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Abstract of the Dissertation 

Pseudo-Néron model and Restriction of Sections 

by 

Santai Qu 

Doctor of Philosophy 

in 

Mathematics 

Stony Brook University 

2020 

 

We introduce the notion of pseudo-Néron model and give new examples of 
varieties admitting pseudo-Néron models other than Abelian varieties.  As an 
application of pseudo-Néron models, given a scheme admitting a finite morphism 
to an Abelian scheme over a positive-dimensional base, we prove that for a very 
general genus-0, degree-d curve in the base with d sufficiently large, every section 
of the scheme over the curve is contained in a unique section over the entire base.
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1 Introduction

The main results of this article are Theorem 1.3 and Theorem 1.11 in subsec-
tion 1.1. We compare our results with other theorems in literatures in subsec-
tion 1.2. The geometric idea to prove Theorem 1.3 is given in subsection 1.3.

1.1 Main results

The starting point of this work is a theorem in [10], where Tom Graber and
Jason Michael Starr prove the theorem of restriction of sections for families of
Abelian varieties (Theorem 1.2). To state their theorems, we cite the following
definition from [10].

Definition 1.1. ([10], p.312) Let k be an algebraically closed field. Fix a
generically finite, generically unramified morphism u0 : S → Pnk . We define

• an u0-line is a curve in S of the form S ×Pnk L for a line L ⊂ Pnk ;

• an u0-conic is a curve in S of the form S ×Pnk C for a plane conic C ⊂ Pnk ;

• an u0-line-pair is a curve in S of the form S ×Pnk L, where L = L1 ∪ L2

for a pair of incident lines in Pnk ;

• an u0-smooth-curve is an irreducible smooth curve in S of the form S×Pnk
C0 for a smooth curve C0 ⊂ Pnk ;

• an u0-curve-pair of degree-(d + 2) is a connected curve in S of the form
S×Pnk C, where C = C0∪C1 is a pair of curves in Pnk intersecting transver-
sally at a single closed point such that C0 is a genus zero, smooth curve
of degree d, and C1 is a smooth conic;

• an u0-planar surface is a surface in S of the form S ×Pnk Σ for a 2-plane
Σ ⊂ Pnk .

Note that, by Bertini’s theorem, for sufficiently general line, conic, and plane,
the corresponding u0-line, u0-conic, and u0-planar surface will be smooth. By
abuse of notations, we will just say line, conic, line-pair, curve-pair, planar
surface, and smooth curve in S instead of u0-line, u0-conic, u0-line-pair, u0-
curve-pair, u0-planar surface, and u0-smooth-curve.

Let k be an uncountable algebraically closed field. We say a subset of a
scheme is general, resp. very general, if the subset contains an open dense
subset, resp. the intersection of a countable collection of open dense subsets.
We say that a property of points in a scheme holds at a general point, resp. at a
very general point, if the set where the property holds is a general subset, resp.
a very general subset.

Now, we state the main theorem in [10] as following.

1



Theorem 1.2. ([10], Theorem 1.3, p.312) Let k be an uncountable algebraically
closed field. Let S be an integral, normal, quasi-projective k-scheme of dimen-
sion b ≥ 2. Let A be an Abelian scheme over S. For a very general line-pair C
in S, the restriction map of sections

Sections(A/S)→ Sections(AC/C)

is a bijection. The theorem also holds with C a very general planar surface in
S. If char k = 0, this also holds with C a very general conic in S.

In this article, we prove that there exists a broader class of varieties for
which Theorem 1.2 holds for higher order curve-pairs and smooth curves as the
following theorem.

Theorem 1.3. Let k an uncountable algebraically closed field of characteristic
zero. Let S be an integral, normal, quasi-projective k-scheme of dimension
b ≥ 2. Let X be a smooth S-scheme admitting a finite morphism f : X → A
to an Abelian scheme A over S. Let e be the fiber dimension of Iso(A) where
Iso(A) is the isotrivial factor of A (see Definition-Lemma 3.16). Let d be a
positive even integer.

