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Abstract of the Dissertation

The Nirenberg Problem on a Conical Sphere

by

Lisandra Hernandez-Vazquez

Doctor of Philosophy

in

Mathematics

Stony Brook University

2021

We propose a new approach to the question of prescribing Gaussian curvature on the 2-

sphere with at least three conical singularities and angles less than 2π, the main result being

sufficient conditions for a positive function of class at least C2 to be the Gaussian curvature

of such a conformal conical metric on the round sphere. Our methods particularly differ from

the variational approach in that they don’t rely on the Moser-Trudinger inequality. Along

the way, we also prove a general precompactness theorem for compact Riemann surfaces

with at least three conical singularities and angles less than 2π.

iii



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Prescribing Curvature on Riemann Surfaces . . . . . . . . . . . . . . . . . . 2

1.1.1 The Nirenberg Problem . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Extension to Orbifolds and Conical Metrics . . . . . . . . . . . . . . 8

1.1.3 Examples of Conical Metrics on S2 . . . . . . . . . . . . . . . . . . . 10

1.2 Outline of the dissertation and main results . . . . . . . . . . . . . . . . . . 11

2 A Compactness Theorem for Conical Singularities . . . . . . . . . . . . . 13

2.1 Conformal Metrics with Conical Singularities . . . . . . . . . . . . . . . . . . 13

2.2 Compactness Theorems for Conical Surfaces . . . . . . . . . . . . . . . . . . 16

3 The Nirenberg problem for a Conical Sphere . . . . . . . . . . . . . . . . 32

3.1 Conformal Geometry of Conical Metrics on S2 . . . . . . . . . . . . . . . . . 32

3.2 The Curvature Map π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Properness of the map π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Degree Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iv



Acknowledgments

This work couldn’t have been possible without the many people that have continuously

provided support, encouragement, and their own unique perspectives on the vast world that

is mathematics. What follows is a list of inadequate ”Thank You”’s that hardly begins to

express how grateful I am for having had you all in my life.

First and foremost, I would like to thank my advisor, Michael Anderson, for introducing

me to the problem that eventually became this work and for his constant support, insightful

advice and patience in answering all of my questions.

Thank you to my parents, Mario and Lisandra, for the unshattering faith and support

that have ultimately made the past six years possible.

Thank you to Christina Sormani, Dennis Sullivan and Dror Varolin, for all the mean-

ingful discussions we had about my project and especially for being a continuous source of

encouragement and inspiration. I would also like to thank Demetre Kazaras for always being

willing to lend a helping hand whenever I had questions.

Thank you to the amazing family that the graduate students have been all these years,

especially Frederik Benirschke, Jack Burkart, John Sheridan, Silvia Ghinassi, Matt Lam,

and Aleksandar Milivojevic for their willingness to discuss my work and for all the help and

emotional support they have always provided.

Finally, thank you Christine Gathmann, Lynne Barnett, Pat Tonra, Diane Williams,

Lucille Meci and Dona McWilliams for always being willing to help me navigate the admin-

istrative side of things throughout these past six years.

v



Chapter 1

Introduction

Conical surfaces have been extensively studied by many in different contexts, ranging

from compactness theorems to Teichmuller dynamics. The simplest example of a conical

surface is that obtained by taking the quotient of a Riemann surface by a discrete group of

isometries. The general geometry of such quotients is that of a smooth surface with metric

singularities that arise at the points p1, . . . pn where the isometry group has nontrivial sta-

bilizer. From a local perspective, these singularities can be characterized by the existence

of neighborhoods around each pi where the metric takes the form g = e2u|z|2βi |dz|2. Con-

ical surfaces are the more general class of objects– not necessarily only those that arise as

quotients– that enjoy this local conical geometry near a finite set of isolated points. The

points p1, . . . pn are referred to as cone points with corresponding cone angles 2π(βi + 1).

A classical problem for conical surfaces is characterizing those smooth functions which

arise as Gaussian curvatures of a pointwise conformal metric. Equivalently, one asks for

necessary and sufficient conditions for existence of solutions to the Gaussian curvature equa-

tion of a pointwise conformal metric g̃ = e2ug, with g being some fixed background conical

metric. Such equation is given by

K = e−2u(Kg −∆gu) (1.0.1)

where Kg is the curvature of the metric g. In the next section, we will discuss some of

the existence and non-existence results for Equation 1.0.1, due to M. Troyanov, which are
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very similar in spirit to the analogous results due to Kazdan-Warner in the case of smooth

Riemann surfaces. A particularly delicate case is when the conical surface is a sphere,

referred to in the literature as the singular or conical Nirenberg problem. The classical

Nirenberg problem asks to characterize those smooth functions on the sphere which arise

as the Gaussian curvature of a metric that is pointwise conformal to the round metric of

curvature 1. Even though much progress has been done over the years, the problem still

remains open in full generality. In passing to the singular case, one now allows metrics

in a given conformal class to have conical singularities. While there are some results on

this topic in the literature, many questions remain unanswered. In this work, we propose

a different approach that recovers the known sufficient condition established by Troyanov,

namely, if K is assumed to be strictly positive, then one can solve the singular Nirenberg

problem on a conical 2-sphere with cone angles less than 2π and at least three cone points.

In contrast to the standard variational approaches, we follow the ideas in recent work of

Anderson [And17] where our methods now hinge on the degree theory of proper Fredholm

operators and compactness theorems for quasi-conformal mappings. In what follows, we

briefly highlight some of the results in the long history of the Nirenberg problem that either

directly pertain to our work or serve as a point of contrast. We conclude this chapter with a

summary of our own results on the subject and some suggestions for how to proceed in the

future.

1.1 Prescribing Curvature on Riemann Surfaces

The problem of describing the set of possible curvatures on a given manifold has been

studied extensively over the past 40 years or so. While there are numerous results for general

dimension n (see for instance [KW75]), in this work we restrict our attention to compact

(closed), connected surfaces. On such spaces there is essentially one notion of curvature and

the question then reduces to characterizing the set of possible Gaussian curvatures. Formally,
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one asks for necessary and sufficient conditions for a function K on a Riemann surface Σ to

arise as the Gaussian curvature of some metric g on Σ.

In order to make the problem more tangible, Kazdan and Warner [KW75] propose to

realize K in a very specific way, by first prescribing a metric g0 on Σ and asking whether

there exists a metric g which is conformally equivalent to g0 (or even, pointwise conformal

to g0) with Gaussian curvature K. In this context, we say two metrics g, g0 are conformally

equivalent on Σ if there exists a diffeomorphism φ of Σ and a smooth function u such that

φ∗g = e2ug0. On the other hand, g, g0 are pointwise conformal if there exists a smooth

function u such that g = e2ug0. To put it another way, the pointwise conformal case is

the special case of conformal equivalence in which we take the diffeomorphism φ to be the

identity.

One of the main advantages in realizing K as the curvature of a pointwise metric g =

e2ug0 is that now our question can be phrased in terms of finding solutions u to the differential

equation

∆u = K0 −Ke2u (1.1.1)

where ∆ and K0 are the Gaussian curvature and Laplacian of the background metric g0. On

the other hand, the conformally equivalent case asks for a diffeomorphism φ such that the

equation

∆u = K0 − (K ◦ φ)e2u (1.1.2)

has a solution (since then the pullback of the metric e2ug0 by φ will have curvature K).

To address the question of necessity first, observe that the Gauss-Bonnet theorem im-

poses a restriction on the possible signs of K: if the Euler characteristic, χ(Σ), is positive,

then K is positive somewhere, while if χ(Σ) < 0, K is negative somewhere. Moreover, if

χ(Σ) = 0 then K must change sign (unless K ≡ 0). In light of this, it is natural to ask

whether these sign conditions are also sufficient. In the conformal equivalent case, it turns

out that this is indeed true when the Euler characteristic χ(Σ) ≤ 0. Explicitly, we have

3



Theorem 1.1.1. (Kazdan and Warner, 1974). Let Σ be a compact Riemann surface and

g0 a given metric on Σ. Denote by K0 the Gaussian curvature of g0. Then,

1. If χ(Σ) = 0, then a smooth function K is the curvature of a metric g conformally

equivalent to g0 if and only if either K changes sign or K ≡ 0

2. If χ(Σ) < 0, then a smooth function K is the curvature of a metric g conformally

equivalent to g0 if and only if K is negative somewhere.

The proof, as many of the existing results on the topic, relies on variational methods

to find a solution. In this context, the variational formulation involves studying the critical

points of the functional J , given by

J(u) =

∫
Σ

1

2
|∇u|2dA−K0A log

∫
Σ

KevdA+K0 · A log(K0A) (1.1.3)

It is not difficult to show that critical points of J are weak solutions of Equation 1.1.1. Using

the Sobolev embedding theorem and standard elliptic regularity, one can further show that

any critical point of J is in fact smooth and therefore a classical solution of Equation 1.1.1.

The underlying details of variational methods will lead us too far astray from our main goal,

but we highlight here the main two ingredients of such an approach in this context. First,

one shows the functional J is bounded from below. This step has been classically dealt with

using the Trudinger inequality:

Theorem 1.1.2. The Trudinger Inequality. If M has dim = 2, then there exist positive

constants β, γ such that for any u ∈ W 1,2(M) with ū = 0 and |∇u|L2 ≤ 1 one has∫
M

eβu
2

dA ≤ γ (1.1.4)

In fact, with some work, it follows from the Trudinger inequality that J is bounded

below if K0 ≤ 2β
A

, where A denotes the area of Σ. The second main step is to use some

form of compactness criteria in order to guarantee a minimum. It turns out that in the

situation where K0 <
2β
A

, one can show that minimizing sequences remain in a fixed ball in
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W 1,2, which is weakly compact. At this point, one can simply select a weakly converging

subsequence and use standard arguments to show the existence of a solution u ∈ C∞(Σ).

In the case where K0 = 2β
A

, the question of compactness is much more complicated,

since the functional J may have no minimum (in fact, no critical points whatsoever). The

optimal value of the constant β was later found by J. Moser in his very different proof of

Trudinger’s inequality, where he further shows that if M = S2 or RP2 then the best constant

in both cases is β = 4π. These two cases will be discussed in more detail in the next section,

where we introduce the Nirenberg problem.

1.1.1 The Nirenberg Problem

In 1974, L. Nirenberg asked the following question, ”Is any given strictly positive func-

tion K on S2 the Gaussian curvature of some metric that is pointwise conformal to the

standard metric?” In other words, can we solve equation (1.0.1) on S2 where g0 is the round

metric of curvature 1 under the assumption that K > 0?

