
On the characterization of rational homotopy types and
Chern classes of closed almost complex manifolds

A Dissertation Presented

by

Aleksandar Milivojevic

to

The Graduate School

In Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Mathematics

Stony Brook University

May 2021



Stony Brook University

The Graduate School

Aleksandar Milivojevic

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Dennis Sullivan - Dissertation Advisor

Distinguished Professor, Department of Mathematics

H. Blaine Lawson - Chairperson of Defense

Distinguished Professor, Department of Mathematics

Kenji Fukaya - Member

Professor, Department of Mathematics

Martin Rocek - Outside Member

Professor, Yang Institute for Theoretical Physics

This dissertation is accepted by the Graduate School.

Eric Wertheimer

Dean of the Graduate School

ii



Abstract of the Dissertation

On the characterization of rational homotopy types and

Chern classes of closed almost complex manifolds
by

Aleksandar Milivojevic

Doctor of Philosophy

in

Mathematics

Stony Brook University

2021

The homotopy theory of rationalized simply connected spaces was shown by Quillen

to be encoded algebraically in differential graded Lie algebras in his seminal work on ra-

tional homotopy theory. Motivated by this theory and Whitney’s treatment of differential

forms on arbitrary complexes, Sullivan described a theory of computable algebraic models

for rational homotopy types in terms of differential graded algebras of differential forms in

his "Infinitesimal Computations in Topology". Following a challenge posed therein, we give

a characterization of the possible simply connected rational homotopy types, along with a

choice of rational Chern classes and fundamental class, realized by closed almost complex

manifolds in complex dimensions three and greater, with a caveat in complex dimensions

congruent to 2 mod 4 depending on the first Chern class. As a consequence, beyond demon-

strating that rational homotopy types of closed almost complex manifolds are plenty, we

observe that the realizability of a simply connected rational homotopy type by a closed al-

most complex manifold, of complex dimension not equal to 2 mod 4, depends only on its

cohomology ring. We conclude with some computations and examples.
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Chapter 1

Introduction

1.1 The homotopy types of closed manifolds: back-

ground and history, and statement of main the-

orem

In the 1930’s, Hassler Whitney’s pioneering work on manifolds, bundles, and cohomol-

ogy marked the birth of differential topology [MichConf40]. In the same article giving the

modern definition of a smooth manifold [Wh36], Whitney showed how every manifold can

be embedded in Euclidean space. These embeddings naturally equip manifolds with normal

bundles, and Whitney early on saw the need for a general theory of vector bundles beyond

the tangent bundle [Wh35]. His investigation of the obstructions to linearly independent sec-

tions of vector bundles, a problem concurrently considered on the tangent bundle by Eduard

Stiefel in his thesis [St35], initiated the study of characteristic classes.

It was known to Whitney that all vector bundles were pulled back from Grassmannians

with their tautological bundles. Lev S. Pontryagin [Po42] studied the homology of these

universal spaces, identifying the generators of the integral lattice in rational (co)homology

now known as Pontryagin classes. Shiing-Shen Chern conducted a similar study on complex

manifolds [Ch46], defining what became known as the Chern classes of the tangent bundle,
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using the Schubert cell decomposition of the complex Grassmannians; later Wu Wenjun

[Wu52] would generalize this notion in his thesis to arbitrary complex vector bundles .

Pontryagin observed that by considering maps of spheres into the one-point compacti-

fication of the universal trivial bundle over a point, one can identify the homotopy groups

of spheres with equivalence classes of stably framed manifolds up to what is now known as

framed cobordism [Po38]. Later, René Thom [Thom54] built on this construction and ap-

plied it to all closed smooth manifolds, developing and employing transversality arguments

to classify smooth manifolds up to cobordism by calculating the homotopy groups of the

one-point compactification of the universal bundle over the Grassmannian.

In the late 1950’s and early 1960’s, Michel Kervaire and John Milnor introduced surgery,

a procedure of removing from a manifold embedded spheres with trivial normal bundle, and

used it to determine the finite abelian groups of smooth structures on homotopy spheres

[KerMil63], in terms of Bernoulli numbers and homotopy groups of spheres, in dimensions

5 and above. Andrew Wallace [Wal60] independently introduced surgery in the United

Kingdom under the name "constructive cobordisms", as applying a surgery to a manifold

produces a cobordism to the resulting manifold, and any cobordism can be realized by a

finite number of surgeries.

After Stephen Smale proved the generalized Poincaré conjecture in dimensions five and

higher by establishing the h–cobordism theorem [Sm62], the work of Kervaire and Milnor

could be formulated as classifying the smooth structures on piecewise linear spheres Sn,

for any n ≥ 1. Extending this work, Sergei Novikov in the Soviet Union addressed the

problem of classifying smooth structures on simply connected manifolds in dimensions 5 and

greater, in terms of vector bundles over their homotopy types and the homotopy groups of

the one-point compactification of their normal bundles when embedded in a high-dimensional

Euclidean space [Nov64]. William Browder [Br62] in the United States independently did the

same, along with characterizing in similar terms as [KerMil63] and [Nov64] which homotopy

types were realized by closed smooth manifolds in dimensions 5 and greater. This made
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use of Spivak’s normal spherical fibration [Sp64] characterizing Poincaré duality spaces, a

notion earlier identified by Browder in his study of finite complexes admitting a continuous

multiplication with unit. Motivated by Hilbert’s 5th problem on characterizing Lie groups

as locally Euclidean locally compact groups [Hilb02], Browder asked if these complexes with

a unital multiplication were realized by smooth manifolds.

Dennis Sullivan in his thesis [Sull65] reformulated the stories of Kervaire–Milnor, Novikov,

and Browder without choosing the normal bundle, instead classifying all the simply connected

closed manifolds, piecewise–linear or smooth, in a homotopy type via obstruction theory. The

obstructions in the piecewise–linear theory lay in a calculable homotopy type with fourfold

periodic homotopy groups 0,Z2, 0,Z, 0,Z2, 0,Z, . . .. The homotopy groups in the smooth

theory are still unknown, though the theory itself can be reduced to stable homotopy using

the Adams conjecture, provable using the Frobenius automorphism from algebraic geometry

(a possibility first voiced by Daniel Quillen [Q68]). Understanding these results and the util-

ity of localizing homotopy types motivated Sullivan’s 1970 MIT notes "Geometric Topology:

Localization, Periodicity, and Galois Symmetry" [Sull70] (see also [Sull74]).

Upon tensoring homotopy types and maps by the rationals, the piecewise–linear and

smooth obstruction theories become equivalent. The homotopy theory of rationalized simply

connected spaces was shown by Quillen to be encoded algebraically in differential graded

Lie algebras in his seminal "Rational Homotopy Theory" [Q69]. Motivated by this theory,

and influenced by Whitney’s treatment of differential forms on arbitrary complexes [Wh57],

Sullivan described a theory of computable algebraic models for rational homotopy types in

terms of differential graded algebras of differential forms in his "Infinitesimal Computations

in Topology" [Sull77].

Here, as our first main goal, we will expound the details and necessary theory to un-

derstand and prove a theorem formulated in [Sull77], and accompanied by a sketch proof as

an illustration of the developed techniques, on the realization of simply connected rational

homotopy types by closed smooth manifolds [Sull77, Theorem 13.2]. The readers of [Sull77]
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were challenged to formulate and prove an analogous theorem for almost complex manifolds

using the enclosed tools. That is our second main goal and theorem: to give a characteriza-

tion, with a caveat in real dimensions congruent to 4 mod 8, of the possible simply connected

rational homotopy types realized by closed almost complex manifolds in dimensions six and

greater. The argument is such that the resulting manifold we obtain is stably almost com-

plex, i.e. it has an almost complex structure on its stable tangent bundle; this stable almost

complex structure is then induced by a genuine almost complex structure on the tangent

bundle if (and only if) its top Chern class evaluates to the Euler characteristic:

Theorem 1.1.1. Let X be a formally n–dimensional simply–connected rational space of

finite type satisfying Poincaré duality on its rational cohomology, n ≥ 5, and let [X] ∈

Hn(X;Q) be a non-zero element. Furthermore, let ci ∈ H2i(X;Q), 1 ≤ i ≤
⌊
n
2

⌋
be cohomol-

ogy classes. Then we have:

1. If n is odd, there is a closed stably almost complex n–manifold M and a rational

equivalence M f−→ X such that f∗[M ] = [X] and ci(TM) = f ∗(ci).

2. If n ≡ 2 mod 4, then there is a closed stably almost complex manifold M and a rational

equivalence M
f−→ X such that f∗[M ] = [X] and ci(TM) = f ∗(ci) if the numbers

〈ci1ci2 · · · cir , [X]〉 are integers that satisfy the Stong congruences of a stably almost

complex manifold: that is, denoting by σi the elementary symmetric polynomials in the

variables exj−1, where the xj are given by formally writing 1+c1+c2+· · · =
∏

j(1+xj),

we have

〈z · Td(X), [X]〉 ∈ Z for every z ∈ Z[σ1, σ2, . . .].

Here Td(X) denotes the Todd polynomial evaluated on c1, c2, . . ..

3. If n ≡ 0 mod 4, then there is a closed stably almost complex manifold M and a rational

equivalence M f−→ X such that f∗[M ] = [X] and ci(TM) = f ∗(ci) if

• the quadratic form on H
n
2 (X;Q) given by q(α, β) = 〈αβ, [X]〉 is equivalent over

Q to one of the form
∑

i±y2i ,
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• if we define pi = (−1)i
∑

j(−1)jcjci−j, then 〈L(p1, . . . , pn/4), [X]〉 = σ(X), where

L is Hirzebruch’s L–polynomial,

• the numbers 〈ci1ci2 · · · cir , [X]〉 are integers that satisfy the Stong congruences of

a stably almost complex manifold described above,

• if c1 = 0 and n ≡ 4 mod 8, the numbers 〈pi1pi2 · · · pir , [X]〉 are integers that satisfy

a further set of Stong congruences: denoting by σpi the elementary symmetric

polynomials in the variables exj + e−xj − 2, where the xj are given by formally

writing 1 + p1 + p2 + · · · =
∏

j(1 + x2j), we have

〈z · Â(X), [X]〉 ∈ 2Z for every z ∈ Z[σp1, σ
p
2, . . .].

Here Â(X) denotes the Â polynomial evaluated on p1, p2, . . .. Note that the above

are conditions on c1, c2, . . ., as they determine p1, p2, . . ..

If c1 = 0 in any of the cases above, and the corresponding conditions in that case are

satisfied, then the first Chern class of the resulting stably almost complex manifoldM vanishes

in integral cohomology. If n is even and 〈cn/2, [X]〉 equals the Euler characteristic of X, and

the appropriate conditions above are satisfied, then the stable almost complex structure on

the obtained manifold M is induced by an almost complex structure (in particular, the almost

complex structure also has f ∗(ci) as its Chern classes).

I am indebted to Zhixu Su for her elaboration of Sullivan’s theorem concerning obtaining

a degree one map, along the lines of [Ba76, Théorème 8.2.2], and the clear formulation of the

result as given in [Su14], [Su09]. I spend some time below clearing up details surrounding

the crucial Main Diagram in [Su09].

In the last chapter we will observe some consequences of Theorem 1.1.1; beyond demon-

strating that rational homotopy types of almost complex manifolds are plenty, we observe

that the realizability of a simply connected rational homotopy type by an almost complex

manifold, of real dimension ≥ 6 not equal to 4 mod 8, depends only on the cohomology
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ring. We contrast this with the case of rational homotopy types realized by compact com-

plex manifolds satisfying the ∂∂–lemma (such as Kähler manifolds), where all the higher

multiplications in the associated C∞ structure on the cohomology necessarily vanish; in this

sense one can think of the rational homotopy types of ∂∂–manifolds as the free objects

on their underlying cohomology algebra. In the almost complex case, for the dimensions

not excluded, no further restriction is placed on the higher operations in the associated C∞

structure beyond the requirement that the cohomology algebra with its binary multiplication

satisfies Poincaré duality. One can wonder whether non–∂∂ complex manifolds generally lie

somewhere strictly between these two extremes.
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Chapter 2

Realization by almost complex manifolds

2.1 Rational spaces, and necessary conditions for

realization by a closed almost complex mani-

fold

We say a simply connected space is rational if all of its reduced integer homology

groups (or equivalently, homotopy groups) are isomorphic as abelian groups to rational vector

spaces. A map between two simply connected spaces is a rational homotopy equivalence if it

induces an isomorphism on homology groups with rational coefficients (or equivalently, on

the homotopy groups tensored with the rationals). Spaces X and Y are rationally homotopy

equivalent if there is a zig-zag of rational homotopy equivalences X ← Z1 → Z2 ← · · · ←

Zk → Y between them. Note that a rational homotopy equivalence between rational spaces

is a homotopy equivalence.

For every simply connected space X, there is a rational space XQ and a rational ho-

motopy equivalence X f−→ XQ; the space XQ is unique up to homotopy equivalence; we call

f a rationalization. To rationalize spheres, one takes the homotopy colimit of the diagram

Sn
2−→ Sn

3−→ Sn
4−→ Sn

5−→ · · · , i.e. one forms a sequence of cylinders Sn × [0, 1] and glues

the appropriate ends via a degree k self-map of the sphere. The inclusion of Sn as, say, the

7



leftmost end is a rationalization.

Figure 2.1: A rational circle [GM81, Lemma 7.5]. Note how the circle representing the left end of

the leftmost cylinder may be arbitrarily divided in the fundamental group, by pushing it to the right

an appropriate number of times (and multiplying if necessary). For example, to divide by three

we may push it two cylinders across (seeing how to divide by six) and multiply by two. Hence the

fundamental group of this construction is Q. For higher dimensional spheres mapping in, note that

by compactness any map will land in a finite stage of the construction, which deformation retracts

onto a circle, and is hence nullhomotopic. Hence π≥2 = 0.

To rationalize a space (with the homotopy type of a cell complex), we note that we

can build the space inductively by starting with a wedge of spheres, and then repeatedly

taking the mapping cone of a map from a sphere into the previous stage. We can rationalize

the spheres involved, inducing a sequence of mapping cones whose final stage will be the

rationalization of our space.

Working with the rationalizations of spaces up to rational homotopy equivalence facili-

tates computation, as such spaces can be faithfully encoded in nilpotent graded-commutative

differential algebras [Sull77]. Algebraic properties and constructions on these nilpotent alge-

bras have corresponding geometric pictures [Sull77, §11]. This is particularly effective when

considering smooth manifolds, where this differential algebra capturing the rational homo-

topy type of the space is, upon tensoring with the reals, a nilpotent replacement of the de
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Rham algebra of forms [DGMS75, Corollary 3.4]

2.1.1 The realization problem.

We now aim to describe the simply connected rational homotopy types realizable by

closed almost complex manifolds, along with the rational Chern classes they may carry.

Precisely, take a simply connected rational space X; we will say a closed n–manifold M

realizes X if there is a rational homotopy equivalence M f−→ X. Note that the existence

of such a map implies that X and M have isomorphic rational cohomology rings, and so

X can be equipped with a non-degenerate pairing Hk(X;Q) ⊗ Hn−k(X;Q) → Q given by

α ⊗ β 7→ 〈αβ, f∗[M ]〉. In particular, the rational cohomology of X vanishes above degree

n; we call this integer n the formal dimension of the rational space X. Let us now pick

any cohomology classes c1 ∈ H2(X;Q), c2 ∈ H4(X;Q), etc. and a nonzero homology class

[X] ∈ Hn(X;Q) which we will think of as Chern classes and the fundamental class of (any

closed manifold realizing) this data. If we had a rational homotopy equivalence M f−→ X

from an almost complex manifoldM with Chern classes ci, note that X would have a natural

choice of such classes, namely f ∗−1(ci) and f∗[M ]. Here [M ] denotes the fundamental class

corresponding to the orientation on M induced by its almost complex structure. Generally

we will say a manifold with a given choice of orientation has an almost complex (or stably

almost complex structure) if it admits one that induces the given orientation.

We now state our realization problem as:

Given a simply connected rational space X with prescribed elements ci ∈ H2i(X;Q) and

0 6= [X] ∈ Hn(X;Q), is there a closed almost complex manifold M and a rational equivalence

M
f−→ X such that f∗[M ] = [X] and f ∗(ci) = ci(M)?

We choose to incorporate the fundamental class [X] ∈ Hn(X;Q) as part of the given

data, since this facilitates the calculation of the Chern numbers of the realizing M by

〈cI , [M ]〉 = 〈f ∗(cI), [M ]〉 = 〈cI , f∗[M ]〉 = 〈cI , [X]〉.

9



One may scale this fundamental class [X] by any rational to obtain another class inHn(X;Q) ∼=

Q with respect to which the pairing described above is still nondegenerate.

2.1.2 Necessary conditions for realization.

Let us now consider the necessary implications on (X, ci, [X]) in the case of a positive

answer to the above question:

(i) Since a closed manifold has finitely generated homology, we see that H∗(X;Q) must

be finite dimensional (we say X is of finite type).

(ii) As we saw above, there is a non-degenerate pairing on the cohomology of X; we say

X satisfies rational Poincaré duality. Note that this property does not depend on the

choice of non-zero fundamental class in Hn(X;Q) ∼= Q. Given a choice of fundamen-

tal class [X], the pairing Hk(X;Q) ⊗ Hn−k(X;Q) → Q given by α ⊗ β 7→ 〈αβ, [X]〉

being nondegenerate is equivalent to the cap product [X] ∩ − being an isomorphism

Hk(X;Q) → Hn−k(X;Q) (see [Br72, Proposition I.2.1] for the argument). Further-

more, the formal dimension n must be even (as almost complex manifolds are even-

dimensional).

