Vi = E − (e+ 1)(n− r). So we get that

E − (e+ 1)(n− r) = dimAL ∩ Vi ≥ dimVi − (e+ 1)(n− r) ≥ E − (e+ 1)(n− r).

Thus, all the inequalities must be equalities and we must have

dimVi − (e+ 1)(n− r) = E − (e+ 1)(n− r)

Thus dimVi = E for each i. So AX is a pure dimensional subscheme of the expected

dimension.

We have established that all irreducible components Vi of AX have dimension equal to

the expected dimension. We give Vi the induced reduced structure as an integral closed

subscheme of PH. Suppose Vi has multiplicity mi, where each mi is a positive integer. Let

[AX ] be the cycle associated with AX . We then have [AX ] =
∑
imi[Vi]. The intersection

of AL with AX equals AL∩X , which is a reduced, irreducible, complete intersection in

AL with dimension equal to the expected dimension. We know that the space of stable
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maps has a nonempty smooth locus - for example, the multiple covers of free lines are

smooth points of the moduli space. Being non-empty, the smooth locus is open and dense in

M0,0(X, e). Because of the birationality of contn,e, we conclude that the space of quasimaps

has nonempty smooth locus, hence it is everywhere reduced. (Local complete intersection

schemes are Cohen-Macaulay, hence they are S1, and S1 schemes that are generically reduced

are also everywhere reduced).

Thus, the cycle of AL∩X equals [AL∩X ] with multiplicity 1. Denote by

jL : AL −→ PH

the regular embedding of AL inside the space of quasimaps. [AL∩X ] also equals the pullback

along of [AX ] along jL and we have that

[AL∩X ] =

p∑
i=1

mi(j
∗
L[Vi])

This equality follows by the results of [8, Section 7.1], since each dimension equals the

expected dimension and hence the pullbacks of the cycles are proper intersections. By

Krull’s Hauptidealsatz, the pullback of each prime cycle [Vi] to AL is a nonempty, effective

cycle.

If we did not know that the pullbacks of cycles were proper intersections, it could have

happened that the intersection multiplicity of some j∗L[Vi] along a prime cycle was negative,

and would cancel out the positive intersection multiplicity of j∗L[Vk], for some other Vk,

along the same prime cycle. But this is not the case, since the pullbacks of the cycles are

proper intersections and their intersection multiplicities can be computed in the usual way

(See [8, Section 7.1]). In particular, all the intersection multiplicities are positive integers.

Since the sum over all of these nonempty cycles with positive integer multiplicities equals

the prime cycle [AL∩X ] with multiplicity 1, it follows that there is a unique Vi and the

multiplicity mi equals 1, i.e., AX is irreducible and reduced.

As previously mentioned, all the arguments of the proof work by choosing r = bn2 c. Hence,

we are done.

13 Future Questions

We mentioned in the introduction that our techniques provided sufficient conditions for the

Gromov-Witten invariants to be enumerative for complete intersections X ∈ Pn. In this

final section we consider further potential questions in this area.

1. Can the system of inequalities mentioned in section 4.2 be simplified using

approximations for the binomial coefficients or other numerical methods

for large n?
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The system (A) is a set of inequalities involving binomial coefficients. We believe that

by using Stirling’s approximation and other such methods, it is possible to simplify

this system.

2. Can the system of inequalities obtained in Theorem 4.1 be improved by

taking into account the geometry at each step of the iteration?

In our inductive argument Theorem 4.1, we obtained our system of inequalities by

successively restricting the homogenous parts Fi,j of the Taylor expansions to the

irreducible components of V = V (F1,1, F2,1, ..., Fi,j−1). However, we did not make

any considerations about the geometry of V . It is our belief that, at least when there

are some restrictions on the di-s, it is possible to obtain a weaker system of inequalities

by more closely examining the nature of each of the varieties obtained at the various

stages our iterative process.

3. Can the inductive argument in section 11 be generalized to k planes con-

taining r planes where r < k − 1 ?

In our proof of Theorem 11.1, we use the fact that the fibers of the projection map

ρrX are complete intersections of some multidegree in a different projective space. In-

stead, if we took our forgetful map to be one which forgets not the last element in

a flag of subspaces, but the last k − r elements, the fiber would be some subvariety

of a Grassmanian. We can ask whether it is possible to formulate a similar iterative

argument to tackle this case as well.

4. Can the methods of Behesti and Kumar be used in the context of Grass-

manians?

In [7], Robert Findley generalized the result of [11] to hypersurfaces of low degree in

G(k, n). It is our hope that one can apply the methods of [1] to obtain new degree

inequalities for hypersurfaces in G(k, n).

5. Can the techniques of Browning and Vishe be applied to the complete

intersections?

In [4], Browning and Vishe used techniques in Analytic Number Theory to show that

the space of quasimaps to X is irreducible for every hypersurface X ⊂ Pn. We ask

whether it is possible to extend their techniques to the case of complete intersections.
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