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Abstract of the Dissertation

A Twisted Complex Brunn-Minkowski Theorem with Applications

by

El Mehdi Ainasse

Doctor of Philosophy

in

Mathematics

Stony Brook University

2021

In his Annals of Mathematics paper [Ber09b], Berndtsson proves an important result on

the Nakano positivity of holomorphic infinite-rank vector bundles whose fibers are Hilbert

spaces consisting of holomorphic L2-functions with respect to a family of weight functions{
e−ϕ(t,·)}

t∈U , varying in t ∈ U ⊂ Cm, over a pseudoconvex domain. Using a variant of

Hörmander’s theorem due to Donnelly and Fefferman, we show that Berndtsson’s Nakano

positivity result holds under different (in fact, more general) curvature assumptions. This is

of particular interest when the manifold admits a negative non-constant plurisubharmonic

function, as these curvature assumptions then allow for some curvature negativity. We

describe this setting as a “twisted” setting. Furthermore, we extend our main result, and

thus Berndtsson’s Nakano positivity result, to trivial families of possibly unbounded Stein

manifolds. As immediate applications of this result, we prove log-plurisubharmonic variation

theorems for Bergman kernels, as well as families of compactly supported measures over

trivial families of Stein manifolds. We then generalize these log-plurisubharmonic variation

results to a certain class of non-trivial families of Stein manifolds. Finally, we present two

complex Prékopa-Leindler type theorems.
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6 A twisted complex Brunn-Minkowski theorem with applications 97

6.1 Twisted Nakano positivity of Hilbert bundles . . . . . . . . . . . . . . . . . . 97

6.1.1 For families of relatively compact complete Kähler submanifolds of

Stein manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1.3 Proof of Theorem A under the assumption of strict curvature

positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1.4 Relaxing the strict curvature positivity requirement . . . . . 104

6.1.2 For trivial families of possibly unbounded Stein manifolds . . . . . . . 108

6.1.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.2.2 Griffiths positivity for trivial families of possibly unbounded

Stein manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.2.3 Nakano positivity for trivial families of possibly unbounded

Stein manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Variations of Bergman kernels and compactly supported measures . . . . . . 121

6.2.1 Twisted log-plurisubharmonic variation results for trivial families of

possibly Stein unbounded manifolds . . . . . . . . . . . . . . . . . . . 121

6.2.1.1 Variations of Bergman kernels . . . . . . . . . . . . . . . . . 121

6.2.1.2 Variations of families of compactly supported measures . . . 122

6.2.2 Twisted log-plurisubharmonic variation results for a class of non-trivial

families of Stein manifolds . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.2.1 Variations of Bergman kernels . . . . . . . . . . . . . . . . . 125

6.2.2.2 Variations of families of compactly supported measures . . . 129

vi
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Chapter 1

Introduction

1.1 Description of the main results

In this thesis, we mainly study the curvature properties of the natural L2-metrics of holomor-

phic Hilbert bundles associated to trivial families of Stein manifolds. A concrete formulation

is as follows. Let X be an n-dimensional relatively compact complete Kähler submanifold

of a Stein Kähler manifold (Y, g). Let U be a domain in Cm containing the origin, and let

V → X be a holomorphic vector bundle over the closure X of X. Let
{
h[t]
}
t∈U be a family

of smooth Hermitian metrics for V → X. By the latter, we mean taking a metric h for

the pullback bundle π∗
X
V → U × X, where πX : U × X → X is the canonical projection,

and letting h[t] := i∗th where it denotes the inclusion map X ↪→ {t} ×X. We can consider

the space L2
(
X, h[t]

)
of sections f of V → X whose norm |f |h[t] , with respect to the metric

h[t], is square-integrable on X with respect to the volume form dVg induced by the Kähler

metric g. For each t ∈ U , we can then consider the space H2
(
X, h[t]

)
of holomorphic sections

of V → X in L2
(
X, h[t]

)
, which is a closed subspace of L2

(
X, h[t]

)
by our smoothness and

boundedness assumptions, and therefore a Hilbert space. The smoothness and boundedness

assumptions imply further that the Hilbert spaces in the collection
{
H2
(
X, h[t]

)}
t∈U have

equivalent norms. Indeed, for any section f of V → X, for any point x ∈ X, and for any

1



s, t ∈ U ,

|f(x)|2h[t] = sup
σ∈V ∗x −{0}

|〈σ, f(x)〉|2

|σ|2h[t],∗
=

(
sup

σ∈V ∗x −{0}

|σ|2h[s],∗
|σ|2h[t],∗

)
|f(x)|2h[s] ,

where h[t],∗ and h[s],∗ are the dual metrics for the dual bundle V ∗ → X induced by h[t] and

h[s] respectively. Therefore, for any section f of V → X,

C−1
t,s

∫
X

|f(x)|2h[s] dVg(x) ≤
∫
X

|f(x)|2h[t] dVg(x) ≤ Cs,t

∫
X

|f(x)|2h[s] dVg(x),

where

Cs,t := sup
σ∈V ∗x −{0}

x∈X

|σ|2h[s],∗
|σ|2h[t],∗

,

and Ct,s is defined similarly. In particular, it follows that for any s, t ∈ U , f ∈ H2
(
X, h[t]

)
if and only if f ∈ H2

(
X, h[s]

)
. Thus, the underlying vector spaces of the Bergman spaces

H2
(
X, h[t]

)
are equal as subspaces of the space ΓO(X, V ). By fixing H2

0 := H2
(
X, h[0]

)
, we

can define the bundle Eh of infinite rank over U with total space U ×H2
0, whose fiber over

t ∈ U is {t} × H2
0
∼= H2

t =: H2
(
X, h[t]

)
. It is a trivial Hilbert bundle equipped with the

non-trivial Hermitian metric (·, ·)h[t] , varying in t, induced by the L2-norm on H2
t .

Before stating our main theorem, we need to define what we call a twisted curvature

operator. Given a smooth Hermitian metric h for V → X, let Θδ(h) be locally defined as∑
1≤j,k≤m

∂

∂t̄k

(
h−1 ∂h

∂tj

)
dt̄k ∧ dtj +

∑
1≤j≤m
1≤µ≤n

∂

∂z̄µ

(
h−1 ∂h

∂tj

)
dz̄µ ∧ dtj

+
∑

1≤k≤m
1≤ν≤n

∂

∂t̄k

(
h−1 ∂h

∂zν

)
dt̄k ∧ dzν +

δ

1 + δ

∑
1≤ν,µ≤n

∂

∂z̄µ

(
h−1 ∂h

∂zν

)
dz̄µ ∧ dzν ,

where δ > 0. We can also express Θδ(h) as

Θδ(h) = Θ(h)− 1

1 + δ
π∗XΘ

(
h[t]
)
.

As a block matrix split with respect to the product structure U ×X for our holomorphic

trivial family, Θδ(h) has the form

Θδ(h) =

∂̄U (h−1∂Uh) ∂̄X (h−1∂Uh)

∂̄U (h−1∂Xh)
δ

1 + δ
∂̄X (h−1∂Xh)

 .

2



Let η be a smooth function on Y and define the twisted curvature operator Ξδ,η by

Ξδ,η(h) := Θδ(h) +
δ

1 + δ
π∗X
((

Ric(g) + 2∂∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη
)
⊗ IdV

)
.

The operator Ξδ,η can also be represented as the block matrix

Ξδ,η(h) =

∂̄U (h−1∂Uh) ∂̄X (h−1∂Uh)

∂̄U (h−1∂Xh)
δ

1 + δ

(
∂̄X (h−1∂Xh) + Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
 .

Noting that

2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη =
4e

1+δ
2
η

1 + δ
∂X ∂̄X

(
−e−

1+δ
2
η
)
,

we may also rewrite Ξδ,η(h) as

Ξδ,η(h) =

∂̄U (h−1∂Uh) ∂̄X (h−1∂Uh)

∂̄U (h−1∂Xh)
δ

1 + δ

(
∂̄X (h−1∂Xh) + Ric(g) +

4e
1+δ
2
η

1 + δ
∂X ∂̄X

(
−e− 1+δ

2
η
))
 .

Note that Ξδ,η(h) ≥Griff 0 if and only if Ξδ,η(h) ≥ 0 as a block matrix.

Our initial result is stated as follows.

Theorem A. Let X be an n-dimensional relatively compact complete Kähler submanifold of

an ambient Stein Kähler manifold (Y, g). Let V → X be a holomorphic vector bundle. Let

U ⊂ Cm be a domain, and let
{
h[t]
}
t∈U be a family of smooth Hermitian metrics for V → X.

Let δ > 0 and let η be a smooth function on Y . If Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , then the holomorphic Hermitian bundle (Eh, (·, ·)h[t]) is Nakano positive.

Moreover, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

then (Eh, (·, ·)h[t]) is Nakano semipositive.

3



When V → X is a line bundle L→ X equipped with a smooth Hermitian metric h = e−ϕ,

Θδ (e−ϕ) can be represented as

Θδ,η

(
e−ϕ
)

=

∂U ∂̄Uϕ ∂U ∂̄Xϕ

∂X ∂̄Uϕ
δ

1 + δ
∂X ∂̄Xϕ


and the twisted curvature operator Ξδ,η (e−ϕ) can be represented as

Ξδ,η(h) =

∂̄U (h−1∂Uh) ∂̄X (h−1∂Uh)

∂̄U (h−1∂Xh)
δ

1 + δ

(
∂̄X (h−1∂Xh) + Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
 .

In this case, Griffiths (semi)positivity and Nakano (semi)positivity are equivalent. In

particular, the positivity of Ξδ,η (e−ϕ) implies the positivity of

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+ Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

= ∂X ∂̄Xϕ
[t] + Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη,

for each t ∈ U , by Schur complement theory, in which case the second curvature condition

becomes redundant.

Theorem A can be seen as a “twisted” variant of Berndtsson’s celebrated Nakano positivity

theorem [Ber09b, Theorem 1.1]. If X = Ω is a bounded pseudoconvex domain in Y = Cn,

V → X is a trivial bundle L→ X of rank 1, and h = e−ϕ is a metric for the pullback bundle

π∗
X
L→ U ×X, then we are in the context of Berndtsson’s Nakano positivity theorem. In

this situation, the family of metrics is a family weight functions
{
e−ϕ(t,·)}

t∈U which allows us

to define the family of L2-spaces {L2 (Ω, ϕ(t, ·))}t∈U of measurable functions that are square-

integrable with respect to the measure e−ϕ(t,·)dV with dV denoting the Lebesgue measure on Ω.

Let H2 (Ω, ϕ(t, ·)) denote the space of functions in L2 (Ω, ϕ(t, ·)) that are holomorphic. Once

again, by fixing H2
0 := H2 (Ω, ϕ(0, ·)), we can define the trivial vector bundle E of infinite

rank over U , with total space U ×H2
0 whose fiber at t ∈ U is {t}×H2

0
∼= H2

t := H2 (Ω, ϕ(t, ·)).

4



Theorem 1.1.1. ([Ber09b, Theorem 1.1]) If Ω is pseudoconvex and ϕ is plurisubharmonic

(resp. strictly plurisubharmonic) on U × Ω, then the bundle
(
E, (·, ·)ϕ(t,·)

)
is Nakano semi-

positive (resp. positive).

By choosing η to be identically constant and letting δ → +∞ in our Theorem A, we

recover Theorem 1.1.1.

Berndtsson’s Nakano positivity theorem is at the center of a long-standing project of

Berndtsson aiming at formulating complex analogues of Brunn-Minkowski theory, which first

started with his result on the log-plurisubharmonicity of Bergman kernels over pseudoconvex

domains ([Ber06]). In addition to extending the Prékopa-Leindler theorem (and thus the

Brunn-Minkowski theorem) to the complex setting, Berndtsson’s result has deep applications

in complex analysis and geometry. For example, his result leads to alternative proofs of

existence and uniqueness theorems for Kähler-Einstein metrics ([Ber09a] and [Ber13]), as

well as optimal L2-extension (or Ohsawa-Takegoshi type) theorems ([BL16]).

Now, unlike Berndtsson’s case in which the curvature hypothesis would be that of Nakano

positivity of the metric h for the pullback bundle in this geometric setting ([Rau13, Theorem

1.5]), our curvature hypothesis is more general, and allows for some amount of curvature

negativity along the manifold X in certain cases.

For simplicity, let us focus temporarily on the case where we have a line bundle L→ Y

equipped with a family of smooth Hermitian metrics. The twisted curvature condition

Ξδ,η (e−ϕ) ≥ 0 can seem rather abstract, and it may be unclear how our results constitute an

improvement of Berndtsson’s theorem. But as we can see from the matrix representation

Ξδ,η (e−ϕ), if the function −e− 1+δ
2
η is plurisubharmonic on X, then our metric e−ϕ does not

need to be positively curved along the fiber X for the condition Ξδ,η (e−ϕ) ≥ 0 to be satisfied.

In principle, we may choose a metric e−ϕ so that the curvature along the fiber X is possibly

5



as negative as

4e
1+δ
2
η

1 + δ
∂X ∂̄X

(
−e−

1+δ
2
η
)
.

Therefore, provided that the manifold X possesses a negative non-constant plurisubharmonic

function, our result improves Berndtsson’s result. The existence of negative non-constant

plurisubharmonic functions is equivalent to the existence of functions of self-bounded gradient,

on which we expand in Section 4.3. These are functions that satisfy the condition

∂∂̄η ≥ c ·
(
∂η ∧ ∂̄η

)
for some c > 0, and the latter is equivalent to

∂∂̄
(
−e−cη

)
≥ 0.

We offer a few examples in Section 1.2 of this introductory chapter to motivate our results.

With our main result at our disposal, we can prove more general curvature positivity

results in the case where X is a possibly unbounded Stein manifold. In this situation, Eh

may no longer have the structure of a vector bundle as the fibers may fail to be isometric,

resulting in the absence of local triviality. In other words, Eh is simply a family of Hilbert

spaces indexed by t or in other words, a field of Hilbert spaces (see [LS14, Definition 2.2.1]).

Using alternative characterizations of Griffiths (semi)positivity and Nakano (semi)positivity,

we prove the following result.

Theorem B. Let (X, g) be any Stein Kähler manifold, let U be a domain in Cm, and let

V → X be a holomorphic vector bundle. Let
{
h[t]
}
t∈U be a family of smooth Hermitian

metrics for V → X, and let (Eh, (·, ·)h[t]) be the holomorphic Hermitian field of Hilbert spaces

whose fiber at t is H2
t := H2

(
X, h[t]

)
. Let δ > 0 and η be a smooth function on X. If

Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

6



for each t ∈ U , then the holomorphic Hermitian bundle (Eh, (·, ·)h[t]) is Nakano positive in

the sense of definition 6.1.7. Moreover, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

then (Eh, (·, ·)h[t]) is Nakano semipositive in the sense of definition 6.1.7.

Prior to proving Theorem B, we also show that the holomorphic Hermitian field of Hilbert

spaces (Eh, (·, ·)h[t]) is Griffiths positive in a general sense by using a different approach than

the one used in our proof of Theorem B.

Theorem C. Let (X, g) be any Stein Kähler manifold, let U be a domain in Cm, and let

V → X be a holomorphic vector bundle. Let
{
h[t]
}
t∈U be a family of smooth Hermitian

metrics for V → X and let (Eh, (·, ·)h[t]) be the holomorphic Hermitian field of Hilbert spaces

whose fiber at t is H2
t := H2

(
X, h[t]

)
. Let δ > 0 and η be a smooth function on X. If

Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , then the holomorphic Hermitian bundle (Eh, (·, ·)h[t]) is Griffiths positive in

the sense of definition 6.1.6. Moreover, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

for each t ∈ U , then (Eh, (·, ·)h[t]) is Griffiths semipositive in the sense of definition 6.1.6.

As Berndtsson’s work has been the main inspiration for our work, in the spirit of

generalizing some of the results of Berndtsson’s complex Brunn-Minkowski theory ([Ber18]),

we use our general curvature positivity theorems to establish log-plurisubharmonic variation

results similar to those of Berndtsson. Namely, we prove log-plurisubharmonic variation

results for Bergman kernels and families of compactly supported measures for trivial families

of possibly unbounded Stein manifolds. As in the case of Berndtsson’s complex Brunn-

Minkowski theory, these results really only require the Griffiths positivity of the holomorphic

Hermitian field of Hilbert spaces (Eh, (·, ·)h[t]) and follow almost immediately.
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Theorem D. Let (X, g) be any Stein Kähler manifold, let U ⊂ Cm be a domain, and let

V → X be a holomorphic vector bundle. Let
{
h[t]
}
t∈U be a family of smooth Hermitian

metrics for V → X. Let δ > 0 and η be smooth function on X. Denote by Kt the Bergman

kernel for the projection L2
(
X, h[t]

)
→ H2

(
X, h[t]

)
.

If Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , then the family of possibly singular Hermitian metrics for the pullback

bundle π∗XV → U ×X defined by
{
K−1
t

}
t∈U on the fiber (π∗XV )(t,z)

∼= Vz is positively curved.

Otherwise, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

for each t ∈ U , then the family of possibly singular Hermitian metrics for π∗XV → U ×X

defined by
{
K−1
t

}
t∈U on the fiber (π∗XV )(t,z)

∼= Vz is semipositively curved.

Theorem E. Let (X, g) be any Stein Kähler manifold, let U ⊂ Cm be a domain, and let

V → X be a holomorphic vector bundle. Let
{
h[t]
}
t∈U be a family of smooth Hermitian

metrics for V → X. Let δ > 0 and η be smooth function on X. Let {µ̂t}t∈U be a family of

compactly supported V ∗-valued complex measures over X. For each section f ∈ Γ(Eh), define

the measure µ
(f)
t =

〈
f [t], µ̂t

〉
. Suppose that the section ξ(µ) of E∗h defined by

f [t] 7→
〈
ξ

(µ)
t , f [t]

〉
:= µ

(f)
t (X) =

∫
X

〈
f [t], µ̂t

〉
is holomorphic. That is, U 3 t 7→ µ

(f)
t (X) is holomorphic whenever f ∈ ΓO(Eh).

If Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , then the function

U 3 t 7→ log
(∥∥ξ(µ)

∥∥2

h[t],∗

)
8



is strictly plurisubharmonic or identically −∞. Otherwise, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

for each t ∈ U , then the function

U 3 t 7→ log
(∥∥ξ(µ)

∥∥2

h[t],∗

)
is plurisubharmonic or identically −∞.

In [Ber17], Berndtsson shows how his log-plurisubharmonic variation results for product

domains can be generalized to domains that are subsets of product domains, but not necessarily

product domains themselves. His approach consists of a reduction from the latter situation

to the former situation. Although Berndtsson’s technique is not quite compatible with our

twisted curvature condition, we succeed nonetheless at establishing log-plurisubharmonic

variation results for a certain class of non-trivial families of Stein manifolds.

Theorem F. Let Y be an n-dimensional Stein manifold. Let ρ be a smooth plurisubharmonic

function on Cm × Y and let

X = {ρ(t, z) < 0} ⊂ Cm × Y.

Suppose that for each t, the restriction ρ[t] of ρ to

Xt := {z ∈ Y : (t, z) ∈ X} ⊂ Y

takes values in [−1, 0). Let g be a Kähler metric for Y and let us equip Cm × Y with the

product metric induced by the Euclidean metric on Cm and the metric g on Y . Let V → X

be a holomorphic vector bundle and let h be a smooth Hermitian metric for V → X such that

∂̄t (h−1∂Y h) = 0. Let V [t] := V
∣∣
Xt

. If ∂̄t (h−1∂th) >Griff 0 and

Θ
(
h[t]
)

+
(
Ric(g) + ∂Y ∂̄Y ρ

[t]
)
⊗ IdV [t] >Nak 0,

over Xt, for each t ∈ Cm, then for any z ∈ Xt, and σ ∈
(
V

[t]
z

)∗
, the function

(t, z) 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉
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is strictly plurisubharmonic or identically −∞. Otherwise, if either ∂̄t (h−1∂th) ≥Griff 0 and

Θ
(
h[t]
)

+
(
Ric(g) + ∂Y ∂̄Y ρ

[t]
)
⊗ IdV [t] ≥Nak 0,

over Xt, for each t ∈ Cm, then for any z ∈ Xt, and σ ∈
(
V

[t]
z

)∗
, then the function

(t, z) 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉

is plurisubharmonic or identically −∞.

Theorem G. Let Y be an n-dimensional Stein manifold. Let ρ be a smooth plurisubharmonic

function on Cm × Y and let

X = {ρ(t, z) < 0} ⊂ Cm × Y.

Suppose that for each t, the restriction ρ[t] of ρ to

Xt := {z ∈ Y : (t, z) ∈ X} ⊂ Y

takes values in [−1, 0). Let g be a Kähler metric for Y and let us equip Cm × Y with the

product metric induced by the Euclidean metric on Cm and the metric g on Y . Let V → X

be a holomorphic vector bundle and let h be a smooth Hermitian metric for V → X such

that ∂̄t (h−1∂Y h) = 0. Let V [t] := V
∣∣
Xt

. Moreover, let {µ̂t}t∈U be a family of
(
V [t]
)∗

-valued

complex measures over Xt that are all locally supported in a compact subset of X. For a

section f ∈ Γ(Eh), define the measure µ
(f)
t =

〈
f [t], µ̂t

〉
. Suppose that the section ξ(µ) of E∗h

defined by

f [t] 7→
〈
ξ

(µ)
t , f [t]

〉
:= µ

(f)
t (Xt) =

∫
Xt

〈
f [t], µ̂t

〉
is holomorphic. That is, U 3 t 7→ µ

(f)
t (Xt) is holomorphic whenever f ∈ ΓO(Eh).

If, for each t ∈ Cm, ∂̄t (h−1∂th) >Griff 0 and

Θ
(
h[t]
)

+
(
Ric(g) + ∂Y ∂̄Y ρ

[t]
)
⊗ IdV [t]

over Xt, for each t ∈ Cm, over Xt, then the function

U 3 t 7→ log
(∥∥ξ(µ)

∥∥2

h[t],∗

)
10



is strictly plurisubharmonic or identically −∞. Otherwise, if either ∂̄t (h−1∂th) ≥Griff 0 and

Θ
(
h[t]
)

+
(
Ric(g) + ∂Y ∂̄Y ρ

[t]
)
⊗ IdV [t] ≥Nak 0,

over Xt, for each t ∈ Cm, then for any z ∈ Xt, and σ ∈
(
V

[t]
z

)∗
, then the function

U 3 t 7→ log
(∥∥ξ(µ)

∥∥2

h[t],∗

)

is plurisubharmonic or identically −∞.

Finally, we present a couple of generalizations of the complex Prékopa-Leindler theorems

of Berndtsson. Recall that a domain Ω in Cn is balanced if z ∈ Ω implies that λz ∈ Ω for any

λ ∈ C with |λ| ≤ 1.

Theorem H. Let Ω be a balanced pseudoconvex domain in Cn, let δ > 0 and let η be a

smooth function on Ω. Let U be a domain in Cm and let ϕ ∈ C∞(U × Ω) be S1-invariant in

z for any t ∈ U . If Ξδ,η (e−ϕ) ≥ 0 (resp. > 0) in U × Ω, then the function

t 7→ − log

(∫
Ω

e−ϕ(t,z)dV (z)

)

is plurisubharmonic (resp. strictly plurisubharmonic) or identically equal to −∞.

Theorem I. Let Ω := {ζ : Re(ζ) ∈ D} for a convex domain D in Rn. Let δ > 0 and let η be

a smooth function on Ω. Let U be a domain in Cm and assume that ϕ ∈ C∞ (U × Ω) does not

depend on the imaginary part of ζ. If Ξδ,η (e−ϕ) ≥ 0 (resp. > 0) in U × Ω, then the function

t 7→ − log

(∫
D

e−ϕ(t,x)dx

)

is plurisubharmonic (resp. strictly plurisubharmonic) or identically −∞.
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1.2 Motivating examples

1.2.1 The unit ball

Let δ = 1. On the unit ball Bn(1) in Cn, the function z 7→ − log
(
1− |z|2

)
is a function of

self-bounded gradient (with constant 1) on Bn(1). Therefore,

2∂z∂̄zη − (1 + δ)
(
∂zη ∧ ∂̄zη

)
=

4e
1+1
2
η

1 + 1
∂z∂̄z

(
−e−

1+1
2
η
)

=
2

1− |z|2
dz∧̇dz̄,

where

dz∧̇dz̄ := dz1 ∧ dz̄1 + · · ·+ dzn ∧ dz̄n.

If we equip Bn(1) with the Euclidean metric, the twisted curvature condition Ξδ,η (e−ϕ) ≥ 0

reduces to the following.∂t∂̄tϕ ∂t∂̄zϕ

∂z∂̄tϕ
1

2

(
∂z∂̄zϕ+

2

1− |z|2
dz∧̇dz̄

) ≥ 0. (1.2.1)

Therefore, ∂z∂̄zϕ can be chosen to be as negative as − 2

1− |z|2
dz∧̇dz̄.

Example 1.2.1. (A diagonal weight on Bn(1)) If we pick a weight ϕ of the form

ϕ(t, z) = ϑ(t) + ψ(z),

then the twisted curvature condition reduces to∂t∂̄tϑ 0

0
1

2

(
∂z∂̄zϕ+

2

1− |z|2
dz∧̇dz̄

) ≥ 0,

which is equivalent to

∂t∂̄tϑ ≥ 0 and ∂z∂̄zψ +
2

1− |z|2
dz∧̇dz̄ ≥ 0.

For instance, let ϕ(t, z) = |t|2 − 2 |z|2. Then

∂t∂̄tϕ = dt∧̇dt̄ ≥ 0 and ∂z∂̄zψ +
2

1− |z|2
dz∧̇dz̄ =

|z|2

1− |z|2
dz∧̇dz̄ ≥ 0.

So the consequence of Theorem 1.1.1 still holds, even though ϕ is not plurisubharmonic.

12



Example 1.2.2. (A non-diagonal weight on D) Consider now the case when n = 1; the unit

disk. Suppose that U is a disk with radius
√

2 centered at the origin. Once again, let δ = 1.

Another weight one might consider is

ϕ(t, z) =
(
1− |z|2

)
|t|2 = |t|2 − |t|2 |z|2 .

Clearly, ϕ is not plurisubharmonic. However, it satisfies condition (1.2.1). Indeed, the

trace of the form
√
−1∂t∂̄tϕ

√
−1∂t∂̄zϕ

√
−1∂z∂̄tϕ

1

2

(√
−1∂z∂̄zϕ+

2

1− |z|2
dz ∧

√
−1dz̄

)

=

(1− |z|2)
√
−1dt ∧ dt̄ −tz̄

√
−1dt ∧ dz̄

−z̄t
√
−1dz ∧ dt̄ 1

2

(
− |t|2 +

2

1− |z|2

)√
−1dz ∧ dz̄

 ,

is clearly a positive form. Moreover, its determinant[
δ

1 + δ

(
− |t|2 +

2

1− |z|2

)
(1− |z|2) + |t|2 |z|2

]√
−1dt ∧ dt̄ ∧

√
−1dz ∧ dz̄

=

[
δ

1 + δ

(
|t|2 |z|2 +

(
2− |t|2

))
+ |t|2 |z|2

]√
−1dt ∧ dt̄ ∧

√
−1dz ∧ dz̄ > 0

is also a positive form. Thus
√
−1Ξ1,η (e−ϕ) > 0.

1.2.2 Pseudoconvex domains with smooth boundary in Cn

Let Ω be a bounded pseudoconvex domain in Cn with smooth boundary. Let KΩ denote

the Bergman kernel of Ω. By Fefferman’s theorem on the asymptotic expansion of KΩ, (see

[Fef74a, Theorem 2] and [Fef74b] for details) the function

z 7→ η(z) :=
1

n+ 1
log (KΩ(z, z̄))

satisfies

∂z∂̄zη − ∂zη ∧ ∂̄zη ≥ −C
√
−1∂z∂̄z |·|2

13



for some constant C > 0. The result fails if the constant
1

n+ 1
in η is replaced by a larger

constant. (See [MV15, Theorem 3.7.6] and [Var19, pp. 102-103] for details.)

If we let ϕ(t, z) = |t|2− (1− δ)
(

1

n+ 1
log (KΩ(z, z̄))

)
+C(1 + δ) |z|2 for (t, z) ∈ Cm×Ω

and δ ∈ (0, 1], then ϕ fails to be plurisubharmonic near the boundary of Ω but clearly satisfies

the condition Ξδ,η (e−ϕ) ≥ 0. Indeed, near any boundary point,

√
−1∂z∂̄z

(
1

n+ 1
log (KΩ(z, z̄))

)
= ωBΩ

is arbitrarily close to ωBBn(r0), the Bergman metric of a ball of radius r0 centered at the origin

in Cn, in suitably chosen coordinates, and the latter is arbitrarily large near any such point

in those coordinates.

1.3 Organization of the thesis

Our mathematical contributions are contained in Chapter 6. Chapters 2 through 5 are mainly

expository.

The contents of Chapter 2 are very classical in nature, recalling elementary notions from

complex analytic and differential geometry, with Section 2.4.8 being the most relevant to the

proof of our main result.

Chapter 3 offers an introduction to Bergman spaces and their kernels, including a collection

of important properties that are essential to the proofs of our log-plurisubharmonic variation

results for Bergman kernels.

Chapter 4 provides a concise exposition of the Donnelly-Fefferman-Ohsawa L2-estimates

for the ∂̄-operator in addition to a detailed discussion of functions of self-bounded gradient

with numerous examples.

In the penultimate chapter of our thesis, Chapter 5, we give a survey of Berndtsson’s

complex Brunn-Minkowski theory as a transition to the ultimate chapter of our thesis.
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Finally, in Chapter 6, we present our main results and some applications. We start by

defining holomorphic Hilbert bundles associated to trivial families of relatively compact

complete Kähler submanifolds of Stein manifolds and their geometry, in Section 6.1.1.1. We

then lay out the setup for the proof of Theorem A in Section 6.1.1.2, which we prove in

Section 6.1.1.3, assuming that the twisted curvature conditions hold strictly. In Section

6.1.1.4, we show how the strict requirement on these twisted curvature conditions can be

relaxed via a limiting process. Subsequently, in Section 6.1.2.1, we define general notions

of Griffiths (semi)positivity and Nakano (semi)positivity for holomorphic Hermitian fields

of Hilbert spaces, and we prove the more general variants of our initial result for general

Stein manifolds in Sections 6.1.2.2 and 6.1.2.3. Namely, assuming that the Stein manifold is

a possibly unbounded, we show that the conclusions of our theorem in the relatively compact

case (Theorem 6.1.1) hold with Nakano (resp. Griffiths) (semi)positivity as defined in Section

6.1.2.1. Finally, we apply these fundamental results to the log-plurisubharmonic variation of

Bergman kernels and families of compactly supported measures for general trivial families of

Stein manifolds, as well as a class of non-trivial families of Stein manifolds in Section 6.2.

We end this thesis with brief proofs of a couple of generalizations of Berndtsson’s complex

Prékopa-Leindler theorems in Section 6.3.

15





Chapter 2

Elements of complex analytic and

differential geometry

In this expository chapter, we introduce various basic notions from complex analytic geometry

which will be of relevance to our study of holomorphic Hilbert bundles. For a comprehensive

treatment of complex analysis and geometry in several complex variables, we refer the reader

to [Dem12] which contains far more background material and a much more detailed exposition.

This chapter of our thesis has been largely adapted from the notes [Var19], in addition to

[Ber17] and [Sho14]. We assume familiarity with the basic theories of Riemannian, Hermitian,

and Kähler geometry, and of Stein manifolds.

Although the notions relative to vector bundles exposed here pertain to vector bundles

of finite rank, this theory can be extended to vector bundles of infinite rank, also known as

Banach bundles. (See [Lan85].) In particular, if the fibers are Hilbert spaces, we refer to

such bundles as Hilbert bundles.

We discuss finite rank vector bundles in order to create intuition for the results, but the

infinite rank case is much more subtle, and will not be discussed in a direct fashion.
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2.1 Holomorphic vector bundles

2.1.1 Definitions

Definition 2.1.1. A holomorphic vector bundle of rank r is a triple (V,X, π : V → X) such

that

1. V and X are complex manifolds,

2. π is a holomorphic map,

3. each fiber Vx := π−1({x}) is a vector space of dimension r, and

4. each p ∈ X is contained in an open set U on which there are holomorphic maps

e1, · · · , er : U → V such that

πei = idU and spanC {e1(x), · · · , er(x)} = Vx for all x ∈ U.

We call such a collection of holomorphic maps {e1, · · · , er} a frame for V over U .

Note that if {ei}1≤i≤r and {ẽi}1≤i≤r are two frames defined over the same open set U , then

there are holomorphic functions gji ∈ O(U) such that gji (p) ∈ GL(r,C) for all p ∈ U and

ẽi = gJi ej.

Definition 2.1.2. A map of holomorphic vector bundles is a holomorphic map V → W such

that

1. The follow diagram commutes. V

X

W

X
id

F

2. For each x ∈ X, the map Fx := F
∣∣
Vx

: Vx → Wx is linear.

Two vector bundles are said to be isomorphic if there are holomorphic vector bundle maps

F : V → W and G : W → V such that F ◦G = IdV and G ◦ F = IdW .

18



Definition 2.1.3. A holomorphic vector bundle of rank 1 is called a holomorphic line bundle.

Definition 2.1.4. A section s of a holomophic vector bundle (V,X, π : V → X) – i.e. a right

inverse for π – is said to be holomorphic (resp. smooth, measurable, etc.) if it is holomorphic

(resp. smooth, measurable, etc.) as a map X → V .

Example 2.1.1. (Trivial bundles) The simplest example of a holomorphic vector bundle is

the trivial bundle π : X × Cr → X, where π denotes the projection to the first factor. If a

vector bundle is isomorphic to the trivial bundle, then for any basis e1, · · · , er of Cr, the

isomorphism F : X × Cr → V defines a frame

ei(x) := F (x, ei), 1 ≤ i ≤ r

over all of X. Conversely, a global frame for a vector bundle V → X defines an isomorphism

F−1 to the trivial bundle, where F is given the same formula and then extended fiberwise-

linearly. In other words, if we fix a basis e1, · · · , er of Cr, we define the isomorphism

F : X × Cr → V by

F−1

(∑
1≤i≤r

f i(x)ei(x)

)
:=

(
x,
∑

1≤i≤r

f i(x)ei

)
, 1 ≤ i ≤ r.