Then, for d > 2e − 2, every section of XC over a very general genus-0 and
degree-(d+ 2) curve-pair or a very general genus-0, degree-(d+ 2) smooth curve
C is the restriction of a unique global section of X over S.

Remark 1.4. LetX → S be a finite type morphism of locally Noetherian schemes
where S is integral. Denote by K the function field of S. Then a rational point
of the generic fiber XK is the same as a rational section of X → S. When
X → S is an Abelian scheme, every rational section is a section on the whole S,
which also holds when X admits a finite morphism to an Abelian scheme over
S. Thus, the Theorems above claim that we can detect rational points of XK

over the function field K by restricting X → S to a very general curve in S.

In [10], the authors first prove the theorem of restriction of sections for line-
pairs. To prove that the result also holds for smooth conics, Néron models is
applied to deform line-pairs to smooth conics. We also need this technique in
our Theorem 1.3, so we give the definition of Néron models as following.

By a Dedekind scheme, we always mean an irreducible, Noetherian and
normal scheme of dimension one. Let S be a Dedekind scheme with function
field K. Let XK be a smooth and separated K-scheme of finite type. We say
that X is an S-model of XK if X is an S-scheme with generic fiber isomorphic
to XK . A Néron model of XK is an S-model satisfying a universal property
of extending morphisms. This extends the smooth variety XK to a family of
smooth varieties over S. The precise definition is the following.

Definition 1.5. ([3], Def.1.2/1, p.12) Let XK be a smooth and separated K-
scheme of finite type. A Néron model of XK is an S-model X which is smooth,
separated, and of finite type, and which satisfies the following universal property,
called the Néron mapping property :

For each smooth S-scheme Y and each K-morphism uK : YK → XK there
is a unique S-morphism u : Y → X extending uK .
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From the uniqueness of the morphism extension, it is easy to see that a
Néron model is unique as soon as it exists. If XK is an Abelian variety over K,
then the existence of Néron model is proved in the survey book [3]. However,
the Néron model of an Abelian variety is not necessary an Abelian scheme over
the Dedekind scheme S (cf. [3], Theorem 1.4/3, p.19).

Theorem 1.6. ([3], Theorem 1.4/3, p.19) Let XK be an abelian variety over
K. Then XK admits a Néron model X over S.

The main application of Néron models in the proof of Theorem 1.2 is Lemma
4.13 in [10], p.323. However, going over the proof, it is easy to see that only
the existence of extensions of morphisms is needed, and this is also the case for
many other applications of Néron models. This leads us to weaken the definition
of Néron mapping property, and consider a weak version of Néron model.

Definition 1.7. Let X be a flat scheme of finite type over S. We say X has
the weak extension property if for every smooth morphism Z → S and every
K-morphism uK : ZK → XK , there exists an S-morphism u : Z → X extending
uK .

Definition 1.8. Let XK be a smooth, finite type and K-variety. Suppose that
X is a flat and finite type scheme over S with generic fiber XK . We say that
X is a pseudo-Néron model of its generic fiber if X satisfies the weak extension
property.

Remark 1.9. In Definition 1.7, the extension u of uK is not unique; however,
if X is separated, then the extension is unique. In Definition 1.8, we do not
require that X is normal or regular since after an étale base change T → S, XT

is not necessarily normal or regular. And, we stress that, unlike Néron models,
a pseudo-Néron model is always not unique since it can be not smooth over S.

By [3] Proposition 1.2/8, we know that every Abelian scheme over S satis-
fies the weak extension property. Moreover, from Theorem 1.6, every Abelian
variety has a Néron model, and hence a pseudo-Néron model.

If a smooth variety XK admits a finite morphism to an Abelian variety AK ,
then XK admits a pseudo-Néron model as we will prove in Theorem 2.5. Besides
the application of pseudo-Néron model to prove Theorem 1.3, it is natural to
ask:

Question 1.10. Is there any other class of varieties, besides Abelian schemes,
Abelian varieties and finite cover of Abelian varieties, satisfying the weak exten-
sion property or admitting pseudo-Néron models?