(iii) The Chern numbers 〈cI(M), [M ]〉 of the realizing manifold must be integers that satisfy

the congruences of a stably almost complex bordism class. Namely, suppose one has a

closed stably almost complex manifoldM . Its stable tangent bundle is then classified by

a map M τM−→ BU , and we can consider the element τM∗[M ] ∈ H∗(BU ;Q). Note that

if M is complex bordant to N via W , then τM∗[M ] = τN∗[N ]. Indeed, 0 = τW∗[∂W ] =

τM∗[M ]− τN∗[N ]. Thus we obtain a map from complex bordism ΩU to the homology

of the classifying space H∗(BU ;Q). Stong characterized the image of this map in the

following way [Stong65a]: a class α ∈ H∗(BU ;Q) is in the image of ΩU → H∗(BU ;Q)

if and only if 〈zTd(ci), α〉 ∈ Z for every z in the integer polynomial ring generated

by the elementary symmetric polynomials ei in the variables exi − 1, where xi are the

10



Chern roots of the universal Chern class in BU , i.e. formally we have c =
∏

i(1 + xi),

where c is the total Chern class in H∗(BU ;Z). Any considered class α will be of some

finite degree and so all sums considered for the elements z are finite. The term Td(ci)

is the Todd genus, Td(ci) = 1+ c1
2

+
c21+c2
12

+ c1c2
24

+ · · · . Now the mentioned congruences

among Chern numbers from above, which we will refer to as the Stong congruenes,

follow from 〈cI(M), [M ]〉 = 〈τ ∗McI , [M ]〉 = 〈cI , τM∗[M ]〉 = 〈cI , α〉. Note that for degree

reasons, this reduces to finitely many conditions. One can think of these congruences

as coming from the Atiyah–Singer index theorem; namely
∫
M

ch(E) Td(M) must be

an integer for every complex vector bundle E →M .

If our almost complex manifold M has c1(M) = 0 in integral cohomology, and its

dimension is congruent to 4 mod 8, then a further set of congruences hold among

its Chern numbers, according to Stong’s description of the image of the map ΩSU τ−→

H∗(BSU ;Q). Namely, denoting by σpi the elementary symmetric polynomials in the

variables exj + e−xj − 2, where the xj are given by formally writing 1 + p1 + p2 + · · · =∏
j(1 + x2j), we have

〈z · Â(M), [M ]〉 ∈ 2Z for every z ∈ Z[σp1, σ
p
2, . . .].

Here Â(M) denotes the Â polynomial, Â = 1− p1
24

+ 1
5760

(7p21 − 4p2) + · · · . Since one

can express Pontryagin classes in terms of Chern classes, these further congruences are

also conditions on c1, c2, . . .. Together with the previous congruences, this determines

the image of ΩSU τ−→ H∗(BSU ;Q) [Stong65b, Theorem 1]. In dimensions not congruent

to 4 mod 8, the congruences in the previous paragraph already describe the image of

ΩSU τ−→ H∗(BSU ;Q).

(iv) If the formal dimension n is furthermore divisible by four, then note that rational

Poincaré duality induces a nondegenerate symmetric self-pairing on H
n
2 (X;Q). This

pairing on a realizing manifold is the rationalization of a unimodular integral pairing

on H
n
2 (M ;Z), which is a nontrivial condition. From the theory of symmetric bilinear
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forms [MiHu73, §IV.2.6] this condition is equivalent to the pairing on H
n
2 (X;Q) being

equivalent over Q to one of the form y21 + y22 + · · ·+ y2r − y2r+1 − · · · − y2s .

(v) If the formal dimension is divisible by four, we also have the following: the signature

of the realizing manifold M , i.e. the signature of the symmetric pairing on H
n
2 (X;Q),

can be calculated from the Pontryagin numbers of M via Hirzebruch’s L–genus 1 +

p1
3

+
7p2−p21

45
+ · · · . Recall that the rational Chern classes of any stable almost complex

structure on M determine the Pontryagin classes of M by pi = (−1)i
∑

j(−1)jcjci−j.

So we may speak of the L–genus evaluated on Chern classes, with the understanding

that first the Pontryagin classes are to be formed. Now, since the realizing map induces

an isomorphism of bilinear pairings on H
n
2 (−;Q), we must have that the signature of

the pairing on H
n
2 (X;Q) is equal to the L–genus evaluated on [X]. Indeed,

〈L(p1, . . . , pn/4), [X]〉 = 〈L(p1, . . . , pn/4), f∗[M ]〉

= 〈f ∗L(p1, . . . , pn/4), [M ]〉

= 〈L(p1(M), . . . , pn/4(M)), [M ]〉

= σ(M) = σ(X).

(vi) We must have 〈ck(M), [M ]〉 = χ(M) = χ(X). Indeed, the top Chern class of the

tangent bundle (thought of as a complex vector bundle) is the primary and only ob-

struction to finding a global section, and thus is it precisely the Euler class of the

underlying real bundle (finding a section of the underlying real bundle lets one split

off a complex line bundle from the tangent bundle by acting on the section with the

almost complex structure). This condition translates into 〈ck, [X]〉 = χ(X) on the

rational space X.
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2.1.3 Sufficiency of the conditions in dimension ≥ 6: ingredi-

ents of the proof

Now we will spend the rest of this section confirming that in formal dimensions n ≥ 6

(i.e. n ≥ 5 if we only want stably almost complex manifolds), these necessary conditions,

with a caveat in formal dimensions 4 mod 8 which we will discuss, are in fact sufficient.

The proof proceeds in two stages:

1. We form a simply connected space A with a rational homotopy equivalence A g−→ X

to our rational space, such that there is a complex vector bundle ξ on A whose Chern

classes are g∗(ci). Here ci denote the cohomology classes determined by (1 + c1 +

c2 + · · · )(1 + c1 + c2 + · · · ) = 1. We then find a closed manifold M and a map

M
f−→ A such that f∗[M ] = g−1∗ [X], and such that the stable normal bundle ν of M

is f ∗ξ. By the stable normal bundle we mean the normal bundle to M embedded in

a large-dimensional sphere; if the dimension of the sphere is large enough, any two

embeddings are isotopic and hence their normal bundles are isomorphic as real vector

bundles. The stable normal bundle of M then inherits a complex structure from ξ,

givingM the structure of a stably almost complex manifold. It is at this stage that make

use of property (iii) above, in conjunction with the Pontryagin–Thom construction.

2. Once we have a mapM → A covered by a map from ν to ξ as above, we perform normal

surgery to obtain a new, simply connected, manifold M ′ mapping to A satisfying the

properties in (1), which is furthermore a rational homotopy equivalence. To achieve

this we make use of properties (i), (ii), (iv), (v). One then calculates that the Chern

classes of the stable tangent bundle of M ′ (i.e. the sum of TM ′ and a trivial real

bundle, with its induced almost complex structure) are the pullback of the classes ci

on X by the composition M ′ → A → X. We then use property (vi) to conclude that

the stable almost complex structure on M ′ is induced by an almost complex structure.
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The purpose of stage (1) is to obtain a space which is for the purposes of rational

homotopy equivalence just as good as our original rational space X, but furthermore is

equipped with a bundle over it with appropriate rational Chern classes.

2.2 Normal surgery

We will begin with stage (2), as it is here that surgery theory, the main aspect of the

proof, comes into play. So, suppose we have a map M f−→ A, where A is a simply connected

space satisfying Poincaré duality on its rational cohomology, with fundamental class [A], of

the same formal dimension asM . Furthermore suppose f∗[M ] = [A] and that f is covered by

a bundle map ν → ξ which is a fiberwise isomorphism, where ν is the stable normal bundle

of M , and ξ is a (smooth) real vector bundle over A; we refer to this as a normal map.

ν ξ

M A
f

In our setting of interest, ν will be the pullback of ξ, and ξ will have an almost complex

structure, giving ν an almost complex structure; this property will be preserved under the

process of normal surgery which we now discuss. For now, though, we treat ξ only as a real

vector bundle, and we keep in mind for later that there is an operator J on it with J2 = −Id.

By a surgery on a manifold Mn we refer to the process of removing the interior of the

image of an embedding Sp ×Dn−p ϕ−→ M , and attaching a Dp+1 × Sn−p−1 identically along

the boundary (note that ∂(Sp × Dn−p) = ∂(Dp+1 × Sn−p−1) = Sp × Sn−p−1, obtaining a

new manifold M ′. Such a process defines a manifold with boundary, the trace of the surgery

Wϕ by taking M × [0, 1] with Dp+1 ×Dn−p attached along its boundary to the boundary of

M × {1} with the interior of Sp ×Dn−p removed. Note that Wϕ is a cobordism between M

and M ′; as manifold, it has its own stable normal bundle which restricts to that of M and

M ′ on its boundary. Given a normal map M f−→ A, we will refer to an extension of this map
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to a normal map Wϕ
F−→ A as a normal cobordism, obtained by performing normal surgery.

Note that if M f−→ A is degree one, i.e. f∗[M ] = [A], then f ′ is degree one as well, as we have

0 = [∂W ] = [M ]− [M ′], so F∗[M ] = F∗[M
′], i.e. f ′∗[M ′] = f∗[M ] = [A].

Figure 2.2: Surgery on an embedded S0×D1 in the circle, and its trace. Note how the trace

deformation retracts onto a circle with an interval attached.

Figure 2.3: The trace of a surgery along an embedded S1 × D1 in a torus, deformation

retracting to a torus with a D2 attached.

An important property of the trace is that it deformation retracts onto M with a Dp+1

attached along the image Sp of the embedding ϕ; see [Br72, Theorem IV.1.3], and Figure (2)

for an illustration. From here it follows that our normal map M f−→ A extends to a normal

map Wϕ → A if f extends over this attached Dp+1 and the map of bundles extends to ω

restricted to Dp+1, where ω is the stable normal bundle of Wϕ [Br72, Proposition IV.1.4].

Now, the approach to surgering the normal map M
f−→ A to a normal map M ′ → A

which is a rational homotopy equivalence will be: we consider the exact sequence

πp+1(M)⊗Q→ πp+1(A)⊗Q→ πp+1(f)⊗Q→ πp(M)⊗Q→ πp(A)⊗Q→ · · · .

This is the long exact sequence in homotopy groups of a pair; one often writes πp(A,M) for
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πp(f). (Generally π2(f) is not an abelian group, and π1(f) is not a group, so we will first

perform a surgery to bring ourselves into a situation where π2(f) is abelian and π1(f) = 0.)

Elements of πp(f) are represented by maps Sp →M which extend to a map Dp+1 → A, i.e.

diagrams of the form
Sp M

Dp+1 A

f

The idea will be to inductively perform normal surgery on embedded p–dimensional spheres,

so that the map M ′ f ′−→ A from the result of the surgery (i.e. the “right end” of the trace)

will have smaller-dimensional πp+1(f
′) than the map on the “left end” of the trace, while

satisfying that π≤p(f ′)⊗Q = 0 if the same was true on the left end of the trace.

Suppose we are given an element in πp+1(f), represented by a map Sp
ϕ−→ M which

extends over Dp+1 → A. When can we perform a normal surgery on this Sp ϕ−→M? We need

the following three conditions to be satisfied:

• Sp must be embedded in M .

• The normal bundle to Sp in M must be trivial, giving us an embedded Sp ×Dn−p in

M to perform surgery on.

• The normal bundle map from M to A must extend over Dp+1.

If the dimension of the sphere p is strictly smaller than half the dimension n of our

manifold M , then ϕ can be modified by a homotopy to an embedding, by Whitney’s “weak”

embedding theorem [Wh36, III]. This can also be done if p = n
2
by Whitney’s “strong” em-

bedding theorem [Wh44, 8–12], which we will discuss later. As for the next two bullet points,

we have the following: Since we are able to extend f over Dp+1 (since ϕ represents an element

in πp+1(f)), then the composition of ϕ with this extension is a nullhomotopic map to A, and

hence the normal bundle ν restricted to Sp is trivial, with an induced trivialization. Picturing

M ∪ϕ Dp+1 as embedded in a large disk (think of Figure (2)), the normal bundle to Dp+1 is

trivial, and hence extending our bundle map is equivalent to extending the trivialization of
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ν on Sp to all of Dp+1 (as, up to homotopy, all of these points will be mapped to a single

point in A). That is, our trivialization on Sp gives us a map from Sp to the Stiefel manifold

St(k, k+ n− p) of k-frames in Rk+n−p, where k is the rank of the stable normal bundle; this

map must therefore be nullhomotopic. In fact, this element in πp(St(k, k + n − p)) is the

unique obstruction to extending our normal map [Br72, Theorem IV.1.6]. If we can indeed

extend our trivialization over Dp+1, then the orthogonal complement to the normal bundle

of Dp+1 it determines, when restricted to Sp, gives a trivialization of the normal bundle of

Sp in M .

Luckily, when k ≥ 2 (which will always be the case for us), we have π<n−p(St(k, k +

n − p)) = 0. This means that for an embedded sphere of dimension p strictly below half

the dimension n of our manifold, the above described obstruction will vanish as it lies in a

trivial group. In the case of even dimension n, when p = n
2
, the corresponding homotopy

group is Z2 if p is odd, and Z if p is even [Br72, Theorem IV.1.12]. It follows from here that

the normal bundle of any embedded Sp in M , such that ν restricted to Sp is trivial, is trivial

as soon as p < n
2
. Note that this follows alternatively from the identity νSp,M ⊕ ν|Sp ∼= νSp ,

i.e. the sum of the normal bundle to Sp in M with the stable normal bundle of M restricted

to M , equals the stable normal bundle of Sp. As Sp is stably parallelizable, the right-hand

side is trivial, so the triviality of νSp,M implies the triviality of ν|Sp .

2.2.1 The effect of surgery on homotopy groups.

Now we consider what effect a surgery on a representative ϕ of πp+1(f) has on the

homotopy groups of the manifold M and the map f . As the trace Wϕ deformation retracts

ontoM ∪ϕDp+1, we see that the inclusionM ↪→ Wϕ induces an isomorphism on π<p and the

class that ϕ represents in πp(M) maps to zero. To relate the homotopy groups ofM to those

of the manifold M ′ at the other end of the trace, we notice the following symmetry in the

surgery process: since M ′ is obtained from M by a surgery on an embedded Sp ×Dn−p, we

have that M is obtained from M ′ by a surgery on an embedded Dp+1×Sn−p−1. Furthermore,
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the trace of the “backwards” surgery is the same asWϕ; see again Figure (2) for an illustration.

From here we have thatWϕ deformation retracts ontoM ′ with a Dn−p attached. So, looking

at the inclusions M ↪→ Wϕ ←↩ M ′, some consideration of indices shows that if p < n−1
2
,

then π<p(M
′) ∼= π<p(M) and that πp(M ′) is isomorphic to the quotient of πp(M) by the

π1(M)–module generated by the image of ϕ in πp(M) [Br72, Theorem IV.1.5].

Let us now apply normal surgery to obtain a normal map M ′ → A from a simply

connected manifold, so that we may speak freely of tensoring πk(f) ⊗ Q. First we achieve

connectedness: by the Pontryagin–Thom construction which is used in stage (1) to obtain our

starting manifoldM , we see thatM is a compact subset of some sphere, and hence has finitely

many connected components. Pick two points lying in different connected components. Note

that this is an embedding S0 ↪→ M . Now by the above discussion we may perform normal

surgery on this embedding, and after finitely such surgeries we obtain a connected manifold.

The effect of the surgery is forming the connected sum of the two considered connected

components along small disks around each point. As for the fundamental group, choose a

finite generating set, and represent each element in the set by a smooth embedded loop. As

before, we can perform normal surgery on each loop, with the effect that the fundamental

group gets smaller after each surgery by the previous paragraph (here we use that our

manifold has dimension ≥ 5, though 4 would suffice); after finitely many surgeries we have

a simply connected manifold.

Taking an element in πp+1(f) represented by an embedding Sp ϕ−→M with trivial normal

bundle in M , such that f restricted to the image of the embedding extends over Dp+1, and

denoting the extension of f over the trace Wϕ by F , we see that πp(F ) is the quotient of

πp+1(f) by the π1(M)–module generated by our element in πp+1(f) [Br72, Lemma IV.1.14].

In particular, dimπp+1(F )⊗Q < dimπp+1(f)⊗Q.

Now consider the following diagram of long exact sequences,
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· · · πp+1(f) πp(M) πp(A) πp(f) πp−1(M) πp−1(A) · · ·

· · · πp+1(F ) πp(Wϕ) πp(A) πp(F ) πp−1(Wϕ) πp−1(A) · · ·

· · · πp+1(f
′) πp(M

′) πp(A) πp(f
′) πp−1(M

′) πp−1(A) · · ·

induced by the diagram

M

Wϕ A

M ′

f

F

f ′

Since π≤p−1(M)→ π≤p−1(Wϕ) are isomorphisms and πp(M)→ πp(Wϕ) is surjective, by

the five lemma we have that π≤p(f) → π≤p(F ) are isomorphisms. If furthermore p < n−1
2
,

then recall that Wϕ is obtained from M ′ by performing surgery on a n− p− 1–dimensional

sphere. Since n− 1− p > n− 1− n−1
2

= n−1
2
> p, we have n− p− 1 ≥ p+ 1 and so by the

previous sentence, replacing p by n−p−1, we have in particular that π≤p+1(f
′)→ π≤p+1(F )

are isomorphisms. Tensoring the above ladder of long exact sequences with Q, we have in

particular that π≤p(f ′) ⊗ Q ∼= π≤p(f) ⊗ Q and dimπp+1(f
′) ⊗ Q < dimπp+1(f) ⊗ Q. Note

that we cannot draw this conclusion if p ≥ n−1
2
.