Observe that requiring that K be strictly positive is stronger than the necessary con-

dition imposed by the Gauss-Bonnet theorem. If we asked Nirenberg’s question in the con-

formally equivalent case, then this condition is in fact sufficient: under the assumption that

K > 0, H.Gluck [Glu72] shows that given a smooth function f one can find a diffeomorphism

φ of S2 ⊂ R3 such that ∫
S2

(f ◦ φ) · ndA = 0 (1.1.5)

where n is the unit normal vector field. With f = 1
K

, one only needs Equation 1.1.5 to hold

in order to prove the existence of a convex surface in R3 whose curvature is K ◦ φ. Pulling

back the round metric by φ then gives the desired solution.

The pointwise case is however not as straightforward. In fact, the answer to Nirenberg’s

original question is ”no”: Kazdan and Warner have shown that one can construct strictly

positive functions K, which are known to be curvatures by Gluck’s work, and cannot be

realized as curvatures of a metric pointwise conformal to the round metric (see Theorem
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8.8 in [KW74]). Their work led to a now well-known obstruction to existence: if K is the

Gaussian curvature of a metric pointwise conformal to the round metric g0, then∫
S2

X(K)dA0 = 0 (1.1.6)

for any conformal Killing field X on (S2, g0). As an explicit example of this obstruction,

consider the vector field X = ∇l, where l is any linear function on R3 restricted to (S2, g0).

Then any function K of the form K = 1 + l cannot be the Gaussian curvature of a pointwise

conformal metric on (S2, g0).

Interestingly, under the further restriction that K(x) = K(−x) (that is, that K is also

an even function), D. Koutroufiotis proved the result for K sufficiently close to 1 while the

general case was established by J. Moser using the methods discussed in the previous section.

What are then sufficient and necessary conditions which characterize Gaussian curva-

tures of pointwise conformal metrics on the 2-sphere? This more general question has been

the subject of much study and is referred to as the Nirenberg problem. The literature on the

topic is vast, so we refer the interested reader to [CGY93], [CL93], [CY87], [Han90], [Ji04],

[And17] for a more comprehensive story.

Moser’s aforementioned work serves as a stepping stone for many of the subsequent

results on the Nirenberg problem. As we hinted at previously, the difficulty here is in

obtaining some sort of compactness criteria that guarantees existence of a minimum of J .

To elaborate on this, suppose φ is a conformal transformation of (S2, g0), where g0 is again the

round metric of curvature 1. This means that φ∗g0 = e2Ψφg0 for some function Ψφ ∈ C∞(S2).

Therefore, if g = e2ug0, then φ∗g = e2uφg0, where uφ = u ◦ φ + Ψφ. One can show that the

functional J of Equation 1.1.3 satisfies

J(u) = J(uφ)

In other words, J is invariant under the conformal group of (S2, g0). Moreover, since the

conformal group in this case is noncompact, J is in fact invariant under the action of a

noncompact group. As a consequence, J fails to satisfy the Palais-Smale condition, which
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is a compactness-kind of condition that is usually employed in proving the existence of

stationary points in the variational approach (for more details refer to [Nir01]).

One can concretely see this through the following example. Let p ∈ S2 ⊂ R3 and

σp : S2 − {p} → R2 be the stereographic projection from p. Let δλ(x) = λx for λ > 0 be a

dilation of R3 and define

φλ := σ−1
p ◦ δλ ◦ σ : S2 → S2 (1.1.7)

where the composition is extended to the whole sphere by sending p→ p. One can compute

that

φ∗λg0 = Ψ2
λg0

where

Ψλ(x, y, z) =
2λ

(1 + z) + λ2(1− z)

It follows that φλ is a conformal transformation for each λ. Moreover, observe that as λ→∞

the conformal factors Ψλ will concentrate (or ”bubble”) at p while converging to zero at all

other points. In regards to J , we see that since these metrics arise from pulling back the

round metric g0, J(log Ψλ) = 0 for all λ.

Many of the existing results in the literature address the conformal invariance of the

problem by directly studying this type of bubbling phenomenon. The results are rather

technical and outside of the scope of our work, and we refer the reader to [CGY93], [CL93],

[CL93], to mention a few.

Recently, M. Anderson has proposed a new non-variational approach to the Nirenberg

problem. Since the ideas in his work are at the core of our generalization to conical singu-

larities, we will be discussing this approach in a more technical setting in the subsequent

chapters, rather than in this introductory framework.
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1.1.2 Extension to Orbifolds and Conical Metrics

It follows from the result of Moser mentioned above on antipodally symmetric functions

on S2, that the answer to Nirenberg’s original question for RP2 is ”yes”. In fact, RP2 is

the only 2-manifold for which the conditions imposed by Gauss-Bonnet are necessary and

sufficient in the pointwise conformal case. The fundamental difference between the two spaces

is that by taking the quotient of S2 and passing to RP2, one ”kills” the noncompactness of

the conformal group discussed above. A natural question is then how far one can extend this

line of reasoning: given a subgroup of isometries of S2, such that the quotient has compact

conformal group, can we answer Nirenberg’s problem?

The question can be posed for an even more general class objects that enjoy a similar

local geometry and are known as conical surfaces. Many of the usual topological invariants

defined for smooth surfaces extend to conical ones. For instance, one defines the generalized

Euler characteristic for the conical surface (Σ, g, β) by

χ(Σ, β) := χ(Σ) +
n∑
i=1

βi (1.1.8)

As in the smooth case, one can ask for necessary and sufficient conditions for existence

of solutions to the Gaussian curvature equation of a pointwise conformal metric g̃ = e2ug,

with g a conical metric representing a given divisor β. As mentioned in the introduction,

this equation is given by

K = e−2u(Kg −∆gu) (1.1.9)

where Kg is the curvature of the metric g. Using a variational approach, M. Troyanov

proves several existence and uniqueness results for Equation 1.1.9. Once again, a particularly

delicate case is when the conical surface is a sphere. We summarize in the next theorem the

known results obtained by Troyanov in the case Σ = S2.

Theorem 1.1.3. Suppose β is a divisor on S2 and K is a function on S2. Then
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1. Negative Curvature: If supK < 0, then there exists a unique conformal metric repre-

senting β with Gaussian curvature K if and only if χ(S2, β) < 0.

2. Zero Curvature: If K = 0, then there exists a conformal flat metric representing the

divisor β if and only if χ(S2, β) = 0. The metric is unique up to homothety.

Remark. Conditions (1) and (2) in Theorem 1.1.3 imply that if K ≤ 0 then the cone angles

θi = 2π(βi + 1) satisfy

0 <
n∑
i=1

θi ≤ (2n− 4)π (1.1.10)

so in particular the number n of prescribed cone points must be at least 3.

As before, the case of positive curvature is not as simple. The following result of

Troyanov generalizes Moser’s result for RP2 to conical spheres satisfying a special inequality.

Theorem 1.1.4. Suppose β =
∑n

i=1 βipi is a divisor on S2. If

0 < χ(S2, β) < min(2, 2β1 + 2) (1.1.11)

then any function K on S2 which is positive somewhere is the curvature of a conformal

conical metric g representing the divisor β.

The upper bound on inequality (1.1.11) is a consequence of Trundinger’s inequality in

the conical case, which, as in the smooth case, plays a central role in prescribing curvature

on conical surfaces via a variational approach. Since the pioneering work of Troyanov in

[Tro91] several other methods have been employed. These include complex analytic ideas

[Ere04], minmax theory [CM12] and recently, synthetic geometric methods when the surface

is a sphere [MP19]. In the case of constant curvature, there is a complete existence theory

developed over the years [Ere04; McO88; LT92; Tro91] for conical surfaces with at least three

conical singularities and angles less than 2π. In particular, it has been observed by many

that a necessary condition for the existence and uniqueness of such conformal conical metric

of constant curvature 1 on S2 is
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∑
i 6=j

βi < βj, for all j (1.1.12)

Condition (1.1.12) has come to be known as the Troyanov condition and we refer the

reader to [MW15] for a geometric interpretation.

We conclude this chapter with some examples of conical metrics on S2 that will hopefully

illuminate some of the previous discussion on this topic.

1.1.3 Examples of Conical Metrics on S2

Example 1: The football. Let Σ = S2(1)/Zk where Zk acts by rotations. The quotient is

known as the American football and it is a topological sphere with two conical singularities,

each of angle 2π
k

. If ḡ is the induced metric on the quotient, i.e. π∗ḡ = g+1, where π : S2 →

S2/Zk is the quotient map, then Conf(S2/Zk, ḡ) is noncompact. Indeed, let φλ : S2 → S2

be as in 1.1.7. The action of Zk on S2 can be viewed as an action of Zk on C after identifying

S2− p with the complex plane via the stereographic projection. From this point of view, for

each element [m] ∈ Zk we get a map ψm(z) = ζm · z, where ζ is a kth root of unity. Then

one can check that

φλ ◦ ψm = ψm ◦ φλ

for every [m] ∈ Zk. In particular, the map φλ descends to the quotient and it will be a

conformal map of (S2/Zk, ḡ).

Example 2. Variation on the Football. Another way to obtain the American football

of Example 1 is by cutting out two neighborhoods of say, the north and south pole and

gluing back two different cones, e.g we can replace a neighborhood U1 of the north pole by a

quotient of the disk D/Zn and a neighborhood U2 of the south pole by the quotient D/Zm.

When n = m, upon choosing appropriate gluing maps and metrics on the cone pieces, this

space is just the quotient S2/Zn of Example 1. In the case when n 6= m, we cannot represent

it as a global quotient by a subgroup of isometries anymore, although we can still define
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an orbifold structure. More importantly, the conformal group with respect to the induced

orbifold metric is now compact.

Example 3. Double of a Spherical Triangle. Let T be a spherical triangle in S2(1) with

angles α = 2π
n
, β = 2π

m
, γ = 2π

p
. Construct the double of T by identifying T with itself via the

identity. The resulting space M is a topological sphere with 3 conical singularities of angles

2α, 2β, 2γ. The conformal group is the dihedral group D6.

1.2 Outline of the dissertation and main results

In this work we propose a new approach to the singular Nirenberg problem when there

are at least three cone points and the angles are less than 2π. Using our methods we find

sufficient conditions for a function K to arise as the Gaussian curvature of a conformal

conical metric in this setting. Specifically, we show

Theorem 1.2.1. Suppose n ≥ 3, and β =
∑n

i=1 βipi is a divisor on S2 satisfying the

Troyanov condition (1.1.12) and there exists i, j, k distinct for which βi, βj, βk are all distinct.

Assume χ(S2, β) > 0 and let gβ be the unique conical metric on S2 representing the divisor

β of Gaussian curvature Kβ = 1. Then a function K on S2 is the Gaussian curvature of

a metric g conformal to gβ if K is a positive function in Cm,α
γ , k ≥ 2, α ∈ (0, 1), where

γ = (γ1, . . . , γn) ∈ Rn, γi 6= m
βj

, γi > 0 and m is an integer.

