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Abstract of the Dissertation

Measuring the Irrationality of Abelian Surfaces and Complete Intersections

by

Nathan Chen

Doctor of Philosophy

in

Mathematics

Stony Brook University

2021

In this dissertation, we make advances in the study of measures of irrationality for polar-

ized abelian surfaces and codimension two complete intersections, which answer a number

of questions posed in [7].
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Introduction

A fundamental idea in algebraic geometry is that it is very useful and rewarding to study

algebraic varieties up to birational equivalence. Recall that two irreducible varieties X and

Y are said to be birationally isomorphic if there are Zariski open subsets U ⊂ X and V ⊂ Y

such that U ∼= V . This is a natural concept to consider since many natural geometric

constructions – for example, blowing up a subvariety – preserve the birational equivalence

class of a variety. In the late 1800s and early 1900s, there were many significant advances in

our understanding of birational transformations and various birational invariants of algebraic

surfaces, which led to the Enriques-Kodaira classification of compact algebraic surfaces (see

for instance [11]). In higher dimension, the past 50 years have witnessed vast progress in

birational geometry, culminating in the near completion of the minimal model program ([12],

[27]).

From the birational viewpoint, the simplest varieties are those that are rational. By

definition, an n-dimensional variety is rational if it is birationally equivalent to Pn. In

dimension ≤ 2, the situation is fairly well-understood. For example, an algebraic surface is

rational if and only if it is the blow-up of P2, P1 × P1, or a Hirzebruch surface. However,

the situation in dimension ≥ 3 is already much more subtle (see [30], [3], and [18]), and has

been the subject of current active research in the past 20 years. Meanwhile, there has been

renewed interest in approaching these rationality questions from a different point of view.

Suppose that the nonrationality of a given projective variety X is known (perhaps for simple

reasons). This leads to the natural question:

Can we quantify “how far” X is from being rational?

There are several birational invariants that have been proposed and studied with this question

in mind. In this thesis, we contribute to a growing collection of results along these lines.

In Chapter 1, we give an exposition of measures of irrationality and discuss the general

background. Chapter 2 gives a new approach to the main theorem proved in [15] about

the degree of irrationality of abelian surfaces. Finally, we consider complete intersections

in Chapter 3 and prove that their measures of irrationality behave multiplicatively in the

codimension 2 case.
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Chapter 1

Measures of irrationality: background and survey

In this chapter, we will survey known results and give some background to irrationality

problems. The story begins with the classical question of determining which varieties are

rational. Historically, this began with the study of coarse invariants such as the space of

holomorphic forms, the space of m-canonical global sections, and the Lüroth problem for

surfaces, which paved the way for the classification of algebraic surfaces. Although questions

concerning rationality and the behavior of these invariants in higher dimension are extremely

subtle, there are some elementary obstructions to rationality. For a smooth projective variety

X, recall that we have:

Definition. The m-th plurigenus of X is

pm(X) =def dimH0(X,OX(mKX)) = 0.

It is then well-known that:

Theorem 1.1. The spaces H0(X,OX(mKX) are birational invariants.

Since these vanish for projective space, it follows that if X is rational, then pm(X) = 0 holds

for all m > 0. Unfortunately, all Fano varieties (varieties whose anticanonical bundle −KX

is ample) satisfy this condition automatically, so the plurigenera are simply not fine enough

to distinguish the rational varieties among all Fanos. In fact, after much work and progress

we now know that most Fano varieties are not rational. In order to better understand the

rationality question in higher dimension, a whole host of conditions which are weaker than

rationality were developed and studied:

Definition. Let X be a complex projective variety of dimension n. We say that X is:

• unirational if there is a dominant rational map Pn 99K X.

• uniruled if there is a dominant rational map Y × P1 99K X for some variety Y of

dimension n− 1.

• ruled if it is birational to a variety of the form Y × P1.

• stably rational if X × Pm is rational for some m ≥ 0.
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• birationally rigid if there are no rational fibrations X 99K V to a lower dimensional

variety such that the general fiber has Kodaira dimension −∞, and any birational self-

map X 99K X extends to an isomorphism (there is a slightly different definition for

prime Fano varieties).

It is helpful to survey the picture for hypersurfaces. Suppose

Xd ⊂ Pn+1

is a smooth complex hypersurface of dimension n and degree d. By the adjunction formula,

the canonical bundle of X is KX
∼= OX(d− n− 2). From this, we see:

(i) If d = 2, then projection from a point shows that X is rational.

(ii) Let us look at the case d = 3. If n = 2, it is well-known that every smooth cubic has

27 lines and can be realized as the blow-up of P2 in 6 points. For n = 3, Clemens and

Griffiths [18] used the intermediate Jacobian to prove the longstanding conjecture that

a cubic threefold is not rational. When n = 4, cubic fourfolds have attracted a great

deal of attention [28], but the rationality question remains open for the general member.

(iii) For d = 4 and n = 3, Iskovskikh and Manin [30] used the Noether-Fano method to prove

that quartic threefolds are birationally (super)rigid. This was later extended to several

other classes of Fano varieties, including smooth hypersurfaces with d = n + 1 [22]. In

particular, it follows that these varieties are not rational since the Cremona group of

birational transformations of Pn contains much more than just linear automorphisms of

Pn for n ≥ 2.

(iv) When d ≥ n+ 2, it follows that KX
∼= OX(d− n− 2) is either trivial or very ample, so

we have nonvanishing p1(X) 6= 0 of the first plurigenus and X is therefore irrational.

In general, when 3 ≤ d ≤ n + 1 the canonical bundle of X is negative and thus pm(X) = 0

for all m > 0.

In his pioneering work [33], Kollár used specialization to positive characteristic arguments

to show:

Theorem 1.2. If X ⊂ Pn+1
C is a hypersurface of degree d ≥ 2d(n + 3)/3e, then X is not

ruled and therefore not rational.

This was later improved by Totaro [49] and subsequently Schreieder [45], who proved:

Theorem 1.3. Let X ⊂ Pn+1
C be a hypersurface of degree d ≥ log2 n + 2. Then Xd is not

stably rational.

(Schreieder’s theorem actually holds for hypersurfaces over any algebraically closed field of

characteristic not equal to 2.) As of now, this is the strongest result regarding nonrationality

of hypersurfaces.
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1.1. Measures of irrationality

In the last few years, there has been growing interest in studying (non)rationality from a

complementary direction:

Given a projective variety X whose nonrationality is known, can we measure how

far it is from being rational?

In dimension 1, recall the:

Definition. The gonality of a smooth algebraic curve C, denoted gon(C), is the minimal

degree of a branched covering C → P1. For a possibly singular but reduced and irreducible

curve C, we define the gonality of C to be that of its normalization.

It follows immediately that if C is a smooth curve, then gon(C) = 1 if and only if C ∼= P1.

There are many situations in which the geometry of C is governed by its gonality rather

than its genus. Curves of genus g ≥ 1 with gon(C) = 2 are called hyperelliptic; they are the

Riemann surfaces associated to equations on C2 of the form w2 = f2g+1(z) (where f2g+1 is a

polynomial of degree 2g + 1) and this fact controls their geometry.

It is thus natural to try to compute the gonality of various classes of curves arising from

geometric constructions. For instance, a classical theorem of Noether [43] describes the

gonality of plane curves:

Theorem 1.4 (Noether). Let C ⊂ P2 be a smooth plane curve of degree d ≥ 4. Then

gon(C) = d− 1,

and furthermore every map C → P1 of degree d− 1 is given by projection from a point.

It is instructive to recall why this holds. We begin with the simple observation that

positivity properties of the canonical bundle of a smooth projective curve C give rise to

lower bounds on the gonality of C (see §1 of [7]).

Definition. We say that sections of a line bundle L on a smooth variety X separate r points

on an open set if there exists a Zariski open subset U ⊂ X such that for any r distinct points

p1, . . . , pr ∈ U , the restriction map

H0(X,L)→ H0(X,L⊗O{p1,...,pr})

is surjective.

Lemma 1.5. Let C be a smooth projective curve of genus g such that the canonical bundle

KC separates p points on an open set. Then

gon(C) ≥ p+ 1.
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Proof. We will prove the contrapositive; assume that C has gonality ≤ p. Then C carries

a base point free line bundle A of degree ≤ p with at least two global sections. Let Z be a

general effective divisor with A ∼= OC(Z), and consider the ideal sheaf sequence of Z twisted

by KC . The long exact sequence on cohomology gives

· · · → H0(KC)
α−→ H0(KC ⊗OZ)→ H1(KC ⊗ A−1)→ H1(KC)→ 0

and Serre duality implies that h1(KC) = h0(OC) = 1 whereas h1(KC ⊗ A−1) = h0(A) ≥ 2.

Therefore, the map α cannot be surjective. Since this holds for a general effective Z, the

canonical bundle KC cannot separate p points on an open set.

Remark 1.6. We may rephrase the proof of this lemma in terms of Geometric Riemann-

Roch. Essentially what we are saying is that any divisor A of degree p imposing independent

conditions on sections of KC spans a plane ϕK(A) of dimension p − 1 in canonical space.

Geometric Riemann-Roch then implies that the dimension of the linear system |A| is equal

to

deg(A)− dimϕK(A)− 1.

So the divisor A imposing independent conditions on KC has a linear system of dimension

dim |A| = 0.

Proof of Noether’s theorem. Let C ⊂ P2 be a smooth plane curve of degree d ≥ 4. By the

adjunction formula, the canonical bundle is given by KC
∼= OC(d − 3) so sections of KC

separate (d − 2)-points. For instance, one can choose lines passing through any subset of

(d− 3) points but missing the last point. By the lemma, this implies that gon(C) ≥ d− 1.

In fact, since (d − 1) points in P2 fail to impose independent conditions on OP2(d − 3) if

and only if they are collinear, we see that every map C → P1 of degree d − 1 is given by

projection from a point.

In a different direction, Abramovich [1] has given bounds for the gonality of modular curves.