Therefore, a vector bundle is isomorphic to the trivial bundle if and only if the vector bundle

has a global frame. In particular, every (holomorphic) vector bundle is, by definition, locally

trivial.

Example 2.1.2. (Operations on bundles)

1. If V → X and W → X are holomorphic vector bundles, then so are V ∗ → X, V ⊗W →

X and V ⊕W → X. Therefore, Symk(V )→ X and Λk(V )→ X are holomorphic vector

bundles. More generally, all vector bundles obtained from multi-C-linear operations

on holomorphic vector bundles are also holomorphic. However, the complex conjugate

bundle V † → X of a holomorphic vector bundle is generally not a holomorphic vector

bundle over X, but it is a holomorphic vector bundle over X†, where X† is the complex

manifold with the complex conjugate structure of X.
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2. Consider two morphisms f : X → Z and g : Y → Z. Then one can define the fiber

product

X ×Z Y := {(x, y) ∈ X × Y : f(x) = g(y)} .

There are projection maps X ×Z Y → X and X ×Z Y → Y given by the restriction of

X ×Z Y to the Cartesian projections X × Y → X and X × Y → Y . If π : V → Y is

a holomorphic vector bundle and f : X → Y is a holomorphic map, then the bundle

f ∗V = V ×Y X → X is a holomorphic vector bundle, called the pullback of V by f .

3. Given holomorphic vector bundles V → X and W → Y , one defines the holomorphic

vector bundle

V �W = π∗XV ⊗ π∗YW → X × Y,

where πX : X × Y → X and πY : X × Y → Y are the Cartesian projections.

Remark 2.1.3. A vector bundle map F : V → W can be identified with a holomorphic section

of the bundle W ⊗ V ∗.

2.1.2 Holomorphic structure of the tangent bundle

On an n-dimensional complex manifold X, one has the real tangent bundle TX → X, which is

a smooth real vector bundle. One can then define the complex vector bundle TX ⊗R C→ X.

The points of the total space of TX ⊗R C are called complex tangent vectors. Now, for a

holomorphic coordinate system z = (z1, ..., zn) on an open set U ⊂ X (i.e., an element of the

maximal holomorphic atlas of X) one can define the complex tangent vectors

∂

∂zi
:=

1

2

(
∂

∂xi
−
√
−1

∂

∂yi

)
, 1 ≤ i ≤ n,

where zi = xi +
√
−1yi. These vectors depend on the local coordinate system, but their span

does not. For each x ∈ U , we define

T 1,0
X,x := spanC

{
∂

∂z1

, · · · , ∂

∂zn

}
.
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The elements of T 1,0
X,x are called (1, 0)-vector at x. For each ξ ∈ T 1,0

X,x, the vector ξ̄ ∈ TX ⊗R C

(the complex conjugate of ξ) does not lie in T 1,0
X,x. Defining

T 0,1
X,x := T 1,0

X,x,

we obtain the decomposition

TX ⊗R C = T 1,0
X,x ⊕ T

0,1
X,x.

Define the vector bundle π : T 1,0
X → X by

T 1,0
X :=

∐
x∈X

T 1,0
X,x and π−1({x}) := T 1,0

X,x,

with the vector bundles structure given by the frames {∂/∂zi}1≤i≤n. The chain rule shows

that T 1,0
X → X is a holomorphic vector bundle.

From basic complex analysis, we see that if U is an open set in X, x ∈ U , f ∈ O(U) and

ξ ∈ T 1,0
X,x, then

ξ(f) = 2Re(ξ)(f).

Moreover, if ι : TX,x ↪→ TX,x⊗R×C denotes the natural inclusion and π1,0 : TX,x⊗RC→ T 1,0
X,x

denotes the projection to the first factor in the decomposition TX ⊗R C = T 1,0
X,x ⊕ T

0,1
X,x, then

the composite map s1,0 := π1,0 ◦ ι : TX ↪→ T 1,0
X is a real isomorphism of vector bundles whose

inverse is the map ξ 7→ 2Re(ξ).

From these observations, one can give TX → X the structure of a holomorphic vector

bundle in two ways. The first and most direct way is to map TX isomorphically to T 1,0
X .

Indeed, since the latter is a holomorphic vector bundle, so is the former.

Definition 2.1.5. The vector bundle T 1,0
X → X is called the holomorphic tangent bundle.

The dual vector bundle T ∗1,0X → X is called the holomorphic cotangent bundle of X.

Note that in a local coordinate system, a frame of the holomorphic cotangent bundle is

given by the complex 1-forms dz1, · · · , dzn.
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The canonical bundle KX → X is the determinant of the holomorphic cotangent bundle:

KX := det
(
T ∗1,0X

)
:= T ∗1,0X ∧ ... ∧ T ∗1,0X ,

where we have n copies of T ∗1,0X . In a holomorphic local coordinate chart, a frame of KX is

given by the n-form dz1 ∧ · · · ∧ dzn. The name “canonical” refers to the fact that KX → X

is essentially the only natural (typically) nontrivial line bundle defined on every complex

manifold.

2.2 Differential forms on complex manifolds

On a complex manifold, it is natural to consider complex-valued differential forms, i.e.,

sections of the bundle

EX :=
2n⊕
r=1

(Λr(TX)⊗R C) =
2n⊕
r=1

r∧
(TX ⊗R C) .

The sections of this bundle form an algebra with respect to the complex linear extension of

the wedge product. The differential d (extended C-linearly) acts on the sections of EX → X,

mapping sections of Λr(TX)→ X to sections of Λr+1(TX)→ X:

d (Γ (X,Λr(TX))) ⊂ Γ
(
X,Λr+1(TX)

)
.

Forms in the kernel of d are called closed and forms in the image of d are called exact.

2.2.1 Forms of bidegree (p, q)

The splitting TX ⊗R C = T 1,0
X ⊕ T

0,1
X induces a splitting

Λr(TX)⊗R C =
⊕
p+q=r

(
p∧
T 1,0
X

)
∧

(
q∧
T 0,1
X

)
=:

⊕
p+q=r

Λp,q(TX),

and we have the projections πp,q : Λr(TX)⊗R C→ Λp,q(TX).

The wedge product sends an element of Λp,q(TX,x) and an element of Λs,t(TX,x) to an

element Λp+s,q+t(TX,x). The smooth vector bundle Λp,q(TX) → X is a holomorphic vector

bundle if and only if q = 0.
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Definition 2.2.1. The sections of Λp,q(TX) → X are called forms of bidegree (p, q) or

(p, q)-forms.

Locally every (p, q)-form is of the form α =
∑
|I|=p,|J |=q fIJ̄dzI ∧ dz̄J , for some functions

fIJ̄ where dzI ∧ dz̄J := dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq . This local expression is not unique

since different choices of coefficient functions fIJ̄ can result in the same α. However, the

coefficient functions are uniquely determined by the form if we impose the assumption of

skew-symmetry on the coefficient functions fIJ̄ of the (p, q)-form α: if σ ∈ Sp and τ ∈ Sq are

permutations, then we can impose the condition

fIσ J̄τ = (sgn(σ))(sgn(τ))fIJ̄

on the coefficients of α, where a permutation ν ∈ Sr acts on an r-tuple K = (k1, · · · , kr) by

the formula Kν =
(
kν(1), · · · , kν(r)

)
.

2.2.2 Exterior differential operators and twisted differential

forms

The exterior algebra of a complex manifold is equipped with two additional differential

operators: the ∂-operator and the ∂̄-operator, both defined on sections of Λp,q(TX)→ X by

∂α := πp+1,qdα and ∂̄α := πp,q+1dα, α ∈ Γ (X,Λp,q(TX)) .

An important property of these operators is that d = ∂ + ∂̄, and consequently ∂̄2 = 0.

Definition 2.2.2. Let X be a complex manifold and let V → X be a holomorphic vector

bundle. A V -valued (p, q)-form is a section of the vector bundle Λp,q(TX)⊗ V → X. We also

call such sections twisted differential forms.

After tensoring with a holomorphic vector bundle, the exterior differential operator is no

longer necessarily well defined. More precisely, if we choose frame ξ1, · · · , ξr for V → X and
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write

u =
∑

|I|=p,|J |=q,1
≤ν≤r

uνIJ̄dzI ∧ dz̄J ⊗ ξν ,

then the form

α :=
∑

|I|=p,|J |=q
1≤ν≤r
1≤k≤n

∂uν
IJ̄

∂zk
dzk ∧ dzI ∧ dz̄J ⊗ ξν

only depends on the frame ξ1, · · · , ξr, and therefore does not define a global section of the

bundle Λp+1,q(TX)⊗ V → X. However, the form

α :=
∑

|I|=p,|J |=q
1≤ν≤r
1≤k≤n

∂uν
IJ̄

∂z̄k
dz̄k ∧ dzI ∧ dz̄J ⊗ ξν

is globally defined, surprisingly. This implies that the local operator

∂̄ : Γ (X,Λp,q(TX)⊗ V )→ Γ
(
X,Λp,q+1(TX)⊗ V

)
which maps

u =
∑

|I|=p,|J |=q
1≤ν≤r

uνIJ̄dzI ∧ dz̄J ⊗ ξν

to

∂̄u :=
∑

|I|=p,|J |=q
1≤ν≤r
1≤k≤n

∂uν
IJ̄

∂z̄k
dz̄k ∧ dzI ∧ dz̄J ⊗ ξν

is well-defined.

Remark 2.2.1. Note that when considering twisted (p, q)-forms, one can reduce to the case

p = n without loss of generality. Indeed, since

Λp,q(TX) ∼= Λp,0(TX)⊗ Λ0,q(TX) ∼= Λp,0(TX)⊗K∗X ⊗ Λn,q(TX),

one can write Λp,q(TX)⊗ V ∼= Λn,q(TX)⊗W where W = Λp,0(TX)⊗K∗X ⊗ V . Therefore, as

W is a holomorphic vector bundle, the ∂̄-operator we just defined is computed locally in

exactly the same way for V -valued (p, q)-forms as for W -valued (n, q)-forms. As a result,

when working with twisted differential forms, especially while focusing on the ∂̄-equation, it

is often enough to consider only twisted (n, q)-forms.
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2.3 Hermitian metrics for complex vector bundles

Let X be a complex manifold and let V → X be a complex vector bundle.

Definition 2.3.1. A Hermitian metric for V → X is a section h of the bundle V ∗⊗(V ∗)† → X

such that for all x ∈ X and v, w ∈ Vx,

1. h is Hermitian-symmetric, i.e. 〈h, v ⊗ w̄〉 = 〈h,w ⊗ v̄〉, and

2. h is positive-definite, i.e. 〈h, v ⊗ v̄〉 > 0 for all v 6= 0.

Here, 〈·, ·〉 denotes the duality pairing.

In other words, h defines a sesquilinear, positive definite Hermitian form on each fiber Vx

of the vector bundle V → X.

If α1, · · · , αr is a frame for V ∗ over the closure of a relatively compact set U , then one

can write

h =
∑

1≤i,j≤r

hij̄αi � ᾱj :=
∑

1≤i,j≤r

hij̄ (αi ⊗ ᾱj + ᾱj ⊗ αi)

for some functions {hij̄}1≤i,j≤r satisfying

hij̄ = hij̄ and
∑

1≤i,j≤r

hij̄aiaj̄ ≥ ε ‖a‖2 ,

for some positive function ε > 0 on U and all a = (a1, · · · , ar) ∈ Cr. In other terms, at each

x ∈ U , the matrix
(
hij̄(x)

)r
i,j=1

is Hermitian and positive-definite. The regularity of h is that

of the functions {hij̄}1≤i,j≤r. Although the Hermitian metric for V is a section of V ∗ ⊗ (V ∗)†,

we will often treat it as a Hermitian inner product on the fibers of V , and thus we will often

write h(v, w) := 〈h, v ⊗ w̄〉.

25



2.4 Connections and curvature

2.4.1 Connections

Definition 2.4.1. Let X be a complex manifold and let V → X be a complex vector bundle.

A connection for V → X is a linear map

∇ : Γ(X, V )→ Γ (X,T ∗X ⊗ V ) ,

satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇s.

Note that if ∇1 and ∇2 are two connections for a vector bundle V → X then their

difference is a section of Γ (X, C∞ (T ∗X ⊗ End(V ))). In addition, the definition of a connection

implies that it is a local operator and may be restricted to small subsets. If one restricts to a

sufficiently small subset U ⊂ X, then the vector bundle V
∣∣
U
→ U is isomorphic to the trivial

bundle, and thus admits a frame. With the choice of a frame e1, · · · , er for V
∣∣
U

, one has the

trivial connection d defined by

d

(∑
1≤i≤r

siei

)
=
∑

1≤i≤r

dsi ⊗ ei.

Any other connection ∇ for V
∣∣
U
→ U can then obtained from the trivial connection by

adding a section A of T ∗X ⊗ Hom
(
E
∣∣
U

)
→ U , i.e. ∇

∣∣
U

= d+ A. The section A is called the

connection form. Since the trivial connection depends on the frame, so does the connection

form A. In terms of the frame e1, · · · , er for E
∣∣
U
→ U , one can write

Aei =
∑

1≤j≤r

Aji ⊗ ej, 1 ≤ i ≤ r

and then by the Leibniz rule

D

(∑
1≤i≤r

siei

)
=
∑

1≤i≤r

(
dsi ⊗ ei + si

∑
1≤j≤r

Aji ⊗ ej

)
.

The matrix of 1-forms
(
Aji
)

1≤i,j≤r is called the connection matrix. Note that the connection

matrix is locally given by Aαβ =
∑

1≤µ≤r h
αµ̄∂hβµ̄.
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2.4.2 Induced connections

A connection for a vector bundle V → X induces connections on all vector bundles obtained

from V → X via multi-C-linear operations.

2.4.2.1 Dual connection

Given a connection ∇ for a vector bundle V → X, one defines the connection ∇∗ for the dual

vector bundle V ∗ → X as follows. Given local sections s for V → X and α for V ∗ → X, one

has a pairing 〈s, α〉, which is a function on X. We require the dual connection ∇∗ to satisfy

d〈s, α〉 = 〈Ds, α〉+ 〈s,∇∗α〉. (2.4.1)

If we fix a frame e1, · · · , er for V → X and denoted by α1, · · · , αr its dual frame, then

the connection forms A(∇) and A(∇∗) satisfy

0 = dδji = d〈ei, αj〉 =

〈 ∑
1≤k≤r

A(∇)ki ek, αj

〉
+

〈
ei,
∑

1≤`≤r

A(∇∗)j`α`

〉
= A(∇)ji + A(∇∗)ji .

Therefore, the dual connection ∇∗ is completely determined by the connection ∇ and the

compatibility requirement (2.4.1).

2.4.2.2 Product connections

Let V1 → X and V2 → X be two vector bundles equipped with connections ∇1 and ∇2

respectively. Given any product operation × (e.g. × = ∧ or × = ⊗), one defines the product

connection ∇ for V1 × V2 → X by the formula

∇(s1 × s2) = (∇1s1)× s2 + s1 × (∇2s2).

One can inductively pass to any finite product of vector bundles.

Example 2.4.1. (Induced connections for determinant bundles) Let V → X be a vector

bundle of rank r and let ∇V be a connection for V → X. Consider the complex line bundle

det(V ) → X whose transition functions are just the determinants of the corresponding
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transition functions for V → X. Fix a frame e1, · · · , er for V → X. Then e1 ∧ · · · ∧ er is a

frame for det(V ), and so

e1 ∧ · · · ∧ ∇V ej ∧ · · · ∧ er = e1 ∧ · · · ∧ A(∇V )kj ek ∧ · · · ∧ er = A(∇V )kj δ
j
ke1 ∧ · · · ∧ ej · · · ∧ er,

whence

∇det(V )(e1 ∧ · · · ∧ er) =

( ∑
1≤j≤r

A(∇V )jj

)
e1 ∧ · · · ∧ er,

i.e. the connection matrix for ∇det(V ) is the trace of the connection matrix of ∇V .

2.4.3 Connections with additional symmetry

2.4.3.1 Metric compatibility

Definition 2.4.2. Let V → X be endowed with a metric g. We say that a connection ∇ for

V → X is compatible with g if

d(g(s, t)) = g(∇s, t) + g(s,∇t)

for all local sections s, t of V → X.

Viewing the metric g as a section of V ∗ ⊗ (V ∗)† → X, for any connection ∇ – not

necessarily g-compatible – for V → X, one has

d(g(s, t)) = g(∇s, t) + g(s,∇t) +∇g(s, t).

Thus, the g-condition compatibility can be expressed as ∇g = 0.

Generally, a given metric g has many compatible connections. If ∇1 and ∇2 are two

connections for V → X that are g-compatible, then their difference D := ∇1 −∇2 satisfies

g(Ds, t) + g(s,Dt) = 0,

and so D is anti-symmetric (or anti-Hermitian, if g is Hermitian) with respect to g. Equiva-

lently, if we define D† by g
(
D†s, t

)
= g (s,Dt), then D† = −D.
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Remark 2.4.2. If X is a complex manifold then the splitting T ∗X ⊗R C = T ∗1,0X ⊕ T ∗0,1X induces

the decomposition D = D1,0 +D0,1 ∈
(
End(V )⊗ T 1,0

X

)
⊕
(
End(V )⊗ T 0,1

X

)
, and the condition

D† = −D means that (
D1,0

)†
= −D0,1 and

(
D0,1

)†
= −D1,0.

In particular, if D is of type (1, 0), then it must vanish identically.

2.4.3.2 Symmetric connections

Given a smooth manifold X, we have the splitting

T ∗X ⊗ T ∗X = Sym2(T ∗X)⊕ Λ2(T ∗X).

Therefore, every connection ∇ for the cotangent bundle splits as

∇ = ∇S +∇Λ.

On any smooth manifold, there is a natural operator sending 1-forms to 2-forms and satisfying

the Leibniz rule with respect to the wedge product: the exterior derivative d. This motivates

the following definition.

Definition 2.4.3. A connection ∇ for T ∗X is said to be symmetric if ∇Λ = d.

Since the tangent bundle and the cotangent bundle are dual, we call a connection for TX

symmetric if it is the dual of a symmetric connection for T ∗X . If ∇ is a connection for TX

dual to a given connection ∇ for T ∗X , a short computation shows that it is symmetric if and

only if its connection matrix
(
Γijk
)

1≤i,j,k≤n is symmetric, i.e. Γijk = Γikj. One can also observe

that ∇ is symmetric if and only if ∇ξη −∇ηξ = [ξ, η] for any vector fields ξ and η.

The fundamental theorem of Riemannian geometry, due to Levi-Civita, states that on a

Riemannian manifold, there is exactly one symmetric metric-compatible connection, called

the Levi-Civita connection.
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2.4.3.3 Complex connections

On a complex manifold X, we have a splitting

T ∗X ⊗R C = T ∗1,0X ⊕ T ∗0,1X .

It follows that for a complex vector bundle V → X, a connection ∇ splits as

∇ = ∇1,0 +∇0,1. (2.4.2)

If the vector bundle V → X is, in addition, holomorphic, then there is a canonical choice for

the component ∇0,1 : Γ(X, V )→ Γ (X,Λ0,1(TX)⊗ V ); namely the ∂̄-operator.

Definition 2.4.4. A connection ∇ for a holomorphic vector bundle V → X is said to be

complex if ∇0,1 = ∂̄ in terms of the splitting (2.4.2).

We then have an analogue of the Levi-Civita theorem for connections for holomorphic

Hermitian vector bundles.

Theorem 2.4.3. On a holomorphic Hermitian vector bundle (V → X, h), there exists a

unique complex connection compatible with the Hermitian metric.

We call such a connection the Chern connection for (V → X, h).

2.4.4 Induced connections on twisted forms

2.4.4.1 Symmetric connections and exterior derivatives

Consider a differential 1-form α =
∑

1≤i≤n αidxi on a manifold X. For a connection ∇ for

T ∗X → X, ∇α =
∑

1≤i,j,k≤n
∂αi
∂xj

dxj ⊗ dxi + αkθ
k
ijdxj ⊗ dxi, where θ is the connection matrix

of ∇. The skew-symmetric part is then

Λ2(∇α) =
∑

1≤i,j,k≤n

∂αi
∂xj

dxj ∧ dxi + αkθ
k
ijdxj ∧ dxi.

30



Recall that ∇ is a symmetric connection if and only if

dα = Λ2(∇α)

for any 1-form α. Therefore, ∇ is symmetric if and only if its connection matrix is symmetric,

i.e. θkij = θkji.

Now suppose that β is a differential r-form; that is a section of the product bun-

dle Λr(T ∗X). For a connection ∇ for T ∗X → X, the product connection ∇r acts on β =∑
1≤i1,··· ,ir≤n βi1···irdxi1 ∧ · · · ∧ dxir by

∇rβ =
∑

1≤i0≤n

(
∂βi1···ir
dxi0

+
r∑
j=1

∑
1≤`≤n

βi1···(`)j ···irθ
`
ioij

)
dxi0 ⊗ dxi1 ∧ · · · ∧ dxir ,

where (`)j denotes ` replacing ij. Taking the (r + 1)st skew-symmetric part of ∇rβ (thought

of as an (r + 1)-tensor), we obtain

∇rβ =
∑

1≤i0≤n

(
∂βi1···ir
dxi0

+
r∑
j=1

∑
1≤`≤n

βi1···(`)j ···ir
θ`ioij − θ

`
iji0

2

)
dxi0 ⊗ dxi1 ∧ · · · ∧ dxir ,

in view of the skew-symmetry of the βi1···ir . Therefore, ∇ is symmetric if and only if

d = Λr+1 ◦ ∇r for any integer r with 1 ≤ r ≤ n.

2.4.4.2 Twisted exterior derivative

Let V → X be a vector bundle of rank r, with connection D. We can define a twisted

version of the exterior derivative for sections of T ∗X ⊗ V – or V -valued 1-forms. This twisted

exterior derivative should produce a V -valued 2-form. As in the previous paragraph, we fix a

connection ∇ for T ∗X . For a V -valued 1-form α, we compute that

(∇⊗D)α =
∑

1≤i,j,k≤n
1≤µ,ν≤r

(
∂ανi
dxj

+ αµi ω
ν
µj + ανkθ

k
ij

)
dxj ⊗ dxi ⊗ eν

and

Λ2 ((∇⊗D)α) =
∑

1≤i,j,k≤n
1≤µ,ν≤r

(
∂ανi
dxj

+ αµi ω
ν
µj + ανkθ

k
ij

)
dxj ∧ dxi ⊗ eν ,
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where {eν}1≤ν≤r is a frame for V → X and ω and θ are the connection matrices for D. Once

again, if the connection ∇ for T ∗X is symmetric, then the anti-symmetric part Λ2 ((∇⊗D)) is

independent of the connection ∇. Similarly, if β is a V -valued s-form, then Λs+1 ((∇r ⊗D)α)

is a V -valued (s+ 1)-form, which is again independent of V as soon as ∇ is symmetric.

Definition 2.4.5. Let V → X be a vector bundle with connection∇ and let∇ be a symmetric

connection for T ∗X → X. The operator ∇1 : Γ (M, C∞ (T ∗X ⊗ V ))→ Γ (M, C∞ (Λ2 (T ∗X)⊗ V ))

defined by

∇1α := Λ2 ((∇⊗D)α)

(which is independent of ∇) is called the twisted exterior derivative associated to ∇. More

generally, let ∇r be the induced product connection for Λr (T ∗X)→ X. The operator

Dr := Λr+1 ◦ (∇r ⊗D) : Γ (M, C∞ (Λr (T ∗X)⊗ V ))→ Γ
(
M, C∞

(
Λr+1 (T ∗X)⊗ V

))
is called the twisted rth exterior derivative (for V -valued r-forms) associated to ∇.

Remark 2.4.4. Let (e1, · · · , er) be a frame for V → X and let (x1, · · · , xn) be a local

coordinate system on X. Then for a section σ ∈ Γ (M,V ⊗ Λr (T ∗X)) given locally by

σ =
∑

1≤i1,··· ,ir≤n
1≤µ≤r

σµi1···irdxi1 ∧ · · · ∧ dxir ⊗ eµ, one has (with ∇ = ∇r)

∇σ =
∑

1≤i1,··· ,ir,j≤n
1≤µ,ν≤r

∂σµi1···ir
dxj

dxj ∧ dxi1 ∧ · · · ∧ dxir ⊗ eµ + ωµν ∧ σνi1···irdxi1 ∧ · · · ∧ dxir ⊗ eµ

=
∑

1≤i1,··· ,ir,j≤n
1≤µ,ν≤r

∂σµi1···ir
dxj

dxj ∧ dxi1 ∧ · · · ∧ dxir ⊗ eµ + (−1)rσνi1···irdxi1 ∧ · · · ∧ dxir ∧ ω
µ
ν ⊗ eµ.

Informally, one writes Dσ = dσ + (−1)rσ ∧ ω.

2.4.5 Curvature

Definition 2.4.6. Let V → X be a vector bundle with connection ∇ and, with respect to

some frame, connection matrix A. The curvatures of (V → X,∇) are the operators

Θk := ∇k+1 ◦ ∇k : Γ
(
M, C∞

(
Λk (T ∗X)⊗ V

))
→ Γ

(
M, C∞

(
Λk+2 (T ∗X)⊗ V

))
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where ∇j denotes the twisted exterior derivative associated to the connection ∇.

Observe that if s is a V -valued k-form and f is a function, then (informally)

Θk(fs) = ∇ (f∇(s) + df ∧ s) = f (∇ ◦∇) (s) + df ∧∇s− df ∧∇s = fΘk(s),

so that Θk(s) is indeed a V -valued (k + 2)-form. Morever, we have the following proposition.

Proposition 2.4.5. There exists an End(V )-valued 2-form Ω(∇) such that

Θk(s) = s ∧ Ω(∇)

for any k ∈ {0, · · · , rank(V )} and any V -valued k-form s.

Proof. Let us work in a local trivialization in which the connection matrix is denoted by A.

We then have:

Θk(s) = ∇k+1
(
∇k(s)

)
= ∇k+1

(
ds+ (−1)ks ∧ A

)
= d

(
ds+ (−1)ks ∧ A

)
+ (−1)k+1

(
ds+ (−1)ks ∧ A

)
∧ A

= (−1)k
(
ds ∧ A+ (−1)ks ∧ A

)
+ (−1)kds ∧ A− (−1)ks ∧ A ∧ A

= s ∧ (dA− A ∧ A) .

Therefore, the k-independent local endomorphism s 7→ s ∧ (dA− A ∧ A) agrees with ∇ ◦∇

and since ∇ ◦∇ is globally defined, the proof is complete, with Ω(∇) := ∇ ◦∇.

2.4.5.1 Curvature of the Chern connection

Fix a holomorphic Hermitian vector bundle (V → X, h) of rank r. Observe that since

∇ = ∇1,0 + ∂̄ and ∂̄2 = 0, it follows that

∇1 ◦ ∇ = ∇1,0
1 ◦ ∇1,0 +∇1,0

1 ◦ ∂̄ + ∂̄1 ◦ ∇1,0.

By metric compatibility,

∂h(s, t) = h
(
∇1,0s, t

)
+ h

(
s, ∂̄t

)
and ∂̄h(s, t) = h

(
∂̄s, t

)
+ h

(
s,∇1,0t

)
,
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and since ∂2 = 0,

0 = ∂2h(s, t) = h
(
∇1,0 ◦ ∇1,0

1 s, t
)
+h
(
∇1,0s, ∂̄t

)
−h
(
∇1,0s, ∂̄t

)
+h(s, ∂̄1∂̄t) = h

(
∇1,0

1 ◦ ∇1,0s, t
)
,

and thus ∇1,0
1 ◦ ∇1,0 = 0. In conclusion, the curvature form Θ of the Chern connection

satisfies Θ = ∇1,0
1 ◦ ∂̄ + ∂̄1 ◦ ∇1,0. In particular, Θ maps sections to twisted (1, 1)-forms, and

it is thus a twisted (1, 1)-form.

Proposition 2.4.6. The curvature of the Chern connection of (V → X, h) is given by the

formula

Ωα
β = ∂̄

( ∑
1≤µ≤r

hαµ̄∂hβµ̄

)
.

Proof. Let hαβ̄ = h(eα, eβ) for a holomorphic frame {eα}1≤α≤r for V → X. Recall that the

connection matrix A is given by

Aαβ =
∑

1≤µ≤r

hαµ̄∂hβµ̄.

In matrix notation, we have A = (∂H)H−1 with H representing the Hermitian metric.

Therefore, using the formulas ∂ (H−1) = −H−1(∂H)H−1 and ∂̄ (H−1) = −H−1(∂̄H)H−1, we

calculate that

dA− A ∧ A =
(
∂ + ∂̄

) (
(∂H)H−1

)
− (∂H)H−1 ∧ (∂H)H−1

= ∂̄
(
(∂H)H−1

)
+ (∂H)H−1(∂H)H−1 − (∂H)H−1(∂H)H−1 = ∂̄

(
(∂H)H−1

)
.

2.4.5.2 Curvature of a line bundle

Let L→ X be a complex line bundle. If ∇ is any connection for L→ X then its curvature

is a section of End(L) ⊗ Λ2(T ∗X) → X. Since the line bundle End(L) → X is canonically

trivial, the curvature of a line bundle is a well-defined 2-form on X. Since the fibers are

1-dimensional, A(∇) ∧ A(∇) = 0 for any local connection form A(∇) and so the curvature
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of ∇ is d(A(∇)). In particular, the forms yields a globally defined 2-form on X via the

isomorphism between End(L) and the trivial bundle.

Suppose now that X is a complex manifold and the line bundle L→ X is holomorphic.

Let h be a Hermitian metric for L → X. If ξ is a holomorphic frame for L → X over an

open set U ⊂M , then one can define the function

ϕ(ξ) := − log (h(ξ, ξ)) .

The curvature of the Chern connection of h is

Θ(h) :=
(
∂∂̄ϕ(ξ)

)
⊗ ξ ⊗ ξ∗,

where ξ∗ is the frame for L∗ → X dual to ξ. Since ξ ⊗ ξ∗ is nowhere-zero, one can define

the curvature of the holomorphic line bundle to be ∂∂̄ϕ(ξ). The right hand side of the latter

equality is independent of the choice of holomorphic frame. Indeed, given another holomorphic

frame ξ̃, it follows that ξ̃ = fξ for some nowhere zero holomorphic function f and so

ϕ(ξ̃) = − log
(
|f |2 h(ξ, ξ)

)
= ϕ(ξ) − log

(
|f |2
)
,

whence ∂∂̄ϕ(ξ) = ∂∂̄ϕ(ξ̃) since log(|f |2) is pluriharmonic due to the holomorphicity and

non-vanishing of f . Clearly, ξ ⊗ ξ∗ = ξ̃ ⊗ ξ̃∗.

Consequently, we can use the following global notation for Hermitian metrics of holomor-

phic line bundles: a metric for a holomorphic line bundle will typically be denoted e−ϕ, and

its curvature will be denoted by ∂∂̄ϕ.

2.4.6 Curvature of determinant bundles

Proposition 2.4.7. Let V → X be a vector bundle of rank r with connection ∇V and let

det(V )→ X be its determinant line bundle with connection ∇det(V ). Then

Ω
(
∇detV

)
= tr

(
Ω
(
∇V
))
.
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Proof. Let e1, · · · , er be a frame for V → X. Then:

(
∇det(V )

)2
(e1 ∧ · · · ∧ er) = ∇det(V )

(
r∑
j=1

e1 ∧ · · · ∧ ∇V (ej) ∧ · · · ∧ er

)

=
r∑
j=2

j−1∑
k=1

e1 ∧ · · · ∧ ∇V (ek) ∧ · · · ∧ ∇V (ej) ∧ · · · ∧ er

−
r−1∑
j=1

j∑
k=j+1

e1 ∧ · · · ∧ ∇V (ek) ∧ · · · ∧ ∇V (ek) ∧ · · · ∧ er

+
r∑
j=1

e1 ∧ · · · ∧
(
∇V
)2

(ej) ∧ · · · ∧ er

=
r∑
j=1

e1 ∧ · · · ∧
(
∇V
)2

(ej) ∧ · · · ∧ er,

and so Ω
(
∇det(V )

)
= tr

(
Ω
(
∇V
))

as claimed.

2.4.6.1 The canonical bundle

Recall that the canonical bundle KX of a complex n-dimensional manifold X is the line

bundle det
(
T ∗1,0X

)
whose local sections are (n, 0)-forms.

If g is a (Riemannian) Hermitian metric on X, Proposition 2.4.7 tells us that the

curvature of the Chern connection for (KX → X, det(g)) is just the trace of the curvature of(
T ∗1,0X → X, g

)
.

For a general (Riemannian) Hermitian metric g, the latter Chern curvature is unrelated

to the curvature of the Levi-Civita connection for g. However, if the metric g is Kähler,

the curvature of the Chern connection for (KX , det(g)) is the negative of the so-called Ricci

curvature of g:

Ric(g) = −tr (Ω(g)) . (2.4.3)

In components,

Ric(g)αβ̄ = −∂α∂β̄ (log (det(gµν̄)) . (2.4.4)
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2.4.6.2 Curvature of direct sums of vector bundles

As previously seen, given connections ∇V and ∇W on vector bundles V → X and W → X

over a complex manifold X, there is a natural direct sum connection ∇V ⊕∇W on V ⊕W → X.

The curvature ΘV⊕W of V ⊕W → X satisfies

ΘV⊕W = ΘV ⊕ IdW + IdV ⊕ΘW .

Additionally, if ΩV and ΩW are the curvature forms of V → X and W → X, then the

curvature ΘV⊕W form ΩV⊕W of ∇V ⊕∇W is the direct sum matrix of ΩV and ΩW :

ΩV⊕W =

ΩV 0

0 ΩW

 .

For further details, we refer the reader to [Dem12, Chapter V, §4].

