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Abstract of the Dissertation

Lagrangian submanifolds near Lagrangian spheres

by

Yuhan Sun

Doctor of Philosophy

in

Mathematics

Stony Brook University

2020

We study local and global Hamiltonian dynamical behaviors of some La-
grangian submanifolds near a Lagrangian sphere S in a symplectic manifold X.
When dimS = 2, we show that there is a one-parameter family of Lagrangian
tori near S, which are nondisplaceable in X. When dimS = 3, we obtain a new
estimate of the displacement energy of S, by estimating the displacement energy
of a one-parameter family of Lagrangian tori near S.

In the 2-dimensional case, the proof relies on a computation of the bulk-
deformed Floer cohomology of the one-parameter family of Lagrangian tori near
S. In the 3-dimensional case, due to the absence of a local bulk cycle, we estab-
lish a version of deformed Floer cohomology by using bulk chains with boundary
as S. We also make some computations and observations of the classical Floer
cohomology by using the symplectic sum formula and Welschinger invariants.
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1 Introduction

Let X be a closed symplectic manifold and L be a closed Lagrangian submanifold.
A classical problem in symplectic topology cares about the dynamical behavior
of L under Hamiltonian isotopies. In particular L is called nondisplaceable if it
cannot be separated from itself by any Hamiltonian diffeomorphism. That is,

L ∩ ϕ (L) ̸= ∅, ∀ϕ ∈ Ham (X,ω) .

Otherwise L is called displaceable. For a displaceable Lagrangian submanifold,
there is a notion of displacement energy to characterize how much effort one will
need to displace it away. Let Ht be a time-dependent Hamiltonian function on X
for t ∈ [0, 1] and ϕt be the corresponding Hamiltonian isotopy. The Hofer length
of Ht is defined as

||Ht||X =

∫ 1

0

(max
X

Ht −min
X

Ht)dt

and the displacement energy of L is defined as

EL = inf{||Ht||X | L ∩ ϕ1 (L) = ∅}.

If L is nondisplaceable then EL is defined to be infinity.
By the work of Gromov [28] and Chekanov [8, 9, 32], the displacement energy

is closely related to the least energy of a holomorphic disk with boundary on L.
Later this relation has been extended to the torsion part [17, 22] of the Lagrangian
Floer cohomology of L, which gives us finer estimates on the displacement energy.
In this thesis we mostly focus on the case when L = Sn is a Lagrangian sphere or
L being a local Lagrangian submanifold near a Lagrangian sphere. Before stating
the main theorems, we recall some known results.

1. When dimSn = n is even, then Sn is always nondisplaceable since it has self-
intersection number negative two, by the Weinstein neighborhood theorem.

2. When the ambient space is Calabi-Yau and n ≥ 3, then Sn is always nondis-
placeable, proved in [17] and [25].

3. When Sn is homologically non-trivial in X, then Sn is always nondisplace-
able, proved in [17].

4. There are examples of displaceable Lagrangian spheres S3, given by [3, 1]
in an open monotone symplectic manifold and [35] in a closed symplectic
manifold.

Motivated by the above results, we will study following cases. When dimSn =
n = 2, we show that there is a one-parameter family of Lagrangian tori near S,
which is nondisplaceable in X. When the ambient space is Calabi-Yau, we show
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that there are several one-parameter families of Lagrangian submanifolds near S,
which are nondisplaceable in X. When dimSn = n = 3 and Sn is homologically
trivial, we obtain a new estimate of the displacement energy of Sn, by estimating
the displacement energy of a one-parameter family of Lagrangian tori near Sn.

1.1 Main results

We start with the local geometry near a Lagrangian n-sphere, where n = 2, 3.
Let Sn be an n-sphere and (T ∗Sn, ω0) be the total space of its cotangent bundle
equipped with the standard symplectic form. It is known that there is a one-
parameter family of Lagrangian tori {Ln

λ}λ∈(0,+∞) in (T ∗Sn, ω0) such that

1. Ln
λ is monotone with monotonicity constant being λ and has minimal Maslov

number two;

2. Ln
λ has nonzero Floer cohomology with certain weak bounding cochains,

hence it is nondisplaceable in T ∗Sn;

3. for any neighborhood of the zero section Sn, Ln
λ is contained in this neigh-

borhood if λ is small enough.

Those Lagrangian tori are toric fibers of T ∗Sn, viewed as a singular toric fibration.
We will review the explicit construction in Section 4 and Section 5 following [21],
[11], [13], where they computed the Gromov-Witten disk potential of Ln

λ.
Then let S be a Lagrangian n-sphere in a symplectic 2n-manifoldX and U be a

Weinstein neighborhood of S, which is symplectomorphic to some disk cotangent
bundle (DrT

∗Sn, ω0). A subfamily of Ln
λ sits in U = DrT

∗Sn and one can ask
whether Ln

λ is nondisplaceable globally in X. Note that if Ln
λ is nondisplaceable

for all small λ then it implies that the Lagrangian sphere S is also nondisplaceable.
We will use this approach to obtain some estimates of the displacement energy of
S by estimating the displacement energy of Ln

λ near it.
Now fix L = Ln

λ ∈ U ⊂ X we want to study pseudoholomorphic disks bounding
L within the following condition, see Assumption 3.2 in [4]. How to possibly relax
this technical condition will be discussed in Section 5.4, following the work of
Charest-Woodward [7].

Condition 1.1. There exists a compatible almost complex structure J such that

1. all non-constant J-holomorphic disks on L have positive Maslov indices;

2. all J-holomorphic disks on L with Maslov index two are regular;

3. all non-constant J-holomorphic spheres have positive first Chern numbers.
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Figure 1: Disk contributions from inside and outside.

For n = 2, the above condition is satisfied by a generic almost complex struc-
ture. For n = 3, a large class of examples satisfying Condition 1.1 is the toric
fiber of a symplectic Fano toric manifold. Specific to our case, let X0 be a nodal
toric Fano threefold and let X be the smoothing of X0. Each node gives us a
Lagrangian S3 and the local tori near the spheres become toric fibers. There is
a full classification [27] of 100 nodal toric Fano threefolds, 18 out of which are
smooth. In theory one can compute explicitly all the disk potential functions of
the toric fibers therein to find the torsion thresholds, by using the combinatorial
data from their polytopes. But we do not try to do it here.

Assuming Condition 1.1, the one-pointed open Gromov-Witten invariant nβ

is defined (with respect to this particular J), for any disk class β ∈ π2(X,L) with
Maslov index two. We consider the sequence

{βk | nβ ̸= 0, E(βk) ≤ E(βk+1)}∞k=1

of disk classes with Maslov index two, enumerated by their symplectic energy,
see Figure 1. From the local study we know that Ln

λ bounds four J-holomorphic
disks with Maslov index two inside U , with same energy E1,λ. (This is true for
both cases n = 2, 3.) Those are the first four elements in the above sequence if
Ln

λ is near S. Let E5,λ = E(β5) be the least energy of outside disk contribution.
Note that when Ln

λ is close to S then E5,λ >> E1,λ. Our main theorems can be
formulated as follows.

Theorem 1.2. Let X be a closed symplectic 4-manifold which contains a La-
grangian 2-sphere S. Consider the Lagrangian embedding

L2
λ ↩→ U = DrT

∗S2 ⊂ X

for λ ∈ (0, λ0). Then L
2
λ is nondisplaceable in X.

This theorem relies on and generalizes the work of Fukaya-Oh-Ohta-Ono [21],
where they proved the existence of a one-parameter family of nondisplaceable
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Lagrangian tori when the ambient space is S2 × S2 and the Lagrangian sphere is
the anti-diagonal. To deal with possible outside disk contributions from a general
ambient space, we use the local computation in [21] and an implicit function
theorem in non-Archimedean geometry to control the high energy terms. Another
direction of generalization is that we can take the local model as a plumbing of
cotangent bundles of 2-spheres. In [39], the author proved the existence of several
one-parameter families of nondisplaceable Lagrangian tori near any linear chains
of Lagrangian 2-spheres.

The above theorem does not extend directly to higher dimensional cases. On
one hand, the techniques therein depends on that a Lagrangian 2-sphere is also
a codimension two cycle in a symplectic 4-manifold, hence can be used as a bulk
deformation. On the other hand, we already know that there are displaceable
Lagrangian 3-spheres [3], [35]. But we are able to give some new estimates of the
displacement energy of a Lagrangian 3-sphere, by using a similar philosophy.

Theorem 1.3. Let X be a closed symplectic 6-manifold which contains a homo-
logically trivial Lagrangian 3-sphere S. Consider the Lagrangian embedding

L3
λ ↩→ U = DrT

∗S3 ⊂ X

for λ ∈ (0, λ0). If L
3
λ satisfies Condition 1.1 and can be displaced by a Hamiltonian

isotopy ϕt generated by Gt then

||Gt||X ≥ E5,λ

and
||Gt||X + 2||Gt||S ≥ 2(E5,λ − E1,λ).

Here ||·||X is the Hofer norm and ||·||S is a relative Hofer norm defined by

||Gt||S =

∫ 1

0

(max
S

Ht −min
S
Ht)dt.

By definition we know that ||Gt||X ≥ ||Gt||S. But for the above two inequalities
we can not say which one is stronger, unless we know the behavior of Gt on S. For
example, the displaceable Lagrangian sphere S in [35] can be displaced by a group
action. In particular the Hamiltonian function is constant on S, hence ||Gt||S = 0
and the second inequality is much stronger than the first one and almost optimal,
see Section 7.3.

In the theorem we assume that S is homologically trivial. (Note that a ho-
mologically non-trivial Lagrangian sphere always has non-zero Floer cohomology,
hence nondisplaceable.) This condition is needed such that S bounds a 4-chain
in X and some cylinder counting can be defined. Also it is needed to perform
the conifold transition on S in the sense of Smith-Thomas-Yau [37], to compute
certain open Gromov-Witten invariants. The smoothings of nodal toric Fano
threefolds still satisfy this condition. As a corollary we obtain an estimate of the
displacement energy of our Lagrangian sphere S.
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Corollary 1.4. With the same notation in Theorem 1.3, if S can be displaced by
a Hamiltonian isotopy ϕt generated by Gt then

||Gt||X ≥ lim
λ→0

E5,λ, ||Gt||X + 2||Gt||S ≥ lim
λ→0

2(E5,λ − E1,λ) = lim
λ→0

2E5,λ.

As λ tends to zero, the parameter E1,λ tends to zero and E5,λ −E1,λ increases
to E5,λ=0. The energy E5,λ=0 is roughly the least energy of a holomorphic disk
with boundary on S. Hence the Hofer norm of the Hamiltonian which displaces S
is roughly twice the least energy of a holomorphic disk, with a modification term
given by the relative Hofer norm. In practice, the least energy of a holomorphic
disk can be bounded from below by the size of the Weinstein neighborhood U .
The larger the size of U is, the better this energy estimate will be.

The proof of Theorem 1.3 is to establish a new version of Lagrangian Floer
theory to use chains as bulk deformations. More precisely, we not only counts
holomorphic strips with Lagrangian boundary conditions, but also counts holo-
morphic strips with one interior hole, where the interior hole is mapped to another
reference Lagrangian submanifold. In our case the reference Lagrangian is a cho-
sen Lagrangian 3-sphere, and we expect that similar constructions should work
for other Lagrangian 3-manifolds.

Counting holomorphic cylinders between two non-intersecting Lagrangian sub-
manifolds provides us a map between some quantum invariants of these two La-
grangian submanifolds. For an incomplete list, see [6] and [29] for some geometric
applications. In our current setting, this Floer theory is motivated by various
works around the conifold transition, a surgery that replaces a Lagrangian 3-sphere
by a holomorphic CP 1. How geometric invariants change under this transition
is an important question in the fields of symplectic topology and enumerative
geometry. In particular, some closed Gromov-Witten invariants with point-wise
constraints are not preserved under this transition, unless one also takes the open
Gromov-Witten invariants on S3 into account. From this point of view, to com-
pare the Lagrangian Floer theory of a Lagrangian away from the holomorphic
CP 1 in the resolved side, it is natural to consider the contributions of bordered
curves with disconnected boundaries on both of the sphere S3 and the Lagrangian.
So here we realize this idea in a simple version, where both holomorphic strips
and holomorphic strips with one interior hole attached on S3 are counted. Simi-
lar philosophy already started to play an important role in the mirror symmetry
ground and we use it to explore applications in symplectic topology.

However, the above philosophy usually expects that the data of all genera
should be considered, otherwise what one obtained is not an invariant. Therefore
our baby theory only works modulo some energy. Recently, the open Gromov-
Witten theory in T ∗S3 with all genera has been successfully related to knot-
theoretic invariants by Ekholm-Shende [15]. It would be interesting to try to
apply the techniques therein to define a full genus Floer theory, starting with the
monotone Lagrangian torus in T ∗S3. Hopefully there will be a correspondence
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between open Gromov-Witten invariants with coefficients in skein modules and
bulk-deformed open Gromov-Witten invariants. Then one may move further to
toric compactifications or other general cases, to see how Lagrangian Floer theory
and even Fukaya category change under the conifold transition.

Besides introducing this new version of Floer theory, we also carry out some
computations of the classical Floer cohomology, which are not deformed by bound-
ing cochains or bulk-deformations. Let (X,ω) be a closed symplectic 6-manifold
such that

[c1(TX)] = c · [ω], c ∈ R (1.1)

on the image of the Hurewicz map π2(X;Z) → H2(X;Z). We say X is monotone
if c > 0, it is Calabi-Yau if c = 0 and it is negatively monotone if c < 0. Note
that π1(S

3) = π2(S
3) = 0 implies that π2(X,S) ∼= π2(X). If (1.1) is satisfied then

the two homomorphisms c1 and ω on the relative homotopy group are also pro-
portional to each other with the same constant c. In particular if X is monotone
then S is automatically a monotone Lagrangian submanifold in the usual sense.

First, by a degeneration method [25, 26] from the symplectic cut and sum
construction, we can determine the displaceability of S and Lλ when X is Calabi-
Yau and negatively monotone. Note that Theorem 1.3 uses cylinder counting to
cancel the outside disk contributions to some extent, here we find that the outside
disk contributions can be forgotten by perturbing the almost complex structures.

Theorem 1.5. Let (X,ω) be a Calabi-Yau or negatively monotone symplectic
6-manifold which contains a Lagrangian 3-sphere S. Consider the Lagrangian
embedding

L3
λ ↩→ U = DrT

∗S3 ⊂ X

then there exists a dense subset J reg of the set of admissible compatible almost
complex structures such that for J ∈ J reg all J-holomorphic disks with boundary
on L3

λ are contained in U . In particular, L3
λ is nondisplaceable in X for all λ in

a small open interval (0, λ0).

The nondisplaceability of a Lagrangian sphere in a Calabi-Yau manifold was
proved in Theorem L [17]. And M.F.Tehrani [25] gave an alternative proof by
the symplectic sum and cut method. Here we are using his approach to analyze
the Lagrangian submanifolds near the sphere. The degeneration formula actually
works for all dimensions 2n ≥ 6. Combined with the Oakley-Usher’s families [34]
of monotone nondisplaceable Lagrangian submanifolds in T ∗Sn we upgrade the
above theorem to all dimensions.

Theorem 1.6. For any integer n ≥ 3, let (X2n, Sn, ω) be a Calabi-Yau or neg-
atively monotone symplectic manifold with a Lagrangian sphere. Then there are
continuum families of Lagrangian submanifolds

Lk,m
λ

∼= (S1 × Sk × Sm)
/
Z2, k,m ∈ Z+, k ≤ m, k +m = n− 1, λ ∈ (0, λ0) ⊂ R

near the Lagrangian sphere S and are nondisplaceable in X.
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For readers who are interested in the Lagrangian skeleta of a Calabi-Yau man-
ifold, this theorem helps to show that if a symplectic manifold is the divisor
complement of a Calabi-Yau manifold and contains a Lagrangian sphere, then
its skeleta must intersect all those Lk,m

λ near this sphere, see the work [40] by
Tonkonog-Varolgunes. In particular, this matches the known fact that T ∗Sn, as
an affine variety, is never a divisor complement of a Calabi-Yau manifold when
n ≥ 3.

All the above results use a local-to-global method, starting from the local
computation to control the global picture. Similar ideas also played an important
role in [7], [41] and [43] for other local models, where many geometric applications
are obtained.

Next we discuss the case when X is monotone. Since S3 is simply-connected,
orientable and spin, the classical Floer cohomology HF (S3; Λ(F )) is well-defined
for any finite field F or F = Z, see [23]. Here Λ(F ) is the Novikov field with F as
the ground ring. The underlying complex is the Morse cohomology H∗(S3;F ) ⊗
Λ(F ) with Novikov field coefficients, and the only essential maps to compute the
Floer cohomology HF (S3; Λ(F )) are

m1;β : H3(S3;F )⊗ Λ(F ) → H0(S3;F )⊗ Λ(F )

where β is a disk class with Maslov index four. For example, when X has minimal
Chern number N ≥ 3, these maps are zero and we have that HF (S3; Λ(F )) =
H∗(S3;F ) ⊗ Λ(F ). When X has minimal Chern number N = 2, these maps are
two-pointed open Gromov-Witten invariants of class β. When X has minimal
Chern number N = 1, these maps count (broken) disks connected by Morse flow
lines. However, the usual two-pointed open Gromov-Witten invariant of class β
is not well-defined due to splittings of disks with Maslov index two.

On the other hand, Welschinger [42] defined F -valued open counts of disks for
a Lagrangian submanifold L whenH1(L;F ) → H1(X;F ) is injective. Given a disk
class β and sufficient boundary constraints, his invariant nW

β counts multi-disks
weighted by linking numbers. We compare his invariants and the Floer differential
and find they are equal to each other.

Theorem 1.7. Let S be a Lagrangian 3-sphere in a monotone symplectic 6-
manifold X. Given a disk class β ∈ π2(X,S) with Maslov index four, we have an
equality

⟨m1;β(PD[pt]), [pt]⟩ = nW
2,β · T ω(β)

where the pairing on the left is the cohomology-homology pairing and nW
2,β is the

two-pointed Welschinger invariant of class β.

Therefore we can define a following invariant

nW
2 :=

∑
µ(β)=4

nW
2,β ∈ F

7



to determine the Floer cohomology HF (S; Λ(F )). That is, HF (S; Λ(F )) = {0}
if and only if nW

2 ̸= 0. One could think this invariant is an analogue of the
critical point equation of the disk potential function of a monotone Lagrangian
torus. Recall that geometrically the critical point equation (however, at 0) of the
potential function is

0 =
∑

µ(β)=2

nβ · [∂β] ∈ H1(T
n;Z)

where nβ is the one-pointed open Gromov-Witten invariant. When our Lagrangian
is a sphere, the above theorem says that there is also an equation determining the
Floer cohomology, in terms of enumerative invariants. In this setting the equation
happens on the level of H3(S

3;F ), which is one-dimensional. Hence we do not
need to weight the enumerative invariants by any homology class.

So we hope the Welschinger invariants help to compute the Floer cohomology
in certain settings, like the one-pointed open Gromov-Witten invariants in the
case of toric fibers. Moreover, we expect to define similar enumerative equations
for Lagrangian submanifolds of general topological type. For example, for a La-
grangian S3 × T n we may need both two equations above to determine its Floer
cohomology. For a Lagrangian submanifold of which the cohomology groups are
generated by elements in certain degrees, we may need a system of equations, one
in each degree, to determine its Floer cohomology.

The outline of this article is as follows. In Section 2 we give the background on
potential functions with bulk deformations. In Section 3 we review the symplectic
sum and cut method and prove Theorem 1.6 and Theorem 1.7. In Section 4 we
study the case where S is a Lagrangian 2-sphere and prove Theorem 1.2. Then we
move on to the 3-dimensional case. In Section 5 and 6 we construct three types
of Floer theories with cylinder corrections and show some geometric properties of
these theories. The first model is a disk model with cylinder corrections, which
gives us a deformed potential function to do concrete computations. The second
and third models are complexes generated by Hamiltonian chords and intersection
points respectively, which will be used to study the intersection behavior of our
Lagrangians under Hamiltonian perturbations. Once we showed the equivalences
between the three models, we can apply them, in Section 7, to obtain estimates
of displacement energy and prove Theorem 1.3.

2 Preliminaries

We give a brief summary to the theory of deformed Floer cohomology and poten-
tial functions, referring to Section 2 and Appendix 1 in [21] for more details.

First we specify the ring and field that will be used. The Novikov ring Λ0 and

8



its field Λ of fractions are defined by

Λ0 = {
∞∑
i=0

aiT
λi | ai ∈ C, λi ∈ R≥0, λi < λi+1, lim

i→∞
λi = +∞}

and

Λ = {
∞∑
i=0

aiT
λi | ai ∈ C, λi ∈ R, λi < λi+1, lim

i→∞
λi = +∞}

where T is a formal variable. The maximal ideal of Λ0 is defined by

Λ+ = {
∞∑
i=0

aiT
λi | ai ∈ C, λi ∈ R>0, λi < λi+1, lim

i→∞
λi = +∞}.

We remark that the field Λ is algebraically closed since the ground field is C, see
Appendix A in [19]. All the nonzero elements in Λ0 − Λ+ are units in Λ0. Next
we define a valuation v on Λ by

v(
∞∑
i=0

aiT
λi) = inf{λi | ai ̸= 0}, v(0) = +∞.

This valuation gives us a non-Archimedean norm

|a =
∞∑
i=0

aiT
λi| = e−v(a).