For a congruence subgroup Γ ⊂ PSL2(Z), he showed that the gonality of the corresponding

modular curve XΓ is bounded from below by

gon(XΓ) ≥ 7

800
DΓ,

where Dγ = [PSL2(Z) : Γ] is the index. In particular, when Γ = Γ0(N) this gives a linear

lower bound on the gonality ofXΓ0(N) in terms ofN . By work of Poonen [44], there are similar

results in characteristic p for modular curves which are certain quotients of a special moduli

space parameterizing elliptic curves (with some extra data in terms of level structures).

There are several ways of generalizing the notion of gonality to give higher dimensional

birational invariants. In this thesis, we will focus on two of these “measures of irrationality”:

Definition. Let X be an irreducible complex projective variety. We define the degree of
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irrationality of X to be

irr(X) = min
{
δ > 0

∣∣∣ ∃ degree δ rational covering
X 99K PdimX

}
.

The covering gonality of X is defined as

cov. gon(X) = min
{
c > 0

∣∣∣ Given a general point p ∈ X, ∃ irred.
curve C ⊆ X through p with gon(C) = c

}
.

Remark 1.7. It follows from the definitions that:

irr(X) = 1 ⇐⇒ X is rational;

cov. gon(X) = 1 ⇐⇒ X is uniruled.

By considering the preimage of lines coming from the base of a rational coveringX 99K PdimX ,

we also see that

irr(X) ≥ cov. gon(X).

The degree of irrationality was first introduced by Heinzer and Moh in an algebraic

setting, in terms of the transcendence degree of the function field of a variety. Yoshihara

later computed the degree of irrationality for several types of surfaces ([54], [55], [56]),

following classification lines. There were a few sporadic results towards covering gonality as

well ([37], [25]). For a thorough summary, see [7] and [40]. Beginning with the work of [4],

[6], [7], and [51], the last few years have seen a rejuvenation of activity and progress. We

will now summarize existing results for hypersurfaces

X ⊂ Pn+1
C

of degree d and dimension n ≥ 2. Note that projecting from a point on X gives a rational

map ϕ : X 99K Pn of degree d − 1, so there is always an upper bound of irr(X) ≤ d − 1.

When the degree of X is large, Bastianelli, De Poi, Ein, Lazarsfeld, and Ullery [7] (building

on the work in [6]) proved that this is sharp:

Theorem 1.8 ([7], Theorem C). Let X ⊂ Pn+1
C be a very general smooth hypersurface of

dimension n and degree d ≥ 2n+ 1. Then

irr(X) = d− 1.

Furthermore, if d ≥ 2n+ 2, then any rational mapping

f : X 99K Pn

with deg(f) = d− 1 is birationally equivalent to projection from a point of X.

In the same paper, they also gave bounds for the covering gonality:
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Theorem 1.9 ([7], Theorem A). If X ⊂ Pn+1
C is a smooth hypersurface of dimension n and

degree d ≥ n+ 2, then

cov. gon(X) ≥ d− n.

One can view these results as a generalization of Noether’s theorem (which concerned plane

curves). Bastianelli, Ciliberto, Flamini, and Supino [5] improved upon the second theorem

by showing that for d� 0, the covering gonality for very general hypersurfaces behaves like

cov. gon(X) ≈ d− 2
√
n.

Many other notions of rationality such as rational connectedness, stable rationality, and

unirationality also admit quantitative counterparts. For instance, R. Yang [53] has used

similar techniques to those established in [7] to compute the natural analogues of stable

rationality and unirationality for very general hypersurfaces X ⊂ Pn+1
C of large degree.

A common theme in [7] is that the positivity properties of the canonical bundle yield

lower bounds for measures of irrationality. In order to explain this, we recall:

Definition (Mumford’s trace map). Let f : X 99K Y be a dominant rational map between

smooth n-dimensional projective varieties X and Y . In [42], Mumford defines a linear trace

map

Trf : H0(X,KX)→ H0(Y,KY ).

For η ∈ H0(X,KX) and a general y ∈ Y , this is defined by

Trf (η)(y) =def

∑
x∈f−1(y)

η(x).

Note that the existence of such a map is nontrivial (see [47, §2.3] for a nice exposition). We

will now use this to show:

Proposition 1.10. Assume that sections of KX separate r points on an open set for some

positive integer r. If

f : X 99K Y

is a rational covering to a variety Y with H0(Y,KY ) = 0, then deg(f) > r.

Proof. Suppose there exists such a map f : X → Y with deg(f) ≤ r. Then we may choose

a section of H0(X,KX) which vanishes at all but one of the points in a general fiber of f .

Tracing this section forward to Y gives a nonzero form in H0(Y,KY ), which is a contradiction.

Therefore, the map f must have degree > r.

1.2. Beyond hypersurfaces of large degree

It is natural to ask what happens for varieties where the canonical bundle is trivial or even

negative. For hypersurfaces of small degree, there are limited results. In joint work with

Stapleton [16], we gave the first examples of Fano varieties (where d ≤ n+1) with arbitrarily

large degrees of irrationality:

7



Theorem 1.11. Let Xn,d ⊂ Pn+1
C be a very general hypersurface of dimension n and degree

d. If d ≥ n+ 1−
√
n+ 2/4, then

irr(Xn,d) ≥
√
n+ 2

4
.

In fact, we proved a stronger statement: the bound above holds for minimal degree maps to

a ruled variety. By work of Iskovskih and Manin [30] (using the Noether-Fano method), it

is known that a general smooth quartic threefold X has a trivial birational automorphism

group, so the degree of irrationality of a general smooth quartic threefold is 3. Our result

gives the first examples of rationally connected varieties X with irr(X) ≥ 4. The main

idea of our argument is to degenerate to positive characteristic in the spirit of [33] and take

advantage of the fact that certain cyclic covers in characteristic p carry a lot of (n−1)-forms.

Moving on to varieties where the canonical bundle is trivial, it makes sense to consider

abelian varieties. As a corollary to estimating the holomorphic length of an abelian variety,

Alzati and Pirola [2] showed:

Theorem 1.12. Let A be an abelian variety of dimension g. Then irr(A) ≥ g + 1.

When g = 2 and A is an abelian surface, this proves that irr(A) ≥ 3; in other words, there

are no maps A 99K P2 of degree 2 (the latter statement also follows geometrically from

Lemma 2.2). In the last year or so, Colombo, Martin, Naranjo, and Pirola [20] showed

that for g ≥ 3, the degree of irrationality of a very general abelian variety of dimension g

is bounded from below by (3g + 1)/2. This was later improved in the thesis of Martin for

abelian varieties which do not admit certain polarizations of low degree:

Theorem 1.13 ([40], Theorem 4.2.11). If g ≥ 2, and A is an abelian variety of dimension

g which admits no polarizations of degree d | f(g) (for some function f), then irr(A) ≥ 2n.

There is a more concrete statement if we specialize to the case g = 2 (see [38]):

Theorem 1.14. Let A be a very general abelian surface with a polarization of type (1, d). If

d - 6, then irr(A) ≥ 4.

On the other hand, for the covering gonality of an abelian variety, Voisin [51] used cycle-

theoretic methods to show:

Theorem 1.15. Let A be a very general abelian variety of dimension g. If g ≥ 2k−2(2k −
1) + (2k−2 − 1)(k − 2), then cov. gon(A) ≥ k + 1.

Another way of interpreting the result above is that the covering gonality of a very general

abelian variety A of dimension g is bounded from below by some function h(g), where h(g)

grows like log(g). In particular, the theorem of Voisin settled a conjecture of [7] in the

affirmative. In the same paper, Voisin also conjectured a stronger linear bound in g, which

was subsequently proved by Martin [39]:
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Theorem 1.16. If A is a very general abelian variety of dimension g, then

cov. gon(A) ≥ d1
2
g + 1e.

This summarizes the story about lower bounds for measures of irrationality on abelian vari-

eties.

On the other hand, there has been little progress in finding interesting upper bounds. It

is not clear how measures of irrationality depend on the polarization of an abelian variety.

For instance, one may ask:

Question 1.17. For a very general abelian variety Ad of dimension g with a polarization

Ld of type (1, . . . , 1, d), how does irr(A) behave as d→∞?

In the first part of this thesis, we consider the case of abelian surfaces and prove that the

degree of irrationality on a very general (1, d)-polarized abelian surface is uniformly bounded

from above:

Theorem 1.18. For an abelian surface A = Ad with Picard number ρ = 1, one has

irr(A) ≤ 4.

The original argument for this appeared in [15]. In joint work with Stapleton [16], we

extended this bound to all complex abelian surfaces. A new proof of this stronger result

appears in §2.4 and makes use of elliptic fibrations on Kummer K3 surfaces. Together with

the theorem of Martin [38] stated above, this proves that most abelian surfaces have degree

of irrationality equal to 4. To prove the theorem above, we construct explicit rational maps

A 99K P2 of degree 4. The key ingredient in our proof involves even sections of symmetric

line bundles, which vanish to higher order (than one would naively expect) at the two torsion

points of A.

Returning to hypersurfaces, a logical next step is to estimate measures of irrationality for

complete intersection varieties. For a smooth complete intersection

X := Xa1 ∩ · · · ∩Xae ⊂ Pn+e

of dimension n and type (a1, . . . , ae), multiplicative upper bounds are easily realized by

projection from linear subspaces of complementary dimension. Similar to what we saw for

hypersurfaces, we can apply a generic projection from e general points on X to show that

irr(X) ≤
e∏
i=1

ai − e.

9



For lower bounds, the same techniques in [7] give a naive bound of

cov. gon(X) ≥
e∑
i=1

ai − n− e+ 1.

Notice that these lower bounds for the covering gonality are additive in the degrees of the

defining equations. In positive characteristic, Smith [46] has also given additive bounds for

the covering gonality of complete intersections using cycle-theoretic arguments.

However, it has been conjectured [7, §4] that there should be lower bounds on the irra-

tionality invariants of complete intersections which are multiplicative in the degrees of the

defining equations. For instance, in dimension n = 1 there is a theorem of Lazarsfeld [34,

Exercise 4.12] which shows precisely this:

Theorem 1.19. Let C ⊂ Pe+1
C be a complete intersection curve of type (a1, a2, . . . , ae) with

2 ≤ a1 ≤ · · · ≤ ae. Then the gonality of C is bounded from below by

gon(C) ≥ (a1 − 1)a2 · · · ae.