2.4.7 Curvature positivity of vector bundles

In complex geometry, there are various notions of “positivity” for the curvature of the Chern

connection for a Hermitian metric on a holomorphic vector bundle. Indeed, because the

curvature Θ(h) of the Chern connection of a metric h for a holomorphic vector bundle V → X

is a (1, 1)-form with values in Hom(V, V )→ X, there are many ways to measure its positivity.

The strongest notion of positivity is called Nakano positivity, and the weakest notion is called

Griffiths positivity.

Using the metric h, one defines Hermitian forms {·, ·}h,Θ(h) on the fibers of V ⊗ T 1,0
X by

letting

{v ⊗ ξ, w ⊗ η}h,Θ(h) := h (Θ(h)ξ,η̄(v), w) (2.4.5)

for indecomposable tensors – i.e. tensors of the form v ⊗ ξ – on a given fiber Vx ⊗ T 1,0
X,x and

extending bilinearly to the entire fiber.
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Note that given Hermitian metrics for hV and hW for the holomorphic vector bundles

V → X and W → X respectively, hV⊕W := hV ⊕ hW is a Hermitian metric for V ⊕W → X.

Let ΘV and ΘW denote the Chern connections for (V → X, hV ) and (W → X, hW ). If we

denote by θV the Hermitian form {·, ·}hV ,ΘV (hV ) and similarly for W and V ⊕W , then

θV⊕W = θV ⊕ hW + hV ⊕ θW .

2.4.7.1 Notions of positivity

Definition 2.4.7. Let V → X be a holomorphic vector bundle with smooth Hermitian

metric h and fix a smooth (Riemannian) Hermitian metric g on X.

1. We say that h has positive curvature in the sense of Griffiths at a point x ∈ X if there

exists c > 0 such that

{v ⊗ ξ, v ⊗ ξ}h,Θ(h) ≥ c · h(v, v)g(ξ, ξ)

for all v ⊗ ξ ∈ Vx ⊗ T 1,0
X,x.

2. We say that h has positive curvature in the sense of Nakano at a point x ∈ X if there

exists c > 0 such that{
n∑
j=1

vj ⊗ ξj,
n∑
k=1

vk ⊗ ξk

}
h,Θ(h)

≥ c
n∑
j=1

h(vj, vj)g(ξj, ξj)

for all v1 ⊗ ξ1, · · · , vn ⊗ ξn ∈ Vx ⊗ T 1,0
X,x where n = min (dimC(X), rank(V )).

We define non-negative curvature by taking c = 0, and we define negative and non-positive

curvature by simply changing the sign of c and reversing the inequalities.

More generally, given a Hermitian form θ on V ⊗ T 1,0
X , we will say that θ is Griffiths

semipositive (resp. positive) at a point x ∈ X if θ(v ⊗ ξ) ≥ 0 for all v ⊗ ξ ∈ Vx ⊗ T 1,0
X,x.

If θ is Griffiths semipositive (resp. positive) at every x ∈ X, we write θ ≥Griff 0 (resp. >Griff 0).
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Similarly, we will say that θ is Nakano semipositive (resp. positive) at a point x ∈ X

if θ (
∑n

i=1 vi ⊗ ξi) ≥ 0 (resp. > 0) for all vi ⊗ ξ ∈ Vx ⊗ T 1,0
X,x, where i = 1, · · · , n where

n = min (dimC, rank(V )). If θ is Nakano positive (resp. positive) at every x ∈ X, we write

θ ≥Nak 0 (resp. >Nak 0).

For two Hermitian forms θ1 and θ2 on V ⊗T 1,0
X , we will write θ1 ≥Nak θ2 (resp. θ1 >Nak θ2)

if θ1 − θ2 ≥Nak 0 (resp. θ1 − θ2 >Nak 0), and similarly for θ1 >Griff θ2 (resp. θ1 ≥Griff θ2).

2.4.7.2 Duality

The Hermitian holomorphic vector bundle (V → X, h) is Griffiths positive if and only if its

dual (V ∗ → X, h∗) is Griffiths negative, but this relationship between positivity and duality

is no longer true in the case of Nakano positivity. We refer the reader to [Dem12, (6.8)

Example] for a counter-example showing that the Nakano positivity or negativity of a given

bundle and its dual are unrelated.

2.4.7.3 Positivity of line bundles

When V → X is of rank 1 – i.e. when it is a line bundle – Griffiths positivity and Nakano

positivity coincide since any map Vx ⊗ T 1,0
X,x → Vx ⊗ T 1,0

X,x has rank at most 1 due to the fibers

Vx being 1-dimensional. In this case, the term “positivity” has a unique meaning and one

speaks of positivity of the curvature. As previously seen, the curvature of a Hermitian metric

e−ϕ then is

∂∂̄ϕ =
n∑

i,j=1

∂2ϕ

∂zi∂z̄j
dzi ∧ dz̄j,

where n = dimC(X). Hence the curvature of e−ϕ is (semi)positive if and only if, in any

holomorphic coordinate system, the Hermitian matrix

HC(ϕ) :=

(
∂2ϕ

∂zi∂z̄j

)
1≤i,j≤n
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is positive (semi)definite. In other words, the potential ϕ of the local representative of the

metric is plurisubharmonic (or strictly so, in the case of strict curvature positivity).

2.4.7.4 Analytic characterizations of curvature positivity and negativity

The following proposition will be very useful in the study of the positivity of holomorphic

Hilbert bundles.

Proposition 2.4.8. The metric h for V → X is non-positive (resp. negative) in the

sense of Griffiths if and only if for any holomorphic section s of V → X, the function

X 3 x 7→ |s(x)|2h := h(s(x), s(x)) is a plurisubharmonic (resp. strictly plurisubharmonic)

function on X.

Proof. For any holomorphic section s of V → X, we have ∂h(s, s) = h (∇1,0(s), s) since

∇0,1(s) = ∂̄s = 0. Therefore,

∂∂̄h(s, s) = −∂̄∂h(s, s) = −h
(
∇0,1 ◦ ∇0,1s, s

)
+ h

(
∇1,0s,∇V,(1,0)s

)
= −h

(
ΘV (s), s

)
+ h

(
∇1,0s,∇1,0s

)
= − (Θ(s), s)h +

∣∣∇1,0s
∣∣2
h
.

The second summand is clearly nonnegative, so we see that if h is nonpositive (resp.

positive) in the sense of Griffiths, then ∂∂̄ |s|2h is non-negative (resp. positive).

To see the converse, it is enough to work locally since plurisubharmonicity is a local

property. We thus assume that the vector bundle V → X is trivial, but with non-trivial

metric. Under the condition of triviality, given any vector v ∈ Vx, there exists a holomorphic

section sv of V → X such that sv(x) = v and ∇1,0sv(x) = 0. Indeed, if v ∈ Vx, the

holomorphic section we seek must have the form s(w) = v +
∑rank(V )

k=1 ak(wk − xk) if we

think of w as local coordinates near x. Then ∇1,0s = Av +
∑rank(V )

k=1 akdwk at x, where A is

the connection matrix of ∇ – the Chern connection of (V → X, h). Choosing ak = −Akv,

where A =
∑rank(V )

k=1 Akdwk, we obtain the desired holomorphic section. Plugging sv into the
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previous formula for ∂∂̄h(s, s) yields

∂∂̄h(s, s) = − (Θ(s), s)h ,

which shows that if x 7→ |s(x)|2h is plurisubharmonic, then h is non-positive in the sense of

Griffiths.

We also have the following proposition.

Proposition 2.4.9. The metric h for V → X is non-positive (resp. negative) in the sense

of Griffiths if and only if for any holomorphic section s of V → X, the function X 3 x 7→

log (h(s(x), s(x))) = log
(
|s(x)|2h

)
is a plurisubharmonic (resp. strictly plurisubharmonic)

function on X or identically −∞.

This can be proved by explicitly computing ∂∂̄ log
(
|s|2h
)

for a non-zero holomorphic

section s such that ∇0,1s = 0 at a given point p, which then shows that

∂∂̄ log
(
|s(p)|2h)

)
= −h (Θ(s(p)), s(p))

|s(p)|2h
.

Remark 2.4.10. This result can also be obtained by simply observing that a positive function

f is plurisubharmonic if and only if log(f) is plurisubharmonic. See [DAn01, Proposition 2.2].

More generally, if X is an n-dimensional complex manifold and V → X is a holomorphic

vector bundle of rank r with smooth Hermitian metric h, we can formulate a similar test for

pointwise Nakano positivity. Set k = min(r, n) and write

̂dzi ∧ dz̄j = cndz1 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄j−1 ∧ dz̄j+1 ∧ dz̄n

for a local coordinate z. Here cn is a unimodular constant chosen so that ̂dzi ∧ dz̄j is a

positive form. We then have the following proposition. This criterion is primarily due to

Berndtsson [Ber09b].

Proposition 2.4.11. The metric h for V → X is positively curved in the sense of Nakano at

p ∈ X if and only if, for every local coordinate system z at p, and every tuple of holomorphic
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sections (f1, · · · , fk) such that ∇1,0fi = 0 at p for each i = 1, · · · , k, the (n, n)-form

∂∂̄

(
k∑

i,j=1

h (fi, fj) ̂dzi ∧ dz̄j

)
is a negative multiple of the Lebesgue measure dV (z) near p.

Another similar criterion for Nakano negativity, primarily due to [Rau15], is the following.

Proposition 2.4.12. The metric h for V → X is negatively curved in the sense of Nakano at

p ∈ X if and only if, for every local coordinate system z at p, and every tuple of holomorphic

sections (f1, · · · , fk), the (n, n)-form

∂̄∂

(
k∑

i,j=1

h (fi, fj) ̂dzi ∧ dz̄j

)
is a negative multiple of the Lebesgue measure dV (z) near p.

2.4.8 Subbundles and Griffiths’ curvature formula

Let (V → X, h) be a holomorphic Hermitian vector bundle over a complex manifold X, and

let W → X be a holomorphic subbundle of V → X. Then W → X is also Hermitian with

the metric induced from h, and thus admits a Chern connection. Note that the Hermitian

metric h gives us a fiberwise orthogonal projection map Pz : Vz → Wz for each point z in the

base. Although Pz is not holomorphic as z varies, these maps together generate a smooth

bundle map from V to W . Similarly, we let P⊥z be the orthogonal projection on W⊥
z , the

orthogonal complement of Wz in Vz. The sum of Pz and P⊥z is the identity map.

Proposition 2.4.13. Let ∇V and ∇W be the Chern connections of V → X and W → X

respectively. Then,

1. ∇W = P ◦ ∇V , and

2. The map s 7→ p(s) :=
(
P⊥ ◦ ∇V

)
(s) satisfies p(fs) = fp(s) if f is a smooth function

and s is a smooth section of W → X. Hence, p(s) = 0 at z if s = 0 at z. So p defines

a linear map from W to W⊥ ⊗ T ∗X .

42



Proof. 1. Since ∇V (fs) = df ⊗ s + f∇V (s), it follows that P ◦ ∇V satisfies the same

property if s is a section of W → X. Therefore, P ◦ ∇V is a connection. Moreover,

if s is holomorphic, the fact ∇V (s) is of bidegree (1, 0) implies that ∇W (s) is also of

bidegree (1, 0). Therefore, the connection P ◦ ∇V is complex. Finally, if s1 and s2 are

two holomorphic sections of W → X, then

dh(s1, s2) = h
(
∇V (s1), s2

)
+
(
s1,∇V (s2)

)
= h

(
(P ◦ ∇V )(s1), s2

)
+h
(
s1, (P ◦ ∇V )(s2)

)
.

Therefore, P ◦ ∇V is a complex connection that is compatible with h, and must thus

be ∇W by the uniqueness of the Chern connection.

2. p(fs) = P⊥
(
df ⊗ s+ f∇V (s)

)
= fp(s) if s is a section of W → X.

Theorem 2.4.14. If W → X is a holomorphic subbundle of a Hermitian holomorphic vector

bundle (V → X, h), then

ΘW = ΘV − p∗p,

where ΘW and ΘV are the curvatures of W → X and V → X respectively, and p∗ is the dual

of p with respect to h.

Proof. For any holomorphic section s of V → X, we have ∂h(s, s) = h
(
∇V,(1,0)(s), s

)
since

∇V,(0,1)(s) = ∂̄s = 0. Therefore,

∂∂̄h(s, s) = −∂̄∂h(s, s) = −h
(
∇V,(0,1) ◦ ∇V,(0,1)s, s

)
+ h

(
∇V,(1,0)s,∇V,(1,0)s

)
= −h

(
ΘV (s), s

)
+ h

(
∇V,(1,0)s,∇V,(1,0)s

)
.

Therefore,

h
(
ΘW (s), s

)
− h

(
ΘV (s), s

)
= h

(
∇W,(1,0)s,∇W,(1,0)s

)
− h

(
∇V,(1,0)s,∇V,(1,0)s

)
,
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for any holomorphic section s of W → X. Therefore, by Proposition 2.4.13, the fact that

P + P⊥ = Id, and by orthogonality,

h
(
∇W,(1,0)s,∇W,(1,0)s

)
− h

(
∇V,(1,0)s,∇V,(1,0)s

)
= h

(
P ◦ ∇V (s),P ◦ ∇V (s)

)
− h

(
P ◦ ∇V (s),P ◦ ∇V (s)

)
− h

(
P⊥ ◦ ∇V (s),P⊥ ◦ ∇V (s)

)
= −h (p(s), p(s))

The map p is called the second fundamental form of W → X in V → X. In the complex

case, the quadratic form −h (p(s), p(s)) is always a non-positive (1, 1)-form. If the curvature

of V → X vanishes identically, then the curvature of W → X is completely determined by

the second fundamental form.
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Chapter 3

Bergman spaces and their kernels

Let X be a complex manifold with Borel measure µ and let V → X be a holomorphic

vector bundle with Hermitian metric h. Consider the Bergman space which is defined as the

subspace

H2
0,0(µ, h) := L2

0,0(µ, h) ∩ ΓO(X, V )

of square-integrable holomorphic sections, as a subspace of the space L2
0,0(µ, h) of (measurable)

square-integrable sections. The subspace H2
0,0(µ, h) ⊂ L2

0,0(µ, h) is closed for many natural

choices of the measure µ and the metric h, and therefore, there is an orthogonal projection –

i.e. a bounded linear self-adjoint projection operator P : L2
0,0(µ, h)→ H2

0,0(µ, h); the so-called

Bergman projection. Its Schwarz kernel, called the Bergman kernel, possesses many properties

and under certain positivity conditions, carries a great amount of information about the data

defining it. One can also build the corresponding theory for the Hilbert spaces L2
p,q(µ, h). In

this case, the space H2
0,0(µ, h) is replaced by the subspace H2

p,q(µ, h) of ∂̄-closed V -valued

(p, q)-forms in L2
p,q(µ, h).

The contents of this chapter are largely adapted from the course notes for the topics

course MAT 670 – Topics in Complex Analysis: Variation of Bergman Spaces, as taught

by Prof. Dror Varolin at Stony Brook University, Fall 2020. These notes are not publicly

available, unfortunately, and will be published as a separate manuscript in the future. That
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said, similar contents on the complex analysis and geometry of Bergman kernels can be found

in [Var19, Part III, Lecture 11], [MM07], [Her18, Chapter 3, §3.3], [Ass16, §2.2], [BDS20, §2],

[Ber03], [Ohs18, Chapter 4], [Pas94], [BH98], [Kob13, §3.2], [BG15], and [BG16].

3.1 Orthogonal projections in Hilbert spaces

As the notion of an orthogonal projection is at the foundation of the theory of Bergman

spaces, we provide here a systematic treatment of orthogonal projections on Hilbert spaces.

For a more general treatment of kernels on topological vector spaces, we refer the reader to

[Tre06].

Definition 3.1.1. An orthogonal projection on a Hilbert space H is a bounded linear

self-adjoint projection – i.e. a bounded linear map P : H → H satisfying P † = P = P ◦ P .

To each orthogonal projection P , one can assign a closed subspace P (H). So there is a

map

ΠO(H) 3 P 7→ P (H) ∈ C(H)

from the set ΠO(H) of orthogonal projections on H to C(H) of closed subspaces of H. The

Fundamental Theorem of Orthogonal Projections states that this map is a bijection.

Theorem 3.1.1. (Fundamental Theorem of Orthogonal Projections) The map

ΠO(H) 3 P 7→ P (H) ∈ C(H)

is a one-to-one correspondence.

Lemma 3.1.2. Let V ∈ C(H) be a closed subspace. For each x ∈ H, there exists at most

one element y ∈ V such that x− y ⊥ V .

Proof. Suppose that y1 and y2, in V , both have the property that their difference from x is

orthogonal to V . Then by the Pythagorean identity and rewriting y1 − x = y1 − y2 + y2 − x,
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it follows that

‖y1 − y2‖2 = ‖y1 − x‖2 − ‖y2 − x‖2 = −
(
‖y2 − x‖2 − ‖x− y‖2)2

= −‖y2 − y1‖2 ,

hence ‖y2 − y1‖ = 0 so that y1 = y2.

Proposition 3.1.3. Let V ∈ C(H) be a closed subspace. For each x ∈ H, there exists a

unique element PV (x) ∈ H such that

∀v ∈ X : ‖PV (x)− x‖ ≤ ‖v − x‖ (3.1.1)

and

PV ∈ ΠO(H).

Proof. Fix x ∈ H. Consider the squared norm function Nx : V → R≥0, v 7→ ‖x− v‖2. The

infimum of Nx exists since Nx is bounded below. Moreover, since V is closed, Nx has a

minimum. Let x0 ∈ V be the minimizer of Nx. Then for any v ∈ V , the function

[0,∞) 3 ε 7→ f(ε) := ‖x0 + εv − x‖2 = ‖x0 − x‖2 + 2εRe(v, x0 − x) + ε2 ‖v‖2

has a critical point at ε = 0. So Re(v, x0 − x) = 0. Replacing v by
√
−1v show that

Im(v, x0 − x) = Re(
√
−1v, x0 − x) = 0, and so x0 − x ⊥ V . Hence, by Lemma 3.1, the

minimizer Nx is unique – i.e. there exists a unique element PV (x) such that

∀v ∈ X : ‖PV (x)− x‖ ≤ ‖v − x‖ .

It remains to show that PV ∈ ΠO(H). If v ∈ V , the clearly PV (v) = v, and so PV PV = PV so

that PV is a projection. Furthermore, by the Pythagorean identity,

‖PV (x)‖2 ≤ ‖PV (x)‖2 + ‖x− PV (x)‖2 = ‖x‖2

and so PV is a bounded operator. Finally, for v ∈ V ,(
x− P †V (x), v

)
= (x, v)−

(
P †V (x), v

)
= (x, v)− (x, PV (v)) = 0,

so that x−P †V (x) ⊥ V ; showing that P †V (x) = PV (x) in view of Lemma 3.1. Therefore, PV is

self-adjoint, which completes the proof.
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Proposition 3.1.4. If P ∈ ΠO(H), then P = PP (H).

Proof. If v ∈ P (H), then

(v, x− P (x)) = (v, x)− (v, P (x)) = (v, x)−
(
P †(v), x

)
= (v, x)− (P (v), x) = 0

so that P (x)− x ⊥ P (H), and hence P = PP (H).

Propositions 3.1.3 and 3.1.4 show that the map ΠO(H) 3 P 7→ P (H) ∈ C(H) is surjective

and injective, respectively, thereby proving Theorem 3.1.1.

The kernels we will consider take values in a certain Hilbert space completion of a tensor

product of Hilbert spaces. Let us define this tensor product. Let H1 and H2 be separable

Hilbert spaces. The space Ĥ1 ⊗H2 denotes the Hilbert space completion of the tensor product

H1 ⊗ H2 with respect to the norm defined by the orthonormal Riesz basis {vi ⊗ wj}i,j∈N

where {vi}i∈N and {wj}j∈N are orthonormal Riesz bases for H1 and H2 respectively.

Theorem 3.1.5. Let H be a separable Hilbert space and let P ∈ ΠO(H) be an orthogonal

projection. For any orthonormal Riesz basis {vα}α∈N of the closed subspace P (H), the

sequence of partial sums

K
(N)
P :=

N∑
α=1

vα ⊗ v̄α

is weakly convergent on H ⊗ H̄, and its weak limit KP along indecomposable tensors is given

by

(KP , x⊗ ȳ)H⊗H̄ = (Px, y)H .

Proof. Let {wβ}β∈N be an orthonormal Riesz basis for P (H)⊥. Then {vα, wβ}α,β∈N is an

orthonormal Riesz basis for H. Given x, y ∈ H, one may write x = x
(α)
0 vα + x

(β)
⊥ wβ and

y = y
(α)
0 va + y

(β)
⊥ wβ. Since x −

∑
α∈N x

(α)
0 vα ∈ P (H)⊥ for all x ∈ H, P (x) =

∑
α∈N x

(α)
0 vα,

and so (
K

(N)
P , x⊗ x̄

)
H⊗H̄

=
N∑
α=1

∣∣∣x(α)
0

∣∣∣2 ≤ ‖P (x)‖2
h ,
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which shows that
(
K

(N)
P , x⊗ x̄

)
H⊗H̄

is a bounded increasing – hence convergent – sequence

whose limit is clearly ‖P (x)‖2
H . Since

(x− y)⊗ (x̄− ȳ) = x⊗ x̄+ y ⊗ ȳ − x⊗ ȳ − y ⊗ x̄,

we see that

Re
(
K

(N)
P , x⊗ ȳ

)
H⊗H̄

=
1

2

[(
K

(N)
P , (x− y)⊗ (x̄− ȳ)

)
H⊗H̄

]
− 1

2

[(
K

(N)
P , x⊗ x̄

)
H⊗H̄

−
(
K

(N)
P , y ⊗ ȳ

)
H⊗H̄

]
converges, as does

Im
(
K

(N)
P , x⊗ ȳ

)
H⊗H†

= Re
(
K

(N)
P ,
√
−1x⊗ ȳ

)
H⊗H̄

,

and hence
(
K

(N)
P , x⊗ ȳ

)
H⊗H†

converges as well. Clearly,

(KP , x⊗ ȳ)H⊗H† =
1

2

[
‖P (x− y)‖2

H +
∥∥P (x+

√
−1y

)∥∥2

H
− ‖P (x)‖2

H − ‖P (y)‖2
H

]
= (Px, y)h,

which completes the proof.

Remark 3.1.6. Note that KP converges in Ĥ ⊗H† if and only if P (H) is finite-dimensional.

3.2 The Bergman projection

We now adapt the general theory of the previous setting to the complex geometric setting by

considering Hilbert spaces of sections of holomorphic line bundles briefly mentioned at the

beginning of this chapter; Bergman spaces. If such a section is holomorphic and the Hilbert

spaces are defined by sufficiently regular geometric data, then the point evaluation of the

section is controlled by the L2-norm of the section. This boundedness of the point evaluation

operator allows for some level of interplay between the properties of the sections when viewed

as functions, and when viewed as vectors in a Hilbert space. This interplay possesses many

important consequences.
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3.2.1 Complex reproducing kernel Hilbert space structures

In many natural situations, the point evaluation operator is a bounded linear functional on

the spaces of holomorphic sections. This boundedness is at the foundation of the theory

of Bergman projections and Bergman kernels. If a given Hilbert space of functions has a

bounded point evaluation operator, then one calls such a space a complex reproducing kernel

Hilbert space (C-RKHS).

Definition 3.2.1. (Complex reproducing kernel Hilbert space) Let X be a complex manifold

with Borel measure µ and let V → X be a holomorphic vector bundle with Lebesgue

measurable metric h. The pair (µ, h) is a (local) complex reproducing kernel Hilbert space

structure (C-RKHS structure for short) if for any compact K ⊂ X, there exists a constant

CK > 0 (depending on K) such that

|f0(x)|2h ≤ CK ‖f0‖2
L2
0,0(µ,h)

for all x ∈ K and all

f0 ∈ H2
0,0(µ, h) :=

{
f ∈ ΓO(X, V ) : ‖f‖2

L2
0,0(µ,h) :=

∫
X

|f |2h dµ < +∞
}
.

In this case, we say that H2
0,0(µ, h) is a Bergman space. An C-RKHS structure is said

to be global if the constant CK := C may be taken independently of the compact set K, i.e.

there exists a uniform constant C such that

∀x ∈ X, ∀f ∈ H2
0,0(µ, h) : |f(x)|2h ≤ C ‖f‖2

L2
0,0(µ,h) .

In this case, we also say that the pair (µ, h) is a global C-RKHS structure. The local uniform

boundedness of the point evaluation map which defines the C-RKHS structure is clasically

known as the Bergman inequality.

Proposition 3.2.1. Let X be a complex manifold with Borel measure µ and let V → X be

a holomorphic vector bundle with singular Hermitian metric h. Assume that
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1. the Borel measure µ is absolutely continuous with respect to Lebesgue measure, and its

local Radon-Nikodym derivatives are locally bounded below,

2. the metric h is locally bounded below, i.e., for every local frame e1, · · · , er of V → X,

there exists a constant c0 > 0 such that |
∑n

i=1 viei|
2

h ≥ c0

∑n
i=1 |v|

2
i .

Then for every set K with compact closure in X, there exists a constant CK such that if

s ∈ H2
0,0(µ, h), then

sup
K
|s|2h ≤ CK

∫
X

|s|2h dµ.

Proof. For every point p ∈ K, choose an opset Bp with compact closure in X that is

biholomorphic to the unit ball in Cn, and choose a holomorphic frame e1, · · · , er for V → X

that is orthonormal at p. Choose R > 0 and C1 > 0 so that C1 |
∑n

i=1 viei|
2

h ≥
∑n

i=1 |v|
2
i for

all v ∈ Cr, every z ∈ BR(p) and every p ∈ K, where z denotes the coordinates in Bp. Such

R > 0 and C1 > 0 exists by the assumption on h and the relative compactness of K. Write

s =
∑

i=1 fiei for holomorphic functions f1, · · · , fr on Bp. By the sub-mean value property,

|fi(p)|2 ≤
1

πnR2n

∫
BR(p)

|fi|2 dV (z),

where dV denotes Lebesgue measure in Bp. By our assumption on µ and the relative

compactness of K, there exists C2 > 0 such that dV/dµ ≤ C2 on K. Hence

|s(p)|2h ≤
r∑
i=1

|fi(p)|2 ≤
C1

πnR2n

∫
BR(p)

∣∣∣∣∣
r∑
i=1

fiei

∣∣∣∣∣
2

h

dV (z) ≤ C1C2

πnR2n

∫
BR(p)

|s|2h dµ,

which is the desired inequality.

Remark 3.2.2. This proposition shows us that we can have an C-RKHS structure under

rather weak regularity hypotheses.

Remark 3.2.3. If X is compact, the C-RKHS structure is clearly global by definition. The

most immediate examples of global C-RKHS structures are obtained when X is a compact

complex manifold and h is bounded from below in sup-norm, in the sense of Proposition

3.2.1.
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In the sequel, we will use the measure dµ = dVg of some (Riemannian) Hermitian metric

g. However, it is worth noting that one can define Hilbert spaces without the use of a metric

g on the manifold. Indeed, let (V → X, h) be a holomorphic Hermitian vector bundle. Then,

instead of considering sections of V → X, one may consider V -valued canonical sections

– that is, sections of KX ⊗ V . For each section f of V → X, one has the measure |f |2h

defined as follows. If z is a local coordinate and ξ1, · · · , ξr a local frame, then one may write

f =
∑r

i=1 fidz1 ∧ · · · ∧ dzn ⊗ ξi and thus define

|f |2h :=
∑

1≤i,j≤r

fif̄jh(ξi, ξj)

(√
−1

2

)n
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

As noted in a Remark 2.2.1, one may always consider sections of V → X in lieu of V -valued

(n, 0)-forms and vice versa. See [Ohs18] for instance, for more contents on this approach to

Bergman kernels.

3.2.2 Definition of the Bergman projection

We now proceed to define the Bergman projection. Such a definition is possible in virtue of

the following proposition.

Proposition 3.2.4. If (µ, h) is an C-RKHS structure, then the Bergman space H2
0,0(µ, h) is

a closed subspace of L2
0,0(µ, h).

This proposition follows from the Bergman inequality in the following manner. Since the

L2-norm dominates the L∞loc-norm on H2
0,0(µ, h) by the Bergman inequality, every sequence

in H2
0,0(µ, h) that is Cauchy with respect to the L2-norm, converges locally uniformly, and

hence its L2-limit is holomorphic by Montel’s theorem. We thus have the following definition.

Definition 3.2.2. The orthogonal projection P : L2
0,0(µ, h) → H2

0,0(µ, h) is called the

Bergman projection of H2
0,0(µ, h).
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3.3 L2 estimates for the Bergman projection

If (µ, h) is an C-RKHS structure and f ∈ L2
0,0(µ, h), then the section U0 = f−P (f) ∈ L2

0,0(µ, h)

is a solution of the ∂̄-equation

∂̄u = ∂̄f.

Since H2
0,0(µ, h) = Ker

(
∂̄
)
∩ L2

0,0(µ, h), Proposition 3.1.3 shows that U0 is the solution of

minimal L2-norm. This minimality is particularly useful in estimating ‖P (f)‖2
L2
0,0(µ,h) from

below. Indeed, given any weak solution u ∈ L2
0,0(µ, h) of ∂̄u = ∂̄f ,

‖P (f)‖2
L2
0,0(µ,h) = ‖f‖2

L2
0,0(µ,h) − ‖f − P (f)‖2

L2
0,0(µ,h) ≥ ‖f‖

2
L2
0,0(µ,h) − ‖u‖

2
L2
0,0(µ,h) .

When µ = dVg for some (Hermitian) Riemannian metric g, one can obtain desirable candidate

solutions u by making use of the Hörmander-Skoda-Demailly Theorem.

Theorem 3.3.1. (Hörmander-Skoda-Demailly Theorem) Let X be a complete Kähler man-

ifold equipped with a (not necessarily complete) Kähler metric g, and let V → X be a

holomorphic vector bundle with Hermitian metric h. Assume there exists a non-negative

Hermitian (1, 1)-form Φ such that

Θ(h) + Ric(g) ≥ Φ.

Then for every f ∈ L2
0,0(g, h) such that

∫
X

∣∣∂̄f ∣∣2
Φ,h

dVg < +∞

one has the estimate ∫
X

|f − P (f)|2h dVg ≤
∫
X

∣∣∂̄f ∣∣2
Φ,h

dVg.

See [Dem12, Chapter VIII, §6, (6.1) Theorem] for a proof.
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3.4 The Bergman Kernel

According to Theorem 3.1.5, if {fj}j≥1 ⊂ H2
0,0(µ, h) is an orthonormal Riesz basis, then the

formal series

K =
∑
j≥1

fj ⊗ f̄j

associated to the Bergman projection converges weakly on any indecomposable tensor in the

Hilbert space Ĥ ⊗H†, where H := L2
0,0(µ, h). It was also pointed out that if H2

0,0(µ, h) is

not finite-dimensional, then K does not converge in Ĥ ⊗H†. If, however, (µ, h) is a local

C-RKHS structure then one can represent the formal series K very concretely.

3.4.1 Existence

On a Bergman space, the point evaluation is bounded by definition, and hence for each

x ∈ X, there is a bounded linear function `x : H2
0,0(µ, h) 7→ Vx whose norm is locally

uniformly bounded as a function of x. By the Riesz Representation Theorem, there is a vector

ξx ∈ H2
0,0(µ, h)⊗ V †x such that f(x) = (f, ξx) and x 7→ ‖ξx‖ is locally uniformly bounded.

Lemma 3.4.1. Let H2
0,0(µ, h) be a Bergman space and let {fj}j≥1 ⊂ H2

0,0(µ, h) be a sequence

of vectors such that for every x ∈ X

1. for each K b X, there exists CK > 0 such that sup
j≥1
x∈K

|(fj, ξx)|h ≤ CK, and

2. f(x) := limj→∞ (fj, ξx) exists in Vx.

Then fj → f locally uniformly on X. In particular, f ∈ ΓO(X, V ).

Proof. Since (fj, ξx) = fj(x), the first condition and Montel’s theorem imply that a subse-

quence of {fj}j≥1 converges to a holomorphic section f̃ . On the other hand, by the second

property, {fj}j≥0 converges pointwise to f , and hence f̃ = f .

Remark 3.4.2. The limit itself, f , does not have to be in H2
0,0(µ, h).
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Theorem 3.4.3. Let X be a complex manifold with Borel measure µ and let V → X be a

holomorphic vector bundle with Hermitian metric h such that (µ, h) is an C-RKHS structure.

Then, there exists a holomorphic section K ∈ ΓO
(
X ⊗X†, V � V †

)
such that

1. K(x, ȳ) = K(y, x̄),

2. K(·, ȳ) ∈ H2
0,0(µ, h) for every y ∈ X, and

3. the Bergman projection P : L2
0,0(µ, h)→ H2

0,0(µ, h) is given by

P (f)(x) =

∫
X

h (f(y), K(x, ȳ)) dµ(y). (3.4.1)

Moreover, K is uniquely determined by these three properties.

Proof. Suppose we have two sections K and K̃ that satisfy these three properties. Since

K(·, x̄), K̃(·, z̄) ∈ H2
0,0(µ, h),

K̃(x, z̄) =
(
K̃(·, z̄), K(x, ·̄)

)
L2
0,0(µ,h)

=
(
K(·, x̄), K̃(z, ·̄)

)
L2
0,0(µ,h)

= K(x, z̄),

which establishes the uniqueness of K.

We now turn to the existence of K. Fix an orthonormal basis {sj}j≥0 of H2
0,0(µ, h) and

let

fN(x, ȳ) :=
N∑
j=1

sj(x)⊗ sj(y).