In the first part of this article (Section 2), we give a positive answer to
this question. It turns out that the existence of pseudo-Néron models is closely
related to the non-existence of rational curves on the variety (Corollary 2.8).
Our new example of pseudo-Néron models is the following, which will be proved
as Corollary 2.16.
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Theorem 1.11. (New Examples) Let k be an uncountable algebraically closed
field. Let S be a Dedekind scheme of finite type over k with field of functions K
(e.g. S is a smooth curve over k). Let d be an integer prime to char k. Suppose
that H ⊂ Pnk is a very general smooth hypersurface of degree d ≥ 2n−1. Let XK

be a smooth K-variety admitting a finite morphism to H×kK ⊂ PnK . Then XK

has a pseudo-Néron model over S. In particular, every smooth K-subvariety of
H ×k K has a pseudo-Néron model.

In this second part of this article (Section 3), we will use pseudo-Néron
models to restate the Lemma 4.13 in [10] in a more general set up and prove
the main result Theorem 1.3.

1.2 Review of theorems about sections

Now, we give a brief review of theorems about sections in literatures and com-
pare our main result, Theorem 1.3, with these results.

A complex variety V is said to be rationally connected if two general points
of V can be joined by a rational curve ([17], Definition 3.2, p.199). In [11], it
is proved that a one-parameter family of rationally connected complex varieties
has a section.

Theorem 1.12. ([11], Theorem 1.1, p.57) Let f : X → B be a proper morphism
of complex varieties with B a smooth curve. If the general fiber of f is rationally
connected, then f has a section.

Definition 1.13. ([12], Def.1.2, p.672) Let π : X → B be an arbitrary mor-
phism of complex varieties. By a pseudosection of π we will mean a subvariety
Z ⊂ X such that the restriction π|Z : Z → B is dominant with rationally
connected general fiber.

In [12], the authors prove the coverse of Theorem 1.12 as following.

Theorem 1.14. ([12], Theorem 1.3, p.672, [10], Theorem 1.1, p.311) Let π :
X → B be a proper morphism of complex varieties. If π admits a section when
restricted to a very general sufficiently positive curve in B, then there exists a
pseudosection of π.

However, the theorem asserts only the existence of a pseudosection of π; it
does not claim any direct connection between the sections of XC → C over very
general curves C and the pseudosection. So the following question is asked in
[12] and [10].

Question 1.15. ([10], Conjecture 1.2, p.311, [12], Question 7.1, p.689) If
π : X → B is a morphism of complex varieties, then for a very general,
sufficiently positive curve C ⊂ B, does every section of the restricted family
XC = π−1(C)→ C take values in a pseudosection?

On the other hand, in Theorem 1.14, the genus and degree of the very general
curve depend on the relative dimension of π (see the statement of theorem in
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[12], Theorem 1.3, p.672). The genus and degree can grow enormously fast with
respect to the relative dimension of π : X → B. So it is natural to ask the
following questions.

Question 1.16. ([12], Section 7.3, p.689) Can we eliminate the dependence of
the family of curves on the relative dimension of π in Theorem 1.14?

The answer of this question is “no”. The detailed proof can be found in
[27]. A sketch of the argument could also be found in [12], Section 7.3. Then, a
further question is the following.

Question 1.17. If the dependence in Theorem 1.14 can not be eliminated, how
fast do the genus and degree of the family of curves grow?

One extreme special case of Question 1.15 and Question 1.16 is that X is an
Abelian scheme over B. In this case, since the fibers contain no rational curves,
every pseudosection is a rational section, and every rational section is everywhere
defined. Then, Theorem 1.2 gives positive answers to both Question 1.15 and
Question 1.16 when X is an Abelian scheme over B.

When X is a smooth scheme admitting a finite morphism to an Abelian
scheme A over B, Theorem 1.3 gives a positive answer to Question 1.15 and
Question 1.17. The genus of curves is zero as in Theorem 1.2. And, the degree
of the curves grows at a linear rate with respect to the relative dimension of the
isotrivial factor of the Abelian scheme.