This result turns out to be sharp in some cases. The idea of the proof is to fit the complete

intersection curve C into a complete intersection surface S and reach a contradiction by

constructing some Bogomolov unstable vector bundle on S. Further refinements due to

Hotchkiss, Lau, and Ullery [29] show that when 4 ≤ a1 < a2 ≤ · · · ≤ ae holds, the gonality of

the curve C is realized by projection from a suitable linear subspace. For higher dimensional

complete intersections, there has been little progress. As a first step, Stapleton [47] gave

bounds for codimension two complete intersections that were superlinear (see §3). Stapleton

and Ullery [48] then computed the degree of irrationality for codimension two complete

intersections of type (2, d) and (3, d).

In the second part of this thesis, we show that both the covering gonality and the degree

of irrationality on very general codimension two complete intersections are multiplicative:

Theorem 1.20. Let X ⊂ Pn+2
C be a very general smooth complete intersection of type (a, b)

and dimension n ≥ 2. If a, b ≥ 9n, then

cov. gon(X) ≥ 2

3(n+ 1)2
· ab.

We strongly believe that there should be multiplicative bounds for complete intersections of

any dimension n and any codimension e.

Some parts of this thesis are contained in two of the author’s papers: [15] and [14].
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Chapter 2

Abelian surfaces

In this chapter, we will give an alternative proof of the result from [15], namely the degree

of irrationality of a very general polarized abelian surface is uniformly bounded from above,

independent of the degree of the polarization. Abelian surfaces and K3 surfaces are natural

families of varieties to consider because their canonical bundles are trivial, so the techniques

of [7] do not apply. As mentioned in Chapter 1, Alzati and Pirola [2] have shown that

irr(A) ≥ n + 1 holds for any abelian variety of dimension n. In the case n = 2, Yoshihara

[55] proved that irr(A) = 3 for any abelian surface A containing a smooth curve of genus

3 (see Example (2.5)). In particular, this holds for very general (1, 2)-polarized abelian

surfaces.

More generally, let A = Ad be an abelian surface carrying a polarization L = Ld of type

(1, d) and assume that NS(A) ∼= Z[L]. In his thesis, Stapleton gave sublinear upper bounds:

Theorem 2.1 ([47], Theorem 5.2). There is a positive constant C such that

irr(A) ≤ C ·
√
d

for d� 0.

There are similar bounds for very general polarized K3 surfaces of genus g. In [7], it was

conjectured that equality holds asymptotically in both cases. For K3 surfaces, as far as

we can tell the conjecture seems plausible. However, in a much earlier paper, Keum [32]

had shown indirectly that on abelian surfaces this is false by proving that every algebraic

Kummer surface is the K3 cover of some Enriques surface S. Since Enriques surfaces have

degree of irrationality equal to 2 (more precisely Enriques proved that they are birational

to branched double covers of the plane [23]), one can use Keum’s result to factor through a

series of degree 2 maps

A 99K A/ι 99K S 99K P2,

which shows that irr(A) ≤ 8.

The main result of this chapter is:

Theorem 1.18 ([15], Theorem 1.1). For an abelian surface A = Ad with Picard number

ρ = 1, one has

irr(A) ≤ 4.
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This bound will turn out to be sharp for most abelian surfaces; degree 2 rational maps from

A to P2 cannot occur, and a recent theorem of Martin [38] proves that for (1, d)-polarized

abelian surfaces A, there are no maps A 99K P2 of degree 3 as long as d - 6. The cases where

d = 1 (principally polarized abelian surfaces - here the general member is a Jacobian of a

genus two curve), d = 3, and d = 6 remain open.

In §2.1, we collect a few examples and results that are in the literature. In §2.2, we recall

the Kummer construction of a K3 surface associated to an abelian surface, and review some

properties of its line bundles. We then use these properties in §2.3 to construct rational maps

A 99K P2 of degree 4 using sections of OA(2L), where L is a polarization of type (1, d) (this

is the original argument which appeared in [15]). Finally, in §2.4 we use sections of the line

bundle OA(L) to exhibit elliptic fibrations on K with sections, which can then be combined

with a result of Yoshihara (Proposition 2.4) to give a simplified proof of Theorem 1.18.

2.1. Examples

In this section, we give several examples and lemmas concerning the behavior of rational

maps. We first begin with a simple geometric observation (this also follows from [2] for

n = 2):

Lemma 2.2. There are no rational dominant maps A 99K P2 of degree 2.

Proof. Suppose there exists such a map f . We have the following diagram

A[2] A

A P2 K [2](A) s−1(0)

s

f

h

g

=:

where g is the pullback map on 0-cycles, A[2] is the Hilbert scheme of 2 points on A, and s is

given by summation composed with the Hilbert-Chow morphism. Since the rational map s◦g
can be extended to a morphism (see [13, Theorem 4.9.4]), it must be constant. This implies

that Im(g) is contained in a fiber s−1(0), which is a smooth Kummer K3 surface K [2](A).

Since g is injective, it descends to an injective (and hence birational) map h : P2 99K K [2](A),

yielding a contradiction.

Example 2.3. Let f : V 99K C be a dominant rational map from a smooth variety V of

dimension n to a smooth curve C. We will show that irr(V ) ≥ gon(C). Fix a rational map

g : V 99K Pn of degree d = irr(V ) (i.e. g realizes the degree of irrationality of V ). This

induces a nonconstant map

Pn 99K SymdC defined by x 7→
∑

p∈{g−1(x)}

f(p),
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and the image will be contained in the fiber of the Abel-Jacobi map Symd(C) → Picd(C)

(since any rational map from projective space to an abelian variety must necessarily be

constant). This means that C carries a grd for some r ≥ 1; in particular gon(C) ≤ d = irr(V ).

Following [55], we will now prove that an abelian surface containing a smooth curve of

genus 3 has degree of irrationality 3. This result hinges upon the following

Proposition 2.4 (Yoshihara). Let f : S → C be a surjective morphism from a smooth

surface S to a smooth curve C such that the general fiber F is irreducible. Let g(F ) denote

the genus of F .

1. If g(F ) = 0, then irr(S) = irr(C).

2. If g(F ) = 1 and f has a section, then irr(S) ≤ 2 gon(C).

3. If g(F ) ≥ 2 and gon(F ) = 2, then irr(S) ≤ 2 gon(C).

4. If g(F ) = 3, gon(F ) 6= 2, and f has a section, then irr(S) ≤ 3 gon(C).

Proof. For part (1), by the hypothesis g(F ) = 0 we know that S is birational to C × P1

and so irr(C × P1) ≤ gon(C) (consider a product of maps). By Example 2.3, it follows that

irr(C × P1) = gon(C).

We will now prove parts (2), (3), and (4) simultaneously. The idea is that in each

situation, there is a natural low degree map F 99K P1 (either some sort of hyperelliptic

map or projection from a point), and the assumptions on F together with the existence of a

section Γ allow us to glue the maps across the fibers of f . Let KS be the canonical bundle

on S and let Γ be the section in parts (2) and (4). In each part, we will consider a different

sheaf F , which is defined as

OS(2Γ)︸ ︷︷ ︸
(2)

, OS(KS + F )︸ ︷︷ ︸
(3)

, OS(KS − Γ)︸ ︷︷ ︸
(4)

.

Then f∗F is a coherent sheaf on C, and there is a rational map

g : S 99K P(f∗F)

which is given by the linear system H0(F,F
∣∣
F

) on the general fiber F . It is straightforward to

check that the image of the map g is a ruled surface over C (which has degree of irrationality

equal to gon(C)). The proposition then follows immediately.

Example 2.5. Yoshihara [55] has shown that an abelian surface A which contains a smooth

curve C of genus 3 has degree of irrationality 3. Given such a curve C, the adjunction
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formula shows that C2 = 4 and Nakai-Moishezon together with translations under the group

law imply that C is ample. We then observe by Riemann-Roch and Kodaira vanishing that

h0(OA(C)) = χ(OA(C)) =
1

2
C2 − χ(OA) = 2.

The complete linear series |OA(C)| gives a rational map A 99K P1 with four base points

(corresponding to the fact that C2 = 4). After blowing up these points, we arrive at a

morphism f : Ã → P1, which has four sections given by the exceptional divisors. We can

now apply Proposition 2.4 and Lemma 2.2 to conclude that irr(A) = 3.

The following lemma will be useful later on, as it will give us a simple way of controlling

the degree of generically finite rational maps.

Lemma 2.6. Let X be a smooth projective surface and suppose that ϕ : X 99K Pn (n ≥ 2) is

a rational map which is generically finite onto its image S ⊂ Pn. Let d be the linear system

corresponding to ϕ (we may assume that d has no base components). For any D ∈ d, we

have

degϕ · degS ≤ D2.

Proof. Since X is a surface, the indeterminacy locus of ϕ is a finite set. After blowing up

and resolving the base locus, the self-intersection of the strict transform of divisors in d can

only decrease.

2.2. Kummer construction and even sections

The goal of this section is to show how sections of a symmetric line bundle on an abelian

surface must vanish with a certain parity at the two-torsion points. There is a parallel point

of view that can be taken by working directly with the associated Kummer K3 surface. Many

of the details can be found in [8].

Let A = Ad be an abelian surface with ρ(A) = rank NS(A) = 1. In other words, A

is an abelian surface carrying an ample line bundle L of type (1, d) for some d ≥ 1 and

NS(A) ∼= Z[L]. To say that L has type (1, d) means that L is primitive,

L2 = 2d and h0(L) = d.

Let ι : A→ A be the inverse morphism sending x 7→ −x.

For notation purposes, we recall the Kummer construction, starting with an abelian

surface A (a good reference for this is [11] or [8, §1]). The involution ι has exactly 16

fixed points, which we will denote by

Z = {p1, . . . , p16}
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(these are the two-torsion points of A under the group law). After blowing up A along Z to

get

Â := BlZ A,

one can show that ι lifts to an involution ι̃ on Â. The Kummer surface K is then defined to

be

K := Â/ι̃,

and it is straightforward to check that this is a smooth K3 surface. Alternatively, one can

define K to be the minimal desingularization of the quotient A/ι. Both of these viewpoints

fit into a commutative diagram:

Ei Â K Gi

A A/ι

⊂
π

σ̃ ⊃

σ

where

• the Ei are disjoint exceptional (−1)-curves;

• A/ι is a singular surface with 16 ordinary double points;

• σ̃ is a cover of degree 2 ramified along E =
∑
Ei;

• the Gi := σ̃(Ei) are smooth rational (−2)-curves (for i = 1, . . . , 16).