Clearly, fN ∈ ΓO
(
X ⊗ X̄, V � V †

)
. Suppose that fN converges locally uniformly, for the

moment, and let K denote its limit. K clearly satisfies the first property, while the third one

is a consequence of Theorem 3.1.5. Combining the identity∫
X

|fN(·, ȳ)|2h dµ = fN(y, ȳ),

with Fatou’s Lemma, we can see that∫
X

|K(·, ȳ)|2h dµ ≤ K(y, ȳ),

which proves the second property.
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It remains to prove the convergence. To do so, we will apply Lemma 3.4.1 to X ×X†

with its product measure µ× µ and holomorphic vetor bundle V � V † → X ×X† with the

Hermitian metric h � h̄ := π∗Xh + π∗
X̄
h̄ where h̄(ξ, σ̄) = h(σ, ξ̄). Fubini’s Theorem shows

that
(
µ× µ, h� h̄

)
is a an C-RKHS structure structure. The Riesz-dual vector to point-

evaluation vectors in X ×X† are ξ(x,ȳ) = ξx⊗ ξ̄y, where ξp ∈ H2
0,0(µ, h)⊗V †x is the Riesz-dual

of point-evaluation at p ∈ X – i.e. (s, ξp) = s(p). To apply 3.4.1, we need to show that

1.
∣∣(fN , ξ(x,ȳ)

)∣∣
h⊗H† is locally uniformly bounded, and

2.
(
fN , ξ(x,ȳ)

)
converges in Vx ⊗ V †y .

Fix K b X and x ∈ X, and let aj := sj(x). By the Bergman inequality applied to the

holomorphic section
∑N

j=1 sj ⊗ āj of the vector bundle V ⊗ V †x → X, there exists a constant

C = CK such that for all ζ ∈ K

hζ ⊗ h̄x

(
N∑
i=1

sj(ζ)⊗ āi,
N∑
j=1

sj(ζ)⊗ āj

)

≤ CK

∫
X

h⊗ h̄x

(
N∑
i=1

sj(z)⊗ āi,
N∑
j=1

sj(z)⊗ āj

)
dµ(z)

= CK
∑

1≤i,j≤N

hx(ai, aj)

∫
X

h (si(z), sj(z)) dµ(z) = CK

N∑
j=1

h (si(x), si(x)) ,

and setting ζ = x yields(
N∑
j=1

h (si(x), si(x))

)2

≤ CK

N∑
j=1

h (si(x), si(x)) .

Hence,
N∑
j=1

h (si(x), si(x)) ≤ CK ,

and therefore,

∣∣(fN , ξ(x,ȳ)

)∣∣2
h⊗h̄ =

∣∣∣∣∣
N∑
j=1

h (si(x), si(y))

∣∣∣∣∣
2

≤ C2
K ,∀x, y ∈ K.
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Since every compact subset of X ×X† is contained in a set of the form K ⊗ K̄ for some

K b X, the first requirement of Lemma 3.4.1 is established. To prove the second one, note

that for N > M ,

|fN(x, ȳ)− fM(x, ȳ)|2h ≤

(
M+1∑
i=1

|si(x)|2h

)(
M+1∑
i=1

|sj(x)|2h

)
.

Hence the sequence {fN(x, ȳ)}N≥1 is Cauchy and so it converges.

Definition 3.4.1. The section K ∈ ΓO
(
X ×X†, V � V †

)
is called the Bergman kernel of

the Bergman space H2
0,0(µ, h).

3.4.2 Properties of the Bergman kernel

3.4.2.1 Extremal property

As previously seen, the Bergman kernel of H2
0,0(µ, h) is given by the series

K =
∑
j≥0

sj ⊗ s̄j

which is locally uniformly convergent, but not necessarily convergent inH2
0,0(µ, h)⊗

(
H2

0,0(µ, h)
)†

.

Here, {sj}j≥0 denotes any orthonormal Riesz basis of H2
0,0(µ, h). This series expansion is

useful in proving the following extremal characterization of the Bergman kernel.

Theorem 3.4.4. LetH2
0,0(µ, h) be a Bergman space. The Bergman kernel K ∈ ΓO

(
X ×X†, V � V †

)
of H2

0,0(µ, h) is uniquely determined by the extremal property

∀x ∈ X, σ ∈ V ∗x : 〈σ ⊗ σ̄, K(x, x̄)〉 = sup
u∈H2

0,0(µ,h)−{0}

|〈σ, u(x)〉|2

‖u‖2
L2
0,0(µ,h)

(3.4.2)

Moreover, the supremum is a maximum – i.e., for each σ ∈ V ∗, there exists a section

u ∈ H2
0,0(µ, h) that is unique up to a unimodular constant factor, such that ‖u‖L2

0,0(µ,h) = 1

and 〈σ ⊗ σ̄, K(πσ, πσ)〉 = |〈σ, u(πσ)〉|2, for all σ ∈ V ∗, where π : V ∗ → X denotes the bundle

projection.
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Remark 3.4.5. If x ∈ X is a point at which the metric h is bounded, then

sup
σ∈V ∗x −{0}

|〈σ, v〉|2

|σ|2h∗
= |v|2h .

Therefore |K(x, x̄)|h is the optimal constant for the Bergman inequality at the point x.

Lemma 3.4.6. Let V → X be a holomorphic vector bundle. Then any holomorphic section

of V � V † → X × X† is uniquely determined by its value along the sesqui-diagonal set

∆X := {(x, x̄);x ∈ X} ⊂ X ×X†.

Proof. By the identity principle, it suffices to show that ∆X is a totally real submanifold of

X ×X†. The vector ξ = π∗Xξ1 + π∗
X† ξ̄2 ∈ T 1,0

X×X†,(x,x̄)
is tangent to ∆X if and only if ξ1 = ξ2.

Since

JX×X†ξ =
√
−1
(
π∗Xξ1 + π∗X† ξ̄2

)
= π∗X

(√
−1ξ1

)
+ π∗X†

(
−
√
−1ξ2

)
,

it follows that JX×X†T∆X
∩ T∆X

= {0}.

Lemma 3.4.7. Let H2
0,0(µ, h) be a Bergman space. For each σ ∈ V ∗x , there exists an

orthonormal Riesz basis {sj}j≥0 for H2
0,0(µ, h) such that 〈σ, sj(x)〉 = 0 for all j ≥ 2.

Proof. If the point evaluation function Eσ : H2
0,0(µ, h) 3 f 7→ 〈σ, f(x)〉 ∈ C is identically

zero, i.e. if H2
0,0(µ, h) = Ker (Eσ), there is nothing to prove. Assume then that Eσ 6= 0. By

the Bergman inequality, Eσ is a bounded operator and thus its kernel is a closed subspace.

Letting ξσ ∈ H2
0,0(µ, h) denote the Riesz dual of σ, we find that f ∈ Ker (Eσ) if and only if

(f, ξσ) = 0, and hence we have the orthogonal decomposition

H2
0,0(µ, h) = Cξσ ⊕Ker (Eσ) .

Letting s1 = ξσ/ ‖ξσ‖L2
0,0(µ,h) and taking {sj}j≥2 to be any orthonormal basis for Ker (Eσ), we

obtain the desired result.

We are now in a position to prove Theorem 3.4.4.

58



Proof. Lemma 3.4.6 and the polarization identity

σ ⊗ τ̄ =
1

4

[
(σ + τ)⊗ (σ + τ)− (σ − τ)⊗ (σ − τ)

]
+

√
−1

4

[(
σ −
√
−1τ

)
⊗
(
σ −
√
−1τ

)
−
(
σ +
√
−1τ

)
⊗
(
σ +
√
−1τ

)]
imply that K is completely determined by the quantities 〈σ ⊗ σ̄, K(x, x̄)〉 for σ ∈ V ∗x and

x ∈ X. Now let u ∈ H2
(0,0)(µ, h)− {0}. If {σj}j≥0 is an orthonormal basis for {u}⊥, then

|〈σ, u(x)〉|2

‖u‖2
L2
0,0(µ,h)

≤ |〈σ, u(x)〉|2

‖u‖2
L2
0,0(µ,h)

+
∑
j≥0

|〈σ, σj(x)〉|2 = 〈σ ⊗ σ̄, K(x, x̄)〉,

which shows that

〈σ ⊗ σ̄, K(x, x̄)〉 ≥ sup
u∈H2

0,0(µ,h)−{0}

|〈σ, u(x)〉|2

‖u‖2
L2
0,0(µ,h)

.

On the other hand, by Lemma 3.1, there exists an orthonormal basis {s1, s2, · · · } for H2
0,0(µ, h)

such that sj(x) = 0 for all j ≥ 2. Thus

〈σ ⊗ σ̄, K(x, x̄)〉 = |〈σ, s1(x)〉|2 ≤ sup
u∈H2

0,0(µ,h)−{0}

|〈σ, u(x)〉|2

‖u‖2
L2
0,0(µ,h)

,

which completes the proof.

3.4.2.2 Invariance

Given a holomorphic diffeomorphism Φ : X → Y to a complex manifold Y , it follows that the

push-forward measure Φ∗µ and the metric (Φ−1)
∗
h for the pullback bundle (Φ−1)

∗
V → Y

define an C-RKHS structure on Y that is naturally isomorphic to the C-RKHS structure

(µ, h) on X. We then immediately obtain the following proposition.

Proposition 3.4.8. Let X be a complex manifold with measure µ and let V → X be a

holomorphic vector bundle with Hermitian metric h such that (µ, h) is an C-RKHS structure.

If Φ : X → Y is a holomorphic diffeomorphism, then

K2

(
Φ(x),Φ(y)

)
= K1(x, ȳ),

where K1 is the Bergman kernel ofH2
0,0(µ, h) and K2 is the Bergman kernel ofH2

0,0

(
Φ∗µ, (Φ

−1)
∗
h
)
.
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3.4.2.3 Monotonicity

Proposition 3.4.9. Let X be an n-dimensional complex manifold, let µ be a Borel measure

on X and let V → X be a holomorphic vector bundle with Hermitian metric h such that

(µ, h) is an C-RKHS structure. Let K denote the Bergman kernel of H2
0,0(µ, h). Let Y be

a complex manifold of complex dimension n and let ι : Y ↪→ X be an injective holomorphic

map. Then the Bergman kernel ι∗K of the C-RKHS structure (ι∗µ, ι∗h) satisfies:

∀x ∈ X, ∀σ ∈ (ι∗V ∗)x : 〈σ ⊗ σ̄, (ι∗K) (x, x̄)〉 ≥
〈(
ι−1
)∗

(σ ⊗ σ̄) , ιK (ιx, ιx)
〉
.

Proof. Fix σ ∈ ι∗V ∗ and denote by x ∈ Y the basepoint of σ. By Theorem 3.4.4, there exists

a section s ∈ H2
0,0(µ, h) such that∫

X

|s|2h dµ = 1 and
〈(
ι−1
)∗

(σ ⊗ σ̄) , K (ιx, ιx)
〉

=
∣∣〈(ι−1

)∗
σ, s(x)

〉∣∣2 .
Then ι∗s ∈ H2

0,0(ι∗µ, ι∗h) and∫
Y

|ι∗s|2ι∗h dι
∗µ =

∫
ιY

|s|2h dµ ≤ 1.

The desired equality follows from Theorem 3.4.4.

The following three propositions generalize [Ber06, Lemmas 3.1, 3.2, and 3.3]. We

prove the first one. The next two essentially follow from special cases of the generalization

of Ramadanov’s theorem in [PW16]. They can be shown using the methods of proof of

Propositions 3.4.9 and Proposition 3.4.10, or following the methods of proof found in [PW16].

Proposition 3.4.10. Let Ω0 and Ω1 be bounded domains in a complex manifold X such that

Ω0 b Ω1. Let V → Ω1 be a holomorphic vector bundle and let µ be a Borel measure for Ω1.

Let {hj}j≥0 be a sequence of Hermitian metrics for V → Ω1 such that (µ, hj) is an C-RKHS

structure for each j. Assume further that hj
∣∣
Ω0

= h for some metric h for V
∣∣
Ω0
→ Ω0, and

that hj ↘ 0 almost everywhere in Ω1 − Ω0. Assume that H2
0,0(Ω1, h) is dense in H2

0,0(Ω0, h).

Fix a point z ∈ Ω0. Let Kj be the Bergman kernel for H2
0,0(Ω1, hj), and let K be the Bergman

kernel for H2
0,0(Ω0, h). Then, denoting by ι : Ω0 ↪→ Ω1 the inclusion map,

∀σ ∈ V ∗ιz :
〈(
ι−1
)∗

(σ ⊗ σ̄) , Kj (ιz, ιz)
〉
↗ 〈σ ⊗ σ̄, K(z, z̄)〉 .
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Proof. Let ι : Ω0 ↪→ Ω1 be the inclusion map, and let σ ∈ V ∗ιz. By Theorem 3.4.4,{〈
(ι−1)

∗
(σ ⊗ σ̄) , Kj (ιz, ιz)

〉}
j≥0

is an increasing sequence and

〈(
ι−1
)∗

(σ ⊗ σ̄) , Kj (ιz, ιz)
〉
≤ 〈σ ⊗ σ̄, K(z, z̄)〉

for each j. Since

Kj(ιz, ῑz) =

∫
Ω1

|Kj(ιz, y)|2hj dµ(y)

by Theorem 3.4.3, it follows that {Kj}j≥0 has uniformly bounded norm norm in H2
0,0 (Ω1, hj).

Therefore, the sequence {Kj}j≥0 has a weakly convergent subsequence in H2
0,0 (Ω0, h). Let

K be the limit of the weakly convergent subsequence. If f is in H2 (Ω1, h), then by the

Cauchy-Schwarz inequality∣∣∣∣∫
Ω1−Ω0

〈f(y), Kj(x, y)〉hj dµ(y)

∣∣∣∣ ≤ ‖Kj‖2
L2
0,0(Ω1,hj)

∫
Ω1−Ω0

|f(y)|2hj dµ(y),

and the latter converges to 0 as j → +∞. Therefore, any weak limit K satisfies

f(x) =

∫
Ω0

〈f(y),K(x, ȳ)〉h dµ(y)

for any f ∈ H2
0,0 (Ω1, h), and since H2

0,0(Ω1, h) is dense in H2
0,0(Ω0, h), the same reproducing

property holds for any f ∈ H2
0,0(Ω0, h). Since K is holomorphic, K = K by uniqueness and

the limit is uniform on compact subsets of Ω0. In particular, for each z ∈ Ω0, Kj(ιz, ῑz)

converges to K(z, z̄) as j → +∞, which implies the desired result.

Proposition 3.4.11. Let Ω be a bounded domain, with Borel measure µ, in a complex

manifold X, and let V → Ω be a holomorphic vector bundle with Hermitian metric h such

that h is locally bounded below and (µ, h) is an C-RKHS structure. Let {Ωj}j≥1 be an

increasing family of subdomains with union equal to Ω. Let z be a fixed point in Ω0 and let

Kj and K be the Bergman kernels for H2
0,0

(
Ωj, µ

∣∣
Ωj
, h
)

and H2
0,0(Ω, µ, h) respectively. Then,

denoting by ιj : Ω0 ↪→ Ωj and ι : Ω0 ↪→ Ω the inclusion maps,

∀σ ∈ V ∗ι0z = V ∗ιjz :
〈(
ι−1
j

)∗
(σ ⊗ σ̄) , Kj (ιjz, ιjz)

〉
↘
〈(
ι−1
0

)∗
(σ ⊗ σ) , K (ι0z, ι0z)

〉
.
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Proposition 3.4.12. Let Ω be a bounded domain, with Borel measure µ, in a complex

manifold X, and let V → Ω be a holomorphic vector bundle. Suppose that {hj}j≥1 is a

sequence of Hermitian metrics that are increasing to a metric h. Suppose that for each j,

(µ, hj) is an C-RKHS structure, and that (µ, h) is also an C-RKHS structure. Let z be a fixed

point in Ω and let Kj and K be the Bergman kernel for H2
0,0(µ, hj) and H2(µ, h) respectively.

Then,

∀σ ∈ V ∗z : 〈σ ⊗ σ̄, Kj(z, z̄)〉 ↘ 〈σ ⊗ σ̄, K(z, z̄)〉 .

The following proposition is a geometric adaptation of [Ber06, Lemma 3.4].

Proposition 3.4.13. Let X = {(t, z) ∈ Cm × Y : ρ(t, z) < 0} where Y is a Stein manifold

and ρ is plurisubharmonic near the closure of X. Let V → X be a holomorphic vector bundle

equipped with a Hermitian metric h that is smooth and locally bounded below near the closure

of X. Let V [t] := V
∣∣
Xt

. Then, for fixed z and σ ∈
(
V

[t]
z

)∗
, the function t 7→ 〈σ ⊗ σ̄, Kt(z, z̄)〉

is upper semicontinuous.

Proof. Consider a point t and let s be a nearby point tending to t. We may choose ε > 0

so that all the fibers Xs are contained in the open set Vε := {(t, z) ∈ Cm × Y : ρ(t, z) < ε}.

Note that any compact subset of Xt is contained in all Xs for s sufficiently close to t. Let

Ks(·, z̄) denote the Bergman kernel of Xs for a fixed point z. Let σ ∈
(
V

[s]
z

)∗
. Since the

domains Xs all contain a fixed open neighborhood of z, the L2-norms of 〈σ ⊗ σ̄, Ks(z, z̄)〉

are bounded. Therefore, any sequence of 〈σ ⊗ σ̄, Ks(z, z̄)〉 has a subsequence that is weakly

convergent on any compact subset of Xt. The L2-norm of any weak limit K cannot exceed

the lim inf of the L2-norms of 〈σ ⊗ σ̄, Ks(z, z̄)〉 over Xs. By Theorem 3.4.4, it follows that

for any σ ∈
(
V

[s]
z

)∗
and τ ∈

(
V

[t]
z

)∗
lim sup
s→t

〈σ ⊗ σ̄, Ks(z, z̄)〉 ≤ 〈τ ⊗ τ̄ , Kt(z, z̄)〉 ,

which completes the proof.
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3.4.3 Examples

Example 3.4.14. (The standard unit ball) Let Bn denote the unit ball in Cn. Consider the

Hilbert space L2
n,0(Bn) of L2-sections of the canonical bundle KBn . Then

KBn(z, w̄) =
1

σn
(1− 〈z, w〉)−(n+1) dz1 ∧ · · · ∧ dzn ⊗ dw̄1 ∧ · · · ∧ dw̄n

where σn :=
πn

n!
= Vol(Bn). First, note that the monomial top forms

mα(z) := zαdz1 ∧ · · · ∧ dzn

are mutually orthogonal and∫
Bn
|mα|2 =

∫
Bn
|zα|2 dV (z) =

∫ 1

0

r2|α|+2(n−1)rdr

∫
S2n−1

|θα|2 dσ(θ) =
1

2 (|α|+ n)

∫
S2n−1

|θα|2 dσ(θ).

On the other hand:

∫
S2n−1

|θα|2 dσ(θ) =

∫
Cn
|zα|2 e−|z|

2

dV (z)∫ ∞
0

r2(|α|+n−1)e−r
2

rdr

=
πnα!

2 (|α|+ n− 1)!
.

Therefore, ∫
Bn
|zα|2 dV (z) =

πnα!

(|α|+ n)!
.

Thus, an orthonormal basis is given by the monomials

{√
(|α|+ n)!

πnα!
mα(z)

}
α∈Nn

, and using

the metric dV (z)−1, for the canonical bundle of Cn, given by the reciprocal of Lebesgue

measure,

|K(z, z̄)|
dV (z)

=
∑
|α|≥0

(|α|+ n)!

πnα!
|zα|2 =

n!

πn

∞∑
j=0

(n+ j)!

j!n!

∑
|α|=j

|α|!
α!
|zα|2 =

n!

πn

∞∑
j=0

(
n+ j

j

)
|z|2j ,

whence

|K(z, z̄)|
dV (z)

=
1

σn

(
1− |z|2

)−(n+1)
.

As we already noted, the polarization then determines K:

KBn(z, w̄) =
1

σn
(1− 〈z, w〉)−(n+1) dz1 ∧ · · · ∧ dzn ⊗ dw̄1 ∧ · · · ∧ dw̄n.
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Example 3.4.15. (Ellipsoids) For a positive Hermitian (n× n)-matrix A, we denote by

ΩA := {z ∈ Cn : (Az) · z̄ < 1}

the ellipsoid of inertia A. Clearly, ΩI is the unit ball. Letting
√
A denote the unique

positive Hermitian matrix such that
√
A ·
√
A = A, the map ΦA(z) :=

√
Az is a holomorphic

diffeomorphism of Bn onto ΩA. Denoting by dV the standard volume form in Cn, one has

Φ∗A(dV ) = (det(A)) dV . Therefore, by the invariance of Bergman kernels (Proposition 3.4.8),

the Bergman kernel KA for H2
0,0

(
dV
∣∣
ΩA

)
is given by

KA(z, w̄) = (detA)KI

(
ΦA(z),ΦA(w)

)
=

det(A)

σn (1− 〈Az,w〉)n+1 .

Example 3.4.16. (The Bargmann-Fock Space) Assume X = Cn with its Lebesgue mea-

sure dV , let L be trivial, and set ϕ(z) = |z|2. The Hilbert space H2
0,0 (dV, e−ϕ) is called

the Bargmann-Fock Space. Since the monomials {zα}α∈Nn are mutually orthogonal in

H2
0,0 (dV, e−ϕ) and ∫

Cn
|zα|2 e−|z|

2

dV (z) = πnα!,

we see from the multinomial theorem that

|K(z, z̄)| = 1

πn

∞∑
j=0

1

j!

∑
|α|=j

|α|!
α!
|zα|2 =

1

πn

∞∑
j=0

|z|2j

j!
= π−ne|z|

2

,

and therefore K(z, w̄) = π−ne〈z,w〉.

Remark 3.4.17. By rescaling, one can see that the Bergman kernel Km for H2
0,0

(
dV, e−m|·|

2
)

is Km(z, z̄) =
mn

πn
em|z|

2

.

Example 3.4.18. (Finite-rank examples)

1. Consider the Hilbert space L2(C) of L2-functions in the entire plane. Then there are

no holomorphic function in L2(C) other than the zero function.

2. The space of functions that are L2 with respect to the weight ϕ(z) = (N+2) log
(
1 + |z|2

)
in the entire complex plane consists exactly of polynomials of degree at most N .
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3. If X is a compact complex manifold, and (L→ X, e−ϕ) a holomorphic Hermitian line

bundle over X, then ΓO(X, V ) is finite-dimensional by the Hodge Theorem, and thus

so is its subspace H2
0,0 (µ, e−ϕ).
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Chapter 4

Twisted L2-theory for the ∂̄-operator

The use of L2-estimates for the ∂̄-operator to obtain estimates for the Bergman kernel goes all

the way back to Hörmander’s original paper [Hör65]. In this section, we present two theorems

on L2-estimates for the ∂̄-operator that are based on the twisted Bochner-Kodaira-Identity.

4.1 The twisted Bochner-Kodaira Identity

Let X be an n-dimensional complete Kähler manifold with complete Kähler metric g and let

V → X be a holomorphic vector bundle of rank r with smooth Hermitian metric h. We start

from the (integrated) Bochner-Kodaira Identity. For a detailed exposition in the case of line

bundles, we refer the reader to [MV15] and [Var19]. See also [McN06a].

As X possesses a metric, there is a natural way to map sections of the non-holomorphic

vector bundle KX ⊗ Λq
(
T ∗0,1X

)
⊗ V → X to sections of the holomorphic vector bundle

KX ⊗ Λq
(
T 1,0
X

)
⊗ V → X. Writing ϕ =

∑
1≤α≤r
|J |=q

ϕα
J̄
dz1 ∧ · · · ∧ dz̄J ⊗ eα locally, we see that

I(ϕ) :=
∑

1≤α≤r
|I|=|J |=q

gIJ̄ϕαJ̄dz1 ∧ · · · ∧ dzn ⊗
∂

∂zI
⊗ eα

:=
∑

1≤α≤r
|I|=|J |=q

gIJ̄ϕαJ̄dz1 ∧ · · · ∧ dzn ⊗
∂

∂zi1
∧ · · · ∧ ∂

∂ziq
⊗ eα
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is a section of KX ⊗ Λq
(
T 1,0
X

)
⊗ V → X, and clearly, the map ϕ 7→ I(ϕ) is a one-to-one

correspondence that depends only on the pointwise values of ϕ. The map I extends naturally

to a one-to-one correspondence Ik of
(
KX ⊗ Λq

(
T 1,0
X

)
⊗ V

)
-valued (0, k)-forms, i.e., sections

of Λk
(
T ∗0,1X

)
⊗ KX ⊗ Λq

(
T 1,0
X

)
⊗ V → X, by acting on the factor KX ⊗ Λq

(
T 1,0
X

)
⊗ V as

follows. For J = (j1, · · · , jk), set

I
(
dz̄J ⊗ dz1 ∧ · · · ∧ dzn ∧ dz̄I ⊗ eα

)
= dz̄J ⊗ Ik

(
dz1 ∧ · · · ∧ dzn ∧ dz̄I ⊗ eα

)
.

The vector bundle KX ⊗ Λq
(
T 1,0
X

)
⊗ V → X being a holomorphic vector bundle, is

equipped with a ∂̄-operator, and thus we have a well-defined
(
KX ⊗ Λq

(
T 1,0
X

)
⊗ V

)
-valued

(0, 1)-form ∂̄ (I(ϕ)).

Definition 4.1.1. The operator ∇ : Γ (X,Λn,q (T ∗X)⊗ V )→ Γ
(
X,T ∗0,1X ⊗ Λn,q (T ∗X)⊗ V

)
is

defined by ∇(ϕ) := I−1
1

[
∂̄ (I(ϕ))

]
.

Proposition 4.1.1. For every compactly supported β ∈ Γ(X, V ), one has the formal identity∫
X

∣∣∂̄∗hβ∣∣2h dVg +

∫
X

∣∣∂̄β∣∣2
h,g
dV g =

∫
X

∣∣∇β∣∣2
h,g
dVg +

∫
X

(
(Θ(h) + Ric(g)⊗ IdV )g β, β

)
h,g
dVg.

Here, ∂̄∗h denotes the formal adjoint of ∂̄ with respect to the metric h.

Now let us replace the metric h by the metric he−η for some smooth function η : X → R,

and let D0,1
η denote the (0, 1)-vector field defined by

g
(
ξ,D(0,1)

η

)
= ∂̄η(ξ̄), ξ ∈ T 0,1

X .

Then ∂̄∗he−ηβ = ∂̄∗hβ −D0,1
η yβ and Θ (he−η) = Θ(h) + ∂∂̄η ⊗ IdV . Therefore,∫

X

∣∣∂̄∗hβ∣∣2he−η dVg =

∫
X

∣∣∂̄∗hβ∣∣2h e−ηdVg +

∫
X

((
∂η ∧ ∂̄η ⊗ IdV

)
g
β, β

)
h,g
e−ηdVg

+ 2Re

[∫
X

(
∂̄∗hβ,D

0,1yβ
)
h
e−ηdVg

]
and ∫

X

((
Θ
(
he−η

)
+ Ric(g)⊗ IdV

)
g
β, β

)
he−η ,g

dVg

=

∫
X

((
Θ(h) +

(
∂∂̄η + Ric(g)

)
⊗ IdV

)
g
β, β

)
h,g
e−ηdVg
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We thus have the twisted Bochner-Kodaira Identity :∫
X

∣∣∂̄∗hβ∣∣2h e−ηdVg +

∫
X

∣∣∂̄β∣∣2
h,g
e−ηdVg

=

∫
X

∣∣∇β∣∣2
h,g
e−ηdVg +

∫
X

((
Θ(h) +

(
Ric(g) + ∂∂̄η − ∂η ∧ ∂̄η

)
⊗ IdV

)
g
β, β

)
h,g
e−ηdVg

− 2Re

[∫
X

(
∂̄∗hβ,D

0,1yβ
)
h
e−ηdVg

]
. (4.1.1)

Estimating the last term of (4.1.1), one obtains à priori estimates that lead to estimates

for ∂̄, as we will see in the next section.

4.2 Donnelly-Fefferman-Ohsawa Estimates for ∂̄

Letting δ > 0, Young’s inequality for products yields

2Re

[∫
X

(
∂̄∗hβ,D

0,1yβ
)
h
e−ηdVg

]
≤ 1

δ

∫
X

∣∣∂̄∗hβ∣∣2h e−ηdVg +

∫
X

(
δ
(
∂η ∧ ∂̄η ⊗ IdV

)
g
β, β

)
h,g
e−ηdVg

The twisted Bochner-Kodaira identity yields the Donnelly-Fefferman-Ohsawa à priori

estimate(
1 + δ

δ

)∫
X

∣∣∂̄∗hβ∣∣2h e−ηdVg +

∫
X

∣∣∂̄β∣∣2
h,g
e−ηdVg (4.2.1)

≥
∫
X

((
Θ(h) +

(
Ric(g) + ∂∂̄η − (1 + δ)∂η ∧ ∂̄η

)
⊗ IdV

)
g
β, β

)
h,g
e−ηdVg,

for all compactly supported smooth V -valued (0, 1)-forms β. The estimate (4.2.1) leads to

the following L2-estimate for ∂̄.

Theorem 4.2.1. Let X be a complete Kähler manifold equipped with a Kähler metric g that

is not necessarily complete, and let V → X be a holomorphic vector bundle with Hermitian

metric h0. Assume there exist a smooth function η, a positive number δ and a non-negative

(1, 1)-form Φ such that

Θ(h0) +
(
Ric(g) + 2∂∂̄η − (1 + δ)∂η ∧ ∂̄η

)
⊗ IdV ≥Nak Φ⊗ IdV .
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Then for every V -valued (0, 1)-form α such that

∂̄α = 0 and

∫
X

|α|2h0,Φ dVg < +∞

there exists a measurable section u of V → X such that

∂̄u = α and

∫
X

|u|2h0 dVg ≤
(

1 + δ

δ

)∫
X

|α|2h0,Φ dVg.

Proof. If the metric g is not complete, we may replace g by gε = g + εg0 where ε > 0 and g0

is a complete metric for X. So we assume that g is complete for the remainder of the proof.

By Remark 2.2.1, we can think of sections of V → X and V -valued (0, 1)-forms as V -valued

(n, 0)-forms and V -valued (n, 1)-forms respectively. We can then apply the L2-estimates to gε

and let ε tend to 0 at the end. (For further details, we refer the reader to [Dem12, Chapter

VIII, §6, (6.1) Theorem and (6.3) Lemma].) We are going to apply the estimate (4.2.1) to the

metric h = h0e
−η. Since g is complete, (4.2.1) holds for all β in the domains of the operators

T ∗ and S, where

T (f) := ∂̄

(√(
1 + δ

δ

)
e−η · f

)
and S(β) :=

√
e−η∂̄β.

Together with the curvature assumption, (4.2.1) becomes∫
X

|T ∗β|2h dVg +

∫
X

|Sβ|2h,g dVg ≥
∫
X

((
e−ηΦ⊗ IdV

)
g
β, β

)
dVg.

Since S ◦ T = 0, the same functional analysis argument used in the proof of Hörmander’s

Theorem, together with the Young’s inequality for products used to establish the Demailly-

Hörmander-Skoda Theorem (see [Dem12, Chapter VIII]), shows that there exists a measurable

section U satisfying

TU = α and

∫
X

|U |2h dVg ≤
∫
X

|α|2h,e−ηΦ dVg =

∫
X

|α|2h0,Φ dVg.

Setting u := U

√(
1 + δ

δ

)
e−η shows that

∂̄u = TU and

∫
X

|u|2h0 dVg =

(
1 + δ

δ

)∫
X

|U |2h dVg,

which completes the proof.
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4.3 Functions of self-bounded gradient

Note that if η ≡ 0, then the curvature hypothesis of Theorem 4.2.1 is exactly that of the

Hörmander-Skoda-Demailly Theorem, which we recover by letting δ → +∞. On the other

hand, if −e−η is plurisubharmonic, then so is η. Indeed,

∂∂̄
(
−e−η

)
= e−η

(
∂∂̄η − ∂η ∧ ∂̄η

)
,

so that

∂∂̄η ≥ ∂η ∧ ∂̄η ≥ 0.

So if −e−η is plurisubharmonic, then the condition

Θ(h0) +
(
Ric(g) + (1− δ)∂∂̄η

)
⊗ IdV ≥Nak Φ⊗ IdV

implies the curvature hypothesis of Theorem 4.2.1. Therefore, if such a nonconstant function

η exists, then one obtains an imporvement of the Hörmander-Skoda-Demailly theorem in the

sense that the curvature condition of the Hörmander-Skoda-Demailly has been weakened by

allowing negativity up to (1− δ)∂∂̄η, provided that δ ∈ (0, 1). For a more detailed discussion

in the case where V → X is a line bundle, we refer the reader to [MV15].

4.3.1 Definition and examples

Definition 4.3.1. Let X be a complex manifold. A function η ∈ W 2,1
loc (X) has self-bounded

gradient with constant c > 0 if

∂∂̄η ≥ c ·
(
∂η ∧ ∂̄η

)
.

We denote the set of such functions by SBGc(X). McNeal introduced this notion in

[McN02]. The nomenclature is motivated by the fact that if η also happens to be strictly

plurisubharmonic, then η is of self-bounded gradient with constant c if and only if

|∂η|2√−1∂∂̄η ≤ c.
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Remark 4.3.1. For any c > 0, η ∈ SBGc(X) if and only if cη ∈ SBG1(X), and so we only

need to consider functions belonging to SBG1(X). From now on, we refer to any function in

SBG1(X) as a function of self-bounded gradient.

The typical examples of functions of self-bounded gradient are the potentials for the

Poincaré metric on the unit ball and the punctured disk, respectively.

Example 4.3.2. The function η : z 7→ − log
(
1− |z|2

)
is of self-bounded gradient on the

unit ball Bn in Cn since −e−η : z 7→ |z|2 − 1 is plurisubharmonic.

Example 4.3.3. Let X be a complex manifold and let f : X → Bn be a holomorphic map

with values in Bn. Then the function η := − log
(
1− |f |2

)
is of self-bounded gradient because

it is the pullback of the function z 7→ − log
(
1− |z|2

)
from the previous example.

Example 4.3.4. (Relatively compact strongly pseudoconvex domains with smooth boundary)

Let X be a Stein manifold and let Ω b X be a relatively compact strongly pseudoconvex

subdomain.

1. Assuming that the boundary of Ω is smooth, [DF75, Theorem 1] states the existence

of a smooth strictly plurisubharmonic function ρ on Ω with negative values and that

converges to zero at the boundary. In this situation, we may choose η := − log(−ρ) to

be our function in SBG1(Ω). In particular, Example 4.3.2 is the special case when Ω is

the unit ball, X = Cn and ρ(z) = |z|2 − 1.