2.1 Moduli space of holomorphic disks

Let X be a closed symplectic manifold and L be a Lagrangian submanifold. For
our purpose, we assume that L is either a 2-torus or a 3-torus.

Definition 2.1. A bordered semi-stable genus zero curve Σ with (k + 1) bound-
ary marked points and l interior marked points is a union of disk components
Di, i = 1, · · · , r and sphere components Sj, j = 1, · · · , s satisfying the following
conditions.

1. Boundary marked points z0, · · · , zk ∈ ∪r
i=1∂D

i and interior marked points
z+1 , · · · , z+l ∈ (∪r

i=1IntD
i) ∪ (∪s

j=1IntS
j).

2. Σ is connected and the dual graph is a tree.

3. If i ̸= i′ then Di ∩ Di′ = ∂Di ∩ ∂Di′ contains at most one point, which is
called a boundary node.

4. If j ̸= j′ then Sj ∩Sj′ contains at most one point, which is called an interior
node.

9



5. Di ∩ Sj contains at most one point, which is called an interior node con-
necting a disk component and a sphere component.

6. The intersection of any three distinct components, either of disk type or
sphere type, is empty.

7. Elements of three types of special points, boundary marked points, interior
marked points and nodes, are all mutually distinct.

Let (Σ; z0, · · · , zk; z+1 , · · · , z+l ) be a bordered semi-stable genus zero curve with
(k+1) boundary marked points and l interior marked points. Let J be a compati-
ble almost complex structure on X and w : (Σ, ∂Σ) → (X,L) be a J-holomorphic
map. The automorphism group of w is the set of biholomorphic maps ψ : Σ → Σ
such that ψ(zi) = zi, ψ(z

+
i ) = z+i and w ◦ ψ = w.

Definition 2.2. A bordered stable genus zero J-holomorphic map is a pair

((Σ; z0, · · · , zk; z+1 , · · · , z+l ), w)

as above, such that its automorphism is finite.

For a class β ∈ π2(X,L), we write Mk+1,l(X,L; J ; β) as the set of the iso-
morphism classes of bordered stable genus zero J-holomorphic maps representing
class β with (k+1) boundary marked points and l interior marked points. A dis-
tinct component Mmain

k+1,l(X,L; J ; β) of Mk+1,l(X,L; J ; β) contains elements with
boundary marked points (z0, · · · , zk) located counter-clockwisely on ∂Σ.

By using boundary marked points and interior marked points, we can study
the evaluation maps to L and X. The following foundational results are proved by
Fukaya-Oh-Ohta-Ono in Chapter 7 of [17]. We remark that when our Lagrangian
torus satisfies the Condition 1.1, there are simplified proofs.

Theorem 2.3. There are Kuranishi structures on Mmain
k+1,l(X,L; J ; β) such that

the evaluation maps

evi : Mmain
k+1,l(X,L; J ; β) → L, i = 0, · · · , k

and
ev+j : Mmain

k+1,l(X,L; J ; β) → X, j = 0, · · · , l
are weakly submersive in the sense of Kuranishi structures.

Then for given smooth singular simplices (fi : Pi → L) of L and (gj : Qj → X)
of X, we can define the fiber product in the sense of Kuranishi structure

Mmain
k+1,l(X,L; J ; β;

−→
P ,

−→
Q) :=

Mmain
k+1,l(X,L; J ; β)(ev1,··· ,evk,ev+1 ,··· ,ev+l ) ×(f1,··· ,fk,g1,··· ,gl) (

k∏
i=1

Pi)× (
l∏

j=1

Qj)
(2.1)

10



Note that we have an extra boundary marked point z0 and we can study the
evaluation map

ev0 : Mmain
k+1,l(X,L; J ; β;

−→
P ,

−→
Q) → L.

Theorem 2.4. ([17], Chapter 7 and Appendix A) There exists a multi-valued
perturbation of the Kuranishi structure and a suitable triangulation of its zero
locus, such that

ev0 : Mmain
k+1,l(X,L; J ; β;

−→
P ,

−→
Q) → L.

is a singular chain, which is called a virtual fundamental chain.

2.2 A-infinity operations and bulk deformations

Now we can construct a filtered A∞-algebra structure on H∗(L; Λ0) where

mk : H
∗(L; Λ0)

⊗k → H∗(L; Λ0)

are the A∞-operations, see section 3 in [19]. The operators mk are defined as

mk(x1, · · · , xk) =
∑

β∈π2(X,L)

T ω(β) ·mk;β(x1, · · · , xk)

where geometrically mk;β(x1, · · · , xk) is a chain given by the moduli space of holo-
morphic disks, representing the class β, with boundary marked points attached
on given cocycles (x1, · · · , xk) in L.

Definition 2.5. For smooth singular chains x1, · · · , xk of L and a disk class
β ∈ π2(X,L), we define

1. m0,β(1) := (ev0 : Mmain
1,0 (X,L; J ; β) → L) for β ̸= 0;

2. m0,β(1) := 0 for β = 0;

3. m1,β(x) := (ev0 : Mmain
2,0 (X,L; J ; β;x) → L) for β ̸= 0;

4. m1,β(x) := (−1)n∂x for β = 0, where ∂ is the boundary operator of a singular
chain and n = dimL;

5. mk,β(x1, · · · , xk) := (ev0 : Mmain
k+1,0(X,L; J ; β;x1, · · · , xk) → L) for any β and

k ≥ 2.

We remark that the operators mk are first defined at the chain level then can
be passed to their “canonical model” at the cohomology level. Here we directly
use the canonical model at the cohomology level, see [18]. Also here we abuse
the notations between singular chains and cochains via the following conventional

11



Poincaré duality. For a singular chain x in L, the Poincaré dual PD(x), regarded
as a current satisfies that ∫

x

α |x=
∫
L

PD(x) ∧ α (2.2)

for any differential form α ∈ Ωdimx(L).
An element b ∈ H1(L; Λ+) is called a weak bounding cochain if it satisfies the

A∞-Maurer-Cartan equation

∞∑
k=0

mk(b, · · · , b) ≡ 0 mod PD([L]). (2.3)

Here PD([L]) ∈ H0(L;Z) is the Poincaré dual of the fundamental class and it
is the unit of the filtered A∞-algebra. We denote by Mweak(L) the set of weak
bounding cochains of L. If Mweak(L) is not empty then we say L is weakly un-
obstructed. The filtered A∞-algebra structure we considered here is the canonical
model in the Language of [18, 19].

The coefficients of weak bounding cochains can be extended from Λ+ to Λ0. For
b ∈ H1(L; Λ0) we can write b = b0 + b+ where b0 ∈ H1(L;C) and b+ ∈ H1(L; Λ+).
Then we define

mk,β(b, · · · , b) := e⟨∂β,b0⟩mk,β(b+, · · · , b+) (2.4)

where the pairing ⟨∂β, b0⟩ =
∫
∂β
b0. Note that if b0 = b′0+2π

√
−1Z then e⟨∂β,b0⟩ =

e⟨∂β,b
′
0⟩. So the weak bounding cochains with Λ0 coefficients are actually defined

modulo this equivalence. More precisely, they should be regarded as elements in

H1(L; Λ0)
/
H1(L; 2π

√
−1Z) := H1(L;C)

/
H1(L; 2π

√
−1Z)⊕H1(L; Λ+).

Now for a weak bounding cochain b we can deform the A∞-operations in the
following way. Define

mb
k(x1, · · · , xk) :=

∞∑
l=0

∑
l0+···+lk=l

mk+l0+···+lk(b
⊗l0 , x1, b

⊗l1 , x2, · · · , xk, b⊗lk).

That is, we insert b in all possible ways. Then {mb
k} is a new sequence of A∞-

operations on H∗(L; Λ0) which satisfies that

mb
1 ◦mb

1 = 0, (2.5)

see Proposition 3.6.10 in [17]. So we can define the deformed Floer cohomology
HF (L, b; Λ0) as the cohomology of mb

1 whenever b is a weak bounding cochain.
We define a potential function

PO : Mweak(L) → Λ+

12



by setting
∞∑
k=0

mk(b, · · · , b) = PO(b) · PD([L]).

The new A∞-operations {mb
k} can be regarded as a deformation of {mk} by a

weak Maurer-Cartan element b, which is from the cohomology of L itself. Similarly
we can deform the A∞-operations by the cohomology of the ambient symplectic
manifold X. Such a deformation is called a bulk deformation.

Let ElH
∗(X; Λ+) be the subspace of H∗(X; Λ0)

⊗l which is invariant under
the action of the lth symmetric group. Then in [17] a sequence of operators
{ql,k;β}l≥0;k≥0 is constructed

ql,k;β : ElH
∗(X; Λ+)⊗H∗(L; Λ0)

⊗k → H∗(L; Λ0).

Geometrically those operators are chains given by the moduli space of holomorphic
disks with boundary marked points attached on given cocycles in L and interior
marked points attached on given cocycles in X. And we define the operator
ql,k :=

∑
β T

ω(β) · ql,k;β.
Definition 2.6. For singular chains (fi : Pi → L) of L and (gj : Qj → X) of X
and a disk class β ∈ π2(X,L), we define

ql,k;β(Q1, · · · , Ql;P1, · · · , Pk) := (ev0 : Mmain
k+1,l(X,L; J ; β;

−→
P ,

−→
Q) → L)

as a singular chain of L.

Again, here we are using the operators constructed on the canonical model
and the cohomology-homology duality we mentioned before. When l = 0 we have
that

q0,k(1;x1, · · · , xk) = mk(x1, · · · , xk)
where 1 ∈ H∗(X; Λ0) is the unit.

Now for any b ∈ H∗(X; Λ+) and x1, · · · , xk ∈ H∗(L; Λ0) we define

mb
k(x1, · · · , xk) =

∞∑
l=0

ql,k(b
⊗l; x1, · · · , xk).

Then {mb
k} also defines a filtered A∞-algebra structure on H∗(L; Λ0). For a fixed

b, an element b ∈ H1(L; Λ+) is called a weak bounding cochain (with respect to
b) if it satisfies the A∞-Maurer-Cartan equation given by the deformed operators
{mb

k}. And we write Mweak(L; b) as the set of weak bounding cochains of L with
respect to b.

To do concrete computations there are two divisor axioms for the operators
mk and ql,k. For b ∈ H2(X; Λ+), b ∈ H1(L; Λ+) and µ(β) = 2 we have that

mk;β(b
⊗k) =

(b(∂β))k

k!
·m0;β(1);

ql,k;β(b
⊗l;x1, · · · , xk) =

(b · β)l

l!
· q0,k;β(1;x1, · · · , xk).

(2.6)
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These are first studied in [16] and we refer to Section 7 in [20] for a proof. Like
the extension of b in (2.4), the coefficient of b can be also extended from Λ+ to
Λ0, see Section 11 [20].

Next we put those two deformations together, one from the Lagrangian itself
and the other from the ambient space. Define an operator

dbb =
∑
k0,k1

mb
k0+k1+1(b

⊗k0 , x, b⊗k1) : H∗(L; Λ0) → H∗(L; Λ0). (2.7)

When b ∈ Mweak(L; b) we have that

dbb ◦ dbb = 0 (2.8)

and the resulting cohomology

HF (L, b, b; Λ0)

is called the deformed Floer cohomology of L by the bulk deformation b. If we
expand the summation of dbb we will find that the new differential dbb contains the
differential mb

1.

dbb =
∑
k0,k1

mb
k0+k1+1(b

⊗k0 , x, b⊗k1)

=
∑
l,k0,k1

ql,k0+k1+1(b
⊗l; b⊗k0 , x, b⊗k1)

= mb
1(x) +

∑
l≥1,k0,k1

ql,k0+k1+1(b
⊗l; b⊗k0 , x, b⊗k1).

(2.9)

Hence the differential dbb is a sum of the “zeroth order” term mb
1 and “higher

order” deformations which count holomorphic disks with interior marked points
attached on given cocycles in X.

Similarly we define a bulk-deformed potential function

POb : Mweak(L; b) → Λ+

by setting
∞∑
k=0

mb
k(b, · · · , b) = POb(b) · PD([L]).

From the above discussion we have that POb=0(b) = PO(b). And for a La-
grangian torus satisfying the Condition 1.1 there is a concrete expression of the
bulk-deformed potential function, given by the divisor axiom (2.6).

Let β ∈ π2(X,L) be a relative homotopy class of Maslov index two. Let
Mmain

1,0 (X,L; J ; β) be the moduli space of J-holomorphic disks in Definition 2.5.
When J is satisfies the Condition 1.1, the chain

m0,β(1) := (ev0 : Mmain
1,0 (X,L; J ; β) → L)
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becomes a cycle since there is no J-holomorphic disks with smaller Maslov index.
The one-pointed open Gromov-Witten invariant is defined as the mapping degree

nβ = deg(ev0 : Mmain
1,0 (X,L; J ; β) → L)

which is a rational number. If the Lagrangian L is monotone with minimal Maslov
number two then nβ is an invariant of the choice of J . If L is not monotone then
nβ depends on the choice of a generic J .

Then the bulk-deformed potential function has the following form

POL
b (b) =

∑
µ(β)=2

nβe
b∩βeb∩∂βT ω(β) (2.10)

where
b ∈ H2(X; Λ0), b ∈ Mweak

(
L,mb

)
.

And when L is a Lagrangian torus, this potential function determines the bulk-
deformed Floer cohomology.

Theorem 2.7. (Theorem 2.3, [21]) Let L be a Lagrangian torus in a symplectic
manifold X. Suppose that

H1 (L; Λ0)
/
H1

(
L; 2π

√
−1Z

)
⊂ Mweak

(
L,mb

)
and b ∈ H1 (L; Λ0) is a critical point of the potential function POL

b . Then we
have that

HF (L, b, b; Λ0) ∼= H (L; Λ0) .

In particular L is nondisplaceable in X.

Another structural result, Theorem 6.1.20 in [17], tells us a decomposition
formula for the deformed Floer cohomology

HF (L, b, b; Λ0) ∼= (Λ0)
a ⊕ (

l⊕
i=1

Λ0

T λiΛ0

) (2.11)

where a ∈ Z≥0 is called the Betti number and λi ∈ R+ are called the torsion
exponents of the deformed Floer cohomology. It is proved that only the free part
of the deformed Floer cohomology is an invariant under Hamiltonian diffeomor-
phisms, see Theorem J in [17]. Hence it suffices to show that a > 0 if we want
to prove some L is nondisplaceable. When a = 0, the torsion exponents λi are
closely related to the displacement energy of L, which we will discuss in detail in
Section 7.

3 Computations of classical Floer cohomology

In this section we carry out some computations of classical Floer cohomology,
which are free of bounding cochains and bulk-deformations.
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3.1 Symplectic cut and sum construction

We first summarize the symplectic cut and sum construction to analyze holomor-
phic disks on our Lagrangian sphere and local tori. The whole construction is
fully described in section 2 of [25] and section 3 of [26].

Let

Qn = {[z0, · · · , zn+1] ∈ CP n+1 | z20 =
n+1∑
j=1

z2j }

be the complex quadric hypersurface and

Dn = {[z0, · · · , zn+1] ∈ Qn | z0 = 0} ∼= Qn−1

be the divisor at infinity. Then the real part Qn,R = Qn ∩RP n+1 is a Lagrangian
n-sphere in (Qn, ωFS) and Qn−Dn is a Weinstein neighborhood of Qn,R. Another
perspective is that there is a Hamiltonian S1 action on T ∗Sn such that the sphere
bundles of it are regular level sets. If we collapse the circles on a fixed sphere
bundle then (DrT

∗Sn, ∂DrT
∗Sn) goes to (Qn, Dn) with a scaled Fubini-Study

symplectic form.

Proposition 3.1. Let (X,S, ω) be a symplectic 2n-manifold containing a La-
grangian n-sphere S. There exists a symplectic fibration π : (X , ωX ) → ∆ with
a Lagrangian sub-fibration S. Here ∆ is a small disk in C containing the origin.
Let Xz be the fiber at z ∈ ∆ then we have

1. X0 = X−∪DX+ where both X± are closed smooth symplectic manifolds and
D = X− ∩X+ is a common symplectic hypersurface;

2. when z ̸= 0 the pair (Xz, ωX |Xz
,Sz) is symplectically isotopic to the pair

(X,ω, S);

3. when z = 0 then S0 is in X− and the pair (X−, ωX |X−
,S0) is symplecto-

morphic to (Qn, ωFS, Dn, Qn,R).

Next we specify the almost complex structures we will use on this fibration.
An almost complex structure J on the fibration π : (X , ωX ) → ∆ is said to be
admissible if

1. it is compatible with ωX and preserves ker dπ;

2. it restricts to an almost complex structure on the singular locus D of X0

and satisfies that

NJ(u, v) ∈ TxD ∀u ∈ TxD, v ∈ TxX0, x ∈ D

where NJ is the Nijenhuis tensor of J .
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Figure 2: Degeneration of a holomorphic disk.

We denote the set of all admissible almost complex structures on X by JX and the
subset of l-differentiable elements by J l

X . Both spaces JX and J l
X are non-empty

and path-connected.
With respect to an admissible almost complex structure we can compare the

first Chern numbers and Maslov indices between (X,ω) and (X±, ωX |X±
). Let β ∈

H2(X−, S;Z) and A ∈ H2(X+;Z) such that β ·X−D = A ·X+D then we can deform
the connected sum of β and A to be a homology class β+A ∈ H2(X,S;Z) in the
smooth fiber. Note that ∂β = 0 so the pairings ⟨c1(TX−), β⟩ and ⟨c1(TX), β+A⟩
are well-defined and we have the following relation.

Proposition 3.2. With the above notation,

⟨c1(TX), β + A⟩ = ⟨c1(TX−), β⟩+ ⟨c1(TX+), A⟩ − 2A ·X+ D

= ⟨c1(TX+), A⟩+ (n− 2)A ·X+ D
(3.1)

These two propositions are summaries of Proposition 2.1 in [25] and Propo-
sition 3.1 in [26]. Next we use the symplectic cut and sum construction to show
the weakly unobstructedness of a Lagrangian sphere.

3.2 Weakly unobstructedness of Lagrangian spheres

It is proved that any Lagrangian sphere is weakly unobstructed in [17] Corol-
lary 3.8.18. We give an alternative proof by analyzing holomorphic disks with
boundary on it. Along this proof we prove Theorem 1.6.

Lemma 3.3. For a closed smooth relative spin Lagrangian submanifold L, if L
does not bound any non-constant J-holomorphic disk with non-positive Maslov
index, then L is weakly unobstructed with respect to J . In particular, we have that

H1(L; Λ+) ⊂ Mweak(L; Λ+), H1(L; Λ0)
/
H1(L; 2π

√
−1Z) ⊂ Mweak(L; Λ0).
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Proof. We assume that L is relative spin hence orientable. So the Maslov index
of a disk class is an even integer. Let {mk} be the A∞ operations defined on
H∗(L; Λ0).

First we consider the case with Λ+ coefficients. By definition (2.3) we need to
show that for any b ∈ H1(L; Λ+) we have

∞∑
k=0

mk(b, · · · , b) ∈ H0(L; Λ+).

Note that mk(b, · · · , b) =
∑

β mk,β(b, · · · , b), and the degree of mk,β(b, · · · , b) is
n + µ(β) − 2. Therefore when µ(β) ≥ 4 the mk,β(b, · · · , b) is zero since our
Lagrangian is n-dimensional. Moreover if L does not bound any J-holomorphic
disk with µ(β) ≤ 0 the only contribution of mk,β to mk are from Maslov index
two disks. Therefore all mk(b, · · · , b) are cycles and have the same dimension n.
This shows that for any b ∈ H1(L; Λ+) the cycle mk(b, · · · , b) is proportional to
[L], which solves the A∞-Maurer-Cartan equation.

The case with Λ0 coefficients can be proved similarly once the definition (2.4)
is noticed.

When n ≤ 2 the moduli space of holomorphic disks bounding a Lagrangian Sn

with a non-positive Maslov index has strictly negative dimension. Hence by per-
turbing the almost complex structure the Lagrangian Sn is weakly unobstructed.
Next we assume that n ≥ 3.

Theorem 3.4. Let (X,S, ω) be a symplectic 2n-manifold with a Lagrangian n-
sphere S. Then there exists a dense subset J reg of admissible compatible almost
complex structures such that S does not bound any non-constant J-holomorphic
disk with non-positive Maslov index for J ∈ J reg.

Proof. The proof is also based on a dimension-counting argument. Let (X , ωX ) be
the fibration constructed in Proposition 3.1. For an admissible almost complex
structure J we study the limit of holomorphic disks from smooth fibers to the
central fiber X0 = X− ∪D X+.