Definition. We say that a line bundle L on an abelian variety A is symmetric if there is an

isomorphism ι∗L ∼= L.

Lemma 2.7. By replacing L with a suitable translate, we may assume that L is symmetric.

Proof. Let tx : A→ A denote translation by x ∈ A. We have the following identity:

ι ◦ tx = t−x ◦ ι.

Now

ι∗L ∼= t∗yL

for some y ∈ A, so choose an element x ∈ A such that 2x = y. It is straightforward to check

that t∗xL is symmetric.

Let L be a symmetric line bundle on an abelian surface. After multiplying by a suitable

constant, there is an induced involution ιL on the total space L of the line bundle L:

L L

A A

ιL

ι
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If we require the restriction to the fiber L0 over the origin to be the identity, there is a unique

lift ιL.

Definition. The restriction of ιL to the fiber Lp over any two-torsion point pi ∈ Z is

multiplication by ±1. The two-torsion points pi corresponding to +1 (resp. −1) will be

called even (resp. odd). Define n± = n±(L) to be the number of even (resp. odd) two-

torsion points of L (see [8, §1] or [13, §4.7]).

Fix an integer n ≥ 1 and let L be a symmetric line bundle of type (1, d). There is an

induced involution

ι∗ : H0(A,OA(nL))→ H0(A,OA(nL)),

so the only possible eigenvalues of ι∗ are ±1.

Definition. Let H0(A,OA(nL))± denote the eigenspaces of the induced involution ι∗ on

H0(A,OA(nL)) corresponding to ±1. We will call sections of H0(A,OA(nL))+ (respectively

H0(A,OA(nL))−) even (respectively odd).

It follows that the space of sections of OA(nL) decomposes as

H0(A,OA(nL) = H0(A,OA(nL))+ ⊕H0(A,OA(nL))−.

The dimensions of these vector spaces can be computed (see [8, Theorem 3.1] and [13,

Corollary 4.6.6]):

Proposition 2.8. Let L be a symmetric line bundle of type (1, d). The space of even (resp.

odd) sections of OA(nL) has dimension

h0(A,OA(nL))± = 2 +
n2d

2
− n∓(OA(nL))

4
.

Remark 2.9. If L is symmetric of type (1, d) and n = 2k is even, then all two-torsion

points of OA(nL) are even so n+(OA(nL)) = 16 and n−(OA(nL)) = 0. For the space of even

sections, the formula above reduces to

h0(A,OA(2kL))+ = 2 + 2dk2.

In §2.4, we will need the following special case of [13, Prop. 4.7.5]:

Proposition 2.10. Let L be a symmetric line bundle on A of type (1, d). If d is odd, then

n+ = 10, 6, or 8.

If d is even, then

n+ = 12, 4, or 8.
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Corollary 2.11. For a symmetric line bundle L of type (1, d), since n+ + n− = 16, we

see that n+ ≥ 4 and n− ≥ 4. In other words, there are at least four even and four odd

two-torsion points.

Let D be the divisor corresponding to an even (resp. odd) section s ∈ H0(A,L)+ (resp.

s ∈ H0(A,L)−). The divisor D will have a certain multiplicity mi at any two-torsion pi.

The magical fact that we will take advantage of is that the multiplicities of these even/odd

sections at the two-torsion points satisfy a certain parity according to the following chart

(see Proposition 1.2 of [8]):

pi even pi odd

D even mi even mi odd

D odd mi odd mi even

Remark 2.12. Let H0(A,L)+ be the space of even sections of a symmetric line bundle L,

and let p ∈ Z be an even two-torsion point. It is at most

1 + 3 + · · ·+ (2m− 1) = m2

conditions for an even section to vanish to order 2m at a fixed point p ∈ Z. We can see this

in local coordinates (x, y) around p. It takes at most one linear condition to have an even

section s vanish at p. Then s will automatically vanish to order at least two. We can then

require
∂2s

∂x2
,

∂2s

∂x∂y
, and

∂2s

∂y2

to vanish, which will impose at most three conditions on the space of sections. By definition,

s then vanishes to order at least 3. By the fact above, s must have multiplicity at least 4 at

p, and so on (also see [8] and the Appendix to [9] for more details).

2.3. Constructing maps from sections of H0(A, 2L)+

Construction 2.13. Let L be a symmetric line bundle of type (1, d). Then OA(2L) is a

line bundle of type (2, 2d) and Riemann-Roch together with Kodaira vanishing imply that

h0(OA(2L)) = χ(OA(2L)) =
1

2
(2L)2 + χ(OA) = 4d.

By Remark 2.9, we see that the space of even sections H0(A,OA(2L))+ of the line bundle

OA(2L) has dimension

h0(A,OA(2L))+ = 2d+ 2.
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By Prop 2.10, all two-torsion points for OA(2L) are even and therefore an even section of

OA(2L) vanishes to even order at any p ∈ Z. For a fixed p ∈ Z, it takes at most

1 + 3 + · · ·+ (2m− 1) = m2

conditions for an even section of OA(2L) to vanish to order 2m.

Now fix any integer solutions a1, . . . , a16 ≥ 0 to the equation

16∑
i=1

a2
i = 2d− 2,

with a15 = 0 = a16 (this last assumption will be useful in Corollary 2.18). Such a solution

always exists by Lagrange’s four-squares theorem. Let V ⊂ H0(A,OA(2L))+ be the space

of even sections vanishing to order at least 2ai at each point pi, so that

dimV ≥ 2d+ 2−
16∑
i=1

a2
i ≥ 4.

Projectivizing via subspaces, let d = Psub(V ) ⊆ |2L|+ be the corresponding linear system of

divisors, whose dimension is N := dim d ≥ 3. Write

di := multpi D

for a general divisor D ∈ d, so that di ≥ 2ai.

Remark 2.14. From [13, Section 4.8], it follows that sections of V are pulled back from the

singular Kummer surface A/ι, so any divisor D ∈ d is symmetric, i.e. ι(D) = D.

Let ϕ : A 99K PN be the rational map given by the linear system d above (if d has a fixed

component F , take d− F ), and write S := Im(ϕ) for the image of ϕ. Regardless of whether

or not d has a fixed component, we find that:

Proposition 2.15. S ⊂ PN is an irreducible and nondegenerate surface.

Proof. Suppose for the sake of contradiction that Im(ϕ) is a nondegenerate curve C. Then

degC ≥ 3 since N ≥ 3, and a hyperplane section of C ⊂ PN pulls back to a divisor with

at least three irreducible components. This contradicts the fact that any divisor D(∼lin
2L) ∈ d has at most two irreducible components since NS(A) ∼= Z[L]. So the image of ϕ is

a surface.

We will now study the numerical properties of the linear series d constructed earlier.

There are two possibilities for d; either (i) d has no fixed component, or (ii) d has a fixed

component, denoted by F 6= 0. In fact, with a little more work one can show that the second

case does not actually occur; see Remark 2.19.
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In the second case, let b be the movable component of d, so that we may write every

divisor D ∈ d as

D = F +M where M ∈ b.

By definition, dim d = dim b. Since NS(A) ∼= Z[L], D ∼lin 2L implies F,M ∼alg L and are

irreducible effective divisors for all M ∈ b. Choose a general divisor M ∈ b and write

mi := multpi M and fi := multpi F,

so that di = mi + fi ≥ 2ai for all i. We claim that F must be symmetric as a divisor. If not,

then

ι(M) + ι(F ) = ι(D) = D = M + F for all D ∈ d.

This implies that M = ι(F ) and F = ι(M) for all M ∈ b, which would mean that M must

also be fixed, leading to a contradiction. Hence, F must be symmetric, and likewise for all

M ∈ b.

We first need an intermediate estimate:

Proposition 2.16. Assume d has a fixed component F 6= 0. With the same notation as

above, we see that
16∑
i=1

m2
i ≥ 2d− 8.

Proof. The idea here is to use the Kummer construction to push our fixed curve F onto a

K3 surface and apply Riemann-Roch. This is analagous to an argument of Bauer’s in [10,

Theorem 6.1]. With the notation from §2.2, we have:

E Â K

Z A

⊂
π

σ̃

⊂

where E =
∑16

i=1Ei is the total exceptional divisor of π. Since F is symmetric, its strict

transform

F̂ = π∗F −
16∑
i=1

fiEi

descends to an irreducible curve F̄ ⊂ K. We claim that

h0(K,OK(F̄ )) = 1.

In fact, if the linear system
∣∣OK(F̄ )

∣∣ were to contain a pencil, then this would give us a

pencil of symmetric curves in |OA(F )| with the same multiplicities at the two-torsion points,

which contradicts F being a fixed component of d.

19



On the other hand, it is well-known that an irreducible curve F̄ on a K3 surface with

h0(K, F̄ ) = 1 satisfies (F̄ )2 = −2, so

− 4 = 2(F̄ )2 = (γ∗F̄ )2 = (F̂ )2 = F 2 −
16∑
i=1

f 2
i = 2d−

16∑
i=1

f 2
i . (2.1)

By definition di = fi + mi and the area of a rectangle with fixed perimeter is maximized

when it is a square, so
16∑
i=1

fimi ≤
16∑
i=1

(
di
2

)2.

Combining these two expressions yields

16∑
i=1

d2
i =

16∑
i=1

(f 2
i +m2

i + 2fimi) ≤ 2d+ 4 +
16∑
i=1

m2
i +

1

2

16∑
i=1

d2
i .

After rearranging the terms, we find that

16∑
i=1

m2
i ≥ −2d− 4 +

1

2

16∑
i=1

d2
i ≥ −2d− 4 + 2

16∑
i=1

a2
i = 2d− 8 (2.2)

for a general divisor D = F +M ∈ d, which is the desired inequality.