2. If the boundary of Ω is Cr-smooth; 2 ≤ r ≤ ∞, another theorem of Diederich-Fornæss

([DF77, Theorem 1]) states the existence of a defining function ρ that is Cr-smooth in a

neighborhood of Ω, and such that ρ̂ := −(−ρ)γ is a strictly plurisubharmonic bounded

exhaustion function on Ω for any small enough number γ ∈ (0, 1). In this situation, we

may then choose η = − log(−ρ̂) = −γ log(−ρ) as our function in SBG1(Ω).

Remark 4.3.5. The results of Diederich and Fornæss have first been extended to relatively

compact strongly pseudoconvex domains with C1 boundary by Kerzman-Rosay [KR81], and
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then further extended to pseudoconvex domains with Lipschitz boundary by Demailly [Dem87].

More recently, Avelin, Hed and Persson extended these results to pseudoconvex domains

with Log-Lipschitz boundary (see [AHP12, Theorem 3, Corollary 4]).

Example 4.3.6. Consider the punctured unit disk D∗ = {z ∈ C : 0 < |z| < 1}. Then the

function η : z 7→ − log
(
log
(
|z|−2)) is of self-bounded gradient. Indeed, −e−η(z) = log

(
|z|2
)

and so

∂∂̄
(
−e−η

)
= ∂∂̄

(
log(|z|2)

)
= 0

since z 7→ log
(
|z|2
)

is pluriharmonic for z 6= 0.

Note also that

∂∂̄η = ∂

(
− dz̄

z̄ log
(
|z|2
)) =

dz ∧ dz̄
|z|2

(
log
(
|z|2
))2 .

And so we see that

∂∂̄η =

(
− dz̄

z̄ log
(
|z|2
)) ∧(− dz

z log
(
|z|2
)) = ∂η ∧ ∂̄η,

which implies that ∂∂̄ (−e−η) = 0.

Example 4.3.7. Let X be a complex manifold. If T ∈ O(X) ∩ L∞(X), then the function

η := − log
(
log
(
‖T‖2

∞ · |T |
−2)) is of self-bounded gradient on the manifold X − {T = 0}.

Indeed, by rescaling, we may assume that ‖T‖∞ = 1, and then −e−η = log
(
|T |2

)
is

plurisubharmonic, and in fact pluriharmonic in X − {T = 0} (by the Poincaré-Lelong

formula). Alternatively, we can also see that η is simply the pullback of the function

z 7→ − log
(
log
(
|z|−2)) on D∗ from the previous example.

Example 4.3.8. (Hyperconvex manifolds) A hyperconvex manifold X is a manifold that

admits a bounded strictly plurisubharmonic exhaustion function ψ : X → [−∞, b) (see

[Ste74]). Define η := − log(b− ψ). Since −e−η = ψ − b, it follows that η ∈ SBG1(X).

Clearly, we may assume that the exhaustion is negative.
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Remark 4.3.9. Note that not every pseudoconvex domain is hyperconvex. A counterexample is

the Hartogs triangle T = {(z, w) ∈ C2 : |z| < |w| < 1} as observed by Diederich and Fornæss

in [DF75] and [DF77].

Remark 4.3.10. Let X be a complete hyperconvex manifold and let ψ : X → [−∞, 0) be its

plurisubharmonic exhaustion function. By regularizing ψ, one sees that X is hyperconvex if

and only if it admits a smooth plurisubharmonic exhaustion function ψ̃ : X → [−1, 0).

Remark 4.3.11. By Example 4.3.4 and Remark 4.3.5, any relatively compact strongly pseudo-

convex with Log-Lipschitz boundary in a Stein manifold is hyperconvex.

Hyperconvex domains and functions of self-bounded gradient are related as follows.

Proposition 4.3.12. [Ohs18, Proposition 4.6] A manifold X is hyperconvex if and only if

there exists a strictly plurisubharmonic exhaustion function ψ on X that is in SBGc(X) for

some positive constant c.

Although hyperconvex domains are of interest in other areas of several complex variables

(such as pluripotential theory), we will not be directly concerned with them in this thesis.

It is worth noting that the existence of a non-trivial function of self-bounded gradient

is a complex geometric hypothesis on a complex manifold. Indeed, on a given complex

manifold X, such a non-trivial function exists if and only if X admits a bounded non-constant

plurisubharmonic function. For instance, on Cn, there is no such nontrivial function.

4.4 Runge approximation theorem

We state here a Runge approximation theorem for holomorphic sections of a vector bundle

over a complex manifold which can be proved using L2-estimates for the ∂̄-operator.

Proposition 4.4.1. Let Y be a Stein manifold, and let Ω0 and Ω1 be smoothly bounded

pseudoconvex domains in Y with Ω0 relatively compact Ω1. Assume there is a smooth

plurisubharmonic function ρ in Ω1 such that Ω0 = {z ∈ Ω1 : ρ(z) < 0}. Let V → Ω1 be a
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holomorphic vector bundle, and let h be a Hermitian metric for V → Ω1. Then holomorphic

sections in L2(Ω1, h) are dense in the space of holomorphic sections in L2
(

Ω0, h
∣∣
Ω0

)
.

See [Dem96], for example, for a proof.

4.5 Optimizing the curvature hypothesis of the

Donnelly-Fefferman-Ohsawa theorem

Recall that if η is of self-bounded gradient and δ ∈ (0, 1), then the curvature hypothesis

Θ(h0) +
(
Ric(g) + (1− δ)∂∂̄η

)
⊗ IdV ≥Nak Φ⊗ IdV

implies the curvature hypothesis of the Donnelly-Fefferman-Ohsawa theorem. In particular,

this allows to assume a certain amount of curvature negativity. Specifically, we can afford as

much as −(1− δ)∂∂̄η curvature negativity.

This begs the question: can we maximize the quantity ∂∂̄η over the space of functions of

self-bounded gradient?

A naive approach would be to rescale η. If ∂∂̄η > 0, then one can consider α∂∂̄η for

some large positive constant α. However, it is entirely possible that αη might no longer be of

self-bounded gradient if α > 1 since

∂∂̄ (αη)− ∂ (αη) ∧ ∂̄ (αη) = α
(
∂∂̄η − ∂η ∧ ∂̄η

)
− α(α− 1)

(
∂η ∧ ∂̄η

)
.

The potential curvature gain from αη in Theorem 4.2.1 is given by

2∂∂̄(αη)− (1 + δ)
(
∂(αη) ∧ ∂̄(αη)

)
= (1− δ)α

(
∂∂̄η −

(
α− 1

1− δ

)(
∂η ∧ ∂̄η

))
+ (1 + δ)α

(
∂∂̄η − ∂η ∧ ∂̄η

)
.
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The difference in potential gains for α 6= 1 and α = 1 can be written as

[
(α− 1)

(
2∂∂̄η − (1 + δ)

(
∂η ∧ ∂̄η

))]
−
[
α (α− 1) (1 + δ)

(
∂η ∧ ∂̄η

)]
.

Assuming that the estimate ∂∂̄η ≥ ∂η ∧ ∂̄η is sharp, it follows that

[
(α− 1)

(
2∂∂̄η − (1 + δ)

(
∂η ∧ ∂̄η

))]
−
[
α (α− 1) (1 + δ)

(
∂η ∧ ∂̄η

)]
≥ (α− 1) (1− δ − α(1 + δ)) ∂∂̄η

= −(α− 1) (α− 1 + (α + 1)δ) ∂∂̄σ,

which is negative as soon as α > 1. On the other hand, if α < 1, one gets a curvature gain if

1− α
1 + α

< δ, i.e. if α >
1− δ
1 + δ

.

Now if δ ≥ 1, then the gain

(1− δ)α
(
∂∂̄η −

(
α− 1

1− δ

)(
∂η ∧ ∂̄η

))
+ (1 + δ)α

(
∂∂̄η − ∂η ∧ ∂̄η

)
for αη is non-positive (even when α ≥ 1). Thus, we may as well assume δ ∈ (0, 1) when

thinking about curvature gain, and so the smaller the δ, the larger the gain. However, taking

δ to be small increases the lower bound
1− δ
1 + δ

(for α < 1) to 1. This shows that rescaling

does not help when it comes to optimizing the curvature assumption in Theorem 4.2.1.

For the time being, maximizing ∂∂̄η over the space of functions of self-bounded gradient

remains an open question, unfortunately.
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Chapter 5

Berndtsson’s complex

Brunn-Minkowski theory

The contents of this chapter have largely been adapted from [Ber17]. The reader may also

refer to [Ber18] for a more general (albeit more concise) exposition.

5.1 Introducing complex Brunn-Minkowski theory

5.1.1 Classical Brunn-Minkowski theory

Let A0 and A1 be two convex bodies in Rn, i.e. compact convex sets with non-empty interior.

Their Minkowski sum is then defined as

A0 + A1 := {a0 + a1; a0 ∈ A0, a1 ∈ A1}. (5.1.1)

A fundamental theorem of convex geometry is the Brunn-Minkowski theorem.

Theorem 5.1.1. (Brunn-Minkowski) Suppose that A0 and A1 are nonempty. Then the

following inequality holds.

|A0 + A1|1/n ≥ |A0|1/n + |A1|1/n .
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Here, |A| denotes the Lebesgue measure of the measurable set A ⊂ Rn. Theorem 5.1.1

was first proved by Brunn in 1887 in his thesis for n = 2 and later generalized to arbitrary

dimensions by Minkowski in 1896. It was further shown to hold for arbitrary non-empty

compact sets by Lyusternik in 1935.

A classical application of the Brunn-Minkowski theorem is a proof of the isoperimetric

inequality. Let f(ε) = |A+ εB| for ε > 0 small, where B is the unit ball. Then

f(ε) = |A|+ ε |∂A|+ o(ε),

where |∂A| is the (n−1)-dimensional volume of the boundary ∂A of A. The Brunn-Minkowski

theorem implies

d

dε

∣∣∣
ε=0

(f(ε))1/n ≥ |B|1/n ,

whence

|∂A|
|A|1−1/n

≥ n |B|1/n .

If A = B, we have equality here, since B + εB = (1 + ε)B when B is convex. Thus

n |B|1/n =
|∂B|
|B|1−1/n

and we get

|∂A|
|A|1−1/n

≥ |∂B|
|B|1−1/n

,

which is the classical isoperimetric inequality. This discussion can be generalized by defining

the surface area (as Minkowski did) as

S(A) := lim
ε→0+

|A+ εB| − |A|
ε

for a fixed convex body B, which is not necessarily the unit ball, and for a suitable set A in

Rn. Then, using a similar argument will produce a more general isoperimetric-type inequality

since we only used the convexity of B.

We now discuss an alternative formulation of the Brunn-Minkowski theorem which is

more analytic in nature.
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First, notice that the Brunn-Minkowski theorem is equivalent to the following inequality

for any two nonempty convex bodies A0 and A1 in Rn.

∀t ∈ [0, 1] : |(1− t)A0 + tA1|1/n ≥ (1− t) |A0|1/n + t |A1|1/n . (5.1.2)

This follows by replacing A0 and A1 in the Brunn-Minkowski theorem by (1− t)A0 and

tA1 respectively, and using the positive homogeneity of degree n of the Lebesgue measure in

Rn, i.e. |λA| = λn |A| for λ > 0. In fact, this homogeneity yields another equivalent form of

the Brunn-Minkowski theorem, whereby t and 1− t can be replaced by any arbitrary positive

scalars r and s respectively.

Now, let At := tA1 + (1− t)A0 for 0 ≤ t ≤ 1, where A0 and A1 are convex bodies. Then

t 7→ |At|1/n is concave by (5.1.2), and since each non-negative concave function is log-concave,

we obtain

|At| ≥ |A0|t |A1|1−t . (5.1.3)

Conversely, (5.1.3) implies the concavity of the function t 7→ |At|1/n. This is interesting

since not every non-negative log-concave function is concave. (Simply consider the Gaussian

function x 7→ e−x
2
.) To see that the concavity of the function t 7→ |At|1/n follows from (5.1.3),

let B0 and B1 be non-empty convex bodies, let

t =
|B1|1/n

|B0|1/n + |B1|1/n
,

and apply the inequality (5.1.3) to A0 := |B0|−1/nB0 and A1 := |B1|−1/nB1. This results in

the classical Brunn-Minkowski inequality, which is equivalent to the inequality (5.1.2).

Therefore, the Brunn-Minkowski theorem is equivalent to the concavity of the function

t 7→ log (|At|) where At is a convex sum of convex bodies.

More generally, let A ⊂ Rn+1 be a convex body, and let At := {x ∈ Rn : (t, x) ∈ A}, t ∈ R

be the corresponding t-slice of A.
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Theorem 5.1.2. The function t 7→ |At|1/n is concave on the interval where it is nonzero.

Interestingly, this theorem is equivalent to the Brunn-Minkowski theorem. Given A0 and

A1, we may construct a convex body A ⊂ Rn+1 whose slices are given by At := tA1 +(1−t)A0

for 0 ≤ t ≤ 1. Therefore, Theorem 5.1.2 implies the Brunn-Minkowski theorem by the previous

argument. Conversely, given two slices A0 and A1 of A ⊂ Rn+1, then tA1 + (1− t)A0 ⊂ At

if A is convex, whence

|At|1/n ≥ t |A0|1/n + (1− t) |A1|1/n

by the Brunn-Minkowski theorem. In particular, the following corollary is again equivalent

to the Brunn-Minkowski theorem as it implies (5.1.3).

Corollary 5.1.3. The function t 7→ log (|At|) is concave wherever it is defined.

This corollary, and more specifically, its generalization known as the Prékopa-Leindler

inequality is central to building the complex analogue of Brunn-Minkowski theory. In what

follows, let ϕ̇ denote ∂ϕ/∂t, and let ϕ̈ denote ∂2ϕ/∂t2. Likewise, let ϕ′ denote ∂ϕ/∂x, let ϕ′′

denote ∂2ϕ/∂x2.

Theorem 5.1.4. (Prékopa-Leindler) Let ϕ : (t, x) 7→ ϕ(t, x) be a convex function in Rn+1.

Let

Φ(t) := − log

(∫
Rn
e−ϕ(t,x)dx

)
. (5.1.4)

Then t 7→ Φ(t) is convex or identically −∞.

To see how the Brunn-Minkowski theorem follows from the Prékopa-Leindler theorem, we

need to define the notion of characteristic function for a convex set. The latter is motivated

by log-concave measures – i.e. measures of the form e−ϕdµ for some convex function ϕ – and

is more suitable than the usual characteristic function for convex analysis. Given a convex

set A, the characteristic function χA : A→ R ∪ {+∞} of A is defined as

χA(x) =


0, x ∈ A;

+∞, x /∈ A.
(5.1.5)
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This function is convex, and applying the Prékopa-Leindler theorem to ϕ = χA, we recover

Corollary 5.1.3.

One proof of the Prékopa-Leindler theorem is that of Brascamp and Lieb ([BL76]) which

establishes a real-variable analogue of Hörmander’s L2-estimates for the ∂̄-operator, as we

will see. We first assume that ϕ is finite-valued and smooth. The general case follows from

the fact that we can write any convex functions as an increasing limit of smooth finite-valued

convex functions. Moreover, adding ε
(
|t|2 + |x|2

)
to ϕ, for some ε > 0, we may assume that

ϕ is strictly convex. Next, we see that we can reduce ourselves to the case n = 1. Indeed, let

(t, x) = (t, x1, · · · , xn). If we first integrate e−ϕ(t,x) (in (5.1.4)) with respect to xn, we obtain

a function e−ϕ̂(t,x1,··· ,xn−1), and if the theorem holds for n = 1, then this function ϕ̂ is convex.

We then simply iterate by integrating with respect to xn−1, and so on. We thus assume that

n = 1 without loss of generality. The rest of the proof is a matter of computing the second

derivative of Φ. Adding a linear function to ϕ, we may assume that Φ(0) = 0 = Φ̇(0). Since

Φ(0) = 0 = Φ̇(0), ∫
R
e−ϕ(0,x)dx = 1 and

∫
R
ϕ̇(0, x)e−ϕ(0,x)dx = 0.

Hence

Φ̈(0) =

∫
R

(
ϕ̈(0, x)− (ϕ̇(0, x))2) e−ϕ(0,x)dx.

The key element of the proof is the following lemma, known as the Brascamp-Lieb inequality.

Lemma 5.1.5. (Brascamp-Lieb inequality) Let ψ be a smooth strictly convex function on R

with e−ψ ∈ L1(R) and let u be a function such that∫
R
|u|2 e−ψdx < +∞ and

∫
R
ue−ψdx = 0.

Then ∫
R
|u|2 e−ψdx ≤

∫
R

|u′|2

ψ′′
e−ψdx.

See [BL76] for a proof.
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By adding εf(x) to ϕ(t, x), where f is a rapidly growing convex function, we may assume

that ϕ̇ ∈ L2 (R, e−ϕ) and then let ε → 0 at the end. We now apply the Brascamp-Lieb

inequality to u = ϕ̇(0, x):

Φ̈(0) ≥
∫
R

(
ϕ̈(0, x)−

(
ϕ̇′(0, x)

)
ϕ′′(0, x)

)
e−ϕ(0,x)dx

=

∫
R

(
ϕ′′(0, x)ϕ̈(0, x)− (ϕ̇′(0, x))2

ϕ′′(0, x)

)
e−ϕ(0,x)dx.

The numerator ϕ′′(0, x)ϕ̈(0, x)− (ϕ̇′(0, x))2 is exactly the determinant of the Hessian of

ϕ, at t = 0, with respect to both t and x. Since ϕ is convex, this is nonnegative, which

completes the proof of the Prékopa-Leindler theorem.

Remark 5.1.6. A similar proof can be carried out for general n without resorting to induction.

The bound obtained for Φ̈, assuming that ϕ is strictly convex, is then

Φ̈ ≥
∫
Rn

(
H(ϕ)/D2

x(ϕ)
)
e−ϕdx,

where H(ϕ)/D2
x(ϕ) denotes the Schur complement of the block D2

x(ϕ) – the Hessian of ϕ

with respect to x – of the full Hessian

H(ϕ) =

 D2
t (ϕ) DtDx(ϕ)

DxDt(ϕ) D2
x(ϕ)

 .

Here D2
t (ϕ) and DtDx(ϕ) = DxDt(ϕ) denote the Hessian with respect to t and the mixed

Hessians with respect to both t and x, respectively. This Schur complement interpretation

will be central to our work generalizing Berndtsson’s Nakano positivity theorem.

5.1.2 Complex analogues of Brunn-Minkowski theory

As mentioned earlier, the Brascamp-Lieb inequality is the real variable version of Hörmander’s

L2-estimate for the ∂̄-operator. The simplest case of Hörmander’s estimate is when ϕ is

a smooth strictly subharmonic function in C. We then let u be a smooth function on C,

satisfying ∫
C
uh̄e−ϕdV (z) = 0,
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for all holomorphic functions h satisfying the appropriate L2-condition, where dV (z) denotes

the Lebesgue measure on C. This is a direct counterpart to the condition∫
R
ue−ψdx = 0

in the real case since the Brascamp-Lieb condition corresponds to the orthogonality of u to all

constant functions with respect to the L2-inner product. In other words, u is orthogonal to all

functions in the kernel of the usual real differentiation operator d. The Hörmander condition

corresponds to orthogonality to all holomorphic functions; that is all functions in the kernel

of ∂̄. Under these conditions, we have the following form of Hörmander’s L2-estimate for the

∂̄-operator that is due to Skoda.∫
C
|u|2 e−ϕdV (z) ≤

∫
C

∣∣∂̄u∣∣2
∆ϕ

dV (z).

Once again, this is clearly similar to the Brascamp-Lieb estimate. The orthogonality condition

means that u is the solution of minimal L2-norm to a ∂̄-equation, and this is how Hörmander’s

theorem is typically thought of – a theorem on the existence of solutions to the ∂̄-equation with

L2-estimates. Similarly, the Brascamp-Lieb theorem is a theorem providing an L2-estimate

for the d-equation, and is in fact a special case of Hörmander’s theorem; when the functions

involved do not depend on the imaginary part of z.

Recall that a function u of several complex variables in Cn is plurisubharmonic if it is

upper-semicontinuous, not identically −∞, and is subharmonic along any complex line. By

the sub-mean value property for subharmonic fuctions, such a function is always locally

integrable. If u is smooth, then u is plurisubharmonic if and only if its complex Hessian

HC(u) =

(
∂2u

∂zj∂z̄k

)
1≤j,k≤n

is semipositive definite. In general, a function u is plurisubharmonic in the sense of distribu-

tions if and only if ∑
1≤j,k≤n

∂2u

∂zj∂z̄k
aj āk
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is a positive measure for any constant vector a = (a1, · · · , an) ∈ Cn. The most naive

generalization of the Prékopa-Leindler theorem would then be to postulate that if ϕ be

plurisubharmonic in Cm × Cn, then

t 7→ Φ(t) := − log

(∫
Cn
e−ϕ(t,z)dV (z)

)
is plurisubharmonic in Cm. However, this claim is simply false. As a counter-example,

consider ϕ(t, z) := |z − t̄|2 − |t|2 = |z|2 − Re(tz). Clearly, ϕ is plurisubharmonic in C2 but

t 7→ Φ(t) = |t|2 + C is not subharmonic.

As observed by Berndtsson, one should think of the integral of e−ϕ as the squared L2-norm

of the function 1 with respect to the weight e−ϕ. It is then natural to consider L2-norms of

holomorphic functions in the complex case – that is

‖f‖2
ϕ(t,·) :=

∫
Cn
|f(z)|2 e−ϕ(t,z)dV (z),

or similar expressions where the integration is done over slices of pseudoconvex domains in

Cn instead of the total space. One can then consider the Bergman space H2
t of holomorphic

functions with finite L2-norm. This gives us a family of Hilbert spaces indexed by t or in other

words, a field of Hilbert spaces, as mentioned in Section 1.1. Assuming the Bergman spaces

have equivalent norms, we have the structure of a vector bundle of infinite rank or a Hilbert

bundle. (See Section 1.1 for details.) The complex Brunn-Minkowski type theorem amounts

to saying that the curvature of such bundles is non-negative, under certain assumptions on

ϕ. In the case of Berndtsson, these assumptions are the plurisubharmonicity of ϕ on the

total space. In this thesis, we consider situations in which the positivity assumptions can be

weakened.

In general, we take two complex manifolds X and U of dimensions n+m and n respectively,

and a holomorphic submersion p : X → U . Rather than holomorphic functions, we consider

holomorphic sections of a holomorphic Hermitian vector bundle V over X . The weight function

e−ϕ is replaced by a Hermitian metric h for the bundle V → X . The plurisubharmonicity of

ϕ then corresponds to the curvature non-negativity of h. However, to produce a holomorphic
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Hilbert bundle, one needs to place further restrictions.

The simplest thing to do is to let X = U ×X where X is a relatively compact complete

Kähler submanifold of a Stein manifold. Since curvature is local, we may assume that

U is a domain in Cm. In this case, we have a trivial family of complete Stein manifolds.

The underlying vector spaces of the Bergman spaces H2
(
X, h[t]

)
are equal as subspaces of

ΓO(X, V ), and they have equivalent norms as remarked in Section 1.1. Therefore, these

Bergman spaces naturally fit together to form a trivial holomorphic Hilbert bundle. Here h[t]

denotes the fiberwise restriction of the Hermitian metric h defined on the pullback bundle

π∗
X
V → U × X where πX denotes the canonical projection U × X → X. We thus obtain

a trivial holomorphic Hilbert bundle Eh whose fiber at t ∈ U is H2
t , equipped with the

non-trivial Hermitian metric given by the fiberwise L2-norms ‖·‖2
h[t] .

Berndtsson’s Annals of Mathematics paper [Ber09b] treats the case of a trivial family for

bounded pseudoconvex domains in Cn and the more general case of a holomorphic fibration

with a Kähler total space and compact Kähler fibers (see also [Ber09a] and [Ber13]). He also

studies this problem more generally in [Ber11]. Further general expositions can be found

in [Wan17] and [Var19] (for Stein manifolds as the total spaces). For generalities regarding

holomorphic Hilbert (and more broadly Banach) bundles, we refer the reader to [LS14],

[Tra14] and [Lem15].

For the purposes of this thesis, we will present a weaker version of Berndtsson’s Nakano

positivity theorem (Theorem 1.1.1) – asserting only Griffiths positivity as a consequence – in

the case of trivial families of bounded pseudoconvex domains in Cn, following [Ber17]. We do

so because we will present the stronger version of the theorem, under our weaker curvature

positivity assumptions, later in the last chapter of this thesis. Another reason for presenting

the weaker version is that many important applications of Berndtsson’s theorem (e.g. [BL16]

and [Ber15]) only require Griffiths positivity.
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5.2 Berndtsson’s theorem on the curvature positivity

of holomorphic Hilbert bundles

Let U be a domain in C and Ω be a bounded domain in Cn. Let ϕ be a function on U × Ω

that is smooth up to the boundary on U × Ω. For each t ∈ Ω, define

H2
t := H2

(
Ω, e−ϕ(t,·)) :=

{
f ∈ O(Ω) :

∫
Ω

|f(z)|2 e−ϕ(t,z)dV (z) < +∞
}
.

Since ϕ is smooth up to the boundary and Ω is bounded, the Bergman inequality holds

and so H2
t is a (reproducing kernel) Hilbert space. In particular, the underlying vector spaces

of the H2
t are identical as subspaces of O(Ω), so we can form the globally trivial holomorphic

Hilbert bundle E with total space U × H2
0. Since the L2-norms vary with t, the Hilbert

bundle E has a non-trivial metric given by the varying L2-norms.

Theorem 5.2.1. (Berndtsson) If Ω is pseudoconvex and ϕ is strictly plurisubharmonic, then(
E, (·, ·)ϕ(t,·)

)
is Griffiths positive.

The proof of this theorem uses Theorems 2.4.14 and 3.3.1. To do so, we view E as

a subbundle of the globally trivial Hilbert bundle F whose fiber over t ∈ U is given by

Ft := L2
(
Ω, e−ϕ(t,·)). Given our hypotheses on ϕ and Ω, the underlying vector spaces of

the fibers Ft are also identical as vector spaces, while their Hilbert norms vary with t. This

bundle is holomorphic because an L2 basis of any fiber spans all the other fibers.

A smooth (resp. measurable, resp. holomorphic) section of E is a map t 7→ ft that is

smooth (resp. measurable, resp. holomorphic) as a map from t to Et.

Proposition 5.2.2. The Chern connection of F is the (densely defined) operator defined by

∇Ff = dtf − (∂tϕ)f,

where dt = ∂t + ∂̄t and ∂t are exterior derivatives with respect to t for z fixed.
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Proof. Clearly, ∇F defines a connection and ∇F,(0,1) = ∂̄. Now given two sections f1 and f2,

dt (f1, f2)ϕ(t,·) = dt

∫
Ω

f1f̄2e
−ϕ(t,·)dV

=

∫
Ω

∂t
(
f1f̄2e

−ϕ(t,·)) dV +

∫
Ω

∂̄t
(
f1f̄2e

−ϕ(t,·)) dV
=

∫
Ω

(
∂tf1f̄2e

−ϕ(t,·) + f1∂̄tf2e
−ϕ(t,·) − (∂tϕ)f1f̄2e

−ϕ(t,·)
)
dV

+

∫
Ω

(
∂̄tf1f̄2e

−ϕ(t,·) + f1∂tf2e
−ϕ(t,·) − (∂̄tϕ)f1f̄2e

−ϕ(t,·)) dV
=

∫
Ω

(
(∂t + ∂̄t)f1 − (∂tϕ)f1

)
f̄2e
−ϕ(t,·)dV +

∫
Ω

f1

(
(∂t + ∂̄t)f1 − (∂tϕ)f2

)
e−ϕ(t,·)dV

=

∫
Ω

(dtf1 − (∂tϕ)f1) f̄2e
−ϕ(t,·)dV +

∫
Ω

f1(dtf1 − (∂tϕ)f2)e−ϕ(t,·)dV

=
(
∇Ff1, f2

)
ϕ(t,·) +

(
f2,∇Ff2

)
ϕ(t,·) ,

which shows that ∇F is compatible with the metric (·, ·)ϕ(t,·).

It is clear that the connection form A of ∇F is given by multiplication by −∂tϕ and so

the curvature ΘF is given by multiplication by ∂̄t(−∂tϕ) = ∂t∂̄tϕ. To compute the curvature

of E, we can use Theorem 2.4.14 which tells us that:(
ΘE(f), f

)
ϕ(t,·) =

(
ΘF (f), f

)
ϕ(t,·) − ‖p(f)‖2

ϕ(t,·) .

We now need to compute the map p. Recall that the action p on a smooth section f of E is

defined as follows. (See Proposition 2.4.13.)

p(f) = P⊥t (dtf − (∂tϕ)f) = −P⊥t ((∂tϕ)f) ,

where P⊥t denotes the orthogonal complement of the Bergman projection L2
t → H2

t .

Define ut := −P⊥t ((∂tϕ)f). Now, for each fixed t, ut is the solution of minimal norm of

the ∂̄z-equation

∂̄zut = ∂̄z (∂tϕf) = f∂̄z∂tϕ =: α,

since it is orthogonal to the space of holomorphic functions by construction. Therefore, by

Theorem 3.3.1∫
Ω

|ut(z)|2 e−ϕ(t,z)dV (z) ≤
∫

Ω

|α|2∂z ∂̄zϕ e
−ϕ(t,z)dV (z) =

∫
Ω

n∑
µ,ν=1

ϕzµz̄νανᾱµe
−ϕ(t,z)dV (z),
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where α =
∑n

µ=1 αµdz̄µ and ϕzµz̄ν is the (µ, ν̄)-component of the inverse of the z-Hessian of

ϕ – i.e. the Hessian of ϕ with respect to z only. Therefore, putting everything together, we

obtain: (
ΘE(f), f

)
ϕ(t,·) =

∫
Ω

(
ϕtt̄ −

n∑
µ,ν=1

ϕzµz̄νϕtz̄µϕtz̄ν

)
|f(z)|2 e−ϕ(t,z)dV (z).

The quantity ϕtt̄−
∑n

µ,ν=1 ϕ
zµz̄νϕtz̄µϕtz̄ν is exactly the Schur complement of the z-Hessian

block of the full Hessian of ϕ (with respect to both z and t), and so it is positive-definite

since ϕ is strictly plurisubharmonic. (For a geometric proof of this fact, we refer the reader

to [Ber09b].) This completes the proof of Berndtsson’s theorem.

5.3 Berndtsson’s complex interpretations of the

Prékopa-Leindler theorem

As discussed, the conclusion of the Prékopa-Leindler theorem is that the function

t 7→ − log

(∫
Rn
e−ϕ(t,x)dx

)
is convex whenever ϕ is convex in both variables. The complex geometric setting is different is

that the Nakano positivity of our vector bundle does not imply the log-plurisuperharmonicity

of the norms of its holomorphic sections.

A holomorphic section s of a line bundle is locally given by s = fe for some holomorphic

function f , given a frame e. Given a metric h for the line bundle, the norm of s is given by

|s|2h = |f |2 e−ϕ where e−ϕ = |e|2h. Thus,

∂∂̄
(
− log

(
|s|2h
))

= ∂∂̄ϕ,

where f 6= 0. If the curvature is (semi)positive – i.e., ∂∂̄ϕ ≥ 0 – then − log
(
|s|2h
)

is

plurisubharmonic where h 6= 0. If E were of rank 1, and f had no zeros, (which is not the

case, of course), then it would follow that

t 7→ − log

(∫
Ω

|f |2 e−ϕ(t,z)dV (z)

)
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is plurisubharmonic – a clear parallel to the real case.

For the case of higher rank, consider the case in which E splits as a direct sum of trivial

line bundles. Then we would have a global frame of holomorphic sections e1, . . . , er and

a section would be expressed as s =
∑r

j=1 fjej for a collection of holomorphic functions

{fj}1≤j≤r. In particular, the norm of s would be

|s|2h =
r∑
j=1

|fj|2 e−ϕj ,

where e−ϕj := |ej|2h. Unfortunately, there is no simple formula for ∂∂̄
(
− log

(
|s|2h
))

, and it is

not always positive, even if all the ϕj are identically zero.

In view of these observations, one way to obtain explicit convexity statements from

Berndtsson’s theorem is to construct other bundles of rank 1 from the bundle E. Alterna-

tively, one can consider the dual bundle E∗. Indeed, the Griffiths positivity of E is equivalent

to the Griffiths negativity of E∗, which is in turn equivalent to the plurisubharmonicity of

the function t 7→ log
(
‖ξ‖2

∗,ϕ(t,·)

)
for any non-zero holomorphic section ξ of E∗, by Theorem

2.4.9.

The first approach leads to statements that are analogous to (and do, in fact recover)

the Prékopa-Leindler theorem. The second approach leads to more interesting complex

analytic and geometric applications, such as optimal L2-extension theorems (see [BL16]), the

log-plurisubharmonic variation of Bergman kernels (see [Ber05] and [Ber06]), and uniqueness

theorems for (generalized) Kähler-Einstein metrics (see [Ber15]).

5.3.1 First type of interpretations of the complex

Prékopa-Leindler theorem

First, let us consider balanced domains.

89



Definition 5.3.1. A domain Ω in Cn is balanced if z ∈ Ω implies that λz ∈ Ω for any λ ∈ C

with |λ| ≤ 1.

Definition 5.3.2. A domain Ω in Cn is S1-invariant if z ∈ Ω implies that λz ∈ Ω for any

λ ∈ C with |λ| = 1.

Definition 5.3.3. A function ψ is S1-invariant if ψ(λz) = ψ(z) for any λ = e
√
−1α where

α ∈ R.

Theorem 5.3.1. (Berndtsson) Let Ω be a pseudoconvex balanced domain in Cn and let

ϕ : (t, z) 7→ ϕ(t, z) be a plurisubharmonic in U × Ω and S1-invariant in z for any t ∈ U .

Here U is a domain in Cm. Then

t 7→ − log

(∫
Ω

e−ϕ(t,z)dV (z)

)
plurisubharmonic or identically equal to −∞.

Proof. We may assume that Ω is bounded since any balanced domain can be exhausted by an

increasing sequence of bounded balanced domains, and decreasing limits of plurisubharmonic

functions are plurisubharmonic. Similarly, we may assume that ϕ is smooth by approximation.