The space Cm,α
γ consists of Hölder continuous functions which are (k−2)-times differen-

tiable and satisfy growth conditions near the cone points that are determined by the weights

γ (for a precise definition see Chapter 2). Following the ideas in recent work of Anderson

[And17], our approach is to choose appropriate Banach spaces such that the differential op-

erator defined by (1.1.9) is a proper Fredholm map of index zero. For such operators, there

is a well-defined notion of degree, and one can perform a degree count in order to study

the surjectivity of this map. In establishing properness, a preliminary step is a compactness

theorem for conical surfaces. Although compactness theorems for conical surfaces have been
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shown in [Deb20] for the uniform topology and in [Ram18] for the Cm,α topology but angles

less than π, to our knowledge no result of the form required for our proof of Thm 1.2.1 exists

in the literature. Thus in Chapter 2, we show

Theorem 1.2.2. : Let Σ be a compact Riemann surface without boundary and fix a divisor

β =
∑n

j=1 βjpj on Σ such that −1 < βj < 0 for all j. If Mi = (Σ, gi, β) is a sequence

of smooth conformal conical metrics on Σ representing the divisor β such that there exist

constants D0,Λ, v0 > 0 for which

1. diam(Mi) ≤ D0

2. there exists t0 > 0 such that volgi(B(r)) ≥ v0 for every r ≤ t0

3. ||Kgi(x)||0 ≤ Λ away from the cone points

Then for any γ ∈ Rn, there exists a subsequence of (gi), C2,α diffeomorphisms Fi : Σ → Σ

and a C1,α
γ conformal conical metric g representing a divisor β′ such that

||(F ∗i gi)st − gst||1,α;γ → 0 (1.2.1)

as i→∞, where β′ =
∑m

j=1 β
′
jqj with −1 < β′j ≤ 0, m ≤ n.

This result, however, only guarantees control of the metrics g = e2uigβ in a weighted Cm,α

topology modulo diffeomorphisms. In order to obtain properness of the differential operator

defined by (1.3), one needs to ensure the conformal factors ui themselves converge on a

subsequence. As in [And17], one can further show that also in the conical case we actually

have control of the metrics modulo the conformal group of gβ, where Astala’s theorem

([Ast94]) plays a central role in this step. To obtain that the conformal factors ui themselves

converge, we rely on the fact that a conformal conical metric on a sphere with at least three

cone points has compact conformal group (see Thm 3.1.4).
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Chapter 2

A Compactness Theorem for Conical Singularities

A fundamental step in proving an existence theorem is that of finding an appropriate

compactness criteria, which usually comes in the form of a priori bounds on the solutions.

In our setting, such control is initially obtained, modulo diffeomorphisms, by making use

of the analogs of Cheeger-Gromov and Anderson-Cheeger compactness theorems for conical

surfaces. As no such results existed in the literature for conical surfaces –at the level of

generality required for our analysis of the conical Nirenberg problem– we present a proof

here of a precompactness theorem for conical surfaces.

We further note that the existence of an associated compactness or precompactness

theorem for the class of conical Riemann surfaces with curvature, diameter and volume

bounds is interesting in its own right, and independent of the results in the subsequent

chapter.

2.1 Conformal Metrics with Conical Singularities

We begin with a formal, more technical definition of a conical surface than the one given

in the introduction. Let Σ be a compact Riemann surface without boundary and g0 be a

fixed smooth metric on Σ. Given points p1, . . . pn ∈ Σ, set Σ∗ = Σ− {p1, . . . pn}. For R > 0

small enough, let BR(p) be a geodesic ball in Σ of radius R centered at p with respect to the
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metric g0 and set B∗R(p) := BR(p)− {p}. Moreover, let ΣR := Σ−∪ni=1B̄R(pi), where B̄R(p)

is the closure of BR(p) in Σ.

Definition 2.1.1. Given points p1, . . . pn on the Riemann surface Σ, we say a smooth func-

tion ρ : Σ∗ → (0, 1] is a radius function on (Σ∗, g0), if ρ(z) ≡ 1 on ΣR and ρ(z) = O(|z|)

in isothermal coordinates z on each BR(pi) for i = 1, . . . , n. We further define ργ for

γ = (γ1, . . . , γn) in Rn as follows

ργ = ργi on BR(pi)

ργ ≡ 1 otherwise

Moreover, for a ∈ R, we define γ + a := (γ1 + a, . . . γn + a).

Definition 2.1.2. Given a divisor β =
∑n

i=1 βipi on (Σ, g0), we say gβ is a conical metric

on (Σ, g0) representing the divisor β if there exists a radius function ρ : Σ∗ → R such that

gβ = ρ2g0

where ρ is smooth and positive outside of the set of cone points {p1, . . . , pn} and if z is a

holomorphic coordinate in a neighborhood of pi such that z(pi) = 0, then ρ(z) = O(|z|βi) as

z → 0. We say g is a conical conformal metric on (Σ, ρ) if there exists a smooth positive

function u : Σ→ R such that

g = e2ugβ (2.1.1)

where gβ is a conical metric on Σ representing the divisor β.

The pair (Σ, gβ) will be referred to as a conical surface for brevity, where gβ is always

assumed to be a conical metric on (Σ, g0) representing the divisor β unless otherwise specified.

Any conformal conical metric has an associated curvature function defined on the com-

plement of the cone points. This curvature function K is just the Gaussian curvature of the

smooth metric on Σ − {p1, . . . , pn}. In fact, if we write gβ = e2vg0 for a conformal conical

metric representing the divisor β, then K can be defined such that

KdA = dA1 − d ∗ dv (2.1.2)
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where dA1 is the area element for the metric g0, dA the area element for the conformal

conical metric and * is the Hodge star operator on forms: in the coordinate z

∗dv = −i
(
∂v

∂z

)
dz + i

(
∂v

∂z̄

)
dz̄

Moreover, we can explicitly compute the Gaussian curvature in a neighborhood of any

given point as follows: by the uniformization theorem, for any point p ∈ Σ we can find a

neighborhood of p and a holomorphic coordinate z such that g0 = e2ψ|dz|2 for some ψ > 0

and smooth. Hence, locally, we can assume that conformal conical metrics gβ can be written

in the form

gβ = e2u|z|2β|dz|2 (2.1.3)

for some β ∈ (−1, 0] which depends on p.

Lemma 2.1.3. If z is a holomorphic coordinate in a neighborhood of p ∈ (S2, g) such that

z(p) = 0 and the conformal conical metric g = e2u|z|2β|dz|2, then the Gaussian curvature Kg

of g satisfies

Kg = −e
−2u∆u

|z|2β
(2.1.4)

for z 6= 0.

Proof. Let f(z) = 2(u + log |z|β). By rewriting g = e2f |dz|2, we compute that the scalar

curvature of g is

Rg = e−2f (−2∆f) = e−2f (−2∆(u(z) + log |z|β))

where ∆ is the laplacian with respect to the flat metric |dz|2. Now observe that

∆ log |z| = 0

Indeed, ∆ log |z| = 0 if and only if ∆ log |z|2 = 0. Since ∆ = 4
∂2

∂z∂z̄
, we have

∆ log |z|2 = 4
∂2

∂z∂z̄
log zz̄

= 4
∂

∂z

(
1

|z|2
z

)
= 4

∂

∂z

(
1

zz̄
z

)
= 4

∂

∂z

(
1

z̄

)
= 0
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Therefore,

Rg = e−2f (−2∆u) = e−2u|z|−2β(−2∆u)

Since the Gaussian curvature Kg =
Rg

2
, this gives the result.

One can further prove a corresponding Gauss-Bonnet theorem for conical surfaces, which

we record below for completeness.

Theorem 2.1.4. If (Σ, gβ) is a conical surface with Gaussian curvature K and area element

dA, then ∫
Σ

KdA = 2πχ(Σ) + 2π
∑

βi = 2πχ(Σ, β) (2.1.5)

2.2 Compactness Theorems for Conical Surfaces

To begin, a chart H will be referred to as an isothermal chart if there exists a holomor-

phic coordinate z such that

(H−1)∗g = e2φ(z)

m∏
i=1

|z − zj|2αj |dz|2 (2.2.1)

Observe that the existence of such charts is guaranteed by the uniformization theorem.

In order to directly apply our results in the next chapter, we will work with weighted

Hölder spaces, which we define here as follows. For gβ a conical metric on (Σ, g0) representing

a divisor β and ρ a radius function on (Σ∗, g0) such that gβ = ρ2βg0, if u ∈ Ck
loc(Σ

∗) and

γ ∈ Rn, set

||u||Ckγ :=
k∑
j=0

sup
x∈Σ∗
|ρ(x)−γ+j∇ju(x)| (2.2.2)

Define the space of Ck,α
γ (Σ, β) functions on (Σ, β) to be

Ck,α
γ (Σ, β) =

{
u ∈ Ck

loc(Σ
∗) : ||u||k,α;γ <∞

}
(2.2.3)

where the norm || · ||k,α;γ is given by

||u||k,α;γ := ||u||Ck,αγ = ||u||Ckγ + [∇ku]α,γ−k (2.2.4)
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and

[∇ku]α;γ = sup
x 6=y,d(x,y)<inj(x)

min(ρ(x)−γ, ρ(y)−γ)
|∇ku(x)−∇ku(y)|

d(x, y)α
(2.2.5)

It is well known that the normed spaces (Ck,α
γ , || · ||k,α;γ) are Banach for any γ (see for

instance [Pac06]). One can further define the weighted Sobolev spaces W k,p
γ , as in [Beh11].

Next, we introduce the notion of the isothermal radius, which plays the same role as that of

the harmonic radius in [And90a; AC92].