As an immediate consequence:

Theorem 2.17. Keeping the notation from earlier, let ϕ : A 99K PN be the rational map

corresponding to d (or b if F 6= 0), with image S. Then

degϕ · degS ≤ 8. (2.3)

Proof. By applying Proposition 2.15 and blowing-up A along the collection of two-torsion

points Z to resolve some of the base points of d, we arrive at the diagram

Â BlZ A

A S PN .

:=

π
ψ

ϕ ⊂

(i) If the linear system d has no fixed components, the divisors corresponding to ψ are of the

form

D̂ ∼lin π∗D −
16∑
i=1

diEi,
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where D̂ denotes the strict transform of D. By Lemma 2.6 applied to ψ, we have

degϕ · degS = degψ · degS ≤ D̂2 = 4L2 −
16∑
i=1

d2
i ≤ 4

(
2d−

16∑
i=1

a2
i

)
= 8.

(ii) If the linear system d has a fixed component F 6= 0, replace D̂ and di in the equation

above with M̂ and mi, respectively. Proposition 2.16 then gives an analogous bound.

Corollary 2.18. There exists a rational dominant map ϕ : A 99K P2 of degree 4.

Proof. From Remark 2.14, it follows that ϕ : A 99K S ⊂ PN factors through the quotient

A → A/ι, so degϕ must be even. In addition, degS ≥ 2 since S is nondegenerate. By

Lemma 2.2 there are no rational maps of degree 2 from A to a rational surface. Therefore,

the possibility {degϕ = 2, degS = 2, 3} is ruled out by the classification of quadric and

cubic surfaces (using the fact that ρ(A) = 1).

Together with the upper bound degϕ · degS ≤ 8 given by Theorem 2.17, there are two

possibilities:

{degϕ = 4, degS = 2} or {degϕ = 2, degS = 4}.

Either of these cases imply that we have equality in (2.3), which means that the map ϕ

becomes a morphism ψ when passing to the blow-up Â. By the discussion in §2.4, one can

actually show that the map ψ factors through K. All of this fits into the diagram:

Â K

A A/ι S PN
π

ψ

α

ϕ

⊂

In the first case where degϕ = 4 and degS = 2, note that S is rational so we get our degree

4 map.

Let Gi := σ̃(Ei) be the smooth rational (−2) curves on K which are the images of the

exceptional divisors of π. In the second case where degϕ = 2 and degS = 4, recall from

the construction at the beginning of this section that we chose the multiplicities ai so that

a15 = 0 = a16. Thus, equality in (2.3) forces either d15 = 0 = d16 or m15 = 0 = m16.

This implies that the curves G15, G16 are contracted and their images q15, q16 under the map

α : K → S are double points on S (since α is a birational morphism). Projection from a

general (N − 3)-plane containing one but not both of the qi defines a rational map A 99K P2

of degree 2 (if q15 is a cone point of S, pick a general plane passing through q16, and vice

versa), which contradicts Lemma 2.2.

This immediately implies Theorem 1.18.
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Remark 2.19. The case when d has a fixed component F 6= 0 cannot occur. To see this,

suppose F 6= 0 and note that the two cases given in Corollary 2.18 imply that equality must

hold throughout the proof of Proposition 2.16. In particular, di = mi + fi and
∑16

i=1 fimi =∑16
i=1(di

2
)2 implies fi = mi for all i. Combining this with (2.1) and (2.2) gives

2d+ 4 =
16∑
i=1

f 2
i =

16∑
i=1

m2
i = 2d− 8,

which is a contradiction.

In fact, one may relax the hypothesis that NS(A) = Z[L]. It suffices to have:

Proposition 2.20. If A is an abelian surface not containing a smooth elliptic curve E, then

all of the theorems from this section carry through.

Proof. If C ⊂ A is a curve, then pg(C) ≥ 1. By the assumption that A does not contain any

smooth elliptic curves,

pa(C) 6= 1 =⇒ pa(C) ≥ 2 =⇒ C2 = 2pa(C)− 2 ≥ 2.

This implies that every effective divisor D 6= 0 on A has positive self-intersection and is

therefore ample (one can translate D and apply the Nakai-Moishezon criterion).

Choose L to be a line bundle (polarization) of minimal degree, i.e. L2 = 2d > 0 and

no other polarizations have strictly smaller degree (it is possible that there are multiple

polarizations with self-intersection equal to 2d). Then L is of type (1, d). After translating,

we may assume that L is symmetric.

If the linear system d ⊂ |2L|+ in Construction 2.13 has no fixed components, then we are

done. Let us now assume that d has a fixed component F 6= 0. Then D = M + F ∼lin 2L.

Since M and F are both effective and not smooth elliptic curves, they must have positive

self-intersection. By our choice of L, it follows that

M2, F 2 ≥ L2.

The Hodge Index theorem tells us that

M2 · F 2 ≤ (M · F )2 =⇒ (M · F ) ≥ L2

(we can apply HI since M is ample). So

4L2 = D2 = (M + F )2 = M2 + F 2 + 2(M · F ) ≥ 4L2

and we have equality throughout. In particular, L2 = M2 = F 2 and both M,F are of type

(1, d) by the assumption that L is the minimal degree polarization.
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2.4. Constructing elliptic fibrations with sections on Kummer K3 surfaces

The purpose of this section is to give an alternative proof of Theorem 1.18 by working directly

on the associated Kummer K3 surface. We will actually prove:

Theorem 2.21. Every Kummer K3 surface admits an elliptic fibration with at least four

sections.

This will indirectly allow us to construct rational maps A 99K P2 of degree 4 by applying

Prop 2.4 to the Kummer K3 surface K and then composing with the degree 2 rational cover

from A to K. Note that the approach above allows us to generalize Theorem 1.18 to all

complex abelian surfaces (which was already established in joint work with Stapleton [16,

Corollary D]).

Let L be a symmetric line bundle on an abelian surface A. In [8, Prop. 1.1], Bauer proved

that the direct image sheaf M := σ̃∗(π
∗L) on K is locally free of rank 2, and it admits a

decomposition

M = M+ ⊕M−

into line bundles M+ and M−. On the level of global sections, there are isomorphisms

H0(K,M±) ∼= H0(A,L)±

(compare with §2.2). Let E+ (resp. E−) denote the union of the exceptional divisors Ei
on the blow-up Â corresponding to even (resp. odd) two-torsion points pi of L. Note that

E+ + E− =
∑16

i=1 Ei. The next result describes the relationship between M± and L.

Proposition 2.22 ([8], Proposition 1.3). With the notation above, σ̃∗M± = π∗L− E∓.

Let Gi denote the smooth rational (−2)-curves on K. Then we have:

Proposition 2.23 ([8], Proposition 1.4). It follows that

M+ ·Gi =

{
0 if pi is even,

1 if pi is odd.

We are now ready to construct our elliptic fibrations on K.

Proof of Theorem 2.21. Let L be a primitive line bundle on A of minimal degree = L2 > 0.

We may assume that L2 = 2d and L is a symmetric line bundle of type (1, d) on A. By

Proposition 2.8, we know that the space of global sections of M± has dimension

h0(M±) = h0(A,L)± =
d

2
+ 2− n∓

4
.
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From Proposition 2.22 we know that σ̃∗M± = π∗L−E∓. The projection formula applied to

σ : Â→ K then gives

2d− n∓ = (π∗L− E∓)2 = (σ̃∗M±)2 = 2 · (M±)2,

and therefore the self-intersections of the line bundles M+,M− on K are given by

(M±)2 = d− n∓

2
.

By Corollary 2.11, L has at least four even and four odd two-torsion points. The divisors

D ∈ H0(A,L)+ are even, so

multpi D =

{
even if pi is even,

odd if pi is odd.

Without loss of generality let p1, . . . , p4 be four of the even two-torsion points. Then we may

impose multiplicity 2ai at these points pi (for i = 1, . . . , 4) with the condition that

4∑
i=1

a2
i =

d

2
− n−

4
.

Again, an integer solution with ai ≥ 0 exists by Lagrange’s four squares theorem. Note that

the right hand side will always be an integer by Proposition 2.10. This gives us a space of

global sections V ⊂ H0(A,L)+ of dimension ≥ 2. We would like to point out that sections

of V correspond to sections of

H0
(
K,M+ −

4∑
i=1

aiGi

)
,

so there is a completely parallel story on K.

Given a general divisor D ∈ |V | on A with the imposed multiplicities, let C be the image

of its strict transform on Â to K. By part (a) of Prop. 1.5 in [8], we see that

2pa(C)− 2 = C2 =
1

2
D2 − 1

2

∑
d2
i

for some integers

di ≥

{
2ai for even pi ∈ Z,
1 for odd pi ∈ Z.
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This gives

C2 ≤ d− 1

2
(4 ·

∑
pi even

a2
i +

∑
pi odd

d2
i )

≤ d− 1

2
(2d− n− + n−) = 0.

On the other hand, C is an irreducible curve on K generating a linear system of dimension

at least 1 with no fixed component (since L is primitive), so this actually implies C2 = 0

since base points would only decrease the self-intersection. Therefore the complete linear

system |C| must have dimension 1 with no base points, pa(C) = 1, and Bertini’s theorem

implies that the generic fiber is a smooth elliptic curve. In particular, the inequalities above

must all be equalities. For any odd two-torsion point pi, it follows from Proposition 2.23

that

C ·Gi = M+ ·Gi = 1,

i.e. the smooth (−2)-curves Gi corresponding to the odd two-torsion points are all sections

of the elliptic fibration |C|. In total, there are at least n− ≥ 4 of these sections.

Remark 2.24. By using sections of a primitive line bundle L rather than multiples of L,

we avoid having to deal with the possibility that our linear system |V | might have a fixed

component. Note that L is a primitive polarization of minimal degree L2 = 2d > 0 on an

abelian surface. Suppose for the sake of contradiction that |V | ⊂ |L|+ has a fixed component;

then we may write

L = M + F

for some fixed F . If M2 > 0, then by minimality of L we know that M2 ≥ L2 = 2d. From

the computation

L2 = (M + F )2 = M2 + 2(M · F ) + F 2 = 2d+ F 2

we see that M2 = 2d, M · F = 0, and F 2 = 0. But M and F are effective, so M · F = 0

implies that M and F are translates of each other, which is a contradiction.