The fibers of E consist of holomorphic functions on Ω. Let Ek, k ∈ N, denote the subbundle

of E of homogeneous polynomials of degree k. If f ∈ Ek and g ∈ Em, then∫
Ω

f(z)ḡ(z)e−ϕ(t,z)dV (z) =

∫
Ω

f
(
e
√
−1αz

)
ḡ
(
e
√
−1α
)
e−ϕ(t,z)dV (z)

= e(k−m)
√
−1α

∫
Ω

f(z)ḡ(z)e−ϕ(t,z)dV (z),

for any α ∈ R. Therefore, we see that Ek and Em are orthogonal if k 6= m. This means that E

is the direct sum of the holomorphic subbundles Ek. Therefore, by Schur complement theory,

each Ek must be Griffiths positive since E is Griffiths positive by Berndtsson’s theorem. In

particular, E0 is Griffiths positive. But since E0 is a trivial line bundle and the constant

function 1 is a global frame, t 7→ − log
(
‖1‖2

ϕ(t,·)

)
is plurisubharmonic, which proves the

claim.
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Next, consider Tn-invariant domains.

Definition 5.3.4. A domain Ω in Cn is Tn-invariant if z = (z1, · · · , zn) ∈ Ω implies that(
e
√
−1α1z1, · · · , e

√
−1αnzn

)
∈ Ω for all α = (α1, · · · , αn) ∈ Rn.

Definition 5.3.5. A function ψ is Tn-invariant if ψ(z1, · · · , zn) = ψ
(
e
√
−1α1z1, · · · , e

√
−1αnzn

)
for all α ∈ Rn.

Now suppose that Ω is a bounded Tn-invariant domain, and let ϕ be a plurisubharmonic

function in U × Ω that is also Tn-invariant with respect to z ∈ Ω. Any holomorphic function

f ∈ Ω can be written as a Laurent series

f(z) =
∑
α∈Zn

cαz
α.

Therefore, the bundle E decomposes as E =
⊕

α∈Zn Eα where each Eα is spanned by zα. As

in the proof of Theorem 5.3.1, we can see that Eα is orthogonal to Eβ for α 6= β, and so

each Eα is Griffiths positive by Berndtsson’s theorem, since E is Griffiths positive. Moreover,

every Eα is of rank 1 with a constant trivializing section U 3 t 7→ zα and so

t 7→ Φα(t) := − log
(
‖zα‖2

ϕ(t,·)

)
= − log

(∫
Ω

|zα|2 e−ϕ(t,z)dV (z)

)
is a plurisubharmonic function of t for all α.

Theorem 5.3.2. (Berndtsson) Let ϕ be a plurisubharmonic function in U × Ω where U is a

domain in Cm and Ω := {ζ : Re(ζ) ∈ D} for a convex domain D in Rn. Assume that ϕ does

not does not depend on the imaginary part of ζ. Then

t 7→ − log

(∫
D

e−ϕ(t,x)dx

)
is plurisubharmonic or identically −∞.

Proof. Consider the map exp : ζ 7→
(
eζ1 , · · · , eζn

)
from Cn to (C− {0})n, and let Ω̃ be

the image of Ω under this map. Since D is convex, Ω̃ is pseudoconvex. In addition, Ω̃ is

Tn-invariant. Furthermore, since ϕ does not depend on Im(ζ), there is a plurisubharmonic
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function Φ in U × Ω̃ such that ϕ̃ (t, exp(ζ)) = ϕ(t, ζ). Clearly, ϕ̃ is Tn-invariant with respect

to z for each t. Upon exhausting D by an increasing sequence of strictly convex domains

with smooth boundary, we may assume that D is bounded. We may also assume that ϕ is

smooth by approximating it smoothly near the boundary of each exhausting domain. Then

it follows that Ω̃ is also bounded and that ϕ̃ is also smooth. Hence,

t 7→ − log

(∫
Ω̃

|zα|2 e−ϕ(t,z)dV (z)

)
is plurisubharmonic. Changing variables z = exp(ζ), it follows that the integral over Ω̃ equals∫

[0,2π]n×D
e2α·xe−ϕ(t,x)e2

∑n
j=1 xjdxdy.

Hence

− log

(∫
D

e2α·x−ϕ(t,x)+2
∑n
j=1 xjdx

)
is plurisubharmonic. Since A(x) = 2

(
α · x+

∑n
j=1 xj

)
is an affine function of x, we may

replace ϕ by ϕ+ A and the theorem follows.

Clearly, the Prékopa-Leindler theorem follows from Theorem 5.3.2. An important corollary

of this result is Kiselman’s minimum principle:

Theorem 5.3.3. (Kiselman’s minimum principle) Let ϕ satisfy the hypotheses of Theorem

5.3.2. Then t 7→ infζ∈Ω ϕ(t, ζ) is subharmonic.

Proof. We have

inf
ζ∈Ω

ϕ(t, ζ) = − sup
ζ∈Ω
−ϕ(t, ζ) = − sup

ζ∈Ω
log
(
e−ϕ(t,ζ)

)
= − log

(
sup
ζ∈Ω

e−ϕ(t,ζ)

)
= − log

(
lim

p→+∞

[∫
D

∣∣e−ϕ(t,x)
∣∣p dx]1/p

)

= lim
p→+∞

−1

p
log

(∫
D

e−pϕ(t,x)−x2dx

)
,

and by Theorem 5.3.2, the functions

−1

p
log

(∫
D

e−pϕ(t,x)−x2dx

)
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are plurisubharmonic for all p > 0. Since the decreasing limit as p goes to +∞ equals

infζ∈Ω ϕ(t, ζ), the claim follows.

5.3.2 Second kind of interpretations of the complex

Prékopa-Leindler theorem

A more general situation that we can consider is when the domains (in addition to the weight)

vary with t. More explicitly, instead of simply looking at product domains of the form U ×Ω,

we can let D be a pseudoconvex domain in Cm
t × Cn

z . The subscripts indicate that we take

the t variable to be in Cm and z variable to be in Cn.

Let U be the image of D under the projection to the t-coordinate, that is also open. For

t ∈ U , we let Dt := {z ∈ Cn : (t, z) ∈ D} be the corresponding slice of D. Furthermore, let

ϕ be a plurisubharmonic function in D. This time, the Bergman spaces of holomorphic

functions are defined as

H2
t := H2

(
Dt, e−ϕ(t,·)) :=

{
f ∈ O (Dt) : ‖f‖2

ϕ(t,·) :=

∫
Dt
|f(z)|2 e−ϕ(t,z)dV (z) < +∞

}
.

The situation that was previously considered was D = U ×Ω, so that all the Dt are identical,

and our weight function was additionally bounded. However, as Dt varies, our family of

domains is no longer locally trivial, and we do not necessarily have the structure of a bundle.

That said, we may still define some kind of holomorphic structure by declaring that given a

function f(t, z) with ft := f(t, ·) in H2
t , ft is a holomorphic section if f is holomorphic as a

function of t and z jointly (or equivalently, separately in t and z by Hartogs’s theorem on

separate holomorphicity). In this setting, Xu Wang [Wan17] gives a formula for a Chern

connection and a curvature operator, in addition to generalizing the curvature formula of

Berndtsson. That said, Xu Wang has stronger hypotheses on the domain D.

In this setting, Berndtsson proves a theorem that corresponds to Griffiths positivity by

studying families of sections of the duals of H2
t . A holomorphic section of the dual family

is defined to be a map t 7→ ξt ∈ (H2
t )
∗

such that t 7→ ξt(ft) is holomoprhic in t for any
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holomorphic section ft in the sense defined above. For such sections, the dual norm is defined

as the operator norm:

‖ξt‖2
∗,ϕ(t,·) := sup

ft∈H2
t−{0}

|ξt(ft)|2

‖ft‖2
ϕ(t,·)

.

Theorem 5.3.4. (Berndtsson) For each t ∈ U , let µt be a compactly supported measure in

Dt with the property that

t 7→ ξt(ft) :=

∫
Dt
f(t, z)dµt(z)

is a holomorphic function if f is holomorphic in D. Then the function t 7→ log
(
‖ξt‖2

∗,ϕ(t,·)

)
is plurisubharmonic or identically −∞.

Proof. The proof consists of a reduction of the general case to the product case. Suppose for

the moment that D = U × Ω. As before, we may assume that the pseudoconvex domain Ω is

bounded since we can exhaust it by an increasing sequence of bounded strictly pseudoconvex

domains with smooth boundary. Near the closure of each such domain Ωk, we can approximate

ϕ by a decreasing sequence of smooth plurisubharmonic functions {ϕ(k),j}∞j=1. Since ξt is

given by integraton against compactly supported measures, we can choose Ωk to be large

enough to contain the support of all the ξt. We then let j tend to +∞ first, for k fixed.

This gives us a decreasing family of plurisubharmonic functions t 7→ log
(
‖ξt‖2

∗,ϕ(k),j(t,·)

)
tending to t 7→ log

(
‖ξt‖2

∗,ϕ(t,·)

)
. Hence the theorem, when proved under the smoothness

and boundedness assumptions, holds for each Ωk without the smoothness assumption on ϕ.

Afterwards, we let k tend to +∞, and thus obtain that the theorem holds for not necessarily

bounded Ω. But by definition, ξt is a holomorphic section of E∗, the dual of the bundle with

fiber Et = H2
t at t ∈ U . Therefore, Berndtsson’s theorem implies the result in the product

domain situation.

Now consider the case when D is not a product domain. Arguing as above, we may

assume that D is a bounded strictly pseudoconvex with smooth boundary. We can then write

D = {(t, z) ∈ Cn+1 : ρ(t, z) < 0} where ρ is strictly plurisubharmonic in a neighborhood W0

of the closure of D. Since the result is local, we may after restricting t to lie in a small
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neighborhood V0 of a given point, assume that W0 = V0 × Ω where Ω is a pseudoconvex

domain. Then we apply the theorem to W0 with ϕ replaced by ϕj := ϕ+ jmax(0, ρ). Since∫
{t}×Ω

|f |2 e−ϕjdV (z)

tends to ∫
Dt
|f |2 e−ϕdV (z)

as j tends to +∞, the theorem follows in general.

When all the measures µt are point-masses, we obtain Berndtsson’s theorem on the

plurisubharmonic variation of Bergman kernels. This follows from the extremal characteriza-

tion of Bergman kernels.

Theorem 5.3.5. ([Ber06, Theorem 1.1]) Let D is a pseudoconvex domain in Cm
t ×Cn

z , let ϕ

be a plurisubharmonic function on D, and let Kt denote the bergman kernel of H2
(
Dt, e−ϕ(t,·)).

Then the function (t, z) 7→ log (Kt(z, z)) is plurisubharmonic or identically −∞.

In [Ber06], Berndtsson offers a more detailed proof of this theorem. The reduction to the

m = 1 case follows from [Ber06, Lemma 3.4] on the upper semicontinuity of Bergman kernels

and the fact that a function is plurisubharmonic if and only if it is subharmonic along every

complex line intersecting its domain of definition.

Finally, note that Theorem 5.3.4 implies the Prékopa-Leindler theorem as follows. Take

D := (C− {0})n, and define µ by taking averages over the n-dimensional real torus:

µ(f) =

∫
Tn
f
(
e
√
−1α1z1, · · · , e

√
−1αnzn

)
dα.

These averages do not depend on z, and computing the norm of µ as a functional on

H2
(
Dt, e−ϕ(t,·)), where ϕ only depends on |zj|, we recover the Prékopa-Leindler theorem.
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Chapter 6

A twisted complex Brunn-Minkowski

theorem with applications

6.1 Twisted Nakano positivity of Hilbert bundles

6.1.1 For families of relatively compact complete Kähler

submanifolds of Stein manifolds

Let X be an n-dimensional relatively compact complete Kähler submanifold of a Stein

Kähler manifold (Y, g). Let V → X be a holomorphic vector bundle, and consider a family{
h[t]
}
t∈U of smooth Hermitian metrics for V → X where U is a domain in Cm. Denote by

H2
t := H2

(
X, h[t]

)
the Hilbert space of holomorphic sections in L2

(
X, h[t]

)
. Consider the

holomorphic Hilbert bundle Eh whose fiber at t ∈ U is H2
t . Let δ > 0 and η be a smooth

function on Y .

For the time being, suppose that

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , and that Ξδ,η (h) >Griff 0, where Ξδ,η is the operator introduced in Section
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1.1. We will first prove Theorem A under this assumption. Relaxing our twisted curvature

assumptions from positivity to semipositivity is a more delicate process that requires a

limiting argument. We show how to do so in Section 6.1.1.4.

Before proceeding to the proof, we recall some of the definitions and notation introduced

in Section 1.1 in more detail, and introduce a few more definitions and some useful notation.

6.1.1.1 Definitions

Let πX denote the projection U ×X → X where U is a domain in Cm. Assume that 0 ∈ U

without loss of generality. We define a family
{
h[t]
}
t∈U of smooth Hermitian metrics for

V → X to be a smooth Hermitian metric h for the pullback bundle π∗
X
V → U ×X. It follows

that for each t ∈ U , h[t] := i∗th is a smooth Hermitian metric, where

it : V → π∗
X
V
∣∣
{t}×X

is the natural isomorphism of vector bundles induced by the inclusion of X into the fiber

{t} ×X of π∗
X
V → U ×X.

In this setting, we can define for each t ∈ U a Hilbert space

H2
(
X, h[t]

)
:=

{
f ∈ ΓO(X, V ) : ‖f‖2

h[t] :=

∫
X

|f |2h[t] dVg :=

∫
X

h[t] (f, f) dVg < +∞
}

= ΓO(X, V ) ∩ L2
(
X, h[t]

)
,

where:

L2
(
X, h[t]

)
:=

{
f ∈ Γ(X, V ) : ‖f‖2

h[t] :=

∫
X

|f |2h[t] dVg :=

∫
X

h[t] (f, f) dVg < +∞
}
.

Here, Γ(X, V ) denotes the space of measurable sections of V → X, ΓO(X, V ) denotes

the space of holomorphic sections of V → X, and dVg denotes the volume form induced

by the metric g. The norm on L2
t and its corresponding inner product will be denoted by

‖.‖h[t] and (·, ·)h[t] respectively. We can then define the holomorphic Hilbert bundle Eh as the
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infinite-rank vector bundle – or Hilbert bundle –

U ×H2
0 → U,

and we define a Hermitian metric on it by endowing the Hilbert space fiber

{t} ×H2
0
∼= H2

t

with the norm ‖·‖h[t] .

We define the space of sections of Eh as

Γ (Eh) :=
{
f ∈ Γ (U ×X, π∗XV ) : i∗t f̂ ∈ H2

t ,∀t ∈ U
}
.

In particular, the space of holomorphic sections Eh is defined as

ΓO (Eh) :=
{
f̂ ∈ Γ (Eh) : f̂ ∈ ΓO(U ×X, π∗XV )

}
.

For f̂ ∈ Γ(Eh), we denote i∗t f̂ by f̂ [t]. So all sections are holomorphic on the fibers, and

for a section is holomorphic if it is holomorphic in the base variable as well.

We denote by E∗h the dual bundle to Eh. This bundle is also trivial. The space of sections

of E∗h is defined as

Γ (E∗h) :=
{
ξ : Eh → C; ξt := ξ

∣∣
H2
t
∈
(
H2
t

)∗}
.

The bundle E∗h is equipped fiberwise with the non-trivial Hermitian dual norm

‖ξ‖∗,h[t] = sup
f∈H2

t−{0}

|〈ξt, f〉|
‖f‖h[t]

,

for each t ∈ U , where ξ is a section of E∗h and ξt := ξ
∣∣
H2
t
.

A section ξ is smooth (resp. holomorphic) if for each f̂ ∈ Γ(Eh) that is smooth (resp.

holomorphic), the function

U 3 t 7→
〈
ξt, i

∗
t f̂
〉
∈ C

is a smooth (resp. holomorphic) function of U .
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6.1.1.2 Preliminaries

Let Fh be the Hilbert bundle whose fiber over t ∈ U is L2
t and let Eh be its subbundle whose

fiber over t ∈ U is H2
t . Let Pt : L2

t → H2
t denote the fiberwise Bergman projection, and

let P⊥t the fiberwise orthogonal projection of L2
t onto the orthogonal complement of H2

t .

Additionally, denote by ∇Fh and ∇Eh the Chern connections of each of Fh and Eh; and let

ΘFh and ΘEh denote their respective curvature forms.

Choose local coordinates (z1, · · · , zn) for an arbitrary point z ∈ X, and denote by

(t1, · · · , tm) the global coordinates t ∈ U ⊂ Cm. Let e1, . . . , er be a holomorphic frame for

V → X and let H denote the local matrix representation of h in this frame, i.e.

H = (h(ej, ek))
r
j,k=1 =



h(e1, e1) h(e1, e2) · · · h(e1, er−1) h(e1, er)

h(e2, e1)
. . . . . .

...
...

...
. . . . . . . . .

...

...
...

. . . . . . h(er−1, er)

h(er, e1) h(er, e2) · · · h(er−1, er) h(er, er)


.

In addition, for any operator d ∈ {∂, ∂̄, d} and for any variable wi ∈ {tj, t̄k, zµ, z̄ν} with

1 ≤ j, k ≤ m and 1 ≤ ν, µ ≤ n, we let dwiH denote the following matrix in the same

holomorphic frame,

dwiH := (dwih(ej, ek))
r
j,k=1 =



dwih(e1, e1) dwih(e1, e2) · · · dwih(e1, er−1) dwih(e1, er)

dwih(e2, e1)
. . . . . .

...
...

...
. . . . . . . . .

...

...
...

. . . . . . dwih(er−1, er)

dwih(er, e1) dwih(er, e2) · · · dwih(er−1, er) dwih(er, er)


.

We adopt the same notation for h[t].

Finally, given a section s expressed as s =
∑r

i=1 siei in this holomorphic frame, for a

collection of holomorphic functions s1, . . . , sr such that (s1, · · · , sr) 6= (0, · · · , 0), we represent

s by the column vector S = [s1 · · · sr]T .
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From the definition of the Chern connection,

dtj
(
u[t], v[t]

)
h[t]

=
(
∇Fh
tj u

[t], v[t]
)
h[t]

+
(
u[t],∇Fh

tj v
[t]
)
h[t]
,

for any two smooth sections u and v of Fh. Therefore, letting † denote the complex conjugate

transpose, we have the following for any two sections u and v of Fh.

dtj
(
u[t], v[t]

)
h[t]

= dtj

∫
X

h[t]
(
u[t], v[t]

)
dVg

=

∫
X

∂tj
[
h[t]
(
u[t], v[t]

)
dVg
]

+

∫
X

∂̄tj
[
h[t]
(
u[t], v[t]

)
dVg
]

=

∫
X

∂tj
(
V [t],†H [t]U [t]

)
dVg +

∫
X

∂̄tj
(
V [t],†H [t]U [t]

)
dVg

=

∫
X

(
∂̄tjV

[t]
)†
H [t]U [t]dVg +

∫
X

(
V [t]
)†
∂̄tjH

[t]U [t]dVg +

∫
X

(
V [t]
)†
H [t]∂̄tjU

[t]dVg

+

∫
X

(
∂tjV

[t]
)†
H [t]U [t]dVg +

∫
X

V [t],†∂tjH
[t]U [t]dVg +

∫
X

(
V [t]
)†
H [t]∂tjU

[t]dVg.

Rearranging the terms,

dtj
(
u[t], v[t]

)
h[t]

=

∫
X

[(
∂tj + ∂̄tj +

(
H [t]
)−1

∂tjH
[t]
)
V [t]
]†
H [t]U [t]dVg

+

∫
X

(
V [t]
)†
H [t]

[(
∂tj + ∂̄tj +

(
H [t]
)−1

∂tjH
[t]
)
U [t]
]
dVg

=

∫
X

h[t]
([
dtj +

(
h[t]
)−1

∂tjh
[t]
]
u[t], v[t]

)
dVg

+

∫
X

h[t]
(
u[t],

[
dtj +

(
h[t]
)−1

∂tjh
[t]
]
v[t]
)
dVg

=
([
dtj +

(
h[t]
)−1

∂tjh
[t]
]
u[t], v[t]

)
h[t]

+
(
u[t],

[
dtj +

(
h[t]
)−1

∂tjh
[t]
]
u[t]
)
h[t]
.

Clearly, u[t] 7→ dtju
[t] −

[(
h[t]
)−1

∂tjh
[t]
]
u[t] defines a connection. Moreover, if u[t] is

holomorphic in t, then dtju
[t] −

[(
h[t]
)−1

∂tjh
[t]
]
u[t] is of bidegree (1, 0) and so this operator

defines a holomorphic connection. Our previous computation shows that the connection

∇Fh is metric-compatible, and so it must be the Chern connection of Fh. In particular, its

(1, 0)-part is given by ∇Fh,(1,0)
tj = ∂tj −

(
h[t]
)−1

∂tjh
[t].

Thus, the connection form of the Chern connection is given by (wedging with)
(
h[t]
)−1

∂tjh
[t],

and so the coefficients of the curvature of Fh are given by ΘFh
tj t̄k

= ∂̄tk

[(
h[t]
)−1

∂tjh
[t]
]
.
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Therefore, by Theorem 2.4.14(
ΘFh
tj t̄k
u[t], v[t]

)
h[t]

=
(
P⊥t
(
∇Fh
tj u

[t]
)
,P⊥t

(
∇Fh
tk
v[t]
))

h[t]
+
(

ΘEh
tj t̄k
u[t], v[t]

)
h[t]

for any two smooth sections u and v of Eh. Whence if we let u1, . . . , um be any m smooth

sections of the bundle Eh, then∑
1≤j,k≤m

(
ΘFh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]

=

∥∥∥∥∥P⊥t
( ∑

1≤j≤m

∇Fh
tj u

[t]
j

)∥∥∥∥∥
2

h[t]

+
∑

1≤j,k≤m

(
ΘEh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]
. (6.1.1)

The Nakano positivity of Eh will be established by estimating
∑

1≤j,k≤m

(
ΘEh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]

using the curvature formula (6.1.1). Doing so amounts to estimating the following norm.∥∥∥∥∥P⊥t
( ∑

1≤j≤m

∇Fh
tj u

[t]
j

)∥∥∥∥∥
2

h[t]

=

∥∥∥∥∥P⊥t
( ∑

1≤j≤m

∂tju
[t]
j −

(
h[t]
)−1

∂tjh
[t]u

[t]
j

)∥∥∥∥∥
2

h[t]

=

∥∥∥∥∥P⊥t
( ∑

1≤j≤m

(
h[t]
)−1

∂tjh
[t]u

[t]
j

)∥∥∥∥∥
2

h[t]

. (6.1.2)

6.1.1.3 Proof of Theorem A under the assumption of strict curvature

positivity

By assumption, for each t ∈ U

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0.

By letting

Φ = ∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+ Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη,

we obtain:

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+ Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη − Φ = 0

so that the hypotheses of Theorem 4.2.1 are trivially satisfied since Θ
(
h[t]
)

= ∂̄X

((
h[t]
)−1

∂Xh
[t]
)

.

Now let (t1, . . . , tm) denote the global coordinates of t ∈ U and let (z1, . . . , zn) denote local

coordinates for z ∈ X. Consider the section

u[t] :=
∑

1≤j≤m

((
h[t]
)−1 ∂h[t]

∂tj

)
u

[t]
j .
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Then u[t] solves the ∂̄z-equation

∂̄Xu
[t] =: ∂̄zu

[t] =
∑

1≤j≤m
1≤µ≤n

∂

∂z̄µ

((
h[t]
)−1 ∂h[t]

∂tj

)
u

[t]
j dz̄µ =: α,

since every single u
[t]
j depends holomorphically on z = (z1, · · · , zn). Note also that∫

X

|α|2Φ,h[t] dVg < +∞.

Clearly, the (0, 1)-form α satisfies ∂̄Xα = 0. Moreover, since each u
[t]
j is in H2

t ⊂ L2
t , and

since the metric h is smooth up the boundary of X, it follows that u[t] is in ∈ L2
t as well. By

Theorem 4.2.1, and the fact that u
[t]
0 = P⊥t

(
u[t]
)

is the minimal-norm solution of ∂̄Xv = α,

we have the estimate ∫
X

∣∣∣u[t]
0

∣∣∣2
h[t]
dVg ≤

(
1 + δ

δ

)∫
X

|α|2Φ,h[t] dVg. (6.1.3)

Set Ψ := Ξδ,η(h). Let Ψab and Ψcd denote the components of Ψ in the directions a and b, and

those of the inverse of Ψ in the directions c and d respectively where a, b, c, d ∈ {tj, t̄k, zµ, z̄ν}.

By (6.1.1), (6.1.2) and (6.1.3),

∑
1≤j,k≤m

(
ΘEh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]
≥
∫
X

∑
1≤j,k≤m

h[t]
(

Ψtj t̄ku
[t]
j , u

[t]
k

)
dVg −

∥∥∥u[t]
0

∥∥∥2

h[t]
. (6.1.4)

Furthermore, combining (6.1.4) with the estimate (6.1.3), we can see that:∑
1≤j,k≤m

(
ΘEh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]
≥
∫
X

∑
1≤j,k≤m

h[t]

([
Ψtj t̄k −

∑
1≤µ,ν≤n

Ψzµz̄νΨtj z̄µΨtk z̄ν

]
u

[t]
j , u

[t]
k

)
dVg.

(6.1.5)

Now let MΨ be the matrix whose (j, k)-entries are

Ψtj t̄k −
∑

1≤µ,ν≤n

Ψzµz̄νΨtj z̄µΨtk z̄ν .

By Schur complement theory, Ξδ,η(h) >Griff 0 implies MΨ >Griff 0. Therefore, we conclude

that if Ξδ,η(h) >Griff 0, then

∃c0 > 0 (resp. ≥ 0) :
∑

1≤j,k≤m

(
ΘEh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]
≥ c0

m∑
j=1

∥∥∥u[t]
j

∥∥∥2

h[t]
. (6.1.6)
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6.1.1.4 Relaxing the strict curvature positivity requirement

Let hε := he−ε(P
∗
Xψ+|t|2) where ε > 0 and ψ is a smooth strictly plurisubharmonic function

for the ambient Stein manifold containing X, that is smooth up the boundary of X. Since ψ

is bounded on X, we may assume that ψ > 0 after subtracting a constant. Moreover, as the

result is local, we may assume that U is bounded. Denote by Θ
Ehε
tj t̄k

the coefficients for the

curvature of Ehε , the Hilbert bundle whose fiber at t ∈ U is H2
ε,t := H2

(
X, h

[t]
ε

)
. For any

ε > 0, the underlying vector spaces of H2
ε,t and H2

t are equal as subspaces of ΓO(X, V ), and

so we may act on the same tuple of sections u1, · · · , um.

By construction,

Ξδ,η (hε) = Ξδ,η(h) + ε

|t|2 0

0 ∂X ∂̄Xψ

 ,

and

∂̄X

((
h[t]
ε

)−1
∂Xh

[t]
ε

)
+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV

= ∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV + ε

(
∂X ∂̄Xψ ⊗ IdV

)
.

Since |t|2 0

0 ∂X ∂̄Xψ

 >Griff 0 and ∂X ∂̄Xψ ⊗ IdV >Nak 0,

it follows that

Ξδ,η (hε) >Griff Ξδ,η(h)

and

∂̄X

((
h[t]
ε

)−1
∂Xh

[t]
ε

)
+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV

>Nak ∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV .

Therefore, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,
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for each t ∈ U , then

∀ε > 0,∃c(ε)
0 > 0 :

∑
1≤j,k≤m

(
Θ
Ehε
tj t̄k

u
[t]
j , u

[t]
k

)
h
[t]
ε

≥ c
(ε)
0

m∑
j=1

∥∥∥u[t]
j

∥∥∥2

h[t]
≥ 0. (6.1.7)

Let Pε,⊥t denote the orthogonal projection of L2
ε,t onto

(
H2
ε,t

)⊥
. As before, let Ψ := Ξδ,η(h),

and let Ψab and Ψcd denote the components of Ψ in the directions a and b, and those of

the inverse of Ψ in the directions c and d respectively where a, b, c, d ∈ {tj, t̄k, zµ, z̄ν}. Let

us also adopt the same notation for hε by letting Ψε represent the corresponding matrix

for hε. Furthermore, let Υ and Υε denote the matrices corresponding to h−1∂h and h−1
ε ∂hε,

respectively.

By Theorem 2.4.14, and noting that ψ is independent of t,

∑
1≤j,k≤m

(
Θ
Ehε
tj t̄k

u
[t]
j , u

[t]
k

)
h
[t]
ε

=
∑

1≤j,k≤m

(
Ψε
tj t̄k
u

[t]
j , u

[t]
k

)
h
[t]
ε

−

∥∥∥∥∥Pε,⊥t
( ∑

1≤j≤m

Υε
tj
u

[t]
j

)∥∥∥∥∥
2

h
[t]
ε

=
∑

1≤j,k≤m

[(
Ψtj t̄ku

[t]
j , u

[t]
k

)
h
[t]
ε

+ ε
(

(π∗
X
ψ + |t|2)tj t̄ku

[t]
j , u

[t]
k

)
h
[t]
ε

]

−

∥∥∥∥∥Pε,⊥t
( ∑

1≤j≤m

Υtju
[t]
j

)
− ε · Pε,⊥t

( ∑
1≤j≤m

(π∗
X
ψ + |t|2)tju

[t]
j

)∥∥∥∥∥
2

h
[t]
ε

=
∑

1≤j,k≤m

(
e−ε(ψ+|t|2)Ψtj t̄ku

[t]
j , u

[t]
k

)
h[t]

+ ε
∑

1≤j,k≤m

δjk̄

(
e−ε(ψ+|t|2)u

[t]
j , u

[t]
k

)
h[t]

−

∥∥∥∥∥e−ε(ψ+|t|2)/2Pε,⊥t

( ∑
1≤j≤m

(
Υtj − εt̄j

)
u

[t]
j

)∥∥∥∥∥
2

h[t]

.

By adding and subtracting
∑

1≤j,k≤m

(
ΘEh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]

, we then have:

∑
1≤j,k≤m

(
Θ
Ehε
tj t̄k

u
[t]
j , u

[t]
k

)
h
[t]
ε

=
∑

1≤j,k≤m

(
ΘEh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]

+ R(ε), (6.1.8)
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where

R(ε) :=
∑

1≤j,k≤m

((
e−ε(ψ+|t|2) − 1

)
Ψtj t̄ku

[t]
j , u

[t]
k

)
h[t]

+ ε
∑

1≤j,k≤m

δjk̄

(
e−ε(ψ+|t|2)u

[t]
j , u

[t]
k

)
h[t]

+

∥∥∥∥∥P⊥t
( ∑

1≤j≤m

Υtju
[t]
j

)∥∥∥∥∥
2

h[t]

−

∥∥∥∥∥e−ε(ψ+|t|2)/2Pε,⊥t

( ∑
1≤j≤m

Υtju
[t]
j

)∥∥∥∥∥
2

h[t]

+ 2εRe

(Pε,⊥t
( ∑

1≤j≤m

Υtju
[t]
j

)
, e−(ψ+|t|2)Pε,⊥t

( ∑
1≤j≤m

t̄ju
[t]
j

))
h[t]


− ε2

∥∥∥∥∥e−(ψ+|t|2)/2Pε,⊥t

( ∑
1≤j≤m

t̄ju
[t]
j

)∥∥∥∥∥
2

h[t]

In particular, ∑
1≤j,k≤m

(
ΘEh
tj t̄k
u

[t]
j , u

[t]
k

)
h[t]
≥ −R(ε), (6.1.9)

Since u
[t]
k ∈ H2

t for each k and for each t ∈ U , the first two summands in R(ε) converge

to 0 as ε→ 0 by smoothness, boundedness, countinuity, and the Cauchy-Schwarz inequality.

Since ψ > 0 by assumption and Pε,⊥t is an orthogonal projection,∥∥∥∥∥e−(ψ+|t|2)Pε,⊥t

( ∑
1≤j≤m

t̄ju
[t]
j

)∥∥∥∥∥
2

h[t]

≤

∥∥∥∥∥Pε,⊥t
( ∑

1≤j≤m

t̄ju
[t]
j

)∥∥∥∥∥
2

h[t]

∥∥∥∥∥ ∑
1≤j≤m

t̄ju
[t]
j

∥∥∥∥∥
2

h[t]

, (6.1.10)

and ∥∥∥∥∥Pε,⊥t
( ∑

1≤j≤m

Υtju
[t]
j

)∥∥∥∥∥
2

h[t]

≤

∥∥∥∥∥ ∑
1≤j≤m

Υtju
[t]
j

∥∥∥∥∥
2

h[t]

. (6.1.11)

Each of the upper bounds in (6.1.10) and (6.1.11) respectively is finite by smoothness,

boundedness, and the fact that u
[t]
k ∈ H2

t for each 1 ≤ k ≤ m and for each t ∈ U . Therefore,

the last summand in R(ε) converge to 0 as ε→ 0, as does the fifth summand by the Cauchy-

Schwarz inequality.

It now remains to estimate the difference term R(ε). Note that for any section u of Eh

and any point w ∈ X,

Pε,⊥t u[t](w) = P⊥t u[t](w) +
(
u[t], Kt(·, w)− e−ε(ψ(w)+|t|2)Kε

t (·, w)
)
h[t]
,
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where Kt and Kε
t denote the Bergman kernels for H2

t and H2
ε,t respectively. (The emphasis

on w is to indicate that the second variable in each Bergman kernel is fixed.) Thus

P⊥t u[t](w)− e−ε(ψ(w)+|t|2)/2 · Pε,⊥t u[t](w)

= (1− e−ε(ψ(w)+|t|2)/2) · P⊥t u[t](w) + e−ε(ψ(w)+|t|2)/2 ·
(
u[t], e−ε(ψ(w)+|t|2)Kε

t (·, w)−Kt(·, w)
)
h[t]
,

and so we have the following estimate.∥∥∥P⊥t u[t] − e−ε(ψ+|t|2)/2 · Pε,⊥t u[t]
∥∥∥
L∞t

≤M(ε)
∥∥P⊥t u[t]

∥∥
L∞t

+ e−εm0/2
∥∥u[t]

∥∥
L∞t

m(ε) ‖Kε
t (·, w)‖L∞t

+ e−εm0/2
∥∥u[t]

∥∥
L∞t
‖Kε

t (·, w)−Kt(·, w)‖L∞t ,

whereM(ε) = max
(∣∣1− e−ε(M0+R0)/2

∣∣ , ∣∣1− e−εm0/2
∣∣) ,m(ε) = max

(∣∣e−ε(M0+R0) − 1
∣∣ , |e−εm0 − 1|

)
and m0 and M0 are the minimum and maximum of ψ over X, respectively, and R0 := supU |t|

2.

