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Abstract of the Dissertation

Symplectic Criteria on Stratified Uniruledness of Affine Varieties

and Applications to the Minimal Model Program

by

Dahye Cho

Doctor of Philosophy

in

Mathematics

Stony Brook University

2021

We develop criteria for affine varieties to admit uniruled subvarieties of certain dimen-
sions. A projective variety defined over complex numbers is uniruled if for a generic point,
there exists a rational curve of genus 0 passing through that point. An affine variety is unir-
uled if for a generic point of it, there exists a once-punctured rational curve of genus 0, in
other words a complex line passing through that point. The measurements are from long
exact sequences of versions of symplectic cohomology, which is a Hamiltonian Floer theory
for some open symplectic manifolds including affine varieties. Symplectic cohomology is hard
to compute, in general. However, certain vanishing and invariance properties of symplectic
cohomology can be used to prove that our criteria for finding uniruled subvarieties hold in
some cases. We provide applications of the criteria in birational geometry of log pairs in the
direction of the Minimal Model Program.
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Preface

Let us start with some questions as follow.

• How can we see geometric objects?

• What kind of geometric objects have symplectic structure?

• How can they be characterized? Which invariants can we use to understand the prop-
erties of symplectic/algebro-geometric objects?

• How can we use them?

In this thesis, we will have several points of view on geometric objects. The first one
is from classical mechanics, motions of particles can be described by the Euler-Lagrange
equation, that is derived from an extreme of an action functional. Secondly, the most impor-
tant(critical) data to build up a geometric object is local minimum/maximum(critical points)
of a function(the action functional) on it and the information how they are connected each
other through gradient flow lines. Thirdly, a geometric object can be characterized by func-
tions on it as (certain patches of) graphs of functions, on the other hand, a function(or a
nice functor) itself can be characterized as a graph (a geometric object). Finally, as a set
of points on a ground field, satisfying some condition with appropriate topology or metric,
become a geometric object, we can extend the notion to a set of certain loops/paths on a
ground manifold, a set of certain maps to a ground manifolds, a set of sections, a set of
connections, a set of geometric objects and so on.

The main invariants are based on Floer’s pioneering work, where he upgraded Morse
theory to where the critical objects are not just points on a manifold but suitable geometric
objects like paths or loops or connections on a symplectic manifold (geometrization of phase
spaces in classical mechanics) and where the connecting gradient trajectories are upgraded
to (perturbed) pseudo-holomorphic curves. Floer (co)homology has a fruitful algebraic struc-
tures including pair-of-pants product, which embrace some part of closed/open string theory
and topological quantum field theory and which can be categorifed to (wrapped) Fukaya
category that corresponds to categories from other parts of mathematics.

Learning ideas in series of works investigated and developed by McLean, my advisor, we
provide applications of Floer theory to birational geometry, where two algebraic varieties are
equivalent if they are isomorphic away from certain divisors and subvarieties and where the
loci covered by rational curves are considered to be somewhat simple.
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Chapter 1

Introduction

A projective variety X over complex numbers C is uniruled if for a generic point x ∈ X, there
is a rational curve P1 → X passing through x, where Pn denote CP n. An affine varietyM over
C is called k-uniruled if for a generic point x ∈M , there is a polynomial map (P1 \Γ)→M
passing through x, where Γ is a set of at most k distinct points. (An affine variety M is also
called C-uniruled if it is 1-uniruled, i.e. for a generic point x ∈M there is a polynomial map
C → M passing through x.) A Liouville domain M is J-holomorphic (k,E)-uniruled if, for
every convex almost complex structure J on M and for any point x in the interior intM of
M where J is integrable near x, there is a J-holomorphic map Σ→ intM passing through x,
where Σ is a Riemann sphere with the number boundary is at most k−1, and the energy is at
most E. A surprising fact is that both uniruledness of projective varieties and k-uniruledness
of affine varieties are symplectic invariant by Kollar, Ruan and McLean using Gromov-Witten
theory [69], [113], [87]. Moreover, uniruledness is a symplectic birational invariant by Hu-Li-
Ruan [59] (i.e. Uniruledness is invariant under symplectic blow ups and blow downs). Biolley
used Floer cohomology to detect hyperbolicities [12]. In [82], McDuff proved that every closed
symplectic manifold with Hamiltonian S1-action is uniruled by detecting nonzero Gromov-
Witten invariant using Seidel representation [116] of the funtamental group of Hamiltonian
diffeomorphism into the small quantum cohomology. McLean proved that J-holomophic
(1,E)-uniruledness implies C-uniruledness on affine varieties [87]. Based on [12], Albers-
Frauenfelder-Oancea showed that vanishing symplectic cohomology implies J-holomophic
disk-uniruledness by SFT-neck stretching [6]. Zhou proved that, for an exact domain, the
existence of a symplectic dilation implies (1,E)-uniruled [134] based on [87], [31]. Li also
considered it using the cyclic dilation in [78].

In this thesis, we develop criteria for affine varieties or log pairs to be stratified uniruled,
which means criteria to find uniruled subvarieties of certain dimensions. To define a mea-
surement, we use symplectic cohomology, that is a Hamiltonian Floer theory for some open
symplectic manifolds including affine varieties. The key observation is that the connecting
maps of symplectic cohomology are Floer cylinders which we deform to non-constant pseudo-
holomorphic curves. Moreover, we can deform the pseudo-holomorphic curves to rational
curves passing through cycles representing cohomology classes. The deformation/degeneration
techniques are heavilly based on [56], [12], [17], [87]. We show how to apply the criteria ef-
fectively by applying certain vanishing and invariance properties of symplectic cohomology
or by computing spectral sequences that converges to symplectic cohomology, [90], [88], [47],
[91]. An application of the criterion comes when two affine varieties have isomorphic sym-
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plectic cohomologies but different cohomologies. For example, the Kaliman modification of
affine varieties of complex dimension higher than 2, does not change symplectic cohomology.
Therefore, we can detect uniruled subvarieties of affine varieties after Kaliman modification.
Moreover, the same idea works on the fact that for a Stein manifold, symplectic cohomology
is invariant under attaching flexible Weinstein k-handles. We explore some applications as
corollaries. If the homological mirror symmetry would convert symplectic cohomology more
computable, we expect to use this work to understand log birational geometry and suggest
some questions considering the minimal models.

The following is the main theorem of this paper. Let M be a smooth affine variety of
complex dimension n together with a trivialization of some power of its canonical bundle.
Let X be a smooth projective variety compactifying M with an ample divisor D. There is a
long exact sequence:

· · · → SH∗−1(M) SH∗−1
+ (M) H∗(M) SH∗(M)→ · · · .δ ι

where, δ : SH∗
+(M)→ H∗(M) is the connecting map.

Theorem 1.0.1 (4.2.1). If a cohomology class [℧] ∈ Hm(M) be in the image of the map δ
for m = 2k or 2k + 1 for some k ∈ N. Then there exists a subvariety Ξ℧ ⊂M of dimension
at least n− k satisfying the following properties:

1. Ξ℧ is C-uniruled. In other words, for each p ∈ Ξ℧, there exists a non-constant algebraic
map vp : C→ Ξ℧ whose image contains p.

2. For any exhausting finite type Morse function f on X \D, Ξ℧ set-theoretically intersect
with a unstable submanifold ℧f of f representing [℧] ∈ Hm(M) ∼= HMm(M, f).

As an application, we can define a measurement of the co-dimension of maximal uniruled
subvariety and have the main criterion as follow.

Definition 1.0.2. ℓ(M) := min{deg([α]) : [α] ∈ H∗(M) with [α] = δ(γ) for some 0 ̸= γ ∈
SH∗−1

+ (M)}.

Remark 1.0.3. The same definition holds for all Liouville domains.

Corollary 1.0.4 (5.1.1). If ℓ(M) = 2k or 2k + 1 (0 ≤ k < n), then M admits a (n − k)-
dimensional family of affine lines. Here, an affine line means the image of C in M under a
nonconstant polynomial map. Moreover, M admits a uniruled subvariety of dimension n−k.

Corollary 1.0.5. If ℓ(M) = 0, then M is C-uniruled.

Corollary 1.0.6 (5.1.3). If SH∗(M) = 0, then M is C-uniruled. (See Theorem 5.4 in [134])

Theorem 1.0.7 (5.2.1). Let M be the associated Liouville domain obtained by intersection
of M and a large 2n-ball. Assume that M is of complex dimension equal to or bigger than 3.
Suppose that M is a connected Liouville domain with a Weinstein 1-handle attached, then
M is C-uniruled.

2



More generally, in a category of Weinstein manifolds, we consider attaching flexible Wein-
stein handles in [131], [96], [24], [25], which does not change symplectic cohomology [Theorem
5.6, [16]]. An example of a flexible Weinstein handle is a subcritical handle, [23].

Theorem 1.0.8 (5.2.2). Let W be a Weinstein manifold of dimRW = 2n with l(W ) = ∞.
Suppose that we have a Weinstein manifold W⋑k, obtained by attaching flexible k-handles
to W so that rank Hk(W⋑k) > rank Hk(W ). Then l(W⋑k) = 2n − k. Hence, if W⋑k is
symplectomorphic to an affine variety M , then M admits a C-uniruled subvariety of complex
dimension n− k.

Remark 1.0.9. To apply the theorem above in practice, we need to understand the condition
when a Stein manifold W⋑k is symplectomorphic to an affine variety.

A Liouville domain corresponding to an affine variety has a structure of symplectic convex
Lefschetz fibration [Lemma 8.6, [84]]. The Kaliman modification M∨ of an affine variety M
become an affine variety havingM as a sub-Lefschetz fibration so that all the singular points
are contained in M . Therefore, using the fact that symplectic cohomology does not change
under Kaliman modification, we can construct affine varieties with non-trivial ℓ(M).

Theorem 1.0.10 (5.2.5). For each n ≥ 3, there is an affine variety M2n
2 of dimCM = n

with ℓ(M2n
2 ) = 2.

An interesting question would be to construct more examples.

Question 1.0.11 (6.1.4). For each n ≥ 5, is there an affine variety M2n
2k of dimCM = n

with ℓ(M2n
2k ) = 2k for all 4 ≤ 2k < n? For example, M8

4 , M
10
4 , M12

6 ?

An affine varietyM is called cylindrical if it contains a dense principal Zariski open subset
U = M \ (f = 0), for some f ∈ O(X), isomorphic to C ×M ′ for an affine variety M ′. We
call such U a cylinder [Definition 3.1.4 [65]]. Generalizing the idea of [90], [127] to the case
of compact subsets of the completion of a Liouville domain, we conjecture the following.

Conjecture 1.0.12 (5.3.2). Let M be an cylindrical affine variety having a dense affine

open subset U = M \ (f = 0) for smooth f , ŜH∗(M) = 0. Therefore ℓ̂(M) = 0 and M is
C-uniruled.

Applying the similar idea of conjecture 5.3.2 to special case of half-point attachment of
an affine threefold,

Conjecture 1.0.13 (5.3.5). Consider special case of Kishimoto’s #- minimal model program
on affine threefolds that restrict half-point attachment at a point on a hypersurface. Then

1. ℓ(M i)’s are not decreasing.

2. Let M be an affine threefold and M# be a terminal object of M in Kishimoto’s #-
minimal model program. Suppose that π1(M

#) = 0, M ≇M# and at least one of steps
of half-point attachment is done on a hypersurface divisor. Then ℓ(M) ≥ 2.

3



Let us briefly explain the main idea to prove the theorem 1.0.1. Assume that for some
[α] ∈ Hℓ(M), δ(γ) = [α] for some 0 ̸= γ ∈ SHℓ−1

+ (M). Then there exists a Floer cylinder
u : R×S1 →M with negative asymptotic periodic orbit γ and with positive asymptotic orbit
which lands on homology class represented by a pseudo-cycle of a unstable submanifold of
index 2n−ℓ in Morse homology. Applying Bourgeois-Oancea’s correspondece theorem on the
Morse-Bott symplectic cohomology, we get a pseudo-holomorphic curve inM passing through
a point on a unstable submanifold representing a cycle in HM ℓ(M). McLean’s degeneration
to the normal cone method in [87] let us get a non-constant rational map f : C → M
passing through a point in a cycle of index 2n− ℓ. Because of the set-theoretic intersection
with pseudo-cycle, we get a family of rational curves with evaluation. By Grothendieck’s
construction on Hilbert schemes (or Quot schemes), we get a uniruled subvariety of dimension
at least ⌊ℓ/2⌋ that parametrizes the family of rational curves. For readers’ convenience, let
us provide the structure of this paper. To read the section 4.3 on proof of the main theorem,
the readers only need to check definitions in subsections 2.1.1 and 3.1. Other symplectic
structures and properties of symplectic cohomology, summarized in the chapter 2 and 3, will
be used in the chapter 5 on applications.
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Chapter 2

Symplectic Structures

We review known definitions and theorems about symplectic cohomology in this section so
experts who are familiar with the basics can jump to the section 4.3. To read section 4.3,
the section 2.1 is needed only. Symplectic cohomology is well-defined on the completion of
Liouville domains [[129], [56], [118], [83], [17], [2], [47], and [31]]. Every smooth affine variety
has a unique Liouville domain, up to isotopy through Liouville domains, whose completion
is symplectomorphic to the affine variety [86]. Since, on Liouville domains, symplectic form
is exact, many assumptions, computations related to the definiton of symplectic cohomology
become simpler. Symplectic cohomology still be well-defined for non-exact convex symplec-
tic manifold with the weak monotonicity assupmtion, for example, the blow-up of P1 at a
point [109], [91]. To get a Z-grading on cohomology, we assume a Liouville domain with
the vanishing first Chern class, c1 = 0. For simplicity, we mainly consider simply-connected
varieties, π1 = 0, for example, complete intersections of dimC > 3 by the Lefschetz hyper-
plane theorem, then consider the action by the fundamental group for π1 ̸= 0. For symplectic
manifolds with π1 ̸= 0, we use Novikov ring coefficient.

2.1 Symplectic Structure on an Affine Variety or on a Log Pair

A Stein manifold is a properly embedded complex submanifold of CN for some N , equiv-
alently, a complex manifold with an exhausting plurisubharmonic function. Smooth affine
varieties are Stein manifolds of finite type, which means a complex manifold (M,J) that can
be properly embedded in CN for some N by admitting a function f :M → R satisfying the
following conditions,

• (Plurisubharmonic) (−ddcf)(v, Jv) > 0 for all non-zero vectors v where dc := d ◦ J ,

• (Exhausting) f : M → R is bounded below and the preimage of every compact set is
compact,

• (Of finite type) f has only finitely many singularities.

Since the space of exhausting plurisubharmonic functions on a given Stein manifold is
convex, so contractible and open in C2, we can choose an exhausting plurisubharmonic
generalized Morse function f :M → R on a Stein manifold (M,J).

A Weinstein structure on a symplectic manifold (M,ω) is a pair (f,X), where f :M → R
is an exhausting generalized Morse function, and X is a complete Liouville vector field that
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is gradient-like for f . Given a Stein manifold (M,J, f : M → R), one can find a symplectic
form ωf so that (f,Xf := ∇gff) become a Weinstein structure on (M,ωf ), where. Given
a Weinstein structure (X, f) on (M,ω), one can construct a Stein structure (J, f) such
that the canonical Weinstein structure on (M,J, f) is Weinstein homotopic to the given
one. We refer [24] for the detail. A Weinstein structure on a symplectic manifold carry a
Morse-theoretic handle decomposition, called Weinstein handle decomposition: Weinstein
cobordism is attaching a standard handle along a neighborhood of an isotropic sphere in the
contact level set with a Liouville vector field transverse to contact level sets [Theorem 5.1,
[131]].

2.1.1 Liouville Domain corresponds to Affine Variety

A Liouville domain is a compact manifold M with boundary ∂M and a 1-form θM with
dθM as a symplectic form and satisfying that for any vector field Z with ιZdθM = θM
is transverse to ∂M and pointing outwards along ∂M . We call such a vector field Z, the
Liouville vector field. Using the Liouville flow of Z, we glue an half-infinite cylindrical end,
([−ϵ,∞) × ∂M, d(erα)), which is a symplectization of the contact boundary, to M along
((−ϵ, 0) × ∂M so that Z extends to ∂r on ((0, ϵ) × ∂M . Then we get a completion of a

Liouville domain, M̂ :=M ∪∂M ([0,∞)× ∂M).
In [(4b), [118]], [Lemma 2.1, [86]], for any smooth affine variety M , there is an associated

Liouville domain M , whose completion, constructed by attaching a positive half of symplec-
tization of contact boundary ∂M of M to M , is symplectomorphic to M , which is unique
up to Liouville isomorphism, i.e. an isotopy through Liouville domains which let us consider
the symplectic cohomology of affine varieties as the completion of Liouville domains. The
construction is the following: Let ι : M ↪→ CN be a algebraic embedding as a closed sub-
variety. Let (ri, θi) be polar coordinates for the i’th factor in CN . Define R := 1

4

∑
i r

2
i and

θ := −dcR = 1
2

∑
i r

2
i dθi, dθ =

∑
i ridridθi, the standard symplectic form on CN . Then there

exists C > 0 such that for all c ≥ C, ((R|M)−1(−∞, c], θM) is a Liouville domain whose
completion is symplectomorphic to (M,dθ|M). Such a number C is the minimum of numbers
c so that R|M has no singularities for (R|M)−1(c,∞), [Lemma 2.1, [86]].

By Hironaka’s resolution of singularities [57], we can consider an affine variety M as the
complement of simple normal crossing divisors D = {Di}li=1 in a projective variety X. We
can consider a log pair (X,D) as an affine varietyM = X\D with compactification data. Let
us recall the symplectic structure of a X \D from [Lemme 5.19, Theorem 5.20, [86]], which
has good properties that divisors are intersecting positively and the wrapping numbers of
them are negative and small tubular neighborhood of them are fibrations with fibers, product
of punctured disks. Recall [Theorem 5.20, [86]]: Let M be a smooth affine variety. Then M is
convex deformation equivalent to a finite type convex symplectic manifold (W, θW ) with the
following properties:

1. W is symplectomorphic to X ⊂ D, where D = {Di}ki=1 are co-dimensionR 2 symplectic
submanifolds transversely intersecting.

2. There are neighborhoods UDi of Di and fibration πi : UDi ↠ Di such that
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• For 1 ≤ i1 < i2 < · · · < il ≤ k, πil ◦ · · · ◦ πi1 : ∩lj=1UDij ↠ D{i1,··· ,il}

has fibers that are symplectomorphic to
∏l

j=1Bϵ, where Bϵ is the disk of radius ϵ.

• On the fiber
∏l

j=1Bϵ of πil ◦ · · · ◦ πi1, one of factor map πik , 1 ≥ k ≥ l, maps this
fiber to itself.

• The symplectic structure on UDi induces a natural connection for
∏l

j=1Bϵ given
by the ω orthogomal vector bundles to the fibers.

3. θW restricted to the fiber Bϵ of πi is equal to (r2i + κi)dθi for some κ < 0.

For any affine variety M , we can construct two Liouville domains M,M with M ↪→
M ↪→ M , where M,M are Liouville deformation equivalent. Indeed, two inclusions are
exact symplectic embeddings of a codimension 0 submanifold and a homotopy equivalence.
This fact will be used when we make holomorphic curves on M into holomorphic curves on
M , then get rational curves on M . Let us state the sandwich theorem for affine varieties
[Lemma 4.3, Lemma 4.4, [87]]: Let M be a smooth affine variety. Let L be a line bundle
associated to a simple normal crossing compactification (X,D) of M and s be a section with
s−1(0) = D. Define f := −log||s||, θ = −dcf , ω = −ddcf . Then

• f is a proper and bounded below function on M with df(Xθ) > 0 on f−1([c,∞)) for
some c≫ 1, and

• there is an exact symplectic embedding ι : (M, θ) ↪→ (M := f−1((−∞, c]), ν ·θ) for some
ν which is a homotopy equivalence and (M, ν · θ)) is Liouville deformation equivalent
to the associated Liouville domain M of the affine variety M .

Symplectic Convex Lefschetz Fibration Structure on Affine Varieties

Symplectic geometric understanding on Lefschetz fibration was initiated by Donaldson. Sei-
del has foundational works on categorification in symplectic geometry of Picard-Lefschetz
theory. McLean constructed symplectic convex Lefschetz fibration structure on any (Kaliman
modification of) affine varieties [Theorem 2.32, [84]]. A symplectic convex Lefschetz fibration
structure with monodromy information is a complexified Morse function and is useful for
systematic understanding on symplectic structure, for example, dimension deduction. So let
us summarize the known results [Chap.III, [117], [83], Chap.8, [84], [122]]. Here, systematic
understanding means that we chop the structure into smaller dimensional pieces or a com-
plex of simpler objects like Morse-theoretic building blocks and then glue them to get an
homological invariants, like spectral sequences, long exact sequences.

LetX be a projective variety with an ample divisorD andM := X\D be an affine variety.
Let L be an ample line bundle on X with two holomorphic sections s, t with s−1(0) = D.
Define a map p := t/s :M → C.

Definition 2.1.1. An (open) algebraic Lefschetz fibration structure on a pair (M, p :M →
C) is following.

1. t−1(0) is smooth, reduced and intersects each stratum of D transversally.
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2. p has only nondegenerate critical points and there is at most one of these points on
each fiber.

The symplectic structure onM , ω = −ddc(−log||s||), is compatible with p, in other words,
ω restricted to the fiber is a symplectic form away from singular part. But the horizontal
boundary is not trivial. To define symplectic cohomology on Lefschetz fibrations, we need
compact convex condition.