Let Mreg(X+, A, J) be the moduli space of J-holomorphic curves of class A ∈
H2(X+;Z), which are somewhere injective. Then classic result shows that there
is a dense subset J reg,A

X ⊂ JX such that Mreg(X+, A, J) is a smooth manifold of
dimension

dimR Mreg(X+, A, J) = 2n− 6 + 2⟨c1(TX+), A⟩

for J ∈ J reg,A
X . In particular if 0 > 2n−6+2⟨c1(TX+), A⟩ then Mreg(X+, A, J) is

empty. Note that J reg,A
X is an intersection of countably many open dense subsets

of JX , we can intersect again to get J reg
X := ∩AJ reg,A

X .
Next let zi ∈ ∆ be a sequence converging to 0 and Ji be the restriction of J

on Xzi . Consider a sequence of Ji-holomorphic disks of class β in Xzi . Then by
Gromov compactness we get a nodal disk in X0 = X− ∪D X+ of class β = β′ +A
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where β′ ∈ H2(X−, S;Z) and A ∈ H2(X+;Z). Geometrically this nodal disk is
obtained by collapsing the circle where the symplectic cut happens. Assume that
we do symplectic cut on the sphere bundle of radius r of the cotangent bundle of
S. Then for small ϵ the image of our disk intersects with the sphere bundle of
radius r+ ϵ. Otherwise this disk is totally contained in X−−D which contradicts
that S is exact in X−−D. Moreover this shows that A is not contained in D since
the disk intersects with the sphere bundle of radius r+ϵ, which is in X+−D. Note
that J is admissible therefore the image of the A-part of our holomorphic curve
intersects with D in a finite set with positive multiplicities. That is, A ·X+ D > 0.
By choosing J ∈ J reg

X we can assume that 0 ≤ 2n− 6+2⟨c1(TX+), A⟩. Therefore
Proposition 3.2 tells us that

µ(β) = 2⟨c1(TX), β⟩ = 2⟨c1(TX−), β
′⟩+ 2⟨c1(TX+), A⟩ − 4A ·X+ D

= 2⟨c1(TX+), A⟩+ 2(n− 2)A ·X+ D

≥ 6− 2n+ 2(n− 2)A ·X+ D

≥ 6− 2n+ 2(n− 2) ≥ 2.

(3.2)

This inequality shows that if Mreg(Xzi , S, β, Ji) is non-empty then µ(β) ≥ 2
for large i. Since (Xzi , ωX |Xzi

,Szi) is isomorphic to (X,ω, S) the above inequality

holds for a neighborhood of Ji in J (X,ω). Hence it is proved that there is a dense
subset J reg such that S is weakly unobstructed with respect to J ∈ J reg.

The above proof also gives a lower bound of energy of holomorphic disks which
bound the Lagrangian sphere. We will use this energy bound when we study the
moduli space of cylinders.

Corollary 3.5. With the notation above, there exists ES > 0 such that all J-
holomorphic disks with boundary on S have energy greater than ES for J ∈ J reg.
The lower bound of ES depends on the maximal Weinstein neighborhood of S, not
on the choice of J .

Proof. Note that the image of any non-constant J-holomorphic disk cannot be
contained in any of the Weinstein neighborhood U . Then after the degeneration
the disk breaks into disk parts in the quadric X− and sphere parts in X+. Since
the Lagrangian sphere is monotone in the quadric X− the energy of the disk parts
is larger than some constant ES, depending on the size of U .

Remark 3.6. When (X,S, ω) and J are fixed we always get a lower bound of
energy of holomorphic disks, the analytic lower bound. The above bound ES is
obtained from some topological lower bound which is expected to be much larger
than the analytic one.

Another corollary of this degeneration formula is that when the symplectic
manifold is Calabi-Yau or negatively monotone, any Lagrangian submanifolds in
this Weinstein neighborhood U does not bound J-holomorphic disks which are
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not totally contained in U . Note that Oakley-Usher constructed many families of
monotone nondisplaceable Lagrangian submanifolds in T ∗Sn. By the degeneration
technique we get continuum families of nondisplaceable Lagrangian submanifolds.

Theorem 3.7. (Oakley-Usher [34]) There exist continuum families of monotone
Lagrangian submanifolds

Lk,m
λ

∼= (S1 × Sk × Sm)
/
Z2, k,m ∈ Z+, k ≤ m, k+m = n− 1, λ ∈ (0,+∞) ⊂ R

with non-zero Floer cohomology in T ∗Sn.

Corollary 3.8. For any integer n ≥ 3, let (X2n, Sn, ω) be a Calabi-Yau or neg-
atively monotone symplectic manifold with a Lagrangian sphere. Then there are
continuum families of Lagrangian submanifolds

Lk,m
λ

∼= (S1 × Sk × Sm)
/
Z2, k,m ∈ Z+, k ≤ m, k +m = n− 1, λ ∈ (0, λ0] ⊂ R

near the Lagrangian sphere S and are nondisplaceable in X.

Proof. The Lagrangian submanifolds Lk,m
λ are those in the previous theorem, o-

riginally sit in T ∗Sn. For a small interval (0, λ0] we assume that all Lk,m
λ are

contained in a Weinstein neighborhood U of S. Next we apply the degeneration
method to show that they do not bound any holomorphic disk which are not
contained in U , with respect to some almost complex structure.

Similar to the proof of Theorem 3.4, let (X , ωX ) be the fibration constructed in
Proposition 3.1. For an admissible almost complex structure J we study the limit
of holomorphic disks from smooth fibers to the central fiber X0 = X− ∪D X+.
If L bounds a holomorphic disk which is not contained in U then its limit in
the singular fiber X0 is a nodal disk u. The X+-part of u represents a class
A ∈ H2(X+;Z). Since the almost complex structure is admissible, the intersection
number s = A ·X+ D is positive and finite. Now we choose a class B ∈ H2(X−;Z)
such that B ·X− D = s. Then we can deform A + B into a homology class in
the smooth fiber H2(X;Z), which we still write as A+B. By the Chern number
formula Proposition 3.2 we have that

⟨c1(TX), B + A⟩ = ⟨c1(TX−), B⟩+ ⟨c1(TX+), A⟩ − 2A ·X+ D

= ⟨c1(TX+), A⟩+ (n− 2)A ·X+ D.
(3.3)

Note that X− is the quadric hypersurface, which is a monotone symplectic mani-
fold. So B ·X− D = s > 0 implies that ⟨ωX− , B⟩ > 0. Moreover ⟨ωz, B + A⟩ > 0
in the smooth fiber. When n ≥ 3 and X is Calabi-Yau or negatively monotone
we obtain that ⟨c1(TX), B + A⟩ ≤ 0 and hence ⟨c1(TX+), A⟩ < 0. Then by
perturbing the almost complex structure on X+ there is no holomorphic curve
representing the class A (or its underlying simple curve).

In conclusion, by picking a suitable almost complex structure, our Lagrangian
submanifolds Lk,m

λ only bound holomorphic disks inside U . So their Floer coho-
mology groups are the same as those in T ∗Sn, which are non-zero.
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In [34] it was also proved that if we compactify the cotangent bundle to be the
quadric then L0,m

λ is displaceable in Qm+2 for m ≥ 2. This matches the discussion
above that when the ambient space is monotone there will be holomorphic disks
coming from outside, which may break the Floer cohomology. The major task of
following sections will be studying possible deformations of Floer cohomology to
deal with those outside contributions.

3.3 Welschinger invariants and the pearl complex

Now we compare the open Gromov-Witten invariants defined by Welschinger [42]
and the Floer differential in the pearl complex.

Let X be a monotone symplectic 6-manifold and S be a Lagrangian 3-sphere
in X. Since S is simply-connected and spin, we can define Welschinger invariants
with value in any finite field F or F = Z. Fix an orientation and (the unique)
spin structure on S. Given β ∈ π2(X,S) and a generic compatible almost complex
structure J , we writeMβ

r (X,S; J) as the space of simple J-holomorphic disks with
boundary on L, representing the class β with r boundary marked points, modulo
equivalence. It is an oriented manifold with boundaries and corners of dimension
µ(β) + r, with an evaluation map to Sr. We also write Mβ1,··· ,βk

r (X,S; J) as the
moduli space of simple reducible J-holomorphic disks with k components repre-
senting β1, · · · , βk and have r boundary marked points. ThenMβ1,··· ,βk

r (X,S; J) is
an oriented manifold with boundaries and corners of dimension µ(β1+· · ·+βk)+r.
Let Mβ1,··· ,βk

r,int (X,S; J) be the dense open subset of which the elements are multi-
disks with pairwise disjoint boundary components.

In our setting, we only need the case where there are at most two components,
to define a linking weight on the moduli space Mβ1,··· ,βk

r,int (X,S; J) in a simpler way.
It is a locally constant function

lkk : Mβ1,··· ,βk
r,int (X,S; J) → F.

When k = 1, there is only one component of Mβ1

r,int(X,S; J), we define lk1 = 1 be

the constant function. When k = 2, for an element u ∈ Mβ1,β2

r,int (X,S; J) we define
lk2(u) = lk(∂u), the linking number of two boundary components of u. Here we
view the two boundary components of u as two disjoint knots in S. Now let β be
a disk class of Maslov index four. We set

[Mβ,2(X,S; J)] :=
2∑

k=1

1

k!

∑
β1+···+βk=β

lkk[Mβ1,··· ,βk
2,int (X,S; J)]

to define the two-pointed Welschinger invariants.

Theorem 3.9. (Welschinger, [42]) The chain

ev∗[Mβ,2(X,S; J)] :=
2∑

k=1

1

k!

∑
β1+···+βk=β

lkkev∗[Mβ1,··· ,βk
2,int (X,S; J)]
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is a cycle whose homology class in H6(S × S;F ) does not depend on the generic
choice of J .

The two-pointed Welschinger invariant of class β is defined as

nW
2,β := ⟨ev∗[Mβ,2(X,S; J)], PD[pt] ∪ PD[pt]⟩ ∈ F,

which is independent of a generic choice of J .
Next we review the pearl complex to compute the Floer cohomology, and

compare its differential with the two-pointed Welschinger invariant. We refer to
[5, 18] for more details about the pearl complex and [23] for the extension to the
case of finite characteristics.

Let f : S → R be a perfect Morse function on our Lagrangian sphere. That
is, f has exactly one critical point of index zero and one critical point of index
three. Then the pearl complex contains the following set of data

(H∗(S) := H∗(S;F )⊗ Λ(F ), f, J,m1 :=
∑
β

m1;β)

with H∗(S), the Morse cohomology of S, being the underlying complex, a generic
compatible almost complex structure J and the differential m1. The differential
m1 counts rigid configurations called “pearl trajectories”, which we will explain
now. Note that by degree reasons, the only possible non-trivial maps are

m1;β : H3(S;F )⊗ Λ(F ) → H0(S;F )⊗ Λ(F )

where β is a disk class with Maslov index four. Then pick a generator PD[pt] ∈
H3(S;R) and a generator PD[S] ∈ H0(S;R), the map m1;β is a signed count of
following pearl trajectories. Let p, q be the critical points of f corresponding to
PD[pt] and PD[S], we consider the space of all possible sequences (u1, · · · , uk)
when 1 ≤ k ≤ 2 such that:

1. ul is a non-constant J-holomorphic disk with boundary on S;

2. If k = 2, then u1(−1) and u2(1) are connected by a gradient flow line;

3. u1(1) and p are connected by a gradient flow line;

4. uk(−1) and q are connected by a gradient flow line;

5.
∑

1≤l≤k[ul] = β.

Then the space of such pearl trajectories is a compact zero-dimensional mani-
fold, modulo equivalence. We define m1;β as this signed count, weighted by the
symplectic area of the sum of pearls.

Now we are ready to prove Theorem 1.7. The proof is not hard but rather an
observation, based on the following lemma.
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Lemma 3.10. Let f : S → R be a perfect Morse function on a 3-sphere. Let
K1, K2 be two disjoint knots in S. Then the linking number lk(K1, K2) equals the
signed count of Morse flow lines starting from one point on K1, ending at one
point on K2.

Proof. Let q be the minimal point of f , consider the preimage of K2 under the
Morse flow ρ. That is, define

C :=
∪

x∈K2

{y ∈ X | ∃t ∈ R, ρt(y) = x} ∪ {q}

which is an oriented two-chain in S with boundary as K2. Then there is a one-
to-one correspondence between intersection points of K1 and C and Morse flow
lines starting from one point on K1, ending at one point on K2. Moreover, this
intersection number between K1 and C equals the linking number lk(K1, K2).
Hence we complete the proof.

Note that we assume that f is perfect, for any x ∈ K2 there is a unique
smooth flow line connecting x and q. For a general Morse function, there may be
broken flow lines going back to other critical points. We suggest [2] for general
discussions.

Theorem 3.11. Let S be a Lagrangian 3-sphere in a monotone symplectic 6-
manifold X. Given a disk class β ∈ π2(X,S) with Maslov index four, we have an
equality

⟨m1;β(PD[pt]), [pt]⟩ = nW
2,β · T ω(β)

where the pairing on the left is the cohomology-homology pairing and nW
2,β is the

two-pointed Welschinger invariant of class β.

Proof. We still fix a generic perfect Morse function f on S to define the pearl
complex and m1;β. Let q (p respectively) be the minimal (maximal respectively)
point of f . Given two generic points x, y on S and a disk class β with Maslov index
four, let Mβ,2(X,S; J) be the moduli space of multi-disks in Theorem 3.9 and let
Mβ,2(X,S; (x, y); J) be the moduli space of elements such that two marked points
go to x and y respectively. Then the two-pointed Welschinger invariant nW

2,β is the
number of elements in Mβ,2(X,S; (x, y); J).

Now we construct a one-to-one map between the moduli space of pearl tra-
jectories connecting q and p and the moduli space Mβ,2(X,S; (x, y); J). Pick an
element u in Mβ,2(X,S; (x, y); J). First, if the underlying disk of u is a single disk
u1. After reparametrization we assume that u1(1) = x and u1(−1) = y. Since our
Morse function is perfect, there is a unique flow line connecting q and x (y and p
respectively). So this configuration is counted once in the space of pearl trajec-
tories. On the other hand, a single disk has self-linking number one by definition
hence it contributes once to nW

2,β. Next, if the underlying disk of u is a multi-disk
u1, u2. (It has at most two components since S is monotone.) Note that if two
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marked points are both on one component, then we have a Maslov index two disk
with two-pointed constraints, which does not happen generically. So we assume
that u1(1) = x and u2(−1) = y. Similarly there is a unique flow line connecting q
and x (y and p respectively). Then this configuration is weighted by the number
of Morse flow lines from the boundary of u1 to the boundary of u2, which is the
same as the linking number by Lemma 3.10. Hence the multi-disks are counted
by the same number in both moduli spaces.

We remark that to compare the two counts in the equation we need to further-
more compare the orientation data on both sides. That is, compare the orientation
conventions in [42] and in [18]. We do not plan to do it here but leave the the-
orem as proved up to sign. This does not effect our applications since we only
care about the vanishing/non-vanishing property of the Floer cohomology of a
Lagrangian sphere.

Therefore we can define an invariant

nW
2 :=

∑
µ(β)=4

nW
2,β ∈ F

to determine the Floer cohomology HF (S; Λ(F )). That is, HF (S; Λ(F )) = {0} if
and only if nW

2 ̸= 0. In particular, when nW
2 = p ∈ F = Z this gives a Lagrangian

sphere which is a non-trivial object in the Fukaya category with characteristic p
but a trivial object in the integral Fukaya category.

A similar story may be also true for a monotone Lagrangian n-sphere for any
odd integer n, where its Floer cohomology is determined by counting pearl tra-
jectories with Maslov index n+1. Note that Solomon-Tukachinsky [38] and Chen
[10] have generalized Welschinger invariants in higher dimensions. We expect their
invariants also have some meanings in Floer theory.

4 Lagrangian tori near a Lagrangian 2-sphere

In this section we focus on the case where X is a symplectic 4-manifold containing
a Lagrangian 2-sphere S. Our goal is to prove the following theorem.

Theorem 4.1. Let X be a closed symplectic 4-manifold which contains a La-
grangian 2-sphere S. There is a one-parameter family of Lagrangian embeddings

T 2 ≈ L2
λ ↩→ U = DrT

∗S2 ⊂ X

for λ ∈ (0, λ0), and each L2
λ is nondisplaceable in X.

4.1 Constructions of local Lagrangian 2-tori

Let (T ∗S2, ω0) be the cotangent bundle of the unit 2-sphere in R3, equipped with
the standard symplectic form. It can be viewed as the smoothing of a node.
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A := C2/Z2

.

T ∗S2

.

S2

.

T 2

Figure 3: Smoothing a node.

Consider the Z2-quotient of C2 by identifying (z1, z2) with (−z1,−z2). The origin
is the fixed point of this action and the resulting quotient A := C2/Z2 is an orbifold
with a unique node. This orbifold is a toric orbifold with a moment polytope

P = {u1 ≥ 0} ∩ {2u2 − u1 ≥ 0}

where u1, u2 are coordinates of R2. The orbifold A can be also viewed as an affine
variety, isomorphic to

{z21 + z22 + z23 = 0} ⊂ C3.

The link of this singularity is S3/Z2 = RP 3 with a contact structure induced
from the standard one on the 3-sphere. Let DrT

∗S2 be the disk cotangent bun-
dle with radius r > 0 (with respect to the round metric). Then the boundary
∂DrT

∗S2 is diffeomorphic to S3/Z2 = RP 3 and it also has a contact structure,
which is isomorphic to the standard one on RP 3. Let Bϵ(0) be a ball in C3 cen-
tered at the origin, with radius ϵ > 0. Then we can glue A − A ∩ Bϵ(0) with
DrT

∗S2 for suitable r = r(ϵ), by using the isomorphic characteristic foliations on
their common boundary. The resulting glued manifold is a smooth symplectic
manifold, which is symplectomorphic to (T ∗S2, ω0). Note that H2(RP 3;Q) = 0,
the glued symplectic form does not depend on the choice of ϵ up to a symplectic
diffeomorphism, by the Moser’s argument.

For a fixed gluing parameter ϵ, we can make that the toric structure is un-
changed outside A− A ∩ B2ϵ(0). Hence the toric fibers outside the gluing region
are still Lagrangian tori in the glued symplectic manifold, which is isomorphic to
(T ∗S2, ω0). Since we can choose ϵ as small as we want, actually we have a singular
toric fibration with total space as (T ∗S2, ω0). The base of this fibration is still the
polytope P , but over the unique vertex the preimage is a Lagrangian 2-sphere,
which corresponds to the zero section of (T ∗S2, ω0). Alternatively, we can direct-
ly construct a singular toric fibration on (T ∗S2, ω0), since there is a Hamiltonian
T 2-action outside the zero section.

Therefore we have a fibration structure

π : (T ∗S2, ω0) → P
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where the preimage of an interior point is a Lagrangian torus, see Figure 3. Now
we write L2

λ := π−1(λ, λ) for λ ∈ (0,+∞), which are the Lagrangian tori of our
interest.

4.2 Bulk-deformed potential functions of local tori

Now we recall the local computation of the bulk-deformed potential functions of
L2

λ, given by Fukaya-Oh-Ohta-Ono [21].

Theorem 4.2. The Lagrangian torus L2
λ has following properties.

1. For each λ ∈ (0,+∞), L2
λ is a monotone Lagrangian torus with minimal

Maslov number two.

2. There are four disk classes β1, β2, β3, β4 ∈ π2(T
∗S2, L2

λ) such that the one-
pointed open Gromov-Witten invariant nβi

= 1. For other disk class β ∈
π2(T

∗S2, L2
λ), the one-pointed open Gromov-Witten invariant nβ = 0.

3. For a chosen basis e1, e2 ∈ H2(L
2
λ;Z), we have that ∂β1 = e1, ∂β2 = ∂β3 =

e2, ∂β4 = −e1 + 2e2.

4. Let [S] be the homology class of the zero section with a suitable orientation.
Then we have the intersection numbers β1 · [S] = β4 · [S] = 0, β2 · [S] =
1, β3 · [S] = −1.

We remark that although in [21] they focus on the case where the ambient
manifold is S2 × S2, they provided all the essential data for the above theorem,
see Theorem 4.1 [21] for a proof. Another proof of the above theorem can be
deduced from the work [30] of Lekili-Maydanskiy. They first construct the tori
L2

λ by using a Lefschetz fibration on (T ∗S2, ω0), then compute all the non-zero
one-pointed open Gromov-Witten invariants.

Now we use the local computation to finish the proof of Theorem 4.1.

Proof. Pick a neighborhood U of the Lagrangian sphere S which is symplecto-
morphic to the disk bundle of the cotangent bundle of a 2-sphere. Then we have
a one-parameter family L2

λ inside U with λ parameterized by an open interval.
We study the potential function with bulk deformation of the torus L2

λ to show it
is nondisplaceable in X.

The potential function of L2
λ counts Maslov index two holomorphic disks. We

pick an almost complex structure which agrees the complex structure we use to
compute the local one-pointed open Gromov-Witten invariants on U and extend
it to a generic one on X, such that the potential function is well-defined. Note
that just in U the tori L2

λ are monotone, the one-pointed open Gromov-Witten
invariants are independent of a choice of a regular J . Globally in X, since the
Lagrangian submanifold is 2-dimensional, it is weakly unobstructed for a generic
almost complex structure J , see Lemma 3.3.
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Then for the tori which are close to the Lagrangian sphere S, the holomorphic
disks of lowest energy are explicitly known due to the local computation. More
precisely, there are four disk classes with non-zero open Gromov-Witten invari-
ants. They are β1, β2, β3, β4 shown in Theorem 4.2. All these classes have open
Gromov-Witten invariant nβi

= 1. So the full disk potential function (without
bulk deformation) is

PO(b) = (y1 + 2y2 + y−1
1 y22)T

λ + P (y1, y2)T
µ, λ < µ

where the low energy terms are given by Theorem 4.2 and (2.10). Here b =
x1e

∗
1+x2e

∗
2 ∈ H1(L2

λ; Λ0) where e
∗
1, e

∗
2 is a dual basis of e1, e2 in Theorem 4.2. And

we change the coordinates by setting yi = exi .
Now let b = vPD([S]) ∈ H2(X; Λ0) be a bulk deformation. Note that the

intersection numbers are

βi · [S] = 0, i = 1, 4; β2 · [S] = 1; β2 · [S] = −1

by Theorem 4.2. Then by (2.10) the whole potential function is

POb(b) = (y1 + (ev + e−v)y2 + y−1
1 y22)T

λ + P (y1, y2, v)T
µ, λ < µ

where P (y1, y2; v, w) comes from the contribution of high energy disks, possibly
effected by our bulk deformation.