2.2.2 Surgery below middle degree

Now we proceed inductively. Suppose M → A is a normal map with M simply con-

nected; then π1(f) is trivial and π2(f) is abelian. Note that π∗(f)⊗Q is finite dimensional in

every degree, since π∗(M) and π∗(A) are. Hence we may choose a finite basis of π2(f)⊗Q,

and scale each element if necessary so that it is in the image of the rationalization map

π2(f) → π2(f) ⊗ Q. Now we can choose representatives of these basis elements, given by

maps of S2 into M that extend over D3 to A. If p < n−1
2
, we may choose this map to be

a smooth embedding (by first finding a smooth representative of the map, and then using
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the Whitney embedding theorem). The obstruction to doing normal surgery vanishes, since

the appropriate homotopy group of the Stiefel manifold vanishes for such p (recall this also

implies the triviality of the normal bundle to S2, allowing us to perform surgery on an em-

bedded S2×Dn−2). After applying finitely many such surgeries (one for each basis element),

we have obtained a normal map M ′ f ′−→ A, where M ′ is still simply connected, but now

π2(f
′)⊗Q = 0 as well.

Moving on to π3(f ′), and so on, the largest p that this procedure works is p = bn/2c−1,

where bn/2c denotes the floor function Indeed, if n = 2m, then p < n−1
2

gives p ≤ m− 1, i.e.

p ≤ n
2
−1; if n = 2m+1, then p < n−1

2
gives p ≤ m−1 = n

2
−1. So we finally obtain a normal

map M ′ f ′−→ A from a simply connected manifold M ′ such that π≤bn/2c(f ′) ⊗ Q = 0 (recall

that at each stage p + 1, we have that the vanishing of π≤p(f) ⊗ Q implies the vanishing

of π≤p(f ′) ⊗ Q, along with a decrease in dimension of πp+1 ⊗ Q. As we will note later, the

homotopy groups of the space A we are working with, though finite dimension after tensoring

with Q, are not finitely generated, and so we can not hope to kill π∗(f) with finitely many

surgeries.

2.2.3 Surgery in middle degree, and employing rational Poincaré

duality

We may thus assume M f−→ A satisfies π≤bn/2c(f) ⊗ Q (along with M being simply

connected); we now must deal with πbn/2c+1(f). The dimension of a representative sphere in

an element of this group is half the dimension of our manifold if n is even, and just below

n
2
if n is odd. The obstruction to performing normal surgery lies in a trivial group if n is

odd, and lies in Z2 or Z if n is even. It is at this point that we finally make use of rational

Poincaré duality on M and A (note that everything above holds without this assumption)

Rational Poincaré duality gives us the following:

• If π≤bn/2c+1(f)⊗Q = 0, then the map M f−→ A is a rational homotopy equivalence (so
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there is no need to consider π>bn/2c+1(f)⊗Q, which would be very complicated). In-

deed, π≤bn/2c+1(f)⊗Q = 0 implies that the induced maps π≤bn/2c(M)⊗Q→ π≤bn2 c(A)

are isomorphisms, and hence, sinceM and A are simply connected, the maps on homol-

ogy H≤bn/2c(M ;Q)→ H≤bn/2c(M ;Q)H≤bn/2c(M ;Q) are isomorphisms by the Hurewicz

theorem (in the context of rational homotopy theory). Now, generally a non-zero

degree map of rational Poincaré duality spaces is surjective on homology in all de-

grees (proof: equivalently, the dual map on cohomology is injective; suppose some

a ∈ Ha(A;Q) is such that f ∗a = 0. Take a′ such that 〈aa′, [A]〉 = 1. Then one the

one hand, we must have 〈f ∗(aa′), [M ]〉 = 〈aa′, f∗[M ]〉 = 〈aa′, deg(f)[A]〉 = deg(f),

while 〈f ∗(aa′), [M ]〉 = 〈f ∗a f ∗a′, [M ]〉 = 0.) Now we see that above half the dimension,

in each degree the map H∗(M ;Q) → H∗(A;Q) must be an isomorphism as well, as

it is surjection between spaces of equal dimension (by our conclusion up to half the

dimension).

• It enables us to study the problem of killing πbn/2c+1(f) ⊗ Q: first observe that if

π1(f) = 0 and π≤bn/2c(f)⊗Q = 0, then by the rational version of the relative Hurewicz

theorem, we have πbn/2c+1(f)⊗Q ∼= Hbn/2c+1(f ;Q). This latter group is isomorphic to

the kernel of Hbn/2c(M ;Q)→ Hbn/2c(A;Q), as seen from the long exact sequence

· · · → Hbn/2c+1(A;Q)→ Hbn/2c(f ;Q)→ Hbn/2c(M ;Q)→ Hbn/2c(A;Q)→ · · · ,

which splits by surjectivity of the maps H∗(M ;Q)→ H∗(A;Q) discussed in the previ-

ous point.

Hence, with A a rational Poincaré duality space, we may think of this whole surgery

procedure as “killing the kernel of f ”. This viewpoint was not strictly necessary up to

this final stage of surgery.
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2.2.4 The Whitney embedding theorem in dimension n/2

To perform surgery on representatives of elements in πbn/2c+1(f) ⊗ Q (that are in the

image of πbn/2c+1(f)), we must first make sure that every map of an bn/2c-dimensional sphere

to M is homotopic to an embedding. If n is odd, this is guaranteed by the version of the

Whitney embedding theorem used before. If n is even, we must use a stronger version of the

embedding theorem, proven also by Whitney several years later [Wh36].

First of all, by the “weak" Whitney embedding theorem [Wh36, §III], our map can be

approximated by a smooth immersion whose only singular points are transverse double points

(i.e. points whose preimage consists of exactly two points). If the sphere is even–dimensional,

each such double point carries a sign of ±1 corresponding to whether the orientation on the

tangent space in the ambient manifold obtained from adding the pushforwards of the two

tangent planes on the sphere agrees with the ambient orientation or not. Given two double

points of opposite sign if the dimension of the sphere is even, or any two double points if

it is odd, one can connect these points by two distinct arcs, forming a closed loop. Since

our ambient manifold M is simply connected, there is a two–disk whose boundary is this

loop, and which intersects the image of the sphere only on its boundary, transversally. To

ensure that this disk itself has no self–intersection, we recall our assumption that M is of

dimension ≥ 5 and apply the weak Whitney embedding theorem again. It is at this point

that dimension 4 must be omitted from our overarching discussion. Then, Whitney shows

(with an argument now known as the "Whitney trick") that, using this disk, one can find a

homotopy of the original map of the sphere through immersions to a smooth map without

the two double points considered. If the number of double points of the original map was

even, and the number of +1 double points was equal to the number of −1 double points if

the dimension of the sphere is even, then one applies this argument to obtain a homotopy

through immersions of the original map to an embedding. Details of this argument can be

found in [Whit46, §§8–12]. Now, if the number of double points was not even, or double

22



points of one sign were more numerous, then an additional argument is employed, also due

to Whitney. One may choose a small coordinate ball of the domain sphere in which the map

from the sphere to M is an embedding, and find a homotopy of the map which is constant

outside of the interior of the ball, to one that has one double point in the interior, with

sign +1 or −1 of our choosing if the sphere is even–dimensional [Whit46, §2]. (Note that

this homotopy will not be a homotopy through immersions.) One then arranges the number

and sign of double points to allow for repeated application of the Whitney trick, to find a

homotopy of the original map of the sphere to an embedding.

Figure 2.4: The Whitney trick.

Now that we can choose an embedded sphere to represent our element in πbn/2c+1(f)⊗Q,

we consider the obstruction to performing normal surgery. If n is odd, the corresponding

homotopy group of the Stiefel manifold vanishes. If n ≡ 2 mod 4, the obstruction lies

in Z2. If the obstruction for our choice of map S
n
2 → M is non-zero, we precompose it

with the degree two self-map S
n
2

2−→ S
n
2 of the sphere. We can then find a homotopy of the

composition S
n
2

2−→ S
n
2 →M to a smooth embedding, for which the obstruction now vanishes

as it is twice the original obstruction class. Here we made use of our aim of achieving only a

rational homotopy equivalence; performing surgery on this new element of πb(n−1)/2c(f)⊗Q

will regardless decrease the dimension as desired.

If n ≡ 0 mod 4, denote the homology class represented by our map S
n
2 → M (i.e.

the pushforward of the fundamental class of the sphere) by x. Then the obstruction to

performing normal surgery can be identified with 〈pd(x)pd(x), [M ]〉, where pd(x) denotes

the cohomology class Poincaré dual to x; see [Br72, pp. 108–111].
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Let us now focus on the case of n ≡ 0 mod 4, and observe that classes inHbn2 c+1
(f ;Q) ∼=

ker(f∗) have vanishing surgery obstruction. After this, we will discuss the effect on rational

homology of performing surgery on a sphere of dimension n
2
if n is even, or n−1

2
if n is odd.

2.2.5 The pairing on homology in dimensions 0 mod 4 and the

surgery obstruction

First observe that since A h−→ X is a rational equivalence, A satisfies rational Poincaré

duality with respect to the fundamental class [A] = h−1∗ [X]. For a homology class x ∈

H∗(A;Q), we denote by pd(x) the unique cohomology class such that [A] ∩ pd(x) = x.

We consider the pairing Hn
2
(A;Q)⊗Hn

2
(A;Q)→ Q given by x · y = 〈pd(x)pd(y), [A]〉.

Recall, pd(x) the unique cohomology class such that [A] ∩ pd(x) = x. We note that cap

product with [A] provides an isometry from the pairing on H
n
2 (A;Q) to this pairing on

Hn
2
(A : Q): indeed, for cohomology classes x′, y′ ∈ H

n
2 (A;Q) is given by 〈x′y′, [A]〉, while

the pairing of [A] ∩ x′, [A] ∩ y′ ∈ Hn
2
(A;Q) is also given by 〈pd([A] ∩ x′)pd([A] ∩ y′), [A]〉 =

〈x′y′, [A]〉. We note that for homology classes x, y ∈ Hn
2
(A;Q), we have x · y = 〈pd(x), y〉,

since x · y = 〈pd(x)pd(y), [A]〉 = 〈pd(x), [A] ∩ pd(y)〉 = 〈pd(x), y〉 (see [Br72, Proposition

I.1.1]).

2.2.6 Splitting of the pairing

Given our degree one map M
f−→ A, we will see that the pairing on Hn

2
(M ;Q) splits

into a summand isometric to the pairing on Hn
2
(A;Q) (which we leave alone) along with the

kernel, which will consist of summands isometric to the pairing on Hn
2
(S

n
2 × S

n
2 ;Q), which

has the form ( 0 1
1 0 ). A representing S

n
2 in the latter summands will thus have vanishing

normal surgery obstruction.

To see that the pairing on Hn
2
(M ;Q) splits, we note that the map Hn

2
(M ;Q)

f∗−→

Hn
2
(A;Q) admits a section Hn

2
(A;Q)

α∗−→ Hn
2
(M ;Q). The computations to follow are con-
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tained in [Ba76, pp.477–478]; we include them here for the convenience of the reader. We

define α∗ by α∗(a) = [M ] ∩ (f ∗pd(a)); it is indeed a section of f∗ since

f∗α∗a = f∗([M ] ∩ (f ∗pd(a))) = (f∗[M ]) ∩ pd(a) = [A] ∩ pd(a) = a.

Now, this section provides an isometry from Hn
2
(A;Q) onto its image in Hn

2
(M ;Q) (which

is generally a proper subspace of Hn
2
(M ;Q)). For ease of reading we will use the notation

〈−,−〉 for the pairing on homology of either space, and for evaluation of cohomology classes

on homology classes in either space; to differentiate these pairings we include a subscript (so

for example x · y will now be denoted 〈x, y〉Hn
2
(M ;Q)), whereby a subscript of M or A will

denote the evaluation of cohomology on homology:

〈α∗a, α∗a′〉Hn
2
(M ;Q) = 〈pd(α∗a), α∗a

′〉M = 〈pd([M ] ∩ (f ∗pd(a))), α∗a
′〉M

= 〈f ∗pd(a), α∗a
′〉M = 〈pd(a), f∗α∗a

′〉A = 〈pd(a), a′〉A

= 〈a, a′〉Hn
2
(A;Q).

Now we will see that image of this splitting α∗ is the orthogonal complement inHn
2
(M ;Q)

to kerf∗ in degree n
2
. Indeed, for a ∈ Hn

2
(A;Q) and x ∈ ker f∗ ∩Hn

2
(M ;Q) we have

〈α∗a, x〉Hn
2
(M ;Q) = 〈pd(α∗a), x〉M = 〈f ∗pd(a), x〉M = 〈pd(a), f∗x〉A = 0,

where we used in the second equality that pd(α∗a) = f ∗pd(a) from the definition of α∗.

Conversely, suppose x ∈ Hn
2
(M ;Q) is such that 〈x, y〉Hn

2
(M ;Q) = 0 for all y′ ∈ ker f∗. First

we note that for any two classes z, z′, we have

〈α∗f∗z, z′〉Hn
2
(M ;Q) = 〈pd(α∗f∗z), z′〉M = 〈f ∗pdf∗z, z′〉M

= 〈pdf∗x, f∗y〉A = 〈f∗x, f∗y〉Hn
2
(A;Q).

Now, for x orthogonal to ker f∗, note that we have 〈x, y − α∗f∗y〉Hn
2
(M ;Q) for all y, since

f∗(y−α∗f∗y) = f∗y−f∗y = 0. This equation now gives us 〈x, y〉Hn
2
(M ;Q)−〈x, α∗f∗y〉Hn

2
(M ;Q) =

25



0, which by the previous observation yields 〈x, y〉Hn
2
(M ;Q)−〈f∗x, f∗y〉Hn

2
(A;Q). Now we observe

that for any y,

〈x− α∗f∗x, y〉Hn
2
(M ;Q) = 〈x, y〉Hn

2
(M ;Q) − 〈α∗f∗x, y〉Hn

2
(M ;Q)

= 〈f∗x, f∗y〉Hn
2
(A;Q) − 〈f∗x, f∗y〉Hn

2
(A;Q) = 0

and so x = α∗(f∗x).

Since ker f∗ is the orthogonal complement to the image of α∗ in Hn
2
(M ;Q), we see that

the pairing on Hn
2
(M ;Q) restricted to ker f∗ is nondegenerate as well [Ba76, Corollaire 2.4.4].

2.2.7 Signature of M

Recall that our realization problem started with a simply connected rational space X

with a choice of rational cohomology classes ci(X). In the first stage of the construction, to

be discussed later, we find a simply connected space A with a rational homotopy equivalence

A
g−→ X such that A has a complex vector bundle over it with Chern classes g∗ci(X); it is this

vector bundle with respect to which we have been performing our normal surgery. Here ci(X)

denotes the unique classes solving the equation (1+c1(X)+c2(X)+ · · · )(1+c1(X)+c2(X)+

· · · ). The classes g∗ci(X) pull back to be the Chern classes of the almost complex structure

on the stable normal bundle toM , while the classes g∗ci(X) pull back to those of the induced

almost complex structure on the stable tangent bundle. The Pontryagin classes pi(M) of

M are determined by these Chern classes, by the universal equation 1 − p1 + p2 − · · · =

(1− c1 + c2− · · · )(1 + c1 + c2 + · · · ). From here we see that the rational “Pontryagin classes“

of X, so formed from the classes ci(X) on X, pull back via the composition M f−→ A
g−→ X

to the Pontryagin classes of the (stable) tangent bundle of M . By construction, f∗[M ] =

[A] = h−1∗ [X], i.e. g∗f∗[M ] = [X]. Denoting by L Hirzebruch’s L–polynomial, we have

〈L(pi(M)), [M ]〉M = 〈f ∗L(pi(X)), [M ]〉M = 〈L(pi(X)), [X]〉X , where the latter quantity is

the signature of the pairing on H
n
2 (X;Q) (and hence of the pairing on Hn

2
(X;Q)), and

〈L(pi(M)), [M ]〉M is the signature of the pairing on H
n
2 (M ;Q) (and hence of the pairing
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on Hn
2
(M ;Q)) by the Hirzebruch signature theorem. Note that the pairing on H

n
2 (A;Q)

is equivalent to the pairing on H
n
2 (X;Q), with the isometry given by g∗. Since α∗ is an

isometry onto a direct summand of the form on Hn
2
(M ;Q), we conclude that the signature

of the pairing on Hn
2
(M ;Q) is equal to the signature of the pairing on Hn

2
(X;Q) plus the

signature of the pairing on ker f∗; combined with the previous calculation this yields that

the signature of the pairing on ker f∗ is zero.

2.2.8 The kernel pairing is equivalent to a sum of hyperbolic

forms: the Witt cancellation theorem

We now determine the form of this pairing on ker f∗, using the following form of the

Witt cancellation theorem [MiHu73 §I.4.4]:

Suppose B1,B2,B3 are nondegenerate symmetric bilinear forms over Q (or any field of

characteristic not equal to 2). If the form B1 ⊕ B2 is equivalent to the form B1 ⊕ B3, then

B2 is equivalent to B3.

We apply the Witt cancellation theorem in the following way: First of all, note that

by the necessary condition (iv), the form on Hn
2
(X;Q)

is equivalent to
∑r

i=1±y2i for some r.