Let u :=
∑

1≤j≤m Υtjuj. By smoothness and boundedness,∥∥u[t]
∥∥
L∞t

,
∥∥P⊥t u[t]

∥∥
L∞t

, ‖Kε
t (·, w)‖L∞t , ‖Kt(·, w)‖L∞t < +∞.

Moreover, since ψ > 0 by assumption, the sequence of metrics
{
h

[t]
ε

}
ε>0

increases to h[t].

Therefore, by the generalization of Ramadanov’s theorem on Bergman kernels in [PW16],

‖Kε
t (·, w)−Kt(·, w)‖L∞t −−→ε→0

0.

Finally, knowing that M(ε),m(ε)→ 0 as ε→ 0, we see that∥∥∥∥∥P⊥t
( ∑

1≤j≤m

Υtju
[t]
j

)
− e−ε(ψ+|t|2)/2 · Pε,⊥t

( ∑
1≤j≤m

Υtju
[t]
j

)∥∥∥∥∥
L∞t

−−→
ε→0

0,

and so ∥∥∥∥∥P⊥t
( ∑

1≤j≤m

Υtju
[t]
j

)
− e−ε(ψ+|t|2)/2 · Pε,⊥t

( ∑
1≤j≤m

Υtju
[t]
j

)∥∥∥∥∥
L2
t

−−→
ε→0

0.

Thus,∥∥∥∥∥P⊥t
( ∑

1≤j≤m

Υtju
[t]
j

)∥∥∥∥∥
2

h[t]

−

∥∥∥∥∥e−ε(ψ+|t|2)/2 · Pε,⊥t

( ∑
1≤j≤m

Υtju
[t]
j

)∥∥∥∥∥
2

h[t]

−−→
ε→0

0.

Consequently R(ε)→ 0 as ε→ 0, which completes the proof by taking the limit as ε→ 0

in (6.1.9).
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6.1.2 For trivial families of possibly unbounded Stein manifolds

Suppose now that X is a possibly unbounded Stein manifold. Then Eh is no longer neces-

sarily a Hilbert bundle, but rather a field of Hilbert spaces whose fibers are not necessarily

isomorphic. This means that we will need to define Griffiths positivity and Nakano positivity

for these fields of Hilbert spaces alternatively. These definitions are inspired by the analytic

characterizations that are equivalent to these notions of positivity in the vector bundle case

that we saw in Section 2.4.7.4. Our definitions of sections of Eh and its dual are essentially

the same as the ones for the locally trivial case.

Since any pseudoconvex subdomain of a Stein manifold is itself a Stein manifold, Theorem

A implies the following theorem.

Theorem 6.1.1. Let X be an n-dimensional relatively compact pseudoconvex subdomain of

an ambient Stein Kähler manifold (Y, g). Let V → X be a holomorphic vector bundle. Let

U ⊂ Cm be a domain, and let
{
h[t]
}
t∈U be a family of smooth Hermitian metrics for V → X.

Let δ > 0 and let η be a smooth function on Y . If Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , then the holomorphic Hermitian bundle (Eh, (·, ·)h[t]) is Nakano positive.

Moreover, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

for each t ∈ U , then (Eh, (·, ·)h[t]) is Nakano semipositive.

We will be making use of Theorem 6.1.1 in our proofs of Theorems C and B.

6.1.2.1 Definitions

Definition 6.1.1. A section f̂ of the fields of Hilbert spaces Eh is a section of π∗XV → U×X

such that f̂
∣∣∣
{t}×X

∈ Et := H2
t for each t ∈ U . We will write f̂ [t] := f̂

∣∣∣
{t}×X

.
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The section f̂ of Eh is said to be holomorphic if it is holomorphic in the total space. In

particular, all sections are holomorphic on the fibers.

Definition 6.1.2. Let E∗h denote the holomorphic Hermitian field of Hilbert spaces dual to

Eh – that is the fiber E∗t of E∗h over t ∈ U is the Hilbert space dual of H2
t with its usual

fiberwise Hilbert norm

‖ξ‖∗,h[t] := sup
f∈H2

t−{0}

∣∣∣〈ξ∣∣H2
t
, f
〉∣∣∣

‖f‖h[t]
.

Definition 6.1.3. A section of E∗h is a map ξ : Eh → C such that ξt := ξ
∣∣
H2
t
∈ (H2

t )
∗
. The

section ξ is said to be smooth (resp. holomorphic) if for each smooth (resp. holomorphic)

section f̂ of Eh, the function U 3 t 7→
〈
ξt, f̂

[t]
〉
∈ C is smooth (resp. holomorphic).

Now, let Fh denote the field of Hilbert spaces with fiber Ft := L2
t over t ∈ U and let

Pt : L2
t → H2

t denote the fiberwise Bergman projection.

Definition 6.1.4. (Connections)

• The Chern connection ∇Fh of Fh is formally defined as the following collection of

operators ∇Fh
tj for 1 ≤ j ≤ m given by ∇Fh

tj u
[t] = dtju

[t] −
((
h[t]
)−1

∂tjh
[t]
)
u[t], for a

section u of Fh. The domain of each ∇Fh
tj consists of sections u of Fh such that

∂tju
[t] −

((
h[t]
)−1

∂tjh
[t]
)
u[t] ∈ L2

t

for each t ∈ U .

– We may also define ∇Fh
tj , as in the vector bundle case, by the relation

(
∇Fh
tj u

[t], vt

)
h[t]

:= dtj(u
[t], vt)h[t] −

(
u[t], dtjvt

)
h[t]

for any two sections u and v of Eh.
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• The (1, 0)-part of the connection is defined by the collection of operators ∇Fh,(1,0)
tj

mapping u[t] ∈ L2
t to ∂tju

[t]−
((
h[t]
)−1

∂tjh
[t]
)
u[t]. The domain of each ∇Fh,(1,0)

tj consists

of sections u of Fh such that ∂tju
[t] −

((
h[t]
)−1

∂tjh
[t]
)
u[t] ∈ L2

t for each t ∈ U .

• The (0, 1)-part of the connection is defined as the collection of ∂̄-operators ∂̄Fhtj . The

domain of each ∂̄Fhtj consists of sections u of Fh such that ∂̄tju
[t] ∈ L2

t for each t ∈ U .

The corresponding connections for Eh are defined as the respective Bergman projections

of each connection, with the domains similarly defined. So we have ∇Eh
tj := Pt ◦ ∇Fh

tj ,

∇Eh,(1,0)
tj := Pt ◦ ∇Fh,(1,0)

tj and ∂̄Ehtj := Pt ◦ ∂̄Fhtj .

We will abusively denote the ∂̄-operators for Eh and Fh interchangeably.

Definition 6.1.5. (Curvatures)

• The curvature ΘFh of Fh is the (1, 1)-form of endomorphisms

ΘFh =
∑

1≤j,k≤m

ΘFh
tj t̄k
dtj ∧ dt̄k,

where the multiplier coefficients ΘFh
tj t̄k

are endomorphisms of V → X defined on X by

ΘFh
tj t̄k

= ∂̄tk

((
h[t]
)−1

∂tjh
[t]
)

. The domain of each ΘFh
tj t̄k

consists of sections u of Fh such

that

∂̄tk

((
h[t]
)−1

∂tjh
[t]
)
u[t] ∈ L2

t

for each t ∈ U .

• The curvature of ΘEh of Eh is the (1, 1)-form of endomorphisms ΘEh
tj t̄k

of V → X defined

as by the relation

(
ΘFh
tj t̄k
u[t], v[t]

)
h[t]

=
(
P⊥t
(
∇Fh
tj u

[t]
)
,P⊥t

(
∇Fh
tk
v[t]
))

h[t]
+
(

ΘEh
tj t̄k
u[t], v[t]

)
h[t]

for any two sections u and v of Eh. The domain of each endomorphism ΘEh
tj t̄k

consists

of sections u of Eh such that ΘEh
tj t̄k
u[t] ∈ L2

t for each t ∈ U .
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Definition 6.1.6. (Griffiths positivity)

The holomorphic Hermitian field of Hilbert spaces (Eh, (·, ·)h[t]) is said to be Griffiths semi-

positive (resp. positive) if the function

U 3 t 7→ log
(
‖ξ‖2

∗,h[t]

)
is (strictly) plurisubharmonic or identically −∞ for every holomorphic section ξ of E∗h.

By Proposition 2.4.9, this definition is equivalent to the usual definition of Griffiths

positivity when Eh is bona fide holomorphic Hilbert bundle.

Now, consider the (m− 1,m− 1)-form

Tu =
∑

1≤j,k≤m

(
u

[t]
j , u

[t]
k

)
h[t]

̂dtj ∧ dt̄k,

for an m-tuple u = (u1, · · · , um) of holomorphic sections of Eh. Here,

̂dtj ∧ dt̄k = cndt1 ∧ · · · ∧ dtj−1 ∧ dtj+1 ∧ · · · ∧ dtm ∧ dt̄1 ∧ · · · ∧ dt̄k−1 ∧ dt̄k+1 ∧ dt̄m,

where cn is a unimodular constant chosen so that ̂dtj ∧ dt̄k is a positive form.

Definition 6.1.7. (Nakano positivity)

• The holomorphic Hermitian field of Hilbert spaces (Eh, (·, ·)h[t]) is said to be Nakano

positive (resp. semipositive) at t ∈ U if

∃c0 > 0 (resp. = 0) : ∂U ∂̄U (−Tu) ≥ c0

m∑
k=1

∥∥∥u[t]
k

∥∥∥2

h[t]
dV (t)

for any m-tuple (u1, · · · , um) of holomorphic sections of Eh belonging to the domains

of ∇Eh,(1,0)
tj and ΘEh

tj t̄k
and such that ∇Eh,(1,0)

tj u
[t]
j = 0 at t, for all 1 ≤ j, k ≤ m.

• The holomorphic Hermitian field of Hilbert spaces (Eh, (·, ·)h[t]) is said to be Nakano

(semi)positive if it is Nakano (semi)positive at every t ∈ U .

By Proposition 2.4.11, this definition is equivalent to the usual definition of Nakano

positivity when Eh is bona fide holomorphic Hilbert bundle.
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6.1.2.2 Griffiths positivity for trivial families of possibly unbounded Stein

manifolds

We now proceed to the proof of Theorem C.

Proof. Since the result is local, we may assume that U is bounded. Let X be a possibly

unbounded Stein manifold. Let us denote

‖ξ‖2
∗,h[t],X := sup

f [t]∈H2
t−{0}

∣∣〈ξt, f [t]〉
∣∣2

‖f [t]‖2
h[t],X

,

for a holomorphic section ξ of E∗h.

Let ξ be an arbitrary holomorphic section of Eh. If ξ ≡ 0, then ‖ξ‖2
∗,h[t],X = 0 and so the

function U 3 t 7→ log
(
‖ξ‖2

∗,h[t],X

)
is identically −∞. We thus assume for the remainder of

the proof that ξ is not identically 0.

Our goal is to shows that U 3 t 7→ ‖ξ‖2
∗,h[t],X is strictly plurisubharmonic or plurisubhar-

monic depending on the twisted curvature assumption.

Since X is a Stein manifold, we may express X as X =
⋃
j≥1Xj where {Xj}j≥1 is an

increasing sequence of relatively compact such that for each j, Xj has compact closure in

Xj+1. Let PU×X denote the Bergman projection of L2(U ×X, h) onto H2(U ×X, h) and let

P⊥U×X denote its orthogonal complement. For each j, let χj : X → [0, 1] be a smooth function

supported on Xj+1 that is identically 1 on Xj. In addition, let E(j+1),h be the bundle whose

fiber over t ∈ U is H2
(
Xj+1, h

[t]
)

=: H2
t,(j+1) and let χ̂j := χj ◦ πX : U ×X → X → [0, 1].

Since {t} × X ∼= X and {t} × Xj
∼= Xj for each fixed t ∈ U and for each j, we will

abusively denote H2
(
{t} ×X, h[t]

)
and H2

(
{t} ×Xj+1, h

[t]
)

by H2
t and H2

t,(j+1), respectively.

Thus, while we take the fibers of Eh and E(j+1),h to be H2
t and H2

t,(j+1), respectively, we are

really thinking of H2
(
{t} ×X, h[t]

)
and H2

(
{t} ×Xj+1, h

[t]
)

respectively.
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For any section f ∈ ΓO
(
E(j+1),h

)
, PU×X (χ̂jf) ∈ ΓO (U ×X, π∗XV ) ∩ L2 (U ×X, h) .

Therefore, the formula

∀f ∈ ΓO(E(j+1),h) :
〈
ξ

(j)
t , f [t]

〉
:=
〈
ξt,PU×X (χ̂jf)

∣∣
{t}×X

〉
,

defines a holomorphic section ξ(j) ∈ E∗(j+1),h.

Let us denote the dual square-norm of ξ
(j)
t over

(
H2
t,(j+1)

)∗
by
∥∥ξ(j)

∥∥2

∗,h[t],Xj+1
and let

f ∈ ΓO (Eh) so that f [t] ∈ H2
t − {0}. Then, we have the following estimates.

∥∥ξ(j)
∥∥2

∗,h[t],Xj+1
≥

∣∣∣〈ξt,PU×X (χ̂jf)
∣∣
{t}×X

〉∣∣∣2∥∥∥PU×X (χ̂jf)
∣∣
{t}×X

∥∥∥2

h[t],Xj+1

≥

∣∣∣〈ξt,PU×X ((χ̂j − 1) f)
∣∣
{t}×X + f [t]

〉∣∣∣2
‖f [t]‖2

h[t],X

=

∣∣∣〈ξt, f [t]
〉

+
〈
ξt,PU×X ((χ̂j − 1) f)

∣∣
{t}×X

〉∣∣∣2
‖f [t]‖2

h[t],X

.

Now

∣∣∣〈ξt, f [t]
〉

+
〈
ξt,PU×X ((χ̂j − 1) f)

∣∣
{t}×X

〉∣∣∣2
=
∣∣〈ξt, f [t]

〉∣∣2 + 2Re

[〈
ξt, f

[t]
〉 〈
ξt, (χj − 1)f [t] − P⊥U×X (χ̂jf)

∣∣
{t}×X

〉]
+
∣∣∣〈ξt,PU×X ((χ̂j − 1) f)

∣∣
{t}×X

〉∣∣∣2
≤
∣∣〈ξt, f [t]

〉∣∣2 + 2
∣∣〈ξt, f [t]

〉∣∣ ∣∣∣〈ξt,PU×X ((χ̂j − 1) f)
∣∣
{t}×X

〉∣∣∣
+
∣∣∣〈ξt,PU×X ((χ̂j − 1) f)

∣∣
{t}×X

〉∣∣∣2 .
Since ξt is a continuous linear functional, there exists constants C1 > 0 and C2 > 0 such

that

∣∣〈ξt, f [t]
〉∣∣2 ≤ C1

∥∥f [t]
∥∥2

h[t],X
,
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and ∣∣∣〈ξt,PU×X ((χ̂j − 1) f)
∣∣
{t}×X

〉∣∣∣2 ≤ C2

∥∥∥PU×X ((χ̂j − 1) f)
∣∣
{t}×X

∥∥∥2

h[t],X

≤ C2

∥∥(χj − 1)f [t]
∥∥2

h[t],X

≤ C2

∥∥f [t]
∥∥2

h[t],X−X̄j+1
.

Now since
∥∥f [t]

∥∥2

h[t],X−X̄j
−−−−→
j→+∞

0, it follows that for any ε > 0,

∣∣∣〈ξt, f [t]
〉

+
〈
ξt, (χj − 1)f [t] − P⊥U×X (χ̂jf)

∣∣
{t}×X

〉∣∣∣2 < ∣∣〈ξt, f [t]
〉∣∣2

‖f [t]‖2
h[t],X

+ ε ≤ ‖ξ‖2
∗,h[t],X + ε,

provided that j is sufficiently large. Therefore, ‖ξ‖2
∗,h[t],X ≤

∥∥ξ(j)
∥∥2

∗,h[t],Xj+1
.

The same exact argument with Xj+2 replacing X shows that the sequence of dual squared

norms
{∥∥ξ(j)

∥∥2

∗,h[t],Xj+1

}
j≥1

is decreasing. Moreover, this sequence is bounded below by

‖ξ‖2
∗,h[t],X .

We now need to show that ‖ξ‖2
∗,h[t],X is indeed the limit of

{∥∥ξ(j)
∥∥2

∗,h[t],Xj+1

}
j≥1

. In

particular, all we need to show is that

lim
j→+∞

∥∥ξ(j)
∥∥2

∗,h[t],Xj+1
≤ ‖ξ‖2

∗,h[t],X .

By the definition of
∥∥ξ(j)

∥∥2

∗,h[t],Xj+1
, for each j, there exists fj ∈ ΓO(E(j+1),h) such that∥∥ξ(j)

∥∥2

∗,h[t],Xj+1
=
∣∣∣〈ξ(j), f

[t]
j

〉∣∣∣2 and
∥∥∥f [t]

j

∥∥∥2

h[t],Xj+1

= 1.

Extend fj by 0 on U × (X −Xj+1) and let f̃j be the extension of fj . Then f̃j ∈ L2(U ×X, h)

and f̃j converges to some f̃ in L2(U ×X, h). In fact, f̃ ∈ H2(U ×X, h). But then,∥∥ξ(j)
∥∥2

∗,h[t],Xj+1
=
∣∣∣〈ξ(j)

t , f̃
[t]
j

〉∣∣∣2 =
∣∣∣〈ξ(j)

t , f̃ [t]
〉

+
〈
ξ

(j)
t , f̃

[t]
j − f̃ [t]

〉∣∣∣2
≤
∣∣∣〈ξ(j)

t , f̃ [t]
〉∣∣∣2 + 2

∣∣∣〈ξ(j)
t , f̃ [t]

〉∣∣∣ ∣∣∣〈ξ(j)
t , f̃

[t]
j − f̃ [t]

〉∣∣∣
+
∣∣∣〈ξ(j)

t , f̃
[t]
j − f̃ [t]

〉∣∣∣2 .
Clearly,

∣∣∣〈ξ(j)
t , f̃

[t]
j − f̃ [t]

〉∣∣∣2 converges to 0 as j → +∞ by continuity since
∥∥∥f̃ [t]

j − f̃ [t]
∥∥∥2

h[t],X

converges to 0 as j → +∞ by L2-convergence. On the other hand,〈
ξ(j), f̃ [t]

〉
=
〈
ξt, f̃

[t]
〉

+
〈
ξt,PU×X ((χ̂j − 1) f)

∣∣
{t}×X

〉
,
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and so arguing as we previously did, we can see that

lim
j→+∞

∣∣∣〈ξ(j), f̃ [t]
〉∣∣∣2 ≤ ‖ξ‖2

∗,h[t],X .

Altogether, we conclude that limj→+∞
∥∥ξ(j)

∥∥2

∗,h[t],Xj+1
≤ ‖ξ‖2

∗,h[t],X .

By Theorem 6.1.1 if Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , then each of the functions U 3 t 7→
∥∥ξ(j)

∥∥2

∗,h[t],Xj+1
is strictly plurisubharmonic

by Proposition 2.4.8. Therefore, the function U 3 t 7→ ‖ξ‖2
∗,h[t],X is strictly plurisubharmonic

and the result follows by Remark 2.4.10 in this case. Otherwise, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

for each t ∈ U , then each of the functions U 3 t 7→
∥∥ξ(j)

∥∥2

∗,h[t],Xj+1
is plurisubharmonic by

Proposition 2.4.8. Therefore, the function U 3 t 7→ ‖ξ‖2
∗,h[t],X is plurisubharmonic and the

result follows again, in this case, by Remark 2.4.10.

6.1.2.3 Nakano positivity for trivial families of possibly unbounded Stein

manifolds

We now prove Theorem B.

Proof. Let t ∈ U be arbitrary. Let X be a possibly unbounded Stein manifold. We may

exhaust X as X =
⋃
j≥1Xj where {Xj}j≥1 is an increasing sequence of relatively compact such

that for each j, Xj has compact closure in Xj+1. For each j, let χj : X → [0, 1] be a smooth

function supported on Xj+1 and that is identically 1 on Xj . Moreover, let Fh denote the field

of Hilbert spaces with fiber L2
t at t ∈ U and let F(j+1),h and E(j+1),h denote the bundles with

fibers L2
t,(j+1) =: L2

(
Xj+1, h

[t]
)

and H2
t,(j+1) =: H2

(
Xj+1, h

[t]
)

at t ∈ U , respectively. Let Pt

denote the orthogonal projection L2
t → H2

t and let P⊥t denote its orthogonal complement.
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Similarly, let P(j+1)
t denote the orthogonal projection L2

t,(j+1) → H2
t,(j+1) and let P(j+1),⊥

t

denote its orthogonal complement. Then

∇Fh
tk

=
(
h[t]
)−1

∂tkh
[t] = ∇F(j+1),h

tk
and ΘFh

tk t̄`
= ∂̄t`

((
h[t]
)−1

∂tkh
[t]
)

= Θ
F(j+1),h

tk t̄`
.

Let u = (u1, · · · , um) be an m-tuple of holomorphic sections of Eh belonging to the

domains of ∇Eh,(1,0)
tk

and ΘEh
tk t̄`

for each 1 ≤ k, ` ≤ m such that ∇Eh,(1,0)
tk

u
[t]
k = 0 at t, for each

k. Note that:

Tu =
∑

1≤k,`≤m

(
u

[t]
k , u

[t]
`

)
h[t]

̂dtk ∧ dt̄`

=
∑

1≤k,`≤m

(
χ2
ju

[t]
k , u

[t]
`

)
h[t]

̂dtk ∧ dt̄` +
∑

1≤k,`≤m

(
(1− χ2

j)u
[t]
k , u

[t]
`

)
h[t]

̂dtk ∧ dt̄`.

Since each uk is a holomorphic section of Eh, it follows, by definition, that u
[t]
k ∈ H2

t ⊆ L2
t

for each t ∈ U and that each uk depends holomorphically on t. Let χ̂j := χj ◦ πX . Then for

each j, χ̂juk
∣∣
{t}×X = χju

[t]
k ∈ L2

t for each t, and each χ̂juk still depends holomorphically on t

since χ̂j is independent of t. Therefore, each χ̂juk is a holomorphic section of Fh. So,

∂U ∂̄U (−Tu) =
∑

1≤k,`≤m

(
ΘFh
tk t̄`

(
χ2
ju

[t]
k

)
, u

[t]
`

)
h[t]
dV (t)

−
∑

1≤k,`≤m

(
∇Fh,(1,0)
tk

(
χ2
ju

[t]
k

)
,∇Fh,(1,0)

t`
u

[t]
`

)
h[t]
dV (t)

+
∑

1≤k,`≤m

(
ΘFh
tk t̄`

(
(1− χ2

j)u
[t]
k

)
, u

[t]
`

)
h[t]
dV (t)

−
∑

1≤k,`≤m

(
∇Fh,(1,0)
tk

(
(1− χ2

j

)
u

[t]
k ),∇Fh,(1,0)

t`
u

[t]
`

)
h[t]
dV (t).
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But since χj does not depend on t, we have
[
∇Fh,(1,0)
tk

, χ2
j

]
= 0 =

[
∇Fh,(1,0)
tk

, 1− χ2
j

]
and[

Θ
Fh,(1,0)
tj t̄k

, χ2
j

]
= 0 =

[
Θ
Fh,(1,0)
tj t̄k

, 1− χ2
j

]
for each tk. Therefore,

∂U ∂̄U (−Tu) =
∑

1≤k,`≤m

(
ΘFh
tk t̄`
χju

[t]
k , χju

[t]
`

)
h[t]
dV (t)

−
∑

1≤k,`≤m

(
∇Fh,(1,0)
tk

χju
[t]
k ,∇

Fh,(1,0)
t`

χju
[t]
`

)
h[t]
dV (t)

+
∑

1≤k,`≤m

(
(1− χ2

j)Θ
Fh
tk t̄`
u

[t]
k , u

[t]
`

)
h[t]
dV (t)

−
∑

1≤k,`≤m

((
1− χ2

j

)
∇Fh,(1,0)
tk

u
[t]
k ,∇

Fh,(1,0)
t`

u
[t]
`

)
h[t]
dV (t).

We have the following for each k and `.(
ΘEh
tk t̄`

(
(1− χ2

j)u
[t]
k

)
, u

[t]
`

)
h[t]

=
(

ΘFh
tk t̄`

(
(1− χ2

j)u
[t]
k

)
, u

[t]
`

)
h[t]
−
(
P⊥t
(
∇Fh
tk

(
(1− χ2

j)u
[t]
k

))
,P⊥t

(
∇Fh
t`
u

[t]
`

))
h[t]

=
(

(1− χ2
j)Θ

Fh
tk t̄`
u

[t]
k , χju

[t]
`

)
h[t]
−
(
P⊥t
(

(1− χ2
j)∇

Fh
tk
u

[t]
k

)
,P⊥t

(
∇Fh
t`
u

[t]
`

))
h[t]
.

Since P⊥t is an orthogonal projection, the Cauchy-Schwarz inequality yields(
P⊥t
(

(1− χ2
j)∇

Fh
tk
u

[t]
k

)
,P⊥t

(
∇Fh
t`
u

[t]
`

))
h[t]

≤
∥∥∥P⊥t ((1− χ2

j)∇
Fh
tk
u

[t]
k

)∥∥∥2

h[t],X

∥∥∥P⊥t (∇Fh
t`
u

[t]
`

)∥∥∥2

h[t],X

≤
∥∥∥(1− χ2

j)∇
Fh
tk
u

[t]
k

∥∥∥2

h[t],X

∥∥∥∇Fh
t`
u

[t]
`

∥∥∥2

h[t],X

≤
∥∥∥∇Fh

tk
u

[t]
k

∥∥∥2

h[t],X−Xj

∥∥∥∇Fh
t`
u

[t]
`

∥∥∥2

h[t],X
−−−−→
j→+∞

0.

Similarly, for each k and `,(
(1− χ2

j)Θ
Fh
tk t̄`
u

[t]
k , χju

[t]
`

)
h[t]
≤
∥∥∥ΘFh

k` u
[t]
k

∥∥∥2

h[t],X−Xj

∥∥∥u[t]
`

∥∥∥2

h[t],X
−−−−→
j→+∞

0.

Therefore, ∑
1≤k,`≤m

(
(1− χ2

j)Θ
Fh
tk t̄`
u

[t]
k , u

[t]
`

)
h[t]
dV (t) −−−−→

j→+∞
0.
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Estimating each of the terms
((

1− χ2
j

)
∇Fh,(1,0)
tk

u
[t]
k ,∇

Fh,(1,0)
t`

u
[t]
`

)
h[t]

in the same fashion,

we see that ∑
1≤k,`≤m

((
1− χ2

j

)
∇Fh,(1,0)
tk

u
[t]
k ,∇

Fh,(1,0)
t`

u
[t]
`

)
h[t]
dV (t) −−−−→

j→+∞
0.

We now focus our attention on the first two sums in the expression of ∂U ∂̄U(−Tu). In

what follows, let

(v1, v2)[j+1],h[t] :=

∫
Xj+1

h[t] (v1, v2) dVg.

For any two holomorphic sections u and v of Fh, we have

(
ΘFh
tk t̄`
u[t], v[t]

)
h[t]
−
(
∇Fh,(1,0)
tk

u[t],∇Fh,(1,0)
t`

v[t]
)
h[t]

=
(
P⊥t
(
∇F
tk
u[t]
)
,P⊥t

(
∇F
t`
v[t]
))
h[t]

+
(

ΘEh
tk t̄`
u[t], v[t]

)
h[t]

−
(
∇Fh,(1,0)
tk

u[t],∇Fh,(1,0)
t`

v[t]
)
h[t]

=
(

ΘEh
tk t̄`
u[t], v[t]

)
h[t]

+
(
P⊥t
(
∇Fh,(1,0)
tk

u[t]
)
,P⊥t

(
∇Fh,(1,0)
t`

v[t]
))

h[t]

−
(
∇Fh,(1,0)
tk

u[t],∇Fh,(1,0)
t`

v[t]
)
h[t]

=
(

ΘEh
tk t̄`
u[t], v[t]

)
h[t]
−
(
u[t],Pt

(
∇Fh,(1,0)
tk

v[t]
))

h[t]
−
(
Pt
(
∇Fh,(1,0)
tk

u[t]
)
, v[t]

)
h[t]

+
(
Pt
(
∇Fh,(1,0)
t`

u[t]
)
,Pt

(
∇Fh,(1,0)
t`

v[t]
))

h[t

=
(

ΘEh
tk t̄`
u[t], v[t]

)
h[t]
−
(
u[t],∇Eh,(1,0)

tk
v[t]
)
h[t]
−
(
∇Eh,(1,0)
tk

u[t], v[t]
)
h[t]

+
(
∇Eh,(1,0)
tk

u[t],∇Eh,(1,0)
t`

v[t]
)
h[t
.

Now, since each uk satisfies ∇Eh,(1,0)
tk

u
[t]
k = 0 at t, we have the following at t.

∇Eh,(1,0)
tk

χju
[t]
k = ∇Eh,(1,0)

tk

(
(χj − 1)u

[t]
k

)
= Pt

(
∇Fh,(1,0)
tk

(
(χj − 1)u

[t]
k

))
= Pt

(
(χj − 1)∇Fh,(1,0)

tk
u

[t]
k

)
But since Pt is an orthogonal projection,∥∥∥Pt ((χj − 1)∇Fh,(1,0)

tk
u

[t]
k

)∥∥∥2

h[t]
≤
∥∥∥(χj − 1)∇Fh,(1,0)

tk
u

[t]
k

∥∥∥2

h[t]
≤
∥∥∥∇Fh,(1,0)

tk
u

[t]
k

∥∥∥2

h[t],X−Xj

−−−−→
j→+∞

0,
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and so by the Cauchy-Schwarz inequality,

(
u

[t]
k ,∇

Eh,(1,0)
tk

u
[t]
`

)
h[t]
,
(
∇Eh,(1,0)
tk

u
[t]
k , u

[t]
`

)
h[t]
,
(
∇Eh,(1,0)
tk

u
[t]
k ,∇

Eh,(1,0)
t`

u
[t]
`

)
h[t
−−−−→
j→+∞

0.

On the other hand, note that each uk is a holomorphic section of E(j+1),h and that each

χ̂juk is simultaneously a holomorphic section of F(j+1),h and a smooth section of E(j+1),h.

Since ΘFh
tk t̄`

= Θ
F(j+1),h

tk t̄`
,

(
ΘEh
tk t̄`
χju

[t]
k , χju

[t]
`

)
h[t]

=
(

Θ
E(j+1),h

tk t̄`
χju

[t]
k , χju

[t]
`

)
[j+1],h[t]

+
(
P(j+1),⊥
t

(
∇Fh
tk
χju

[t]
k

)
,P(j+1),⊥

t

(
∇Fh
t`
χju

[t]
`

))
[j+1],h[t]

−
(
P⊥t
(
∇Fh
tk
χju

[t]
k

)
,P⊥t

(
∇Fh
t`
χju

[t]
`

))
h[t]
.

Note again that because ∇Eh,(1,0)
tk

u
[t]
k = 0 at t,

P⊥t
(
∇Fh
tk
χju

[t]
k

)
= P⊥t

(
∇Fh,(1,0)
tk

χju
[t]
k

)
= ∇Eh,(1,0)

tk
χju

[t]
k = ∇Eh,(1,0)

tk
(χj − 1)u

[t]
k ,

and so our previous arguments imply that
(
P⊥t
(
∇Fh
tk
χju

[t]
k

)
,P⊥t

(
∇Fh
t`
χju

[t]
`

))
h[t]
−−−−→
j→+∞

0.

Additionally,

(
Θ
E(j+1),h

tk t̄`
χju

[t]
k , χju

[t]
`

)
[j+1],h[t]

=
(

Θ
E(j+1),h

tk t̄`
u

[t]
k , u

[t]
`

)
[j+1],h[t]

+
(

Θ
E(j+1),h

tk t̄`
(χj − 1)u

[t]
k , u

[t]
`

)
[j+1],h[t]

+
(

Θ
E(j+1),h

tk t̄`
u

[t]
k , (χj − 1)u

[t]
`

)
[j+1],h[t]

+
(

Θ
E(j+1),h

tk t̄`
(χj − 1)u

[t]
k , (χj − 1)u

[t]
`

)
[j+1],h[t]

.

The last two summands converge to 0 as j → +∞ by the Cauchy-Schwarz inequality and

the fact that ∥∥∥(χj − 1)u
[t]
k

∥∥∥2

[j+1],h[t]
≤
∥∥∥u[t]

k

∥∥∥2

h[t],Xj+1−Xj

−−−−→
j→+∞

0.
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As for the second summand,(
Θ
E(j+1),h

tk t̄`
(χj − 1)u

[t]
k , u

[t]
`

)
[j+1],h[t]

=
(

Θ
F(j+1),h

tk t̄`
(χj − 1)u

[t]
k , u

[t]
`

)
[j+1],h[t]

−
(
P(j+1),⊥
t

(
∇Fh
tk

(χj − 1)u
[t]
k

)
,P(j+1),⊥

t

(
∇Fh
t`
u

[t]
`

))
[j+1],h[t]

=
(

ΘFh
tk t̄`

(χj − 1)u
[t]
k , u

[t]
`

)
[j+1],h[t]

−
(
P(j+1),⊥
t

(
∇Fh
tk

(χj − 1)u
[t]
k

)
,P(j+1),⊥

t

(
∇Fh
t`
u

[t]
`

))
[j+1],h[t]

=
(

(χj − 1) ΘFh
tk t̄`
u

[t]
k , u

[t]
`

)
[j+1],h[t]

−
(
P(j+1),⊥
t

(
(χj − 1)∇Fh

tk
u

[t]
k

)
,P(j+1),⊥

t

(
∇Fh
t`
u

[t]
`

))
[j+1],h[t]

.