Definition 2.1.2. A symplectic Lefschetz fibration is a pair (M, p :M → B), where (M,ω =
dθ) is a compact exact symplectic manifold with corners whose boundary is the union of
horizontal ∂hM and vertical ∂vM meeting in a codimension 2 corner and B is a surface with
boundary. The smooth map p :M → B satisfies the following.

1. The map p has only finitely many critical points.

2. ω restricts to a symplectic form on smooth locus of each fiber p−1(b) \M crit, for every
b ∈ B.

3. There is an integrable complex structure J0 (resp. j0) defined on some neighborhood
of M crit (resp. Scrit) such that p is (J0, j0)-holomorphic map near M crit.

4. There is at most one critical point in each fiber and at any critical point, the Hessian
D2p is nondegenerate as a complex quadratic form.

5. ω is Kähler form for J0 near M crit.

Definition 2.1.3. A symplectic Lefschetz fibration (M, p :M → B) is compact convex if

1. (Exact) p : M → B is a proper map with ∂vM = p−1(∂B) and such that p|∂vM is a
smooth fiber bundle. Also, there is a neighborhood N of ∂h(M) such that p|N : N → B
is a product fibration B × nbhd(∂F ) where exact symplectic structure is pulled back
from nbhd(∂F ).

2. (Compact) Fiber (F, θ|F ) is a compact convex symplectic manifold.

Using well-defined exact parallel transport maps for an algebraic Lefschetz fibration [Sec-
tion 2, [45]],

Lemma 2.1.4 (Lemma 8.6, [84]). Let (M, p :M → C, ω := −ddc(−log||s||)) be an open alge-
braic Lefschetz fibration. Then there exists a convex symplectic structure θ′ so that (M, p, θ′)
is a symplectic convex Lefschetz fibration.

Kaliman modification of a triple (M,D,C) of an smooth affine variety M , an irreducible
divisor D, a closed subvariety C contained in the smooth part of D is known to be an oper-
ation making a new affine variety that is diffeomorphic to the original one but not biholo-
morphic. McLean constructed symplectic convex Lefschetz fibration structure on Kaliman
modification and showed that they are convex deformation equivalent to each other [84].

Definition 2.1.5. The Kaliman modificationM∨ of (M,D,C) is defined byM∨ := BlCM \
D̃, where BlCM is the blow up of M along C and D̃ is the proper transformation of D.
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Lemma 2.1.6 (Lemma 8.7, [84]). Let M be an affine variety of dimCM ≥ 3 with compacti-
fying projective variety X by D. Choose a irreducible divisor Z of X so that D∪Z is ample.
Choose a point q ∈ Z ∩ M smooth in Z. Denote M∨ := Kaliman(M, (Z ∩ M), {q}) and
M⊔ := M \ Z. Then there exist algebraic Lefschetz fibrations p∨ : M∨ → C, p⊔ : M⊔ → C
such that p⊔ is a subfibration of p∨ and the singularities of p∨ are contained in M⊔.

We apply the same idea of proof of Lemma 8.7 in [84] to a half-point attachment from
the weighted blow-up of a point with weights (1, 1, b).

Definition 2.1.7 (Definition 1.1, [63]). Let M be a normal quasi-projective complex three-
fold and X be a normal projective threefold compactifying M with D := X \M . Choose
a point q ∈ D where X is smooth. Let f : X̃ → X be the weighted blow-up at q
with weights (1, 1, b), where b ∈ N. Let E ∼= P2

(1,1,b) be the exceptional divisor of f and

D̃ := f−1(D). M̃ := X̃ \ D̃ is called to be a half-point attachment to M of (b, k)-type
if D̃|E =

∑k
j=1mjlj, where lj’s are the mutually distinct rulings on E and mj ∈ N with∑k

j=1mj = b. M̃ \M ∼= C(k−1)∗ × C.

We use the same idea of Lemma 8.7 in [84] to the following case. Let M̃ be a half-point
attachment to an affine threefold M at a smooth point on a hypersurface of (b, 1)-type. We
want to show that there exist algebraic Lefschetz fibration p̃ : M̃ → C, p :M → C such that
p is a subfibration of p̃ and the singularity of p̃ are contained in M . Let X be a projective
variety with ample divisor D with X \D =M . Assume that D is effective and very ample so
that we can choose a rational function f on X with Y := f−1(0) satisfying that D ∼ Y +D′

for an ample divisor D′ and Y ∩ (X \D′) is reduced and irreducible. Define M ′ := X \D′

an affine variety containing M . Choose a smooth point q ∈ Y \D′.
Let π : X̃ → X be a weighted blow-up at q with weights (1, 1, b). D̃ is a strict trans-

formation of D under π. Let s be a section of a line bundle OX(D) with s−1(0) = Y +D′.
Choose another section t of OX(bD) satisfying the following,

1. p := t
sb

:M → C is an algebraic Lefschetz fibration on M =M ′ \ Y , and

2. t−1(0) is a smooth subvariety passing through q and transverse to Y at the point q.

Let E be the exceptional divisor π−1(q). Then (π∗s)−1(0) = E + D′′ for some divisor D′′.
Choose an effective divisor D∨ on X̃ compactifying M̃ := π−1(M ′) \ Ỹ such that D∨ −E is
ample. We can choose a meromorphic section h of OX̃(bD

∨ − bE) such that h−1(0) ⊂ D∨,
ordE(h) = −b and such that h is holomorphic away from support of D∨, E. Then π∗sb⊗h ∈
H0(O(bD∨−bE+bπ∗D)) is non-zero away fromD∨. Therefore, the map p̃ := (π∗t)⊗h

(π∗s)⊗h
defines an

algebraic Lefschetz fibration on M̃ and the restriction of p̃ on M is p. Choose a holomorphic
coordinate (z1, z2, z3) around q and a holomorphic trivialization of OX(Z + D′) so that
s(z1, z2, z3) = zb1 and t(z2, z2, z3) = zb2. Locally on E, {((z1, z2, z3), [Z1 : Z2 : Z3](1,1,b)) ∈
C3 × P2

(1,1,b) : Z1 · z2 = Z2 · z1, Zb
2 · z3 = Z3 · zb2, Zb

1 · z3 = Z3 · zb1}. To show that all the

critical points of p̃ are in M , locally on a chart (Z1 = 1), we can choose a trivialization of
OX̃(D̃ − E) so that π∗sb = zb1, π

∗t = Zb
2 · zb1, and h = 1

zb1
from ordE(h) = −b. Hence, p̃ = Zb

2

has no singular points near E \ Ỹ where Z2 ̸= 0.

Remark 2.1.8. It seems interesting to understand the Lefschetz fibration structure of a
half-point attachment of (b, k)-type in general. However, the author does not know about it.
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2.2 Mapping Cylinder of Milnor Monodromy Map of Isolated Singularities

Let f : Cn+1 → C be a polynomial with an isolated singular point at 0. Let S2n+1
ϵ ⊂ Cn+1 be

the (2n+1)-sphere of radius ϵ centered at 0 with the standard contact structure η := TS2n+1
ϵ ∩

JstdTS
2n+1
ϵ . The link of f at 0 is a contact submanifold Lf := f−1(0) ∩ S2n+1

ϵ ⊂ (S2n+1
ϵ , η)

where ϵ > 0 is sufficiently small. Let NS2n+1Lf := (TS2n+1
ϵ |Lf

/TLf ) be the normal bundle of
Lf with the pushforwarded symplectic form from T⊥ := {v ∈ η|x : x ∈ Lf , dαS2n+1

ϵ
(v, w) =

0,∀w ∈ ηS2n+1
ϵ
|x ∩ TLf |x} with a trivialization Φf := (idLf

, df) : NS2n+1Lf → Lf × C. Given
an isolated singularity (f : Cn+1 → C, 0), we can assoicate a contact open book, called the
Milnor open book of f , and a Liouville domain, called the mapping cylinder of the Milnor
monodromy map on the Milnor fibration.

Let arg(f) : Cn+1 \ f−1(0)→ R/2πZ be the argument of f . The Milnor fibration associ-
ated to an isolated singularity (f, 0) is a smooth fibration,

arg(f) : S2n+1
ϵ \ f−1(0)→ R/2πZ, arg(f)(z) := arg(f(z)),

with a fiber Mf := arg(f)−1(0), called Milnor fiber. There is a compactly supported dif-
feomorphism, called the Milnor monodromy map, ϕ : Mf → Mf . Then a contact pair with
normal bundle data (Lf ⊂ S2n+1

ϵ , η,Φf ) is supported an open book (S2n+1
ϵ , arg(f)|S2n+1

ϵ
).

An abstract contact open book is a triple (M, θM , ϕ) where (M, θM) is a Liouville domain
and ϕ : M → M is an exact symplectomorphism with support in the interior of M . Given
an abstract contact open book (M, θM , ϕ), we can construct contact structure αTϕ

on the
mapping torus πTϕ

: Tϕ :=M × [0, 1]/ ∼ of ϕ :M →M by

1. (x, 1) ∼ (ϕ(x), 0),

2. πTϕ
(x, t) := t for all (x, t) ∈ Tϕ, and

3. αTϕ
:= θM + d(ρ(t)Fϕ)+Cdt, where Fϕ :M → R is a smooth function with support in

the interior of M with ϕ∗θM = θM + dFθ, ρ : [0, 1]→ [0, 1] is a smooth function equal
to 0 near 0 and 1 near 1, C > 0 is large enough so that αTϕ

is a contact form.

The above construction gives a one-to-one correspondence between graded abstract contact
open books up to isotopy and graded open books up to isotopy [[48], [20], Theorem 3.15,
[89]].

Let (M, θM , ϕ) be an abstract contact open book. Let ϕ̌ be a small positive slope per-
turbation of ϕ. The mapping cylinder of ϕ (Definition B.1, [89]) is a triple (C∗ ⋊ϕM,πϕ̌, θϕ̌)
where

1. C∗ ⋊ϕ M := (R× R×M)/Z, where (s, t, x) ∼ (s, t− 1, ϕ̌(x)),

2. ϕ̌ : C∗ ⋊ϕ M → R× (R/Z) ∼= C∗ defined by ϕ̌(s, t, x) = (s, t), and

3. θϕ̌ := sdt+ κθM + κd(ρ(t)Fϕ̌) where

• Fϕ̌ : M → R is a smooth function with support in the interior of M satisfying

ϕ̌∗θM = θM + dFϕ̌,

• ρ : [0, 1]→ [0, 1] is a smooth function ρ(0) = 0, ρ(1) = 1,

• κ > 0 is a constant small enough so that dθϕ̌ is symplectic.
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2.3 Legendrian Front Projection and Flexible Weinstein Cobordism

In this subsection, we review definitions and theorems of Legendrian front projection and
flexible Weinstein cobordisms, [131], [24], [96]. During fundamental lectures in 1966-1968
[Section 46, Appendix 16, [8]], Arnol’d emphasized geometric optics as the fundamental no-
tions of Hamiltonian mechanics so that one keep in mind when working on symplectic/contact
structure. He provided one of examples of Lagrangian submanifolds is the manifold of all
oriented normals to a smooth submanifolds in Rn is a Lagrangian submanifold of the space
of lines in Rn passing through the origin, which is the cotangent bundle of the (n−1)-sphere.
The fibration from the space of lines in Rn to the unit sphere of directions is a Lagrangian
fibration. A projection of a Lagrangian submanifold to the base of a Lagrangian fibration is
called a ”Lagrangian mapping”, for example, mapping each point of a transversely oriented
hypersurface in Rn to the unit vector at the origin in the direction of the normal. A caustic of
a Lagrangian mapping is defined as the set of critical values of the mapping. The caustic of a
Lagrangian mapping is the image of the cuspidal edge of the front of a Legendrian mapping
under a projection from the space of 1-jets onto the phase space.

Murphy introduced loose Legendrians, roughly speaking, smooth Legendrians look like
unfolding of wrinkled Legendrian(zig-zag, Figure 2 in [96]) along some markings which let
us wiggle them to get the h-principle [Figure 3, [96]]. Define a (front-projected) plane curve
ψ : R→ R2 and its rescaling by

• ψ(u) = (ψx(u), ψz(u)) = (u3 − u, 9
4
u5 − 5

2
u3 + 5

4
u).

• ψδ(u) = (δ
3
2ψx(u/

√
δ), δ

5
2ψz(u/

√
δ)) = (u3 − δu, 9

4
u5 − 5δ

2
u3 + 5δ2

4
u).

Define Ψ : Rn → Rn+1 by Ψ(x1, · · · , xn−1, u) = (x1, · · · , xn−1, ψxn−1(u)). The singular set
is {xn−1 = 3u2}. For xn−1 > 0, the singularity is cusp × Rn and, for xn−1 = 0, singularity is
called an unfurled swallowtail.

Definition 2.3.1 (p. 7, [96]). 1. A wrinkle is a map w : Rn → Rn+1 defined by w(x, u) :=
(x, ψ1−|x|2(u)), for x ∈ Rn−1.

2. A wrinkled embedding of V n to W n+1 is a topological embedding f : V n → W n+1 that
is smooth away from some finite collection of codimension 1 spheres Sn−1

j ⊂ V n near
which the map is a wrinkle.

3. A wrinkled Legendrian embedding is a topological embedding f : Λ → (N2n+1, ξ)
satisfying the following,

(a) Image(df) ⊂ ξ.

(b) df is full rank outside a subset of codimension 2.

(c) The singular set is diffeomorphic to a disjoint union of Legendrian wrinkles {Sn−1
j },

near which the front projection of the image of f is a wrinkled embedding.

Let C ⊂ R3 be the cube of side length 1 and Λ0 ⊂ C be a properly embedded Legendrian
arc with zig-zag front which is {y = z = 0} near the boundary. Let Zρ := (−ρ, ρ) ⊂ R and
Vρ := {(q, p) : |q| < ρ, |p| < ρ} ⊂ T ∗Rn−1. Then Λ0 × Zρ is a Legendrian submanifold of
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C × Vρ, called the stabilization of the Legendrian {y = z = 0} × Zρ ⊂ (C × Vρ) along Zρ

[Section 4.3, [32], Section 7.4, [24]].

Definition 2.3.2 (Section 4.2, [96]). A Legendrian submanifold Λ of a contact manifold
(N2n+1, η) is called loose if for each connected component of Λ, there is an open subset
U ⊂ N satisfying (Λ ∩ U,U) is contactomorphic to (Λ0 × Zρ, C × Vρ).

Definition 2.3.3 (Definition 11.29, [24]). An elementary 2n-dimensional Weinstein cobor-
dism (W,ω,X, ϕ) is called flexible if the attaching spheres of all index n handles form a loose
Legendrian link in ∂−W . A Weinstein cobordism or manifold is called flexible if it can be
decomposed into elementary Weinstein cobordisms.

Example 2.3.4. 1. A subcritical handle attaching is a flexible Weinstein cobordism [Re-
mark 11.30, [24]].

2. Let (W,ω) be a convex symplectic manifold of dimension 2n ≥ 4 of Morse type at most
n + 1. Then its 1-stabilization (W,ω) × (R2, ωst) is flexible Weinstein. [Theorem 1.1,
[37]]

Casals-Murphy developed a recipe to construct a Legendrian front projection of Weinstein
Lefschetz (bi)fibration of affine varieties: given Weinstein Lefschetz fibration structure with
fiber (F, λ, ϕ) is a plumbing of vanishing spheres along tree, one apply sequences of Seidel’s
half-Dehn twist on matching paths, draw a diagram of Legendrian front projection of the
Legendrian lifts of the vanishing cycles to the contact manifold ∂(F ×D2, λ+λstandard), and
simplify the diagram by Reidemeister moves and Legendrian handleslides [Recipe 3.3, [19]].
Using the recipe, if the Legendrian front diagram contains a zig-zag, then the Legendrian
submanifold is loose and the Weinstein manifold is flexible. For example, they explicitly
apply the recipe to the Koras-Russell cubic C := {(x, y, z, w) ∈ C4 : x+ x2y +w3 + z2 = 0},
which is known to be diffeomorphic to C3 but not algebraically isomorphic to it. They proved
that indeed C is Weinstein-equivalent to C3 by the h-principle of the loose Legendrian.

Acu-(Capovilla-Searle)-Gadbled-Marinković-Murphy-Starkston-Wu launched an algorithm
for constructing Weinstein handlebodies for complements of some toric divisors in toric sur-
faces from their moment polytope data. We refer [5] and the references therein.

2.4 Symplectic Structure of Weighted Blow-up of Symplectic Orbifolds

Symplectic structure of blow-up of Cn at the origin is constructed as removing the ball
{z ∈ Cn : ||z||2 < ϵ} and collapsing the fibers of the Hopf fibration of {z ∈ Cn : ||z||2 = ϵ} by
McDuff in [80]. The symplectic cut is a construction of a symplectic structure on the reduced
spaces of symplectic manifolds with Hamiltonian circle action, which is a generalization of
the symplectic blow-up, by Lerman [74]. Godinho explained symplectic structure of weighted
blow-up [49], [50].
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Chapter 3

Symplectic Cohomology

Hamiltonian Floer cohomology of a symplectic manifold M with a Hamiltonian function on
it is a Morse cohomology on the space of loops on M . The corresponding Morse function is
the action functional on the loop space, which is defined by integration of symplectic form
over a surface bounding the loop and evaluation of the Hamiltonian function on the loop.
The critical loops are the perioid orbits for Hamiltonian vector fields and the gradient flow
trajectories are the Floer cylinders which satisfy elliptic PDE, called the Floer equation,
connecting two critical loops. Symplectic cohomology is the direct limit of the Hamiltonian
Floer cohomology under the system of admissible Hamiltonian functions on it by the Viterbo
transfer maps. Exactness of Liouville domain may not be preserved under the symplectic
blow-ups or resolution. For non-exact convex symplectic manifolds with weak monotonicity
assumptions, the action functional is multivalued but the differential map is well-defined and
the maximum principle still holds, therefore symplectic cohomology is well-defined ([109],
[86], [91]).

3.1 Symplectic Cohomology of Liouville Domains

LetM be a Liouville domain, M̂ be its completion. A family of HamiltoniansH : S1×M̂ → R
is called to be admissible if H(t, x) = λrM(x) near infinity, where rM is the cylindrical

coordinate of M̂ and λ is some positive constant. We choose positive constant λ away from
the set of lengths of Reeb orbits of ∂M , θM (The Reeb vector field R on ∂M is defined by
ιRdθM = 0 and θM(R) = 1). Let Jt be an S1 family ω-compatible almost complex structure

on M̂ , (i.e., family of metrics, gt(u, v) = ω(u, Jtv)), which is convex (or, of contact type on the
collar; J∗

t θ = erdr ⇐⇒ Jt∂r = R). For each t ∈ S1, we define the Hamiltonian vector field
XHt by ω(XHt , ·) = −dHt, where ω is the symplectic form on M . A 1-periodic Hamiltonian

orbit is a map x : S1 → M̂ with ẋ(t) = XHt(x(t)). We say a 1-periodic Hamiltomian orbit x
is non-degenerate if the linearized return map of x has no eigenvalue equal to 1. By [Lemma
2.2, [86]], near small neighborhood U of 1-periodic Hamiltonian orbits, we can perturb H by
a C∞ small to H̃ so that all the 1-periodic Hamiltonian orbits are non-degenerate and H̃ = H
outside U , (i.e., H̃ is still admissible). Choose a trivialization of the canonical bundle of M
and then get a canonical trivialization of TM |x. Under the trivialization along the orbit, the
linearlization of Hamiltonian flow become a smooth path of symplectic matrices. We embed
such a path of symplectic matrices to a path of Lagrangians in the product symplectic
vector space. We can define the Conley-Zehnder index of the 1-periodic Hamiltonian orbit x,

13



denote µCZ(x), by the Maslov index (roughly speaking, the winding number) of the path of
Lagrangians with respect to the diagonal Lagrangian in the product symplectic vector space
[107]. Then we grade the Floer cohomology by the index µ(x) = dimRM − µCZ(x). The
choice of index is based on the fact that it agrees with the Morse index of the critical points
x when H is a C2-small Morse Hamiltonian and that the degree of the identity element and
of pants product is zero, therefore SH∗(M) becomes a graded ring. For a 1-periodic orbit,
we define the action functional by,

AH(x) := −
∫
S1

x∗θ +

∫ 1

0

H(x(t))dt = −
∫
Σ2

u∗dθ ++

∫ 1

0

H(x(t))dt.

Let LM̂ = C∞(S1, M̂) be the space of free loops in M̂ . The differential of AH at x ∈ LM̂

in the direction η ∈ TxLM̂ = C∞(S1, x∗TM̂) is,

dAH · η = −
∫ 1

0

ω(η, ẋ−XH).

So, the critical points of the action functional AH are the 1-periodic Hamiltonian orbits. By,∫ 1

0

gt(η, (∇AH)x) = (dA)x(η) = −
∫ 1

0

ω(η, ẋ−XHt),

The gradient vector of AH with respect to L2-metric,
∫ 1

0
gt(·, ·)dt, is (∇gtAH)x = Jt(ẋ−XH).

The negative gradient flow is the map u : R× S1 →M satisfying,

∂su = −∇gtAHt(u) ⇐⇒ ∂su+ Jt(∂tu−XHt) = 0, for (s, t) ∈ R× S1.

The action functional AHt(u(s, t)) decreases in s along the negative gradient flow, called
Floer cylinder, since

∂s(AHt(u(s, t))) = dAHt · ∂su = −
∫ 1

0

ω(∂su, ∂tu−XHt)dt = −
∫ 1

0

|∂su|2gtdt < 0.