Denote the isometric image of this form under α∗ by B1. Let B2 be the bilinear form on

ker f∗; denote the dimension of ker f∗ by s. Now, we know by previous considerations that

B1 ⊕ B2 is equivalent to the pairing on Hn
2
(M ;Q), which is equivalent to one of the form∑r+s

i=1 ±y2i since, M being a closed manifold, it is induced by a unimodular pairing over the

integers [MiHu73, §IV.2.6]. Let B3 be the form
∑r+s

i=r+1±y2i , i.e. the last s summands of the

pairing on M . Then B1 ⊕ B2 is equivalent to B1 ⊕ B3, and so B3, the pairing on ker f∗, is

equivalent to
∑r+s

i=r+1±y2i . Since the signature of B3 is zero, we see that s is even, and we

may relabel the basis elements so that B3 is of the form

(z21 − z22) + (z23 − z24) + · · · = (z1 − z2)(z1 + z2) + (z3 − z4)(z3 + z4) + · · ·

Notice that each (zi−zi+1)(zi+zi+1), in new basis elements z̃i = 1
2

(zi − zi+1) , ˜zi+1 = zi+zi+1,
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is represented by the matrix ( 0 1
1 0 ).

We conclude that B3 is equivalent to a pairing of the form
⊕s/2

i=1 ( 0 1
1 0 ). We may thus

represent (multiples of) homology classes x in the kernel of f∗ in degree n
2
by embedded

spheres for which x · x = 0, i.e. for which the obstruction to performing normal surgery

vanishes. Next we will see that each such surgery in fact gets rid of two homology classes,

removing one summand of ( 0 1
1 0 ) from the pairing on the kernel.

Remark 2.2.1. Above we used the result [MiHu73, §IV.2.6] characterizing the rationaliza-

tion of a non-degenerate symmetric unimodular form over the integers. We briefly review

how this result is obtained. For a given ring R, it is useful to consider the Witt group W (R)

of symmetric bilinear forms over R, where two forms are identified if they are equivalent

upon adding a split form to each. A split form over a local ring or a principal ideal domain

(the only cases we will need) is one that is equivalent to ( 0 I
I A ) for some A; if 2 is invertible

in R then this is further equivalent to ( 0 I
I 0 ) (which is in turn equivalent to a direct sum

of ( 0 1
1 0 )). (Compare the Witt group with the K–group of vector bundles, with split forms

playing the role of trivial bundles.) A map of rings induces a map of Witt groups, and we

would like to describe the image of the map W (Z)→ W (Q). We will determine the image by

considering for every prime p the local ring Z(p) consisting of rational numbers of the form

a
b
, where b is not divisible by p. The maximal ideal of non-units in Z(p) consists of num-

bers of the form pa
b

(where b is not divisible by p). Note that the inclusion Z → Q factors

through Z(p) for every p, so we have the induced factorization of the map of Witt groups

W (Z) → W (Z(p)) → W (Q). Now, note that Z(p) modulo its maximal ideal of non-units is

isomorphic to the field Fp of order p. There is an additive map W (Q)
∂−→ W (Fp) defined

in the following way [MiHu73 Lemma IV.1.2]: given a one-by-one bilinear form (u), write

u = pi a
b
, where a and b are not divisible by p. Then ∂(u) = 0 if i is even, and equal to

(a
b
) ∈ W (Fp) if i is odd. (Note that the form (u) is equivalent to the form (α2u) for any

non-zero rational number α, corresponding to the form x2 becoming (αx′)2 under change of

basis. The parity of i used in the definition of ∂ is invariant under such change of repre-
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sentative.) In general, a form over Q is equivalent to a direct sum of one-by-one forms (u)

where u is a rational unit (see [MiHu73 Corollary I.3.4]), so this defines a map ∂ on any

rational bilinear form, which one checks induces a map on the Witt group. The fact that a

form over Q decomposes in such a manner is a consequence of the general fact that if there

is a subspace on which a non-degenerate form is non-degenerate (i.e. the determinant of any

matrix representative is a unit), then the form splits into the induced form on the subspace

direct sum with its orthogonal complement [MiHu73 Theorem I.3.2].

We now observe that the composition W (Z(p)) → W (Q)
∂−→ W (Fp) is zero: Take a

(symmetric bilinear, as always) form over Z(p). If we can find an x such that x paired with

itself is a unit u in Z(p), then our form decomposes into (u) plus its orthogonal complement.

Since u = a
b
is a unit in Z(p), neither a nor b are divisible by p and so ∂ sends (u) to 0 in

W (Fp). We continue doing this until we cannot find an x which pairs with itself to give a

unit in Z(p). Now take any x, pairing with itself to a non-unit α. By non-degeneracy we can

find a y such that x pairs with y to give 1, and by assumption (as all of the elements we are

now considering do not pair with themselves to give units) y likewise pairs with itself to give

a non-unit β. Consider the corresponding matrix
(
α 1
1 β

)
. Note that its determinant αβ−1 is

a unit, since αβ is a non-unit and 1 is a unit, and the non-units form an ideal by locality of

the ring. Therefore our original form decomposes into a sum of one-by-one forms (u) (which

∂ sends to 0) and these two-by-two forms
(
α 1
1 β

)
. If α = 0 such a two-by-two form is split

and hence represents 0 in the Witt group, which is sent to 0 under ∂. If α 6= 0, we see that

the form αx2+2xy+βy2 it represents (over Q) can be rewritten as αx′2+α(αβ−1)y′2 in the

new basis x′ = x+ 1
α
y, y′ = 1

α
y. So,

(
α 1
1 β

)
is equivalent to

(
α 0
0 α(αβ−1)

)
= (α)⊕ (α(αβ − 1))

in W (Q) (note, not in Z(p)). Since αβ − 1 is a unit, the highest power of p in α(αβ − 1)

is the highest power of p in α. If this power is even, ∂ sends both (α) and (α(αβ − 1)) to

zero. Otherwise, since αβ − 1 is congruent to −1 modulo the non-units in Z(p), the image

of (α(αβ − 1)) under ∂ is (−α). Observe that (α) ⊕ (−α) = 0 in W (Fp). Indeed, if p 6= 2,

then αx2 − αy2 = α(x− y)(x + y) and so this form is equivalent to the split form
(

0
α
2

α
2

0

)
.
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If p = 2, then taking the new basis x and x + y, we see that our this form is equivalent to

the split form ( 0 1
1 1 ). We conclude that the composition W (Z)→ W (Q)→ W (Fp) is zero for

every prime p. Thus, if we look at the image of a unimodular integral form in W (Q), we can

first decompose it into a direct sum of one-by-one forms (u), and conclude that each such

(u) must map to 0 in W (Fp) for every p. It follows that every prime p shows up with an

even exponent in u, i.e. u = pα1
1 p

α2
2 · · · pαnn with each αi ∈ Z even, and so (u) is equivalent to

(1), (−1), or (0). By unimodularity we know that (0) cannot show up, and so we conclude

that the image of a unimodular integral form in W (Q) consists of sums of (1) and (−1), i.e.

forms
∑

i x
2
i −

∑
j y

2
j .

2.2.9 The effect of middle–degree surgery on homology

Now we will see the effect that surgery on embedded
⌊
n
2

⌋
–spheres with trivial normal

bundle,
⌊
n
2

⌋
≥ 2, has on homology. For ease of notation let us denote ` =

⌊
n
2

⌋
. The following

is an overview of [Br72, pp. 97–99] adapted to the rational setting. Let S`×Dn−` ϕ−→M be an

embedding, where ϕ|S` represents a homology class x that is nonzero inH`(M ;Q), and denote

byM0 the manifold with boundary obtained by removing fromM the interior of the image of

ϕ. The result of the surgeryM ′ will beM0 with aD`+1×Sn−`−1 attached along the boundary.

By excision, the map (S` × Dn−`, ∂(S` × Dn−`)) → (M,M0) induced by ϕ is a homology

isomorphism; furthermore, from the long exact sequence in homology of a pair, we see that

H∗(S
`×Dn−`, ∂(S`×Dn−`);Z) ∼= H∗(S

n−`;Z). The homology product with the rational class

x obtained by restricting ϕ to S` induces an isomorphismHn−`(S
`×Dn−`, ∂(S`×Dn−`);Q)

x·−→

Q (by the Thom isomorphism theorem). Combining this isomorphism and the excision

isomorphism, the long exact sequence in homology for (M,M0),

· · · → Hn−`(M0;Q)→ Hn−`(M ;Q)→ Hn−`(M,M0;Q)→ Hn−`−1(M0;Q)→ Hn−`−1(M ;Q)→ · · ·

becomes [Br72, Corollary IV.2.11]

0→ Hn−`(M0;Q)→ Hn−`(M ;Q)
x·−−−→ Q→ Hn−`−1(M0;Q)→ Hn−`−1(M ;Q)→ 0.

Similarly, looking at the pair (M ′,M0), which has the homology of S`+1, we obtain the
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sequence

0→ H`+1(M0;Q)→ H`+1(M
′;Q)

y·−−−→ Q→ H`(M0;Q)→ H`(M
′;Q)→ 0,

where y denotes the rational homology class of Sn−`−1 in the embeddingD`+1×Sn−`−1 ↪→M ′.

Now, if we consider the commutative diagram

0 H`+1(M0;Q) H`+1(M
′;Q) Q H`(M0;Q) H`(M

′;Q) 0

H`(M ;Q)

y·−

where the map H`(M0;Q) → H`(M ;Q) is induced by inclusion, then the composition

Q → H`(M ;Q) contains x in its image [Br72, Lemma IV.2.12]. This means the diagonal

map Q → H`(M ;Q) is injective, and so the long exact sequence in homology for (M ′,M0)

splits into

0→ H`+1(M0;Q)→ H`+1(M
′;Q)→ 0

and

0→ Q→ H`(M0;Q)→ H`(M
′;Q)→ 0.

In particular, we see that y is zero in Hn−`−1(M
′;Q). (This allays our concern that by

surgering the sphere representing x, we might introduce a new non-zero class in the same

degree or one below). As for the pair (M,M0), since x is rationally non-zero by assump-

tion, by Poincaré duality there is some class x′ such that x · x′ 6= 0. Therefore, the map

H`+1(M ;Q)
x·−−−→ Q is surjective, splitting the long exact sequence of the pair (M,M0) into

0→ H`+1(M0;Q)→ H`+1(M ;Q)→ Q→ 0

and

0→ H`(M0;Q)→ H`(M ;Q)→ 0.

So, if ` = n − `, i.e. we are in the case of performing middle–dimensional surgery for

n = 2`, we conclude that H`(M ;Q) ∼= H`(M0;Q)⊕Q and

Hi(M ;Q) ∼= Hi(M0;Q) for i 6= `,
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Figure 2.5: Surgery in degree
⌊
n
2

⌋
on a non-zero element in rational homology kills the

homology class and its dual under the homology pairing.

along with H`(M0;Q) ∼= H`(M
′;Q) ⊕ Q and Hi(M

′;Q) ∼= Hi(M0;Q) for i 6= `. It follows

that dimH`(M
′;Q) = dimH`(M ;Q)− 2 and dimHi(M

′;Q) = dimHi(M ;Q) for i 6= `.

If ` = n − ` − 1, i.e. n = 2` + 1 and we are performing surgery just below half the

dimension, we conclude that H`+1(M ;Q) ∼= H`+1(M0;Q) ⊕ Q and Hi(M ;Q) ∼= Hi(M0;Q)

for i 6= `+ 1, along with H`(M0;Q) ∼= H`(M
′;Q)⊕Q and Hi(M

′;Q) ∼= Hi(M0;Q) for i 6= `.

From here we see

dimH`(M
′;Q) = dimH`(M0;Q)− 1 = dimH`(M ;Q)− 1

and

dimH`+1(M
′;Q) = dimH`+1(M0;Q) = dimH`+1(M ;Q)− 1.

In conclusion, if n is even, middle–dimensional surgery lowers the rank of the homology

by two (and leaves the other ranks unchanged), while if n is odd, the homology right above

and below the middle decreases in rank by one.

2.2.10 Conclusion of stage 2: obtaining a rational equivalence

Using stage (1) of the proof, discussed below, we first find a closed n–manifold with a

degree one normal map to A. Applying normal surgery below dimension `, where n = 2`

or n = 2` + 1, we can then find a simply connected manifold M with a degree one normal

map M
f−→ A such that π≤`(f) ⊗ Q = 0. Then applying the above discussion on middle–

dimensional surgery, we find a manifold M ′ and a degree one normal map M ′ f ′−→ A such
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that π≤`+1(f) ⊗ Q = 0. Indeed, since Hi(M
′;Q) ∼= Hi(M ;Q) for i 6= ` the map f ′ still

satisfies π≤`(f) ⊗ Q = 0 since it is surjective on rational homology as we saw, and through

a sequence of surgeries we achieve that the kernel on Hk(−;Q) is trivial; this is enough to

conclude that f ′ is a rational equivalence.

Remark 2.2.2. In [Br62], one will see the discussion of surgering a normal map to a

homotopy equivalence as a discussion of killing the kernel on homology M → A. We followed

[Br72] and decided to postpone equating killing the kernel on homology with surgering to a

homotopy equivalence, since this equivalence requires the assumption that A is a Poincaré

duality complex. However, one can see that even without having A satisfy Poincaré duality,

much of the story applies: we can still surgery our map M → A to be a (rational) homotopy

equivalence up to right below the middle degree. Applying this to the map classifying the stable

normal bundle of a manifold with some additional structure (such as spin, string, almost

complex) we obtain statements such as: in large enough dimension, every spin manifold is

spin cobordant to a 3–connected one (since BSpin is 3–connected), every string manifold is

string cobordant to a 7–connected one (since BString is 7–connected), etc.

2.3 The first stage of the proof

Recall, given a simply connected rational space X satisfying rational Poincaré duality,

with fundamental class [X], and cohomology classes ci(X), our goal is to obtain a closed

(simply connected) almost complex manifoldM with a rational homotopy equivalenceM f−→

X such that f∗[M ] = [X] and f ∗ci(X) = ci(M).

First, we find an intermediate simply connected space A, with a rational homotopy

equivalence A g−→ X, such that A comes equipped with a complex vector bundle ξ over it

whose Chern classes ci(ξ) satisfy (1+g∗c1(X)+g∗c2(X)+ · · · )(1+c1(ξ)+c2(ξ)+ · · · ) = 1. To

do this, we recall that one obtains complex vector bundles, of an arbitrary complex rank N ,

by mapping to the Grassmannian of complex N–planes in C∞ and pulling back the tautolog-
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ical bundle γ via this map. All of our considerations are homotopy theoretic, so for ease of

notation we will replace this Grassmannian by the space BU(N) it deformation retracts onto,

i.e. the classifying space of the unitary group U(N). The integral cohomology ring of BU(N)

is given by Z[c1, c2, . . . , cN ], where the ci are the Chern classes of the tautological bundle

γ over BU(N). Hence the rational cohomology ring of BU(N) is Q[c1, c2, . . . , cN ]. Since a

rational cohomology class of degree 2i is determined by (the homotopy classes of) a map to

K(Q, 2i) (analogously to the above, by pulling back a natural generator ofH2i(K(Q, 2i);Q)),

we have a map BU(N)→ K(Q, 2)×K(Q, 4)× · · ·K(Q, 2N) given by the cohomology class

(c1, c2, . . . , cN). We will also denote the corresponding generators of the cohomology ring of

K(Q, 2)×K(Q, 4)× · · ·K(Q, 2N) by c1, c2, . . . , cN .

The rational cohomology ring of K(Q, 2i) is the polynomial algebra on one generator

in degree 2i (see e.g. [GM81, p.55], using that K(Q, 2i) is the rationalization of K(Z, 2i)).

From here we see that our map BU(N) → K(Q, 2) × K(Q, 4) × · · ·K(Q, 2N) induces an

isomorphism on rational cohomology, and hence on rational homology; since both spaces

are simply connected, this is a rationalization map. From now on we write BU(N)Q for

K(Q, 2)×K(Q, 4)× · · ·K(Q, 2N).

One can consider the classes ci on BU(N) determined by the equation

(1 + c1 + c2 + · · ·+ cN)(1 + c1 + c2 + · · · ).

There will be non-zero ci of arbitrarily large degree, but notice, by solving equations induc-

tively by degree, that c1, c2, . . . , cN generate the cohomology of BU(N). The terms c≥N+1

will be polynomials in the c≤N . Hence the map BU(N)
v−→ BU(N)Q given by (c1, c2, . . . , cN)

is a rationalization as well.

Now we consider the map X cX−→ BU(N)Q given by (c1(X), c2(X), . . .). (Here we assume

that N is greater than the formal dimension; for the surgery step, stage 2, we needed N ,

which will be the rank of the stable normal bundle, to be much larger than the formal

dimension. From now on we take this to be the case.) Consider the homotopy fiber product
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of the maps cX and v:
A BU(N)

X BU(N)Q

u

g v

cX

This diagram is commutative up to homotopy. It is the space A with the complex vector

bundle ξ = u∗γ which we wish to use in our discussion in stage (2). We list the properties

we require of A and the above diagram:

• A is a simply connected space.

• The map g is a rational homotopy equivalence.

• There is a degree 1 map from some closed manifoldM to A such that the stable normal

bundle of M is the pullback of ξ.

Note that the third point only makes sense after we have verified the second; the fun-

damental class of A we take will be h−1∗ [X].