Then the critical point equations, taking derivatives with respect to y1, y2, are{
1− y−2

1 y22 + P1(y1, y2, v)T
µ−λ = 0

(ev + e−v) + 2y−1
1 y2 + P2(y1, y2, v)T

µ−λ = 0

By a change of coordinate ṽ = ev we have that{
1− y−2

1 y22 + P1(y1, y2, ṽ)T
µ−λ = 0

(ṽ + ṽ−1) + 2y−1
1 y2 + P2(y1, y2, ṽ)T

µ−λ = 0
(4.1)

Now we view the above system of equations as two equations with three vari-
ables y1, y2, ṽ. If there are suitable y1, y2, ṽ such that (4.1) is satisfied then we can
show the Floer cohomology is non-zero for those deformation parameters y1, y2, ṽ.
By introducing the bulk parameter ṽ we have one more dimension for freedom.
Note that if we fix any bulk-deformation v then we get non-isolated solutions
y1, y2, modulo T µ−λ. So we change the point of view. We fix a bounding cochain
y1 = 1, to find suitable y2 and ṽ.

Fix y1 = 1 then (4.1) becomes{
1− y22 + P1(1, y2, ṽ)T

µ−λ = 0

(ṽ + ṽ−1) + 2y2 + P2(1, y2, ṽ)T
µ−λ = 0

(4.2)
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which has two equations and two variables y2, ṽ.
Modulo T µ−λ the low energy term equations are{

1− y22 = 0

ṽ + ṽ−1 + 2y2 = 0

which has isolated solutions at y2 = 1, ṽ = −1 and y2 = −1, ṽ = 1.
We pick a solution y2 = 1, ṽ = −1 modulo T µ−λ and apply the following

Lemma 4.3 to (4.2).

1. When the symplectic form on X and λ are both rational, all the energy
parameters lie in a finitely generated semigroup in R≥0. Hence Lemma 4.3
tells us that in Λ2

0 near (1,−1), in the sense of non-Archimedean topology,
there exists a solution to (4.2). So this solution is in (Λ0−Λ+)

2 which shows
that the deformed Floer cohomology is nontrivial.

2. In general the above equations have solutions if the tails P1, P2 have finite
length, also by Lemma 4.3. Therefore we can truncate those equations to get
solutions modulo large power. This shows that the deformed Floer cohomol-
ogy is nonzero modulo any large energy hence our tori are nondisplaceable.
But whether the full Floer cohomology is nontrivial or not is not known.

By the above discussion we complete the proof. The key point is by prescribing one
bounding cochain, we look for a suitable bulk deformation and the other bounding
cochain, which has nicer solutions modulo higher energy terms. To clarify possible
confusion, we remark that when we speak of the critical point equation, we mean
for y1, y2 variables since we differentiate with respect to them. But once we obtain
these equations and look for solutions, it becomes a pure algebraic problem and we
can think all y1, y2, ṽ are variables. This is because bulk parameters and bounding
cochains are “independent” variables and differentiating with respect to bounding
cochains does not affect the bulk parameter.

Lemma 4.3. Let F = (f1(x, y), f2(x, y)) be a map from C2 to C2 where fi(x, y)
are polynomials in x, y with complex coefficients. Suppose that F has an isolated
zero in C2 then the system of equations{

f1(x, y) + g1(x, y;T ) = 0

f2(x, y) + g2(x, y;T ) = 0

have solutions in Λ2
0 near the zero of F in the non-Archimedean topology. Here

gi(x, y;T ) are of the following form

gi(x, y;T ) =
∞∑
k=1

ci,kx
li,kyji,kT λk
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where
ci,k ∈ C, li,k, ji,k ∈ Z, 0 < λk ≤ λk+1, lim

k→∞
λk = +∞

and λk lies in a finitely generated additive semigroup Σ in R≥0.

Proof. For complex functions the multiplicity of an isolated zero is stable under
small perturbations. This lemma is an analogue in the setting of Novikov ring
with the non-Archimedean topology. The proof is essentially given in the weakly
nondegenerate case of Theorem 10.4 in [19], where they assume that Σ is generated
by a single element such that Σ can be rearranged to be Z≥0. When Σ is finitely
generated the proof is similar. We deal with the solution space of (10.8) in [19] as
a polynomial of several variables instead of a polynomial of one variable. And the
target of the projection (10.9) in [19] will be modified to a punctured polydisk.
Then other parts of the proof follow similarly. We refer to Lemma 9.18, 10.12,
10.13, 10.14 and 10.15 in [19] for more details.

In the above proof, we use T ∗S2 as a local model and use the local computation
to control abstract outside disk contributions. By using the similar idea of toric
degenerations, we can upgrade this theorem to the case where the local model is
a linear plumbing of cotangent bundles of 2-sphere, see Theorem 1.1 in [39].

5 A deformed Floer complex

In this section we first review the construction of a family of monotone Lagrangian
3-tori {L3

λ}λ∈(0,+∞) in T
∗S3, then study the moduli space of holomorphic cylinders

with one end on L3
λ and the other on the zero section S of T ∗S3. This moduli

space of holomorphic cylinders can be used to deform the Floer cohomology of
the local torus L3

λ, when it is near a Lagrangian 3-sphere in a general symplectic
6-manifold. That is, we will construct a Floer complex by counting holomorphic
disks and cylinders. A second Floer complex, counting holomorphic strips and
strips with one interior hole, will be constructed in Section 5.

5.1 Constructions of local Lagrangian 3-tori

Let T ∗S3 be the cotangent bundle of S3 with the standard symplectic structure.
It admits a Hamiltonian T 3-action outside the zero section. Moreover it admits a
Gelfand-Tsetlin system which gives us a singular torus fibration

π : T ∗S3 → P ⊂ R3.

Here the base P is a convex polytope in R3, cut out by 4 affine functions

x ≥ 0; −y ≥ 0; x− z ≥ 0; z − y ≥ 0
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where (x, y, z) are coordinates in R3. This polytope P has four faces Pi corre-
sponding to the above four affine functions. A regular fiber over an interior point
is a smooth Lagrangian torus and the fiber over the vertex at (0, 0, 0) is a La-
grangian 3-sphere, the zero section. We refer to [11] and [35] for the details of the
construction. Similar to the toric case in [12] and [19], the open Gromov-Witten
theory of regular fibers of a Gelfand-Tsetlin system was studied in [31], which we
state below.

Theorem 5.1. (Section 9, [31]) Let L be a regular fiber of a Gelfand-Tsetlin
system on a symplectic manifold X then we have that

1. Each L does not bound any non-constant holomorphic disks with non-positive
Maslov index;

2. There is a one-to-one correspondence between the holomorphic disks with
Maslov index two bounded by L and the faces of the Gelfand-Tsetlin polytope;

3. Every class β ∈ H2(X,L) is Fredholm regular and the one-pointed open
Gromov-Witten invariant nβ = 1.

Therefore in our case each regular fiber bounds four holomorphic disks with
Maslov index two, which span the relative homology H2(X,L). Moreover when a
fiber is over the point (λ, λ, 0) these four classes have the same symplectic energy.
Hence the fiber L3

λ := π−1(λ, λ, 0) is a monotone Lagrangian torus with minimal
Maslov number two. This is the one-parameter family of monotone Lagrangian
tori in T ∗S3 which are the main objects of following sections. Now for notational
simplicity, we write Lλ for L3

λ. We remark that since Lλ is monotone the number
of holomorphic disks in a given class is independent of many auxiliary choices. So
nβ = 1 is not only true for the toric complex structure but also for other regular
compatible almost complex structures on T ∗S3.

Another description of this one-parameter family of monotone Lagrangian tori
comes from a Lefschetz fibration, see [13] where they also computed all the one-
pointed Gromov-Witten invariants. We consider the smoothing

Y = {xy − zw = ϵ} ⊂ C4

which is symplectomorphic to T ∗S3. It can be embedded into

Ŷ = {xy = u− a, zw = u− b} ⊂ C5

where a, b are positive real numbers and ϵ = b − a > 0. The projection Ŷ → C
to the u-variable gives us a double conic fibration with singular fibers over u = a
and u = b. There is a fiberwise 2-torus action

(θ1, θ2) · (x, y, z, w) = (eiθ1x, e−iθ1y, eiθ2z, e−iθ2w) ∀(θ1, θ2) ∈ T 2.
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We call an above torus orbit an equator in the fiber. Then pick a circle in the
base Cr = {|z| = r, r > b > a} ⊂ C. The 3-tori formed by crossing an equator
with a base circle are of our interest. In particular these tori are monotone with
minimal Maslov number two. Note that if we pick a segment connecting a and b
and cross the segment with equators which degenerate at endpoints then we get
a Lagrangian 3-sphere, Hamiltonian isotopic to the zero section. To compare this
one-parameter family of Lagrangian tori with the Oakley-Usher construction [34]
we mentioned in Section 3, this family Lλ corresponds to L1,1

λ .
From above approaches we get all the information to count Maslov two disks

with boundary on Lλ so that we can write down the disk potential function ex-
plicitly. For one choice of coordinates it is

PO(b) = x+ y−1 + xz−1 + y−1z, b ∈ H1(Lλ; Λ0). (5.1)

We omit the energy parameter here since Lλ is monotone. It is easy to check
that this potential function has a one-dimensional critical loci, which indicates
that with respect to some weak bounding cochain the Floer cohomology of Lλ is
nonzero hence Lλ is nondisplaceable in T ∗S3.

If we consider a Lagrangian 3-sphere S in a symplectic 6-manifold X then Lλ

sits inside a neighborhood of S for small λ. Due to the global symplectic geometry
of X our local torus Lλ may bound more higher energy holomorphic disks with
Maslov index two. Therefore the potential function may have more higher energy
terms and the torus may fail to be nondisplaceable in X. Indeed if the Lagrangian
3-sphere S is displaceable in X, then Lλ is displaceable for small λ.

5.2 Conifold transition

Before constructing the moduli spaces of holomorphic cylinders we first describe
some topological aspects of the conifold transition, mostly following [37]. By a 3-
fold ordinary double point, or a node, we mean a complex singularity analytically
equivalent to

{xy − zw = 0} ⊂ C4.

There are two ways to desingularize the node. One is by considering its deforma-
tion, or the smoothing

{xy − zw = ϵ} ⊂ C4

which is a complex symplectic smooth hypersurface equipped with the induced
symplectic structure on C4. It is symplectomorphic to the total space of the
cotangent bundle of a 3-sphere, no matter ϵ is, while its complex structure depends
on ϵ. The other desingularisation is the small resolution. We first blow up the
singular point, getting a smooth complex manifold with an exceptional divisor
CP 1 × CP 1, then blow down either CP 1. We have two choices of CP 1 to blow
down and the resulting manifolds are related by a flop. The complex structure on
either one is canonical while the symplectic structure depends on the size of CP 1.
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As a complex manifold, the small resolution is the total space of the holomorphic
vector bundle O(−1) ⊕ O(−1) → CP 1. We say a conifold transition by passing
from one desingularisation to the other.

Beyond this local picture, the conifold transition was generalized in [37] as a
surgery of symplectic 6-manifolds, replacing a Lagrangian 3-sphere by a holomor-
phic CP 1 with a correct normal bundle. In order to patch the local parameters
together, some topological conditions on the symplectic manifold are needed.

Theorem 5.2. (Theorem 2.9, [37]) Fix a symplectic 6-manifold X with a collec-
tion of n disjoint embedded Lagrangian 3-spheres Si. There is a “good” relation∑

i

ai[Si] = 0 ∈ H3(X;Z), ai ̸= 0 ∀i

if and only if there is a symplectic structure on one of the 2n choices of conifold
transitions of X in the Lagrangian Si, such that the resulting CP 1s are symplectic.

One interesting question is that how symplectic invariants change under coni-
fold transitions. The closed string case, like quantum cohomology, has been more
studied by algebraic geometry and by symplectic sum constructions. The open
string case like Floer theory is less touched, in particular for a global symplectic
manifold, and we will explore some points in this note.

5.3 An example about the quadric hypersurface

Now we discuss a motivating example about the quadric hypersurface. Let

Q3 = {[z0, · · · , z4] ∈ CP 4 | z20 =
4∑

j=1

z2j }

be the quadric hypersurface in CP 4. It is a monotone symplectic manifold with
the induced symplectic structure. And the real part Q3,R = Q3 ∩ RP 4 is a La-
grangian 3-sphere. We can also obtain Q3 by performing symplectic cutting on the
boundary of a suitable disk bundle of T ∗S3. Then the zero section correspond-
s to the real part Q3,R and the boundary of the disk bundle, after quotienting
the Hamiltonian S1-action, becomes the divisor at infinity which is isomorphic
to CP 1 × CP 1. In this point of view the quadric hypersurface is the “simplest”
compactification of T ∗S3 by adding one divisor at infinity.

Note that the symplectic cutting behaves well with respect the moment map

π : T ∗S3 → P ⊂ R3

we get a singular toric fibration

π : Q3 → PQ ⊂ R3
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of Q3. The new polytope PQ will be cut out by five affine functions

x ≥ 0; −y ≥ 0; x− z ≥ 0; z − y ≥ 0; y − x+ 1 ≥ 0.

So compared with the polytope of T ∗S3 there is one more face y − x + 1 = 0,
which corresponds to the divisor at infinity. Here we fix the constant 1 just for
simplicity. The symplectic manifold of the polytope PQ is only isomorphic to the
actual hypersurface Q3 up to a conformal parameter.

By using the toric degeneration method in [31] the disk potential function of
regular fibers can be explicitly computed. For example, over the point (1

3
,−1

3
, 0)

there is a monotone Lagrangian 3-torus L. Its disk potential function is

PO(b) = x+ y−1 + xz−1 + y−1z + x−1y, b ∈ H1(L; Λ0). (5.2)

Compared with the case in T ∗S3, there is one more term in the potential function
due to the new divisor at infinity. Directly we can check that the new potential
function has three critical points, which shows that L carries three different local
systems as three different objects in the monotone Fukaya category of Q3.

Moreover, by the work of Smith [36] the Lagrangian sphere Q3,R split-generates
the monotone Fukaya category with eigenvalue zero. (It also follows from Evans-
Lekili [14] since Q3,R is a Lagrangian SU(2)-orbit.) Note that the sum of Betti
numbers of Q3 is four. Therefore the sphere and the monotone torus with three
bounding cochains split-generate the whole monotone Fukaya category.

Since the Lagrangian sphere Q3,R is homologically trivial we can perform coni-

fold transition on it. The resulting manifold Q̃3 happens to be toric and one can
check that the critical loci of the potential function are six toric fibers with bound-
ing cochains, which match the sum of Betti numbers of Q̃3. Therefore three torus
branes are merged and transformed into a sphere brane under the (reversed) coni-
fold transition! This is a 6-dimensional analogue of 4-dimensional phenomenon
in [21], where the “baby conifold transition” of the second quadric hypersurface
Q2 = CP 1 × CP 1 was studied.

Hence motivated by [21] all the Lagrangian tori over the line in the poly-
tope connecting the sphere brane and the monotone torus brane are expected
to be nondisplaceable. The proof of the 4-dimensional case in [21] considers the
bulk-deformed potential functions of these tori, which have critical points for par-
ticular bulk deformations. However the same technique fails in our 6-dimensional
situation. One reason is that the topology of Q3 is “too simple” for us. To com-
pute the bulk-deformed potential function explicitly one often uses divisors as
bulk deformations. The only 4-cycle of Q3 is the divisor at infinity. After direct
computations we find it does not help us to produce critical points of potential
functions of our Lagrangians. This motivates us to use other faces of the polytope
as bulk deformations. However, the preimages of other four faces attaching the
Lagrangian sphere are four 4-chains, not 4-cycles since they bound the 3-sphere.
And we cannot naively use chains as bulk deformation since the squares of some
boundary operators are not zero.
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If we want to use those 4-chains to perturb the Floer cohomology of our toric
fiber, the key problem is to cancel the “boundary effect” of these chains. To
achieve this goal we introduce the moduli space of holomorphic cylinders.

Another direction which avoids using these 4-chains is to look at other nodal
toric Fano 3-folds. In particular when the second Betti number is large. Then
there are more 4-cycles to do bulk deformation and one is more likely to prove the
local tori are nondisplaceable since there are more parameters. As we mentioned in
the introduction, there is a full classification [27] of 100 nodal toric Fano threefolds
where one can do computations explicitly.

5.4 Weakly unobstructedness of local tori

In the last subsection we compactify DrT
∗S3 to be an almost toric manifold such

that our local tori become toric fibers. A direct consequence is that the local
tori are weakly unobstructed by the structure theorem of holomorphic disks in a
Gelfand-Tsetlin fibration. And Condition 1.1 is satisfied. However, for a general
symplectic 6-manifold X containing a Lagrangian sphere S, to show that local
tori near S are weakly unobstructed is not easy. For example, in the general toric
case without assuming the Fano condition, the weakly unobstructedness [19] is
proved by using the T n-action on moduli space of disks. Back to our case, we
can first relax (3) in Condition 1.1 to allow J-holomorphic spheres with zero first
Chern numbers, as indicated in Remark 3.6 [4]. Next we may use the following
theorem from Charest-Woodward, see Chapter 7 and 8 in [7].

Theorem 5.3. Let (X2n, E, ω) be a rational symplectic manifold with an excep-
tional divisor E. That is, E ≃ CP n−1 with normal bundle isomorphic to O(−1).
Let L be a local toric fiber near E. Then there exists suitable perturbation data
such that the Fukaya algebra of L is weakly unobstructed. Moreover, we have that

H1(L; Λ0) ⊂ Mweak(L)

hence for any b ∈ H1(L; Λ0) the Floer cohomology HF (L, b) is well-defined.

In [7] the weakly unobstructedness is also shown for (local) toric fibers near a
reverse flip and for the Clifford torus in a Darboux chart. Their method seems
very likely to be applied to our case for any rational symplectic manifold, since our
local tori live in a Fano almost toric piece Q3 after degeneration. That is, when
X is rational we hope to prove that the local tori are always weakly unobstructed
without assuming Condition 1.1.

But currently we still assume that our local torus satisfies Condition 1.1 for
some J .

5.5 Holomorphic disks and cylinders

Let X be a symplectic 6-manifold and S be a Lagrangian 3-sphere in X. We fix a
Weinstein neighborhood U of S such that there is a singular toric fibration on U , as
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we described in the previous subsection. Topologically U is isomorphic to S3×B3

where B3 is a 3-ball. The preimages of four faces in the moment polytope are four
4-chains Ki = π−1(Pi), i = 1, 2, 3, 4. Each of them is homeomorphic to S3 × [0, 1]
with two boundary components. Up to orientation ∂0(Ki) is the zero section S and
∂1(Ki) is the generator of H3(∂U ;Z). First we study some topological condition
on S to perform the conifold transition. Let V be a small closed neighborhood
containing X − U such that U ∩ V is homeomorphic to S3 × S2 × [1− ϵ, 1].

Lemma 5.4. The Lagrangian sphere S is homologically trivial in X if and only
if the inclusion

i : H3(U ∩ V ;Z) → H3(V ;Z)

is trivial.

Proof. Note that U ∩ V is homeomorphic to S3 × S2 × [1 − ϵ, 1]. Consider the
Mayer-Vietoris sequence

· · · → H3(U ∩ V ) → H3(U)⊕H3(V ) → H3(X) → H2(U ∩ V ) → · · · .

The inclusion
j : H3(U ∩ V ) → H3(U)

is an isomorphism. Hence if the inclusion i is trivial then the composition of two
maps

H3(U ∩ V ) → H3(U)⊕H3(V ) → H3(X)

is the inclusion H3(U) = H3(U ∩ V ) → H3(X), which is zero by the exactness.
So S is homologically trivial since H3(U) is generated by our sphere S.

On the other hand if S is homologically trivial then S bounds a 4-chainK inX.
We consider another 3-sphere S ′ = S × {p} × {1} ∈ S3 × S2 × [1− ϵ, 1] = U ∩ V .
Then S ′ bounds a 4-chain K ′ in X, constructed by a concatenation of K and
S × {p} × [0, 1]. Next by a relative Mayer-Vietoris sequence we have that

→H4(U ∩ V ) → H4(U)⊕H4(V, S
′) → H4(X,S

′) →
→H3(U ∩ V ) → H3(U)⊕H3(V, S

′) → .

Note that H4(U) = H4(U ∩ V ) = {0} and that the last map H3(U ∩ V ) →
H3(U)⊕H3(V, S

′) is injective. So we getH4(V, S
′) → H4(X,S

′) is an isomorphism.
Therefore the 4-chain K ′ is homologous to some 4-chain contained in V with
boundary S ′, which shows that S ′ is homologically trivial in V . That is, the
inclusion i is trivial since S ′ generates H3(U ∩ V ).

Now let (X,S, U) be a triple of a symplectic 6-manifold and a homologically
trivial Lagrangian sphere with a Weinstein neighborhood. Then S bounds a 4-
chain K hence satisfies the “trivial good condition” in Theorem 4.2. Also by
the above lemma all the four Ki’s can be completed into four 4-chains in X. In
other words the boundary ∂1(Ki) can be capped in X −U . From now on we only
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consider those “completed” chains and still write them as Ki. So Ki’s are 4-chains
in X such that ∂(Ki) = ±S and Ki ∩ U is the preimage of Pi. We remark that
there may be different choices of K but those differences happen in H4(X;Z),
which can be made away from U . For example any chain K+A for A ∈ H4(X) is
another choice of a chain with boundary S. Now we fix a “completion” for each
Ki and regard them as 4-chains in X. When we consider a local torus L ⊂ U those
Ki’s are different elements with one relation in H4(X −L;Z), or strictly speaking
H4(X − L, S;Z). In order to enumerate the disk classes we need to compute the
relative homology group H2(X,L;Z). (Strictly speaking, the disk classes are in
the image of the Hurewicz map π2(X;Z) → H2(X;Z).)