Let us define Hamiltonian Floer cohomology as a Morse cohomology. Choose a coefficient
field K. Define the Floer chain complex for a pair (H, J) of an admissible Hamiltonian

H ∈ C∞(M̂,R) and convex almost complex structure J , 1

1

• An almost complex structure J on a Liouville domain (M, θM ) is called convex if there is a function
f : M → R such that ∂M is a regular level set of f , f has its maximum on ∂M and θM ◦ J = df .
Every Liouville domain (M, θM ) has a convex dθM -compatible almost complex structure [Lemma 2.1,
[87]].

• An almost complex structure on an symplectic manifold (M,ω), J : TM → TM with J2 = −id,
is called ω-tame if ω(v, Jv) > 0 for v ∈ TM , ω-compatible if ω(J ·, J ·) = ω(·, ·) and ω(v, Jv) > 0.
Both the space of ω-tamed almost complex structures and the space of ω-compatible almost complex
structures are contractible. But the tameness is an open condition.
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CF k
d<(H, J) :=

⊕
x∈Crit(AH)

K·x =
⊕
{Kx : x ∈ LM̂, ẋ(t) = XH(x(t)), nondeg,AH(x) > d, µ(x) = k}.

Define the differential map ∂ : CF k
d<(H, J) → CF k+1

d< (H, J) by counting the negative
gradient flow of AH , i.e., the Floer cylinders connecting two Hamiltonian periodic orbits.
Denote MRparam(x−, x+) := {u : R × S1 → M : ∂su + Jt(∂tu − XHt) = 0, lims→±∞ u(s, t) =
x±(t)}, M(x−, x+) := MRparam(x−, x+)/R.

The energy of a Floer cylinder u ∈MRparam(x−, x+) is defined by

E(u) :=

∫
|∂su|2dsdt =

∫
ω(∂su, ∂tu−XH)dsdt = −

∫
∂(AH(u))ds = AH(x−)−AH(x+).

On the collar near the boundary of M , H = h(er), XH = h′(er)R and AH(x) =
−erh′(er)+h(er). By applying the maximum principle on the function er ◦u on the collar, if
the limiting Hamiltonian periodic orbits x± sit inside a compact subsetM ∪∂M ([0, R]×∂M),
then all the Floer trajectoris connecting them sit in there. Therefore, M(x−, x+) can be
compactified to M(x−, x+) by the broken Floer cylinders. After perturbing (Ht, Jt), we get
M(x−, x+) a smooth manifold with dimension µ(x−)−µ(x+). If µ(x−)−µ(x+) = 1,M(x−, x+)
is a compact zero dimensional manifold, so we can count the Floer cylinders, up to orienta-
tion.

∂ : CF k
d<(H, J)→ CF k+1

d< (H, J) by ∂(x−) :=
∑

µ(x−)−µ(x+)=1

♯M(x−, x+)x+.

∂2 = 0 is followed by considering compactifying broken trajectories in M(x−, x+) for
µ(x−)− µ(x+) = 2.

Remark 3.1.1. CF k
d<(H, J) is independent of the choice of J but its boundary operator

does. The cohomology HF k
d<(H, J) depends on the choice of H but not on J up to canonical

isomorphism.

Let us explain the action filtration. Increasing d gives a subcomplex because the action
functional decreases along Floer trajectories and define the quotient complex,

CF k
(c,d](H, J) := CF k

c<(H, J)/CF
k
d<(H, J)

For a < a′ < b, CF k
(a′,b](H, J) ↪→ CF k

(a,b](H, J) and, for a < b′ < b, CF k
(a,b](H, J) →

CF k
(a,b′](H, J). Therefore, given −∞ ≤ a ≤ b ≤ c <∞, there is a short exact sequence,

0→ CF k
(b,c](H, J)→ CF k

(a,c](H, J)→ CF k
(a,b](H, J)→ 0,

0→ CF k
(−ϵ,ϵ](H, J)→ CF k

(−∞,ϵ](H, J)→ CF k
(−∞,−ϵ](H, J)→ 0.

Define HF k
(c,d](H, J) as the cohomology of the chain complex CF k

(c,d](H, J).
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Let us relate two Hamiltonian Floer cohomologies of (M,H1) and (M,H2) with two
non-degenerate admissible Hamiltonians H1 < H2. Define the Viterbo’s continuatin map,

C : CF k
d<(H1, J1)→ CF k

d<(Hd, J2) by ∂(x−) :=
∑

µ(x−)−µ(x+)=0

♯P(x−, x+)x+,

where P(x−, x+) is the set of solutions to the parametrized Floer equations connecting H1

and H2 in the following way: Let Ks be a smooth non-degenerating family of admissible
Hamiltonians equal to H1 for s ≪ 0 and H2 ≫ 0 and Js a smooth family of admissible
almost complex structures joining J1 and J2. Define

P(x−, x+) := {u : ∂su+ Js,t(u(s, t))∂tu = ∇gtKs,t, lim
s→±∞

u(s, ·) = x±}.

The action functional AHs(u(s, ·)) along u ∈ P(x−, x+),

∂s(AHs(u(s, ·))) := −
∫ 1

0

|∂su|2dt+
∫ 1

0

(∂sHs)(u)dt,

The energy is

E(u) =

∫
|∂su|2ds ∧ dt = AH1(x−)−AH+(x+) +

∫
(∂sHs)(u)ds ∧ dt.

The action functional decreases if ∂sHs ≤ 0 and the energy is bounded if ∂sHs ≤ 0 outside
of a compact set in M̂ . Therefore, by the maximum principle, we can compactify P(x−, x+).

We define the symplectic cohomology of M̂ by the direct limit of HF k
d<(HI , JI) under the

Viterbo’s continuation maps on admissible Hamiltonians (HI , <) such that H|interior M < 0
and the slopes at cylindrical ends go to ∞ as the cylindrical coordinate r goes to ∞.

SH∗(M) := lim
−→

HF ∗(H).

The induced long exact sequence commutes with the Viterbo’s continuation maps, so, after
taking direct limits, we get, for small ϵ > 0,

· · · → SH∗−1
(−ϵ,∞)(M) SH∗−1

(ϵ,∞)(M) SH∗
(−ϵ,ϵ](M) SH∗

(−ϵ,∞)(M)→ · · ·

H∗(M)

δ

∼=

Let us denote it by,

· · · → SH∗−1(M) SH∗−1
+ (M) H∗(M) SH∗(M)→ · · · .δ ι

where, δ : SH∗
+(M)→ H∗(M) is the connecting map.
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Symplectic Cohomology of Symplectic Convex Lefschetz Fibrations

Inspired by Oancea’s Künneth formula for symplectic cohomology [99], McLean defined a
Lefschetz-admissible Hamiltonian on a symplectic convex Lefschetz fibration M [Definition
2.21, [84]] and showed that Lefschetz-admissible symplectic cohomology is isomorphic to the
(original) symplectic cohomology [Theorem 2.2, 2.4, [84]] and also isomorphic to Monodromy-
Floer cohomology of the fiber [Theorem 1.2, 1.3, [85]]. The chain complexes of Lefschetz-
admissible Hamiltonian Floer cohomology is generated by

1. Critical points of Morse function on M , and

2. Two copies of fixed points of iterates of the monodromy map around a large circle on
the base.

One of main results in [84] is isomorphism of symplectic cohomology of convex Lefschetz
fibration and that of certain subfibration.

Lemma 3.1.2 (Theorem 2.25, [84]). Let M ′ be a convex symplectic Lefschetz fibration with
fiber F ′. Suppose that M is a subfibration of M with fiber F over the same base satisfying
the following.

1. The support of all the monodromy maps of M ′ are contained in the interior of M .

2. For any holomorphic curves u in F ′ with boundary ∂u ⊂ F , u ⊂ F .

Then SH∗
lef (M

′) ∼= SH∗
lef (M). Therefore, SH∗(M ′) ∼= SH∗(M).

Symplectic Cohomology of Non-Exact Convex Symplectic manifolds

Many Kähler manifolds including the blow-up of CP 1 at a point, and the crepant resolutions
of simple isolated singularities, have non-exact symplectic structure. When open non-exact
symplectic manifolds have convex contact boundary condition, symplectic cohomology still
can be defined by Ritter [109]. Admissible Hamiltonians are radial at infinity and almost-
complex structure are of contact type on the cylindrical ends. Using one-to-one correspon-
dence between Hamiltonian orbits and Reeb orbits, we have the maximum principle on the
radial coordinate of the image of Floer cylinder so that the moduli space of Floer cylinders
with limiting orbits can be compactified. Weak-monotonicity condition2 is needed to get rid
of bubbling when we compactify the moduli spaces of Floer trajectories. Even though the
action functional is multi-valued, the cut-offed radial filtration works and gives long exact
sequence for non-exact convex symplectic manifolds [Theorem 6.2, [91]].

2M is a 2n-dimensional symplectic manifold such that for every A ∈ π2(M), 3− n ≤ c1(A) < 0 implies
ω(A) ≤ 0. Equivalently, one of the following holds

• ω = λ · c1(A) for every A ∈ π2(M) for some λ ≥ 0.

• c1(A) = 0 for every A ∈ π2(M).

• The minimal Chern number N ≥ 0 defined by c1(π2(M)) = NZ is greater than or equal to n− 2.
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Remark 3.1.3. Abouzaid-Blumberg constructed Floer homology with coefficients in Morava’s
K-theories [3]. Using it, they proved the Arnold conjecture in characteristic p; the rank of
the cohomology of a closed symplectic manifold with coefficients in a field of characteristic p
is bounded above by the number of non-degenerate Hamiltonian periodic orbits. Extending
our symplectic criteria of uniruledness in the setting of Morava K-theory seems interesting,
see [9] as well. The relation between fixed points of the Frobenius map and the monodromy
Floer cohomology of projective varieties would be also interesting. I wonder if one could apply
Morava K-theoretic Hamiltonian Floer theory to number theory, for example, Bombieri-Lang
conjecture, which says that; if X is an algebraic variety of general type defined over a number
field k, then there is a dense open subset U of X such that for all number field extensions k′

over k, the set of k′-rational points in U is finite.

Morse-Bott Symplectic Cohomology

Morse-Bott approach to the Floer theory was developed by Fukaya [44], Frauenfelder [43],
Bourgeois-Oancea [17], and Diogo-Lisi[30]. The idea relating Floer trajectories to J-holomorphic
curves followed by Morse trajectories was developed by Piunikhin-Salamon-Schwarz [105] and
Oh-Zhu [100], [101]. Let us review Bourgeois-Oancea’s correspondence theorem between sym-
plectic cohomology defined in the previous section and Morse-Bott symplectic cohomology
where the differential maps are defined by counting cascades.

Let H : M → R be a time-independent Hamiltonian on a symplectic manifold (M,ω).
The set of Hamiltonian 1-periodic orbits are constant orbits, corresponding to critical points
of H|int(M) and non-isolated, Morse-Bott nondegenerate families Sx of orbits. We can perturb
time-independent Hamiltonian by perfect Morse functions fx : Sx → R on each family Sx

of orbits so that Sx perturbed into nondegenerate orbits corresponding to critial points
of fx. For small δ > 0, denote such a time-dependent Hamiltonian Hδ : S1 × M → R,
Hδ = H + δ ·

∑
ρxfx,θ, where {ρx} is a partition of unity, θ ∈ S1. There are different

conventions but with the same meaning so we compare them in subsection 3.1 below.

Definition 3.1.4 ([17]). Let J be a generic time-dependent almost complex structure on
W . Given p ∈ Crit(fx−), q ∈ Crit(fx+), define

• M(x−p , x
+
q , ;Hδ, J): the moduli space of Floer trajectories for the pair (Hδ, J) with

negative asymptote x−p and positive asymptote x+q modulo reparmetrization in s.

• M(Sx− , Sx+ ;H, J): the moduli space of Floer trajectories for the pair (H, J) with neg-
ative asymptote in Sx− and positive asymptote in Sx+ , modulo reparametrization.

• MA
m(p, q;H, {fx}, J) = W u(p) ×ev (MA1(Sx− , Sx1) × R+)ϕfx1

·ev ×ev MA1(Sx− , Sx1) ×
R+)ϕfx1

·ev ×ev · · ·MA1(Sx− , Sx1)× R+ ×W s(q): the moduli space of Floer trajectories

for the pair (H, J) with intermediate gradient fragments.

• MA
]0,δ0[

(x−p , x
+
q ;Hδn , J) :=

⋃
0<δ<δ0

{δ} ×MA(x−p , x
+
q ;Hδ, J)

A sequence [u] ∈ MA(x−, x+;H, J) is called to converge to the broken trajectories
([uk], [uk−1], · · · , [u1]), [ui] ∈ MAi(x−i , x

+
i ;H, J),

∑
iAi = A, if there exist sequences si ∈

R, 1 ≥ i ≥ k, such that si · u(s, ·) = u(s+ si, ·) converges uniformly on compact sets to ui.
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Lemma 3.1.5 (Theorem 3.7, [17]). 1. Any sequence [vδn ] ∈ M(x−p , x
+
q ;Hδn , J), δn → 0,

converges to an element [ν] of M(p, q;H, {fx}, J).

2. Any element of M(p, q;H, {fx}, J) can be obtained as such a limit in a unique way.
Moreover, if dimM(p, q;H, {fx}, J) = 0, then the intermediate gradient fragments in
[ν] are non-constant.

3. There is a bijective correspondence between elements of M(x−p , x
+
q ;Hδn , J) and elements

of M(p, q;H, {fx}, J) if the moduli spaces have dimension zero: More precisely quoting,

Let H ∈ H′ be fixed, and let α := limt→∞ e−tH(p, t) be the maximal slope of H. Let
J ∈ Jreg(H), and let {fx} ∈ Freg(H, J). There exists δ1 := δ1(H, J) ∈]0, δ0[ such that
for any x−, x+ ∈ P≤α

λ , p ∈ Crit(fx−), q ∈ Crit(fx+), or x− ∈ P≤α
λ , p ∈ Crit(fx+),

q ∈ Crit(H), and any A ∈ H2(W ;Z) with µ(x+p ) − µ(x−q ) − 2 < c1(TW ), A >= 1, the
following hold:

(a) J is regular for MA(x−p , x
+
q ;Hδ, J) for all δ ∈]0, δ1[;

(b) The moduli space MA
]0,δ1[

(x−p , x
+
q ;H, {fx}, J) is a one-dimensional manifold having

a finite number of components that are graphs over ]0, δ1[;

(c) There is a bijective correspondence between points of MA(p, q;H, {fx}, J) and con-
nected components of MA

]0,δ1[
(x−p , x

+
q , H, {fx}, J).

Define the Novikov ring Λω := Z[H2(M ;Z)] = {
∑

A∈H2(M ;Z) λAe
A, λA ∈ Z}. Λω is graded

by |eA| := −2 < c1(TM), A > and assume it vanishing for convenience. Define the symplectic
chain group by the free Λω-module generated by Hamiltonian 1-periodic orbits x, with grad-
ing |eAx| = µCZ + 2 < c1(TM), Z >. Define the differential map ∂ : SC∗(H) → SC∗+1(H)
by

∂x− :=
∑

{x+,A:µCZ(x+)−µCZ(x−)+2<c1(TM ),A)>=1}

∑
[u]∈MA(x−,x+;H,J)

ϵ(u)eAx+.

Since ∂2 = 0, define SH∗(H, J) := H∗(SC∗(H), ∂) and SH∗(M) := lim−→H
SH∗(H). Define

the Morse-Bott Hamiltonian Floer chain groups by

BC∗
a(H) :=

⊕
Λω < xmin, xmax >, a ̸= 0,

BC∗
0 :=

⊕
Λω < p̃ > ⊕Λω < xmin, xmax > .

The grading is defined by, |eAp̃| := ind(p̃;−H) + 2 < c1(TM), A >, |eAxmin| := µCZ(x)−
1 + 2 < c1(TM), A >, |eAxmax| := µCZ(x) + 2 < c1(TM), A >

Define the Morse-Bott Hamiltonian Floer differential ∂ : BC∗(H)→ BC∗+1(H), by

• ∂p̃ :=
∑

q̃∈Crit(H),|q̃|−|p̃|=1

∑
[u]∈M0(p̃,q̃;H,{fγ},J)(±1)

|u|q̃,

• ∂γp :=
∑

q̃∈Crit(H),|γ
eAq̃

|−|γp|=1

∑
[u]∈MA(γp,q̃;H,{fγ},J)(±1)

|u|eAq̃

+
∑

γ
p
∈P≤α

λ ,q∈Crit(fγ),|eAγ
q
|−|γp|=1

(∑
[u]∈MA(γp,γq

;H,{fλ},J)(±1)
|u|eAλq

)
, for p ∈ Crit(fγ).
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where, (±1)|u| is a sign of the corresponding connected component C[u], for δ ∈]0, δ1[,
(δ, [uδ]) ∈ C[u]. By definition, SC∗(Hδ) ∼= BC∗(H), δ ∈]0, δ1[ as free Λω-modules. And, by the
correspondence theorem 3.1.5 [Theorem 3.7, [17]], the differentials counts the same. There-
fore, H∗(BC∗

a(H), ∂) = SH∗
a(Hδ, J). In this paper, we take Hamiltonian to be constantly

zero on the interior of the Liouville domain M , so that the Morse-Bott family of orbits
is codimension 0, Bourgeois-Oancea’s argument on Morse-Bott moduli spaces still applies.
Since the degenerate to Morse trajectory that is below the critial points degenerateing locus
is under the boundary of M .

Several Conventions

Let (M,ω) be a symplectic manifold of dimRM = 2n, H : R × R/Z × M → R a time
dependent Hamiltonian, u : R × R/Z → M with lims→±∞ u(s, t) = x±(t) be a solution of
the Fleor equation: J · ∂u

∂s
= ∂u

∂t
−XH with asymptotic periodic orbits x± : R/Z → M with

ẋ± = XH(x±) and v is a symplectic filling of x. Let us compare two conventions: symplectic
homology and symplectic cohomology which are “the same” up to direction of differentials,
signs and degrees.

Symplectic Homology [26] Symplectic Cohomology [2], [109]
ω(XH , ·) = −dH(·) ω(XH , ·) = −dH(·)
ω(·, J ·) = g(·, ·) ω(·, J ·) = g(·, ·)

J ·XH = −gradgH J ·XH = gradgH
A =

∫
v∗ω −

∫
x∗H A = −

∫
v∗ω +

∫
x∗H

AH(x+)−AH(x−) =
∫
R×R/Z |∂su|

2dsdt AH(x+)−AH(x−) = −
∫
R×R/Z |∂su|

2dsdt

Conley-Zehnder Index= n−Morse Index Conley-Zehnder Index= n−Morse Index

SH
[−ϵ,ϵ)
∗ (M) = Hn−∗(M)

Differentials decreases Differentials increases
the action, the grading the action, the grading

CF
[a,b)
∗ → CF

[a,c)
∗ → CF

[b,c)
∗ for a < b < c CF ∗

[a,b) → CF ∗
[a,c) → CF ∗

[b,c) for a < b < c

Symplectic Homology [17], [86] Symplectic Cohomology [127]
ω(XH , ·) = dH(·) ω(XH , ·) = dH(·)
J ·XH = −gradgH J ·XH = gradgH

A = −
∫
v∗ω −

∫
x∗H A =

∫
v∗ω +

∫
x∗H

AH(x+)−AH(x−) = −
∫
R×R/Z |∂su|

2dsdt AH(x+)−AH(x−) =
∫
R×R/Z |∂su|

2dsdt

−C.-Z. Index = −n+Morse Index Conley-Zehnder Index
Differentials decreases the grading Differentials increases the grading

Question 3.1.6. This is a digression. From a perspective of topological gravity or gravity
algebra, I would like to learn from the experts whether there is any relation between a cascade
and Penrose’s space-time diagram that explains collapsing a star to a black-hole in [Fig.1,
[104]] (Or those from S1-equivariant symplectic cohomology. We refer a remark in [p.250,
[118]].), furthermore, any relation between Hawking radiation and the emergence of two
Hamiltonian orbits from perturbation of S1-family of time-dependent Hamiltonian orbits.
Because of my poor understaning on the correspondence among Floer theory and quantum
field theory and quantum gravity theory, I can not find good introductory references. So
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suggestions would be helpful for my future learning. I wonder whether there is symplectic
geometric model for the universe, for example, relation between the stars and any critical
points of certain Morse-theoretic functional.

Twisted/Bulk Deformed Symplectic Cohomology

We can extend the coefficient ring of the symplectic cohomology. Let us recall the definitions
by Ritter [Section 4, [109]]. Let ev : LM × S1 → LM be the evaluation map. Define
τ := π ◦ ev∗ : H2(M ;R) → H2(LM × S1;R) → H1(LM ;R). For ξ ∈ H2(M ;R), a smooth
path u in LM , τξ(u) =

∫
ξ(∂su, ∂tu)ds ∧ dt. Let β = τ(ξ) be a singular cocyle representing

a class in H1(LM ;R) for ξ ∈ H2(M ;R). The twisted symplectic chain complex for (M,H)
with twisted coefficients in Λ is the Λ-module generated by the periodic orbits of XH , the

differential ∂ is twisted by t−
∫
[u] β = t−

∫
η(∂su,∂tu)ds∧dt, where u is a Floer cylinder connecting

two generators,

∂x− : =
∑

u∈M(x−,x+;H,J)

ϵ(u)tEH(u)−
∫
[u] βx+

=
∑

u∈M(x−,x+;H,J)

ϵ(u)t
∫
R×R/Z u∗ωt

∫ 1
0 (H(x+(t))−H(x−(t)))dt · t−

∫
η(∂su,∂tu)ds∧dtx+,

All continuation maps are also twisted by t−
∫
[u] β = t−

∫
η(∂su,∂tu)ds∧dt. Denote β = τ(ξ)-

twisted symplectic cohomology of M by SH∗(M ; Λβ).