1.3 Idea of the proof

The idea to prove Theorem 1.3 is quite geometric. For a very general point
b ∈ S and a very general genus-0, degree-d, smooth curve m containing b, there
will be a subset Bd,b in Ab (we actually take Bd,b in Iso(A)b, see subsection 3.6)
such that Theorem 1.3 does not hold for sections over m that maps b to points
in Bd,b. We call this subset the bad set, see subsection 3.3.3 and subsection 3.6
for precise definitions. However, if we attach a very general conic ` to m at a
very general point on m, the set Bd+2,b for the curve m∪` has dimension strictly
less than the dimension of Bd,b. Therefore, if we increase the degree of the curve
by attaching more conic curves, the bad set will be empty, and so Theorem 1.3
holds for every section over the very general curve.
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2 Pseudo-Néron Model

2.1 Basic properties

In this section, we will assume that S is a Nagata Dedekind scheme and K is
its function field. Recall that every scheme of finite type over a field is Nagata.

Lemma 2.1. Suppose that S = SpecR is an affine Nagata Dedekind scheme.
Let YK be a smooth variety and Y be a normal pseudo-Néron model over S. Let
XK be a smooth K-variety with a finite K-morphism f : XK → YK . Then there
exists a flat normal S-scheme X admiting a finite morphism g : X → Y which
extends f .

Proof. First consider the affine case. Let SpecAK be an affine open subset of YK
and SpecBK = f−1(SpecAK). Suppose that SpecA is an open affine in Y with
generic fiber SpecAK , where K = Frac(R) and AK = A⊗R K. We claim that
there exists a finite A-algebra C such that BK = C ⊗R K. Frac(BK) is a finite
field extension of Frac(AK) since BK is finite over AK . Let B′ be the integral
closure of A in Frac(BK). We have the ring A is Nagata ([20], Prop.8.2.29(b),
p.340, and Def.8.2.30, p.341), and hence B′ is finite over A ([20], Def.8.2.27,
p.340). Now, take C = BK ∩B′. Then since A is Noetherian we have C is finite
over A, and by construction C is the integral closure of A in BK . It is easy to
check that BK = C ⊗R K.

Now, take an affine open covering of YK , and hence an affine open covering
of XK . By the construction in the affine case, C is uniquely determined by
BK , AK and A. Thus, we can glue the SpecC as above to form the normal
scheme X with a canonical finite morphism g : X → Y , which is of finite type,
separated and flat over S.

Lemma 2.2. Let Y be a separated, flat S-scheme of finite type satisfying the
weak extension property. Suppose that X is an integral S-scheme with a finite
S-morphism f : X → Y . Then X satisfies the weak extension property.

Remark 2.3. The Dedekind scheme S does not have to be Nagata in this lemma.

Proof. Step 1 : Assume that S = SpecR is an affine Dedekind scheme. Let Z
be an irreducible smooth S-scheme with generic fiber ZK and a K-morphism
uK : ZK → XK . We note that if SpecA is an affine open in X then A⊗R K is
also an integral domain, so the generic fiber XK is also an integral scheme with
the same function field K(XK) = K(X) as X.

First we assume that X and Y are affine. Since Y satisfies the weak extension
property, fK ◦ uK extends to an S-morphism g : Z → Y . Denote ζ by one of
the generic points of codimension one irreducible subsets of Z. Then, since
Z is normal, OZ,ζ is a discrete valuation ring. And we have the following
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commutative diagram

SpecK(Z) //

��

X

f

��

SpecOZ,ζ //

uζ

::

Y

where SpecK(Z) → X is induced by the map K(XK) → K(ZK). Moreover,
by the properness of the morphism f , there exists a unique morphism uζ :
SpecOZ,ζ → X making the diagram commute. Since Z is locally of finite type
over S, the morphism uζ can be extended to a neighborhood V of ζ in Z. We
denote this morphism by uV : V → X. Checking every open affine SpecC in V ,
since Z is an integral scheme, we have that the generic fiber of the morphism
from SpecC to X is the same as the restriction of uK because they are giving
the same morphism when viewed as restriction of K(X) → K(Z). Moreover,
suppose that there are two codimension one points ζ1 and ζ2, and they are giving
two extensions V1 → X and V2 → X respectively. Since f is separated, it is
easy to see that these two morphisms agree on every open affine in the overlap
V1 ∩ V2 since they have the same generic fiber and hence give the same map
in K(X)→ K(Z). Therefore, the morphism uK can be extended to a rational
map defined over every condimension one point on Z. Hence, by [3] Lemma
4.4/2, since X is affine, this rational map is actually defined everywhere.