Therefore, we must have M2 = 0 = F 2 and (M · F ) = d. By the adjunction formula,

this says that M and F must both have arithmetic genus 1. Since we are working on an

abelian surface, this implies that M and F are both sums of smooth elliptic curves and

h0(A,M) = 2. We also know that they must both be symmetric. On the other hand, the

general M ∈ |V | − F must have the same imposed multiplicities at the two-torsion points

since the multiplicities are equal to the intersections of the corresponding divisors with the

Gi on K by the proof of Theorem 2.21. This contradicts the fact that M2 = 0.
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Chapter 3

Complete intersections

For complex hypersurfaces of large degree in projective space, the covering gonality comes

in two flavors. Recall from §1 that the covering gonality of a smooth hypersurface is always

bounded from below when d is large enough:

Theorem 1.9 ([7], Theorem A). If X ⊂ Pn+1
C is a smooth hypersurface of dimension n and

degree d ≥ n+ 2, then

cov. gon(X) ≥ d− n.

We will review in §3.1 how this follows from Proposition 3.4. In the generic situation,

Bastianelli, Ciliberto, Flamini, and Supino [5] have shown more precisely:

Theorem 3.1. Let X ⊂ Pn+1
C be a very general smooth hypersurface of degree d ≥ 2n + 2.

Then

cov. gon(X) = d−
⌊√

16n+ 1− 1

2

⌋
,

apart from the cases n ∈ {4α2 + 3α, 4α2 + 5α + 1 | α ∈ N} where the covering gonality may

drop by one.

It is natural to explore the same question for complete intersections

X := Xa1 ∩ · · · ∩Xae ⊂ Pn+e

of dimension n and type (a1, . . . , ae). Namely, how do the covering gonality and the degree of

irrationality behave for complete intersections? As mentioned in the introduction, projection

from a linear subspace of dimension e− 1 defines a map X 99K Pn of degree ≈ a1 · · · ae (up

to a constant depending on the extent to which the linear subspace is secant to X). So we

have

cov. gon(X) ≤ irr(X) ≤ a1 · · · ae.

The existing lower bounds up until now seem to fall short of this by a wide margin. From

the adjunction formula we have

KX
∼= OX(a1 + · · ·+ ae − n− e− 1),
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and one can apply Proposition 3.4 to show that

cov. gon(X) ≥ a1 + · · ·+ ae − n− e+ 1.

Note that the numerics here are additive in a1, . . . , ae whereas the upper bound is mul-

tiplicative. However, there is some evidence to suggest that measures of irrationality on

complete intersections should behave multiplicatively. For instance, Lazarsfeld [34, Exercise

4.12] proved that this is the case in dimension n = 1:

Theorem 1.19. Let C ⊂ Pe+1
C be a complete intersection curve of type (a1, a2, . . . , ae) with

2 ≤ a1 ≤ · · · ≤ ae. Then the gonality of C is bounded from below by

gon(C) ≥ (a1 − 1)a2 · · · ae.

One can show that equality holds in some special cases (see Example 3.6). The idea of the

proof is to fit the complete intersection curve C into a complete intersection surface S. The

existence of a low degree map C → P1 allows one to construct some Bogomolov unstable

vector bundle on S and use the numerics of the vector bundle to reach a contradiction.

Further refinements due to Hotchkiss, Lau, and Ullery [29] show that when 4 ≤ a1 < a2 ≤
· · · ≤ ae holds, the gonality of the curve C is realized by projection from a suitable linear

subspace.

For higher dimensional complete intersections, Stapleton [47] showed that the covering

gonality of a complete intersection of two hypersurfaces in Pn+1 grows superlinearly:

Theorem 3.2. Let X ⊂ Pn+2
C be a very general smooth complete intersection of type (a, b).

Then

irr(X) ≥ bb n+1
√
ac

n+ 1
.

More precisely, if
bb n+1
√
ac

n+ 1
≥ p+ 1,

then KX separates p general points on Z.

The result above relies on lower bounds for the Seshadri constant of a very general hyper-

surface, which are proved in [31] (see Remark 3.8 for a short discussion on this). Stapleton

and Ullery [48] later computed the degree of irrationality for complete intersections of type

(2, d) and (3, d).

In this chapter, we establish lower bounds for the covering gonality (and hence the degree

of irrationality) of certain types of complete intersection varieties which are multiplicative.

Our first result is:

Theorem 3.3. Let X ⊂ P1+e
C be a very general smooth complete intersection curve of type

(a1, . . . , ae) where d ≥ 4. Then

gon(X) ≥ 1

8
a1 · · · ae.
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Although this is a weaker inequality than what Lazarsfeld [34] has proven, it highlights some

of the key ideas that can be generalized to higher dimension. Our main theorem gives new

lower bounds for codimension two complete intersections:

Theorem 1.20. Let X ⊂ Pn+2
C be a very general smooth complete intersection of type (a, b)

and dimension n ≥ 2. If a, b ≥ 9n, then

cov. gon(X) ≥ 2

3(n+ 1)2
· ab.

The idea behind both of these results is to reduce to showing nefness of a particular

family of curves on a complete intersection Y ⊃ X whose dimension is one larger than the

dimension of X. In §3.1, we will collect some examples and known results. In §3.2, we will

then present the reduction step mentioned just now, which first appeared in the thesis of

Stapleton [47, §5.2]. In §3.3, we will prove Theorem 3.3. Numerical bounds for curves in

generic complete intersections will appear in §3.4, and we will use these in §3.5 to prove

Theorem 1.20.

3.1. Covering gonality and separating points

Recall that sections of a line bundle L on a smooth variety X separate r points on an open set

if there exists a Zariski open subset U ⊂ X such that for any r distinct points p1, . . . , pr ∈ U ,

the restriction map

H0(X,L)→ H0(X,L⊗O{p1,...,pr})

is surjective. In Lemma 1.5, we saw how these sorts of positivity properties for the canonical

bundle of a smooth projective curve C gave lower bounds for the gonality of C. In higher

dimension, we can use similar ideas to bound the covering gonality:

Proposition 3.4 ([7], Theorem 1.10). Let X be a smooth projective variety and suppose

that there is an integer r such that the canonical bundle KX separates r points on an open

set. Then

cov. gon(X) ≥ r + 1.

Proof. A covering family of curves of gonality c fits into the diagram:

C X

T

π

f

and we may assume without loss of generality that C and T are smooth, f is generically

finite, and the restriction of the map f to the general fiber of π is birational onto its image.

Then

KC ∼= f ∗KX + E

28



where E is the ramification divisor of f . By generic smoothness,

KCt
∼= KC

∣∣
Ct

for the smooth fiber Ct over a general point t ∈ T , and Ct meets the effective divisor E

properly. We may also assume that the image of Ct will not be contained in the complement of

the open set coming from the definition of KX separating r points on an open set. Therefore,

KCt also separates r points on an open set and Lemma 1.5 implies that c ≥ r + 1.

Proof of Theorem 3.1. For a hypersurface X ⊂ Pn+1
C of degree d, the adjunction formula

gives KX
∼= OX(d− n− 2). The canonical bundle KX then separates d− n− 1 points on an

open set, so Proposition 3.4 implies that cov. gon(X) ≥ d− n.

Example 3.5. Let us summarize the picture for measures of irrationality on surfaces

Vd ⊂ P3
C

of degree d. For d = 4, V4 is a quartic K3 surface and it is well-known that there is a

1-parameter family of elliptic curves covering V (see [41, Appendix]), so cov. gon(V4) = 2.

The degree of irrationality of V4 is equal to 2 or 3, depending on whether V4 has a birational

involution. If d ≥ 5, then Theorem 1.8 and Theorem 1.9 together imply that

d− 2 ≤ cov. gon(Vd) ≤ irr(Vd) = d− 1.

We claim that cov. gon(Vd) = d−2. For a general point p ∈ Vd, we may consider the tangent

plane TpVd to the surface Vd at p. The general hyperplane section

Hp =def Vd ∩ TpVd ⊂ TpVd ∼= P2

will then be a curve of degree d with a single node, and projecting from the singular point

shows that gon(Hp) ≤ d− 2. Therefore, cov. gon(Vd) = d− 2.

Finally, we return to complete intersection curves and show how the theorem of Lazarsfeld

is sharp for special complete intersection curves:

Example 3.6. Let

C := Wa1 ∩ · · · ∩Wae ⊂ P1+e

be smooth complete intersection curve of type (a1, . . . , ae) with 2 ≤ a1 ≤ · · · ≤ ae such that

the smooth hypersurface Wa1 contains an (e − 1)-plane Λ. Such a hypersurface exists by a

dimension count. By choosing the other Wai carefully, we get a smooth complete intersection

curve C which is not contained in Λ. But Λ ⊂ Wa1 so

Λ ∩Wa2 ∩ · · · ∩Wae︸ ︷︷ ︸
a2···ae points

⊂ C
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and therefore Λ∩C consists of a2 · · · ae points. Projecting the curve C away from Λ defines

a map C → P1 of degree

a1 · · · ae − a2 · · · ae = (a1 − 1)a2 · · · ae,

which matches the lower bound in Theorem 1.19.

3.2. Reduction step

In this section, we will show how Theorem 3.3 and Theorem 1.20 essentially follow from the

nefness of a particular family of line bundles. Consider the inclusions X ⊂ Y ⊂ Pn+e where

• Y is a complete intersection of dimension n+ 1 type (a1, . . . , ae−1);

• X ∈ |OY (ae)| is a complete intersection of dimension n and type (a1, . . . , ae).

The strategy is to apply Proposition 3.4 from the previous section. For this, we will

need to show that the canonical bundle of X separates any collection of r distinct points

p1, . . . , pr ∈ X which are supported in some open set of X. We claim that the following

statement is sufficient to give upper bounds on the covering gonality of X:

Proposition 3.7. Suppose that there exists a positive integer r such that on the blow-up

µ : Ỹ → Y along any points p1, . . . , pr ∈ X with exceptional divisors E1, . . . , Er, the line

bundle

L := µ∗OY (ae)−
r∑
i=1

(n+ 1)Ei

is nef and big. Then cov. gon(X) ≥ r + 1.