3.2 Computing Symplectic Cohomology

Symplectic cohomology of an affine variety X \ D, where X is a projective variety and D
is simple normal crossing divisors, can be computed in several ways: For admissible pairs
(X,D), spectral sequences which converges to symplectic cohomology was developed by
Seidel [118], McLean [88] and Ganatra-Pomerleano [47]. Ritter computed symplectic coho-
mology of some non-exact monotone convex symplectic manifold with Hamiltonian circle
action that generate Reeb flow on the boundary using Seidel representation [111], [112]. Us-
ing the Legendrian surgery exact sequence by Bourgeois-Ekholm-Eliashberg [16], symplectic
cohomology of Weinstein manifold, constructed from Legendrian surgery on a subcritical
Weinstein manifold, is isomorphic to Legendrian contact homology. For any 4-dimensional
Weinstein manifold, symplectic cohomology can be computed combinatorially by Ekholm-
Ng [34]. Mayer-Vietoris Sequence is developed by Cieliebak-Oancea for Liouville cobordisms
and by Varolgunes for compact submanifolds of a closed symplectic manifold. Symplectic
cohomology is also known to be isomorphic to Hochschild cohomology of wrapped Fukaya
category. Various mirror symmetries predict that (wrapped) Fukaya categories are equivalent
to derived category of coherent sheaves, possibly with superpotentials(the Landau-Ginzburg
model). The Gross-Siebert program explains how to construct the mirrors by tropicalization.
Pascaleff computed symplectic cohomology of log Calabi-Yau surfaces using tropicalization
[103]. Lekili-Ueda computed symplectic cohomlogy of Milnor fibers of ADE singularities by
computing algebraic side of homological mirror symmetry [75].
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Example 3.2.1 ([88], See also Proposition 11.1, [31]). Let X be a projective variety with
simple normal crossing divisor D := {Dj}j∈S. Choose a meromorphic section κ of the canon-
ical bundle of X which is non-vanishing along X \ D. Define the discrepancy ai of Di

as ai := ordDi
κ−1(0) − ordDi

κ−1(∞). Choose an ample line bundle L on X and a holo-
morphic section s of L which is non-vanishing along X \ D. Define a winding number
wi of Di as wi := −ordDi

s−1(0). Choose NDI a small tubular neighborhood of DI for

I ⊂ S so that
◦
NDI := NDI \ ∪j∈SDj is a bundle over DI \ ∪j∈S−IDj with fiber of a

product of punctured disks. Using the Morse-Bott spectral sequence, a spectral sequence
(Ep,q

r , dp,qr := Ep,q
r → Ep+r,q−r+1

r ) with E1-page,

Ep,q
1 :=

⊕
(ki∈NS :

∑
i kiwi=−p)

Hp+q−2(
∑

i ki(ai+1))(
◦
NDI(ki)

), I(ki) := {i ∈ S : ki ̸= 0},

converges to SH∗(X \D).
Let C(1,k) be the complement of bidegree (1, k)-hypersufaces D(1,k) in P1 × P1. C(1,1) =

P1 × P1 \ D(1,1) = T ∗P1.
◦
ND(1,1) = RP 3, considering the Hopf fibraion over P1 in P1 × P1.

Using a = −2
1
+ −2

1
= −4, w = −2,

H∗(RP 3) :=


Z, for ∗ = 3,

Z/2, for ∗ = 2,

0, for ∗ = 1,

Z, for ∗ = 0,

H∗(C(1,k)) =


Z, for ∗ = 2,

Z/2, for ∗ = 1,

Z, for ∗ = 0,

we get the following E1-page, E∞-page,

8 · · · Z 8 · · · Z

7 · · · · 7 · · · ·

6 · · Z Z 6 · · · ·

5 · · · Z 5 · · · ·

4 Z Z Z · 4 · · Z ·

3 Z · Z · 3 Z · Z ·

2 Z/2 Z/2 · · 2 · · · ·

1 · Z · · 1 · Z · ·

0 Z · · · 0 Z · · ·

0 1 2 3 0 1 2 3

Therefore, we get ℓ(C(1,1)) = 2. However, C(1,k) is C-uniruled for all k ≥ 1.
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Relative Symplectic Cohomology of compact Subsets of a Completed Liouville
Domain and a Mayer-Vietoris Sequence

We adapt two definitions of symplectic cohomology of a pair (Y ⊂ X) of a projective
variety X and its compact subset Y in [Definition 2.64, Definition 3.3 in [90], [127]] to a pair
(Y ⊂M) of a completionM of a Liouville domainM and a compact subset Y ofM following
[23], [90], [127]. Varolgunes’ Mayer-Vietoris property on relative symplectic cohomology still
works. There are some aspects that our setting is simpler because we are given a Liouville
domain with contact cylinder(exact symplectic form) so we are not worried about the index-
bounded contact cylinder for a pair (Y ⊂ X) of a projective variety X and its compact
subset Y . And the symplectic form is exact compatible with the contact boundary.

Definition 3.2.2. Let (Y ⊂ M) be a pair of a completion M of a Liouville domain M
and a compact subset Y of M . We can assume that Y ⊂ M . A Hamiltonian HY,λ on M is
(Y, λ)-admissible if

1. H|Y < 0 and C2-small.

2. H|M\Y =∞.

3. On the cylindrical end [1,∞) × ∂M with coordinate (r, x), there exist R > 0 so that
H(r, x) = λr on [1, R)× ∂M and H(r, x) = λR =constant on [R,∞)× ∂M .

4. λ is not in the action spectrum of H-orbits.

Topological energy of u : R× S1 → (M,ω,H : R× S1 ×M → R) is defined by,

EH(u) :=

∫
u∗ω +

∫
∂s(H(s, t, u(s, t))).

It defines the complex of Hamiltonian Floer cohomology over the Novikov ring Λ≥0
3 (in case

of non-exact symplectic manifold, we need extra Pardon data P , [102]), as follows,

CF (H, J, P ) : = ⊕x∈P(H)Λ≥0 · x,

∂x− : =
∑

u∈M(x−,x+;H,J)

ϵ(u)T EH(u)x+

=
∑

u∈M(x−,x+;H,J)

ϵ(u)t
∫
R×R/Z u∗ωT

∫ 1
0 (H(x+(t))−H(x−(t)))dtx+,

For two (Y, λ)-admissible HamiltoniansH,H ′, defineH ≤ H ′ ifH(x) ≤ H ′(x) for any x ∈
M . We consider a cofinal family of (Y, λ)-admissible Hamiltonians {HK,λi

,≤}i∈N converging

3Let Λ := {
∑

i≥0 aiT
αi |ai ∈ Q, αi ∈ R, where ai →∞ as i→∞} be the Novikov field with a valuation

map val:Λ→ R ∪ {+∞} defined by

val
(∑

i∈N
aiT

αi

)
:= min{αi : αi ̸= 0, i ∈ N} and val(0) = +∞.

Define Λ≥R := val−1([r,+∞]), Λ>R := val−1((r,+∞]) and ΛR := Λ≥0/Λ≥R.
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to HK , defined by HK |K ≡ 0, HK |M\K ≡ ∞. An acceleration data for Y is a cofinal family
of (Y, λ)-admissible Hamiltonians on a pair with a choice of interpolating Hamiltonians
{Hλs,Rs,fs}s∈[i,i+1] for all i. Hamiltonians are mononotonous along the arrows of the following
diagram with the connecting 1-parameter family of Hamiltonians.

CF ∗(Hλ1,f1)⊗ ΛR2 CF ∗(Hλ2,f1)⊗ ΛR2

CF ∗(Hλ1,f1)⊗ ΛR1 CF ∗(Hλ2,f1)⊗ ΛR1

CF ∗(Hλ1,f2)⊗ ΛR2 CF ∗(Hλ2,f2)⊗ ΛR2

CF ∗(Hλ1,f2)⊗ ΛR1 CF ∗(Hλ2,f2)⊗ ΛR1

Denote Cuben := {(x1, · · · , xn)|xj ∈ [0, 1]}, the standard unit cube. For 0 ≤ k ≤ n, a
k-dimensional face of Cuben is a subset of Cuben having that n − k of the coordinates are
either 0 or 1. We call 0-dimensional faces, vertices. A vertex of a face is called the initial(resp.
terminal) vertex if it has the maximum number of 0’s (resp. 1’s) in its coordinates and denote
νs(F ) (resp. νt(F )). Two faces F ′ and F ′′ are adjacent if νs(F ′′) = νt(F ′) and denote F ′′ < F ′.
Let us summarize some notations as follows.

• The faces of Cuben are in one-to-one correspondence with the set of n-tuples of elements
of a set {0, 1,−}. Denote µ(F ) the n-tuple corresponding to a face F .

• Given two adjacent faces F ′ > F ′′, choose the smallest face F that contains both F ′

and F ′′. Denote v(F ′, F ) the subtuple of µ(νt(F ′))− µ(νs(F ′)).

• For tuples w, v of elements of a set A, #(w, v) is defined to be the number of subtuples
of v that are equal to w.

• n(F ) := #(0−, µ(F )) + #(0, µ(F )).

Definition 3.2.3 (Definition 2.1.1,[127]). An n-cube of chain complexes over a commutative
ring R consists of following data,

1. To each vertex ν of Cuben, we assign a Z/2-graded R-module Cν .

2. To each k-dimensional face F , we assign maps fF : Cνs(F ) → Cνt(F ) from its initial
vertex to its terminal vertex, of degree dim(F ) + 1 modulo 2.

3. For any boundary F ′′ < F ′ of a face F ,
∑

F ′′<F ′,boundary F (−1)
∗F ′,F fF ′′fF ′ = 0, where

∗F ′,F = n(1, v(F ′, F )) + n(01, v(F ′, F )).

When the signs (−1)∗F ′,F are all positive, we call it n-cubes with positive signs.

There is a canonical way to make an n-cube with posivie signs [Lemma 2.1.5,[127]]. The
cone of an n-cube with positive signs ({Cν}, {fF}) in direction i is an (n − 1)-cube with
positive signs constructed as follows:
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• For each vertex w of Cuben−1,Cw := C(w,i,0)[1] ⊕ C(w,i,1), where (w, i, a) denotes the
n-tuple with a inserted as the ith entry to w, for example, ((0, 2, 2), 3, 1) = (0, 2, 1, 2).

• For each face F , the map fF : Cs(F ) → Ct(F ) is given by the matrix(
f(µ(F ),i,0) 0
f(µ(F ),i,−) f(µ(F ),i,1)

)
The cone conei(C) of an n-cube C in direction i is the cone construction of n-cube with
positive signs conjugated with canonical maps to a general n-cubes. A map between two
n-cubes C→ C′ is a filling of the partially defined (n+1)-cube with the n-dimensional faces
{xn+1 = 0} = C, {xn+1 = 1} = C′. A homotopy of two maps f0, f1 : C → C′ of n-cubes is
a filling of the partially defined (n + 2)-cube where the faces {xn+1 = 0} = (f0 : C → C′),
{xn+1 = 1} = (f1 : C→ C′) and the faces {xn+2 = 0} and {xn+2 = 1} are the identidy maps
for the given n− cubes.

C C′

C C′,

f0

f1

C C′

C C′.

f0

id id

f1

(3.2.1)

An n-ray is an infinite sequence of n-cubes {D}i∈N satisfying that Di,Di+1 glued in the n-

th direction for all i, presented as a sequence of (n−1)-cubes C = C1 C2 · · ·f1 f2
so

thatDi : Ci → Ci+1 is a map of (n−1)-cubes. Given a 1-ray C = C1 C2 · · ·f1 f2
, the

(mapping) telescope tel(C) of C is the complex
(⊕

i∈NCi[1]⊕Ci, δ := (x[−1]−dx+fi(x), dx)
)
,

where x[−1] denotes the copy of x in Ci. The telescope tel(C) of an n-ray C is an (n−1)-cube
constructed as follows.

• At each vertex w of Cuben−1 of tel(C), we assign the R-module
⊕

i∈N(cone
n(Di))

w =⊕
i∈N C

w
i [1]⊕ Cw

i , where conen(Di) is the cone in the last direction of the n-cube Di :
Ci → Ci+1.

• The induced maps are defined, for each face F of Cuben−1,

δF (x) =


f i
F (x) if x ∈ C

s(F )
i ,

f i
F (x) + x[−1] if x ∈ Cw

i [1] and F is of zero-dimension,

f i
F (x) if x ∈ Cw

i [1] and F is of positive-dimension.

An n-cube of admissible Hamiltonians is a smooth map H : Cuben → C∞(M × S1,R)
which is locally constant near the vertices and non-degenerate at the vertices. An n-cube
family of admissible Hamiltonians is called to be monotone if the Hamiltonians are non-
decreasing along all of the flow lines of f . By the energy inequality, a monotone n-cube
of admissible Hamiltonians gives an n-cube defined over the ring Λ≥0 [Definition 3.2.4,
[127]]. Any two acceleration data for Y ⊂ M are homotopic because any partially defined
Hamiltonian-Floer-homotopic (with monotonicity) n-cube has a filling to an Hamiltonian-
Floer-homotopic n-cube, [Proposition 3.2.18, [127], Lemma 3.5, [23]]. Here, an n-cube is
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Hamiltonian-Floer-homotopic n-cube means that if for any two points x and y in Cuben

where Hamiltonians are defined and that there exists a possibly broken negative gradient
flow line of f from x to y, then H|x ≤ H|y. We also assume that for any two non-degenerate

Hamiltonians f and g in the cofinal family, {f < g} ∩ {f > g} = ∅ so that max{f, g} and
min{f, g} are smooth [Proposition 4.1.1,[127]]. From the cofinal family of (Y, λ)-admissible
Hamiltonians, we define relative symplectic cohomology of a pair (Y,M) as follows.

Definition 3.2.4. Let M be the completion of a Liouville domain M , and K be a compact
subset of M . Let a, b ∈ [−∞,∞] with a < b.

SC∗
a,b(Y ⊂M ;HK,λ, J) := lim−→

a≤
◦ lim←−

≤b

◦telHK,λi
CF∗

a≤,≤b(HK,λ),

= lim−→
a≤
◦ lim←−

≤b

◦ lim−→
HK,λi

CF∗
a≤,≤b(HK,λ).

where lim−→a≤ ◦ lim←−≤b
is completion with respect to action filtration and the limit lim−→HK,λi

=

telHK,λi
involves choices of continuation map data.

By [127], we can choose a homotopy interpolating two cofinal Hamiltonian data.

Lemma 3.2.5. [127] For any two cofinal family of Hamiltonians (HK,λ, J), (H̃K,λ, J̃), SC
∗
a,b(K ⊂

M ;HK,λ, J) and SC
∗
a,b(K ⊂M ; H̃K,λ, J̃) are quasi-isomorphic.

Therefore, we have well-defined cohomology,

SH∗
a,b(Y ⊂M) := H∗

(
lim−→
a≤
◦ lim←−

≤b

◦telHK,λi
CF∗

a≤,≤b(HK,λ)
)

Similar to the usual symplectic cohomology, we have the following lemma.

Lemma 3.2.6. 1. SH∗
−ϵ,ϵ(M ⊂M) ∼= H∗(M).

2. [127], [128] SH∗
−ϵ,∞(M ⊂ M) = ŜH∗(M), where ŜH∗(M) is the completion of a ring

SH∗(M) with respect to the action filtration.

3. · · · → SH∗
ϵ,∞(M ⊂M)

δ̂−→ H∗(M)→ ŜH∗(M)→ SH∗
ϵ,∞(M ⊂M)→ · · · .

Let SH∗(M ⊂M) denote SH∗
−ϵ,∞(M ⊂M).

Proposition 3.2.7. [127] Let Y1,Y2 be compact subsets of a completion M of a Liouville
domain M satisfying that ∂(Y1 ∩M) ∩ ∂(Y2 ∩M) ̸= ∅. The Mayer-Vietoris sequence for
such subsets Y1,Y2 of M holds,

δ−→ SH∗(Y1 ∪ Y2 ⊂M)→ SH∗(Y1 ⊂M)⊕ SH∗(Y2 ⊂M)→ SH∗(Y1 ∩ Y2 ⊂M)→ .

Proof. Exactly the same idea in [127] works. Since ∂(Y1 ∩M) ∩ ∂(Y2 ∩M) ̸= ∅, the slices
of any 3-ray that is compatible with any acceleration datum for (Y1 ⊂ M), (Y2 ⊂ M),
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(Y1 ∩ Y2 ⊂ M), and (Y1 ∪ Y2 ⊂ M) that gives the cofinal families H1, H2, max{H1,H2},
and min{H1,H2} respectively, is acyclic. If a 2-cube

C00 C10

C01 C11.

is acyclic, then the map C00 → Cone(C10 ⊕ C01 → C11) is a quasi-isomorphism, therefore,
induces an exact sequence

· · · → H∗(C00)→ H∗(C10)⊕H∗(C01)→ H∗(C11)→ H∗+1(C00)→ · · · .

Therefore, the acyclic 2-cube

CF ∗(min{H1,H2}) CF ∗(H1)

CF ∗(H2) CF ∗(max{H1,H2}),

gives the Mayer-Vietories sequence. (Here, we used that Λ≥0 is a complete valuation ring.
Any Λ≥0-module is flat if and only if it is torsion-free. And for an acyclic chain complex C
over Λ≥0 with a torsion-free underlying module, C⊗Λ≥0

ΛR is also acyclic for all R ≥ 0.)

3.3 Vanishing or Invariance Theorems of Symplectic Cohomology

In this section, we review some results on vanishing theorems and invariance theorems of
symplectic cohomology, which we use when we apply the main theorems. First of all, a non-
trivial fact is that SH∗(Cn) = 0 for all n, [[42], Chapter 3, [98]] by computing Conley-Zehnder
indices and taking the direct limit.

3.3.1 Symplectic Cohomology under Attaching Weinstein Handles

As Morse theory let us understand topology of smooth manifolds and construct them by
attaching handles of critical points, pseudo-convex function theory and h-principle let us
understand symplectic topology of Liouville domains and construct some of them by attach-
ing Weinstein handles, [35], [54]. In [53], Gromov developed the pseudo-holomorphic curve
theory and showed that a Liouville domainM whose boundary ∂M is contactomorpic to the
standard contact structure on S3 is isomorphic to (R4, ωstandard) as Liouville domains. The be-
havior of symplectic cohomology under Weinstein handle attaching was studied by Cieliebak
in [23]. An important fact is that subcritical handle attaching does not change the symplectic
cohomology before and after. By attaching subcritical handles and the h-cobordism, Seidel-
Smith showed that Liouville domains of dimension 2n ≥ 4, with sphere boundary with the
standard contact structure, should have vanishing symplectic cohomology in [118]. Moreover,
Seidel-Smith and McLean found exotic Stein manifolds. Casals-Murphy detected flexibility
of affine varieties which leads vanishing symplectic cohomology by detecting a zig-zag on
Legendrian front projection [19].

Let us recall the Weinstein handle attachment as follows [131].
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• A 1-form α on a manifold E of dimension 2n+1 is called to be contact if α∧(dα)n ̸= 0.
A hyperplane field ξ of the tangent bundle TE is called to be a contact structure if it
is a kernel of some contact 1-form (by definition, it is maximally non-integrable).

• A submanifold L of a contact manifold (E, ξ) is called to be isotropic if TxL ⊂ ξx for
all x ∈ L (i.e., j∗Lα = 0 ⇐⇒ j∗Ldα = 0 ⇐⇒ TxL ⊂ (ξx, dα|ξx) isotropic). A maximual
isotropic submanifold is called a Legendrian submanifold.

Let (E, ξ) be a contact manifold and j : Sk−1 → E be a isotropic sphere. Denote
(TSk−1)⊥ a subbundle of (ξ|L, dα|ξ) that is orthogonal to TSk−1 with respect to dα|ξ.
TSk−1 ⊂ (TSk−1)⊥ (isotropic) and the quotient bundle (TSk−1)⊥/TSk−1 ∼= Cn−k has a
structure of the conformal symplectic normal bundle of Sk induced from dα. The standard
chart is R2n = T ∗Rk × Cn−k with the symplectic form ω =

∑k
i=0 dpi ∧ dqi +

∑n−k
j=0 dxj ∧ dyj

and with the Liouville vector field Xk =
∑k

i=1(2pi
∂
∂pi
− qi ∂

∂qi
) + 1

2
(
∑n−k

j=1 xj
∂

∂xj
+ yj

∂
∂yj

) and

Xk is a gradient vector field for the Morse function fk :=
∑

(p2i − 1
2
q2i ) +

∑
(1
4
x2j +

1
4
y2j ) with

respect to the standard Euclidean metric on Rn. Define a 1-form αk := ιXk
ω =

∑
i(2pidpi +

qidqi) +
1
2

∑
j(xjdxj − yjdyj). Along the flow of X, the stable(resp. unstable) subspace is

W s
k = {q1 = · · · = qk = 0} ∼= R2n−k (resp. W u

k = {pi = 0, xj = yj = 0 for alli, j} ∼= Rk).
Since the form αi pulls back to 0 on W s

k along the flow, a sphere Sst
k := W s

k ∩ {fk = 1}
is an isotropic submanifold of {fk = 1, αk}, call it the ascending sphere of index k (resp.
Sut
k := W u

k ∩ {fk = −1} is called the descending sphere). A standard Weinstein k handle
in R2n is a bounded neighborhood of the descending sphere in {fk=−1} with a connectic
manifold diffeomorphic to S2n−k−1 ×Dk.