Now, when X and Y are not affine, consider an open affine covering of Y ,
which induces an affine covering of X, and extend uK for every such open affine
of X. By the same reason as above, since any two extensions give the same
morphism on generic fibers, these extensions on affines of X can be glued, and
hence X satisfies the weak extension property.

Step 2 : S is a Dedekind scheme, not necessarily affine. Take an affine
covering {U1, · · · , Un} of S. Let Xi, Yi, Zi and (uK)i be the base changes of
X, Y , Z and uK from S to Ui respectively. From step 1, we know that every
(uK)i can be extended to the whole Zi. Now, cover each Ui∩Uj by open affines
and check over each these affines. Again, since these extensions give the same
morphism on generic fibers of their overlap, the extensions can be glued and
give an extension of uK to the whole Z. So X satisfies the weak extension
property.

Remark 2.4. Let C denote the category of normal S-schemes with finite mor-
phisms. Then the above lemma asserts that normal S-schemes with the weak
extension property form a fully faithful subcategory of C.

Theorem 2.5. Let S be a Nagata Dedekind scheme with generic point SpecK.
Let XK be a smooth scheme admitting a finite K-morphism to a smooth, sepa-
rated variety YK of finite type which has a normal pseudo-Néron model Y over
S. Then XK has a normal pseudo-Néron model X over S.

Proof. Let {U1, · · · , Un} be a finite open affine covering of S and Y i be the
inverse images of each Ui such that they form an open covering of Y . Then
Y iK and Xi

K = f−1(Y iK) form an open covering of YK and XK respectively. For

7



each i, Y i is flat, separated and of finite type over the affine Nagata Dedekind
scheme Ui. Take Xi to be the Ui-model of Xi

K as constructed in Lemma 2.1
and gi : Xi → Y i to be the corresponding Ui-morphism extending f |Y iK .

Cover each Y i by affine opens. Suppose that SpecAi and SpecAj are two
such affine opens in Y i and Y j respectively with i 6= j. Since SpecAi and
SpecAj are affine schemes over affine bases, Ui and Uj , also their generic fibers

are affine. Let the inverse image of SpecAiK (resp. SpecAjK) in Xi
K (resp. Xj

K)

be SpecBiK (resp. SpecBjK). Then, as in the construction in Lemma 2.1, we
can construct an affine open SpecCi (resp. SpecCj) as the integral closure of
Ai in BiK (resp. Aj in BjK). Now, by Nike’s trick ([29], Prop.5.3.1, p.157), cover
SpecAi∩SpecAj by principal open affines. Then they have affine generic fibers
since SpecAi and SpecAj have affine bases. Because the process of taking
integral closure is unique up to a unique isomorphism and compatible with
localization, the affine opens SpecCi and SpecCj with morphisms gi and gj
can be glued. By the uniqueness of taking integral closure, we can make the
same gluing for other pairs of affine opens in the fixed affine covering of Y i and
Y j . Thus, we obtain a gluing of Xi and Xj . Similarly, X1, · · · , Xn glue to be
an S-scheme X admitting a finite S-morphism to the normal scheme Y .

Take the S-model X of XK as above. By applying Lemma 2.2 to the scheme
X, we have this normal S-scheme satisfies the weak extension property.

This theorem gives us a strategy. Suppose that S is a Nagata Dedekind
scheme. Then every time we have a class of varieties admitting normal pseudo-
Néron models, by considering smooth varieties with finite morphisms to the
varieties in this class, we will get a new class of varieties admitting normal
pseudo-Néron models. As a first result, we know that all varieties admitting
finite morphisms to Abelian varieties have normal pseudo-Néron models. In
particular, every smooth subvariety of an Abelian variety has a normal pseudo-
Néron model.