Definition 2.2.1. The Isothermal Radius: Let (Σ, g, β) be a complete Riemann surface

without boundary with g a conformal conical metric on Σ representing the divisor β =∑n
i=1 βipi. Let x ∈ Σ. Given a constant C > 1, α ∈ (0, 1), γ ∈ Rn, we define the isothermal

radius rI = rI(g, x, C, α, γ) as the largest number such that on the geodesic ball B(x, rI(x))

there exists an isothermal coordinate chart H : B(x, rI(x))→ B0(R) ⊂ C with

(H−1)∗g = e2φ(z)

m∏
i=1

|z − zj|2αj |dz|2 (2.2.6)

where z is a holomorphic coordinate on B0(R), zj = H(pj) correspond to cone points,

1 ≤ m ≤ n , −1 < αj and φ(z) : B0(R)→ R is smooth and satisfies

A1.
1

C
≤ φ(z) ≤ C

B1.
∑

0≤|µ|≤1 r
−γ+|µ|
I supx |∂µφ(x)|+

∑
|µ|=1 r

−γ+α+1
I supx 6=y

|∂µφ(x)−∂µφ(y)|
d(x,y)α

≤ C − 1

We also define the isothermal radius of (Σ, β, g) by

rI(Σ) = inf
x∈Σ

rI(x) (2.2.7)

Observe that αj either coincide with the βj or are zero in neighborhoods with no conical

points. In the following lemma we prove properties of the isothermal radius that will be

needed for the upcoming blow-up argument in the proof of Theorem 2.2.6. All of these facts

are true for the harmonic radius and the proofs presented here are essentially the same as in

the works of [And90a; AC92; HH97], only slightly modified to fit our setting.
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Lemma 2.2.2. Let (Σ, β, g) be a Riemann surface with a conformal conical metric g rep-

resenting the divisor β and let rI : Σ → R be the isothermal radius. Then the following

hold

1. rI(x) is positive and pointwise continuous on Σ

2. If F : (Σ, g)→ (Σ′, g′) is an isometry, then

F ∗rI(Σ
′) = rI(Σ)

3. rI scales as the distance: rI(λ
2g, x) = λrI(g, x)

Proof. Proof of (1). For the positivity, observe that for any x ∈ Σ we can find a 0 ≥ µ > −1,

a neighborhood U of x and a holomorphic coordinate z : U → C such that g = e2φ|z|2µ|dz|2

for some smooth φ(z) : U → R. Clearly, if x is any of the cone points, such coordinates

exist by definition once we choose µ = θ
2π

where θ is the cone angle. If on the other hand

x is a smooth point, then such coordinates are guaranteed by the Uniformization Theorem:

we can find a neighborhood U of x and a holomorphic coordinate z : U → C such that

g = e2φ|dz|2. Finally observe that conditions A1, B1 always hold on a fixed conical surface

in a given isothermal chart.

For the continuity, given any x close enough to y, we can find a ball of radius a centered at

x which contains all the cone points in B(y, rI(y)) and is contained in B(y, rI(y)). Therefore

if z is a holomorphic coordinate in B(y, rI(y)) such that

g = e2φ(z)

m∏
i=1

|z − zi|2αi |dz|2

with φ(z) satisfying conditions A1, B1 of Definition 2.2.1, by restricting the coordinates z to

B(x, a), we get a holomorphic coordinate on this ball such that in this coordinate the same

function φ(z) still satisfies conditions A1, B1 for the same C, α, γ. Therefore a ≤ rI(x).

Using this one can directly show

|rI(y)− rI(x)| = |a+ d(x, y)− rI(x)| ≤ ε
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as wanted.

Proof of (2). We will actually prove something stronger than the statement of (2):

computing the isothermal radius with respect to g′ at a point F (x) gives the same result as

computing the isothermal radius with respect to g at the point x. To begin, fix x ∈ Σ and

let H ′ : B(F (x), rIF (x))→ B0(R) be an isothermal coordinate chart where

(H ′−1)∗g′ = e2φ(z)

m∏
i=1

|z − zi|2αi |dz|2 (2.2.8)

and φ(z) satisfies conditions A1, B1 of Definition 2.2.1. The set U = F−1(B(F (x), rIF (x)))

is open in Σ and contains x. If B(x,R) is the largest geodesic ball centered at x which

is still contained in U , then H := H ′ ◦ F : B(x,R) → B0(R) is an isothermal coordinate

chart for the metric g on B(x,R). Moreover, the metric g on the ball B(x,R) has the form

(2.2.6) above, where the conformal factor can be computed to be 2φ(F (z)) + ||DF ||2 and

satisfies the bounds A1, B1 in these coordinates since ||DF ||(F−1)∗g = 1. We have thus found

a ball centered at x in which all the conditions of the definition of the isothermal radius are

satisfied, so we conclude that its radius R ≤ rI(x). In particular, rI(F (x), g′) ≤ rI(x, g). To

obtain the opposite inequality, we just follow the same argument with F−1 in place of F .

Proof of (3). We want to show that rI(λ
2g, x) = λrI(g, x) for any nonzero λ. Start with a

conical metric g and after having chosen a holomorphic coordinate for which we can write

the metric g as in (2.2.6) of Definition 2.2.1, with φ(z) satisfying the bounds A1, B1, it is

straightforward to check that the metric λ2g satisfies the same bounds in the coordinates

w = λz.

We now turn to the question of convergence. For k ≥ 2, α ∈ (0, 1), γ ∈ Rn, we say

a conformal conical metric g on (Σ, g0) representing the divisor β is of class Ck,α
γ if in

an isothermal chart the coefficients gij of g are bounded in Ck,α
γ . Moreover, a sequence

of conformal conical metrics (Σ, gi, β) of class Ck,α
γ converges in Ck,α

γ to a surface (Σ′, g)

provided that there exists a sequence of Ck+1,α diffeomorphisms Fi : Σ′ → Σ such that for
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all i large enough

||(F ∗i gi)− g||k,α;γ → 0 (2.2.9)

in any chart of a C∞ subatlas of the complete C∞ atlas of Σ. The following lemma addresses

the continuity of the isothermal radius in the C1,α
γ topology.

Lemma 2.2.3. For α ∈ (0, 1), γ ∈ Rn, the isothermal radius is continuous under C1,α
γ

convergence of a sequence of conical metrics (Σ, gi, β) representing the divisor β.

Proof. Let (Σ, gi, β) be a sequence of conformal conical metrics on Σ representing the divisor

β and x ∈ Σ. As before, Σ∗ = Σ − {p1, . . . pn}, where p1, . . . pn are the cone points. Fix

α ∈ (0, 1), γ ∈ Rn. Assume that the sequence (gi) converges in C1,α
γ to a C1,α

γ metric g on

Σ. By the continuity of the isothermal radius we mean explicitly that the following two

inequalities hold: given C > 1

rI(g, x, C) ≥ lim sup
i→∞

rI(gi, x, C) (2.2.10)

and for any 0 < ε < C − 1

rI(g, x, C − ε) ≤ lim inf
i→∞

rI(gi, x, C) (2.2.11)

For simplicity, set ri := rI(gi, x, C) and let Hi : B(x, ri)→ C, Hi(y) = (H1
i (y), H2

i (y)) =

zi ∈ C be isothermal coordinate charts in which the metrics gi satisfy A1, B1 of Definition

2.2.1.

We begin with some preliminary claims, the first being that for any r ≤ lim sup ri, a sub-

sequence of the isothermal charts Hi converges in C2,α to an isothermal chart H : B(x, r)→

C, where B(x, r) is a geodesic ball for the metric g. To this end, suppose (x1(y), x2(y)) ∈ C

is any given local coordinate chart on B(x, r). Observe that it is implicit in the fact that

the charts Hi are isothermal that the coordinate functions Hk
i , for k = 1, 2 are harmonic. In

other words,

(gi)
st ∂

2Hk
i

∂xs∂xt
= (gi)

st(Γi)
l
st

∂Hk
i

∂xl
(2.2.12)
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where (gi)
st are the components of gi in the coordinates (x1, x2) and (Γi)

l
st are the Christoffel

symbols for gi in these coordinates. Now, condition A1 of Definition (2.2.1) implies that in

the charts Hi, the components of the metrics gi satisfy

1

C

mi∏
j=1

|zi − zji |αjδkl ≤ (gi)kl ≤ C

mi∏
j=1

|zi − zji |αjδkl (2.2.13)

where we write zi = H1
i + iH2

i and the inequality holds as bilinear forms. It then follows

from (2.2.13) and the fact that the metrics converge in C1,α
γ that the charts Hi are bounded

in C1 on Σ∗. Using standard elliptic estimates for (2.2.12) (see [GT83], for instance), we

obtain that for each k = 1, 2, the sequence (Hk
i ) is bounded in C2,α(Σ∗). Therefore, by

the Arzela-Ascoli theorem, we have that for each k = 1, 2, the sequences (Hk
i ) converge

weakly on a subsequence in C2,α′ on Σ∗ for α′ ≤ α. In fact, repeating this argument for

Hk
q − Hk

n in place of Hk
i one can see that for each k = 1, 2, the sequences (Hk

i ) are in

fact Cauchy. Therefore, they converge strongly on a subsequence in C2,α
loc to a limiting map

H : B(x, r) − {p1, . . . pm} → C, where Hi(pj) = zj for all i. Since the property of being

an isothermal chart is preserved under C2,α convergence, H is an isothermal chart for the

metric g. Moreover, since there are finitely many cone points, by passing to a subsequence,

we may assume mi in (2.2.13) is independent of i and zji = zj for all i. Therefore, g can be

written in the chart given by H as

(H−1)∗g = e2φ(z)

m∏
j=1

|z − zj|αj |dz|2 (2.2.14)

where φ(z) is a smooth function that satisfies conditions A1, B1 of Definition 2.2.1. Hence

for any r ≤ lim sup ri, a subsequence of the isothermal charts Hi converges in C2,α to an

isothermal chart H : B(x, r) → C for the metric g. Observe that this argument also shows

that if a sequence of conformal conical metrics representing a fixed divisor β converges in

C1,α
γ to a metric g, then g has at most as many cone points as the sequence gi and no other

types of singularities.

Our second preliminary claim is that if (Σ, g, β) is any complete Riemann surface without
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boundary with a conformal conical metric g representing the divisor β, x ∈ Σ, γ ∈ Rn, then

for any 1 ≤ C ′ ≤ C <∞,

rI(C
′)(x) ≤ rI(C)(x) (2.2.15)

and for any C > 1

lim
ε→0+

rI(C + ε)(x) = rI(C)(x) (2.2.16)

The first inequality follows from the definition, hence to prove the claim, it’s enough to

show that for any C > 1

lim sup
ε→0+

rI(C + ε, x) ≤ rI(C, x) (2.2.17)

Fix r < lim sup rI(C + ε, x). For a decreasing sequence of ε > 0 converging to 0, there

are isothermal coordinate charts Hε on Bx(r) satisfying conditions A1, B1 of Definition 2.2.1

with C + ε in place of C and r in place of rI . By the same arguments as above, we get that

a subsequence of Hε converges in C2,α
loc to a limiting chart H. As before, the bounds A1, B1

are preserved under C2,α convergence, hence rI(C, x) ≥ r. Since r < lim sup rI(C + ε, x) was

arbitrary, this proves the claim.

We’re now ready to prove the first inequality (2.2.10). As before, let ri = rI(gi). We

may suppose lim sup ri > 0. The arguments above show that convergence of the metrics

in C1,α
γ implies convergence of the isothermal charts Hi in C2,α

loc . Once again, the bounds

A1, B1 are preserved, so that rI(g, C) ≥ r for any r ≤ lim sup ri. Therefore we get the first

inequality rI(g, C) ≥ lim sup rI(gi, C).