2.3.1 Fundamental group of A

An issue we face now is that, as constructed, A need not be simply connected. In-

deed, denote the homotopy fiber of BU(N)
v−→ BU(N)Q by F . The long exact sequence in

homotopy groups tells us the following sequence is exact:

π3(BU(N)Q)→ π2(F )→ π2(BU(N))→ π2(BU(N)Q)→ π1(F )→ π1(BU),

i.e. since N ≥ 2 (and hence the listed homotopy groups of BU(N) are stable),

0→ π2(F )→ Z→ Q→ π1(F )→ 0

is exact. The map Z → Q is injective since it is induced by rationalization, so we conclude

that π1(F ) is the abelian group Q/Z. Now consider the induced map of long exact sequences
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in homotopy groups associated to the above homotopy fiber product diagram:

π2(A) π2(X) π1(F )

π2(BU(N)) π2(BU(N)Q) π1(F )

∼=

Since the map π2(BU(N)Q) → π1(F ) is surjective (since π1(BU(N)) = 0), we see that

π2(X) → π1(F ) is surjective if and only if π2(X) → π2(BU(N)Q) ∼= Q is surjective. By

the Hurewicz theorem this is equivalent to the map H2(X;Z) → H2(BU(N)Q;Z) being

surjective. Since both spaces are rational and H2(BU(N)Q;Z) ∼= Q, this is equivalent to

H2(BU(N)Q;Q)
(cX)

∗

−→ H2(X;Q) being non-zero; i.e. to c1(X) being a non-zero element in

H2(X;Q). Since π1(X) = 0, this is furthermore equivalent to π1(A) = 0.

So, if c1(X) 6= 0, we have ensured the first point above. If c1(X) = 0, we will have

to make a modification to our setup in order to proceed. Recall that complex rank N

vector bundles with vanishing first integral Chern class are classified by maps to BSU(N),

where SU(N) is the special unitary group. The integral cohomology of BSU(N) is given

by H∗(BSU(N);Z) ∼= Z[c2, c3, . . . , cN ], and so K(Q, 4) × K(Q, 6) × · · · × K(Q, 2N) is a

rationalization of BSU(N), which we denote by BSU(N)Q. As above, we have a map

BSU(N)
v−→ BSU(N)Q (where now c1 = 0), and we can consider the homotopy fiber product

A BSU(N)

X BSU(N)Q

u

g v

cX

where cX = (c2, c3, . . .). Since π2(BSU(N)) = 0, the homotopy fiber of BSU(N)
v−→

BSU(N)Q is simply connected, and so we have π1(A) = 0.

In either case, since the homotopy fiber of v has trivial rational homotopy groups, the

map A
g−→ X is a map of simply connected spaces inducing an isomorphism on rational

homotopy groups, i.e. it is a rational homotopy equivalence, so the second point above is

satisfied.
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2.3.2 Finding a degree one normal map

As for the third point above, i.e. finding a degree 1 map from some closed manifold M

to A (where A has fundamental class h−1∗ [X])) such that the stable normal bundle of M is

the pullback of ξ, we will have to take into consideration the two distinct cases of c1(X) 6= 0

and c1(X) = 0. What follows is an adaptation of the argument used in the smooth case

([Sull77, Theorem 13.2], expanded on in [Su09], see also [Su14]; we expand on details of some

arguments adapted from there).

Consider now the tautological complex rank N bundle γ over BU(N), or over BSU(N)

if c1 = 0. Denote by ξ = g∗γ the pullback bundle over A. We consider the Thom spaces

Thom(γ) and Thom(ξ) of these bundles, i.e. we consider the underlying real vector bundle,

choose a metric on the fibers, take the unit disc bundle, and collapse the boundary to a point.

Equivalently, we can obtain the Thom space by taking the mapping cone of the projection

from the sphere bundle of our vector bundle to the base space. Any map Sn+2N → Thom(ξ)

is homotopic to one whose preimage of A ⊂ Thom(ξ) is a smooth n–dimensional submanifold

M of Sn+2N , see [Br72, p.33]; the normal bundle ofM in Sn+2N , i.e. the stable normal bundle

of M , is the pullback of ξ by this map.

Remark 2.3.1. One will see that [Br72, p.33] assumes the analogue of our space A to be

a finite complex; if this is satisfied, we embed this finite complex into some Euclidean space

and thicken it to a manifold [Br62]. Our A will not be a finite complex, but we can do the

following: first, find a cell complex A′ with a weak homotopy equivalence A′ → A, and pull

ξ back via this map. Then we consider maps of spheres into the Thom space of this bundle.

We choose a cell decomposition of the Thom space that extends that of A′; then our given

map of a sphere into the Thom space, being compact, intersects only finite many cells of A′

(if the map misses A′ completely, it is nullhomotopic, and hence homotopic to a constant

map landing in A′). The Thom space of our bundle restricted to A′ naturally sits inside the

Thom space of the bundle over A′.
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Figure 2.6: The Pontryagin–Thom construction.

We thus obtain a normal map M f−→ A. However, the degree of this map remains un-

known to us at this point. The class f∗[M ] in integer homology is obtained by taking the

image of the Hurewicz homomorphism applied to the homotopy class of Sn+2N → Thom(ξ),

followed by cap product with the Thom class of ξ, see [Br72, p.39]. We compose this map fur-

ther with the rationalization on homology, and refer to this composition πn+2N(Thom(ξ))
htξ−−→

H(A;Q) as the Hurewicz–Thom map. Hence, our goal is to show that [A] = g−1∗ [X] is in the

image of this map, since this will provide us with a degree one normal map M → A.

To show this, we first note that rationalizing the sphere bundle S(ξ)→ A gives a fiber

bundle over AQ = X whose fibers are rational spheres. Denote this bundle by S(ξ)Q → X.

We can do the same for S(γ) → BU(N) (or S(γ) → BSU(N); we will write BU(N) for

simplicity of notation from now on), and we can form the “Thom spaces” of these rational

sphere bundles by taking the respective mapping cones; the induced map of long exact

sequences in homology, together with the five lemma, shows that the induced map of the

Thom space to the “Thom space” of the rational sphere bundles is a rationalization (these

spaces are all simply connected).

We can now consider the following diagram (cf. [Su09, p.21]):
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S(ξ) S(γ)

A BU(N)

Thom(ξ) Thom(γ)

Thom(ξ)Q Thom(γ)Q

X BU(N)Q

S(ξ)Q S(γ)Q

u

g v

cX

(2.3.1)

We explain what the maps are in this diagram. We remark that we will construct this

diagram starting from the central square, which we have implicitly replaced with a strictly

commutative square (by converting the right vertical map into a fibration and forming the

pullback square). While constructing the diagram, we will note that there exist arrows,

unique up to homotopy, that make certain squares commute. At each such moment, we

replace the total diagram we have up to that point with a homotopy equivalent strictly

commutative diagram; indeed, each such diagram will be easily seen to be homotopy coherent

and hence will admit a lift to a strictly commutative diagram [DKS89]. For ease of notation

we will assume this process to be implicit and will not rename our objects and maps.

Now, let us recall a basic lemma in rational homotopy theory: given a map Y f−→ ZQ,

where ZQ, and a rationalization Y ρ−→ YQ, there is a map YQ
fQ−→ ZQ, unique up to homotopy,

such that f = fQρ up to homotopy. This follows from obstruction theory: the obstructions to

extending f over the map ρ lie in H∗(YQ, Y ; π∗−1(ZQ)), where (YQ, Y ) denotes the mapping

cone of ρ (i.e. we convert ρ into a inclusion and consider the corresponding pair of spaces).

Since ρ is a rationalization, the pair (YQ, Y ) has only torsion in its homotopy groups. Since ZQ

is rational, the groups H∗(YQ, Y ; π∗−1(ZQ)) vanish. Likewise, the obstructions to uniqueness

of the extension, which lie in H∗(YQ, Y ; π∗(ZQ)) vanish.

Now, choosing a rationalization S(ξ) → S(ξ)Q, we have that the map S(ξ) → A → X

factors through S(ξ)Q by the above; likewise for S(γ)→ BU → BUQ. For now this gives us

the following (homotopy) commutative diagram:
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S(ξ) S(γ)

BU(N)

X BU(N)Q

S(ξ)Q S(γ)Q

u

g v

cX

(2.3.2)

Now consider the composition S(ξ) → S(γ) → S(γ)Q. By the above lemma, we have

factorization S(ξ)Q → S(γ)Q through S(ξ)→ S(ξ)Q.

S(ξ) S(γ)

BU(N)

X BU(N)Q

S(ξ)Q S(γ)Q

u

g v

cX

(2.3.3)

We now check that the bottom square is homotopy commutative. Consider the map

from S(ξ) to BU(N)Q obtained by following any arrows from S(ξ) to BU(N)Q except for the

bottom-most arrow. Some diagram-chasing shows that the compositions S(ξ) → S(ξ)Q →

X → BU(N)Q and S(ξ) → S(ξ)Q → S(γ)Q → BU(N)Q are homotopic; diagramatically we

have:

where we use the commutativity of the diagram omitting the bottom-most arrow, and

in the last equality the fact that the bottom-most arrow makes the outer square commute,

by construction. By the uniqueness property discussed above, we conclude that the bottom

square commutes up to homotopy.
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Now, considering the homotopy fibers of these (rational) sphere bundles, we similarly

have the following commutative diagram:

S2N−1 S2N−1

S(ξ) S(γ)

A BU(N)

X BU(N)Q

S(ξ)Q S(γ)Q

S2N−1
Q S2N−1

Q

g v

u

g v

cX

cX

(2.3.4)

Here, we take the left-most and right-most vertical arrows, along with the top-most

horizontal arrow, to be the induced map of homotopy fibers in the appropriate map of

fibrations. Now notice that the left-most and right-most vertical arrows are rationalizations,

as seen from the induced map of long exact sequences in homotopy groups (tensored with

Q; recall Q is a flat Z–module).

Thus the composition S2N−1 → S2N−1 → S2N−1
Q from the top-left to the bottom-right

corner factors through the rationalization S2N−1 → S2N−1
Q , giving us

S2N−1 S2N−1

S(ξ) S(γ)

A BU(N)

X BU(N)Q

S(ξ)Q S(γ)Q

S2N−1
Q S2N−1

Q

g v

u

g v

cX

cX

(2.3.5)

We check that the bottom square, with this induced map indicated by the dashed

arrow, commutes. This will imply, by the uniqueness (up to homotopy) of the map between

homotopy fibers, that the dashed arrow is homotopic to the map S2N−1
Q → S2N−1

Q induced
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between the homotopy fibers of the bottom two fibrations. The same diagrammatic reasoning

as before, applied to the outer two squares, shows that the bottom square above commutes,

by uniquess of the factorization of S2N−1 → S(γ)Q through S2N−1
Q .

Now, consider the outer-most square,

S2N−1 S2N−1

S2N−1
Q S2N−1

Q

(2.3.6)

Since ξ is the pullback of γ, the upper horizontal arrow is a homotopy equivalence.

The vertical arrows are isomorphisms on rational homology, and hence by commutativity

the lower horizontal arrow is an isomorphism on rational homology. That is, it is a rational

homotopy equivalence of rational spaces, and hence a homotopy equivalence. Therefore the

homotopy fibers of the upper and lower horizontal arrows are contractible, and so the induced

map between them is a homotopy equivalence. We conclude that this diagram is a homotopy

pullback square.

Now we will use that this square, and our original square involving A, are homotopy

pullback squares, to conclude that the diagram

S(ξ) S(γ)

S(ξ)Q S(γ)Q

(2.3.7)

is a homotopy pullback square. Indeed, consider again the diagram 2.3.5. The diagonal se-

quences are fibrations, and two of the three “main” squares involved are homotopy pullbacks.

We have the following two lemmas; the first is an immediate adaptation of [Su09, Lemma

3.2.4], with the same proof (note only a graphical typo in the direction of some arrows in the

proof therein, which has no bearing on the reasoning), and the second is the corresponding

statement for fibrations instead of cofibrations (with the proof proceeding by replacing the
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long exact sequence in homology for a cofibration by the long exact sequence in homotopy

for a fibration):

Lemma 2.3.2. ([Su09, Lemma 3.2.3]) Suppose we have a diagram

• •

• •

• •

• •

• •

• •

where the diagonals are cofibrations, and two of the three central squares are homotopy

pushouts. Then the third central square is a homotopy pushout.

Lemma 2.3.3. Suppose we have a diagram

• •

• •

• •

• •

• •

• •

where the diagonals are fibrations, and two of the three central squares are homotopy

pullbacks. Then the third central square is a homotopy pullback.

From Lemma 2.3.3 we have that the diagram 2.3.7 showing up in diagram 2.3.5 is a

homotopy pullback.

Now recall diagram 2.3.2:

S(ξ) S(γ)

A BU(N)

Thom(ξ) Thom(γ)

Thom(ξ)Q Thom(γ)Q

X BU(N)Q

S(ξ)Q S(γ)Q

u

g v

cX
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The Thom spaces are obtained as the homotopy cofibers of the outer diagonal arrows,

with the maps between them being the induced maps between homotopy cofibers. After

choosing particular homotopies making the homotopy commutative squares commute, the

inner square commutes up to homotopy by the uniqueness of the induced map between

homotopy cofibers from the top-left to the bottom-right 1. We want to conclude that this

inner central square of Thom spaces is a homotopy pullback. To do so, we will use Lemma

2.3.2 above combined with the following lemma (see e.g. [TayWil79, Lemma 6.1], and [Su09,

Lemma 2.5.1] for a proof):

Lemma 2.3.4. Suppose we have a commutative square of simply connected spaces, where

the vertical arrows are rationalizations. Then the square is a homotopy pullback square if

and only if it is a homotopy pushout square.

Now by Lemma 2.3.2, our square of Thom spaces is a homotopy pushout, and hence by

the above it is a homotopy pullback.

2.3.3 Verifying that the prescribed fundamental class is hit

With this in hand, we now consider the diagram

πn+2N(Thom(ξ)) πn+2N(Thom(γ))

Hn(A;Q) Hn(BU(N);Q)

Hn(X;Q) Hn(BU(N)Q;Q)

πn+2N(Thom(ξ)Q) πn+2N(Thom(γ)Q)

htξ htγ

u∗

g∗ v∗

cX∗

htQξ htQγ

(2.3.8)

1see Proposition 4.1 in https://www.math.uni-bielefeld.de/~tcutler/pdf/Week%209%20-

%20Homotopy%20Pushouts%20II.pdf, and [MP11, §1.2] for a discussion.
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where the upper diagonals are the corresponding Hurewicz–Thom maps, and the lower

diagonals the induced maps on rationalizations. More precisely, we first have the following

diagram of abelian groups:

πn+2N(Thom(ξ)) πn+2N(Thom(γ))

Hn(A;Q) Hn(BU(N);Q)

Hn(X;Q) Hn(BU(N)Q;Q)

πn+2N(Thom(ξ)Q) πn+2N(Thom(γ)Q)

htξ htγ

u∗

g∗ v∗

cX∗

The dashed arrows are the unique maps making the left square and right square com-

mute, respectively (a map from a finitely generated abelian group G to a rational vector

space factors uniquely through a given rationalization G → G ⊗ Q). Again using the same

diagrammatic reasoning as before, together with this uniqueness property of the factoriza-

tion through a rationalization on the level of abelian groups, we conclude that the bottom

square commutes.

These lower diagonals, htQξ and htQγ are isomorphisms. Indeed, since we are taking

N to be large with respect to n, the rationalized Hurewicz map πn+2N(Thom(ξ))⊗ →

Hn+2N(Thom(ξ);Q) is an isomorphism; this follows from the fact that Thom(ξ) is a simply

connected space whose first non-trivial rational homology group is in degree 2N (by the

Thom isomorphism theorem) and the rational Hurewicz theorem. A direct way to see this

would be through employing minimal models: the minimal model of Thom(ξ) has no gen-

erators below degree 2N , and so any non-trivial elements between degrees 2N and 4N − 1

must be a linear combination of generators. Since the differential contains no linear terms,
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elements in degree ≤ 4N − 2 must be closed; in particular, H∗(Thom(ξ);Q) is spanned

by closed generators of the minimal model, which is equivalent to the (dual) rationalized

Hurewicz homomorphism being an isomorphism. (Note that elements in degree 4N−1 must

be linear in the generators, but may not be closed; this gives the surjectivity part of the

rational Hurewicz theorem). Then, the map Hn+2N(Thom(ξ);Q)→ Hn(A;Q) is an isomor-

phism by the Thom isomorphism theorem, and hence the composition πn+2N(Thom(ξ))⊗ →

Hn+2N(Thom(ξ);Q)→ Hn(A;Q) is an isomorphism, giving that htQξ is an isomorphism (by

tensoring the left-most square in diagram 2.3.8 with Q); likewise for htQγ .

Our goal is to show that [A] ∈ Hn(A;Q) is in the image of htξ, i.e. that [X] ∈ Hn(X;Q)

is in the image of g∗htξ. Recall, that will imply the existence of a manifold M in the

above discussion with a normal map to A such that f∗[M ] = [X]. So, consider the element

cX∗ [X] ∈ Hn(BU(N)Q;Q). We first show that this class is in the image of the map v∗htγ.

For clarity, let us denote the elements ci ∈ H2i(X;Q) by ci(X), and Chern numbers by cα

(i.e. cα = ci1 · · · cir for some i1, . . . , ir).

As a first case, we show that [X] is in the image of g∗htξ in the case of n odd. In this

case cX∗ [X] = 0 since Hodd(BU(N)Q;Q) = 0. Then 0 ∈ πn+2NThom(γ) will map to cX∗ [X]

under v∗htγ. Since htQγ is an isomorphism, it follows that (htQξ )−1[X] ∈ πn+2NThom(ξ)Q and

0 ∈ πn+2NThom(γ) map to the same element in πn+2NThom(γ)Q (namely (htQγ )−1cX∗ [X]).