Proof. Since L is both nef and big, and we have the vanishing of

H1(Y, (KY +OY (ae))⊗ I{p1,...,pr})

= H1

(
Ỹ , µ∗(KY +OY (ae))−

r∑
i=1

Ei

)
= H1(Ỹ ,KỸ + L) = 0.

Here, we use the fact that KỸ
∼= µ∗KY +nE since Y has dimension n+ 1. This implies that

there is a surjection

H0(Y,KY +OY (ae))� H0
(
Y, (KY +OY (ae))⊗O{p1,...,pr}

)
.

In other words, sections of KY + OY (ae) separate any finite set of r distinct points in X.

Since X ∈ |OY (ae)|, the adjunction formula tells us that

KX
∼= (KY +OY (ae))

∣∣
X
,
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and hence sections of KX separate any finite set of r distinct points in X. By Proposition 3.4,

it follows that

cov. gon(X) ≥ r + 1.

In practice, once we prove nefness of L, it will follow numerically that L is big (see [35,

Theorem 2.2.16]).

Remark 3.8. We would like to point out that the hypothesis in Proposition 3.7 about nefness

of L is very similar to the type of statements that come from multi-point Seshadri constants.

Indeed, Stapleton [47] applied the work of Ito [31] on Seshadri constants for very general

hypersurfaces to prove that there are stronger than additive bounds for the covering gonality

of codimension two complete intersections. One can obtain a nef line bundle involving twists

of a sum of exceptional divisors by adding several nef line bundles which are produced from

Ito’s results about single point Seshadri constants. In our situation, we are able to show that

certain families of line bundles (twisted by a sum of exceptional divisors) with larger slopes

are nef by blowing up multiple points at once in X and using the definition of nefness. The

key difference between our results and those coming from multi-point Seshadri constants

is that we consider arbitrary collections of points p1, . . . , pr ∈ X, whereas in most of the

literature on multi-point Seshadri constants, the points are in (very) general position with

respect to each other. Here, it is crucial to consider any collection of points in X (or at least

in an open subset of X) rather than in general position because of the necessary assumptions

in Theorem 3.4.

Our goal for the rest of the chapter is to prove nefness of L in two separate settings:

1. when n = 1 and e is arbitrary (complete intersection curves), and

2. when n ≥ 2 and e = 2 (codimension two complete intersections).

Proceeding by contradiction, the failure of L to be nef means that there exists a curve C̃

on Ỹ which intersects negatively against L. We analyze the multiplicities mi of the image

curve C := µ(C̃) at the points pi to reach a contradiction. Along the way, we will need lower

bounds for the geometric genus of C.

3.3. Multiplicative bounds for complete intersection curves

In this section, we will prove nefness of line bundles on blow-ups of a complete intersection

surface along points contained in a complete intersection curve. Ultimately this will be

applied to Proposition 3.7 in order to prove Theorem 3.3.

Set-up: Let Y ⊂ P1+e be a very general complete intersection surface of type

(a1, . . . , ae−1).
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By the Noether-Lefschetz theorem [36], we may assume that Pic(Y ) = Z[OY (1)] as long as

Y is not a complete intersection of two quadric 3-folds in P4 or a surface in P3 of degree ≤ 3.

Let X ∈ |OY (ae)| be any smooth curve. Without loss of generality we may arrange for

a1 ≤ a2 ≤ · · · ≤ ae.

Theorem 3.9. With the set-up above, fix an integer r such that

r ≤ 1

8
a1 · a2 · · · ae

and let p1, . . . , pr ∈ X be any collection of distinct points. Let

µ : Ỹ =def Bl{p1,...,pr} → Y

be the blow-up with exceptional divisors Ei over pi and H = µ∗OY (1). Then the line bundle

L := aeH −
r∑
i=1

2Ei is nef.

Proof. To simplify notation, fix γ := a1 · · · ae−1. The proof will proceed by induction on

r. For the base case r = 1, the theorem is trivial since H is very ample and ae ≥ 2. By

induction, we may assume that the theorem holds for r = s where s is an integer satisfying

1 ≤ s ≤ 1

8
a1a2 · · · ae − 1.

We want to show that the theorem holds for r = s+ 1.

Step 1: Suppose for the sake of contradiction the theorem fails when r = s + 1, i.e. there

exists a collection of points p1, . . . , ps+1 ∈ X such that on the corresponding blow-up Ỹ , the

line bundle

L = aeH −
s+1∑
i=1

2Ei is not nef.

By definition, there exists an integral curve C̃ ⊂ Ỹ such that

L · C̃ < 0.

We assumed that Pic(Y ) = Z[OY (1)] so Pic(Ỹ ) = Z[H,E1, . . . , Er] with intersection pairing

given by

H2 = γ,

H · Ei = 0,
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Ei · Ej =

{
−1 if i = j,

0 if i 6= j

for all 1 ≤ i, j ≤ s+ 1.

The curve C̃ is not equal to any of the exceptional divisors because the intersection L · C̃
is negative, so we may write

C̃ = kH −
s+1∑
i=1

miEi

for some integers k ≥ 1 and mi ≥ 0. If we think of the curve C̃ as the strict transform of

C := µ(C̃) ⊂ Y

under the blow-up, then C ∈ |OY (k)|, deg(C) = k · γ, and the mi are the multiplicities of C

at pi.

Step 2: It is straightforward to check that

L · C̃ < 0 ⇐⇒ kaeγ −
s+1∑
i=1

2mi < 0

⇐⇒
s+1∑
i=1

mi >
1

2
kaeγ.

For a fixed quantity
∑s+1

i=1 mi with mi ≥ 0, the expression

s+1∑
i=1

m2
i

is minimized when all mi are the same. If we set

N :=
1

2
kaeγ,

then
s+1∑
i=1

m2
i > (s+ 1) ·

(
N

(s+ 1)

)2

=
N2

(s+ 1)
=

1

4(s+ 1)
k2a2

eγ
2.

Since s+ 1 ≤ 1
8
γae, this becomes

s+1∑
i=1

m2
i > 2k2aeγ (3.1)

Our goal is to reach a contradiction by bounding
∑s+1

i=1 m
2
i from above and then comparing.

33



Step 3: The induction hypothesis implies that the theorem holds for r = s and any collection

of r points in X. So the line bundle

LI := aeH −
∑
i∈I

2Ei

is nef for every subset I ⊂ {1, 2, . . . , s + 1} with |I| = s. We can sum over all possible I to

get a nef line bundle on Ỹ :

∑
I : |I|=s

LI =
∑

I : |I|=s

[
aeH −

∑
i∈I

2Ei

]
= (s+ 1)aeH −

∑
I : |I|=s

∑
i∈I

2Ei

= (s+ 1)aeH −
s+1∑
i=1

2sEi.

The intersection of this nef line bundle with C̃ is ≥ 0 by definition:(
kH −

s+1∑
i=1

miEi

)
·

(
(s+ 1)aeH −

s+1∑
i∈I

2sEi

)
≥ 0

implies that
s+1∑
i=1

mi ≤
(s+ 1)

2s
kaeγ. (3.2)

Step 4: In our situation, we have an integral curve C contained in a smooth surface Y . We

claim that for each i,
mi(mi − 1)

2
≤ δpi

where δpi is the delta-invariant of the point pi ∈ C. In other words, we have

s+1∑
i=1

mi(mi − 1)

2
≤ pa(C)− pg(C).

This basically follows from the adjunction formula for a curve on a smooth surface. Note

that

KỸ = µ∗KY +
s+1∑
i=1

Ei

and

C̃ = µ∗C −
s+1∑
i=1

miEi
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so

2pa(C̃)− 2 = C̃ · (C̃ +KỸ )

= (µ∗C −
s+1∑
i=1

miEi) · (µ∗C + µ∗KY −
s+1∑
i=1

(mi − 1)Ei)

= C · (C +KY )−
s+1∑
i=1

mi(mi − 1)

= 2pa(C)− 2−
s+1∑
i=1

mi(mi − 1),

which proves the claim.

For a complete intersection curve C ⊂ Y of degree k, the adjunction formula allows us to

compute its arithmetic genus:

pa(C) = 1 +
1

2
C · (C +KY )

= 1 +
1

2
OY (k) · OY (k +

e−1∑
j=1

aj − e− 2)

= 1 +
1

2
k(k +

e−1∑
j=1

aj − e− 2)γ.

Now Y is a very general surface of type (a1, . . . , ae−1) and C ∈ |OY (k)| is a curve, so

Proposition 3.10 (see §3.4) tells us that

pg(C) ≥ 1

2
(
e−1∑
j=1

ai − 4− (e− 1))kγ + 1.

So

s+1∑
i=1

mi(mi − 1) ≤ 2pa(C)− 2pg(C)

≤ k(k +
e−1∑
j=1

aj − e− 2)γ − (
e−1∑
j=1

aj − 4− (e− 1))kγ

≤ (k + 1)kγ. (3.3)

Step 5: Let us combine the inequalities from the previous steps. We have

s+1∑
i=1

m2
i =

s+1∑
i=1

mi +
s+1∑
i=1

mi(mi − 1)
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≤ (s+ 1)

2s
kaeγ + (k + 1)kγ by (3.2) and (3.3),

≤ (ae + k + 1)kγ since s ≥ 1 by the base case.

From (3.1) we see that

2k2aeγ <
s+1∑
i=1

m2
i ≤ (ae + k + 1)kγ

This simplifies to

2kae < ae + k + 1,

and solving for k gives

k <
ae + 1

2ae − 1
,

which is a contradiction since ae ≥ 2 and k is a positive integer.

As a last step, we will verify that the line bundle L in Theorem 3.9 is big. Since

r ≤ 1

8
a1 · · · ae,

we see that

L2 =

(
aeH −

r∑
i=1

2Ei

)
= a2

ea1 · · · ae−1 − 4r

≥ a2
ea1 · · · ae−1 −

1

2
a1 · · · ae

=

(
ae −

1

2

)
a1 · · · ae > 0.