Lemma 5.5. The relative homology group satisfies that

H2(X,L;Z) ∼= H1(L)⊕H2(X).

Proof. The relative homology exact sequence gives that

H2(L) → H2(X) → H2(X,L) → H1(L) → H1(X).

Note that L is homologically trivial in U hence also homologically trivial in X,
the two inclusions Hi(L) → Hi(X), i = 1, 2 are trivial maps. Then we have that

0 → H2(X) → H2(X,L) → H1(L) → 0.

Since H1(L) ∼= Z3 is free the above short exact sequence splits.

Roughly speaking when we count holomorphic disks representing a class β ∈
H2(X,L), the part of H1(L) ∼= H2(U,L) can be regarded as local contributions
and the H2(X) part will be the contributions from outside.

Now let L be a local torus sufficiently near S and J be a compatible almost
complex structure onX satisfying Condition 1.1. We want to study J-holomorphic
disks with boundary on L of Maslov index two. When the energy of a holomorphic
disk is small, its image lies in the neighborhood U of S, by a modification of
Corollary 3.5 or the monotonicity lemma for holomorphic disks [28]. Due to the
local classification there are four classes of them, which we call local disk classes
β1, · · · , β4. And βi ·Kj = δij for homological intersection numbers. Here we regard
Ki as a 4-chain in X with just one boundary component S. Note that different
“completions” of Ki happen in H4(X;Z) which can be made away from U . So the
intersection number of Ki with βj does not depend on those choices. But there
may be other disk classes which intersect Ki since they can intersect Ki outside
U . Their images cannot be totally contained in U so we do not focus on them at
the moment. We emphasize that when we write class βi we mean one of the four
local classes.

Let Ml,k(βi) be the set of J-holomorphic maps

u : (D, ∂D) → (X,L)
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with l interior marked points and k boundary marked points modulo automor-
phism, representing the class βi. We first study the case when l = k = 1. Let
M1,1(βi, Ki) be the moduli space of holomorphic disks of class βi with marked
points and the interior marked point is mapped to Ki. Suppose that L is close
to S then the class βi has minimal energy among all holomorphic disks, due to
the local classification. And this moduli space is compact because of the absence
of sphere and disk bubbles. However since Ki is a chain with boundary S, the
moduli space might have a codimension one boundary when the interior marked
point goes to the boundary of Ki. That is,

∂M1,1(βi, Ki) = M1,1(βi, S)

where M1,1(βi, S) is the moduli space of holomorphic disks of class βi with one
interior marked point and the image of this marked point lies on S. Next we will
show that when the almost complex structure is nice, the moduli spaceM1,1(βi, S)
is empty hence M1,1(βi, Ki) is closed.

Proposition 5.6. With respect to some almost complex structure J we have that
M1,1(β, S) is empty. Here β is any disk class with Maslov index two.

Proof. The proof uses the degeneration technique in Section 3. First we fix a
Weinstein neighborhood U of S and L is in U . Then we chose a smaller Weinstein
neighborhood U ′ ⊂ U of S such that L is not in U ′. That is, U ′ is symplectomor-
phic to Dr′T

∗S3 with the canonical symplectic form with a smaller r′. Now we
study the naive moduli space of holomorphic disks without any boundary marked
points.

The boundary ∂U ′ is a contact hypersurface in U ⊂ X. We perform the
neck stretching operation in symplectic field theory along ∂U ′. Equivalently we
degenerate the almost complex structures through a sequence Jk. Let {uk} be
a sequence of Jk-holomorphic disks representing a disk class β. The limit u∞ is
a broken holomorphic building. Then we collapse the Reeb orbits in ∂U ′. The
resulting curve is a nodal curve with one boundary component on L.

Next we do dimension counting to show that there is no component in the
top level. After quotienting the S1-action on ∂U ′ the top level U ′ becomes the
quadric hypersurface Q3. The bottom level X − U ′ becomes the (big) resolved
side of the conifold transition. One can think that we collapse the neighborhood
U ′ to a node then resolve it. In particular, our local torus becomes a (local) toric
fiber in the bottom level hence it still satisfies Condition 1.1. Suppose that for
the nodal curve the component in the quadric is of class A and the component
not in the quadric is of class β′. If A ̸= 0 we write s as the intersection number
of A and the divisor Q2 ⊂ Q3. Then we have the Maslov index formula

µ(β) = 2c1(TQ3)(A) + µ(β′)− 4s = 2s+ µ(β′) ≥ 2s+ 2.

The second equality uses that c1(TQ3) = 3[Q2] and the last inequality uses Con-
dition 1.1 so that µ(β′) ≥ 2s ≥ 2. Therefore if the class β has Maslov index two
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then the nodal curve can not have a component in the top level Q3. That is, for
a Maslov index two class β, the images of all holomorphic disks representing β
with respect to some J do not intersect U ′.

Remark 5.7. The above proposition tells us that when the complex structure is
good and there is no Hamiltonian perturbation of L, there is actually no holo-
morphic disks touching S representing certain classes. One essential reason is
that DrT

∗S3 is “positive enough” to force holomorphic curves lie outside a neigh-
borhood of S. This fact is also proved in Section 7 of [15] by a SFT stretching
argument to identify open Gromov-Witten invariants under conifold transitions.

Hence with respect to the above almost complex structure J , the moduli s-
pace M1,1(βi, Ki) is closed and carries a fundamental cycle with dimension three.
Define

ni := deg(ev0 : M1,1(βi, Ki) → L).

Then with the help of the conifold transition we can relate these numbers ni on
the smooth side with corresponding numbers n′

i on the resolved side.

Corollary 5.8. The corresponding one-pointed open Gromov-Witten invariants
with the same class are equal. That is,

ni = n′
i = 1, ∀i = 1, 2, 3, 4.

Proof. From the above proposition, for any regular J satisfying Condition 1.1
and being admissible with the degeneration, there is a small neighborhood U ′

such that the images of J-holomorphic disks representing βi do not intersect U ′.
In particular it works for the toric complex structure, away from the sphere S. We
first collapse the sphere to a point such that locally our Weinstein neighborhood
U becomes a toric orbifold. Then we blow up the orbifold point in a toric way.
Since all our holomorphic disks are away from S, we can assume this blow up does
not affect the moduli spaces M1,1(βi, Ki). Of course there will be a new disk class
corresponding the exceptional divisor but the old moduli spaces are the same.

Then the number n′
i := deg(ev0 : M1,1(βi, Ki) → L), which is defined in the

resolved toric side, is known to be one. Since the moduli space and evaluation
map are the same as those in the smooth side, we obtain that ni = n′

i = 1.

Note that the dimension counting argument in Proposition 5.6 only works for
disk classes with Maslov index two. (Under Condition 1.1, holomorphic disks with
Maslov index two are minimal.) And to define the Floer cohomology we also need
to consider holomorphic disks with Maslov index four. Let β be a disk class with
Maslov index four, the moduli space M1,1(β,Ki) may have a codimension one
boundary component when the interior marked point going to ∂Ki = S. And we
can not exclude it as a priori. Next we use the moduli space of cylinders to cancel
this possible boundary component.
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.

Figure 4: Degeneration when circle ends meet.

We will construct another moduli space Mcy
1,1(β, S). The elements in the

moduli spaceMcy
1,1(β, S) are holomorphic cylinders with two Lagrangian boundary

conditions, one on L and one on S.
We write the domain as

Aϵ,p = {z ∈ C | |z| ≤ 1, |z − p| ≥ ϵ, ϵ < 1− |p|}

where 0 < ϵ < 1 is a conformal parameter and p is a point in the (open) unit disk.
Topologically the domain is an annulus with two disjoint boundaries Cϵ and C1.
With respect to an almost complex structure J in Proposition 5.6, we consider
the J-holomorphic maps

{u : Aϵ,p → X | u(C1) ∈ L, u(Cϵ) ∈ S}.

And the moduli space M̃cy
1,k(β, S) contains all such maps u representing a homo-

topy class β with one marked points on the boundary C1, modulo automorphisms.
Note that S is simply-connected, the set of all such class β can be identified with
the relative homology groupH2(X,L). The moduli space M̃cy

1,k(βi, S) are not com-
pact since there will be domain degenerations. Next we compactify this moduli
space.

Theorem 5.9. There is a compactification Mcy
1,1(β, S) of M̃cy

1,1(β, S), such that
it has a unique codimension one boundary component

∂cyMcy
1,1(β, S) = −M1,1(β, S)

with respect to suitably chosen orientations.

Proof. The construction of the compactification is by adding all possible degen-
erations. And the verification of the compactness will be proved by a gluing
method.

First we consider the case when p is fixed but ϵ goes to zero. Then in the limit
we add a holomorphic disk with one interior point attaching on S. Conversely
we need to do the gluing to resolve this interior point. The gluing analysis here
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is similar to the gluing when one study open Gromov-Witten theory and the
boundary class of the given disk class is trivial. We describe the construction here
following Proposition 3.8.27 and Subsection 7.4.1 in [17].

For a holomorphic disk with an interior point mapping to S, the idea to “blow
up” this interior point to get a holomorphic cylinder is first glue a constant disk
to this point then convert this boundary gluing to a interior gluing. Let D(1) be
the unit disk in C. Consider a holomorphic map

u : D(1) → X, u(∂D(1)) ∈ L

with two marked points. One marked point z0 = (1, 0) on the boundary and one
interior marked point w0 = (0, 0) with u(w0) ∈ S. Let D(σ) be a small disk with
one boundary marked point z1 and Σ be a nodal surface such that

Σ = D(1) ⊔D(σ)
/
(0, 0) ∼ (0, 0).

Then we consider a holomorphic map wu, which is induced from u.

wu(z) =

{
u(z) z ∈ D(1),

u(w0) z ∈ D(σ).

That is, the restriction of the map wu on D(σ) is the constant map. Next, several
standard steps give us the gluing conclusion.

1. First we smooth the singular point of Σ as an interior singular point to get
the pregluing map, without being holomorphic.

2. Then we apply the implicit function theorem to get a genuine holomorphic
cylinder with two boundary marked points z0 and z1. Here z0 is on the
positive boundary and z1 is on the negative boundary.

3. We forget the marked point z1 by a forgetful map. The image of the forgetful
map is parameterized by the small disk D(σ).

4. In the end we check that the implicit function theorem and the forgetful
map is S1-equivariant with respect to the standard rotation action on D(σ).
And we modulo this action to obtain a neighborhood of u as u×D(σ)

/
S1 =

u× [0, σ).

This cylinder-to-disk degeneration gives us a codimension one boundary compo-
nent ∂cyMcy

1,1(β, S), which matches the moduli space M1,1(β, S) up to an orien-
tation.

The second case is that p is fixed and ϵ goes to 1− |p|. That is, two boundary
C1 and Cϵ meet. In the limit a small region between these two circle boundaries
converges to a holomorphic strip, see Figure 4. Since this strip splits from a
finite energy map, itself also has finite energy. Hence the two ends of the strip
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converge to intersection points of S and L, which is empty. In conclusion such a
degeneration does not happen.

The third case is that when ϵ goes to zero and p goes to C1.

1. When lim ϵ
1−|p| = c > 0. Then by a conformal change the domain becomes

a disk with an annulus bubble, with the modulus of the annulus bubble
determined by c. Note that our class β has Maslov index four. By Condition
1.1 the only possible case is a disk and an annulus with both Maslov index
two. However, an annulus with Maslov index two can be excluded in the
same way in Proposition 5.6. Hence there is no such a degeneration.

2. When lim ϵ
1−|p| = 0. It is similar case as above, the annulus bubble become

actually a disk bubble. So we have two disks with both Maslov index two,
one has an interior point attached on S. This degeneration can be excluded
by Proposition 5.6.

3. When lim ϵ
1−|p| = +∞. Then two circle boundaries meet much faster than ϵ

goes to zero. This degeneration will end up with a holomorphic strip as in
the second case. So we exclude it in the same way.

Other cases include disk and sphere bubbles. The only possible disk bubble
has Maslov index two, which gives an annulus with Maslov index two. So we
exclude it as above. The sphere bubble will be a codimension two (or higher)
phenomenon hence we do not discuss it here.

In conclusion we add all possible degenerations to compactify the moduli space.
And there is a unique codimension one boundary component which comes from
the circle boundary Cϵ shrinking to a point.

Then we can glue the two moduli spaces along the common boundary to obtain
a new moduli space.

Corollary 5.10. For a disk class β with Maslov index four there are fundamental
chains on M1,1(β,Ki) and Mcy

1,1(β, S) such that we can glue them along their
boundaries to obtain a moduli space

M1,1(β,Ki + S) = M1,1(β,Ki) ⊔M1,1(β, S)
/
∂M1,1(β,Ki) ∼ −∂Mcy

1,1(β, S).

Now we consider the case when there are more boundary marked points to
insert more data as inputs. Given x1, · · · , xk being singular chains in L and a
general class β ∈ H2(X,L) with Maslov index two or four. Then holomorphic disks
representing β may split. Let M1,k+1(β; (x1, · · · , xk);Ki) be the moduli space
of holomorphic disks with one interior marked point attached on Ki, with k + 1
boundary marked points and the last k points attached on x1, · · · , xk respectively.
Let M̃cy

1,k+1(β; (x1, · · · , xk);Ki) be the moduli space of holomorphic disks with one
interior hole attached on S, with k + 1 boundary marked points and the last k
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points attached on x1, · · · , xk respectively. First we can compactify it on one
end, where ϵ = 0, like what we did in Theorem 5.9. Then we deal with other
types of possible degenerations by using the general theory in [17]. We write the
compactified moduli space as Mcy

1,k+1(β; (x1, · · · , xk);Ki). Therefore we obtained
two compact moduli spaces such that they have a common boundary component.
Next we glue these two moduli spaces along this particular common boundary,
where the interior hole collapses to an interior point.

Theorem 5.11. With above notations, there are fundamental chains on two mod-
uli spaces M1,k+1(β; (x1, · · · , xk);Ki) and Mcy

1,k+1(β; (x1, · · · , xk);S) such that we
can glue them along one of their common boundaries to obtain a moduli space

M1,k+1(β; (x1, · · · , xk);Ki + S)

=M1,k+1(β; (x1, · · · , xk);Ki) ⊔M1,k+1(β; (x1, · · · , xk);S)
/
∼

(5.3)

where the equivalence ∼ is

∂M1,k+1(β; (x1, · · · , xk);Ki) ∼ −∂Mcy
1,k+1(β; (x1, · · · , xk);S).

By using the first boundary marked point we get a singular chain

ev : M1,k+1(β; (x1, · · · , xk);Ki + S) → L.

The expected dimension of this virtual fundamental chain is

dimM1,k+1(β; (x1, · · · , xk);Ki + S) = µ(β) + k + 1−
k∑

j=1

(3− dj)

where dj is the dimension of the singular chain xj.

Proof. We first use the gluing method in Theorem 5.9 to deal with the domain
degeneration of holomorphic cylinders. Then the general theory in [17] helps us
to compactify the moduli space with respect to disk/sphere bubbles, as well as
to insert singular chains by the boundary marked points. In the end we should
obtain two compact moduli spaces, each has several codimension one boundary
components. Then we glue these two along a common boundary component which
comes from the degeneration of holomorphic cylinders.

These chains

ev : M1,k+1(β; (x1, · · · , xk);Ki + S) → L

will play the role of ql,k;β when the interior marked point is attached on a chainKi,
not a cycle. But we are only able to define it for l = 0, 1. Since if there are more
than one marked points then we need to study the moduli space of holomorphic
maps with more interior holes, which we do not know how to do it so far.
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In practice we only use the cases when k = 0, 1. For b = PD(Ki) we define

qcy,b1,1;β : H∗(L) → H∗(L)

by
x 7→ (ev : M1,2(β; x;Ki + S) → L) (5.4)

and extend it linearly over Λ+. That is, for b = w · PD(K) with w ∈ Λ+, we
define

qcy,b1,1;β(x) := w · qcy,PD(K)
1,1;β (x). (5.5)

Similarly we define qcy,b1,0;β as the chain

w · (ev : M1,1(β;Ki + S) → L) (5.6)

with coefficient w. Note that our Lagrangian torus is three-dimensional, the
operators qcy,b1,1;β are non-zero only when µ(β) = 2 or 4 and the chains qcy,b1,0;β are
non-zero only when µ(β) = 2.

We remark here we abuse the notations between singular chains and cochains
via the following conventional Poincaré duality. For a singular chain x in L, the
Poincaré dual PD(x), regarded as a current satisfies that∫

x

α |x=
∫
L

PD(x) ∧ α (5.7)

for any differential form α ∈ Ωdimx(L). Then we define the operator qcy,b1,k to be

qcy,b1,k =
∑
β

qcy,b1,k;β · T
ω(β) (5.8)

for k = 0, 1. By the Gromov compactness theorem the right hand side converges
in the non-Archimedean topology. Note that the those operators are initially
defined on the tensor product of singular chains. By a homotopy transfer lemma
we should be able to consider their “canonical model” where the domain is the
cohomology group. The argument is similar to the case of the genuine operators
ql,k in [17]. So we omit the proof and directly use qcy,b1,k as in the canonical model.

Next for b = wPD(Ki) we define a b-deformed potential function

POcy,b : H1(L; Λ+) → Λ+.

For a group homomorphism

ρ : π1(L) = H1(L;Z) → Λ0 − Λ+

it can be regarded as an element in H1(L; Λ+). Then we define

POcy,b(ρ) =
∑
β

eρ(∂β)T ω(β)(m0;β(1) + qcy,b1,0;β(1)) (5.9)
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where m0;β is the (undeformed) A∞-structure on H∗(L), see Section 2. Here

m0;β(1) = PD([L])(m0;β)

and
qcy,b1,0;β(1) = PD([L])(qcy,b1,0;β)

are pairings between cochains and chains, which give us two numbers.
In order to compute this potential function explicitly we need to the numbers

m0;β(1) and qcy,b1,0;β(1). By the degree computation it is enough to only consider β
with Maslov index two. Hence Corollary 5.8 tells us the mapping degrees are all
one when β = βi is a basic disk class. For example when b = wPD(K1), with
respect to a chosen basis of H1(L;Z) (the same basis as in (5.1)), the potential
function is

POcy,b(ρ) = ((1 + w)x+ y−1 + xz−1 + y−1z)T ω(β) +H(w, x, y, z, T ) (5.10)

where H(w, x, y, z, T ) are higher energy terms. Note that for the usual bulk-
deformation, the effect of b = wPD(K) is ew, for a cycle K. Here our operators
only gives the “zeroth-order” and “first-order” approximation 1 + w.

As we mentioned before, by this cylinder counting we try to use the chain Ki

as a bulk deformation. Now we define the b-deformed Floer complex, analogous
to (2.7) and (2.9).

Definition 5.12. For b = w ·PD(Ki) with w ∈ Λ+ and ρ ∈ H1(L; Λ+), we define
the operator

∂ρcy,b : H
∗(L; Λ+) → H∗(L; Λ+)

by

∂ρcy,b(x) =
∑
β

eρ(∂β)qcy,b1,1;β(x) · T
ω(β).

The deformed complex is defined by

(H∗(L; Λ+), d
ρ
cy,b = δρ + ∂ρcy,b).

Here δρ is similarly defined as

δρ := mρ
1(x) =

∑
β

eρ(∂β)m1,β(x) · T ω(β).

Remark 5.13. In this section we define the operators mρ
1 and ∂ρcy,b by using local

systems
ρ : π1(L) = H1(L;Z) → Λ0 − Λ+

which is different in the usual definition of bulk-deformed potential functions,
where weak bounding cochains are used. But under Condition 1.1 there is no disk
bubbles with non-positive Maslov indices, these two approaches are the same.
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Figure 5: Splitting of disks with one interior hole.

This is proved in Section 4.1 in [24] for the genuine bulk deformation case with
all operators ql,k;β. And here we only need to adapt the proof therein for our

operators qcy,b1,k;β. More precisely, the proof boils down to prove the divisor axiom
for the operator q1,k;β, which is given by the integration-along-fiber technique on
the moduli spaces of disks, see Section 4.1 in [24] and Lemma 7.1 in [20] for the
proof, or Section 3 in [16] for more original statements.

Compared with the operator ql,k in Section 2, our deformed operator dρb is just
a sum of the “zeroth-order” and the “first-order” terms in (2.7). Hence it only
gives a cohomology theory modulo some energy.

Proposition 5.14. The operator dρcy,b satisfies that

(dρcy,b)
2 ≡ 0 mod T 2v(b).

Hence we have a cohomology modulo T 2v(b) which we write as HFcy(L; (b, ρ)).

Proof. The definition dρcy,b = δρ + ∂ρcy,b tells that

(dρcy,b)
2 = (δρ)2 + δρ∂ρcy,b + ∂ρcy,bδ

ρ + (∂ρcy,b)
2.