Now fix r < rI(g, C). To obtain the second inequality (2.2.11), let H : B(x, r) → B0

be an isothermal coordinate chart for g, so that (H−1)∗g = e2φ(z)
∏
|z − zj|2αj |dz|2, with z

a holomorphic coordinate on B0 ⊂ C. Let ∆i be the Laplace operator for the metric gi. In

the coordinate z, the Laplacian for the metrics gi has the form

∆i = e−2(φi(z)+
∑m
j=1 αj log |z−zj |)∆ (2.2.18)
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where ∆ is the Euclidean laplacian. As observed before, we may assume the cone points zj

are the same for each i after passing to a subsequence. Now, if wi are solutions to

∆iwi = 0 on B (2.2.19)

wi = z on ∂B (2.2.20)

then the functions ui := z − wi are harmonic and vanish on the boundary of B. Since, for

each i, the function z also solves the boundary value problem (2.22-2.23) it follows from

uniqueness that in fact ui = 0. Therefore, limi→∞ ||ui||2,α = 0 and we have that for any

compact subset B′ ⊂ B and for any i, H is an isothermal coordinate chart for gi. Now, since

the metrics gi converge to g in C1,α
γ , H is an isothermal coordinate chart for gi in which the

bounds of Definition 2.2.1 are satisfied with constants Ci → C as i → ∞. Using (2.2.15),

(2.2.16), we have that for any ε > 0

r ≤ lim inf rI(gi, Ci) ≤ lim inf rI(gi, C + ε)

Since r ≤ rI(g, C) was arbitrary, this ends the proof of the second inequality.

An important property of the harmonic radius in the smooth case is that Euclidean

space has infinite harmonic radius. The isothermal radius satisfies an analogous condition,

but in this case the model space is a flat Riemann surface M with finitely many cone points

and angles less than 2π, which is noncompact, complete and of quadratic area growth , in

the sense that for any x ∈M and any r > 0

1

V
r2 ≤ vol(B(r, x)) ≤ V r2 (2.2.21)

Theorem 2.2.4. Any noncompact conical surface with a finite number of conical singulari-

ties and angles less than 2π which is flat, complete and of quadratic area growth has infinite

isothermal radius.

Proof. Suppose M is a complete flat conical surface of quadratic area growth, so that there

exist p1, . . . , pn in M such that near each pi we can find a coordinate z and a harmonic
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function u with g = e2u|z−zi|2βi |dz|2 where zi = z(pi) and (2.2.21) is satisfied. If we smooth

out the singularities pi, the resulting surface M ′ is still noncompact and complete. Moreover,

since the cone angles are less than 2π, the curvature can only increase upon smoothing the

singularities, thus M ′ has Gaussian curvature K ≥ 0. It further follows from the volume

comparison theorem of Bishop-Gromov [Pet16] that if the original (singular) surface has

quadratic area growth, then any smoothing M ′ has at most quadratic area growth.

Now fix a smoothing M ′ of M and let M̃ be its universal cover. Since M ′ is complete

and noncompact, the pullback of the metric on M ′ to M̃ by the covering map makes M̃

into a simply connected, complete, noncompact surface with Gaussian curvature K ≥ 0. A

complete surface is hyperbolic if it admits a positive Green’s function. On the other hand,

a theorem of Yau [Yau75] (see also [BF42]) asserts that a complete surface of nonnegative

Gaussian curvature admits no non-constant positive superharmonic functions. Thus M̃

cannot be hyperbolic and by the uniformization theorem, we have M̃ is parabolic, i.e. it is

conformally equivalent to the complex plane.

We actually claim that M ′ is simply connected, so that M ′ is parabolic. By Bishop-

Gromov again, the universal cover M̃ of M ′ has at most quadratic area growth. Moreover,

since M ′ has at least quadratic area growth, by Proposition 1.2 in [And90b] we then have

that M ′ is the quotient of M̃ by a finite group of isometries Γ. Since M ′ is smooth, Γ must

be trivial.

Since smoothing out the singularities doesn’t change the topology or the conformal

structure, M is also simply connected and parabolic. Therefore, there exists a global coor-

dinate z such that the metric on M has the form e2v|dz|2. Since M has conical singularities,

e2v = e2u
∏
|z − zi|2αi . Hence, there exist global coordinates on M for which the metric has

the form

g = e2u
∏
|z − zi|2αi |dz|2 (2.2.22)

where u is harmonic. At this point, we have shown that a noncompact, complete, flat conical

surface with cone angles less than 2π and quadratic area growth is conformally equivalent
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to the complex plane. Our final claim is that the function u in (2.2.22) has to be constant.

To see this, define

h =
∏
|z − zi|−αig (2.2.23)

where g is the metric in (2.2.22). In other words, h = e2u|dz|2. Since g is flat by assumption,

the function u is harmonic. Therefore, the Gaussian curvature Kh of h satisfies Kh =

e−2u∆u = 0. On the other hand, since the cone angles are less than 2π, αi < 0 for all i.

Therefore, if γ is any C1 curve, then far away from the cone points,∫
h(γ̇(t), γ̇(t))

1
2dt =

∫ ∏
|z(γ(t))− zi(γ(t))|

−αi
2 g(γ̇(t), γ̇(t))

1
2dt ≥

∫
g(γ̇(t), γ̇(t))

1
2dt

(2.2.24)

where the inequality follows since
∏
|z(γ(t))−zi(γ(t))|

−αi
2 >> 1 whenever |z(γ(t))−zi(γ(t))| >>

1. The assumption that g is complete together with (2.2.24) now imply that h is complete.

Now, let F : T0C → C be the exponential map of the origin for the metric h. By

the above arguments, the smooth metric h is flat and complete, so by Cartan-Hadarmard’s

theorem (see [Pet16], Thm 22) the exponential map F is in fact a diffeomorphism of C that

satisfies

F ∗h = e2u(0)|dz|2 (2.2.25)

In other words,

F ∗h = eu◦F |∂F + ∂̄F |2 = eu◦F (|∂F |2 + |∂̄F |2 + 2Re∂F ∂̄F ) = e2u(0)|dz|2

The last equality implies that either ∂F = 0 or ∂̄F = 0, and since the orientation of

the tangent space is the same as the base manifold, we must have that ∂̄F = 0, so F is

holomorphic. A standard result in complex analysis is that holomorphic diffeomorphisms of

the plane are affine linear maps. Given that F preserves the origin (it is the exponential

map at the origin), we conclude that it must be of the form

F (ζ) = cζ
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for some c 6= 0. But then eu◦F = eu◦(cζ) = e2u(0), so u has to be constant.

The sequence of arguments above now show that M admits global coordinates for which

the metric has the form

g = C
∏
|z − zi|2αi |dz|2

from which it follows that the isothermal radius must be infinite.

The following is a generalization of C1,α convergence to weighted C1,α
γ convergence of

conical metrics on Riemann surfaces.

Theorem 2.2.5. Let Mi = (Σ, gi, β) be a sequence of complete, conformal conical surfaces

with metrics gi representing the divisor β. Let {xi} ∈ Mi be a sequence of points. Given

Λ > 0, C > 1, α ∈ (0, 1), suppose that

1. for any i, ||K(gi)||0 ≤ Λ away from the cone points

2. there exists r > 0 such that for any sequence of points (yi) in Mi there is an isothermal

chart Hi : Ωn → B0(r) where Ωi is some open set in Mi and B0(r) ⊂ C such that for

any i, there exists φi smooth, with 1
C
≤ φi(z) ≤ C such that

(H−1
i )∗gi = e2φi(z)

m∏
j=1

|z − zj|2αj |dz|2 (2.2.26)

where z are holomorphic coordinates on B0(r) and zj = Hn(pj) correspond to the cone

points pj

3. for γ ∈ Rn, a subsequence of (H−1
i )∗gi converges in C1,α

γ on B0(r)

Then there exists a complete Riemannian manifold M of class C2,α, there exists a conformal

conical metric g of class C1,α
γ and a point x ∈ M such that the following holds: for any

compact domain D ⊂ M with x ∈ D there exist, up to passing to a subsequence, compact

domains Di ⊂Mi with points xi ∈ Di and C2,α diffeomorphisms Φn : D → Di satisfying

lim
i→∞

(Φ−1
i )(xi) = x (2.2.27)

Φ∗i gi converges in C1,α
γ in any chart of the induced C2,α complete atlas of D. (2.2.28)
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Proof. The proof is exactly as in the smooth case (see [HH97; Pet87] and [And90a] for a

summarized version) since conical surfaces are considered to have singularities only in the

metric sense, as can be seen from the local coordinate expression in (2.2.26) above.

Theorem 2.2.6. : Let Σ be a compact Riemann surface without boundary and fix a divisor

β =
∑n

j=1 βjpj on Σ such that −1 < βj < 0 for all j. If Mi = (Σ, gi, β) is a sequence

of smooth conformal conical metrics on Σ representing the divisor β such that there exist

constants D0,Λ, v0 > 0 for which

1. diam(Mi) ≤ D0

2. there exists t0 > 0 such that volgi(B(r)) ≥ v0 for every r ≤ t0

3. ||Kgi(x)||0 ≤ Λ away from the cone points

Then for any γ ∈ Rn, there exists a subsequence of (gi), C2,α diffeomorphisms Fi : Σ → Σ

and a C1,α
γ conformal conical metric g representing a divisor β′ such that

||(F ∗i gi)st − gst||1,α;γ → 0 (2.2.29)

as i→∞, where β′ =
∑m

j=1 β
′
jqj with −1 < β′j ≤ 0, m ≤ n.

Proof. The first part of the proof is a blow-up argument to show that, under the hypotheses

of the theorem, there is a uniform lower bound on the isothermal radius. So to begin, let

D0,Λ, v0 be positive constants as in the statement of the theorem and α ∈ (0, 1). Given a

conical Riemann surface (Σ, g, β) and C, t0 > 0 satisfying

||K||0 ≤ Λ (2.2.30)

volg(B(r)) ≥ v0 > 0 ∀r ≤ t0 (2.2.31)

we show that there exists r0 = r0(Λ, v0) > 0 such that for every x ∈ B(r) and any γ ∈ Rn

rI(x,C, α)

dg(x, ∂B(r))
≥ r0 > 0 (2.2.32)
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where rI(x,C, p) is as usual the isothermal radius. Indeed, if (2.2.32) does not hold, there

exists a sequence of conical metrics Mi = (Σi, gi, β) representing the same divisor β with

Gaussian curvature |Ki|0 ≤ Λ, there exists a sequence of balls Bi = Bi(r) ⊂ Mi of radius

r ≤ t0 , there exists γ ∈ Rn and there exists a sequence of points xi ∈ Bi such that

ri(xi)

di(xi, ∂Bi)
→ 0 (2.2.33)

where di = dgi is the induced distance on Mi from gi and ri(x) = rI(gi, x) is the isothermal

radius of the metric gi at x.