Therefore L is big and nef. Now set

r =

⌊
1

8
a1 · · · ae

⌋
.

By Proposition 3.7 applied to L and r, we see that

gon(C) ≥ r + 1 ≥ 1

8
a1 · · · ae.

This completes the proof of Theorem 3.3.
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3.4. Curves on complete intersections

In this section, we begin by giving lower bounds for the geometric genus of curves on generic

complete intersections. The starting point is a paper of Clemens [17], which dealt with

curves on generic hypersurfaces. Later, Ein [24] gave much stronger results which applied to

subvarieties of generic complete intersections, and subsequently these bounds were improved

by Voisin [50] (similar results have been proved in [52], [19], [21], etc). As a corollary of the

estimates of Ein and Voisin (for comparison, see [7, proof of Proposition 3.8]), we have:

Proposition 3.10. Let X ⊂ Pn+e be a very general complete intersection of dimension

n ≥ 2 and type (d1, . . . , de). For any integral curve C ⊂ X, we have

pg(C) ≥ 1 +
1

2
(

e∑
i=1

di − 2n− e) · degPn+e(C).

Proof. Let V di := H0(Pn,OPn+k(di)) for di ≥ 2 and let V =
∏

i V
di . Consider the universal

complete intersection X ⊆ V × Pn+k of type (d1, . . . , de) with the two projections

pr1 : X −→ V and pr2 : X −→ Pn+e.

Let v = dimV and suppose that a very general complete intersection of type (d1, . . . , de) in

Pn+e contains an irreducible curve of geometric genus g. By standard arguments, there is a

diagram:

C X

T V

π

f

pr1

ρ

where

• π : C → T is a family of curves of geometric genus g whose general member Ct = π−1(t)

is smooth;

• ρ is étale;

• ft : Ct → Xρ(t) is birational onto its image.

In this setting, Ein and Voisin show that if t ∈ T is a general point, then

Ωv+1
C ⊗

(
(pr2 ◦ f)∗OPn+e(2(n+ e)−

e∑
i=1

di − e)

)∣∣∣∣∣
Ct
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is generically generated by its global sections. This implies that the canonical bundle of the

general curve Ct is of the form

KCt
∼= (

e∑
i=1

di − 2n− e)HCt + (effective divisor),

where HCt is the pull-back of the hyperplane bundle from Pn+e. Comparing degrees on both

sides, we arrive at the desired result:

2g(Ct)− 2 ≥ (
e∑
i=1

di − 2n− e) · deg(f(Ct)).

Note that this proof also gives a lower bound for the gonality of the curve Ct.

We will also need the following:

Lemma 3.11. Let C ⊂ PN (for N ≥ 3) be a reduced and irreducible curve of degree k with

a finite collection of points pi (i = 1, . . . , `) which have multiplicity mi. After a generic

projection of ϕ : C → C ′ ⊂ P2, the multiplicities of the image points ϕ(pi) in C ′ remain the

same, so we obtain an estimate:

∑̀
i=1

mi(mi − 1)

2
≤ pa(C

′)− pg(C ′) =
(k − 1)(k − 2)

2
− pg(C).

This essentially follows from the observation that the tangent cone of a singular point on C

will be disjoint to a general (N − 3)-plane in PN .

Remark 3.12. Given a smooth variety X an a curve C ⊂ X, the multiplicity of C at a

point p is equal to the intersection of the strict transform C̃ against the exceptional divisor

Ep of the blow-up µ : X̃ → X at p (see [26, pg. 79]).

Now consider a smooth hypersurface Y ⊂ PN (for N ≥ 4) of degree a and let µ : Ỹ → Y be

the blow-up of Y at a finite collection of points pi with exceptional divisors Ei (i = 1, . . . , r).

Let HY denote the pullback via µ of the hyperplane class on Y , and suppose that C̃ ⊂ Ỹ is

an integral curve which is not entirely contained in one of the exceptional divisors. By the

Lefschetz hyperplane theorem and Poincaré duality, C̃ is numerically a Q-linear combination

of terms involving HN−2
Y and EN−2

i . Note that the mixed terms involving H ·Ei must vanish

because we have blown up points. Furthermore, we have

HN−1
Y = a and (−Ei)N−1 = −1,

and the intersection numbers C̃ ·H ≥ 1 and C̃ ·Ei ≥ 0 must be integers. Therefore, we can

write down the numerical class of the curve C̃:
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Lemma 3.13. With the set-up above, we can write

C̃ ≡num
k

a
HN−2
Y + (−1)n

r∑
i=1

miE
N−2
i

for some integers k ≥ 1 and mi ≥ 0.

3.5. Multiplicative bounds for codimension two complete intersections

Recall that we have the inclusions X ⊂ Y ⊂ Pn+2, where Y ∈ |OPn+2(a)| is a very general

hypersurface and X ∈ |OY (b)| is a very general complete intersection of dimension n such

that b ≥ a ≥ 9n. The reader will notice similarities between the proof of Theorem 3.9 and

the argument below.

Theorem 3.14. With the set-up above, fix an integer r such that

r ≤ 2

3(n+ 1)2
ab

and let p1, . . . , pr ∈ X be any collection of distinct points. Let

µ : Ỹ =def Bl{p1,...,pr} → Y

be the blow-up with exceptional divisors Ei over pi and let HY = µ∗OY (1). Then the line

bundle

L := bHY −
r∑
i=1

(n+ 1)Ei is nef.

Proof. We will prove this by induction on r. For the base case r ≤ 2, the statement is trivial

as soon as b ≥ 2(n + 1) since HY is very ample. By induction, we may assume that the

theorem holds for r = s, where

2 ≤ s ≤ 2

3(n+ 1)2
ab− 1.

We want to prove that the theorem holds for r = s+ 1.

Suppose for the sake of contradiction that the theorem fails when r = s+ 1. Then there

exists a collection of points p1, . . . , ps+1 ∈ X such that the corresponding divisor

L := bHY −
s+1∑
i=1

(n+ 1)Ei

on the blow-up Ỹ is not nef. By definition, this means that there is an integral curve C̃ ⊂ Ỹ

such that L · C̃ < 0.
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Claim: C̃ cannot be contained in some exceptional divisor Ej. If this were the case, then

OEj
(Ej) ∼= OEj

(−1) =⇒ C̃ · Ej = degOC̃(Ej) < 0.

We would also have C̃ ·HY = 0 so C̃ · L > 0, which is false.

By Lemma 3.13 we may write

C̃ ≡num
k

a
Hn
Y + (−1)n

s+1∑
i=1

miE
n
i ,

where k ≥ 1 is the degree of the image curve C ⊂ Pn+2 and mi ≥ 0 are the multiplicities of

C at pi. Note that

L · C̃ < 0 =⇒
s+1∑
i=1

mi >
1

n+ 1
bk.

For a fixed quantity
∑s+1

i=1 mi, the expression∑
m2
i

is minimized when all mi are the same. If we set

N =
1

n+ 1
kb,

then it follows that

s+1∑
i=1

m2
i >

(
N

s+ 1

)2

· (s+ 1) =
k2b2

(n+ 1)2(s+ 1)
.

From our induction set-up, s+ 1 ≤ 2
3(n+1)2

ab so

s+1∑
i=1

m2
i >

3b

2a
k2. (3.4)

On the other hand, our induction hypothesis implies the theorem holds for r = s (and

any collection of s points in X). Hence, the divisor

LI := bHY −
∑
i∈I

(n+ 1)Ei

is nef for any subset I ⊂ {1, 2, . . . , s+ 1} with #I = s. Averaging over all I shows that

Ls+1 :=
s+ 1

s
bHY −

s+1∑
i=1

(n+ 1)Ei
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is nef. This implies that Ls+1 · C̃ ≥ 0, and hence

s+1∑
i=1

mi ≤
3

2(n+ 1)
bk. (3.5)

By Lemma 3.11 and Proposition 3.10 applied to C ⊂ Y ⊂ Pn+2, we have

r∑
i=1

mi(mi − 1)

2
≤ 1

2
(k − 1)(k − 2)− pg(K)

≤ 1

2
(k − 1)(k − 2)− 1

2
(a− 2n− 3)k − 1

=
1

2
(k − a+ 2n)k. (3.6)

Next, we combine this bound with the inequalities in (3.4) and (3.5):

3b

2a
k2 <

r∑
i=1

m2
i =

r∑
i=1

mi(mi − 1) +
r∑
i=1

mi

≤ (k − a+ 2n)k +
3

2(n+ 1)
bk

≤ k2 +

(
2n− a+

1

2
b

)
k,

where the last inequality follows from the fact that n ≥ 2. After solving for k, we can further

simplify using b ≥ a ≥ 1 and b− 2a ≤ b− 2
3
a:

k <
a(4n+ b− 2a)

3b− 2a

=
4an

3b− 2a
+

a(b− 2a)

3(b− 2a/3)

≤ 4n+
1

3
a. (3.7)

Since all mi ≥ 0, the inequality in (3.6) also gives

1

2
(k − 1)(k − 2)− 1

2
k(a− 2n− 3)− 1 ≥

r∑
i=1

mi(mi − 1)

2
≥ 0 =⇒ k ≥ a− 2n,

which is a contradiction of (3.7) as soon as a ≥ 9n.

Finally, let us verify that the line bundle L in Theorem 3.14 is big. Fix n ≥ 2, choose

b, a ≥ 9n, and set

r =

⌊
2

3(n+ 1)2
· ab
⌋
.
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So far, we have shown that for any tuple of r distinct points p1, . . . , pr ∈ X, the divisor

L := bH −
r∑
i=1

(n+ 1)Ei

on the blow-up µ : Ỹ → Y is nef. It is straightforward to check that (Ln+1) > 0 on Ỹ :(
bH −

r∑
i=1

(n+ 1)Ei

)n+1

= abn+1 − r · (n+ 1)n+1

≥ abn+1 − 2

3
(n+ 1)n−1ab > 0

holds as long as b ≥ a ≥ n + 1. Therefore, L is both nef and big. By Proposition 3.7, it

follows that

cov. gon(X) ≥ r + 1 ≥ 2

3(n+ 1)2
· ab.

This completes the proof of Theorem 1.20.
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