Cieliebak defined relative symplectic cohomology of a pair W ⊂ (M,ω) of a codimension
0 submanifold W of (M,ω) with ω-convex boundary ∂W , using Hamiltonians that are C2-
small Morse functions in the interior of W and increasing sharply near ∂W [23]. Let M⋑k be
a Liouville domain obtained by attaching a Weinstein k-handle to ∂M . Considering that the
only generator of the complex of relative symplectic cohomology of a pairM ⊂ (M⋑k, ω) is a
critical point of the k-handle and that it disappears under the transfer functor in the direct
limit (the Conley-Zehnder index can be increased under the transfer functor), he showed the
following invariance property of symplectic cohomology under subcritical handle attachment.

Proposition 3.3.1 (Theorem 1.11(1), [23]). Let (M,dθM) be a Liouville domain of dimen-
sion 2n, and S ⊂ ∂M be a contact-isotropic(i.e.,θM |S=0) sphere of dimension k−1 < n−1.
(The symplectic normal bundle of S in M is trivial.) Let M ∪S Hk be a Liouville domain
obtained by attaching a Weinstein k-handle Hk to ∂M near S. Then SH∗(M ∪S Hk) ∼=
SH∗(M).

A direct corollary is that for a subcritical Weinstein manifold M , SH∗(M) = 0.

Proposition 3.3.2 (Corollary 6.5, [118]). Let M be a Liouville domain of dimension 2n ≥
4, such that ∂M is contact isomorphic to the standard contact structure on S2n−1. Then
SH∗(M) = 0.

Let M be a Liouville domain. Let Λ := ∪ki=1Λi be a disjoint union of Legendrian spheres
in the boundary ∂M and denote M⋑Λ a convex Weinstein domain on which symplectic
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cohomology is well-defined, obtained by attaching Weinstein-handles to M along Λ. In the
case that M is a Liouville subdomain of M ′ of dimension 2n and a Weinstein cobordism
(S :=M ′ \ int(M), f : S→ R) contains only Morse critical points p1, · · · , pk of index n, we
consider the Legendrian spheres Λj’s are the intersection of the stable manifold Lj of pj and
the boundary ∂M ′ of M ′. Then M ′ ∼= M⋑Λ.

Let LHA(Λ) be the Legendrian homology differential graded algebra(DGA), whose com-
plex is generated by Reeb chords connecting Λj’s. Let LHO(Λ) be the subalgebra of cyclically
compaosable monomials. Let LHH0

+ be a homology of a mapping cylinder of the reduced Leg-
endrian DGA LHO+(Λ) of LHO(Λ). Denote LHH0(Λ) the full Legendrian homology DGA
whose complex consists of LHO+(Λ) and the Legendrian spheres Λ [Section 4, [16]].

Lemma 3.3.3 (Theorem 5.4, 5.6, [16]). There are exact sequences,

· · · → LHH0
+ (Λ) SH∗

+(M⋑Λ) SH∗
+(M) LHHo

+ (Λ)[1]→ · · · .

· · · → LHH0(Λ) SH∗(M⋑Λ) SH∗(M) LHHo(Λ)[1]→ · · · .

Lemma 3.3.4 ([33], [96]). The Legendrian contact homology algebra of a loose Legendrian
vanishes.

Proposition 3.3.5 (Theorem 3.2, [97]). Let M be a flexible Weinstein domain, then, for
any closed two-form on M , the twisted symplectic cohomology SH∗(M,Λ2) = 0.

The following example is from Casals-Murphy’s recipe on the Legendrian front projection
of Weinstein Lefschetz bifibration of affine varieties in [19]. Define

Ln
a,b := {(x, y, z1, · · · , zn−1 : x

ayb +
n−1∑
i=1

z2i = 1} ⊂ Cn+1,

where a, b ∈ N are two coprime integers with 1 ≤ a < b. By [Theorem 1.1., [19]], Ln
1,b

are flexible for all b ≥ 2, therefore, SH∗(Ln
1,b) = 0. In particular, L3

1,b are diffeomorphic to
S3 × R3, so we can see ℓ(L3

1,b) = 0 as well. Inspired by it, we expect that finding flexible
Weinstein cobordisms by Casals-Murphy’s algorithm on the Lefschetz fibration of an affine
variety M would lead to compute ℓ(M) as well as to find uniruled subvarieties of M .

3.3.2 Vanishing Symplectic Cohomology from C∗-action

When a convex weak-monotone symplectic manifold has Hamiltonian circle action which
generates Hamiltonian/Reeb orbits near at the infinity, the circle action make the Conley-
Zehnder index of Hamiltonian orbits goes to infinity as the slope of Hamiltonian goes to
infinity. As a direct limit of Hamiltonian Floer cohomology under the direct system by the
increasing slope of Hamiltonian, symplectic cohomology vanishes.

Proposition 3.3.6 (Theorem 5, [111]). Let M be the total space of the line bundle OPm(−n)
over Pm. Then,

• for n > 2m, SH∗(M) = 0,
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• for 2 +m ≤ n ≤ 2m, the weak monotonicity condition does not hold.

• for n = 1 +m, SH∗(M) = 0,

• for 1 + m
2
≤ n < 1 +m, SH∗(M) ̸= 0 has rank a multiple of 1 +m− n,

• for 1 ≤ n < 1 + m
2
, SH∗(M) = Λ[ωQ]/(ω

1+m−n
Q − (−n)nt).

Proposition 3.3.7 (Theorem 6, [111]). If c1(TM)(π2(M)) = 0, then SH∗(M) = 0.

Example 3.3.8 (Example p.7, [111]). LetM be the total space of the canonical bundle over
Fano variety, then SH∗(M) = 0.

Proposition 3.3.9 (Corollary 7, [111]). Let M be a negative line bundle over B with some
conditions we refer to [111]. Define the minimal Chern number cmin of a manifold M to
be the number satisfying c1(TM)(π2(M)) = cminZ. If the minimal Chern number of M is
greater or equal to the rank of H∗(B), then SH∗(M) = 0.

Proposition 3.3.10 (Corollary 2, [111]). SH∗(M) = 0 if and only if π∗
Mc1(L) is nilpoitent

in the quantum cohomology QH∗(M) of M . In particular, the quantum cup product reduces
to the ordinary cup product, then SH∗(M) = 0.

Example 3.3.11 (Examples p.8, [111]). Let K :=
∧top T ∗B be the canonical bundle over a

Fano variety B. Let M := Tot(K⊗k+1 → B) be the total space of K⊗k+1. Then SH∗(M) = 0
if k ≥max{rank H∗(B), dimCB}.

Proposition 3.3.12 (Theorem 10, [111]). Let E → B be any complex vector bundle, L→ B
a negative line bundle and Mk be the total space of E ⊗ L⊗k → B. Then for k ≫ 0,
SH∗(Mk) = 0.

Proposition 3.3.13 (Theorem p.3, [109]). Let M be an almost locally Euclidean space,
i.e. a minimal resolution of ADE singularities on C2, which is the quotient C2/Γ of C2 by a
finite subgroup Γ ∈ SU(2) or plumbings of cotangent bundles T ∗P1 according to ADE Dynkin
diagrams(It is known to be a non-compact symply-connected hylerkäler 4-manifold). Then for
generic β ∈ H2(M), SH∗(M,dθ; Λτβ) = 0.

3.3.3 Invariance from Convex Symplectic Lefschetz fibration

Understanding the convex symplectic Lefschetz fibration structure on Kaliman modification
leads the fact that symplectic cohomology is invariant under Kaliman modification. The
theorem of invariance will be used to prove theorem 5.2.5 below.

Proposition 3.3.14 (Theorem 2.31, [84]). Let M be an smooth affine variety of dimCM ≥ 3
with compactification X with ample divisor D. Let Z be an irreducible divisor in X and

p ∈ Z∩M a smooth point. Assume c1(BlpM \ ˜(Z ∩M)) = c1(M \Z) = 0. Then SH∗(BlpM \
˜(Z ∩M)) ∼= SH∗(M \ Z).

By the same idea of Theorem 2.31, [84], we get the following propositions.
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Proposition 3.3.15. Let M be a complex affine variety of dimC = 3 and let X be a normal
projective threefold compactifying M with D := X \M . Let M̃ := BlqX \ D̃ be a half-point
attachment to M of (b, 1)-type (Definition 2.1.7). Then SH∗(M̃) ∼= SH∗(M).

Proof. Let M be a complex affine variety of dimC = 3 and let X be a normal projective
threefold compactifying M with D := X \M . We choose a hyperplane divisor Z = (f) with
D = (f) + D′ and choose a smooth point q ∈ Z ∩ (X \ D′). Since dimCM = 3 ≥ 2, we
can move the point q along smooth points on Z to q′ the smooth part of Z ∩ F , where F
is the closure of a smooth fiber of p in M . The resulting Liouville domains are isomorphic.
Let M̃ := BlqX \ (D̃′ ∪ Z̃) be a half-point attachment to M of (b, k)-type (Definition 2.1.7).
By lemma 2.1.4, there exist symplectic convex Lefschetz fibrations p̃ : M̃ → C, p : M → C
so that p is subfibration of p̃ and all the singularities of p̃ are contained in p. Therefore, by
lemma 3.1.2, their symplectic cohomologies are isomorphic.

3.3.4 Vanishing Symplectic Cohomology from Stably-Displaceability

The same idea of vanishing result on relative symplectic cohomology for stably displaceable
compact subsets of a closed symplectic manifold in [Theorem 5.12, [90], [127]] works for
compact subsets of a completed Liouville domain. A subset Y of a symplectic manifold
(M,ω) is called to be Hamiltonian displaceable if there is a Hamiltonain symplectomorphism
ϕ satisfying ϕ(Y) ∩ Y = ∅. A subset Y ⊂ M is called to be stably displaceable if Y × S1 ⊂
(M × T ∗S1, ω + dσ ∧ dτ) is Hamiltonian displaceable, where (σ, τ) ∈ R× S1 ∼= T ∗S1.

Proposition 3.3.16 ([90]). If a compact subset Y ⊂M is stably-displaceable by Hamiltoni-
ans on M × T ∗S1, then SH∗(Y ⊂M) = 0.

Proof of Proposition 3.3.16. Let Kt be a a Hamiltonian on M × T ∗S1 which is cylindrical
at infinity and displace small neighborhood of V . Let Ht be a lower-semi-continuous admis-
sible time-dependent Hamiltonian. Denote ϕKt (resp. ϕHt) the one-parameter family of the
Hamiltonian vector field XKt (resp. XHt) of Kt (resp. Ht). We need the following lemmas
that we provide proofs below.

Lemma 3.3.17 (Proposition 3.3.2, [127]). There exist an isomorphism of relative symplectic
cohomologies after tensoring with the Novikov field,

H∗
(
telλ◦ lim←−

R→∞
◦telf (CF∗(Kt+Ht◦ϕ−1

Kt
)⊗ΛR)

)
⊗Λ ∼= H∗

(
telλ◦ lim←−

R→∞
◦telf (CF∗(Ht◦ϕ−1

Kt
)⊗ΛR)

)
⊗Λ.

Lemma 3.3.18 (Proposition 3.3.3, [127]). For any time-dependent Hamiltonian diffeomor-
phism ϕKt on M ,

H∗
(
telλ ◦ lim←−

R→∞
◦telf (CF∗(Ht ◦ ϕ−1

Kt
)⊗ ΛR)

)
∼= H∗

(
telλ ◦ lim←−

R→∞
◦telf (CF∗(Ht)⊗ ΛR)

)
.

Since Kt stably-displaces small neighborhood of V , there is no fixed point of ϕKt+Ht◦ϕ−1
Kt

=

ϕKt ◦ϕHt . Therefore, H
∗
(
telλ ◦ lim←−R→∞

◦telf (CF∗(Kt+Ht ◦ϕ−1
Kt
)⊗ΛR)

)
⊗Λ = 0. By lemmas
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3.3.17, 3.3.18,

SH∗(Y× S1 ⊂M × T ∗S1) = H∗
(
telλ ◦ lim←−

R→∞
◦telf (CF∗(Ht)⊗ ΛR)

)
⊗ Λ

∼= H∗
(
telλ ◦ lim←−

R→∞
◦telf (CF∗(Ht ◦ ϕ−1

Kt
)⊗ ΛR)

)
⊗ Λ

∼= H∗
(
telλ ◦ lim←−

R→∞
◦telf (CF∗(Kt +Ht ◦ ϕ−1

Kt
)⊗ ΛR)

)
⊗ Λ = 0.

By the Künneth formula (Section 4.3, [126]), SH∗(Y ⊂M) ⊂ SH∗(Y×S1 ⊂M×T ∗S1) =
0.

Proof of Lemma 3.3.17. Let us explain the idea of [Proposition 3.3.2, [127]] for readers’
convenience. K + H ◦ ϕ−1

K and H ◦ ϕ−1
K are two acceleration data for Y satisfying that

K+H ◦ ϕ−1
K ≤ H ◦ ϕ−1

K (We can assume that K ≤ 0). Denote H∨ := K +H ◦ ϕ−1
K = {H∨

• }
and H Î := H ◦ ϕ−1

K = {H Î

• }. Such two acceleration data give a map of 1-rays

CF ∗(H∨
1 ) CF ∗(H∨

2 ) CF ∗(H∨
3 ) · · ·

CF ∗(H Î

1 ) CF ∗(H Î

2 ) CF ∗(H Î

3 ) · · · .

And we have an induced map

H∗
(
telλ ◦ lim←−

R→∞
◦telf (CF∗(H∨)⊗ ΛR)

)
⊗ Λ→ H∗

(
telλ ◦ lim←−

R→∞
◦telf (CF∗(H Î )⊗ ΛR)

)
⊗ Λ.

Since
(
limH∨)−1

(∞) =
(
limH Î

)−1
(∞), we can choose infinite strictly monotone sequence

n(i) andm(i) of positive integer in the indexing set of sequences so that H∨
i ≤ H Î

i ≤ H∨
n(i) ≤

H Î

m(i). We have maps of 1-rays for each slope λ,

CF ∗(H∨
1 ) CF ∗(H∨

2 ) CF ∗(H∨
3 ) · · ·

CF ∗(H Î

1 ) CF ∗(H Î

2 ) CF ∗(H Î

3 ) · · ·

CF ∗(H∨
n(1)

) CF ∗(H∨
n(2)) CF ∗(H∨

n(3)) · · ·

CF ∗(H Î

m(1)) CF ∗(H Î

m(2)) CF ∗(H Î

m(3)) · · · ,

so we have the induced canonical map

H∗
(
telλ ◦ lim←−R→∞

◦telf (CF∗(H∨)⊗ΛR)
)
⊗Λ→ H∗

(
telλ ◦ lim←−R→∞

◦telf (CF∗(H Î )⊗ΛR)
)
⊗

Λ→ H∗
(
telλ ◦ lim←−R→∞

◦telf (CF∗(H∨)⊗ ΛR)
)
⊗ Λ. Therefore, we get an isomorphism.
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Proof of Lemma 3.3.18. The isomorphism is defined by relabeling all choices by the Hamil-
tonian diffeomorphism preserving the structure of being cylindrical at infinity [Proposition
3.3.3.(3), [127]].

McLean proved that any compact subvariety of a Kähler manifold of positive codimension
is stably displaceable by h-principle [Proposition 6.20, Corollary 6.21, [90]]. By proposition
3.3.16 and 3.2.7, we have the following.

Proposition 3.3.19. [90] [126] Let M be an affine variety and Y ⊂M a hypersurface. We
can choose a small tubular neighborhood Y of Y ∩M inside M that is stably displaceable and
a tubular neighborhood Yc of M \Y satisfying that ∂Y∩∂Yc = ∅ and Y ∩Yc = ∅. Therefore,
SH∗(Y ⊂M) = 0 and SH∗(Yc ⊂M) ∼= SH∗(M ⊂M)
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Chapter 4

The Measures and The Main Criteria

4.1 Definition of Measures

From a long exact sequence of symplectic cohomology:

· · · → SH∗−1(M) SH∗−1
+ (M) H∗(M) SH∗(M)→ · · · .δ ι

We define the measure and explain properties as follows.

Definition 4.1.1. ℓ(M) := min{deg([α]) : [α] ∈ H∗(M) with [α] = δ(γ) for some 0 ̸= γ ∈
SH∗−1

(ϵ,∞)(M)}.

Given two Liouville domains M and N , define the end-connected sum M#eN by attach-
ing a 1-handle to points p ∈ ∂M , q ∈ ∂N in the boundary, respectivley. ThenM#eN become
a Liouville domain [Theorem 2.10, [83]]. Moreover, SH∗(M#eN) ∼= SH∗(M)× SH∗(N) as
rings for complex dimension greater than 1 [Theorem, 2.17, [83]]. From the following diagram,

0 SH∗
+(M) SH∗

+(M#eN) SH∗
+(N) 0

0 H∗+1(M,∂M) H∗+1(M#eN, ∂(M#eN)) H∗+1(N, ∂N) 0,

Proposition 4.1.2. For the end-connected sum M#eN of two Liouville domains M and N ,
ℓ(M#eN) = min{ℓ(M), ℓ(N)}.

By the Künneth formula,

Proposition 4.1.3. ℓ(M ×N) = min{ℓ(M), ℓ(N)}

Example 4.1.4 (4.1.10). Let ϕ : M → M be a compact-supported symplectomorphism on
a Liouville domain (M,ω) whose support is contained in the interior of M . Assume that
ℓ(M) = ∞. Let M⋑k be a k-handle attaching on M . Φ be an extension of ϕ to M⋑k by
identity on attached locus. Denote C∗⋊ϕM := (R×R×M)/Z · (s, θ, x) ∼ (s+1, θ, ϕ(x)) the
symplectic mapping cylinder of ϕ : M → M . Then for any k < dimCM , SH∗(C∗ ⋊ϕ M) ∼=
SH∗(C∗ ⋊Φ (M⋑k)) ∼= SH∗((C∗ ⋊ϕM)⋑k+1) but ℓ(C∗ ⋊ϕ (M⋑k)) = min{k + 2, ℓ(C∗ ⋊ϕM)},
ℓ((C∗ ⋊ϕ M)⋑k+1) = min{k + 1, ℓ(C∗ ⋊ϕ M)}.

We can extend the usual symplectic cohomology SH∗(M) to the twisted symplectic
cohomology SH∗(M ; Λβ): symplectic complexes have the same generators with Novikov field
Λ as a coefficient ring. But, the differential map is twisted by closed 2-form ξ onM . It means
that the differential map remember the ”area” of Floer cylinder with respect to ξ in [108].
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We also consider symplectic cohomology bulk-deformed by homology classes in [125], [120].
There exists a long exact sequence [Lemma 8.1, [110]],

· · · → SH∗−1(M ; Λβ)→ SH∗−1
+ (M ; Λβ)

δ−→ H∗(M ; Λβ)
ι−→ SH∗(M ; Λβ)→ · · ·

The cotangent bundle (T ∗P1, ωstd) over P1 is C-uniruled but ℓ(T ∗P1) = 2. On the other
hand, twisted symplectic cohomology SH(T ∗P1,ΛωI

) vanishes by Ritter in [109]. So, by
considering the minimum of ℓ(M,ω) over all the twisted cohomolgy, we get stronger measures
as follows.

Definition 4.1.5. 1. ℓ(M ; Λβ) := min{deg([α]) : for [α] ∈ H∗(M ; Λβ) with [α] = δ(γ)

for some 0 ̸= γ ∈ SH∗−1
+ (M ; Λβ)}.

2. ℓ(M ; Λ2) :=min{ℓ(M ; Λβ) : for all β ∈ image(H1(LM)← H2(LM × S1)← H2(M))}

3. ℓ(M ; Λall) :=min{ℓ(M ; Λβ) : for all bulk deformation by β ∈ H∗(M)}.

Corollary 4.1.6. If ℓ(M ; Λβ)or ℓ(M ; Λ2) = 2k or 2k + 1 (0 ≤ k < n), then M admits a
uniruled subvariety of dimension n− k.

Corollary 4.1.7. If ℓ(M,Λ2) = 0, then M is C-uniruled.

Example 4.1.8. [109] SH(T ∗P1,ΛωI
) = 0 implies ℓ(T ∗P1,Λ2) = 0. Therefore, ℓ(M,Λ2) is a

stronger quantitative measure than ℓ(M) since ℓ(T ∗P1, ωstd) = 2.

When we extend the coefficient ring to ΛMori using the cone of effective curves, the Mori
cone, of H2(X), we could get more precise results in log-birational geometry, that is a gen-
eralization of Pascaleff’s work on log Calabi-Yau surfaces in [103]. We will explain how to
compute ℓ(M,ΛMori) using homological mirror symmetry and cohomology from tropicaliza-
tion in a subsequent paper.

Let ϕ : M → M be a Liouville diffeomorphism on a Liouvlle domain (M,ω). Denote
C∗⋊ϕM := (R×R×M)/Z · (s, θ, x) ∼ (s+1, θ, ϕ(x)), the symplectic mapping cylinder of ϕ,
[89]. Denote Σ⋊ϕM := {(R× S1 \Z× {1})×M}/(s, θ, x) ∼ (s+ 1, θ, ϕ(x)) the symplectic
mapping torus of ϕ, [(1-5), [61]]. We can define similar measurments ℓ for symplectic mapping
cylinder/tori.

Example 4.1.9. For the identity map ϕ = idM on M ,

1. C∗⋊idM = C∗×M , where C∗ := C\{0}. By the Künneth formula, SH∗(C∗⋊idM) ∼=
SH∗(C∗)⊗ SH∗(M). Therefore, ℓ(C∗ ⋊id M) = min{ℓ(C∗) =∞, ℓ(M)} = ℓ(M).