The first term (δρ)2 vanishes since δρ itself is a differential, due to the Condition
1.1. The last term (∂ρcy,b)

2 vanishes modulo T 2v(b) by definition, see (5.5).
Next we consider the sum of the second and the third terms δρ∂ρcy,b+∂

ρ
cy,bδ

ρ. It
vanishes by splitting of holomorphic disks in all possible ways. That is, we study
the one-dimensional moduli spaces and look at their boundaries. The sphere
bubble is a codimension two phenomenon hence generically we omit it. In the
definition of ∂ρcy,b we glue the moduli space of cylinders with the moduli space of
disks with one interior marked points. So two such codimension one boundaries
canceled with each other. The only codimension one boundaries are from disk
breaking, which result in the sum δρ∂ρcy,b + ∂ρcy,bδ

ρ, see Figure 5 for a picture.
Since they are boundaries of a compact one-manifold, their sum (counted with
signs) is zero.

Remark 5.15. The operator dρcy,b is not the bulk-deformed differential defined in
Section 2, but an approximation since we only consider the case with one interior
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marked points. This is the reason why the genuine bulk-deformed differential is
a differential but ours is only a differential modulo some energy.

As we mentioned before, if we want to define a genuine differential then we
need to consider counting holomorphic disks with arbitrarily many interior holes
to cancel the boundary effect that K is not a cycle. However the full version of
higher genus Floer theory will be difficult and out of the scope of this note. So
we just leave it as a possible direction for the future.

Therefore we obtain a cohomology theory for a fixed bulk chain b = w·PD(Ki).
Its underlying complex is the singular cohomology of L and its differential counts a
combination of holomorphic disks and cylinders. An advantage of this cohomology
is that we can do explicit computation by the help of the b-deformed potential
function. For example, the existence of a critical point of the potential function
gives us a non-vanishing result of the cohomology.

Proposition 5.16. If the potential function POcy,b(ρ) for L has a critical point
for some (b, ρ) modulo TE, E < 2v(b). Then the deformed Floer cohomology
satisfies that

HFcy(L; (b, ρ)) ∼= H∗(L;
Λ0

TEΛ0

) ∼= (
Λ0

TEΛ0

)⊕8.

Proof. By a direct computation below we can find that if there is a critical point
for some (b, ρ) modulo TE then the deformed boundary operator dρcy,b ≡ 0 modulo

TE. So the cohomology is isomorphic to the underlying complex.
Let ρ ∈ H1(L; Λ+) and ei, i = 1, 2, 3 be a set of generators of H1(L;Z). Then

any b ∈ H1(L; Λ+) can be written as ρ(x) =
∑3

i=1 xiei. For notational simplicity
we assume that ρ(x) = x1e1. Then we have that

∂

∂x1
POcy,b(ρ(x)) =

∂

∂x1

∑
β

eρ(∂β)T ω(β)(m0;β(1) + qcy,b1,0;β(1))

=
∂

∂x1

∑
β

ex1e1(∂β)T ω(β)(m0;β(1) + qcy,b1,0;β(1))

=
∑
β

(e1(∂β)) · ex1e1(∂β)T ω(β)(m0;β(1) + qcy,b1,0;β(1))

=
∑
β

ex1e1(∂β)T ω(β)(m1;β(e1) + qcy,b1,1;β(e1))

=δρ(e1) + ∂ρcy,b(e1) = dρcy,b(e1).

(5.11)

The third last equality again uses the divisor axiom, see (2.6). Therefore if all the
partial derivatives ofPOcy,b vanishes then our deformed Floer boundary operators
vanishes on H1(L; Λ+). Since L is a torus of which the cohomology is generated
by degree one elements, we can perform an induction to show that the deformed
Floer boundary operator vanishes on the whole H∗(L; Λ+). We refer to Section
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13 in [19] for the induction process and the extension from ρ ∈ H1(L; Λ+) to
ρ ∈ H1(L; Λ0).

In the next section we will relate the cohomology HFcy(L; (b, b)) to another
model of cohomology such that the underlying complex is generated by Hamil-
tonian chords with ends on L and a Hamiltonian perturbation ϕ(L). The first
cohomology HFcy(L; (b, b)) is for computational purpose and the later cohomol-
ogy is more geometrical. Once we established the equivalence between these two
theories we get a critical points theory to detect the displacement energy of L.

Remark 5.17. In the definition of HFcy(L; (b, b)) we use the fact that with respect
to some J there is no holomorphic disk touching S with Maslov index two. This
condition is not necessary, but just for computational purposes since the potential
function is explicitly known by the conifold transition.

In general when there is Hamiltonian perturbation, Maslov two disks may
touch the sphere. Then we use the same gluing technique to cancel this possi-
ble codimension one boundary. More precisely, we will glue the moduli spaces
inductively. We start with minimal holomorphic disks. (Under Condition 1.1,
holomorphic disks with Maslov index two are minimal.) The corresponding mod-
uli spaces have codimension one boundary where the disks touch the sphere. Then
we use the moduli spaces of holomorphic cylinders of the same class to cancel this
boundary. Next we move to the disks with Maslov index four, the corresponding
moduli spaces are manifolds with boundaries and corners. We first cap the low-
est strata coming from the splitted disks (with Maslov index two) touching the
sphere. Then we cap the codimension one boundary coming from disks which do
not split but touch the sphere. After capping all the strata where disks touching
the sphere, the boundary of the capped moduli spaces only contains disk/sphere
splittings. Then we can define boundary operators and show that they give us a
cohomology modulo some energy.

Therefore Definition 5.12 and Proposition 5.14 should be understood as a
special case of capping moduli spaces, where only Maslov four disks are considered,
to do concrete computations.

6 A second deformed Floer complex

Now we will construct another deformed Floer complex and study its change of
filtration under Hamiltonian diffeomorphisms. With the same notations in the
previous section, we fix a triple (X,S, U) and a local torus L inside U . We still
assume that S is homologically trivial and fix the choices of completions of Ki

such that they are regarded as 4-chains in X.
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6.1 Definition of the complex

Let Ht be a time-dependent Hamiltonian function on X and let ϕ be its time-one
Hamiltonian diffeomorphism. We first review the Floer complex generated by the
Hamiltonian chords with ends on L, which is called the dynamical version of Floer
theory in [22].

Consider the path space

Ω(L) = {l : [0, 1] → X | l(0) ∈ L, l(1) ∈ L}.

We fix a base path la ∈ Ω(L) for each component a ∈ π0(Ω(L)). Let [l, w] be a
pair such that l ∈ Ω(L) and w : [0, 1]2 → X satisfying

w(s, 0) ∈ L,w(s, 1) ∈ L,w(0, t) = la(t), w(1, t) = l(t).

Then we define the dynamical action functional, with respect to Ht, to be

AHt,la([l, w]) =

∫
w∗ω +

∫ 1

0

Ht(l(t))dt. (6.1)

on the space of pairs [l, w]. The critical points of this action functional are Hamil-
tonian chords. We write the set of critical points as

CF (L,Ht) = {[l, w] | l′(t) = XHt(l(t))}.

For a critical point [l, w] the path l corresponds to a geometric intersection point
in L ∩ ϕ(L) since ϕ(l(0)) = l(1) ∈ L. When Ht is generic there are only finitely
many of them. We remark that the set of critical points has a decomposition
with respect to the different components a ∈ π0(Ω(L)). We define the action
functionals and study their critical points on different components separately.

Now we equip L with local systems. For any group homomorphism

ρ : π1(L) → Λ0 − Λ+

we choose a flat Λ0-bundle (L,∇ρ) such that its holonomy representation is ρ.
Then we define the cochain complex as

CF ((L, ρ), Ht; Λ0) :=
⊕

[l,w]∈CF (L,Ht)

hom(Ll(0),Ll(1))⊗C Λ0. (6.2)

Here Ll(i) is the fiber of the bundle L over l(i) and hom(Ll(0),Ll(1)) is the homo-
morphism induced by the path l.

Next we consider smooth maps

u(τ, t) : R× [0, 1] → X, u(τ, 0) ∈ L, u(τ, 1) ∈ L
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Figure 6: Composition of parallel transport maps.

such that u(−∞, t) = l0(t), u(∞, t) = l1(t) for some l0, l1 to define the parallel
transport maps. Let B be the homotopy class of u and σ ∈ hom(Ll0(0),Ll0(1))
then we define

Comp(B,σ) : hom(Ll1(0),Ll1(1)) → hom(Ll1(0),Ll1(1))

by
Comp(B,σ) = Pal0 ◦ σ ◦ Pal−1

1 (6.3)

where Pali is the parallel transport along the path u(τ, i) ∈ L for i = 0, 1, see
Figure 6. And the composition map is a homotopy invariant.

Lemma 6.1. The definition of the composition map only depends on the homotopy
class B of u, not on the choice of u.

Now we can define the Floer coboundary operator with local systems. Let

M([l0, w0], [l1, w1])

={u(τ, t) : R× [0, 1] → X | ∂τu+ J(∂tu−XHt) = 0,

u(τ, 0) ∈ L, u(τ, 1) ∈ L, u(−∞, t) = l0(t), u(∞, t) = l1(t)}

be the moduli space of holomorphic maps connecting [l0, w0] and [l1, w1]. Then
for a fixed ρ we define

δρ : CF ((L, ρ), Ht; Λ0) → CF ((L, ρ), Ht; Λ0)

as

δρ(σ ⊗ [l0, w0])

=
∑
[l1,w1]

Comp(w0−w1,σ) ⊗ ♯M([l0, w0], [l1, w1])[l1, w1] · T ω([w1−w0]). (6.4)

Here the sum is over all [l1, w1] such that the corresponding moduli space is zero-
dimensional. And the number ♯M([l0, w0], [l1, w1]) is a signed count.

Proposition 6.2. Under the Condition 1.1, the coboundary operator is well-
defined and satisfies that (δρ)2 = 0.
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Proof. The proof is similar to the case when a Lagrangian torus is monotone,
where the self-Floer cohomology is well-defined, see Theorem 16.4.10 in [33]. Note
that Condition 1.1 excludes possible disk bubbles, with non-positive Maslov in-
dices, splitting from the holomorphic strips. For disk bubbles with Maslov index
two, they appear in pairs on L and cancel with each other. We do not need
to consider disk bubbles with higher Maslov indices since we are looking at a
one-dimensional moduli space to show the square of δρ is zero.

We call the above cohomology given by δρ the Floer cohomology with local
systems. Next we want to deform it further by counting strips with an interior
marked point/an interior hole.

The aim is to define a new operator

∂K : CF ((L, ρ), Ht; Λ0) → CF ((L, ρ), Ht; Λ0).

Here we write K as one of Ki for notational simplicity. First we describe the
domain we will use to count holomorphic maps. Consider the domain

Stripϵ,r = {(τ, t) ∈ R× [0, 1] ⊂ C | τ 2 + (t− r)2 ≥ ϵ2}.

Let C(ϵ) denote the circle boundary τ 2 + (t − r)2 = ϵ2 of Stripϵ,r. We put the
interior hole centered at (0, r) with radius ϵ ∈ (0,min{r, 1 − r}). The radius ϵ
determines the complex structure on the domain. And we write Strip = Strip0,r
as the usual holomorphic strip in C. We put the τ -coordinate of the center of the
circle to be 0 to cancel the translation action.

Now we consider several moduli spaces. For a pair ([l0, w0], [l1, w1]) let

M̃1(([l0, w0], [l1, w1]);K)

be the moduli space of holomorphic strips with one interior marked point at
(0, r), where the interior point is mapped to K. More precisely, it contains maps
u : Strip→ X such that

u(τ, 0) ∈ L, u(τ, 1) ∈ L, u(−∞, t) = l0, u(∞, t) = l1

and
u(0, r) ∈ K

where the map u represents the class β = w0 − w1. And let

M̃cy
1 (([l0, w0], [l1, w1]);S)

be the moduli space of holomorphic strips with one interior hole, where the hole
is mapped to S. It contains maps from domain Stripϵ,r for all (ϵ, r). And u
satisfies the same Lagrangian boundary condition as above: the line boundaries
are mapped to L and two ends converge to given chords l0, l1. One extra boundary
condition is that the circle boundary is mapped to S.
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Figure 7: Counting strips with one interior marked point and one hole.

The elements in both types of moduli spaces satisfy the same perturbed holo-
morphic equation

∂τu+ J(∂tu−XHt) = 0.

The differences are that they are from different domains and have different bound-
ary conditions.

Note that ∂K = S and S is simply connected, the homotopy classes in these
two types of moduli spaces can be identified. Similar to the discussion in Section
5 we want to compactify these moduli spaces and glue them together along a
common boundary for the same class β = w0 − w1.

Proposition 6.3. For fixed generators [l0, w0] and [l1, w1], there are compactifi-
cation

M1(([l0, w0], [l1, w1]);K) ⊇ M̃1(([l0, w0], [l1, w1]);K)

and compactification

Mcy
1 (([l0, w0], [l1, w1]);S) ⊇ M̃cy

1 (([l0, w0], [l1, w1]);S).

Each of them has a particular boundary component such that

∂KM1(([l0, w0], [l1, w1]);K) = −∂cyMcy
1 (([l0, w0], [l1, w1]);S)

and we can glue them on this component to get a compact moduli space

M1(([l0, w0], [l1, w1]);K + S)) =

M1(([l0, w0], [l1, w1]);K) ⊔Mcy
1 (([l0, w0], [l1, w1]);S)

/
∼

where the equivalence relation is

∂KM1(([l0, w0], [l1, w1]);K) ∼ −∂cyMcy
1 (([l0, w0], [l1, w1]);S).

Proof. To get the compactification we add several types of degenerations: strip
breaking, disk/sphere bubbles and domain degeneration. The cases of the strip
breaking and disk/sphere bubbles are more standard in Floer theory. So we mainly
explain the domain degeneration involving two parameters ϵ and r. The former
is the radius of the interior hole and the later is the vertical position of the center
of the hole. Suppose that we have a sequence of parameters {(ϵi, ri)}+∞

i=1 , we will
discuss by cases of possible degenerations.
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.

Figure 8: Zoom in on the region where two boundaries meet.

1. If infi{ϵi} > 0 and ϵi + ri → 1 or −ϵi + ri → 0. Geometrically the circle
boundary approaches to the strip boundary while the radius of the circle
is bounded from below. We will show that this type of degeneration does
not happen since our S and L are disjoint. Without losing generality we
assume that ϵi + ri → 1 with ϵi ≡ ϵ0 > 0 for some constant ϵ0. Then
we can scale a neighborhood of the point (0, ϵi + ri) such that locally we
have a holomorphic strip ui with one boundary on L and with one curved
boundary on S, see Figure 8. To compactify such a degeneration we need to
add a genuine holomorphic strip u∞ in the moduli space, since in the limit
the curved boundary becomes a usual boundary. However, note that such
a strip u∞ has finite energy because it splits from a finite energy solution.
By exponential decay estimate we know limτ→±∞ u∞(τ, t) converges to the
intersections of L and S, which is empty by our assumption. Hence such a
degeneration will not appear.

2. If ϵi → 0 and {ri} stays the interior of the strip. In the limit we have a
holomorphic strip with one interior marked point. Then we can perform the
same gluing argument as we did in Section 5. That is, we glue this end with
the moduli space of strips with on interior marked point as we did before,
to cancel this end of boundary.

3. If ϵi → 0 and {ri} goes to one strip boundary. Without losing generality
we assume that limi(ri) = 1. Then we consider the ratio ϵi

1−ri
and there are

different possibilities.

(a) If limi
ϵi

1−ri
= +∞, the case is similar to (1.) and we use the fact

L ∩ S = ∅ to exclude this degeneration.

(b) If limi
ϵi

1−ri
= R for some constant R > 0, after a conformal change this

degeneration is equivalent to an annulus bubble on the boundary. So
we put this type of limit of solutions into the compactification.

(c) If limi
ϵi

1−ri
= R = 0, then after a conformal change it is a disk bubble,

with one interior point attaching to S.

In conclusion, to get the compactification we add broken curves in (2.), (3.b),
(3.c) and broken strips. Next we glue the particular boundary component in (2.)
with the moduli space of holomorphic strips with one interior marked point, as
we did in Theorem 5.9.
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We write
∂KM1(([l0, w0], [l1, w1]);K)

as the boundary component containing elements when the interior marked point
is mapped to S = ∂K. And we write

∂cyMcy
1 (([l0, w0], [l1, w1]);S)

as the boundary component containing elements in (2.). These two boundary com-
ponents are the same since they contain the same set of elements. Then we glue
these two compactified moduli spaces along this common boundary component.

We remark that if the class β is energy minimal then this boundary component
is the only boundary part. So after gluing we will get a closed moduli space.

Now we can define an operator deformed by K. With the fixed ρ we define

∂KCF ((L, ρ), Ht; Λ0) → CF ((L, ρ), Ht; Λ0)

as

∂K(σ ⊗ [l0, w0])

=
∑
[l1,w1]

Comp(w0−w1,σ) ⊗ ♯M1(([l0, w0], [l1, w1]);K + S))[l1, w1] · T ω([w1−w0]).

(6.5)
Here the sum is also over all [l1, w1] such that the corresponding moduli space is
zero-dimensional.

Moreover we can define this operator for K = w · Ki with w ∈ Λ+ by just
extending it Λ+-linearly. That is, we define ∂w·K := w · ∂K . Then we set dρK =
δρ + ∂K and study when dρK gives us a differential.

Proposition 6.4. The operator dρK satisfies that

(dρK)
2 = (δρ + ∂K)

2 ≡ 0 mod T 2v(K).

Proof. By definition we have that

(dρK)
2 = (δρ)2 + δρ∂K + ∂Kδ

ρ + (∂K)
2.

Assuming Condition 1.1 the operator δρ itself is a differential hence (δρ)2 = 0.
The last term (∂K)

2 vanishes by the filtration reason. We just need to show that
δρ∂K + ∂Kδ

ρ = 0. This is obtained by considering one-dimensional moduli spaces
of holomorphic cylinder with one interior hole and study the breaking of such
strips, see Figure 9. By Proposition 6.3 we have a list of possible degenerations.
Now we discuss them by cases.

The first type of degeneration, which is strip breaking, corresponds to the sum
δρ∂K + ∂Kδ

ρ.
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Figure 9: Degenerations of a one-dimensional moduli space.

The second type of degeneration corresponds to disk bubbles with Maslov
index two. Since we assume the Condition 1.1 there is no holomorphic disks with
non-positive Maslov index. In this case disk bubbles on two components of line
boundaries cancel with each other by the invariance of one-point open Gromov-
Witten invariants.

The third type of degenerations are annuls bubbles. Note that the moduli
spaces of annuli with Lagrangian boundary conditions is one dimension higher
than the moduli space of holomorphic disks with the same homotopy class (we
use that S is simply connected). So the annuli bubble is at least a codimension
two phenomenon by the assumption of Condition 1.1. We ignore it as we ignore
the sphere bubbles. Note that by a similar degeneration argument in Proposition
5.6, our Lagrangian torus does not bound annuli with negative indices.

In conclusion the codimension one boundaries of the moduli space are listed
in Figure 9. Terms (2) and (4) can not happen by various conditions. Two terms
in (3) cancel with each other. So the only contribution is δρ∂K + ∂Kδ

ρ, which
corresponds to (1) and should be zero as a signed count. This completes our
proof that dρK is a differential modulo T 2v(K).

Therefore the operator dρK defines a differential modulo T 2v(K) and we can talk
about the cohomology modulo this energy. We write this cohomology as

HFcy((L, ρ), (L, ρ), Ht;K).

In the next subsection we will study how this cohomology behaves with respect
to the choice of Hamiltonian Ht. Then we can obtain the desired energy estimate.
The key point is that how the energy of a holomorphic strip with one interior hole
change under a Hamiltonian diffeomorphism.
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Before we deal with a general Hamiltonian diffeomorphism, we look at the
case when Ht is C2-small. Let ϕ be the time-1 flow of Ht. We assume that
L∩ϕ(L) is transversal and S∩ϕ(L) = ∅. Then we can define a similar cohomology
theory HFint,cy((L, ρ), (ϕ(L), ρ);K) where the underlying complex is generated
by intersection points of L and ϕ(L). We call it the intersection model. The
differential is also a sum of two operators, one counts the usual holomorphic
strips and the other counts holomorphic strips with one interior hole. Here the
pair (ϕ(L), ρ) is actually (ϕ(L), (ϕ−1)∗ρ) but for notational simplicity we just write
it as (ϕ(L), ρ).

Proposition 6.5. The intersection model gives a cohomology theory

HFint,cy((L, ρ), (ϕ(L), ρ);K)

with coefficients Λ0/T
2v(K)Λ0.

Proof. We need to show that the square of the differential is zero. It can be
done by the same argument as in Proposition 6.4, using the assumption that both
S ∩ ϕ(L) = ∅ and S ∩ L = ∅. Since Ht is C

2-small, two Lagrangians L and ϕ(L)
both satisfy Condition 1.1 with a common J . And the counts of holomorphic
disks with Maslov index two are the same. Hence possible disk bubbles on L and
ϕ(L) cancel with each other. Then the proof in Proposition 6.4 works for this
intersection model.

For a general Hamiltonian perturbation, there may happen a wall-crossing
phenomenon for holomorphic disks with Maslov index two. So this intersection
model is only defined with a small perturbation.

Remark 6.6. With the assumption that Ht is C
2-small we can prove that these

two theories are equivalent as filtered cohomology groups. But we do not need
this fact in our following context. The intersection model just plays a transition
role between the disk model (coming from the potential function) and the chord
model. In practice we will use a chord model of which the generators are chords
with one end on L and the other end on ϕ(L). And the result about displacement
energy will be proved by a limit argument since we can take ϕ arbitrarily small,
see Theorem 6.14.