Now, as discussed, the diagram of Thom spaces is a homotopy pullback square, and so

we have an induced Mayer–Vietoris long exact sequence in homotopy groups,

· · · ∂−→ π∗(Thom(ξ))
(û∗,ĝ∗)−−−−→ π∗(Thom(γ))⊕ π∗(Thom(ξ)Q)

v̂∗−ĉX∗−−−−→ π∗(Thom(γ)Q)
∂−→ π∗−1(Thom(ξ))→ · · ·

where û, ĝ, v̂, ĉX denote the induced maps on Thom spaces. From here it follows that

there is an element β ∈ πn+2N(Thom(ξ)) that maps to (htQξ )−1[X] and 0 respectively. Then

g∗htξ(β) = [X] as desired.

Now suppose that [X] is even, so cX∗ [X] is not necessary zero. We now take into con-

sideration condition (iii) from the beginning, namely that the “Chern numbers” on X are

integers satisfying the Stong congruences. If we are in the case of c1(X) = 0, then the Stong
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congruences are strictly stronger in dimensions n ≡ 4 mod 8 (i.e. the description of the

image of ΩSU τ−→ H∗(BSU ;Q) involves more congruences than those describing the image

of ΩU τ−→ H∗(BU ;Q)). In either case, suppose the Stong congruences are satisfied. This

means there is some stably almost complex manifold Y (with c1 = 0 integrally if we are in

the c1(X) = 0 case) such that 〈ci1(X)ci2(X) · · · cir(X), [X]〉 = 〈ci1(Y )ci2(Y ) · · · cir(Y ), [Y ]〉

for all tuples (i1, i2, . . . , ir) whose total degree is n. For simplicity, let us denote e.g.

ci1(X)ci2(X) · · · cir(X) by cα(X).

Note,

〈cα(X), [X]〉 = 〈(cX)
∗
(cα), [X]〉 = 〈cα, (cX)∗[X]〉.

On the other hand, consider the map Y νY−→ BU (or, to BSU), classifying the stable normal

bundle of Y , i.e. ν∗Y γ is the stable normal bundle of Y (with its complex structure). By

the Pontryagin–Thom construction, there is an element βY ∈ πn+2N(Thom(γ)) such that

htγ(βY ) = ν∗[Y ] (namely, Y is constructed by taking the preimage of BU or BSU under

a suitable representative of the homotopy element, and as a consequence the induced map

from Y to BU or BSU classifies the stable normal bundle Y ). Here we consider ν∗[Y ] as

an element in rational homology. Since νY pulls back the universal Chern classes ci to the

Chern classes of the stable normal bundle of Y , it follows that νY pulls back the classes ci

to the Chern classes of (the stable tangent bundle of) Y . So, we have

〈cα(Y ), [Y ]〉 = 〈ν∗cα, [Y ]〉 = 〈cα, (νY )∗[Y ]〉 = 〈cα, htγ(βY )〉.

Furthermore, since we are only considering Chern classes up to degree n, we have ci = v∗ci,

and hence

〈cα, htγ(βY )〉 = 〈v∗(cα), htγ(βY )〉 = 〈cα, v∗(htγ(βY ))〉.

In conclusion, 〈cα, (cX)∗[X]〉 = 〈cα, v∗(htγ(βY ))〉 for all α, and since the cα span the

vector space Hn(BUQ;Q) ∼= Hom(Hn(BUQ;Q),Q), we conclude that cX∗ [X] = v∗(htγ(βY )).

Hence, there is an element β ∈ πn+2N(Thom(ξ)) that maps to (htQξ )−1[X], and g∗htξ(β) =

[X].

47



2.3.4 Stable almost complex structure on the resulting mani-

fold and its Chern classes

Now that we have obtained a manifold and a degree one normal map to A, we go

through the second stage of the proof to obtain a degree one normal map M f−→ A which is a

also a rational homotopy equivalence, and thus the composition M f−→ A
g−→ X is a rational

homotopy equivalence.

We pull back the complex structure from the vector bundle γ to ξ and then to the

stable normal bundle νM (a normal map gives a real bundle isomorphism between νM and

f ∗ξ, and so we can transport the complex structure from f ∗ξ to νM .) By construction, the

fundamental class [M ] is determined by the orientation of the stable normal bundle (as a

real bundle) in the Pontryagin–Thom construction (see e.g. [Br62, Lemma 2]), and hence

the complex structure we are equipping the stable normal bundle with induces this same

orientation. This can also be seen tautologically from the diagram

M → A→ BU(N)→ BSO(2N),

where the map BU(N) → BSO(2N) classifies the real vector bundle underlying the tau-

tological bundle γ. The stable normal bundle to M , as a real vector bundle, is by the

Pontryagin–Thom construction classified by this composition, and hence it lifts to a com-

plex vector bundle by looking at M → A→ BU(N).

As a complex structure on the stable normal bundle of a manifold determines a complex

structure on the stable tangent bundle, we have a stably almost complex structure on M .

Indeed, the stable normal bundle as a complex vector bundle is classified by a map M →

GrC(N,N ′) of complex N -planes in CN ′ , for some large N ′. With the standard hermitian

inner product on CN ′ , we have a diffeomorphism GrC(N,N ′)
⊥−→ GrC(N ′ −N,N ′) sending a

plane to its orthogonal complement. The compositionM → GrC(N,N ′)
⊥−→ GrC(N ′−N,N ′)

gives a complex structure on the stable tangent bundle to M , as seen from the commutative
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diagram

GrC(N,N ′) GrC(N ′ −N,N ′)

GrR(2N, 2N ′) GrR(2N ′ − 2N, 2N ′)

⊥

⊥

where the map ⊥ between real Grassmannians sends a real plane to its orthogonal comple-

ment with respect to the standard euclidean inner product on R2N ′ . We see that the total

Chern classes of the stable normal bundle to M and the stable tangent bundle (with this

complex structure) multiply to the trivial class 1.

Now we calculate the Chern classes of this stable almost complex structure. Recall the

following diagram:
νM ξ γ

M A BU(N)

X BU(N)Q

f u

g v

cX

The Chern classes of this complex structure on the stable tangent bundle of M satisfy

ci(M) = ci(νM) = f ∗ci(ξ) = f ∗ci(u∗γ) = f ∗u∗ci(γ) = (uf)∗ci(γ)

= (uf)∗v∗ci = (vuf)∗ci = (cXuf)∗ci = f ∗g∗(cX)∗ci = (gf)∗ci(X),

where we used that i ≤ n
2
in order to have ci(γ) = v∗ci.

Now recall our necessary condition (vi) in order for this stable almost complex structure

to be induced by an almost complex structure: we must have 〈cn(M), [M ]〉 = χ(M), by the

obstruction-theoretic definition of the top Chern class. Note, since

〈cn(M), [M ]〉 = χ(M) = 〈(gf)∗cn(X), [M ]〉 = 〈cn(X), (gf)∗[M ]〉 = 〈cn(X), [X]〉,

this is equivalent to 〈cn(X), [X]〉 = χ(X), sinceM and X have the same Euler characteristic.

Conversely, if 〈cn(X), [X]〉 = χ(X), then the stable almost complex structure onM is induced

by an almost complex structure; the top Chern class evaluating to the Euler characteristic
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is a necessary and sufficient condition for reducing to a genuine almost complex structure,

see e.g. [Kahn69, Corollary 3].

This concludes the proof of Theorem 1.1.1.

Remark 2.3.5. • Consider again the diagram

πn+2N(Thom(ξ)) πn+2N(Thom(γ))

Hn(A;Q) Hn(BU(N);Q)

htξ htγ

u∗

Choosing an element of πn+2NThom(ξ) gives us a fundamental class [A] in Hn(A;Q)

by looking at its image under the Hurewicz–Thom map, and this fundamental class

will be mapped to by a stably almost complex manifold by applying the Pontryagin–

Thom construction to our chosen homotopy element in the Thom space. Indeed, by

construction (i.e. commutativity of the diagram) the image of [A] in the homology of

BU(N) will land in the lattice described by Stong. The issue here is that we do not

have control of what exactly the Chern numbers of our manifold will be, so we do not

know what the top Chern class will evaluate to, and, in the case of dimension divisible

by four, whether the signature will be computed correctly.

• Let us comment now on the case of c1 = 0 (if the dimension n is not congruent to 4 mod

8, suppose we do not replace BU by BSU). The homotopy pullback of X cX−→ BU(N)Q

and BU(N)
v−→ BU(N)Q gives us the map A g−→ X. From the long exact sequence in

homotopy groups, since the homotopy fiber of v has trivial rational homotopy groups,

we see that A g−→ X is an isomorphism on rational homotopy groups.

The fundamental group of A is Q/Z. Now, as before, we can obtain a stably almost

complex manifold M with a degree one normal map to A. Since A is not simply

connected as it was before, we cannot simply surger M down to a simply connected
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manifold. However, noticing that all commutators π1(M) become trivial when mapped

over to A, we can surger M down to a manifold with abelian fundamental group. Since

this is a finitely generated abelian group, we can identify the infinite cyclic summands

in the group; the generators of these groups, mapped to A, become torsion, and hence

some multiple of the generator in each of the infinite cyclic summands can be surgered

out. We end up with M whose fundamental group is finite and abelian; that is, the

map on fundamental groups to A is a rational isomorphism. Hence π1(f) ⊗ Q = 0

(where f denotes the normal map from the new manifold). We can perform surgery,

getting rid of π∗(f) ⊗ Q up to the middle degree; however, it is in middle degree that

the following difficulty arises: we have no guarantee that the relative Hurewicz map will

give an isomorphism between the homotopy group of f and the homology of the kernel,

an identification that was crucial earlier. One could hope that relative Hurewicz would

hold (rationally) if the pair (A,M) were nilpotent, but whether this is the case is not

at all clear. We believe this issue of c1 = 0 is not merely a bug in the technique of the

proof, but rather indicative of some interesting phenomenon at play.
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Chapter 3

Consequences, examples, and computations

3.1 Consequences of the proof of the main theorem

We notice that all the necessary conditions (i)-(vi) for realization were cohomological.

Since in dimensions ≥ 6 not congruent to 4 mod 8, these were also sufficient, we have:

Corollary 3.1.1. The realizability of a simply connected rational homotopy type by a simply

connected closed almost complex manifold of dimension n 6≡ 4 mod 8, depends only on its

cohomology ring.

The case of dimensions congruent to 4 mod 8 is somewhat different, since there might

exist an almost complex manifold with c1 = 0 rationally not satisfying the stronger set of

SU congruences, whose rational homotopy type would then not be constructible using only

Theorem 1.1.1 as stated.

A simply connected rational homotopy type is determined, up to homotopy equivalence,

by a minimal C∞-algebra structure on its cohomology (extending the given multiplication),

up to isomorphism [Kad08]. That is, for a given graded-commutative algebra (H,m2) (where

m2 is the multiplication), we have

{rational spaces X with H∗X ∼= (H,m2)}/∼ ≡ {C∞ structures (H,m2,m3,m4, . . .)}/∼.
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The realizability of a rational space, in dimensions not 4 mod 8, is insensitive to the higher

operations m≥3. Contrast this with the case of compact complex manifolds which satisfy the

∂∂-lemma, where among all rational homotopy types realizing a given cohomology algebra,

at most one of them (the formal one) is realized by such a manifold.

In particular, for every simply connected almost complex manifold, there is a formal

almost complex manifold with the same rational cohomology ring (as a definition of for-

mality we can take that some representative of the associated C∞-algebra structure on the

cohomology has trivial m≥3; equivalently, the minimal model of the space is isomorphic to

the minimal model of its cohomology (where the cohomology algebra is equipped with the

trivial differnetial). It is perhaps the other direction that is more interesting: knowing that a

formal rational homotopy type can be realized by a closed almost complex manifold implies

that any rational homotopy type with the same cohomology ring can also be realized.

An easy consequence of our main theorem that demonstrates the abundance of rational

homotopy types of closed almost complex manifolds is the following:

Corollary 3.1.2. Any simply connected rational homotopy type satisfying Poincaré duality

with Euler characteristic and signature zero (if the dimension is divisible by four) is realized

by a closed almost complex manifold.

Proof. Since the Euler characteristic and signature vanish, one can choose all rational Chern

classes to be trivial. (Note that the signature without a choice of fundamental class is only

well-defined up to sign, so is well-defined in the signature zero case.)

This includes, for example, the rational homotopy types of the product of any odd–

dimensional simply connected manifold and a sphere of odd dimension ≥ 3.

3.2 Chern number congruences in dimensions ≤ 10

We list the congruences among Chern numbers for stably almost complex manifolds of

dimension ≤ 10. The congruences in dimension ≤ 8 were listed by Hirzebruch in [Hirz60].
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We will omit the integral sign, with the understanding that the given class is to be paired

with the fundamental class of the stably almost complex manifold.

• Dimension 2: c1 ∈ 2Z

• Dimension 4: c21 + c2 ∈ 12Z

• Dimension 6: c31 ∈ 2Z, c3 ∈ 2Z, c1c2 ∈ 24Z

• Dimension 8:

2c41 + c21c2 ∈ 12Z,

c1c3 − 2c4 ∈ 4Z,

−c4 + c1c3 + 3c22 + 4c21c2 − c41 ∈ 720Z

• Dimension 10:

c1c4 + c5 ∈ 12Z,

4c31c2 + 8c21c3 + c1c4 + 9c5 ∈ 24Z,

15c51 − 5c31c2 + 12c1c
2
2 + 8c21c3 − 8c1c4 ∈ 24Z,

c51 + c31c2 + 6c21c3 ∈ 12Z,

−c31c2 + 3c1c
2
2 + c21c3 − c1c4 ∈ 1440Z.

3.3 Further remarks on realization by almost com-

plex manifolds

From the previous example, we see that any simply connected rational homotopy sat-

isfying Poincaré duality in dimension 6 is realized by an almost complex manifold. Indeed,

we can choose c1 = 0, c2 = 0, and the fundamental class and c3 so that c3 evaluates to the

Euler characteristic. The congruences in dimension 6 require c3 to be even, but this will be
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automatically satisfied as the Euler characteristic of a 4k + 2–dimensional Poincaré duality

algebra is even. A simply connected rational space satisfying rational Poincaré duality is

formal, so we see that for degree reasons any such rational homotopy type will be of the form

M#N , where M is a simply connected 6–manifold with b3 = 0, and N is a connected sum

of some number of copies of S3 × S3. We remark that even for a small value of b2 there are

many rational homotopy types with b3 = 0 and this b2; for example the real homotopy type

of CP3#CP3 contains infinitely many rational homotopy types (see [Mar90, Example 3.5]).

(For b2 ≤ 1 and b3 = 0 there is only one rational homotopy type.)

Since a simply-connected rational Poincaré duality space of formal dimension 6 is formal

[Mill79], its rational homotopy type is determined by its cohomology algebra. Denoting the

cohomology by H∗, Poincaré duality gives us an isomorphism H2 ∼= (H4)∨, and so the

product H2 ⊗ H2 → H4 is given by a symmetric trilinear form H2 ⊗ H2 ⊗ H2 → Q.

This trilinear form determines the cohomology algebra of our space, and hence its rational

homotopy type. In the case of dimH2 = 3, such trilinear forms correspond to (rational) cubic

plane curves; the abundance and structure of such curves, paired with choices of rational

Chern classes, suggests this may be an interesting line of further study.

In all even dimensions n ≥ 8 there are examples of simply connected rational homotopy

types not realized by almost complex manifolds; indeed one can take the rationalized spheres

SnQ (see [AM19, Theorem 2.2], adapting a famous observation of Borel and Serre to the

rational setting).

In dimension 10, we see from the congruences in Section 3.2 that any simply connected

rational homotopy type satisfying Poincaré duality of dimension 10, with Euler characteristic

divisible by 24, is realized by an almost complex manifold (by setting the lower Chern classes

to be 0). In all dimensions of the form 4k+2, we see that the only obstruction to realizability

is a finite divisibility constraint on the Euler characteristic.

Corollary 3.3.1. In odd complex dimensions, realizability is guaranteed if the Euler char-

acteristic is divisible by a certain positive integer d(n) depending on the dimension (e.g.
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d(6) = 2, d(10) = 24, see Section 3.2)).

One can also ask about realizability of real homotopy types by closed almost complex

manifolds. Unfortunately, an immediate problem presents itself in this case asH∗(K(R, n);R)

is not the free graded-commutative algebra on one generator (see Oprea’s review Zbl 0865.55009

of Brown and Szczarba’s “Real and rational homotopy theory”). In fact, H∗(K(R, n);R) has

uncountable dimension. It is the case that H∗(K(R, n);R) is the free graded-commutative

algebra on one generator if one interprets the former in the context of continuous cohomology

(see Brown–Szczarba), but we will not pursue this here.

Remark 3.3.2. In Sullivan’s original formulation of the realization theorem for closed

smooth manifolds [Sull77, Theorem 13.2], one sees that the Stong congruences (for BSO;

they are nontrivial only in dimensions of the form n = 4k) are not mentioned in the signa-

ture 0 case. If the quadratic form on H
n
2 (X;Q) given by α ⊗ β 7→ 〈αβ, [X]〉 is equivalent

over Q to one of the form
∑

i±x2i for some choice of fundamental class [X] ∈ Hn(X;Q),

then it will be of this form for any other non-zero choice of [X]′ ∈ Hn(X;Q). Indeed, since

the signature is zero, by assumption we can write the intersection form with respect to [X]

as
∑

i x
2
i − y2i . Scaling the fundamental class by a rational changes this into

∑
i
p
q
x2i −

p
q
y2i ,

which is the same as
∑

i((1 + p
4q

)x+ (1− p
4q

)y)2− ((1− p
4q

)x+ (1 + p
4q

)y)2. In particular, we

may scale the fundamental class until all of the Stong congruences are satisfied. We cannot

do the same in the almost complex realization problem in the signature 0 case, as our choice

of top Chern class is tethered to the fundamental class by the requirement 〈c2n, [X]〉 = χ(X).