2. Σ⋊id M = Σ1,1 ×M , where Σ1,1 := T2 \ {a point}, a once-punctured torus. Similarly,
ℓ(Σ⋊id M) = ℓ(M).

Example 4.1.10. Let ϕ : M → M be a Liouville diffeomorphism on a Liouville domain
(M,ω). Assume that ℓ(M) =∞. LetM⋑k be a k-handle attaching on ∂M . Φ be an extension
of ϕ to M⋑k by identity on attached locus. Then for any k < dimCM , SH∗(C∗ ⋊ϕ M) ∼=
SH∗(C∗ ⋊Φ (M⋑k)) ∼= SH∗((C∗ ⋊ϕM)⋑k+1) but ℓ(C∗ ⋊ϕ (M⋑k)) = min{k + 2, ℓ(C∗ ⋊ϕM)},
ℓ((C∗ ⋊ϕ M)⋑k+1) = min{k + 1, ℓ(C∗ ⋊ϕ M)}.
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Let M be a Liouville domain. Recall that SH∗(M) = ⊕g∈H1(M)SH
∗
g (M) is a H1(M)-

graded algebra with the pair-of-pants product ·p.p : for γ1 ∈ SH∗
g1
(M), γ2 ∈ SH∗

g2
(M),

γ1 ·p.p γ2 ∈ SH∗
g1+g2

(M). The pair-of-pants product counts three-punctured spheres with two
positive periodic orbits and one negative periodic orbit as asymptotic orbits. So if the pair-
of-pants product of two periodic orbits is the unit e of the symplectic cohomology, which is
the Poincaré dual of the fundamental class [M ], then the same idea gives us the following.

Definition 4.1.11. ℓp.p(M) := min{deg α : ∃α ̸= 0 ∈ H∗(M) and ∃g ∈ H1(M) so that α =
γ1 ·p.p γ2 for some γ1 ∈ SH∗

g (M), γ2 ∈ SH∗
−g(M)}.

Example 4.1.12. If SH∗(M) has an element γ ̸= 0 satisfying γk = [M ], then ℓp.p(M) = 0.

Example 4.1.13. For the mapping cylinder of the identity map, ℓp.p(C∗ ⋊idM) = 0. More-
over, for a Liouville diffeomorphism ϕ :M →M , ℓp.p(C∗ ⋊ϕ M) ≥ ℓp.p(C∗ ⋊id M).

Definition 4.1.14. ℓp.p(ϕ) := min{k : ℓp.p(C∗ ⋊ϕk M) = 0}, where ϕk := ϕ ◦ · · · ◦ ϕ, kth
iteration of ϕ.

Example 4.1.15. If ϕk = id for some k, then lp.p(ϕ) ≤ k.

Example 4.1.16. Define f : Cn+1 → C to be f(z1, z2, · · · , zn+1) := zk11 + · · · + z
kn+1

n+1 with
an isolated singular point at 0. Let Sϵ be the sphere of radius ϵ centered at 0 and Lf :=
Sϵ ∩ f−1(0). Let ϕ : f−1(δ) → f−1(δ) be a Milnor monodromy map. Then ϕl.c.m(ki) = id.
Therefore, lp.p(ϕ) ≤ l.c.m(ki).

4.2 Main Criteria

The main theorem of this paper is the following. LetM be a smooth affine variety of complex
dimension n together with a trivialization of some power of its canonical bundle (viewed as
a complex vector bundle, rather than a holomorphic bundle). Let X be a smooth projective
variety compactifying M with an ample1 divisor D.

Theorem 4.2.1 (1.0.1). If a cohomology class [℧] ∈ Hm(M) be in the image of the map δ
for m = 2k or 2k + 1 for some k ∈ N. Then there exists a subvariety Ξ℧ ⊂M of dimension
at least n− k satisfying the following properties:

1. Ξ℧ is C-uniruled. In other words, for each p ∈ Ξ℧, there exists a non-constant algebraic
map vp : C→ Ξ℧ whose image contains p.

2. For any exhausting finite type Morse function f on X \D, Ξ℧ set-theoretically intersect
with a unstable submanifold ℧f of f representing [℧] ∈ Hm(M) ∼= HMm(M, f).

1Symplectic cohomology of a complement of a nef divisor could be defined but the intersection number
with some curve would be zero.
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4.3 Proof of the Main Theorem

4.3.1 J-holomorphic (k,E, [℧])-uniruledness

In this subsection, as a generalization of the definition for a Liouville domainM being (k,E)-
uniruled in [87], we will introduce a definition for a Liouville domain M to be (k,E, [℧])-
uniruled, roughly saying, M is (k,E)-uniruled anchored at a unstable submanifold of any
Morse function, representing a cohomology class [℧]. Denote Ω a stable submanifold repre-
senting the Lefschetz dual of [℧], and Ω ↪→M , a r-pseudocycle. Denote [Ω] the corresponding
integral homology class by [Theorem 1.1 [135]].

Definition 4.3.1 (Definition 2.2, [87]). Let k > 0 be an integer, and let E > 0 be a real
number. We say that a Liouville domain M is (k,E)-uniruled, if

• for every convex dθM -compatible almost complex structure J on M and every point
x ∈ int(M) of the interior of M , where J is integrable on a neighborhood of x, there is
a proper J-holomorphic map u : Σ→ int(M) from a genus 0 Riemann surface Σ, with
the image of u, denote im(u), contains x,

• the rank of H1(Σ,Q), rkH1(Σ,Q) ≤ k − 1, and

• the energy of u,
∫
S
u∗dθM ≤ E.

We generalize the notion of (k,E)-uniruledness to (k,E, [℧])-uniruledness that has coho-
mology constraints.

Definition 4.3.2. Let k > 0 be an integer, E > 0 be a real number, [℧] ∈ Hk(M). A
Liouville domain M is (k,E, [℧])-ruled, if

• for every convex tamed almost complex structure J onM , and for every Morse function
f :M → R with ∂M as its highest regular level set and for a unstable submanifold ℧f

of f representing [℧], there is a proper J-holomorphic map u : S → int(M), where S
is a genus 0 Riemann surface, with image(u) ∩ ℧f ̸= ∅,

• rkH1(S,Q) ≤ k − 1, and

• the energy of u is at most E,
∫
S
u∗ω ≤ E.

For a J-holomorphic map u : S → int(M), we denote [u]∩℧ ̸= ∅ if for any Morse function
f :M → R and its unstable submanifold ℧f representing ℧, image(u) ∩ ℧f ̸= ∅.

Lemma 4.3.3. [Lemma 3.2, Proposition 3.1, [87]] Let N , L be Liouville domains such that
N is a codimension 0 symplectic submanifold of L with the inclusion map ι : N → L is
a symplectic embedding and a homotopy equivalence. If L is (k,E, [℧])-uniruled, then the
submanifold N is also (k,E, ι∗[℧])-uniruled.

Proof. (k,E)-uniruledness in [87] will be reviewed for reader’s convenience. Since ι : (N, θN) ↪→
(L, θL) is a symplectic embedding, θN − θL|N is a closed 1-form so [(θN − θL)|N ] ∈ H1(N ;R).
Since ι is a homotopy equivalence, ι∗ : H1(L;R)→ H1(N ;R) is an isomorphism. So there is
a closed 1-form η on L so that ι∗η = [θN−θL|N ]. Define θ′ := θL+η, then [θ′|N−θN ] = 0 and
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dθ′ = dθL. We can choose a convex almost complex structures JN , JL on N,L, respectively
by Lemma 1. Since the space of all almost complex structures compatible with a symplectic
form is contractible, we can choose a compatible almost complex structure J ′ on L such that
J ′ = JL near ∂L and J ′|N = JN .

We can choose a collar neighborhood (1−ϵ, 1]×∂N of ∂N insideN such that dθN◦JN = dr
where r is a coordinate of (1− ϵ, 1]. For R ∈ (1− ϵ, 1), define NR := N \ (R, 1]×∂N . Assume
that L is (k,E)-uniruled, then there is a proper J-holomorphic map u : Σ→ Int(L) passing
through p of finite energy at most E. Show that H1(u

−1(int(N))) → H1(Σ) is injective.
Since H1(u

−1(int(N)) is the direct limit of H1(u
−1(NR)) as R→ 1, it is enough to show that

H1(u
−1(NR))→ H1(Σ) is injective. For generic R, ∂NR is transverse to u and SR := u−1(NR)

is an arithmetic genus 0 compact nodal Riemann surface with boundary. By the maximum
principle, every irreducible component S ′

1, · · · , S ′
l of closure S̄R of SR is noncompact. Suppose

that |H1(u
−1(int(N)))| > k− 1 then the genus of Σ should be greater than 1, contradiction.

So |H1(u
−1(int(N)))| ≥ k − 1. N is (k,E)-uniruled.

Let us show that N is (k,E, ι∗[℧])-uniruled. Let f be a Morse function on N with ∂N as
the highest regular level set of it. Choose a Morse function h on M satisfying the following.

• h|N = f ,

• h|M\N ≥ max (f), and

• ∂M is the highest regular level set of h.

Then the descending manifolds of f and h representing [℧] and ι∗[℧] respectively are the
same.

Lemma 4.3.4. [Theorem 2.3, [87]] Let (N, θN), (L, θL) be two Liouville domains so that the

completions N̂ , L̂ are symplectomorphic, under ϕ : N̂ → L̂. If N is (k,E, [℧])-uniruled, then
∃E′ > 0 so that L is (k,E′, ϕ∗[℧])-uniruled.

Proof. By Lemma 1.1 in [16], we can assume that ϕ is an exact syplectomorphism. ϕ∗θL =

θN +df for some function f . Let Φt : N̂ → N̂ be the time t flow of the XθN , where ιXθN
dθN =

dθN . Near infinty, N has the cylindrical coordinate (r, θ) so that the vector field XθN = r ∂
∂r
.

So there exists T > 0 with ϕ−1(L) ⊂ ΦT (N) as a codimension 0 exact submanifold. Since
the Liouville domain ΦT (N) is (k, eTE,Φ∗

T [℧])-uniruled, ϕ−1(L) is (k, eTE, ι∗Φ∗
T [℧])-uniruled

by Lemma 4.3.3. L is also (k,E′, ϕ∗([℧]))-uniruled.

Corollary 4.3.5. [Corollary 3.3, [87]] Let N , L be two Liouville deformation equivalent Li-
ouville domains under ϕ. If N is (k,E, [℧])-uniruled, then ∃E′ > 0 so that L is (k,E′, ϕ∗([℧]))-
uniruled.

Proof. Their completions N̂ , L̂ are symplectomorphic.
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4.3.2 J-holomorphic (k,E, [℧])-uniruled M

⇒ Such a M

The sandwich theorem 2.1.1 says that for any affine variety M , we can always find two
Liouville equivalent Liouville domains M,M with M ↪→M ↪→M , where two inclusions are
exact symplectic embeddings of a codimension 0 submanifold and a homotopy equivalence.
As a corollary of corollary 4.3.5,

Proposition 4.3.6. If M is J-holomorphic (k,E, [V ])-uniruled, then so is M .

The following lemma is used to prove the number of boundary components of rational
curve in F \ E is not increasing.

Lemma 4.3.7. [Lemma 4.5, [87]] Let J be an almost complex structure on X which agrees
with the standard complex structure on X near D. Let u : S → X be a J-holomorphic
map where S is a compact nodal Riemann surface so that no component of S maps into D
entirely. Let f : M → R be a plusisubharmonic function associated to an ample line bundle
L on X where a section s of L have s−1(0) = D. Define u′ := u|S∩u−1(M). Then there is a
small neighborhood ND of D such that f ◦ u′ has no critical points on (f ◦ u′)−1(ND ∩M).

Proof. of Lemma 4.3.7 We refer [87].

4.3.3 J-holomorphic (k,E, [℧])-uniruled M ⇒ Polynomial maps (P1 \ Γ)→M

Using degeneration to the normal cone, McLean showed that J-holomorphic (k,E)-uniruledness
implies algebaic k-uniruledness in [87]. In this section, we will generalize Theorem 2.5 in [87]
for (1,E, [℧])-uniruledness to get algebraic stratified-uniruledness of an affine variety M . Let
us state the main propositions as follows.

Proposition 4.3.8. [87] If M ⊂ M ⊂ M is (1,E, [℧])-uniruled, then there exists a non-
constant polynomial map v̄ : C → M with image(v̄) ∩ ℧ ̸= ∅ where ℧ is the closure of ℧ in
M .

More generally,

Proposition 4.3.9. [Lemma 4.6, Theorem 2.5, [87]] If M ⊂M ⊂M is (k,E, [℧])-uniruled,
then there exists a non-constant polynomial map v̄ : P1 \ Γ → M with image(v̄) ∩ ℧ ̸= ∅,
where Γ is the set of at most k distinct points in P1.

The proof in [87] will be provided for reader’s convenience. The two main ingredients
are McLean’s deformation-to-the-normal-cone and Fish’s target-local Gromov compactness
results on a sequence of J−holomorphic disks with boundary in a family of symplectic
manifolds.

Let v : C ∼= P1 \ {∞} →M is a non-constant proper J-holomorphic map of finite energy
with [v : C→M ] ∩ [℧] ̸= ∅.
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Degeneration to the Normal Cone

We review the degeneration-to-the-normal-cone construction by McLean, [87]. The projective
variety X can be embedded into PN so that X \M = X ∩PN−1 is an effective ample divisor
of X. Define,

• ∆ := {∞} × PN + P1 × PN−1, an ample divisor of P1 × PN .

• Bl : Bl{0}×PN−1P1 × PN → P1 × PN , the blow up of P1 × PN along {0} × PN−1.

• ∆̃ := Bl−1(∆).

• E := Bl−1({0} × PN−1).

• π := pr1 ◦Bl : Bl{0}×PN−1P1 × PN → P1.

• ∆∞ := d · ∆̃ + (d− 1) · π−1(∞).

The fiber π−1(0) = F +E is linearly equivalent to π−1(∞). For d≫ 0, d · ∆̃ + (d− 1) ·E =

d · ∆̃ + (d − 1) · π−1(∞) − (d − 1) · F is ample in Bl{0}×PN−1P1 × PN . The associated line
bundle Ld·∆̃+(d−1)·E on Bl{0}×PN−1P1 × PN admits a metric || · || where the curvature form is

a positive (1, 1)-form inducing a symplectic form on X.

• Let s be a meromorphic section of it with s−1(0)− s−1(∞) = d · ∆̃ + (d− 1) · E.

• ϕ := (−log||s||)−1 satisfying ϕ|supp(−(d−1)·F )=F = −∞, ϕ|supp∆∞ =∞.

• Nc := (−log||s||)−1((−∞, c]) ∪ F , a compact submanifold of Bl{0}×PN−1P1 × PN \
supp(∆∞) for generic c≫ 1.

• P̃1 ×X := Bl−1(P1 ×X)

• πX := π|
P̃1×X

• Mx := π−1
X (x) \ supp(∆∞)

ThenMx is isomorphic toM when x ̸= 0 and (Mx,−ddclog||s||)’s are symplectomorphic.

Note that P̃1 ×X \ (supp(∆∞) ∪ E) ∼= C×M .
Choose a sequence of numbers xi ∈ C\{0} conversing to 0 as i→∞. Choose a sequence

of Morse functions fxi
on Mxi

for each i, satisfying that all the Morse critical points are
contained in Nc ∪ Mxi

and C0-converging to a Morse function f0 on F ∈ M0 (Choose a

Morse function f on M and pull it back to P̃1 ×X \ ((supp(∆∞) ∪ E)) then restrict to
each fiber over x1). Then, since Mx are isomorphic to M , for a given cohomology class
[℧] ∈ Hm(M), we have a sequence of unstable submanifolds ℧fxi

of fxi
converging to ℧fo

representing [℧]. For each i, choose a Liouville domain Nxi
which is an exact codimension

0 symplectic submanifold of Mxi
containing Nc ∩ Mxi

and the embedding Nxi
↪→ Mxi

is
a homotopy equivalence. Since Mxi

is (k, λ,℧)-uniruled, Nxi
is (k, λ′,℧)-uniruled for some

λ′ > 0 by lemma 4.3.3.
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Figure 4.1: Degeneration to the normal cone

For each i, there is a proper J-holomorphic map uxi
: Sxi

→ int(Nxi
), where Sxi

is at
most (k − 1)-punctured sphere, int(Nxi

) is an interior of Nxi
and uxi

has energy at most
λ′. uxi

|u−1
xi

(int(Nc∩Mxi ))
’s are properly embedded holomorphic curves inside the interior of the

compact manifold Nc because almost complex structures become integrable in int(Nc∩Mxi
).

Let Q := Bl{0}×PN−1P1 × PN \ supp(∆∞) be a quasi-projective variety. Then Nxi
⊂

π|−1
Q (xi) and uxi

: Sxi
→ int(Nxi

) ⊂ π|−1
Q (xi). Let V := Q ∩ P̃1 ×X be a closed variety.

Choose real compact codimension 0 submanifolds with boundaries N1, N2 of Nc with F ⊂
int(N1) ⊂ N1 ⊂ int(N2) ⊂ N2 ⊂ Nc. After perturbing, we can assume that ∂N1, ∂N2 are
transverse to Uxi

for all i.

Target-local Gromov Compactness

To get a rational curve on an affine variety from a sequence of J-holomorphic disks in the
family of Liouville domains, Fish’s generalized Gromov compactness result will be used. Se-
quences of J-holomorphic curves with an unbounded number of free boundaries in families
of degenerating target manifolds without uniform boundedness of energy still have a con-
vergent subsequence of sub-J-holomorphic curves when we carve the target out near the
boundary of target properly and restrict J-holomorphic curves to the preimage of carved
target (target-local) [41].

Proof. of Proposition 4.3.9
By the Gromov-Fish compactness theorem [41] to N2 and uxi

|u−1
x (N2)

, we have a sequence
of compact subcurves Si ⊂ Sxi

satisfying

1. uxi
(∂Si) ⊂ N c

1 .

2. There is a compact surface S with boundary and a sequence of diffeomorphisms ai :
S → Si such that uxi

◦ ai is C0-converges to some continuous map v′ : S → π−1(0) =
F ∪ E which is smooth away from some union of curves Γ in intS (decoration in the
symplectic field theory) and u′xi

◦ ai C∞
loc-converges to v

′ outside of Γ.

3. The map v′ is equal to v′′ ◦ ψ where ψ : S → S is a continous surjection to a nodal
Riemann surface S with boundary and a diffeomorphism onto its image away from Γ
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and v′′ is a holomorphic map from S. The map ψ sends the curves Γ to the nodes of S
and the map v′′ sends ∂S to the complement of N1.

Since v′′(∂S) ⊂ N c
1 , F ⊂ int(N1), v

′′(S) ∩ ℧f0 ̸= ∅ and ℧fxi
converges to ℧f0 ⊂ F , there is

an irreducible component K ∼= P1 of S where v′′ maps K to F . Choose v = v′′|K : P1 → F .
Then v is an holomorphic map from P1 to a projective space F , so it is an algebraic map
satisfying v(P1) ∩ [℧f0 ] ̸= ∅. Show that |v−1(F ∩ E)| ≤ k. By Lemma 4.3.7, a exhausting
plurisubharmonic function f v′′(K) is smooth outside of a compact set. So we can choose
C ≫ 1 so that f−1(C) is transverse to v and (f ◦ v)−1(C) is a disjoint union of m circles
and (f ◦ v)−1((−∞, C]) is connected for C ≫ 1. Since the maps u′xi

◦ ai C∞
loc-converges to v

′

outside of Γ, uxi
◦ ai is C0-converges to some continuous map v′, the connected component

S ′
i if (f ◦ uxi

)−1((−∞, C]) passing through ℧xi
has m boundary components for i ≫ 1. By

Lemma 4.3.3, S ′
i has at most k boundary circles for i ≫ 1. Therefore, v−1(E) is a union

of at most k points. Therefore, we get a non-constant algebraic map v̄ : C → M with
[v̄ : C→M ] ∩ [℧] ̸= ∅.

4.3.4 Family of Rational Curves ⇒ Algebraic Variety

We will use Grothendieck’s construction on Hilbert schemes to get a scheme parametrizing
a family of rational curves. Grothendieck’s philosophy was to identify a scheme X with the
functor represented by X, from the category of commutative rings to the category of sets,
defined by R 7→ Hom(SpecR,X) [55], [69], [79]. Let us recall some theorems in [69] without
proof.

Definition 4.3.10 (Definition I.1.1, [69]). Let S be a scheme and F a contravariant func-
tor F : {schemes/S} → {sets}. A pair (X(F ), U(F )) of a scheme X(F )/S and an ele-
ment U(F ) ∈ F (X(F )), called the universal element, represents F if for every S-scheme Z,
HomS(Z,X(F ))→ F (Z/S), defined by g 7→ g∗U(F ), is an isomorphism.

Definition 4.3.11 (Definition I.1.3, [69]). ] Let X/S be a scheme. The Hilbert functor
Hilb(X/S) : {schemes/S} → {sets} is defined by

Hilb(X/S)(Z) :=


Subschemes
V ∈ X ×S Z
proper,flat/Z


Proposition 4.3.12 (Theorem I.1.4, [69]). Let X/S be a projective scheme, O(1) a relatively
ample line bundle and P a polynomial. The functor HilbP (X/S) is represented by a morphism
UnivP (X/S)

u−→ HilbP (X/S) where UnivP (X/S) ⊂ X ×S HilbP (X/S).