Set Ri(x) := ri(x)
di(x,∂Bi)

. By the same arguments as in [HH97; And90a], we may as well

assume the points xi minimize Ri(x). Rescaling the metrics gi as

hi =
1

ri(xi)2
gi (2.2.34)

we get

lim
i→∞
||K(Bi,hi)||0 = ri(xi)

2||Ki||0 ≤ ri(xi)
2Λ→ 0 (2.2.35)

lim
i→∞

vol(Bi, hi) =∞ (2.2.36)

lim
i→∞

d(xi, ∂Bi) =∞ (2.2.37)

where (2.37) holds away from the cone points. By Lemma 2.2.2 (3), the isothermal radius

scales as the distance under rescalings of the metric, thus the isothermal radius of the new

metrics hi satisfies

r′i(xi) := rI(hi, xi) = 1 (2.2.38)

Moreover, for every y ∈ Bi and for every i

r′i(y) =
ri(y)

ri(xi)
≥ di(y, ∂Bi)

di(xi, ∂Bi)
=

d′i(y, ∂Bi)

d′i(xi, ∂Bi)

(where the first inequality follows since Ri(y) ≥ Ri(xi) and d′i is the induced distance from

hi). Set

δi :=
1

d′i(xi, ∂Bi)
(2.2.39)
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Then limi→∞ δi = 0 and for all y ∈ B(xi,
1

2δi
) (the geodesic ball for the metric hi with center

xi) we have

r′i(y) ≥ 1

2
(2.2.40)

Hence, the isothermal radius of the rescaled metrics is bounded from below and is at most

1. Now we claim (Bi, xi, hi) converges in C1,α
γ uniformly on compact sets to a complete

(noncompact) manifold (M, y, h). First, the argument above implies that given R < ∞,

r′i(y) ≥ 1
2

on B(xi, R) for i large enough. Thus given R <∞ and a sequence (qi) in B(xi, R)

we can find isothermal charts Hi : Ωi → B0( 1
2
√
C

) centered at qi such that

(H−1
i )∗hi = e2φi(zi)

mi∏
j=1

|zi − zji |2αj |dz|2 (2.2.41)

where φi(zi) : B0( 1
2
√
C

) → R are smooth and bounded, the integers mi = mi(qi) and the

real numbers αj satisfy 1 ≤ mi ≤ n, −1 < αj ≤ 0 for all i = 1, . . . and 1 ≤ j ≤ mi. As

before, zi is a holomorphic coordinate on B0 = B0( 1
2
√
C

) and zji = Hi(pj) (pj are cone points).

Moreover,

1

C
≤ φi(zi) ≤ C (2.2.42)

||φi(zi)||1,α;γ ≤ F (C) (2.2.43)

with F depending only on C. By (2.2.43) we have that (φi(zi)) are bounded in C1,α
γ on the

ball B0, so after passing to a subsequence we can assume they converge weakly in C1,α
γ to

some φ by the Arzela-Ascoli Theorem. In particular, the metrics (H−1
i )∗hi =: h′i converge

weakly in C1,α
γ on B0. We claim that in fact the metrics h′i converge strongly in C1,α

γ .

Indeed, from Lemma 2.1.3, we have that the Gaussian curvature Ki of the metrics hi in the

coordinates zi is given by

Ki(zi) =
e−2φi(zi)∆φi(zi)∏mi
j=1 |zi − z

j
i |2αj

(2.2.44)

As we observed in the proof of Lemma 2.2.3, we can assume zji = zj and mi = m are

independent of i by passing to a subsequence. By (2.2.35), ||K(Bi,hi)||0 → 0 away from the
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cone points, so that ||(H−1
i )∗Ki||0 = ||Ki(zi)||0 → 0 as i→∞ for all zi 6= zj ∈ Bi. Now, the

limit φ(z) of the sequence (φi(zi)) solves

0 =
e−2φ(z)∆φ(z)∏m
j=1 |z − zj|2αj

(2.2.45)

weakly. Applying standard elliptic estimates to (2.2.45), we get φ(z) is actually smooth. In

fact, using the same arguments as in the proof of Lemma 2.2.3 (second paragraph following

(2.2.13)), we get that the convergence is actually in the strong C1,α
γ topology, hence the

metrics h′i converge strongly in C1,α
γ .

It now follows from the arguments used to prove Theorem 2.2.5 (see for instance Propo-

sition 12 in [HH97]) that there exists a C2,α manifold M , y ∈M and a C1,α
γ conformal conical

metric h on M such that for any compact domain D ⊂ M with y ∈ D and after passing to

a subsequence, there exist compact domains Di ⊂ Bi and yi ∈ Di and C2,α diffeomorphisms

Φi : D → Di such that

lim
i→∞

(Φ−1
i )(yi) = y (2.2.46)

||(Φ−1
i )∗hi − h||1,α;γ → 0 in D (2.2.47)

where (2.2.47) is in the sense that in any chart of the complete induced atlas on D the

components of (Φ−1
i )∗hi converge in C1,α

γ to the components of h.

We now claim the pointed limit (M,h) is flat, conical and complete. First, the com-

pleteness follows from (2.2.37). To see (M,h) is flat, given a compact domain D in M , set

ĥi := Φ∗ihi and for a given x ∈ D, let Ui : Bx(r) → C, r > 0, be an isothermal coordinate

chart for ĥi satisfying A1, B1 of Definition 2.2.1. The convergence of the ĥi implies conver-

gence in C2,α of the charts Ui to a limiting chart U : Bx(r)→ C, by the same arguments as

in Lemma 2.2.3. If we write (U−1)∗h = e2ψ(z)
∏m

j=1 |z− zj|2αj |dz|2, then going back to (2.48)

we have

0 =
e−2ψ(z)∆ψ(z)∏m
j=1 |z − zj|2αj

(2.2.48)

It follows from standard elliptic estimates then that the limit metric h is smooth on Σ∗.

Since (2.2.48) is also the equation for the Gaussian curvature of h, we also have that it
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is flat. Moreover, assumption (2) in the Theorem along with the Bishop-Gromov volume

comparison Theorem imply that

vol(B(s))

V Λ(s)
≥ v

V Λ(t0)
(2.2.49)

for all s ≤ t0, where V Λ is the volume of a geodesic ball in constant curvature Λ and vol(B(s))

is taken in the gi metric. Using scaling properties of volume and the convergence in C1,α
γ ,

we have

volM(B(s))

s2
≥ v′ > 0 (2.2.50)

for all s > 0. On the other hand, since (M,h) is flat with cone angles less than 2π, the

volume of a ball of radius s measured in the metric h has to be less than the volume of a

ball of radius s measured with respect to the standard metric on R2, hence

volM(B(s))

s2
≤ v′ (2.2.51)

and we conclude that the volume growth must be exactly quadratic.

To obtain a contradiction, observe that since the hi converge to h in C1,α
γ , by Lemma

2.2.3, we have that

rI(C
′, p, y) ≤ lim

i→∞
rI(C, p, yi) (2.2.52)

for some C ′ < C, but by construction rI(C, p, yi) = 1, while a flat, noncompact, complete

surface with finitely many conical singularities and of quadratic area growth has infinite

isothermal radius for any C ′, as follows from Theorem 2.2.4.

Therefore, there is a uniform lower bound on the isothermal radius, which in turn allows

us to apply Theorem 2.2.5 to conclude the existence of a limit with the desired properties.

In the notation of Theorem 2.2.5, with D = Bx(R), R > D0, we get that for i large enough,

Di = Mi, and up to passing to a subsequence there exist diffeomorphisms Φi : M →Mi such

that Φ∗i gi satisfies conditions (2.30-2.31) of Theorem 2.2.5. In particular, M has a smooth

structure coming for instance from one of the diffeomorphisms Φi with Mi.
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Chapter 3

The Nirenberg problem for a Conical Sphere

3.1 Conformal Geometry of Conical Metrics on S2

Continuing with the notations of the previous chapter, suppose gβ is a conformal conical

metric on S2(1) = (S2, g+1) representing the divisor β. A diffeomorphism ψ : S2 → S2 is

called a conformal transformation of (S2, gβ) if ψ∗(gβ) ∈ [gβ], i.e. if there exists a function

u : S2 → R which is smooth and positive and such that

ψ∗gβ = e2ugβ

The set of all conformal transformations forms a group under composition, which we

denote by Conf(S2, gβ). It acts on functions K ∈ Cm−2,α
γ−2 by precomposition, i.e.

(φ,K)→ K ◦ φ (3.1.1)

There is also an action of Conf(S2, gβ) on the conformal factors u which one can derive as

follows. Suppose φ ∈ Conf(S2, gβ). By definition,

φ∗gβ = η2
φgβ

where ηφ = |Dφ| > 0. Now suppose g = e2ugβ then

φ∗g = e2(φ∗u)φ∗gβ = e2(u◦φ+log ηφ)gβ
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Hence the conformal group Conf(S2, gβ) acts on the conformal factors u ∈ Cm,α
γ by

(φ, u)→ u ◦ φ+ log ηφ (3.1.2)

Observe that if ψ ∈ Diff(S2), then ψ∗gβ is always a conical metric with the same

number of conical singularities as gβ. Moreover, we have

Lemma 3.1.1. Every conformal transformation ψ ∈ Conf(S2−{p1, p2, . . . pn}, g+1) has an

extension ψ̃ ∈ Conf(S2, g+1).

Proof. Observe that any conformal map ψ ∈ Conf(S2 − {p1, p2, . . . pn}, g+1) can be viewed

as a biholomorphism C − {q1, . . . , qn−1} → C − {q1, . . . , qn−1} after conjugation with the

stereographic projection from, say, pn.

To be precise, let σpn be the sterographic projection S2 − {pn} → C and suppose qi =

σpn(pi) for i = 1, . . . n−1. The restriction of σpn to the punctured sphere S2−{p1, . . . pn} gives

a diffeomorphism with C−{q1, . . . qn−1}. In particular, if ψ ∈ Conf(S2−{p1, . . . , pn}, g+1),

then

ψ̄ := σ−1
pn ◦ ψ ◦ σpn : C− {q1, . . . qn−1} → C− {q1, . . . qn−1}

is a biholomorphism. We claim now that the points qi are removable singularities for ψ̄.

Indeed, if ψ̄ had an essentially singularity at any of the points qi, then by Picard’s Theorem,

ψ̄ would take on all possible values with at most one exception on any neighborhood of

qi, infinitely often, but this would contradict injectivity. The second observation is that ψ

has at worst one pole of order one. Again, any higher order pole is excluded because of

injectivity. If there were two simple poles at say qi, qj, then ψ̄(qi) = ∞, ψ̄(qj) = ∞, but

since ψ is an open map, it would map a punctured neighborhood of qi to a neighborhood of

∞ and a punctured neighborhood of qj to a neighborhood of ∞. The fact that these two

neighborhoods must intersect contradicts injectivity once again.