3.4 Rational connected sums of quaternionic pro-

jective planes

Using the results of [GeM00], one calculates that kHP2#`HP2 (with its standard smooth

structure) admits an almost complex structure if and only if (k, l) = (4n + 3, 2n + 1) for
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some n. Let us see what happens in the rational case; i.e. we consider 8–manifolds M with

H∗(M ;Q) = 0 except for ∗ ∈ {0, 4, 8}, with intersection form given by k〈1〉 ⊕ `〈−1〉. Let us

denote such a manifold by Q(kHP2#`HP2), following notation suggested by Z. Su.

We will use the Chern number congruences for stably almost complex 8–manifolds in

what follows (see Section 3.2) :

−c4 + c1c3 + 3c22 + 4c21c2 − c41 ∈ 720Z,

c21c2 + 2c41 ∈ 12Z,

−2c4 + c1c3 ∈ 4Z,

which in our case trivially becomes

−c4 + 3c22 ∈ 720Z and c4 is even.

Now, suppose we have a Q(kHP2#`HP2) that admits an almost complex structure.

Then σ = k − ` and χ = 2 + k + `, so from Hirzebruch’s relation σ ≡ χ mod 4 in dimension

8 [Hirz87, p.777], we have k − ` ≡ 2 + k + ` mod 4, i.e. 2` ≡ 2 mod 4, i.e. ` is odd. Since

k + `+ 2 = χ = c4 must be even, we conclude that k is odd as well.

We now show by example that the above observation on when kHP2#`HP2 admits

almost complex structures does not carry over to the rational case. Let us consider

Q(23HP2#23HP2). Then c4 = χ = 48 and σ = 0. We can write c2 as c2 =
∑23

i=1 xi+
∑23

i=1 y
2
i ,

where the xi are classes such that 〈x2i , µ〉 = 1 and 〈y2i , µ〉 = −1 for some chosen fundamental

class µ, and all pairwise products of these elements are zero. The signature equation in terms

of Chern classes is 1
45

(3c22+14c4) = 0, i.e. 3c22 = −14·48, which has a solution c22 = −224. We

see that the congruences are satisfied for this c22 and c4; indeed, c4 is even and −c4 + 3c22 = 0.

It only remains to check that one can solve for c2. By Lagrange’s four–squares theorem,

224 can be written as a sum of four integer squares, so we choose four yi’s and take these

integers to be the coefficients of c2 along these yi’s (and set the remaining coefficients to

be zero). By the almost complex realization theorem we conclude that there is an almost
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complex manifold realizing this data. It is possible that the underlying homotopy type is

that of kHP2#`HP2, equipped with a non-standard smooth structure.

We now observe that the above fits into a more general solution. Let us consider the

general case of Q(kHP2#`HP 2). The signature is k − ` and the Euler characteristic is

2 + k + `. Besides the Euler characteristic being even, we must have 3c22 + 14c4 = 45(k − `)

and −c4 + 3c22 ∈ 720Z. Let us write this as

3c22 = 31k − 59`− 28,

3c22 = 720m+ k + `+ 2.

From 31k− 59`− 28 = 720m+ k + `+ 2 we have k = 2`+ 1 + 24m. In particular, k is odd,

so we write k = 2n+ 1. Then ` = n− 12m, and c22 = 236m+ n+ 1. Since 2 + k+ ` must be

even (by the Euler characteristic requirement), we have that ` is odd as well, i.e. n is odd;

we write n = 2u+ 1.

So, the solutions are (k, `, c22) = (4u+ 3, 2u+ 1− 12m, 2u+ 2 + 236m); since we require

k, ` ≥ 0, we have u ≥ 0 and 2u + 1 ≥ 12m. Fixing k and `, i.e. u and m, we see

that the problem of realizing Q(kHP2#`HP2) comes down to finding a class c2 such that

c22 = 2u+2+236m. We use the same notation and method as in the case ofQ(23HP2#23HP2)

considered above. If m = 0, and u = 0, we have (k, `, c22) = (3, 1, 2), and we can take

c2 = x1 +x2, which satisfies c22 = 2. If m = 0 and u > 0, then k ≥ 4, and we may solve for c2

using Lagrange’s four–square theorem since c22 > 0. If m > 0, then u ≥ 6 and so k ≥ 4, and

we may again apply Lagrange’s four–square theorem to solve for c2 since c22 > 0. If m < 0,

then ` ≥ 4, and so if c22 ≤ 0 we can solve for c2. If m < 0 and c22 > 0, then 2u+ 2 > −236m,

so in particular k = 4u+ 3 ≥ 4, and we can solve for c2 again.

In conclusion, we have that there is a Q(kHP2#`HP 2) if and only if (k, l) = (4u +

3, 2u + 1 + 12m) with k, l ≥ 0. Note the similarity with the integral case, where there was

no summand of 12m involved. The observation above with Q(23HP2#23HP2) follows for

u = 5, m = 1.
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Remark 3.4.1. Above we used Hirzebruch’s relation that on a closed almost complex 4n–

manifold, we have χ ≡ (−1)nσ mod 4. Since every even-dimensional stably almost com-

plex manifold is complex cobordant to an almost complex manifold [Kahn69, Corollary 5],

and the Chern numbers and signature are complex cobordism invariants, this shows us that

Hirzebruch’s relation is the restriction to almost complex manifolds of a general congruence

c2n ≡ (−1)nσ mod 4 for stably almost complex manifolds. Since this is a relation between

Chern numbers, it must be implied by the Stong congruences.

For example, in the case of almost complex 4–manifolds, we have χ+σ ≡ 0 mod 0. This

follows from the integrality of the Todd genus, c21+c2 ∈ 12Z, combined with 3σ = p1 = c21−2c2.

Indeed, expressing c21 in two ways gives us 12k − c2 = 3σ + 2c2 for some integer k, i.e.

3(σ + c2) = 12k, whence σ + c2 ≡ 0 mod 4.

3.5 The weak form of Hirzebruch’s prize problem

In [HiBeJu92], Hirzebruch asked for an example of a closed smooth spin 24–manifold X

with the following properties: p1(TX) = 0, w2(TX) = 0,
∫
Â(TX) = 1,

∫
Â(TX)ch(TX ⊗

C) = 0. The interest in such a manifold is the observation that the Â–genus of certain

linear combinations of symmetric powers of the complexified tangent bundle computes the

dimensions of the irreducible representations of the Monster group. For this property, one

need only require that p1(TX) = 0 rationally.

For this, we will use a version of the realization theorem for spin manifolds; as the proof

is analogous, we only state it here (see also [CN20, §3.5]):

Theorem 3.5.1. (Realization for spin manifolds) Let X be a formally n–dimensional simply–

connected rational space of finite type satisfying Poincaré duality on its rational cohomology,

n ≥ 5, and let [X] ∈ Hn(X;Q) be a non-zero element. Furthermore, let pi ∈ H4i(X;Q),

1 ≤ i ≤
⌊
n
4

⌋
be cohomology classes. Then we have:
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1. If n is not divisible by 4, there is a closed spin n–manifoldM and a rational equivalence

M
f−→ X such that f∗[M ] = [X] and pi(TM) = f ∗(pi).

2. If n is divisible by 4, then there is a closed spin manifold M and a rational equivalence

M
f−→ X such that f∗[M ] = [X] and pi(TM) = f ∗(pi) if

• the numbers 〈pi1pi2 · · · pir , [X]〉 satisfy the Stong congruences of a spin manifold

([Stong65b], discussed below),

• the quadratic form on H
n
2 (X;Q) given by q(α, β) = 〈αβ, [X]〉 is equivalent over

Q to one of the form
∑

i±y2i ,

• we have 〈L(p1, . . . , pn/4), [X]〉 = σ(X), where L is Hirzebruch’s L–polynomial.

Remark 3.5.2. The proof of this realization result starts with the observation that the map

BSpin→ BSO induced by the twofold covering Spin→ SO is a rational equivalence. Note

that admitting a spin structure is a stable property of a bundle, and as in the almost complex

case, such a structure on the stable normal bundle canonically induces one on the stable

tangent bundle.

Using this realization result, we will construct a smooth closed simply connected 24–

manifold with w2 = 0 p1 = 0 (rationally), Â = 1, Â(M,TC) = 0.

First we discuss the Stong congruences for spin manifolds [Stong65b]. Given a closed

smooth spin manifold M , consider the formal splitting p =
∏6

j=1(1 + x2j), where x2j are the

Pontryagin roots (so deg(x2j) = 4). Then consider a new set of variables given by exj+e−xj−2.

Considering terms only up to degree 24, we have

exj + e−xj − 2 = x2j +
x4j
12

+
x6j
360

+
x8j
8!
2

+
x10j
10!
2

+
x12j
12!
2

.

Now form the elementary symmetric polynomials σ1, . . . , σ6 in these six variables exj +

e−xj − 2, and express them in terms of the Pontryagin classes pj (which are the elementary

symmetric polynomials in x2j). For these and other calculations we use the Macaulay2
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package "SymmetricPolynomials". Suppose p1 = p3 = p5 = 0 rationally. Then we obtain

the following modulo torsion:

σ1 = −1
119750400

p32 + 1
39916800

p2p4 − 1
39916800

p6 + 1
10080

p22 − 1
5040

p4 − 1
6
p2

σ2 = 1
1814400

p32 − 11
604800

p2p4 + 31
604800

p6 + 1
720
p22 + 1

40
p4 + p2

σ3 = −1
7560

p2p4 − 4
945
p6 − 1

3
p4

σ4 = 1
720
p2p4 + 19

240
p6 + p4

σ5 = −1
2
p6

σ6 = p6.

Now, [Stong65b] tells us that the following congruences must be satisfied: First of all,

the Pontryagin numbers must be integers (in the stably almost complex case, the integrality

of Chern numbers was implied by the other congruences). Furthermore, any polynomial in

the above σi with integer coefficients multiplied by the Â-genus must be an integer. Here is

the Â-genus up to degree 24, modulo terms involving p1, p3, p5:

Â0 = 1

Â1 = 0

Â2 = −4
5760

p2

Â3 = 0

Â4 = 1
464486400

(208p22 − 192p4)

Â5 = 0

Â6 = 1
2678117105664000

(−769728p32 + 719872p23 + 1476352p2p4 − 707584p6).

Here Âi denotes the degree 4i term in the Â polynomial.

From here we obtain the following full set of congruences. Along with Â6, each of the
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following expressions must be an integer:

σ1 · Â = −97
638668800

p32 + 37
159667200

p2p4 − 1
39916800

p6

σ2 · Â = 1
29030400

p32 − 29
806400

p2p4 + 31
604800

p6

σ3 · Â = 1
10080

p2p4 − 4
945
p6

σ4 · Â = 1
1440

p2p4 + 19
240
p6

σ5 · Â = −1
2
p6

σ6 · Â = p6

σ2
1 · Â = −19

362880
p32 + 1

15120
p2p4

σ3
1 · Â = −1

216
p32

σ1σ2 · Â = −1
60480

p32 − 11
2520

p2p4

σ2
1σ2 · Â = 1

36
p32

σ1σ
2
2 · Â = −1

6
p32

σ1σ3 · Â = 1
18
p2p4

σ1σ4 · Â = −1
6
p2p4

σ3
2 · Â = p32

σ2σ3 · Â = −1
3
p2p4

σ2σ4 · Â = p2p4

Some of the above congruences evidently imply some of the others. Before we proceed to

consider the system of congruences, we now recall that we require Â(M) = 1 and Â(M,TC) =

0. Calculating the top degree of the latter to be

Â(M,TC)6 = (Â(M) · ch(TM ⊗ C))24

= −8389
52835328000

p32 + 9707
39626496000

p2p4 − 311
9906624000

p6,

we obtain

p6 = −25167
4976

p32 + 9707
1244

p2p4.

The first requirement Â = 1 gives us

p2p4 =
873600000p32 − 311 · 2678117105664000

1257984000
.

Now we have the following two equations:

p2p4 = 25
36
p32 − 662086656

p6 = 13
36
p32 − 5166298368

and the following congruences:
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25
648
p32 − 36782592 ∈ Z

1
216
p32 ∈ Z

−79
25920

p32 + 14450304
5
∈ Z

−1
155520

p32 − 218944
5
∈ Z

1507
51840

p32 − 2047292016
5

∈ Z

−227
155520

p32 + 109011232
5

∈ Z

−1
155520

p32 − 1204984
5
∈ Z

Since we also require p32, p2p4, p6 to be integers, we have the following full system of

congruences:

648 | p32

395p32 ≡ 103680 mod 129600

−5p32 ≡ 622080 mod 777600

7535p32 ≡ 51840 mod 259200

−1135p32 ≡ 466560 mod 777600

−5p32 ≡ 622080 mod 777600

Denoting by x the integer p32
648

, the remaining congruences (after the first above) are

equivalent to:

x ≡ −192 mod 240

x ≡ 48 mod 80

x ≡ 48 mod 240

x ≡ 8 mod 40.

A solution of this system with a particularly nice property is x = 4608, i.e. p32 = 2985984,

since then p32 = 1443.

We may now start building a 24–dimensional Poincaré duality rational homotopy type

with prescribed Pontryagin classes to achieve the above requirements. Note that any mani-

fold satisfying all the above conditions (along with having those Pontryagin numbers which

involve odd Pontryagin classes equal to 0) with p32 = 1443, has the following Pontryagin
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numbers:

p32 = 2985984

p2p4 = −660013056

p6 = −5165220096.

Calculating the signature of such a manifold from

L6 = 1
638512875

(2828954p6 − 159287p2p4 + 8718p32)

we obtain σ = −22720000.

Now consider the algebra over Q generated by α in degree 8 with α4 = 0, and 22720000

variables zi in degree 12 such that zi · α = 0, zi · zj = 0 for i 6= j, z3i = 0, and z2i + α3 = 0.

Realize this algebra by a rational homotopy type, and take the fundamental class to be the

dual of α3. Prescribe the Pontryagin classes as p1 = 0, p2 = 144α, p3 = 0, p4 = −4583424α2,

p5 = 0, p6 = −5165220096α3. Then the spin version of the realization theorem tells us there

is a simply connected smooth closed spin 24–manifold realizing this rational cohomology ring

and Pontryagin numbers.

This problem has already been solved, in a much stronger fashion (with a 7–connected

manifold; in particular p1 = 0 integrally) by Hopkins and Mahowald [Hop02, remark after

Corollary 6.26].

3.6 On the realization of symplectic algebras and

rational homotopy types by closed symplectic

manifolds

We survey how a conjecture of Thurston on the existence of a symplectic structure on

a cohomologically symplectic almost complex manifold has been answered in dimension 4,
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but remains open in higher dimensions. We then answer a question of Oprea–Tralle on the

realizability of symplectic algebras by symplectic manifolds in the negative in dimensions

divisible by 4, along with a question of Lupton–Oprea in all even dimensions. Our answer to

the first question implies a negative answer in all even dimensions ≥ 6 to another question

of Oprea–Tralle on the possibility of algebraic conditions on the rational homotopy minimal

model of a smooth manifold implying the existence of a symplectic structure on the manifold.

The content of this section, with some modification, appeared in [Mil21].

At the end of his famous two-page paper providing an example of a symplectic non-

Kähler compact 4–manifold, Thurston [Th76] posed the following conjecture:

Conjecture 3.6.1. ([Th76]) Every closed 2k–manifold which has an almost complex struc-

ture τ and a real cohomology class α such that αk 6= 0 has a symplectic structure realizing τ

and α.

Due to foundational results of Taubes and Witten in Seiberg–Witten theory, one can find

counterexamples to this conjecture in dimension 4 (the argument to follow has been well-

known, see e.g. [Gom01, Example p.49]). Indeed, the oriented connected sum #2`+1
i=1 CP2

for any ` ≥ 1 contains elements in H2 not squaring to zero and admits an almost com-

plex structure compatible with the orientation, but does not admit a compatible symplectic

structure. By a classical result of Wu, one knows that a closed oriented four–manifold M

admits an almost complex structure if and only if there is a class c ∈ H2(M ;Z) such that

its reduction mod 2 is the second Stiefel–Whitney class w2 and
∫
M
c2 = 2χ + 3σ, where

χ is the Euler characteristic and σ is the signature. Since w2(#
2`+1
i=1 CP2) = (1, 1, . . . , 1) ∈

Z⊕2`+1
2

∼= H2(#2`+1
i=1 CP2;Z2) and 2χ + 3σ = 10` + 9, we see that c = (3, 1, 3, 1, . . . , 1, 3) ∈

H2(#2`+1
i=1 CP2;Z) satisfies these conditions. Now, if #2`+1

i=1 CP2 were to admit a symplectic

structure realizing this almost complex structure, then by a theorem of Taubes, since b+2 > 1

(here b+2 is the dimension of the positive-definite subspace of the intersection form), it would

have a non-vanishing Seiberg–Witten invariant. However, due to Witten, if a manifold is a
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connected sum of manifolds each with b+2 ≥ 1 , then the Seiberg–Witten map is identically

zero (see [Ko95, Corollary 4.1(2)]).