Definition 4.3.13. Let X/S and Y/S be schemes. Hom(X, Y ) is the functor defined by
HomS(X, Y )(T ) := {T -morphisms : X ×S T → Y ×S T}

Proposition 4.3.14 (Theorem I.1.10, [69]). Let X/S and Y/S be projective schemes over
S. Assume that X is flat over S. Then HomS(X, Y ) is represented by an open subscheme
HomS(X, Y ) ⊂ Hilb(X ×S Y/S).

By choosing S = Spec(C), X = P1, F a scheme over Spec(C),

42



Corollary 4.3.15. 1. A functor HomSpec(C)(P1, F ) =

{
T 7→

(
P1 × T F × T

T

pr

f

pr

)}
is represented by an open subscheme Hom(P1, X) over Spec(C)

2. Homnonconstant
Spec(C) (P1, F ) := {f |P1×{y} is non-constant ∀y ∈ Y } = Hom(P1, F )\ [F ], where

[F ] ∈ Hom(P1, F ) ⊂ Hilb(P1 ×Spec(C) F ) ∼= Hilb(F ) is the point corresponding to F .

Proposition 4.3.16 (Def.-Prop.II.2.11 [69]). RatCurvesnd(X/S) is quasi projective over S
for every d.

Since the evaluatation map ev0 : Hom
nonconstant
Spec(C) (P1, F )→ F is a morphism defined by

ev0

 P1 × T F × T

T

pr

f

pr

 = (f |{0}×T : T → F ) ∈ Hom(T, F )

is represented by a variety,

Proposition 4.3.17. The image of the evalutatio map ev0 : Hom
nonconstant
Spec(C) (P1, F )→ F is a

countable union of subvarieties.

4.3.5 Proof of the Main Theorem

We are ready to prove our main theorem. Let M be an affine variety with the standard
symplectic structure and a complex structure J . Suppose that [℧] ∈ Hm(M) be in the image
of the map δ, where m = 2k or 2k + 1 for some k ∈ N.

· · · → SHm−1(M) SHm−1
+ (M) Hm(M) SHm(M)→ · · · .δ ι

By the correspondence theorem of Bourgeois-Oancea’s Morse-Bott symplectic cohomol-
ogy [Theorem 3.7, [17]], there exist a open-dense subset of the set of admissible pairs (H, J)
so that there exist a cascade (ν, v) ∈ MA

1 (γ, q℧;H, {fx}, J), where ν is a Morse trajectory
limiting to a critical point q℧ of f and v is a J-holomorphic curve. Since J |intM is integrable,
v|intM is holomorphic. By the maximum principle, the number of boundary component of
v ∩M is 1.

For any J and any f , there exist a non-constant proper J-holomorphic map v : D→ M
of finite energy with image(v : D→M)∩℧f ̸= ∅ and ∂D ⊂ ∂M . Therefore, M is (1,E, [α])-
uniruled. By proposition 4.3.8, we get a polynomial map v̄ : C → M or a rational curve
¯̄v : P1 → X := M ∪ D with ¯̄v−1(D) = ∞ satisfying image(¯̄v : C → X) ∩ ℧α

f ̸= ∅. Then
by proposition 4.3.17, a family of all such rational curves(projective lines) forms a uniruled
subvariety Ξ of X. By Thom transversality for generic pair (f, g) of a Morse function on
X with metric g, Ξ intersect transversely with each Whitney strata of the closure of ℧α

f by

induction on the dimension. Therefore Ξ is of dimension at least n− k. Since each ¯̄v satisfies
¯̄v−1(D) = ∞, Ξ := Ξ ∩M is a C-uniruled subvariety of M of dimension at least n− k. We
are done.
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Chapter 5

Applications

In this chapter, we explain the applications of main theorems. Let M be a smooth affine
variety.

5.1 Main Application: Detect Uniruled Subvarieties

Corollary 5.1.1 (1.0.4). If ℓ(M) = 2k or 2k+ 1 (0 ≤ k < n), then M contains a 2(n− k)-
dimensional family of affine lines, where an affine line means the image of C in M under a
nonconstant rational map.

Corollary 5.1.2. If ℓ(M) = 0 or 1, any projective variety X compactifying M is uniruled.

Corollary 5.1.3. [134] If SH∗(M) = 0, then M is C-uniruled.

Proof. The long exact sequence 4.1 become 0→ SH∗
+(M)

δ−→ H∗+1(M)→ 0. So, P.D.[X] ̸=
0 and δ(P.D.[X]) ̸= 0 ⇒ ℓ(M) = 0 ⇒ M is C-uniruled.

Corollary 5.1.4. If SH∗(M,Λτβ) = 0 for some β ∈ H2(M), then M is C-uniruled.

Example 5.1.5. SH∗(Cn) ∼= SH∗({a point}) = 0 and Cn is C-uniruled.

Example 5.1.6. By theorem 3.3.5, flexible Weinstein domains are C-uniruled if they are
affine varieties.

Example 5.1.7. By the Künneth formula, SH∗(C × M) = 0 and, indeed, C × M is C-
uniruled.

From the proof of the main theorem,

Theorem 5.1.8. If ℓp.p(M) = 0, then M is C∗-uniruled.

Example 5.1.9. There are criteria for vanishing symplectic cohomology of the total space
of negative line bundles OPm(−n) over Pm, computations on symplectic cohomology of non-
compact toric Fano varieties. See the subsection [3.3.2].

Example 5.1.10. 1. (Theorem 6, [111]) LetM be the total space of line bundles L→ X
over closed symplectic manifold (X,ω). Assume that c1(L) = −n·ω for n > 0 (condition
for M to be convex at infinity). If < c1(TM), π2(M) >= 0, then SH∗(M) = 0.
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2. (Example, p.1043, [111]) Let X be a monotone closed symplectic manifold (X,ω),
c1(X) = λω for λ > 0. Let M be the total space of canonical line bundle KX over X.
Since c1(TM) = c1(TX) + c1(L) and c1(TX) = −c1(KX), SH

∗(M) = 0. Therefore, M is
C-uniruled.

3. Let X be a smooth projective variety. Assume that D is a divisor of X satisfying that
−KX −D is ample. Then SH∗(Tot((KX +D)|D → D)) = 0.

A projective variety is called to be rationally-connected if for a generic pair of two points
(x1, x2) ∈ X × X, there exist a rational curve P1 → X passing through x1, x2. Rationally-
connectedness of projective varieties is conjectured to be symplectic deformation invariant by
Kollár and it was proven in the case of dimension 3, [130], [124]. When a projective variety
X has a rationally-connected ample divisor, we can apply ℓ(X \M) to detect rationally-
connectedness as follow.

Corollary 5.1.11. Let X be a projective variety. Suppose that X has a rationally-connected
ample divisor D (each strata of D is rationally-connected) and l(X \ D) = 0. Then, X is
rationally-connected.

Corollary 5.1.12. Let X be a rationally-connected projective variety. Suppose that X has
rationally-connected ample divisor. Then ℓ(X \D) = 0.

Corollary 5.1.13. Let X be a projective variety with a rationally-connected ample divisor
D. If ℓ(X \D) = 0, then X is rationally-connected.

However, having a rationally-connected ample divisor is a very strong condition and it
is not known that every rationally-connected projective variety has a rationally-connected
ample divisor which was conjectured by Fano. 1

5.2 Variance of ℓ(M) under Symplectic Surgeries

Theorem 5.2.1. Let M be the associated Liouville domain obtained by intersection of M
and a large 2n-ball. Assume that M is of complex dimension equal to or bigger than 3.
Suppose that M is a connected Liouville domain with a Weinstein 1-handle attached, then
M is C-uniruled.

Proof. By lemma 2.1.1, given an affine variety M , we can construct two Liouville domains
M,L with M ↪→ M ↪→ L, where M,L are Liouville deformation equivalent. Suppose that
the associated Liouvile domain M of M is Weinstein 1-handles attached so that it has 1-
cycle representing a non-trivial cohomology class [α]. Since M,L are Liouville deformation
equivalent, we consider 0 ̸= [α] ∈ H1(L).

· · · → SH0(L) SH0
+(L) H1(L) SH1(L)→ · · ·

· · · → SH0(M) SH0
+(M) H1(M) SH1(M)→ · · ·

∼=

δL

CM,L
+

ιL

CM,L ∼=

δM ιM

1The author learned the conjecture from Jason Starr
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Since the cohomology classes of affine varieties are in even degree, CM,L([α]) = 0. So By
the commuting diagram, ιL([α]) = 0. By the exactness, there exist γ ∈ SH0

+(L) such that
δL(γ) = [α]. Therefore, ℓ(M) = l(M) = 1. By 1.0.4, M is C-uniruled.

More generally, in a category of Weinstein manifolds, we consider attaching flexible Wein-
stein handles in [131], [96], [24], [25], which does not change symplectic cohomology [Theorem
5.6, [16]]. Let us recall some definitions and theorems in Appendix below.

Theorem 5.2.2. Let W be a Weinstein manifold of dimRW = 2n with ℓ(W ) =∞. Suppose
that we have a Weinstein manifoldW⋑k, obtained by attaching flexible k-handles toW so that
rank Hk(W⋑k) > rank Hk(W ). Then ℓ(W⋑k) = 2n − k. Hence, if W⋑k is symplectomorphic
to an affine variety M , then M admits a C-uniruled subvariety of complex dimension n− k.

Proof. There is a exact triangle under the Legendrian surgery,

· · · → LH(⋑k)→ SH(W⋑k)→ SH(W )→ LH(⋑k)→ · · · ,

where ⋑k denotes a Weinstein cobordism of k-handle attachment. If ⋑k is flexible, then
LH(⋑k) = 0. Therefore, SH(W⋑k) ∼= SH(W ). However, Hk(W⋑k) > Hk(W ). We get
ℓ(W⋑k) = 2n − k. Moreover, if W⋑k is symplectomorphic to an affine variety M , then M
admits a C-uniruled subvariety of complex dimension n− k by the theorem 1.0.1.

Theorem 5.2.3. Let W be a Weinstein manifold of dimRW = 2n with ℓ(W ) = ∞. Sup-
pose that we have a Weinstein manifold W⋑k, obtained by attaching flexible k-handles to
W so that rank Hk(W⋑k) > rank Hk(W ). Let ϕ be a symplectomorphism on M and ϕ̃
be a symplectomorphism on W⋑k extending ϕ and being identity on the k-handles. Then
ℓp.p((W⋑k)ϕ) = 2n − k. Hence, if (W⋑k)ϕ is an affine variety, then (W⋑k)ϕ has C∗-uniruled
subvariety of complex dimension n− k.

Remark 5.2.4. To apply the theorem above for affine varieties, we need to understand
the condition when W⋑k is symplectomorphic to an affine variety. One of obstructions for a
Weinstein manifold to be an affine variety is the growth rate of symplectic cohomology in
[86].

5.2.1 Examples of Affine Varieties with Nontrivial ℓ(M)

We will construct affine varieties which have isomorphic symplectic cohomologies but non-
isomorphic (co)homologies. It leads us to construct birational affine varieties with distinct
quantities ℓ(M), i.e., with different stratification level of C-uniruledness. We use an algebraic
operation, called the Kaliman modification, which is also a symplecic end-connected sum.
First, let us work in dimCM = 3. Let D := {xyz = 0} ⊂ C3. Choose a smooth point, p1 :=
(1, 0, 0), p2 := (2, 0, 0) ∈ D. Let Bl{p1,p2}C3 be the blow-up of C2 at two distinct points p1, p2
and D̃ be the proper transform of D. Define K := Bl{p1,p2}C3 \ D̃, the Kaliman modification
of (C3, D, {p1, p2})[60]. Then the symplectic cohomologies of (C∗)3 = C3 \ D and K are

isomorphic by considering their Lefschetz fibration structures: SH∗(BlpM \ ˜(Z ∩M)) ∼=
SH∗(M \ Z) in case c1(BlpM \ ˜(Z ∩M)) = c1(M \ Z) = 0 [See 3.3.14]. On the other hand,
their topological structures are different. So we get non-trivial class P.D.[C2] ∈ H2(K) with
δ(P.D.[C2]) ̸= 0 ∈ SH3

+(K) from the following diagram.
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0 P.D.[C2] ̸= 0 0

· · · → SH1(K) SH1
+(K) H2(K) SH2(K)→ · · ·

· · · → SH1((C∗)3) SH1
+((C

∗)3) H2((C∗)3) SH2((C∗)3)→ · · ·

0 0 0 0

Therefore, ℓ(K) = 2 and K has real 4-dimensional family of affine lines, C2 indeed.

Theorem 5.2.5. For each n ≥ 3, there is an affine variety M2n
2 of dimCM = n with

ℓ(M2n
2 ) = 2.

Proof. We use the construction above. For any n ≥ 3, define Kn := Bl{p1,p2}Cn \ D̃n, the
Kaliman modification of (Cn, Dn, {p1, p2}), where Dn := {z1z2 · · · zn = 0} ⊂ Cn. Then
ℓ(Kn) = 2. Actually, ℓ(Km × (C∗)n−m) = 2. ℓ(Kn × Km) = 2 with dimC = n +m for any
n,m. In general,

ℓ

( k∏
i=1

Kni

)
= 2 with dimC

( k∏
i=1

Kni

)
=

k∑
i=1

ni.

5.3 Towards the Log Minimal Model Program

In this section, we provide some conjectures that would be applicable to the Log Minimal
Model Program.

5.3.1 Cylindrical Affine Varieties

An affine variety M is called cylindrical if it contains a dense principal Zariski open subset
U = M \ (f = 0), for some f ∈ O(X), isomorphic to C ×M ′ for an affine variety M ′. We
call such U a cylinder [Definition 3.1.4 [65]]. By definition, a cylindrical affine variety is C-
uniruled. We conjecture that a cylindrical affine variety has vanishing symplectic cohomology
as a corollary of the following conjecture.

Conjecture 5.3.1. Let M be an affine variety and Y ⊂M a smooth hypersurface satisfying
thatM\Y is an affine variety. Then there exists a spectral sequence converging to ŜH∗(M) =
SH∗(M ⊂ M) = SH∗(Yc ⊂ M) whose E1-page is SH∗(Yc ⊂ M \ Y ) ∼= SH∗(M \ Y ⊂
M \ Y

)
= ŜH∗(M \ Y ).

Conjecture 5.3.2. Let M be an cylindrical affine variety having a dense affine open subset
U =M\(f = 0) for smooth f . Then ŜH∗(M) = 0. Therefore ℓ̂(M) = 0 andM is C-uniruled.

We sketch the idea of 5.3.2. By definition of being cylindrical, there exists a hypersurface
Y ⊂ M so that M \ Y ∼= C × M ′ for some affine variety M ′. By the Künneth formula,
SH∗(M \ Y ) = 0. By proposition 3.3.19, we can choose a small tubular neighborhood Y of
Y ∩M in M and Yc a small neighborhood of M \ Y in M so that Y is stably displaceable
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(Proposition 3.3.19) and the boundaries are disjoint, ∂Y ∩ ∂Yc = ∅. By proposition 3.3.16,
SH∗(Y ⊂M) = 0 and SH∗(Y∩Yc ⊂M) = 0. By Varolgunes-Mayer-Vietoris sequence 3.2.7,

δ−→ SH∗(M ⊂M)→ SH∗(Y ⊂M)⊕ SH∗(Yc ⊂M)→ SH∗(Y ∩ Yc ⊂M)→ · · ·

we have SH∗(M ⊂ M) ∼= SH∗(Yc ⊂ M). If conjecture 5.3.1 is true, then there exists a
spectral sequence converging to SH∗(Yc ⊂M) whose E1-page is SH

∗(Yc) ∼= SH∗(M \ Y ⊂
M \ Y

) ∼= ŜH∗(M \ Y ) = 0. Therefore, ŜH∗(M) = 0.

Remark 5.3.3. To show Proposition 5.3.1 for a singular hypersurface Y , we need to gener-
alize the result of proposition 5.1 of [7].

Remark 5.3.4. If a Liouville domainM has a global Hamiltonian S1-action that compatible
with periodic orbits on the cylindrical ends, then symplectic cohomology of M vanishes. On
the other hand, an irreducible affine variety M is cylindrical if and only if it has an effective
Ga-action [Proposition 3.1.5, [65]].

5.3.2 Log Minimal Model Program on Affine Threefolds

Kishimoto defined a half-point attachment (Definition 2.1.7) to a normal quasi-projective
threefold as a weighted blow-ups and describe the #- minimal model program restricted
to each birational step happening outside of divisors and extend it to log minimal model
program [63], [64]. LetM be a smooth affine threefold andX be a smooth projective threefold
compactifyingM with a nef divisor D. Assume that the complete linear system |D| contains
a smooth member. Then we can construct a sequence of birational maps of pairs (X i, Di)
satisfying the following conditions [Theorem 1.2, 3.1, 4.1, [63]].

(X,D) (X1, D1) · · · (Xs, Ds) · · · (X#, D#).
ϕ1 ϕ2 ϕs ϕ#

1. X i’s are normal projective threefolds with only Q-factorial terminal singularities. Each
Di is the proper transform of D on X i with a nef, Cartier linear system |Di| on X i

with smooth member.

2. (Flips) For 0 ≤ i ≤ s, the exceptional set(either an exceptional divisor or a union of
the flipping curves) of the birational map ϕi is contained in Di−1. In case where ϕi is
a flip, the resulting flipped curves are contained in Di. Furthermore, M i ∼= M .

3. (Terminal Divisorial Contractions) For s < i < #, the birational maps ϕi contracts
the exceptional divisor to a smooth point qi and ϕi is the weighted blow-up at qi with
weights (1, 1, bi) for some bi ∈ N with 1 ≤ bs+1 ≤ bs+1 ≤ · · · ≤ b#. X i is the half-point
attachment to X i+1 of type (bi, ki) for some 1 ≤ ki ≤ bi unless M i ∼= M i+1.

4. (Terminal Object according to the log Kodaira dimension l.k.d(M))

(a) If l.k.d(M) = −∞, then X# is a Mori fiber space.

(b) If l.k.d(M) ≥ 0, then X# is nef(a log minimal model) and l.k.d(M) = l.k.d(M#).

48



(c) If l.k.d(M) = 2, then M is a C∗-fibration over a normal surface.

Since flipping along a locus contained in compactifying divisor or a half-point attaching
does not change symplectic cohomology by proposition 3.3.15, but cohomology class might
be changed. We expect to prove the following conjecture as a corollary of conjecture 5.3.1,
and proposition 3.3.16.

Conjecture 5.3.5. Consider special case of Kishimoto’s #- minimal model program on
affine threefolds that restrict half-point attachment at a point on a hypersurface. Then

1. ℓ(M i)’s are not decreasing.

2. Let M be an affine threefold and M# be a terminal object of M in Kishimoto’s #-
minimal model program. Suppose that π1(M

#) = 0, M ≇M# and at least one of steps
of half-point attachment is done on a hypersurface divisor. Then ℓ(M) ≥ 2.

Proof of sketch. LetM be an affine variety given by a complement A\Y of a hypersurface
Y inside an affine variety A. A half-point attachment of type (b, k) ofM isM ′ := BlpA\ Ỹ =
M ∪ (E ∩M ′), where p is a point on Y , Ỹ is a proper transformation of Y , and E is an
exceptional divisor. If the conjecture 5.3.1 is true, then there is a spectral sequence converging
to SH∗(M ′) whose E1-page is SH∗(M ′ \ (E ∪M ′)) = SH∗(M). Therefore, we would get
ℓ(M ′) ≥ ℓ(M).

Remark 5.3.6. Similar idea works for the L-minimal model for affine threefolds, [Theorem
1.1, [64]]: Let M be a smooth affine threefold and X be a smooth projective threefold
compactifyingM with a nef divisor D. Assume that the complete linear system |D| contains
a Du Val member S. Then we can construct a sequence of birational maps of pairs (X i, Di)
satisfying the following conditions.

(X,D) (X1, D1) · · · (Xs, Ds) · · · (Xm, Dm).
ϕ1 ϕ2 ϕs ϕm

1. Denote Di and Si the proper transformations of D and S on X i. Then Di are Si are
linear equivalent Cartier divisors on X iand Si’s are Du Val.

2. (Flips or Log-flips) Denote Ri = R+[l
i] ⊂ NE(X i), an extremal ray associated to the

birational map ϕi+1.

(a) If (KV i) · li ≥ 0, then ϕi+1 is a log-flip. All the flipping curves(resp.) are contained
in the divisor Di(resp. Di+1 and M i ∼= M i+1.

(b) If (KV i) · li < 0, then ϕi+1 is a ordinary-flip. All the flipping curves(resp.) are
contained in the divisor Di(resp. Di+1 and M i ∼= M i+1.

3. (Divisorial Contractions) For s < i < m, ϕi is a divisorial contraction. Denote Ei−1

the exceptional divisor.

(a) If Ei−1 is contained in Supp(Di−1), then M i−1 ∼= M i.

(b) If Ei−1 is non contained in Supp(Di−1), then ϕi contracts Ei−1 onto a smooth
point qi ∈ M i and ϕi is a weighted blow-up at qi with weights (1, 1, bi) for some
bi ∈ N with 1 ≤ bs+1 ≤ bs+1 ≤ · · · ≤ b#. X i is the half-point attachment to X i+1

of type (bi, ki) for some 1 ≤ ki ≤ bi unless M i ∼= M i+1.
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5.3.3 Log Kodaira Dimension

Using similar idea on exact sequences of symplectic cohomologies of Liouville cobordisms
in [26], we get a restriction on affine varieties with non-negative log Kodaira dimension
l.k.d(M) ≥ 0. Let us remind the definitions.

Definition 5.3.7. The log Kodaira dimension of an affine varietyM is the Iitaka dimension
of the line bundle KX +D on X, where X is a projective variety obtained by compactifying
M with simple normal crossing divisors D and with the canonical divisor KX ,

l.k.d(M) := κ(X,KX +D) := tr.degC(⊕dH
0(X,K⊗d

X ⊗D⊗d))− 1.