It then follows that ψ̄ extends to a biholomorphism of the Riemann sphere, hence it

corresponds to a conformal map ψ̃ of S2(1).
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Claim 3.1.2. If p1, p2 . . . , pn are cone points for the conformal conical metric gβ, then

Conf(S2 − {p1, . . . , pn}, gβ) = Conf(S2 − {p1, . . . , pn}, g+1)

Proof. We can directly show the two sets are equal since gβ is conformal to g+1 by assumption.

Lemma 3.1.3. The group Conf(S2 − {p1, . . . , pn}, g+1) is finite if n ≥ 3.

Proof. If ψ ∈ Conf(S2 − {p1, . . . pn}, g+1), then its extension ψ̃ to a conformal map of the

round sphere fixes the set {p1, . . . pn}. Suppose ψ̃(p1) = pi, ψ̃(p2) = pj, ψ̃(p3) = pk, where

i, j, k ∈ (1, . . . n) are all distinct. Since ψ̃ is a Mobius transformation, its values are uniquely

determined after specifying the image of the points p1, p2, p3. Since there are only finitely

many choices for pi, pj, pk, the collection of extensions of ψ ∈ Conf(S2 − {p1, . . . pn}, g+1) is

finite. In particular, the group Conf(S2 − {p1, . . . , pn}, g+1) is finite.

Theorem 3.1.4. Suppose β =
∑n

i=1 βipi is a divisor on S2, n ≥ 3 and gβ a conical conformal

metric representing β as before. Then Conf(S2, gβ) is finite. Moreover, if there exists i, j, k

distinct, such that βi, βj, βk are all distinct, then the conformal group Conf(S2, gβ) = 0.

Proof. Let supp(β) = {p1, . . . pn}. Define F : Conf(S2, β, g) → Conf(S2 − supp(β), g) by

F (φ) = φ
∣∣
S2−supp(β)

. Since any φ ∈ Conf(S2, β, g) fixes the set supp(β), we have that F is

a surjective group homomorphism. Moreover,

ker(F ) = {φ ∈ Conf(S2, β, g) : F (φ) = φ|S2−supp(β) = Id|S2−supp(β)}

The only freedom is in where the points p1, . . . pn are sent, and we know φ fixes them on

(S2, β, g). Hence we have ker(F ) is isomorphic to a subgroup of Sn, the symmetric group

on n elements. Finally, by Claim 3.1.2 and Theorem 3.1.4, Conf(S2 − supp(β), g) is finite

for n ≥ 3, and since ker(F ) is also finite, we must have Conf(S2, β, g) is finite. If there are

three distinct angles, any conformal map has to fix them, but every conformal map of the

unit disk fixing three points is the identity. So the conformal group must be trivial in this

case. This concludes the proof of the theorem.
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Remark. The condition that n ≥ 3 is only sufficient. In the examples in the next section we

show that there is a metric on S2(1) with two conical singularities and noncompact conformal

group.

3.2 The Curvature Map π

For γ = (γ1, . . . γn), let Cm,α
γ be the Banach space of Cm,α

γ functions u : S2 → R

considered as conformal factors of g = e2ugβ and let Cm−2,α
γ−2 be the Banach space of Cm−2,α

γ−2

functions K. Our main goal is to study the image of the curvature map π, defined to be the

map Cm,α
γ → Cm−2,α

γ−2 sending

u 7→ Kg

As before, if g is a conformal conical metric on (S2, g+1), then

g = e2ugβ = e2uρ2βg+1

where ρ is a radius function as in Definition 2.1.1. The Gaussian curvature of g is then

Kg = K(e2ugβ) = e−2u(Kβ −∆βu)

where ∆β is the Laplacian with respect to the conical metric gβ and Kβ the Gaussian

curvature of gβ. One can compute

∆β = ρ−2β∆+1 (3.2.1)

Kβ = ρ−2β(1− β∆+1 log ρ) (3.2.2)

Observe that the function β∆+1 log ρ is defined to be βi∆+1ρ in a neighborhood of the

cone point pi and vanishes identically away from the cone points (since ρ ≡ 1).

Recall that a C1 map F : B1 → B2 is a Fredholm map between Banach manifolds Bi if

the differential

DuF (h) :=
d

dt
F (u+ th)

∣∣∣∣
t=0

= lim
t→0

F (u+ th)− F (u)

t
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is a Fredholm operator at each u ∈ Bi. As it is well-known, Fredholm maps between Banach

spaces are bounded linear operators characterized by having finite-dimensional kernel and

cokernel. The index of a Fredholm operator is defined as

ind(F ) = dim(KerF )− dim(coKerF )

Moreover, the index of the Fredholm map F is defined to be the index of its differential,

which is independent of the choice of u. For more on the theory of Fredholm maps on Banach

manifolds, see [ET70; Nir01].

Theorem 3.2.1. Let (Σ, g, β) be a conical surface with g representing the divisor β =∑n
j=1 βjpj. If γ = (γ1, . . . γn) ∈ Rn satisfies γi > 0 and γi 6= m

βj
for any i, j ∈ (1, . . . n),

where m is an integer, then the curvature map π is Fredholm of index 0.

Proof. Fix u ∈ Cm,α
γ . If we set g = e2ugβ, then as observed above

π(u) = e−2u(Kβ −∆βu) (3.2.3)

Let h ∈ Cm,α
γ , thought of as the tangent space to Cm,α

γ at u. Then

Duπ(h) =
d

dt

∣∣∣∣
t=0

π(u+ th)

=
d

dt

(
e−2(u+th)(Kβ −∆β(u+ th))

) ∣∣∣∣
t=0

= −2hKg − e−2u∆βh

with Kg = e−2u(Kβ−∆βu), which is the Gaussian curvature of g. At u = 0, we get Kg = Kβ,

hence

D0π(h) = −2hKβ −∆βh (3.2.4)

= −ρ−2β(2h(1− β∆+1 log ρ)) + ∆+1h) (3.2.5)

If we let a := 2(1− β∆+1 log ρ), then

− Lβ(h) := D0π(h) = ρ−2β(ah+ ∆+1h) (3.2.6)
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It is known that if γ = (γ1, . . . γn) ∈ Rn satisfies γi 6= m
βj

for any i, j ∈ (1, . . . n), where m

is an integer, then the linear operator Lβ : Ck,p
γ → Ck−2,p

γ−2 is Fredholm [MW15; Beh11]. We

further claim Lβ is formally self-adjoint. Observe there is a natural inner product on (S2, β)

given by

〈u, v〉 =

∫
S2

u · vρ2βdV+1 (3.2.7)

Thus for all u, v ∈ Cm,α
γ we have

〈v, Lβu〉 =

∫
S2

v(ρ−2β(∆+1u+ au))ρ2βdV+1 (3.2.8)

=

∫
S2

v(∆+1u+ au)dV+1 (3.2.9)

=

∫
S2

v(∆+1u+ au)dV+1 (3.2.10)

=

∫
S2

u(∆+1v + av)dV+1 (3.2.11)

=

∫
S2

uρ−2β(∆+1v + av)ρ2βdV+1 (3.2.12)

= 〈Lβv, u〉 (3.2.13)

The integration by parts in (3.12)-(3.13) needs some justification, so fix R > 0 small

enough and let BR(pi) be a geodesic ball of radius R around the cone point pi. Let SR(pi)

denote the circle of radius R with center pi, ∂νu denotes the normal derivative of u, and dS

the volume element of SR(pi). We then have∫
S2−{p1...pn}

v∆+1u dV+1 = lim
R→0

∫
S2−∪ni=1BR(pi)

v∆+1u dV+1

= lim
R→0

(∫
S2−∪ni=1BR(pi)

u∆+1v dV+1 +

∫
∪ni=1SR(pi)

u∂νv − v∂νu dS

)

=

∫
S2−{p1,...pn}

u∆+1v dV+1 + lim
R→0

n∑
i=1

∫
SR(pi)

u∂νv − v∂νu dS

Now, since u ∈ Ck,p
γ (S2 − ∪ni=1BR(pi)) for all R > 0 small enough, it follows that

∂νu ∈ Ck−1,p
γ−1 (S2 − ∪ni=1BR(pi)), i.e. there is a C > 0 such that ||u||Cl,αγ ≤ C. In particular,

||∂νu||Cl−1,α
γ−1
≤ C. It follows from the definition of these norms (see 2.14) that

sup
x∈S2−{p1,...pn}

ρ−γ|u| ≤ C
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and

sup
x∈S2−{p1,...pn}

ρ−(γ−1)|∂νu| ≤ C1

and similarly for v. Therefore∣∣∣∣ ∫
SR(pi)

u∂νv − v∂νu dS

∣∣∣∣ ≤ ∫
SR(pi)

|u||∂νv|dS +

∫
SR(pi)

|v||∂νu|dS (3.2.14)

=

∫
SR(pi)

ρ−γ|u|ρ−γ+1|∂νv|ρ2γ−1dS +

∫
SR(pi)

ρ−γ|v|ρ−γ+1|∂νu|ρ2γ−1dS

(3.2.15)

≤ 2C ′
∫
SR(pi)

ρ2γ−1dS (3.2.16)

≤ C(δ)R2γ (3.2.17)

Thus, provided γ > 0, taking the limit as R → 0, we see that the boundary terms

disappear, as wanted. This concludes the proof that the map Lβ is formally self-adjoint and

Fredholm, from which it follows that the map π is a Fredholm map of index 0.

3.3 Properness of the map π

Theorem 3.3.1. Let C+ be the subspace of Cm−2,α
γ−2 consisting of positive curvature functions

K. Define U = π−1(C+). If γ > 0, then the map π0 : U → C+ defined as the restriction of π

to U is proper.

Proof. If Ki → K ∈ C+, then the sequence Ki is bounded in Ck−2,α
γ−2 . In particular, Ki is

bounded in C0
γ−2. Hence there exist a constant K such that ||Ki||0 ≤ K away from the cone

points. Moreover, since the Euler characteristic is positive, we have using Gauss-Bonnet

(2.1.5)

2πχ(S2, β) =

∫
S2

Kidvolgi ≤ K0 · area(S2, gi) (3.3.1)

so we get

area(S2, gi) ≥
2πχ(S2, β)

K0

> 0
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On the other hand, Myers’ theorem ([Pet16]) implies that the diameter of each conical surface

is finite (since curvature is assumed positive). Furthermore, since the sequence Ki converges

in C+ to a positive function K, we can find constants D0, v0 such that

1. vol(gi) ≥ v0

2. diam(gi) ≤ D0

for all i. Under these bounds we can now directly apply Theorem 2.2.6 to conclude that

there exists a sequence of diffeomorphisms Fi : S2 → S2 such that

(F ∗i gi)rs → (g∞)rs (3.3.2)

in C1,α
γ , where g∞ is a conical metric on S2 with m conical singularities of angles 0 < θ ≤

2π. By passing to a subsequence if necessary, we may assume that the Fi are orientation

preserving. On the other hand, since g∞ is the limit of a sequence of conical metrics in the

same conformal class, we claim there exists a diffeomorphism ψ : S2 → S2 and a smooth,

positive function u : S2 → R such that ψ∗g = e2ugβ. To see this, suppose C denotes

the space of conformal classes on the punctured sphere S2 − {p1, . . . , pn}, i.e., two smooth

(incomplete) metrics h1, h2 on S2−{p1, . . . , pn} represent the same point in C if there exists a

positive smooth function u such that h1 = e2uh2. The group Diff+ of orientation preserving

diffeomorphisms of S2 acts on C by

(ψ, [h])→ ψ∗[h] = [ψ∗h]

Since it is not true in general that [ψ∗h] = [h], we consider the moduli spaceM = C/Diff+.