6.2 Change of filtration under Hamiltonian isotopies

Let ϕ be the time-one flow of Ht (not necessarily C
2-small) such that L and ϕ(L)

intersect transversally. Then the cohomology HFcy((L, ρ), (L, ρ), Ht;K) is well-
defined with coefficient Λ0/T

2v(K)Λ0. We can view the cohomology group as a
Λ0-module. Now we study how the choice of Ht change the cohomology.

This deformed Floer complex is a modification of the Floer complex with bulk
deformations and can be regarded as its “first order approximation”. Note that
the differential is a sum of two operators. The dependence of Ht on the usual
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differential δρ with local systems is well-studied in [17] and [22]. So we focus on
the part which involves the operator ∂K . Actually we will prove a new energy
estimate to construct different chain maps and chain homotopies then the rest
argument will follow the same proof in Section 6 and 7 in [22].

First we recall some relevant backgrounds on the geometric version of Floer
theory and the dynamical one.

Let L0, L1 be a pair of two closed Lagrangian submanifolds of X. We consider
their Hamiltonian deformations L′

0, L
′
1. That is, there are Hamiltonian isotopies

ϕH0 = {ϕs
H0
}0≤s≤1, ϕH1 = {ϕs

H1
}0≤s≤1

such that
ϕ1
H0
(L0) = L′

0, ϕ1
H1
(L1) = L′

1.

Set
ψt = ϕt

H0
◦ (ϕ1

H0
)−1 ◦ ϕ1−t

H1
◦ (ϕ1

H1
)−1 (6.6)

and
H̃t = H0,t −H1,1−t ◦ ϕ1

H0
◦ (ϕt

H0
)−1. (6.7)

Then one can directly check that ψ0 = (ϕ1
H0
)−1, ψ1 = (ϕ1

H1
)−1 and

d

dt
ψt(p) = XH̃t

(ψt(p)).

Now we fix the pairs L0, L1 and L′
0, L

′
1. The geometric version of the Floer

complex CF ∗(L′
0, L

′
1) is generated by the intersection points

p ∈ L′
0 ∩ L′

1

where p can be regarded as a constant element in the path space

Ω(L′
0, L

′
1) = {l : [0, 1] → X | l(0) ∈ L′

0, l(1) ∈ L′
1}.

We fix a base path l′a ∈ Ω(L′
0, L

′
1) for each component a ∈ π0(Ω(L

′
0, L

′
1). Let [l, w]

be a pair such that l ∈ Ω(L′
0, L

′
1) and w : [0, 1]2 → X satisfying

w(s, 0) ∈ L′
0, w(s, 1) ∈ L′

1, w(0, t) = l′a(t), w(1, t) = l(t).

Then we define the geometric action functional

Al′a([l, w]) =

∫
w∗ω (6.8)

on the space of pairs [l, w].
For the above Lagrangian submanifolds L0, L1 and a time-dependent Hamilto-

nian H̃t, the dynamical version of the Floer complex is generated by the solutions
of Hamilton’s equation

{x ∈ Ω(L0, L1) | ẋ = XH̃t
(x)}.
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For a fixed base path la and a pair [x,w], the dynamical action functional is
defined as

AH̃t,la
([x,w]) =

∫
w∗ω +

∫ 1

0

H̃t(l(t))dt. (6.9)

Here the base path la is given by la(t) = ψt(l′a(t)).
Now the two versions of Floer complexes can be regarded as filtered complexes

with respect to their action functionals. And those two Floer theories are related
by the following transformation. For a generator [l′, w′] of the geometric version
Floer theory and a generator [l, w] of the dynamical Floer theory, we have that

g+H0,H1
: [l′, w′] 7→ [l, w]

given by
l(t) = ψt(l′(t)), w(s, t) = ψt(w′(s, t)).

This map g+H0,H1
preserves the action up to a constant

c(H̃t; la) :=

∫ 1

0

H̃t(la(t))dt.

That is,
AH̃t,la

◦ g+H0,H1
([l′, w′]) = Al′a([l

′, w′]) + c(H̃t; la),

see Lemma 4.2 in [22]. Also by the discussion therein we can make this constant
to be zero by choosing the base chord la properly. So in the following we forget
this constant term in our estimates.

Next we introduce the notion of the perturbed Cauchy-Riemann equation to
study the relation between these two versions of Floer theories. Let χ+(τ) : R → R
be a smooth function such that

χ+(τ) =

{
0 τ ≤ −2,

1 τ ≥ −1,
χ′
+(τ) ≥ 0

and χ−(τ) = 1 − χ+(τ). Also we will use a family of smooth bump functions
χN(τ) for N ≥ 1, satisfying

χN(τ) =

{
0 |τ | ≥ N + 1,

1 |τ | ≤ N,

and
χ′
N(τ) ≥ 0,∀τ ∈ [−N − 1,−N ], χ′

N(τ) ≤ 0,∀τ ∈ [N,N + 1].

In particular, we assume that on [−N − 1,−N ] ([N,N + 1] respectively) the
function χN is a translation of χ+ (χ− respectively). For N ≤ 1 we define χN(τ) =
χ1(τ) ·N such that χN(τ) converges to the zero function as N goes to zero.
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From now on we assume that our pairs L0, L1 and L′
0, L

′
1 intersect with each

other transversally. Since we can achieve this by perturbations with arbitrari-
ly small Hamiltonian, this assumption does not affect the conclusions involving
estimates of Hofer energy. The perturbed Cauchy-Riemann equation of u(τ, t) :
R× [0, 1] → X is the following

∂u

∂τ
+ J(

∂u

∂t
− χ(τ)XHt(u)) = 0,

u(τ, 0) ∈ L0, u(τ, 1) ∈ L1.
(6.10)

Here J = Js = {Js
t }0≤t≤1 is a family of compatible almost complex structures,

χ(τ) = χ±,N(τ) is one of the bump functions we defined before. And Ht is defined
as in (6.7) but we only move one Lagrangian submanifold here. So most terms
in (6.7) are just identity maps. Similarly we can define the perturbed Cauchy-
Riemann equation where the domain is Stripϵ, a strip with one interior hole.

The energy of a solution u is defined as

E(J,χ(τ),H̃t)
(u) =

∫
|∂u
∂τ

|2J

and we will study the moduli space of finite energy solutions. First we review the
energy estimate of solutions when the domain is a strip without holes.

Lemma 6.7. (Lemma 5.1, [22]) Let u be a finite energy solution of the perturbed
Cauchy-Riemann equation with domain Strip. Then we have that

E(J,χ(τ),H̃t)
(u) =

∫
u∗ω +

∫ 1

0

H̃t(u(+∞, t))dt

−
∫ ∞

−∞
χ′(τ)

∫ 1

0

H̃t(u)dtdτ.

(6.11)

When the domain is a strip with one interior hole we can do the similar com-
putation. As expected, the result has one more term involving the integral on the
circle boundary. We will compute by cases when χ = χ+, χ = χ− and χ = χN .
First we fix the center of the interior hole at (0, 1

2
) and write

Stripϵ := Stripϵ, 1
2
= {(τ, t) ∈ R× [0, 1] ⊂ C | τ 2 + (t− 1

2
)2 ≥ ϵ2}

to do the computation.

Lemma 6.8. Let u be a finite energy solution of the perturbed Cauchy-Riemann
equation with domain Stripϵ. Then we have that

E(J,χ(τ),H̃t)
(u) =

∫
u∗ω +

∫ 1

0

H̃t(u(+∞, t))dt

−
∫ ∞

−∞
χ′(τ)

∫ 1

0

H̃t(u)dtdτ +

∫
C(ϵ)

H̃t(u)

(6.12)

when χ(τ) = χ+(τ).
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Figure 10: Divide Stripϵ into regions to do integration.

Proof. We prove the lemma by a direct computation.

E(J,χ(τ),H̃t)
(u) =

∫
Stripϵ

|∂u
∂τ

|2J =

∫
Stripϵ

ω(
∂u

∂τ
, J
∂u

∂t
)

=

∫
Stripϵ

ω(
∂u

∂τ
,
∂u

∂t
− χ(τ)XH̃t

(u))

=

∫
Stripϵ

ω(
∂u

∂τ
,
∂u

∂t
)−

∫
Stripϵ

ω(
∂u

∂τ
, χ(τ)XH̃t

(u))

=

∫
Stripϵ

u∗ω −
∫
Stripϵ

χ(τ) · dH̃t(u)(
∂u

∂τ
)

=

∫
Stripϵ

u∗ω −
∫
Stripϵ

χ(τ) · ∂
∂τ
H̃t(u).

(6.13)

Next we consider the last term.∫
Stripϵ

χ(τ) · ∂
∂τ
H̃t(u)

=

∫
Stripϵ,τ≤−2

χ(τ) · ∂
∂τ
H̃t(u) +

∫
Stripϵ,−2≤τ≤−1

χ(τ) · ∂
∂τ
H̃t(u)

+

∫
Stripϵ,−1≤τ≤1

χ(τ) · ∂
∂τ
H̃t(u) +

∫
Stripϵ,1≤τ

χ(τ) · ∂
∂τ
H̃t(u)

(6.14)

For τ ≤ −2, the integral is zero since χ(τ) is zero. For −2 ≤ τ ≤ −1, the integral
is ∫ −1

−2

∫ 1

0

χ(τ) · ∂
∂τ
H̃t(u)

=

∫ −1

−2

χ(τ) · ∂
∂τ

∫ 1

0

H̃t(u)dtdτ

=(χ(τ) ·
∫ 1

0

H̃t(u)dt)|−1
−2 −

∫ −1

−2

χ′(τ)

∫ 1

0

H̃t(u)dtdτ

=

∫ 1

0

H̃t(u(−1, t))dt−
∫ −1

−2

χ′(τ)

∫ 1

0

H̃t(u)dtdτ.

(6.15)
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Similarly for 1 ≤ τ , the integral is∫ +∞

1

∫ 1

0

χ(τ) · ∂
∂τ
H̃t(u)

=

∫ 1

0

H̃t(u(+∞, t))dt−
∫ 1

0

H̃t(u(1, t))dt.

(6.16)

Now we consider the terms involving the interior hole. For −1 ≤ τ ≤ 1 we have
that χ(τ) ≡ 1 and the integral can be split as∫

Stripϵ,−1≤τ≤1

∂

∂τ
H̃t(u)

=

∫ 1

−1

∫ 1

1
2
+ϵ

∂

∂τ
H̃t(u)dtdτ +

∫ 1

−1

∫ 1
2
−ϵ

0

∂

∂τ
H̃t(u)dtdτ

+

∫ −
√

1
4
−(t− 1

2
)2

−1

∫ 1
2
+ϵ

1
2
−ϵ

∂

∂τ
H̃t(u)dtdτ +

∫ 1

√
1
4
−(t− 1

2
)2

∫ 1
2
+ϵ

1
2
−ϵ

∂

∂τ
H̃t(u)dtdτ.

(6.17)

Direct computation gives that∫ 1

−1

∫ 1

1
2
+ϵ

∂

∂τ
H̃t(u)dtdτ =

∫ 1

1
2
+ϵ

H̃t(u(1, t))dt−
∫ 1

1
2
+ϵ

H̃t(u(−1, t))dt∫ 1

−1

∫ 1
2
−ϵ

0

∂

∂τ
H̃t(u)dtdτ =

∫ 1
2
−ϵ

0

H̃t(u(1, t))dt−
∫ 1

2
−ϵ

0

H̃t(u(−1, t))dt

(6.18)

and ∫ −
√

1
4
−(t− 1

2
)2

−1

∫ 1
2
+ϵ

1
2
−ϵ

∂

∂τ
H̃t(u)dtdτ

=

∫ 1
2
+ϵ

1
2
−ϵ

H̃t(u(−
√

1

4
− (t− 1

2
)2, t))dt−

∫ 1
2
+ϵ

− 1
2
−ϵ

H̃t(u(−1, t))dt∫ 1

√
1
4
−(t− 1

2
)2

∫ 1
2
+ϵ

1
2
−ϵ

∂

∂τ
H̃t(u)dtdτ

=−
∫ 1

2
+ϵ

1
2
−ϵ

H̃t(u(

√
1

4
− (t− 1

2
)2, t))dt+

∫ 1
2
+ϵ

− 1
2
−ϵ

H̃t(u(1, t))dt.

(6.19)

Put all (6.15)-(6.19) into (6.14) we get the desired estimate. Here we write∫
C(ϵ)

H̃t(u)

=

∫ 1
2
+ϵ

1
2
−ϵ

H̃t(u(

√
1

4
− (t− 1

2
)2, t))dt−

∫ 1
2
+ϵ

1
2
−ϵ

H̃t(u(−
√

1

4
− (t− 1

2
)2, t))dt.
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In particular we have that

−||H̃t||S ≤ −2ϵ · ||H̃t||S ≤
∫
C(ϵ)

H̃t(u) ≤ 2ϵ · ||H̃t||S ≤ ||H̃t||S

for all ϵ ∈ (0, 1
2
).

By the same computation when χ(τ) = χ− we have that

Lemma 6.9. Let u be a finite energy solution of the perturbed Cauchy-Riemann
equation with domain Stripϵ. Then we have that

E(J,χ(τ),H̃t)
(u) =

∫
u∗ω −

∫ 1

0

H̃t(u(−∞, t))dt

−
∫ ∞

−∞
χ′(τ)

∫ 1

0

H̃t(u)dtdτ +

∫
C(ϵ)

H̃t(u)

(6.20)

when χ(τ) = χ−(τ).

And when χ(τ) = χN we have that

Lemma 6.10. Let u be a finite energy solution of the perturbed Cauchy-Riemann
equation with domain Stripϵ. Then we have that

E(J,χ(τ),H̃t)
(u) =

∫
u∗ω −

∫ ∞

−∞
χ′(τ)

∫ 1

0

H̃t(u)dtdτ +

∫
C(ϵ)

H̃t(u) (6.21)

when χ(τ) = χN(τ).

The above three lemmas provide necessary energy estimates for us to establish
the chain maps and chain homotopies when we change the Hamiltonian functions
Ht. More precisely, they give the estimates of maximal energy loss for chain maps.
Now we explain how to use them in our situations.

In the formula (6.12) there are four terms. The first two terms correspond
to the actions of the input and output generators of the strip. The last two
terms correspond to the “energy loss”. Note that χ+(τ) ≥ 0 and χ+(−∞) =
0, χ+(+∞) = 1 we have that the maximal energy loss is

−
∫ 1

0

max
X

Htdt− 2ϵ||Ht||S ≥ −
∫ 1

0

max
X

Htdt− ||Ht||S (6.22)

for any solution u in Lemma 6.8. Similarly the maximal energy loss is∫ 1

0

min
X

Htdt− 2ϵ||Ht||S ≥
∫ 1

0

min
X

Htdt− ||Ht||S (6.23)

for any solution u in Lemma 6.9. We remark that both Lemma 6.8 and Lemma
6.9 estimate the energy of the solution over the domain Stripϵ where the interior
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Figure 11: Degenerations of solutions of the perturbed Cauchy-Riemann equation.

hole is centered at (0, 1
2
). If we move the center of the hole to (τ, r) then similar

estimate can only be weaker. For example, when the hole is contained outside
the support of χ(τ) then the fourth term in (6.12) will be zero. When the hole is
not contained in the region where χ(τ) = 1, the fourth term will only be smaller
than the case we did in (6.12) because χ(τ) ≤ 1 and χ′(τ) ≥ 0. In conclusion, the
above estimates of maximal energy loss work for all the case when we move the
center of the interior hole.

Next we construct the chain maps in our settings. We fix a C2-small perturba-
tion φ such that L∩φ(L) transversally and φ(L)∩S = ∅. Now for a Hamiltonian
Gt, let ϕ be its time-one flow. When L∩ϕ(φ(L)) is transversal we can also define
the cohomology

HFcy((L, ρ), (φ(L), ρ), Gt;K)

where the generators are chords of Gt with ends on L and φ(L). Here we remark
that when φ is small L and φ(L) have the same one-pointed open Gromov-Witten
invariants. Hence we can define this cohomology generated by chords with ends
on L and φ(L), similar to Proposition 6.4. For a general Hamiltonian isotopy
there may be wall-crossing phenomenon of the one-pointed invariants which can
not be prevented only by Condition 1.1.

Then we use the perturbed Cauchy-Riemann equation to construct chain maps

CFint,cy((L, ρ), (φ(L), ρ);K) → CFcy((L, ρ), (φ(L), ρ), Gt;K)

and
CFcy((L, ρ), (φ(L), ρ), Gt;K) → CFint,cy((L, ρ), (φ(L), ρ);K).

We remark that the two maps are constructed by using the cut-off functions χ+

and χ− respectively. Then chain homotopy map is constructed by using the cut-off
function χN .

Proposition 6.11. Let (X,S, U, L) be a Lagrangian 3-sphere, a Weinstein neigh-
borhood and a local torus we fixed before. Let (Ht, φ) and (Gt, ϕ) be generic Hamil-
tonians such that Ht is C

2-small. Then there are two maps

Φ+ : CFint,cy((L, ρ), (φ(L), ρ);K) → CFcy((L, ρ), (φ(L), ρ), Gt;K)
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and

Φ− : CFcy((L, ρ), (φ(L), ρ), Gt;K) → CFint,cy((L, ρ), (φ(L), ρ);K)

are chain maps.

Proof. The proof is similar to the proof of Theorem 6.2 in [22]. The only difference
is that we apply our energy estimate of the change of filtration when the domain
has an interior hole. So this difference results in the extra term ||H||S.

First for a fixed cut-off function χ+ we define a chain map

Φ+ : CFint,cy((L, ρ), (φ(L), ρ);K) → CFcy((L, ρ), (φ(L), ρ), Gt;K)

by Φ+ = TE+(Φ+,0 + Φ+,1). Here

Φ+,0(p) =
∑
[l,w]

♯M0(p, [l, w]) · [l, w]

and
Φ+,1(p) =

∑
[l,w]

♯M1(p, [l, w]) · [l, w] · T v(K).

The energy weights TE+ is necessary since we want to consider the map over Λ0.
Note that there will be energy loss for the perturbed Cauchy-Riemann equation.
And the maximal energy loss is computed in (6.22). So if we set

E+ =

∫ 1

0

max
X

Gtdt+ ||Gt||S

then we get a map which does not decrease the energy.
We explain the moduli spaces as follows. The moduli space M0(p, [l, w]) con-

tains solutions of the perturbed Cauchy-Riemann equation when the domain is a
genuine strip. The moduli space M1(p, [l, w]) is obtained by gluing two moduli
spaces

M1(p, [l, w]) = M1,pt(p, [l, w]) ⊔M1,hole(p, [l, w])/ ∼
where M1,pt(p, [l, w]) contains solutions of the perturbed Cauchy-Riemann equa-
tion when the domain is a strip with one interior marked point, and the moduli
space M1,hole(p, [l, w]) contains solutions when the domain is a strip with one
interior hole. And the gluing is understood as we did in defining ∂K .

Next we show that Φ+ is a chain map. That is,

Φ+d
ρ
K,int + dρKΦ+ ≡ 0 mod T 2v(K).

Note that

Φ+d
ρ
K,int + dρKΦ+

=TE+(Φ+,0 + Φ+,1)(δ
ρ
int + ∂K,int) + TE+(δρ + ∂K)(Φ+,0 + Φ+,1)

(6.24)
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and there are eight terms in the full expansion. After compensating the energy
loss by TE+ , the sum

TE+(Φ+,1∂K,int + ∂KΦ+,1) ≡ 0 mod T 2v(K)

by the energy reason. So we need to check the remaining sum of six terms is
zero. The proof is by studying all types of degenerations of one-dimensional
moduli spaces. By a similar argument in Proposition 6.4, we assume that there
is no contribution from sphere bubble, disk bubble and annulus bubble to the
codimension one boundary. Then there are six types of degenerations for the
moduli spaces M0(p, [l, w]) and M1(p, [l, w]), shown in Figure 11. In particular,
the terms in (1) correspond to

Φ+,0δ
ρ
int + δρΦ+,0

which are from the boundary components ofM0(p, [l, w]). Hence the sum, weight-
ed by TE+ , vanishes. Similarly the terms in (2) correspond to

Φ+,1δ
ρ
int + δρΦ+,1

and the terms in (3) correspond to

Φ+,0∂K,int + ∂KΦ+,0.

Therefore the sum of these four terms, weighted by TE++v(K), vanishes. In con-
clusion we have that the sum of these eight terms in (6.24) is zero and Φ+ is a
chain map. In the same way we can construct

Φ− = TE−(Φ−,0 + Φ−,1)

as a chain map by a chosen cut-off function χ−. Here

E− = −
∫ 1

0

min
X

Gtdt+ ||Gt||S.

Then Φ± induce maps in the cohomology level, which we still write as Φ±.

Next we construct chain homotopy maps such that Φ−◦Φ+ is chain homotopic
to some inclusion map.

Proposition 6.12. With the same notations in the previous proposition, the com-
position

Φ− ◦ Φ+ : HFint,cy((L, ρ), (φ(L), ρ);K) → HFint,cy((L, ρ), (φ(L), ρ);K)

equals the inclusion-induced map

i := TE(i0 + i1) : HFint,cy((L, ρ), (φ(L), ρ);K) → HFint,cy((L, ρ), (φ(L), ρ);K).

Here E = E+ + E− = ||Gt||X + 2||Gt||S.
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Figure 12: Degenerations in Mpara
0 .