In dimensions ≥ 6, these arguments from Seiberg–Witten theory do not directly ap-

ply, and Conjecture 3.6.1 remains open. From the realization theorem for almost complex

manifolds, one can easily see that any symplectic algebra in dimension 6 is realized by a

closed almost complex manifold, as c1 and c2 can be chosen as for CP3, with c3 (which is

independent of c31 and c1c2) chosen to evaluate to the Euler characteristic.

We will address the following variations of this conjecture:

Conjecture 3.6.2. ([OT06, §6.5 Conjecture 3] [HT08], [Tr00]) For every symplectic algebra

H over R, there is a closed symplectic manifold M such that H∗(M ;R) ∼= H.

Recall, a Poincaré duality algebra (over the field k = Q or R) of dimension n is a

finite-dimensional graded-commutative algebra H over k such that Hn ∼= k and the pairing

H∗ ⊗ Hn−∗ → k given by α ⊗ β 7→ µ(αβ) is non-degenerate for some (and hence any)

choice of non-zero element µ ∈ (Hn)∗. By a symplectic algebra we mean a Poincaré duality

algebra of dimension 2k for which there exists an element α ∈ H2 such that αk 6= 0. Hence,

for simplicity, the adjectives "Poincaré duality" and "symplectic" will indicate properties

of an algebra, not additional structure; H∗(M ;R) ∼= H in the above conjecture will mean

isomorphism of algebras. In dimensions n = 4k, a choice of orientation class µ lets one

consider the signature of the induced pairing on H2k. The pairing with respect to aµ will

have the same signature for a > 0, and the opposite signature for a < 0; thus the signature

of a 4k–dimensional Poincaré duality algebra is well-defined up to sign.

Question 3.6.3. ([LO04, Remark 2.11]) Does a manifold that has rational cohomology al-

gebra a symplectic algebra admit a symplectic structure?

In line with our previous definition, by a manifold we mean a connected orientable

closed smooth manifold without a choice of orientation; hence admitting a symplectic (or
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almost complex) structure means admitting a symplectic form (or almost complex structure)

inducing one of the two possible orientations on the manifold. Manifolds with symplectic

rational cohomology algebras are also known as cohomologically symplectic (or c–symplectic)

[Tr00].

Question 3.6.4. ([OT06, §6.5 Problem 4], [Tr00]) Are there algebraic conditions on the

minimal model (MM , d) of a compact manifold M implying the existence of a symplectic

structure on M?

To answer Conjecture 3.6.2 in dimensions that are multiplies of four, we will use a

restriction on the topology of closed almost complex manifolds due to Hirzebruch. For

Question 3.6.3, we will employ simply connected rational homology spheres not admitting

spinc structures in dimensions greater than five. This will immediately imply a negative

answer to Question 3.6.4, in dimensions six and greater, when restricted to simply connected

manifolds. In the non-simply connected (or more generally, non-nilpotent) case, one must

first decide on what is meant by a minimal model in the sense of rational homotopy. However,

we observe that any such notion which is invariant under weak homotopy equivalence of

rationalizations in the sense of Bousfield–Kan cannot detect the existence of a symplectic

form on a given manifold.

3.6.1 Some symplectic algebras not realized by closed sym-

plectic manifolds

We provide counterexamples to Conjecture 3.6.2 in dimensions of the form 4k. Consider

for example

H = H∗
(

(S2)2k##
j

i=1(S
1 × S4k−1);R

)
for odd j. Taking α to be the sum of the images of generators of H2(S2;R) under the

inclusion

H2(S2;R) ↪→ H2((S2)2k;R) ↪→ H,
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we see that α2k 6= 0, and so H is a symplectic algebra. Note that the signature σ of the

realizing oriented manifold

(S2)2k##
j

i=1(S
1 × S4k−1)

is 0, and so the signature of any oriented manifold M with H∗(M ;R) ∼= H is 0, as the

signature of a Poincaré duality algebra (with respect to any orientation class) is invariant

up to sign under algebra isomorphisms of Poincaré duality algebras. On the other hand,

the Euler characteristic satisfies χ = 22k − 2j ≡ 2 mod 4 as j is odd. By [Hirz87, p.777], a

closed almost complex 4k–manifold with the induced orientation satisfies the congruence χ ≡

(−1)kσ mod 4, so we conclude that H cannot be realized by an almost complex manifold; in

particular it cannot be realized by a symplectic manifold. We emphasize that this conclusion

depends only on the algebra H, and so we have the following:

Theorem 3.6.5. There are symplectic algebras H over R in every dimension 4k, k ≥ 1,

such that there is no closed symplectic manifold M with H∗(M ;R) ∼= H.

Note that these examples (by taking coefficients in Q instead of R) provide an answer

in the negative to Question 3.6.3 in dimensions that are multiples of four. Alternatively,

we can answer this question negatively in all even dimensions ≥ 6 as follows: consider

the Wu manifold W = SU(3)/SO(3) of dimension 5; this is a simply connected rational

homology sphere which does not admit a spinc structure. We consider the product S1 ×W

and the result of performing surgery on the S1 embedded in this product; this procedure

is known as spinning the manifold W [Suc90]. The result of spinning a simply connected

rational homology sphere of dimension n is a simply connected [Br72, Theorem IV.1.5]

rational homology sphere of dimension n+1 [Suc90, Lemma 2.1], and the resulting manifold

admits a spinc structure if and only if the original manifold does [AM19, Proposition 2.4].

By iterating this procedure we can produce a simply connected rational homology sphere

Mn of any dimension n ≥ 5 not admitting a spinc structure, therefore not admitting an

almost complex (and in particular a symplectic) structure. For even n we can then take
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the connected sum Mn#CPn/2 of this rational homology sphere with CPn/2 to obtain a

cohomologically symplectic but not symplectic manifold:

Theorem 3.6.6. There are cohomologically symplectic manifolds in all dimensions 2k, k ≥

2, that do not admit a symplectic structure.

3.6.2 The existence of a symplectic structure cannot be de-

tected from the rational homotopy model

We now address Question 3.6.4. For any simply connected symplectic manifold X of

dimension at least six, consider the connected sum M#X (to form the connected sum we

choose any orientation on M and X), where M is a non-spinc simply connected rational

homology sphere as in the previous section. The collapse map M#X → X is a rational

homotopy equivalence, and so the minimal models of these manifolds are isomorphic while

only one of them admits a symplectic structure (with respect to some orientation), asM#X

does not admit a spinc structure. Since X was an arbitrary simply connected symplectic

manifold, we conclude that there can be no algebraic condition on minimal models of simply

connected manifolds which implies the manifold admits a symplectic structure.

In the non-simply connected case, the classical theory for simply connected spaces of

finite type due to Sullivan extends immediately to spaces with nilpotent fundamental group

which acts nilpotently on the higher homotopy groups, and the algebraic information encoded

in the minimal model directly corresponds to geometric information. Bousfield and Kan

extended the procedure of rationalizing spaces to all path-connected spaces in two ways

[BoKa71]: theQ–completion and the fiberwiseQ–completion, both restricting to the classical

rationalization on nilpotent spaces (see [RWZ19] for an overview). A map X → Y induces

a weak homotopy equivalence of Q–completions if it induces an isomorphism on rational

homology [BoKa71], and it induces a weak homotopy equivalence of fiberwise Q–completions

if it induces an isomorphism on fundamental groups and on rationalized higher homotopy
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groups (see [RWZ19, Theorem 3]). Substantial progress has been made in algebraically

encoding spaces up to these notions of equivalence, extending the classical theory of rational

homotopy minimal models; see [GHT00], [BFMT18].

We now observe that for any (not necessarily simply connected) symplectic manifold X,

there is another manifold, not admitting a symplectic structure, which is equivalent to X

under either of the above notions. Consider again the collapse map M#X → X, where M

is a non-spinc simply connected rational homology sphere; this map induces an isomorphism

on rational homology and hence a weak homotopy equivalence of Q–completions. The map

induces an isomorphism of fundamental groups, and to verify it induces an isomorphism on

π≥2 ⊗Q, we proceed as follows: pick basepoints and consider the induced map M̃#X → X̃

on universal covers. Since M is simply connected, the space M̃#X can be visualized as

the universal cover of X, with a small disk Di around each preimage b̃i of the basepoint of

X (chosen to coincide with the center of the disk at which the connected sum with M is

performed) replaced byM#Di. The map on universal covers M̃#X → X̃ is then the collapse

map M#Di → Di applied at each of these disks, and the identity elsewhere. Now consider

the open cover of M̃#X given by a small neighborhood of
⋃
i(M#Di) and the complement

of
⋃
i(M#Di), along with the open cover of X̃ given by a small neighborhood of

⋃
iDi

and the complement of
⋃
iDi. Applying the naturality of the Mayer–Vietoris sequence in

homology to these open covers, by the five lemma we see that the map M̃#X → X̃ induces an

isomorphism on rational homology. Thus, since these spaces are simply connected, it induces

an isomorphism on rational homotopy groups, and from the naturality of the long exact

sequence in homotopy for fibrations and the five lemma again we conclude that M#X → X

induces an isomorphism on π≥2 ⊗Q. Therefore the fiberwise Q–completions of these spaces

are also equivalent. In conclusion, we have:

Theorem 3.6.7. There are no algebraic conditions on the minimal model (MM , d) of a

manifold M implying the existence of a symplectic structure on M , in dimensions six or

greater.
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Here by a minimal model we mean any object (in particular, the classical minimal models

in the case of finite-type nilpotent spaces) which is invariant up to isomorphism under weak

homotopy equivalence of rationalizations in either sense of Bousfield–Kan.

We note that the same argument, using non-spinc simply connected rational homology

spheres, shows that the existence of a (stable) almost complex structure cannot be implied

by algebraic conditions on the minimal model:

Corollary 3.6.8. There are no algebraic conditions on the minimal model of a manifold

M implying the existence of a complex structure (or more generally a stable almost complex

structure) on M , in dimensions six or greater.

3.6.3 Another variation of Thurston’s conjecture

It seems that the following question, another variation of Conjecture 3.6.1, is still unan-

swered in all dimensions ≥ 4:

Question 3.6.9. Is there a symplectic algebra which is realized by a closed almost complex

manifold but not realized by a closed symplectic manifold?

Currently there are no known topological obstructions to a closed smooth manifold

admitting a symplectic structure beyond those of admitting an almost complex structure

and having a symplectic cohomology algebra. A possible direction presents itself as it seems

that for all known examples of closed symplectic 2n–manifolds, the Betti numbers bi for

i ≤ n satisfy the non-decreasing property b0 ≤ b2 ≤ b4 ≤ · · · and b1 ≤ b3 ≤ · · · [Cho16,

Question 1.1]. A proof that this property holds for all closed symplectic manifolds would

immediately enable one to provide counterexamples to Conjectures 3.6.1 and 3.6.2, along

with the above question.
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3.7 An 8–manifold not admitting a spinh structure

In Section 3.5, we produced a spin manifold by employing a version of the realiza-

tion theorem adapted to spin manifolds. Using the classical smooth realization theorem of

Sullivan, combined with integrality statements coming from index theory, one can produce

closed smooth manifolds not admitting certain reductions of its tangent bundle. For exam-

ple, one can ask whether a manifold of dimension n admits a spin, spinc, or spinh structure,

i.e. whether the classifying map for the tangent bundle factors through the corresponding

classifying space BSpin(n), BSpinc(n), BSpinh(n). An orientable manifold admits a spin

structure if w2(TM) = 0; it admits a spinc structure if w2(TM) = w2(E) for some SO(2)–

bundle E; it admits a spinh structure if w2(TM) = w2(E) for some SO(3)–bundle E. Every

orientable manifold of dimension ≤ 3 admits a spin structure; CP2 and its products with

spheres give examples of manifolds in all dimensions ≥ 4 not admitting spin structure. Fur-

ther, every orientable manifold of dimension ≤ 4 admits a spinc structure; while the Wu

manifold SU(3)/SO(3) in dimension 5 does not. Since every manifold of dimension ≤ 5

admits a codimension 3 immersion into Euclidean space, one sees that the normal bundle of

an orientable manifold in these dimensions provides an E such that w2(TM) = w2(E) and

hence the manifold admits a spinh structure.

We produce an 8–manifold not admitting a spinh structure; to the author’s knowledge

this is the first recorded example of such a manifold (at the time of writing; this example

appears in [AM21]). We apply the integrality statement in [B99, Theorem 5],∫
M

2 cosh
(√p1(E)

2

)
Â(TM) ∈ Z

for an orientable manifold with SO(3)–bundle E such that w2(TM) = w2(E). This following

computation was carried out by the author in 2019, and subsequently significantly expanded

on in joint work with M. Albanese [AM21].

Take H = Q[α]/(α3) where deg(α) = 4, with fundamental class µ such that 〈α2, µ〉 = 1.

The signature is 1, and for p1 ∈ H4, p2 ∈ H8, one calculates the conditions in the rational
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realization theorem to be that 〈p21, µ〉 and 〈p2, µ〉 are integers satisfying

〈7p2 − p21, µ〉 = 45

〈5p21 − 2p2, µ〉 ≡ 0 mod 3.

Observe that the second condition follows from the first. Denoting p1 = xα and p2 = yα2,

these conditions are thus equivalent to x and y being integers satisfying

7y − x2 = 45.

For X a spinh manifold with normal bundle E, recall that w2(E) = w2(TX), and

since w2(TX)2 ≡ p1(TX) mod 2, we conclude that there is a class γ ∈ H4(X;Z) such that

p1(E) = p1(TX) + 2γ. The integrality theorem above then gives us∫
X

2p21
384

+ γ2

48
− p21

96
+

14p21−8p2
5760

∈ Z.

Now, take x = −168a+ 240 and y = 4032a2−11520a+ 8235 for any integer a; these integers

satisfy 7y−x2 = 45 and so there is an 8–manifold X with x2 and y as its Pontryagin numbers∫
X
p21 and

∫
X
p2. If this manifold were to admit a spinh structure, then there would be a class

γ ∈ H4(X;Z) such that the above integrality statement holds; the free part of this class γ

would be some integer multiple c of the generator of H4(X;Z) whose square integrates to 1

over the manifold. The integrality theorem would then simplify to

c2 − y + 6 ≡ 0 mod 48.

Since y − 6 ≡ 21 mod 48, and 21 is not a quadratic residue modulo 48, the congruence

c2 ≡ y− 6 mod 48 does not have a solution, and thus the obtained manifold cannot admit a

spinh structure.

We observe that the argument above goes through even in the presence of cohomology

outside of degrees 0, 4, 8, so we have the following:

Theorem 3.7.1. For any simply connected commutative differential graded algebra A over

Q of cohomological dimension 8 satisfying Poincaré duality on cohomology, with b4 = 1, there
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exist infinitely many pairwise non-homeomorphic closed smooth 8–manifolds not admitting

spinh structures with the rational homotopy type of A. (In particular, the cohomology algebra

of each manifold is isomorphic to HA.)

3.8 An almost complex rational HP3

We calculate that there exists a closed simply connected almost complex 12–manifold

with the rational homotopy type of HP3. A classical result of Massey states that no HPn

admits an almost complex structure; a rational HP1 = S4 does not admit an almost com-

plex structure by a quick signature argument, and a rational HP2 does not admit an almost

complex structure by a calculation with the Stong congruences. In general, the only dimen-

sion in which there exists a closed almost complex manifold with sum of Betti numbers 3

is dimension 4, by Zhixu Su and Jiahao Hu’s independent resolutions of a case left open in

[AM19].

Take the rational algebra Q[x4]/(x
4) and take any rational space with this as its coho-

mology, e.g. the homotopy fiber of the fourth power map K(Q, 4) → K(Q, 16). Choose as

fundamental class the linear dual of the cohomology class [x3]. Note that necessarily c1 = 0

rationally, and so we will have to satisfy two sets of congruences in order to produce an

almost complex manifold with this rational homotopy type.

Taking into consideration that c1 = c3 = c5 = 0 rationally, the first set of SU congru-

ences, coming from the condition z · Td ∈ Z for all z ∈ Z[ec1, e
c
2, . . .], come down to

10c32 − 9c2c4 + 2c6 ∈ 60480Z

c2c4 + 2c6 ∈ 240Z

−c32 + 4c2c4 ∈ 12Z

c32 − 16c2c4 ∈ 12Z

c6 ∈ 4Z
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in addition to the Chern numbers being integers. As before, it is understood that the

products of Chern classes above have been paired with the fundamental class, for notational

convenience.

The second set of SU congruences, coming from the condition w · Â(pi) ∈ 2Z for all

w ∈ Z[ep1, e
p
2, . . .], when translated into Chern classes, gives us

1
6048

c32 − 1
6720

c2c4 + 1
30240

c6 ∈ 2Z

− 1
120
c2c4 − 1

60
c6 ∈ 2Z

−1
3
c32 + 4

3
c2c4 ∈ 2Z

− 1
12
c32 + 1

3
c2c4 + 1

2
c6 ∈ 2Z

and the signature being 0 gives us, from the L–polynomial,

5c32 − 36c2c4 − 68c6 = 0.

Now, c2 = ax for some rational number a. Since 〈a3x3, [X]〉 = a3 must be an integer, a must

be an integer. Also, c4 = bx2 for some rational number b; note that it does not follow that

b is an integer, but let us require b ∈ Z regardless. Then, since χ = 4, we have c4 = 4, and

simplifying the above congruences gives us the follow system of Diophantine equations:

−a3 + 4ab ∈ 24Z

ab+ 8 ∈ 1920Z

5a3 − 36ab = 248

This system has a solution of a = −2, b = 4 (in fact, unique among integers), and hence by

the above theorem we obtain the desired manifold.
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