This space corresponds to Teichmuller space [Pet19; MW15], since the mapping class group

of the sphere is trivial (so every orientation preserving diffeomorphism is isotopic to the

identity). Observe then that every element of the sequence gi, when considered as smooth

metrics on S2 − {p1, . . . pn}, corresponds to the same point in C , namely the conformal

class [gβ]. If ψi is a sequence of orientation preserving diffeomorphisms, then ψ∗i [gi] = [gi]
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as elements of M, hence the classes ψ∗i gi and gβ correspond to the same point in M. Since

the topology of Teichmuller space is Hausdorff [Pet19], the sequence ψ∗i gi is the constant

sequence [gβ] ∈M. Thus the limit of the ψ∗i gi must be in the conformal class of gβ modulo

diffeomorphisms, i.e. there exists a diffeomorphism of S2 such that the limit g satisfies

ψ∗g = e2ugβ

for some positive smooth function u on S2, as claimed. In particular, there is a diffeomor-

phism Ψ of S2 such that Ψ∗g∞ = e2ugβ. After precomposing Fi with Ψ−1, we may as well

assume that we have a sequence Fi of diffeomorphisms of S2 such that

F ∗i (gi) = F ∗i (e2uigβ)→ e2ugβ (3.3.3)

in C1,α
γ , where u is some positive smooth function on S2. As in the arguments preceding

Proposition 2.5 in [And17], one now has that the Fi converge on a subsequence to the identity

modulo the action of the conformal group, i.e. there exist conformal maps φi ∈ Conf(S2, gβ)

such that φ−1
i ◦ Fi converge to the identity. It follows from Proposition 2.5 in [And17] that

the functions φ∗iui are uniformly bounded in C1,α
γ ∩W 2,p

δ , for γ > 0 and some δ ≤ γ (see

[Beh11] for a definition of weighted Sobolev spaces). Observe that nothing really changes

in the presence of conical singularities since the diffeomorphisms Fi are still quasiconformal

when restricted to the punctured sphere S2−{p1, . . . , pn} (see [LV73]). By the Arzela-Ascoli

theorem, the uniform bound on the sequence φ∗iui implies convergence on a subsequence to

a limit in C1,α
γ . Moreover, since the conformal group Conf(S2, gβ) is finite, we actually have

that {ui} themselves (sub)converge to a limit u ∈ C1,α
γ which satisfies

∆gβu = Kβ −Ke2u (3.3.4)

weakly. Given that the Gaussian curvatures Ki of the metrics gi are assumed to be in

Ck−2,α
γ−2 , a bootstrapping argument using Proposition 2.7 in [Beh11] implies u ∈ Ck,α

γ . This

then completes the proof that the map π0 is proper.
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3.4 Degree Computations

We conclude this section with sufficient conditions for a function K to arise as the Gaus-

sian curvature of a conformal conical metric on S2 having at least three conical singularities

and angles less than 2π. Our result follows from computing the degree of the curvature map

which we have established in the previous section is a proper Fredholm map of index zero,

providing not only an existence theorem but also a signed count of the number of solutions

when K is a regular value.

As mentioned in the introduction, a necessary condition for the existence of a constant

curvature conical metric on S2 having at least three conical singularities and angles less than

2π is ∑
i 6=j

βi < βj, for all j (3.4.1)

In fact, Luo-Tian have shown in [LT92] that if the generalized Euler characteristic is positive,

then this condition is sufficient and necessary for uniqueness and existence. Under these

assumptions, we can now compute the degree of the curvature map given our previous

results. Recall that if F is a proper Fredholm map of index 0 between open subsets of

Banach spaces, one can define its degree by the formula

deg(F ) =
∑

x∈F−1(y)

sign(DxF )

where y is any regular value of F and the sign is ± according to whether DxF preserves

or reverses orientation. By definition, y is a regular value if DxF is an isomorphism for all

x ∈ F−1(y). In particular, points with empty preimage are always regular values. We refer

the reader to [Nir01] for more on the degree theory of Fredholm maps on Banach manifolds.

Let C = C+ ∩ Ck−2,α
γ−2 , where γi > 0, γi 6= m

βj
for any (i, j) ∈ (1, . . . n). Recall that the

restrictions on γ guarantee that the curvature map is proper and Fredholm of index 0. We

have,
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Theorem 3.4.1. Suppose n ≥ 3, and β =
∑n

i=1 βipi is a divisor on S2 satisfying the

Troyanov condition (1.1.12) and there exists i, j, k distinct for which βi, βj, βk are all distinct.

Assume χ(S2, β) > 0 and let gβ be the unique conical metric on S2 representing the divisor

β of Gaussian curvature Kβ = 1. Then a function K on S2 is the Gaussian curvature of

a metric g conformal to gβ if K is a positive function in Cm−2,α
γ−2 , k ≥ 2, α ∈ (0, 1), where

γ = (γ1, . . . , γn) ∈ Rn, γi 6= m
βj

, γi > 0 and m is an integer.

Proof. Suppose K ∈ C. We want to show there exists a function u such that e2ugβ has Gaus-

sian curvature K, where gβ is the unique conformal conical metric with Gaussian curvature

1. The existence of such a metric is equivalent to the existence of a solution u to the equation

K = e−2u(1−∆βu) (3.4.2)

In the language of this section, it is enough to show that the restriction π0 of the

curvature map to π−1(C) has deg = 1. The assumption that K ∈ C guarantees that the map

π0 is a proper Fredholm map of index 0 (see Theorems 3.3.1, 3.2.1). Observe that for given

γ, α, k satisfying the conditions of the theorem, the subset of Cm−2,α
γ−2 consisting of positive

functions is convex, thus C is path-connected and there is a well-defined notion of degree.

Clearly the function K = 1 ∈ C. On the other hand, the preimage of K = 1 under π0 is

given by all solutions to the equation

1 = e−2u(1−∆βu) (3.4.3)

By Theorem 2 in [LT92] there exists a unique conical metric g on S2 representing the divisor β

of constant curvature 1. Since u = 0 is a solution, it follows that the preimage π−1
0 (1) = {0}.

Now, the kernel of the differential of the curvature map π0 under the assumption that

gβ has Gaussian curvature 1 is given by solutions of

D0π(h) = −2h−∆βh = 0 (3.4.4)

We now argue that the first eigenvalue λ of the problem

∆βh = −λh (3.4.5)
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satisfies λ ≥ 2. Moreover, if the lowest possible eigenvalue is achieved, namely λ = 2, then

there exists a non-constant solution to the equation Hess(f) = −fg. To see this, we follow

the same ideas as in the works of Lichnerowicz and Obata [Lic58; Oba62] which have now

become standard. Using Bochner’s formula away from the cone points, we can write

1

2
∆β|∇h|2 = |Hess(h)|2 + gβ(∇∆h,∇h) +Kβ|∇h|2 (3.4.6)

Using Scharwz inequality and the fact that h is an eigenfunction we get

|Hess(h)|2 ≥ 1

2
(∆h)2 = −λ

2
h∆βh (3.4.7)

Combining this with Bochner’s formula we get the inequality

∆β|∇h|2 ≥ −
λ

2
h∆βh− λ|∇h|2 + |∇h|2 (3.4.8)

We now claim ∫
S2−{p1,...pn}

∆βfdvolβ = 0 (3.4.9)

holds for any function f ∈ Ck−1,α
γ−1 . For R > 0 small enough, let BR(pk) be a geodesic ball of

radius R centered at the cone point pk. Then∫
S2−{p1,...pn}

∆βfdvolβ =

∫
S2−{p1,...pn}

ρ−2β∆+1fρ
2βdvol+1 = lim

R→0

∫
S2−∪nk=1BR(pk)

∆+1fdvol+1

= lim
R→0

∫
S2−∪nk=1BR(pk)

div(∇f)dvol+1

= lim
R→0

n∑
k=1

∫
SR(pk)

(∇f · ν)dS

where in the last equality we have used the divergence theorem, with SR denoting the

boundary of BR(pk), ν the normal to each boundary circle and dS the area element. As

before, the assumption that f ∈ Ck−1,α
γ−1 implies that supS2−{p1,...pn} ρ

−(γ−1)+1|∇f | ≤ C , so

that ∫
SR

|ρ−γ+2∇f · ν|ργ−2dS ≤ C ′Rγ
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Since γ > 0, taking the limit as R→ 0 we get the desired result in (3.4.9).

Now, using (3.4.9) in combination with (3.4.8), we obtain the inequality

0 =

∫
S2−{p1,...pn}

∆β|∇h|2dvolβ ≥
∫
S2−{p1,...pn}

−λ
2
h∆βh− λ|∇h|2 + |∇h|2dvolβ

=

(
λ

2
− λ+ 1

)(∫
S2−{p1,...pn}

|∇h|2dvolβ
)

where the integration by parts is justified as in the proof of Theorem 3.2.1. The previous

inequality then shows that

− λ

2
+ 1 ≤ 0 (3.4.10)

so that λ ≥ 2. Moreover, if λ = 2, then the inequalities become equality, which forces the

trace free part of the Hessian of h to vanish, implying that h solves the equation

Hess(h) = φg (3.4.11)

One can further show that φ = −h. Observe that (3.4.11) implies the existence of a noncon-

stant solution to the equation

L∇hg = −hg (3.4.12)

Now suppose h ∈ Ker(D0π0), that is, h solves −2h = ∆βh = ρ−2β∆+1h, thus h is an eigen-

fuction corresponding to the lowest possible eigenvalue. The discussion above shows that h

satisfies (3.4.12), in other words, ∇h is a conformal Killing field on (S2, g, β). Equivalently,

this means the locally defined flow of ∇h preserves the conformal structure. Therefore, there

exists a nontrivial one-parameter group of conformal transformations. Since the conformal

group Conf(S2, β) is trivial, we must have h = 0. Thus K = 1 is a regular value of the

curvature map π0 . It now follows that degπ0 = 1, as wanted.
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