Proof. The chain homotopy maps are constructed by using the perturbed Cauchy-
Riemann equation with cut-off function χN . Consider the one-parameter moduli
spaces

M̃para
0 =

∪
N∈[0,+∞)

{N} ×MN
0 (p, q)

and
M̃para

1 =
∪

N∈[0,+∞)

{N} ×MN
1 (p, q)

parameterized by N . Here the moduli space MN
0 (p, q) contains solutions of the

perturbed Cauchy-Riemann equation with cut-off function χN where the domain
is a genuine strip. The moduli space MN

1 (p, q) contains solutions of the perturbed
Cauchy-Riemann equation with cut-off function χN where the domain is a strip
with one interior hole. The energy estimate in Lemma 6.10 tells that for a solution
u in MN

0 (p, q) or MN
1 (p, q), we always have that

E(J,χN (τ),Gt)(u) =

∫
u∗ω −

∫ ∞

−∞
χ′
N(τ)

∫ 1

0

Gt(u)dtdτ +

∫
C(ϵ)

Gt(u)

≤
∫
u∗ω + ||Gt||X + ||Gt||S

which is uniformly bounded from above, independent of N . Then we can com-
pactify M̃para

0 and M̃para
1 to obtain Mpara

0 and Mpara
1 , by adding possible broken

curves. In particular, we deal with the codimension one boundary from domain
degenerations in MN

1 (p, q) by gluing it with the moduli space where the domain
is a strip with one interior marked point, as we did before.

Under transversality assumptions, both of the moduli spaces Mpara
0 (p, q) and

Mpara
1 (p, q) have dimension one when p = q. Now we study the boundary of

the these two moduli spaces. By similar argument before, we assume there is no
disk bubble, sphere bubble or annulus bubble. Then the boundary components of
Mpara

0 (p, p) have four types degenerations (listed in Figure 12) and the boundary
components of Mpara

1 (p, p) have seven types of degenerations (listed in Figure 13).
We remark that there is another type of degenerations in Mpara

1 (p, p) which we
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deal with the same strategy as before, by gluing this boundary component with
the boundary of moduli space with one interior marked point. Hence we omit it
in Figure 13.

Now we look at the chain homotopy equation

Φ− ◦ Φ+ − i = dρK,intf+ fdρK,int (6.25)

where
Φ+ = TE+(Φ+,0 + Φ+,1);

Φ− = TE−(Φ−,0 + Φ−,1);

i = TE(i0 + i1);

f = f0 + f1;

dρK,int = δρ + ∂K,int.

We explain the operators and corresponding moduli spaces as follows. Operators
Φ+,0,Φ+,1,Φ−,0,Φ−,1 are chain maps defined in the previous proposition. The
operator dρK,int = δρ+∂K,int is the differential to define the cohomology. Operators
f0, f1 will be defined as chain homotopy maps between Φ− ◦ Φ+ and i.

All four operators f0, f1, i0, i1 are defined from CFint,cy((L, ρ), (φ(L), ρ);K) to
itself. The operator i0 is the identity map, which comes from the “zero end”
moduli space M0

0(p, p) as a boundary of Mpara
0 . Note that when p = q and

χN = χ0 ≡ 0 the only element in M0
0(p, p) is the constant map. Similarly the

operator i1 is the identity map weighted by T v(K). The operator f0 is defined
by using the perturbed Cauchy-Riemann equation with bump function χN . And
the operator f1 is defined by using the perturbed Cauchy-Riemann equation with
bump function χN , when the domain is a strip with an interior marked points
mapping to K. We also weight f1 by T v(K).

So in the full expansion of the chain homotopy equation there are 14 terms.
The following three terms

∂K,intf1, f1∂K,int, TEΦ−,1Φ+,1 ≡ 0 mod T 2v(K)

by energy reason. And the remaining 11 terms correspond to the 11 types of
degenerations in the moduli spaces Mpara

0 (p, p) and Mpara
1 (p, p), which form the

boundary components of two compact one-dimensional manifolds. Therefore we
proved the chain homotopy property.

Remark 6.13. The above two propositions are proved assuming some analytic re-
sults. First, Condition 1.1 is necessarily used to exclude disk and annulus bubbles.
Moreover, the regularity and the gluing theory of the moduli spaces of perturbed
Cauchy-Riemann equations is assumed. When the domain is a genuine strip this
moduli space is discussed in [22]. And we expect the same analytic argument
therein can be applied here when the domain has one interior hole.
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6.3 Relations among three deformed Floer complexes

So far we defined three complexes to describe a new version of deformed Floer
cohomology. For the first one, the disk model,

HFcy(L; (b = K, ρ))

the underlying complex is the singular cohomology of L and the differential counts
holomorphic disks and holomorphic annuli, twisted by a local system ρ. The
second one, the intersection model,

HFint,cy((L, ρ), (φ(L), ρ);K)

and the third one, the chord model,

HFcy((L, ρ), (φ(L), ρ), Gt;K)

are defined by first choosing suitable (Ht, φ) and (Gt, ϕ) then counting holomor-
phic strips with a possible interior hole. (Note that in the definition we assume
that both Ht and Gt are generic and Ht is small.) For the genuine Floer coho-
mology with bulk deformations, it is known that these three cohomology theories
are equivalent over the Novikov field Λ (Proposition 8.24 [20]) and have a good
Lipschitz property over the Novikov ring Λ0 (Theorem 6.2 [22]). Now we will
discuss the relations among these three models in our setting.

The disk model, of which the cohomology is determined by the potential func-
tion, is used for concrete computation once we know the potential function. The
displacement results are given by the change of torsion exponents of the chord
model, where large Hamiltonian perturbation is allowed. And to connect these
two models we need the intersection model, where only small Hamiltonian per-
turbation is considered.
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Theorem 6.14. Suppose that the potential function POcy,b(ρ) for L has a critical
point for some (b, ρ) modulo TE, E ≤ 2v(b). If there is a Hamiltonian Gt with
time-1 flow ϕ such that L ∩ ϕ(L) = ∅ then it satisfies that ||Gt||X + 2||Gt||S ≥ E.

Proof. First the existence of the critical point shows that

HFcy(L; (b, ρ)) ∼= H∗(L;
Λ0

TEΛ0

) ∼= (
Λ0

TEΛ0

)⊕8 ̸= {0}

by Proposition 5.16.
Next we choose a C2-small (Ht, φ) such that L∩φ(L) is transversal. Then the

cohomology
HFint,cy((L, ρ), (φ(L), ρ);K)

is well-defined for (b = K, ρ). We can construct chain maps between the two
theories HFcy(L; (b, ρ)) and HFint,cy((L, ρ), (φ(L), ρ);K). In the case of genuine
Floer cohomology with bulk deformations, the chain maps are constructed in
Section 8 [20]. So we combine the proof therein with the special case when the
domain has one interior hole in the previous subsection, to get the chain maps
and chain homotopies with new energy estimates. Note that Ht is C

2-small, the
Condition 1.1 is preserved and φt(L) ∩ S is always empty. Hence the discussion
in previous subsections all works. Then we obtain that

HFint,cy((L, ρ), (φ(L), ρ);K) ∼=
8⊕

i=1

(
Λ0

TEiΛ0

)

where |E−Ei| < ||Ht||X +2||Ht||S for all i. That is, under the small perturbation
Ht the torsion exponents are also slightly perturbed, by the amount of some Hofer
norms.

Therefore we have transited from the disk model to the intersection mod-
el. Next the estimates in previous subsection help us to transit from the in-
tersection model to the chord model, where large Hamiltonian perturbation is
allowed. Suppose that there is a Hamiltonian Gt with time-one flow ϕ such that
L ∩ ϕ(φ(L)) = ∅. From the definition we know that

HFcy((L, ρ), (φ(L), ρ), Gt;K) = {0}

and Φ+ = Φ− = 0. Proposition 6.12 tells that

Φ− ◦ Φ+ : HFint,cy((L, ρ), (φ(L), ρ);K) → HFint,cy((L, ρ), (φ(L), ρ);K)

equals the inclusion-induced map

TE0(i0 + i1) : HFint,cy((L, ρ), (φ(L), ρ);K) → HFint,cy((L, ρ), (φ(L), ρ);K)

where E0 = ||Gt||X + 2||Gt||S. Therefore we have that

0 = TE0(i0 + i1) : HFint,cy((L, ρ), (φ(L), ρ);K) → HFint,cy((L, ρ), (φ(L), ρ);K).
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So E0 > maxi{Ei} for all i. Let ||Ht|| → 0 we obtain that ||Gt||X + ||Gt||S ≥ E.
In conclusion, for any Hamiltonian diffeomorphism ψ which displaces L there

is a small amount ϵ(ψ) > 0 such that any pair (Ht, φ) with ||Ht|| < ϵ(ψ) then ψ
also displaces φ(L) from L. Hence we can use those small (Ht, φ) to do the above
energy estimate for ψ, which completes the proof.

The above theorem is parallel to Theorem 5.11 in [19] for potential functions
without bulk deformation and Theorem 7.7 in [22] for potential functions with
bulk deformation. We just adapt the proof therein by combining our energy
estimates in this section.

7 Estimates of displacement energy

Now we estimate the displacement energy of a local torus. First we fix a Weinstein
neighborhood U of S such that U admits a singular toric fibration as we described
earlier. And we fix a local torus L ⊂ U near S. Let J be a compatible almost
complex structure on X which agrees with the almost toric complex structure on
U and satisfies Condition 1.1. Then the one-point open Gromov-Witten invariant
nβ is defined with respect to J , for a disk class β ∈ π2(X,L) with Maslov index
two. We consider the sequence

{βk | nβ ̸= 0, E(βk) ≤ E(βk+1)}∞k=1

of disk classes with Maslov index two, enumerated by their symplectic energy. We
know that L bounds four J-holomorphic disks with Maslov index two inside U ,
with same energy E1. Those are the first four elements in the above sequence if L
is near S. Let E5 = E(β5) be the least energy of outside disk contribution. Note
that since L is close to S we actually have that E5,λ >> E1,λ.

If we do symplectic cutting on ∂U then U becomes the quadric Q3 with a
scaled Fubini-Study form. Since the almost complex structure J agrees with the
toric one on U there will be a new J-holomorphic disk with Maslov index two,
intersecting the divisor at infinity. We write the energy of this new disk as Ecut.
Note that E5 ≥ Ecut since the image of this disk class goes out from U . And Ecut

just depends on the size of U and it is independent of J if J is toric on U , while
E5 depends on J . So here Ecut plays the role of a “universal lower bound” for all
E5 among all J satisfying Condition 1.1. In the following we just write E as E5,
for notational simplicity.

7.1 First estimate

Let L be a local torus, we will first show its displacement energy is greater than
or equal to E. This is directly from the decomposition formula of the Floer
cohomology, which do not need the bulk deformation by the chain K.
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Let H∗(L; Λ0) be the singular cohomology of L with Novikov coefficients. By
the weakly unobstructedness of L there is a differential

δρ : H∗(L; Λ0) → H∗(L; Λ0)

for any ρ ∈ H1(L; Λ0). The cohomology given by δρ is the Floer cohomology
HF (L, ρ; Λ0) with a local system ρ. Note that under the energy filtration E we
only have the four basic disk classes, which “cancel with each other” for some ρ0.
That is, from (5.1), the disk potential function is

PO(ρ) = (x+ y−1 + xz−1 + y−1z)TE1 mod TE, ρ ∈ H1(Lλ; Λ0). (7.1)

So it has a critical point at ρ0 = (x = 1, y = 1, z = −1). Hence by the decompo-
sition formula (2.11) we have

HF (L, ρ0; Λ0) ∼= (
l⊕

i=1

Λ0

TEΛ0

) mod TE.

Therefore in the decomposition of HF (L, ρ0; Λ0) the least torsion exponent is
great than or equal to E. And Theorem J in [17] gives that EL ≥ E.

7.2 Second estimate

For the second estimate will use the deformed Floer cohomology of a local torus.
This new cohomology is an analogue to the Floer cohomology with bulk deforma-
tions. But here we use chains instead of cycles to do the deformation.

First we compute the deformed potential function (5.10) using the chain K as
a bulk deformation, here K is a fixed completion of K1.

Theorem 7.1. Let b = w · PD(K), w ∈ Λ+ be a bulk chain then the b-deformed
potential function is

POcy,b(ρ) = ((1 + w)x+ y−1 + xz−1 + y−1z)TE1 +H(w, x, y, z, T ) mod T 2v(b)

where H(w, x, y, z, T ) is the higher energy part.

Proof. The key point is that the potential function only depends on holomorphic
disks with Maslov index two. And when there is no Hamiltonian perturbation,
there is no holomorphic cylinders to count. Hence the b-deformed potential func-
tion looks the same as the (first order approximation of) usual potential function
with bulk deformation, modulo some energy.

More precisely, in Proposition 5.6 we have two moduli spaces which are i-
dentified between the smoothed side and the resolved side. On the resolved side
the moduli space contains holomorphic disks with one interior marked points at-
tached to the cycle w ·PD(K̃). By the computation in toric case [20] we know its
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contribution to the potential function is 1 + w, since we only consider the zeroth
and the first operators. (For the full bulk deformation the contribution will be
ew, see the divisor axioms in (2.6).) And by our assumption on the choice of the
completion K, other local disk classes β2, β3, β4 do not intersection K. Therefore
on the smoothed side the contribution of the chain w · PD(K) is also 1 +w since
two moduli spaces are identified and they give the same one-point open invariants.
Then by filling these information in the definition (5.9) we obtain the b-deformed
potential function in the smoothed side.

Next we can compute the critical points of this deformed potential function.
The critical points equation will be

0 = 1 + w + z−1 +
∂H

∂x
mod T 2v(b)

0 = 1 + z − y−2∂H

∂y
mod T 2v(b)

0 = −xz−2 + y−1 +
∂H

∂z
mod T 2v(b).

(7.2)

If this system of equations has solutions in Λ0−Λ+ then by Theorem 6.10 we have
an estimate of the displacement energy EL of L. We view (7.2) as a system of three
equations with four variables (w, x, y, z) hence we have freedom to prescribe the
value of one of the variables. So we set x = 1 to these equations and view w, y, z
as variables. The existence of suitable solution w, y, z is assured by an implicit
function theorem in the setting of Novikov ring, see Lemma 4.3.

Next we directly check that w = 0, y = 1, z = −1 is a nondegenerate solution
of (7.2) modulo higher energy terms. By the Gromov compactness theorem the
higher energy part H in the potential function is a Laurent polynomial since
we work modulo T 2v(K). (In general the potential function could be a Laurent
series with energy going to infinity.) Hence our system of equations fits in a 3-
dimensional version of Lemma 4.3 and the whole system of critical point equation
(7.2) has a suitable solution modulo T 2v(b).

Note that under the energy filtration E1 we already has a critical point. So we
only need to perturb the higher energy terms with filtration larger than or equal
to E. Hence the deformation b does not have low energy part below E − E1. A
more careful study of the choice of wPD(K) shows that it has the following form

b = wPD(K) = w1PD(K) + w2PD(K) + · · ·+ wjPD(K)

such that

POcy,b(ρ) = ((1 + w)x+ y−1 + xz−1 + y−1z)TE1 +H(w, x, y, z, T ) mod T 2v(b)

has a critical point and

E − E1 ≤ v(w1) < v(w2) < · · · < v(wj).
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Therefore by Theorem 6.14 we know that if ϕ displaces L then its corresponding
Hamiltonian functions Gt satisfy that

||Gt||X + 2||Gt||S ≥ 2v(b) ≥ 2(E − E1).

This completes the proof of Theorem 1.3.
Now we explain the proof of Corollary 1.4. Let Gt be a time-dependent Hamil-

tonian function and ϕ be its time-one map such that S ∩ ϕ(S) = ∅. Then there
is a small neighborhood U which is also displaced by ϕ. Note that for a small
number λ′, all local tori Lλ are contained in U if λ ∈ (0, λ′) and are displaced by
ϕ. Therefore we know that

||Gt||X ≥ E5,λ, ||Gt||X + 2||Gt||S ≥ 2(E5,λ − E1,λ)

for all λ ∈ (0, λ′). As λ goes to zero, the energy E1,λ decreases and E5,λ increases
hence we complete the proof of Corollary 1.4.

7.3 Examples of displaceable Lagrangian spheres

Now we briefly review Pabiniak’s construction [35] of displaceable Lagrangian
3-spheres and show our theoretical estimate is almost optimal in this case.

Consider the Lie group SU(3). We identify the dual of its Lie algebra su∗(3)
with the vector space of 3×3 traceless Hermitian matrices. Then the group SU(3)
acts on su∗(3) by conjugation. Through a regular point diag(a, b,−a − b), the
action orbit M is a smooth 6-dimensional symplectic manifold with the Kostant-
Kirillov symplectic form.

We fix a regular point diag(a, b,−a − b) with a > b ≥ 0 and write the orbit
as M . The symplectic form on M is monotone if and only if b = 0. There is a
Gelfand-Tsetlin fibration Γ : M → R3. For a matrix A ∈ M let a1(A) ≥ a2(A)
denote the two eigenvalues of the 2 × 2 top left minor of A, and let a3(A) = a11
be the (1, 1) entry of A. Then the system Γ(A) = (a1(A), a2(A), a3(A)) gives the
fibration map. Let (x, y, z) be the coordinates of R3. The image polytope (see
Figure 14) of Γ is given by affine functions

a ≥ x ≥ b;

b ≥ y ≥ −a− b;

x ≥ z ≥ y.

This Gelfand-Tsetlin fibration Γ can be viewed as a smooth torus fibration away
from the fiber Γ−1(b, b, b) since the three functions (a1, a2, a3) integrate to a 3-
torus action. There is a unique non-smooth point (b, b, b) in the polytope, of which
the fiber S = Γ−1(b, b, b) is a smooth Lagrangian 3-sphere. So this fibration is a
compactification of the fibration on T ∗S3 by putting divisors at infinity, see Section
5.1. And the parameter b measures the symplectic form on this compactification.
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Figure 14: Moment polytope for the fibration Γ.

Moreover we can consider the standard action of the maximal torus of SU(3),
which gives us a subaction of the Gelfand-Tsetlin action. This 2-torus action has
a moment map µ :M → R2. We have the following commutative diagram

..

..M ..R3

. ..R2

.µ.

Γ

. pr

where we view R2 = {x+ y + z = 0} ⊂ R3. The projection map is given by

pr(x, y, z) = (z, x+ y − z,−x− y).

Consider the permutation matrix

P =

−1 0 0
0 0 1
0 1 0


which is an element of SU(3). Then the conjugation with P is a Hamiltonian
action on M . Note that for A = [aij] ∈M

µ(PAP−1) = (a11, a33, a22).

So we have that

µ(S) = µ(Γ−1(b, b, b)) = pr(b, b, b) = (b, b,−2b)

and
µ(PSP−1) = (b,−2b, b).
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In particular if b ̸= 0 then the Lagrangian 3-sphere S will be displaced by this
group action. We also remark that when b = 0 the Lagrangian 3-sphere S is
monotone and is proved to be nondisplaceable by Cho-Kim-Oh [11].

In [31] it is calculated that S bounds two holomorphic disks with energy 2π(a+
2b) and 2π(a − b). Moreover the Floer cohomology HF (S, S; Λ) vanishes. Next
we assume that b > 0 so that 2π(a + 2b) > 2π(a − b). By Chekanov’s theorem
the displacement energy ES of S is greater than 2π(a − b). For the Hamiltonian
action by P , its corresponding Hamiltonian function is the inner product with the
vector diag(0, π,−π). That is, for a fiber Γ−1(x, y, z) over the point (x, y, z) the
Hamiltonian function is constant on the fiber and can be written as

H(x, y, z) = (0, π,−π) · pr(x, y, z) = π(2x+ 2y − z).

From the polytope we can check that

max
M

H = H(a, b, b) = π(2a+ b), min
M

H = H(b,−a− b, b) = π(−2a− b).

Hence we have that ∫ 1

0

(max
M

H −min
M

H)dt = 2π(2a+ b).

In particular H |S≡ H(b, b, b) = 3b. So for this Hamiltonian we have that

||H||M = 2π(2a+ b), ||H||S = 0

and

||H||M + 2||H||S = ||H||M = 2π(2a+ b) ≥ 2E5 := lim
λ→0

2E5,λ = 4π(a− b).

This matches our theoretical prediction in Theorem 1.3. And when a >> b ≥ 0
we have that 2π(2a + b) is close to 4π(a − b), which shows that the estimate is
almost optimal in this case.

One can also check the case of the displaceable Lagrangian S3 ⊂ C2 × CP 1.
Consider the following Lagrangian embedding

S3 → C2 × CP 1, x 7→ (i(x),−h(x))

where i is the inclusion of the unit sphere and h is the Hopf map. The symplectic
form on C2 × CP 1 is the standard one times the Fubini-Study form. Let H
be a Hamiltonian on C2 which displaces the unit sphere and G(z1, z2) := H(z1)
be a Hamiltonian on C2 × CP 1. Then G displaces the Lagrangian sphere and
||G||C2×CP 1 = ||H||C2 . Moreover, it is known that ||H||C2 can be chosen to be
arbitrarily close to π.
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However, the Hamiltonian H takes maximal and minimal values on the unit
sphere hence G takes maximal and minimal values on the Lagrangian sphere S.
So we have ||G||C2×CP 1 = ||G||S. Note that

H2(C2 × CP 1, S) ∼= H2(C2 × CP 1) ∼= H2(CP 1)

hence the minimal energy of a holomorphic disk bounding S is π =
∫
CP 1 ωFS.

And our estimate gives that 3||G||C2×CP 1 ≥ 2π, which is not a contradiction but
not very powerful for this example.
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