Therefore,(
Θ
E(j+1),h

tk t̄`
(χj − 1)u

[t]
k , u

[t]
`

)
[j+1],h[t]

≤
∥∥∥(χj − 1) ΘFh

tk t̄`
u

[t]
k

∥∥∥2

[j+1],h[t]

∥∥∥u[t]
`

∥∥∥2

[j+1],h[t]

+
∥∥∥P(j+1),⊥

t

(
(χj − 1)∇Fh

tk
u

[t]
k

)∥∥∥2

[j+1],h[t]

∥∥∥P(j+1),⊥
t ∇Fh

t`

(
u

[t]
`

)∥∥∥2

[j+1],h[t]

≤
∥∥∥(χj − 1) ΘFh

tk t̄`
u

[t]
k

∥∥∥2

[j+1],h[t]

∥∥∥u[t]
`

∥∥∥2

[j+1],h[t]
+
∥∥∥(χj − 1)∇Fh

tk
u

[t]
k

∥∥∥2

[j+1],h[t]

∥∥∥∇Fh
t`
u

[t]
`

∥∥∥2

[j+1],h[t]

≤
∥∥∥ΘFh

tk t̄`
u

[t]
k

∥∥∥2

h[t],Xj+1−Xj

∥∥∥u[t]
`

∥∥∥2

[j+1],h[t]
+
∥∥∥∇Fh

tk
u

[t]
k

∥∥∥2

h[t],Xj+1−Xj

∥∥∥∇Fh
t`
u

[t]
`

∥∥∥2

[j+1],h[t]
−−−−→
j→+∞

0.

Altogether, we have

∂U ∂̄U(−Tu) =
∑

1≤k,`≤m

(
Θ
E(j+1),h

tk t̄`
u

[t]
k , u

[t]
`

)
[j+1],h[t]

dV (t) + o(j).

By Theorem 6.1.1, if Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , then

∃c0 > 0 :
∑

1≤k,`≤m

(
Θ
E(j+1),h

tk t̄`
u

[t]
k , u

[t]
`

)
[j+1],h[t]

≥ c0

m∑
k=1

∥∥∥u[t]
k

∥∥∥2

[j+1],h[t]
.

For each uk,
∥∥∥u[t]

k

∥∥∥2

[j+1],h[t]
=
∥∥∥u[t]

k

∥∥∥2

h[t]
−
∥∥∥u[t]

k

∥∥∥2

h[t],X−Xj+1

and since u
[t]
k ∈ H2

t ⊆ L2
t for each

uk,
∥∥∥u[t]

k

∥∥∥2

h[t],X−Xj+1

−−−−→
j→+∞

0. Therefore,

∃c0 > 0 : ∂U ∂̄U(−Tu) ≥ c0

m∑
k=1

∥∥∥u[t]
k

∥∥∥2

h[t]
dV (t) + o(j),
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whence (E, (·, ·)h[t]) is Nakano positive at t by taking the limit as j → +∞. The result follows

as t ∈ U was arbitrary.

Otherwise, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

for each t ∈ U , then again by Theorem 6.1.1 and our previous observations,

∂U ∂̄U(−Tu) ≥ o(j),

whence (E, (·, ·)h[t]) is Nakano semipositive at t by taking the limit as j → +∞. The result

follows in this case as well since t ∈ U was arbitrary.

6.2 Variations of Bergman kernels and compactly

supported measures

6.2.1 Twisted log-plurisubharmonic variation results for trivial

families of possibly Stein unbounded manifolds

6.2.1.1 Variations of Bergman kernels

One immediate consequence of Theorem C is Theorem D, which we now prove.

Proof. For z ∈ X and t ∈ U , define ξ̂
(z)
t by ξ̂

(z)
t (f̂) = i∗t f̂(z), for f̂ ∈ ΓO (Eh). By Proposition

3.2.1, ξ̂
(z)
t : H2

t → Vz is a bounded linear map. Now let σ ∈ V ∗z be a non-zero vector. Then

ξ
(z,σ)
t := σ ⊗ ξ̂(z)

t ∈
(
H2
t

)∗
.

Moreover, if f ∈ ΓO (Eh), then the function t 7→
〈
ξ

(z,σ)
t , f [t]

〉
is holomorphic. Thus

t 7→ ξ
(z,σ)
t defines a holomorphic section of E∗h which we denote by ξ(z,σ).

By Theorem 3.4.4 the fiberwise dual squared norm of this section is given by

∥∥ξ(z,σ)
∥∥2

∗,h[t] = sup
f∈H2

t−{0}

∣∣〈ξ(z,σ), f
〉∣∣2

‖f‖2
h[t]

= sup
f∈H2

t−{0}

|〈f(z), σ〉|2

‖f‖2
h[t]

= 〈Kt(z, z), σ ⊗ σ̄〉 .
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By Theorem 6.1.1, if Ξδ,η(h) >Griff 0 and

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV >Nak 0,

for each t ∈ U , then

∂U ∂̄U log 〈Kt(z, z), σ ⊗ σ̄〉 > 0.

Otherwise, if either Ξδ,η(h) ≥Griff 0 or

∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+
(
Ric(g) + 2∂X ∂̄Xη − (1 + δ)∂Xη ∧ ∂̄Xη

)
⊗ IdV ≥Nak 0,

for each t ∈ U , then

∂U ∂̄U log 〈Kt(z, z), σ ⊗ σ̄〉 ≥ 0,

which completes the proof.

In the Euclidean setting, this result corresponds to Berndtsson’s result on the log-

plurisubharmonic variation of Bergman kernels for product domains ([Ber06]). In our setting,

we have the following theorem.

Theorem 6.2.1. Let U be a domain in Cm and Ω a pseudoconvex domain in Cn. Let

ϕ ∈ C∞ (U × Ω), let δ > 0 and let η ∈ C∞(Ω). Let Kt denote the Bergman kernel of the

projection of L2
(

Ω, e−ϕ
[t]
)

onto H2
(

Ω, e−ϕ
[t]
)

. If Ξδ,η (e−ϕ) ≥ 0 (resp. > 0) in U × Ω,

then the function t 7→ log (Kt(z, z)) is plurisubharmonic (resp. strictly plurisubharmonic) or

identically −∞.

6.2.1.2 Variations of families of compactly supported measures

Let {µ̂t}t∈U be a family of compactly supported V ∗-valued complex measures over X. Then

for each section f of Eh, the pairing µ
(f)
t :=

〈
f [t], µ̂t

〉
defines a compactly supported complex

measure on X for each t ∈ U . Now consider the mapping ξ
(µ)
t defined by

f [t] 7→
〈
ξ

(µ)
t , f [t]

〉
:= µ

(f)
t (X) =

∫
X

〈
f [t], µ̂t

〉
.
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Let us represent µ̂t locally as µ̂t =
∑r

j=1 σj ⊗ µ
(j)
t where σ1, · · · , σr be a local frame for

V ∗ over some open subset W ⊂ X, and let µ
(1)
t , · · · , µ(r)

t be complex measures for X over W ,

all of which are supported on a compact subset K of X. Let h[t],∗ denote the dual metric to

h[t] for the dual bundle V ∗ → X. Then, locally, we have the following∣∣∣∣∫
X

〈
f [t], µ̂t

〉∣∣∣∣ =

∣∣∣∣∣
∫
X

r∑
j=1

〈
f [t], σj

〉
dµ

(j)
t

∣∣∣∣∣
≤
∫
X

r∑
j=1

∣∣〈f [t], σj
〉∣∣ dµ(j)

t

≤
∫
X

|f |h[t]

(
r∑
j=1

|σj|h[t],∗

)
dµ

(j)
t

=

∫
K

|f |h[t]

(
r∑
j=1

|σj|h[t],∗

)
dµ

(j)
t

≤ sup
K

(
r∑
j=1

|σj|h[t],∗

)
sup
K
|f |h[t]

∫
K

dµ
(j)
t

= sup
K

(
r∑
j=1

|σj|h[t],∗

)
µ

(j)
t (K) sup

K
|f |h[t] .

Now by Proposition 3.2.1, there exists a constant CK > 0 such that

sup
K
|f |2h[t] ≤ CK

∫
X

|f |2h[t] dVg.

Therefore,

sup
f [t]∈H2

t

∣∣∣〈ξ(µ)
t , f [t]

〉∣∣∣2
‖f‖2

h[t]

is bounded. Using a partition of unity, we can see that this boundedness does not depend on

the choice of frame or local representative measures. So the mapping ξ
(µ)
t defines a smooth

section ξ(µ) of E∗h. We thus have Theorem E as a consequence of Theorem C.

In the Euclidean setting, Theorem E corresponds to Berndtsson’s theorem on the log-

plurisubharmonic variation of compactly supported measures for product domains ([Ber18;

Ber17]). In our setting, we have the following theorem.

Theorem 6.2.2. Let U be a domain in Cm and Ω a pseudoconvex domain in Cn. Let

ϕ ∈ C∞ (U × Ω), let δ > 0 and let η ∈ C∞(Ω). Let {µt}t∈U be a family of complex measures
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on Ω which are compactly supported inside Ω. Define a section ξ(µ) of E∗ϕ by

∀t ∈ U,∀F ∈ H2
ϕ(t,·)(Ω) : ξ

(µ)
t (F ) =

∫
Ω

F (z)dµt(z).

Suppose that ξ(µ) is a holomorphic section of E∗ϕ. If Ξδ,η (e−ϕ) ≥ 0 (resp. > 0) in U ×Ω, then

the function

U 3 t 7→ log
(∥∥ξ(µ)

∥∥2

∗,ϕ(t,·)

)
is plurisubharmonic (resp. strictly plurisubharmonic) or identically −∞.

Furthermore, letting µ̂t := σ⊗ δF (t) for each t ∈ U , where F is a holomorphic map from U

to X, δF (t) denotes a point-mass measure supported at F (t) and σ ∈ V ∗F (t), we obtain a slightly

stronger result than Theorem F. Namely, under the hypotheses of Theorem F, the function

U 3 t 7→ log 〈σ ⊗ σ̄, Kt (F (t), F (t))〉 is plurisubharmonic (or strictly so) or identically −∞

for every σ ∈ V ∗F (t).

6.2.2 Twisted log-plurisubharmonic variation results for a class

of non-trivial families of Stein manifolds

Now let Y be an n-dimensional Stein manifold, let ρ be a smooth plurisubharmonic function

on Cm×Y , and suppose that X := {(t, z) ∈ Cm × Y : ρ(t, z) < 0} is not necessarily a product

manifold in Cm × Y . We assume further that for each t, the restriction ρ[t] of ρ to

Xt := {z ∈ Y : (t, z) ∈ X} ⊂ Y

takes values in [−1, 0). This assumption is satisfied when X is a bounded strongly pseudo-

convex domain, for instance.

Let g be a Kähler metric for Y and choose ĝ := π∗Cmg0 ⊕ π∗Y g as a Kähler metric for

Cm × Y , where g0 is the Euclidean metric on Cm. Let V → X be a holomorphic vector

bundle and let h be Hermitian metric for V → X such that ∂̄t (h−1∂Y h) = 0, ∂̄t (h−1∂th) ≥ 0,

and h[t] := h
∣∣
Xt

satisfies

Θ
(
h[t]
)

+
(
Ric(g) + ∂Y ∂̄Y ρ

[t]
)
⊗ IdV [t] ≥Nak 0 (6.2.1)
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over Xt, for each t ∈ Cm. Here, ∂t and ∂̄t denote the ∂ and ∂̄ operator with respect to the

t-variable, on Cm.

In [Ber17], Berndtsson reduces the proof of his log-plurisubharmonic variation results

from the case of pseudoconvex subdomains of product domains to product domains. Using a

similar approach, we will show two additional log-plurisubharmonic variation results for the

class of non-trivial families of Stein manifolds just described.

6.2.2.1 Variations of Bergman kernels

LetKt denote the Bergman kernel for the Bergman projection L2
(
Xt, h

[t], dVg
)
→ H2

(
Xt, h

[t], dVg
)

throughout the following proof of Theorem F.

Proof. Let z ∈ Xt and σ ∈
(
V

[t]
z

)∗
be fixed. Let us fix t ∈ Cm – say t = 0. Assume for the

moment that m = 1. Since the property is local, we may restrict ourselves to a neighborhood

of t = 0. Let U0 be a sufficiently small neighborhood of 0 so that all the fibers Xt are

contained in a fixed pseudoconvex domain Yε = {ζ ∈ Y : ρ(0, ζ) < ε}. As the sublevel set of

a smooth plurisubharmonic function inside a Stein manifold, X is a Stein manifold. Upon

exhausting X by an increasing sequence of relatively compact strongly pseudoconvex domains,

we may assume that X is a bounded strongly pseudoconvex domain with smooth boundary.

For j ≥ 4, define ρj :=
1

j
log
(
ej

2ρ + 1
)

and hj := he−ρj , so that hj −−−−→
j→+∞

h when ρ ≤ 0

and hj −−−−→
j→+∞

0 when ρ > 0. Then Ξδ,η(hj) equals

∂̄t (h−1∂th) + ∂t∂̄tρj ∂t∂̄Y ρj

∂Y ∂̄tρj
δ

1 + δ

[
∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+ ∂Y ∂̄Y ρ
[t]
j + Ric(g) +

4e
1+δ
2
η

1 + δ
∂Y ∂̄Y

(
−e− 1+δ

2
η
)]
 .

Our goal is to find a function η on Y , depending on ρ[t], so that Ξδ,η(hj) ≥ 0 and

Θ
(
h

[t]
j

)
+

(
Ric(g) +

4e
1+δ
2
η

1 + δ
∂Y ∂̄Y

(
−e−

1+δ
2
η
))
⊗ IdV ≥Nak 0,
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for each t ∈ Cm.

Let a, b ∈ {t, Y } as indices. Then:

∂a∂̄bρj =
jej

2ρ

1 + ej2ρ
∂a∂̄bρ+

j3ej
2ρ

(1 + ej2ρ)
2∂aρ ∧ ∂̄bρ.

Therefore, Ξδ,η(hj) can be decomposed as∂̄t (h−1∂th) 0

0
δ

1 + δ

(
∂̄X

((
h[t]
)−1

∂Xh
[t]
)

+ Ric(g) + ∂Y ∂̄Y ρ
[t]
)
+

 ∂t∂̄tρj ∂t∂̄Y ρj

∂Y ∂̄tρj ∂Y ∂̄Y ρj


+

0 0

0 Mη,ρ
j


where

Mη,ρ
j := − 1

1 + δ

(
jej

2ρ[t]

1 + ej2ρ[t]
∂Y ∂̄Y ρ

[t] +
j3ej

2ρ[t](
1 + ej2ρ[t]

)2∂Y ρ
[t] ∧ ∂̄Y ρ[t]

)

+
δ

1 + δ

(
2∂Y ∂̄Y η − (1 + δ)∂Y η ∧ ∂̄Y η − ∂Y ∂Y ρ[t]

)
.

Our hypotheses clearly imply that

Ξδ,η(hj) ≥

0 0

0 Mη,ρ
j


and

Θ
(
h

[t]
j

)
+

(
Ric(g) +

4e
1+δ
2
η

1 + δ
∂Y ∂̄Y

(
−e−

1+δ
2
η
))
⊗ IdV ≥Nak M

η,ρ
j ⊗ IdV ,

for each t ∈ Cm.

Therefore, all we need to do is find a function η on Y , depending on ρ[t], such that Mη,ρ
j ≥ 0.

Now note that

∀j > 0 :
ej

2ρ[t]

1 + ej2ρ[t]
< 1 and

ej
2ρ[t](

1 + ej2ρ[t]
)2 <

1

4
.
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So, with η := f
(
ρ[t]
)

for some function f to be determined shortly,

Mη,ρ
j >

δ

1 + δ

(
−j
δ
∂Y ∂̄Y ρ

[t] − j3

4δ
∂Y ρ

[t] ∧ ∂̄Y ρ[t] + 2∂Y ∂̄Y η − (1 + δ)∂Y η ∧ ∂̄Y η − ∂Y ∂̄Y ρ[t]

)
=

δ

1 + δ

1

δ

(
2δ∂Y ∂̄Y η − j∂Y ∂̄Y ρ[t] − δ(1 + δ)∂Y η ∧ ∂̄Y η −

j3

4
∂Y ρ

[t] ∧ ∂̄Y ρ[t] − δ∂Y ∂̄Y ρ[t]

)
=

1

1 + δ

(
2δ∂Y ∂̄Y η − j∂Y ∂̄Y ρ[t] − δ(1 + δ)∂Y η ∧ ∂̄Y η −

j3

4
∂Y ρ

[t] ∧ ∂̄Y ρ[t] − δ∂Y ∂̄Y ρ[t]

)
=

1

1 + δ

[(
2δf ′

(
ρ[t]
)
− j − δ

)
∂Y ∂̄Y ρ

[t]
]

+
1

1 + δ

[(
2δf ′′

(
ρ[t]
)
− δ(1 + δ)

(
f ′
(
ρ[t]
))2 − j3

4

)
∂Y ρ

[t] ∧ ∂̄Y ρ[t]

]
.

The function

f
(
ρ[t]
)

:= C2 −
2

1 + δ
log

(
cos

(√
1 + δj3/2

4
√
δ

(ρ[t] + C1δ)

))
satisfies

2δf ′′
(
ρ[t]
)
− δ(1 + δ)

(
f ′
(
ρ[t]
))2 − j3

4
= 0,

for any constants C2 and C1. The constant C1 will be determined later and we can just let

C2 = 0. Now,

f ′
(
ρ[t]
)

=
j3/2

2
√
δ(1 + δ)

tan

(
j3/2

4

√
1 + δ

δ
(ρ[t] + C1δ)

)
,

and so

− j

δ
∂Y ∂̄Y ρ

[t] − j3

4δ
∂Y ρ

[t] ∧ ∂̄Y ρ[t] + 2∂Y ∂̄Y η − (1 + δ)∂Y η ∧ ∂̄Y η − ∂Y ∂̄Y ρ[t]

=
1

δ

√ δj3

1 + δ
tan

(
j3/2

4

√
1 + δ

δ
(ρ[t] + C1δ)

)
− (j + δ)

 ∂Y ∂̄Y ρ
[t].

For each j ≥ 4, we can always find some δ := δj > 0 such that√
δj3

1 + δ
> j + δ.

Furthermore, if we let C1 := Cδ,j :=
1

δ

(
π

√
δ

j3(1 + δ)
+ 1

)
, then C1δ ≤ 1 +π/8 for j ≥ 4,

whence
j3/2

4

√
1 + δ

δ
(ρ[t] + C1δ) takes values in [π/4, π/2) since −1 ≤ ρ[t] < 0. Hence,√
δj3

1 + δ
tan

(
j3/2

4

√
1 + δ

δ
(ρ[t] + C1δ)

)
− (j + δ) > 0.
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Therefore, Theorem D applies to our situation where the product domain is U0 × Yε.

Hence, by Proposition 3.4.10 (combined with Proposition 4.4.1) log 〈σ ⊗ σ̄, Kt(z, z̄)〉, over a

relatively compact strongly pseudoconvex subdomain of X, can be written as an increasing

limit of functions that are subharmonic with respect to t. We then conclude, by Proposition

3.4.13, that the function t 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉 is also subharmonic by upper semicontinuity.

Again, by upper semicontinuity, we get that t 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉 is plurisubharmonic if

m ≥ 1 since its restriction to any line is subharmonic. Finally, Proposition 3.4.11 implies

that the function t 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉, over X, is the decreasing limit of a sequence of

plurisubharmonic functions and is thus plurisubharmonic.

Of course, the plurisubharmonicity is strict if the twisted curvature conditions are strict.

However, we will not repeatedly state this in what follows.

So far, we have shown that t 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉 is plurisubharmonic for z fixed. We

will now show that for every σ ∈
(
V

[t]
z

)∗
, (t, z) 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉 is plurisubharmonic.

As before, we can choose a sufficiently small neighborhood U0 of 0 such that all the fibers Xt

are contained in a fixed pseudoconvex domain Yε.

In general, we can find a holomorphic tangent vector field F onX such that dπCm(F) = ∂/∂t

(see [BP08, Lemma 2.3]). Let ΦF denote the flow of F and let Φt
F denote the flow at time

t. Let X̃t := Φt
F(Xt). Since Φt

F maps Xt to X̃t biholomorphically, Proposition 3.4.8 implies

that Kt (z, z̄) = K̃t

(
Φt

F(z),Φt
F(z)

)
for any z ∈ Xt. Here Kt is the Bergman kernel for

the projection L2
(
Xt, h

[t], dVg
)
→ H2

(
Xt, h

[t], dVg
)

and K̃t is the one for the projection

L2
(
X̃t,
(
Φ−tF

)∗
h[t],

(
Φt

F

)
∗ dVg

)
→ H2

(
X̃t,
(
Φ−tF

)∗
h[t],

(
Φt

F

)
∗ dVg

)
.

We are now in the previous situation, and so for any fixed z ∈ Xt, the function

t 7→ log 〈σ ⊗ σ̄, Kt (z, z̄)〉 = log
〈
σ ⊗ σ̄, K̃t

(
Φt

F(z),Φt
F(z)

)〉
is plurisubharmonic for any σ ∈

(
V

[t]
z

)∗
. We may again assume that m = 1 without loss of

generality by the previous upper semicontinuity arguments.
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The flow Φt
F evaluated at z has the first-order Taylor expansion Φt

F(z) = z + tF(z) +O(t2)

in t around t = 0. Therefore, the function t 7→ log
〈
σ ⊗ σ̄, K̃t (z, z̄)

〉
is subharmonic in the

direction of F, which is an arbitrary lift of ∂/∂t. We thus have the the subharmonicity of the

function t 7→ log
〈
σ ⊗ σ̄, K̃t (z, z̄)

〉
in a general non-vertical direction in X.

Now let z = Φ−tF (w). Then the function t 7→ log
〈
σ ⊗ σ̄, Kt

(
Φ−tF (w),Φ−tF (w)

)〉
is sub-

harmonic. Since the vector field F is an arbitrary lift of ∂/∂t, this shows that the function

(t, z) 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉 is subharmonic in every non-vertical direction. In the vertical

directions z 7→ log 〈σ ⊗ σ̄, Kt(z, z̄)〉 is trivially subharmonic, as it is the sum of squares of

holomorphic functions. This completes the proof.

6.2.2.2 Variations of families of compactly supported measures

Now let {µ̂t}t∈U be a family of
(
V [t]
)∗

-valued complex measures over Xt that are all locally

supported in a compact subset of X. For each section f ∈ Γ(Eh), define the measure

µ
(f)
t =

〈
f [t], µ̂t

〉
and define the mapping ξ

(µ)
t by

f [t] 7→
〈
ξ

(µ)
t , f [t]

〉
:= µ

(f)
t (Xt) =

∫
Xt

〈
f [t], µ̂t

〉
.

Then, similarly to the case of trivial families of Stein manifolds, ξ(µ) defines a smooth

section of E∗h. We now prove Theorem G.

Proof. By the standard exhaustion argument, we may assume that X is a bounded strictly

pseudoconvex domain with smooth boundary. Since the result is local, we may after restricting

t to lie in a small neighborhood V0 of a given point, say 0, assume that X ⊂ V0 × Yε where

Yε := {z ∈ Y : ρ(0, z) < ε} is a pseudoconvex domain in Y . Then we apply Theorem E to

V0 × Yε with h replaced by hj, where hj is the approximating metric used in the proof of

Theorem F. Recall that hj := he−ρj where ρj is a function of ρ such that e−ρj converges to 1

as j → +∞ when ρ ≤ 0, and e−ρj converges to 0 as j → +∞ when ρ > 0. Therefore,

‖f‖2

L2
(
{t}×Yε,h[t]j

) :=

∫
{t}×Yε

|f |2
h
[t]
j

dVg −−−−→
j→+∞

∫
Xt

|f |2h[t] dVg =: ‖f‖2
L2(Xt,h[t]) ,
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and similarly,∣∣∣∣∣∣∣∣∫
Xt

〈
f [t], µ̂t

〉∣∣∣∣− ∣∣∣∣∫
{t}×Yε

〈
f [t], µ̂t

〉∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∫
Xt

〈
f [t], µ̂t

〉
−
∫
{t}×Yε

〈
f [t], µ̂t

〉∣∣∣∣ −−−−→j→+∞
0,

so that ∥∥ξ(µ)
∥∥2

∗,h[t]j ,{t}×Yε
−−−−→
j→+∞

∥∥ξ(µ)
∥∥2

∗,h[t],Xt

and so the theorem follows.

Once again, letting µ̂t := σ ⊗ δF (t) for each t ∈ U , where F is a holomorphic map from

U to Xt, δF (t) denotes a point-mass measure supported at F (t) and σ ∈ V ∗F (t), we see that

under the hypotheses of Theorem F, the function U 3 t 7→ log 〈σ ⊗ σ̄, Kt (F (t), F (t))〉 is

plurisubharmonic (or strictly so) or identically −∞ for every σ ∈
(
V [t]
)∗
F (t)

.

6.3 Twisted Prékopa-Leindler type theorems

We end this thesis with a mention of a couple of theorems that are much more similar in

nature to Berndtsson’s Prékopa-Leindler type theorems, under weaker assumptions than

plurisubharmonicity. These two results follow immediately from Theorem C in the same way

that Theorems 5.3.1 and 5.3.2 follow from Berndtsson’s Nakano positivity theorem, as shown

in Section 5.3.2.

Theorem 6.3.1. Let Ω be a balanced pseudoconvex domain in Cn, let δ > 0 and let η be a

smooth function on Ω. Let U be a domain in Cm and let ϕ ∈ C∞(U × Ω) be S1-invariant in

z for any t ∈ U . If Ξδ,η (e−ϕ) ≥ 0 (resp. > 0) in U × Ω, then the function

t 7→ − log

(∫
Ω

e−ϕ(t,z)dV (z)

)
is plurisubharmonic (resp. strictly plurisubharmonic) or identically equal to −∞.

Proof. As seen in the proof of Theorem 5.3.1, E is the direct sum of the holomorphic

subbundles Ek, k ∈ N, where Ek denotes the subbundle of E of homogeneous polynomials of
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degree k. Therefore, each Ek must be Griffiths positive in the sense of Definition 6.1.6 since

E is Griffiths positive in the sense of Definition 6.1.6 by Theorem C. In particular, E0 is

Griffiths positive in the sense of Definition 6.1.6. But since E0 is a trivial line bundle and the

constant function 1 is a global frame, it follows that t 7→ − log
(
‖1‖2

ϕ(t,·)

)
is plurisubharmonic

or identically −∞.

Theorem 6.3.2. Let Ω := {ζ : Re(ζ) ∈ D} for a convex domain D in Rn. Let δ > 0 and let

η be a smooth function on Ω. Let U be a domain in Cm and assume that ϕ ∈ C∞ (U × Ω)

does not depend on the imaginary part of ζ. If Ξδ,η (e−ϕ) ≥ 0 (resp. > 0) in U × Ω, then the

function

t 7→ − log

(∫
D

e−ϕ(t,x)dx

)
is plurisubharmonic (resp. strictly plurisubharmonic) or identically −∞.

Proof. As mentioned just before Theorem 5.3.2, if Ω is a Tn-invariant domain, the bundle E

can be decomposed as the direct sum of the subbundles Eα, α ∈ Zn where each Eα is spanned

by zα. These subbundles Eα are mutually orthogonal, and so each Eα must be Griffiths

positive in the sense of Definition 6.1.6 since E is Griffiths positive in the sense of Definition

6.1.6 by Theorem C. Therefore, as each Eα is of rank 1 with a constant trivializing section

U 3 t 7→ zα, the function

t 7→ − log
(
‖zα‖2

ϕ(t,·)

)
:= − log

(∫
Ω

|zα|2 e−ϕ(t,z)dV (z)

)
is a plurisubharmonic function of t for all α.

The image Ω̃ of Ω under the map exp : Cn 3 ζ 7→
(
eζ1 , · · · , eζn

)
∈ (C− {0})n is pseudo-

convex since D is convex. Moreover, as ϕ is independent of Im(ζ), there is a plurisubharmonic

function ϕ̃ in U × Ω̃ such that ϕ̃ (t, exp(ζ)) = ϕ(t, ζ). Clearly, the domain Ω̃ is Tn-invariant

and the function ϕ̃ is Tn-invariant with respect to z for each t. Therefore, the function

t 7→ − log

(∫
Ω

|zα|2 e−ϕ(t,z)dV (z)

)
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is plurisubharmonic. Changing variables z = exp(ζ), it follows that the integral over Ω̃ equals∫
[0,2π]n×D

e2α·xe−ϕ(t,x)e2
∑n
j=1 xjdxdy.

Hence the function

t 7→ − log

(∫
D

e2α·x−ϕ(t,x)+2
∑n
j=1 xjdx

)
is plurisubharmonic. Since A(x) = 2

(
α · x+

∑n
j=1 xj

)
is an affine function of x, we may

replace ϕ by ϕ+ A and the theorem follows.
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[BG16] Daniel Beltita and José E. Galé. “Reproducing Kernels and Positivity of Vector
Bundles in Infinite Dimensions”. In: Ordered Structures and Applications. Springer
International Publishing, 2016, pp. 51–75. isbn: 978-3-319-27842-1.

[BH98] W. Bertram and J. Hilgert. “Reproducing Kernels on Vector Bundles”. In: 1998.
url: http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram/BeHiASI.
pdf.
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[BP08] Bo Berndtsson and Mihai Păun. “Bergman kernels and the pseudoeffectivity
of relative canonical bundles”. In: Duke Mathematical Journal 145.2 (2008),
pp. 341–378. doi: 10.1215/00127094-2008-054. url: https://doi.org/10.
1215/00127094-2008-054.
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In: Mathematische Zeitschrift 249.2 (Feb. 2005), pp. 401–410. issn: 1432-1823.
doi: 10.1007/s00209-004-0704-6. url: https://doi.org/10.1007/s00209-
004-0704-6.

[DAn01] John P. D’Angelo. “Bordered complex Hessians”. In: The Journal of Geomet-
ric Analysis 11.4 (Dec. 2001), pp. 561–571. issn: 1559-002X. doi: 10.1007/
BF02930754. url: https://doi.org/10.1007/BF02930754.

[de 97] Mark Andrea A. de Cataldo. “Singular hermitian metrics on vector bundles”.
In: arXiv e-prints, alg-geom/9708003 (Aug. 1997), alg–geom/9708003. arXiv:
alg-geom/9708003 [math.AG].

[Dem12] Jean-Pierre Demailly. Complex analytic and differential geometry. 2012. url:
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.

pdf.

[Dem87] Jean-Pierre Demailly. “Mesures de Monge-Ampère et mesures pluriharmoniques.”
In: Mathematische Zeitschrift 194 (1987), pp. 519–564. url: http://eudml.org/
doc/173853.

[Dem92a] Jean-Pierre Demailly. “Regularization of closed positive currents and Intersection
Theory”. In: J. ALG. GEOM (1992), pp. 361–409.

[Dem92b] Jean-Pierre Demailly. “Singular hermitian metrics on positive line bundles”.
In: Complex Algebraic Varieties. Ed. by Klaus Hulek et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1992, pp. 87–104. isbn: 978-3-540-46786-1.

[Dem96] Jean-Pierre Demailly. L2 estimates for the ∂̄-operator on complex manifolds.
June 1996. url: https : / / www - fourier . ujf - grenoble . fr / ~demailly /

manuscripts/estimations_l2.pdf.

135

https://doi.org/https://doi.org/10.1016/0022-1236(76)90004-5
https://doi.org/https://doi.org/10.1016/0022-1236(76)90004-5
http://www.sciencedirect.com/science/article/pii/0022123676900045
http://www.sciencedirect.com/science/article/pii/0022123676900045
http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf
http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf
https://doi.org/10.1215/00127094-2008-054
https://doi.org/10.1215/00127094-2008-054
https://doi.org/10.1215/00127094-2008-054
https://doi.org/10.1017/S147474802000050X
https://doi.org/10.1007/s00209-004-0704-6
https://doi.org/10.1007/s00209-004-0704-6
https://doi.org/10.1007/s00209-004-0704-6
https://doi.org/10.1007/BF02930754
https://doi.org/10.1007/BF02930754
https://doi.org/10.1007/BF02930754
https://arxiv.org/abs/alg-geom/9708003
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
http://eudml.org/doc/173853
http://eudml.org/doc/173853
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/estimations_l2.pdf
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/estimations_l2.pdf


[DF75] Klas Diederich and John Erik Fornæss. “Exhaustion functions and Stein neigh-
borhoods for smooth pseudo-convex domains”. In: Proc. Nat. Acad. Sci. U.S.A.
72.9 (1975), pp. 3279–3280. issn: 0027-8424.

[DF77] Klas Diederich and John Erik Fornaess. “Pseudoconvex domains: bounded strictly
plurisubharmonic exhaustion functions”. In: Invent. Math. 39.2 (1977), pp. 129–
141. issn: 0020-9910. doi: 10.1007/BF01390105. url: https://doi.org/10.
1007/BF01390105.

[Fef74a] Charles Fefferman. “On the Bergman kernel and biholomorphic mappings of
pseudoconvex domains”. In: Bull. Amer. Math. Soc. 80.4 (July 1974), pp. 667–669.
url: https://projecteuclid.org:443/euclid.bams/1183535694.

[Fef74b] Charles Feffermann. “The Bergmann Kernel and Biholomorphic Mappings of
Pseudokonvex Domains.” In: Inventiones mathematicae 26 (1974), pp. 1–66. url:
http://eudml.org/doc/142293.

[GZ15] Qi’an Guan and Xiangyu Zhou. “A solution of an L2 extension problem with
an optimal estimate and applications”. In: Annals of Mathematics 181.3 (2015),
pp. 1139–1208. issn: 0003486X. url: http : / / www . jstor . org / stable /

24523356.

[Her18] Hendrik Herrmann. “Bergman Kernel Asymptotics for Partially Positive Line
Bundles”. PhD thesis. Universität zu Köln, July 2018. url: https://kups.ub.
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