Let L be a line bundle on a projective variety X. If L⊗d has a global section for some d,
then L⊗d defines a rational map from X to Proj(H0(X,L⊗d)). The Iitaka dimension κ(X,L)
of the line bundle L on X is the maximum dimension of the image of this map for all d where
the map is defined and is −∞ if it is not defined for any d, i.e., L⊗d has no global sections
for any d. For example, for X = Pn, KX = OX(−n− 1) so κ(X,KX) = −∞. For a Riemann
surface X with genus g, by the Riemann-Roch theorem, KX = OX(2g − 2),

1. g = 0, KX = OX(−2) ⇐⇒ κ(X,KX) = −∞,

2. g = 1, KX = OX ⇐⇒ κ(X,KX) = 0,

3. g ≥ 2, KX = OX(≥ 2) ⇐⇒ κ(X,KX) = 1,

A Fano projective variety X (i.e., κ(X,KX) = −∞) is known to be rationally-connected
by Mori’s bend-and-break technique, therefore it is uniruled [70]. The lemma 7.1 in [87]
explains the relation between uniruledness and the log Kodaira dimension as following: For
an affine variety M , if M is C-uniruled, then l.k.d(M) = −∞. If M is C∗-uniruled, then
l.k.d(M) ≤ dimCM − 1. So the following holds,

Corollary 5.3.8. As a direct corollary of results of [12] and [87], for an affine variety M ,

1. If ℓ(M) = 0, then l.k.d(M) = −∞.

2. If ℓp.p(M) = 0, then l.k.d(M) ≤ dimCM − 1.
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Chapter 6

Conclusions

6.1 Further Questions

We summarize further questions as follows.

Question 6.1.1. In theorem 1.0.1, is the union
⋃

ω∈Amp ⊂H2(M)

⋃
[℧]∈imδ Ξ℧ of all the uniruled

subvarieties of M from the image of the map δ maximal as stratified uniruled-subvarieties of
M?

From the long exact sequences for Liouville cobordisms [26],

· · · → SH∗−1(C, ∂−C)→ SH∗−1
+ (C, ∂−C)

δ−→ H∗(C, ∂−C)→ SH∗(C, ∂−C)→ · · ·

Definition 6.1.2. ℓ(C, ∂−C) :=min{deg([α]) : [α] ∈ H∗(C, ∂−C) with [α] = δ(γ) for some
0 ̸= γ ∈ SH∗−1

+ (C, ∂−C)}.

Question 6.1.3. If M is an affine variety of dimCM > 1 with non-negative log Kodaira
dimension. Then is M a “nontrivial” connected sum of affine varieties of non-negative log
Kodaira dimension, by using ℓ(C, ∂−C)?

Let π : M → B be a convex symplectic Lefschetz fibration with a fiber F . From a long
exact sequence [119],

· · · → H∗(M,Reπ ≫ 0) SH∗(M) SH∗(F ) H∗+1(M,Reπ ≫ 0)→ · · · .ι δ

We can define ℓlef(M → B) :=min{deg([α]) : 0 ̸= [α] ∈ H∗(M,Reπ ≫ 0) with ι([α]) = 0}
and finding application of ℓlef(M → B) seems interesting, too.

Question 6.1.4. For each n ≥ 5, is there an affine variety M2n
2k of dimCM = n with

ℓ(M2n
2k ) = 2k for all 4 ≤ 2k < n? For example, M8

4 , M
10
4 , M12

6 ?

A smooth complex affine surface M is C-uniruled if and only if l.k.d(M) = −∞ and
is known to be C-fibration [93]. For a smooth projective variety X, separably rationally
connectedness implies that Kodaira dimension of X is −∞, i.e., dimCH

0(X,K⊗m
X ) = 0 for

all m > 0. The converse is conjectured to be true and the cases of dimCX ≤ 3 are proven
[3.8, 3.8.1, [69], [70]]. We ask similar questions for the C-uniruledness.

Question 6.1.5. If SH∗(M) has an invertible element other than the unit and the idem-
potents, then is M 2-uniruled(i.e. C∗ := (C \ {0})-uniruled or C-uniruled)? Is there any
relation to Seidel’s representation in quantum cohomology and invertible elements in [116]?
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Remark 6.1.6. Symplectic cohomology has a fruitful structure, the L∞ structure, from
higher homotopy of Chas-Sullivan string topology on the loop space of a symplectic mani-
fold [[21], [40], [39], [121]]. Can we detect rationally connectedness of (X,D) by understanding
obstruction of higher operations on symplectic cohomology which is from TQFT(Topological
Quantum Field Theory) or from SFT(Symplectic Field Theory), which is symplectic invari-
ant? If so, how could we compute them effectively?

Green-Griffiths-Lang Conjecture and McLean’s Degeneration

One of key lemma to get uniruled subvarieties is McLean’s degeneration technique: given a
finite-energy(area) holomorphic curve, take a sequence of J-holomorphic curves in the frame
of degeneration to the normal cone. After then we get broken rational spheres intersect
with the divisor at infinity by applying Fish’s target-Gromov compactness result. We would
draw attention to apply such a degeneration technique to knock at the Green-Griffiths-Lang
conjecture.

Conjecture 6.1.7 (Generalized Green-Griffiths-Lang Conjecture). 1 Let (X,D) be a log pair
of general type, i.e., KX +D is big. Then there is a proper algebraic subvariety Y ⊊ X \D
containing all entire curves f : C→ X \D.

Conjecture 6.1.8 (Green-Griffiths-Lang Conjecture). Let X be a projective variety of gen-
eral type. Then the Zariski closure Y := ∪f,entiref(C) of all the entire curves on X is a proper
algebraic subvariety of X.

Conjecture 6.1.9 (Weaker version of Green-Griffiths-Lang conjecture). For any entire
curve f : C→ X, there exist proper subvariety Yf ⊊ X with f(C) ⊂ Yf .

Question 6.1.10. How does the dimension of YJ := ∪f :C→(X,J)f(C) change when almost
complex structures J vary?

One of big obstacles would be that we can not guarantee an entire curves to have finite
energy and the existence of an open dense set of almost complex structures.

6.2 Symplectic View on Birational Geometry: Cohomological or Categorical

Mathematical objects are explored up to equivalences, or up to symmetries. Radial or con-
formal symmetry is one of them. Projectivisation of algebraic varieties gives many benefits to
understand the varieties, for example, compactness without boundary and has a strong fact
that every irreducible n-dimensional smooth projective complex variety with ample tangent
bundle is isomorphic to CP n [94]. However, when we classify projective varieties or log-pairs,
we need to relax the condition on ”up to isomorphisms” because two non-isomorphic al-
gebraic varieties are meaningfully related by birational equivalence, being isomorphic away
from some divisors or subvarieties. Birational equivalence would come from the choice of
poles or various points of view from divisors when we projectivise varieties or different steps

1The author learned the conjecture from a talk by Demailly, Geometry Festival at Stony Brook U. in
2021
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of ”projecitivation/de-projectivisation”. The minimal model program is to find core ob-
jects/properties of algebraic varieties up to birational equivalence. To use rational curves on
a variety is one of Mori’s groundbreaking works that initiated the program. Roughly speak-
ing, for any smooth complex projective variety X (we refer [69] and references therein.),

• If the Kodaira dimension κ(X,KX) = −∞, X is birational to a Fano fibration.

• If κ(X,KX) ≥ 0, then we want to get rid of rational curves C with KX .C < 0 so that
the result variety X ′ has the nef canonical divisor KX .

There have been approaches understanding birational geometry using quantum cohomology
[77] and are many evidences that show symplectic cohomology can be also useful to under-
stand birational geometry, [84], [86], [87], [88], [89], [90]. For example, Li-Ruan showed that
any two smooth minimal models of a projective Calabi-Yau 3-fold have the same quantum
cohomology [Corollary A.3, [76]]. Two birational projective Calabi-Yau varieties have isomor-
phic Zariski-dense open affine subvarieties. So, considering that small quantum cohomologies
are deformation of Hamiltonian Floer cohomology of affine subvarietes, McLean showed that
birational projective Calabi-Yau varieties of dimC = n > 3 have isomorphic small quantum
cohomology algebras after tensoring with Novikov rings corresponding to certain divisors
(relating to Kähler structures) [90].

Meanwhile, various aspects of mirror symmetry have been found: relations between sym-
plectic geometry and algebraic geometry, or geometry and algebra, or covariant functors and
contravariant functors, or duality between cores and cocores, and the Gross-Siebert program.
Roughly speaking, homological mirror symmetry predicts the equivalence of two categories,
the derived Fukaya category of intersections of Lagrangian submanifolds of a symplectic man-
ifold X and the derived category of coherent sheaves on mirror algebraic variety X∨. Histori-
cally, Hodge-theoretic and then enumerative geometric mirror symmetry was found first but
it is conjectured that homological mirror symmetry recovers those classical mirror symmetry.
Homological mirror symmetry for compact manifolds without boundary extends to compact
manifolds with boundary or a log-pair. The open-closed map relates Hochschild cohomol-
ogy of (Wrapped) Fukaya category and quantum cohomology(resp. symplectic cohomology).
Conjecturally, a mirror M∨ of M satisfies that SH∗(M ;C) ∼= ⊕p+q=∗H

q(M∨,∧pTM∨). Very
roughly speaking, conjectural constructions of a mirror of affine varietyM is Spec(SH∗(M))
with Landau-Ginzburg superpotential on it. For example, a mirror of C∗ is known to be C∗

itself: SH∗(C∗; Λ) = SH∗(T ∗S1; Λ) = Λ[x, x−1] and Spec(SH∗(C∗)) = C∗. Under this conjec-
tural mirror picture, mirror of a variety having vanishing symplectic cohomology is a point.
Therefore, uniruled locus in a variety is ”simple”. A remark is that in the minimal model
program, the canonical ring, defined by ⊕mH

0(X,K⊗m
X ) is an important birational invariant:

If the canonical ring is finitely generated and KX is big, then the canonical model of X in the
minimal model program is ProjC(⊕mH

0(X,K⊗m
X )). Birkar-Cascini-Hacon-McKernan proved

that the canonical ring is finitely generated and the existence of minimal models [13]. On
the other hand of symplectic geometry, for any affine variety M from a log Calabi-You pair
(X,D) and any field K [Theorem 1.1, [106]],

1. SH0(M,K) is a finitely generated K-algebra.
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2. SH∗(M,K) is a finitely generated module over SH0(M,K).

3. For any Lagrangian submanifolds L,L′ of M , the wrapped Lagrangian Floer cohomol-
ogy WF ∗(L,L′,K) is a finitely generated module over SH0(M,K).

In general, it is hard to compute symplectic cohomology. One of solutions could be to apply
mirror symmetry to compute symplectic cohomology in more systematic way and it would
be interesting to characterize the minimal model program in mirror side.

6.3 Application of Mirror of S1-equivariant Symplectic Cohomology with Sei-
del’s connection to Birational Geometry

S1-equivariant symplectic cohomology SH∗
S1,k(C

∗⋊ϕM) of the symplectic mapping cylinder
of M is isomorphic to the fixed point symplectic cohomology of ϕ : M → M [Lemma
B. 16, [89]]. It is proven that the invariants of isolated singularities, the multiplicity and
the log canonical threshold, can be computed from SH∗

S1(C∗ ⋊ϕ M) [Corollary 1.4, [89]].
S1-equivariant symplectic cohomology has the Gysin sequence which make a commutative
diagram with the action-filtered long exact sequences by Bourgeois, Oansea in [18].

· · · → SH∗(M) SH∗
+(M) H∗+1(M) SH∗+1(M)→ · · ·

· · · → SH∗
S1(M) SH∗

S1,+(M) H∗+1
S1 (M) SH∗+1

S1 (M)→ · · ·

· · · → SH∗+2
S1 (M) SH∗+2

S1,+(M) H∗+3
S1 (M) SH∗+3

S1 (M)→ · · ·

· · · → SH∗+1(M) SH∗+1
+ (M) H∗+2(M) SH∗+2(M)→ · · · .

δ ι

δS1 ι

δS1 ι

δ ι

We can define the following definition and want to generalize the result of this paper to
equivariant symplectic cohomology.

Definition 6.3.1. ℓS1(M) :=min{deg([α]) : 0 ̸= [α] ∈ H∗
S1(M) with ι([α]) = 0}

= min{deg([α]) : [α] ∈ H∗
S1(M) with [α] = δS1(γ) for some 0 ̸= γ ∈ SH∗−1

S1,+(M)}.

Question 6.3.2. 1. Find relation ℓS1(M) and ℓ(M).

2. Find geometric meaning of differential maps or a map induced from Seidel’s connection
of S1-equivariant cohomology.

3. As the long exact sequence of SH∗(M) detects rational curves on M , can we detect
subvarieties ofM from SH∗

S1(M) or SH∗
S1(C∗⋊ϕM)? If so, what is birational geometric

meaning of the subvarieties of M or a mirror of M , especially keeping in mind the
Clemens-Schmid exact sequence of mixed Hodge structures?

Remark 6.3.3. This is a short review on the Clemens-Schmid exact sequence of mixed
Hodge structures. Let us consider Hodge structure of degeneration. Let X be a projective
variety, f : X → ∆ a projective flat morphism over the disk, smooth over the puntured
disc ∆∗. Denote by X0 := f−1(0) be the central singular fiber. Choose a base point t ∈ ∆∗

and Xt := f−1(t). Let T : Hk(Xt) → Hk(Xt) be the monodromy map around the origin.
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Then there is the exact sequence, · · · → Hk(X0) → Hk(Xt)
T−Id−−−→ Hk(Xt) → · · · . Since

X is homotopic retract to X0, monodromy invariant cohomology class of a general fiber
Xt is determined by cohomology classes on the total space X. The monodromy maps are
quasi-unipotent, (Tm − Id)n = 0 and after base change by unwinding, we can assume that
the monodromy maps are unipotent. So, we can define a nilpotent map N := logT =∑

1
k
(T − id)k. There is the limit mixed Hodge structure (W•, F

•
lim) on (Hk(Xt)). Then there

is the Clemens-Schmid exact sequence of mixed Hodge structures,

· · · → Hk−2(X,X0)→ Hk(X0)→ Hk(Xt)
N−→ Hk(Xt)→ · · ·

Remark 6.3.4. Let X be a complex projective variety of dimension n with an ample line
bundle L. If < c1(L)

n, [M ] >= 1 and dim H0(M ;L) ≥ n + 1 (or if c1(M) ≥ (n + 1)c1(L)),
thenM is isomorphic to Pn, [Theorem 1.1, Corollary, [67]]. Fano variety of dimension n with
index n+ 1 is isomorphic to Pn, where the index of a Fano variety X, −KX > 0, is defined
by the maximal integer k such that K is divisible by k in the Picard group Pic(X) of X,
i.e., −KX ∼num L⊗k for an ample line bundle L. What does the mirror symmetry explain
about this in symplectic side?
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Wu, An introduction to Weinstein handlebodies for complements of smoothed toric
divisors. arXiv:math/2002.07983 [math.SG].

[6] P. Albers, U. Frauenfelder, A. Oancea, Local systems on the free loop space
and finiteness of the Hofer-Zehnder capacity. Math. Ann. 367, 1403–1428 (2017).
https://doi.org/10.1007/s00208-016-1401-6.

[7] P. Albers, M. McLean, Non-displaceable contact embeddings and infinitely many leaf-
wise intersections. J. Symplectic Geom. 9(3): 271-284 (September 2011).

[8] V. I. Arnol’d, Mathematical Methods in Classical Mechanics. Springer-Verlag, Berlin
(1978).

[9] C. Balwe, A. Hogadi, A. Sawant, Geometric criteria for A1-connectedness and applica-
tions to norm varieties. arXiv:math/2102.05344 [math.AG].

[10] R. Beheshti, E. Riedl, Linear subspaces of hypersurfaces, Duke Math. J. 170(10): 2263-
2288 (15 July 2021). DOI: 10.1215/00127094-2021-0035.

[11] G. Benedetti, A. F. Ritter, Invariance of symplectic cohomology and twisted
cotangent bundles over surfaces, Internat. J. Math. 31 (2020), no. 9, 2050070.
https://doi.org/10.1142/S0129167X20500706.

[12] A. Biolley, Fleor homology, symplectic and complex hyperbolicities.
arXiv:math/0404551v1 [math.SG].

56



[13] C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, Existence of minimal mod-
els for varieties of log general type. J. Amer. Math. Soc. 23 (2010), 405-468.
https://doi.org/10.1090/S0894-0347-09-00649-3.

[14] M. S. Borman, N. Sheridan, U. Varolgunes, Quantum Cohomology as a deformation of
symplectic cohomology. arXiv:math/2108.08391 [math.SG].

[15] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, E. Zehnder, Compactness
results in Symplectic Field Theory. Geom. Topol. 7 (2003), no. 2, 799–888.
doi:10.2140/gt.2003.7.799.

[16] F. Bourgeois, T. Ekholm, Y. Eliashberg, Effect of Legendrian surgery. Geom. Topol. 16
(2012), no. 1, 301–389. doi:10.2140/gt.2012.16.301.

[17] F. Bourgeois, A. Oancea, Symplectic homology, autonomous Hamiltonians, and Morse-
Bott moduli spaces. Duke Math. J. 146 (2009), no. 1, 71-174. doi:10.1215/00127094-
2008-062.

[18] F. Bourgeois, A. Oancea, The Gysin exact sequence for S1-equivariant symplectic ho-
mology. Journal of Topology and Analysis, 5 (2013), 361-407.

[19] R. Casals, E. Murphy, Legendrian fronts for affine varieties. Duke Math. J. 168 (2019),
no. 2, 225–323. doi:10.1215/00127094-2018-0055.

[20] C. Caubel, A. Némethi, P. Popescu-Pampu. Milnor open books and
Milnor fillable contact 3-manifolds. Topology, vol, 45, 3(2006) 673-689.
https://doi.org/10.1016/j.top.2006.01.002.

[21] M. Chas, D. Sullivan, String Topology. arXiv:math/9911159 [math.GT].

[22] Y. Chekanov, Differential algebra of Legendrian links. Invent. math. 150, 441–483 (2002).
https://doi.org/10.1007/s002220200212.

[23] K. Cieliebak, Handle attaching in symplectic homology and the Chord Conjecture. J.
Eur. Math. Soc. 4, 115–142 (2002). https://doi.org/10.1007/s100970100036.

[24] K. Cieliebak and Y. Eliashberg, From Stein to Weinstein and Back: Symplectic Geom-
etry of Affine Complex Manifolds, Colloquium Publications, 59. AMS, 2012.

[25] K. Cieliebak and Y. Eliashberg, Flexible Weinstein manifolds, Symplectic, Poisson, and
Noncommutative Geometry, 62, (2014), 1–42.

[26] K. Cieliebak, A. Oancea, Symplectic homology and the Eilenberg–Steenrod axioms.
Algebr. Geom. Topol. 18 (2018), no. 4, 1953–2130. doi:10.2140/agt.2018.18.1953.

[27] T. Coates, A. Corti, Y.-P. Lee, H.-H. Tseng, The quantum orbifold cohomol-
ogy of weighted projective spaces, Acta Math., 202, No. 2 (2009), 139–193,
arXiv:math/0608481.

57



[28] W. Crawley-Boevey, P. Etingof, V. Ginzburg, Noncommutative geometry and quiver al-
gebras, Adv. in Math. 209 (2007) 274 - 336. https://doi.org/10.1016/j.aim.2006.05.004.

[29] V. I. Danilov, A. G. Khovanskii, Newton polyhedra and an algorithm for computing
Hodge–Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat., 50:5 (1986), 925–945; Math.
USSR-Izv., 29:2 (1987), 279–298.

[30] L. Diogo, S. T. Lisi, Morse–Bott split symplectic homology. J. Fixed Point Theory Appl.
21, 77 (2019). https://doi.org/10.1007/s11784-019-0714-y.

[31] L. Diogo, S. T. Lisi, Symplectic Homology of complements of smooth divisors. Journal
of Topology, vol. 12, 3 (2019), 967-1030. https://doi.org/10.1112/topo.12105.

[32] T. Ekholm, J. Etnyre, M. Sullivan, Non-isotopic Legendrian submani-
folds in R2n+1. J. Differential Geom. 71 (1) 85 - 128, September 2005.
https://doi.org/10.4310/jdg/1143644313.

[33] T. Ekholm, J. Etnyre, M. Sullivan, Legendrian Contact Homology in P × R. Trans.
Amer. Math. Soc. 359, no. 7, (2007) 3301–3335. DOI: https://doi.org/10.1090/S0002-
9947-07-04337-1.

[34] T. Ekholm, L. Ng, Legendrian contact homology in the boundary of a subcriti-
cal Weinstein 4-manifold. J. Differential Geom. 101 (1) 67 - 157, September 2015.
https://doi.org/10.4310/jdg/1433975484.

[35] Y. Eliashberg, Topological characterization of Stein manifolds of dimension
>2. International Journal of Mathematics. Vol. 01, No. 01, pp. 29-46 (1990).
doi.org/10.1142/S0129167X90000034.

[36] Y. Eliashberg, N. Mishachev, Introduction to the h-principle, Graduate Studies in Math-
ematics, vol. 48, Amer. Math. Soc., (2002)

[37] Y. Eliashberg, N. Ogawa, T. Yoshiyasu, Stabilized convex symplectic manifolds are
Weinstein. Kyoto J. Math. 61(2): 323-337 (June 2021). DOI: 10.1215/21562261-2021-
0004.
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