2.2 Application of rational curves

In [19], Qing Liu and Jilong Tong proved theorems about Néron models of
smooth proper curves of positive genus, see [19], Theorem 1.1, p.7019, for details.
In our situation, their result ([19], Prop.4.13, p.7031) in the higher dimensional
case can be used to construct new examples of varieties admitting pseudo-Néron
models. We start with the basic notion of rational curves as following.

Definition 2.6. ([19], p.7031) Let V be a variety over an algebraically closed
field k. We say that V contains a rational curve if there is a locally closed
subscheme of V which is isomorphic to an open dense subscheme of P1

k.

If V is proper over k, then every morphism from an open dense of P1
k can

be extended to the whole P1
k ([20], Cor. 4.1.17, p.119). Moreover, by Lüroth’s

theorem, our definition is the same as the existence of a nonconstant morphism
from P1

k to V ([17], Definition 2.6, p.105).
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Proposition 2.7. ([19], Prop.4.13, p.7031) Let S be a Dedekind scheme with
field of functions K. Let XK be a smooth proper variety over K. Suppose XK

has a proper regular S-model X such that no geometric fiber Xs, s ∈ S, contains
a rational curve. Then the smooth locus Xsm of X is the Néron model of XK .

Note that the regularity of X in the above theorem is only used to apply
[19] Cor.3.12. Thus, in the case of pseudo-Néron models, the same proof gives
the following corollary.

Corollary 2.8. Let S be a Dedekind scheme with field of functions K. Let XK

be a smooth proper variety over K. Suppose XK has a proper and flat S-model
X such that no geometric fiber Xs, s ∈ S, contains a rational curve. Then X
satisfies the weak extension property, i.e., X is a pseudo-Néron model of XK .

The following lemma is well-known.

Lemma 2.9. Let k be an algebraically closed field. Let f : X → Y be an étale
surjective k-morphism of proper k-varieties. If X does not contain any rational
curve, then Y does not contain any rational curve.

Lemma 2.9 gives an immediate application of Corollary 2.8 as following.

Corollary 2.10. Let X be a proper pseudo-Néron S-model of XK such that
no geomertric fiber contains rational curves, as in Corollary 2.8. Suppose that
Y is a proper S-scheme with smooth generic fiber YK and there exists an étale
surjective morphism f : X → Y . Then Y is a pseudo-Néron model of YK .

There are many varieties which do not contain any rational curve. One of
the typical examples is very general hypersurfaces of large degree. We cite the
following result.

Theorem 2.11. ([25], Theorem 1.2) Let k be an uncountable algebraically
closed field. For d ≥ 2n − 1, a very general hypersurface X ⊂ Pnk of degree
d contains no rational curves, and moreover, the locus of hypersurfaces that
contain rational curves will have codimension at least d− 2n+ 2.

Lemma 2.12. Let R be a Nagata DVR with fraction field K and residue field k.
Suppose that X is a proper scheme over R with nonempty fibers. If Xk contains
no rational curves, then XK also contains no rational curves.

Proof. Suppose that there is a nonconstant K-morphism fK : P1
K
→ XK . By

limit arguments, there exists a discrete valuation ring T with fraction field L,
finite over K, and residue field l such that R ⊂ T ⊂ K, T dominates R, and fK
is the base change of a nonconstant L-morphism fL : P1

L → XL. Consider the
generic point of the special fiber P1

l which is of codimension one in P1
T . Using

the valuative criterion of properness, fL extends uniquely to a T -morphism
fT : V → XT where V is an open dense of P1

T containing the generic point of
P1
l ([20], Prop.4.1.16, p.119), and hence an open dense of P1

l .
Let Γ be the normalization of the schematic closure for the graph of fT .

Then the projection P1
T×TXT → P1

T induces a birational morphism π : Γ→ P1
T .

9



Since R is Nagata, T is finite over R, so T is also Nagata ([20], Def.8.2.27 and
Prop.8.2.29, p.340). Thus, all the schemes are Nagata and the normalization
morphism is finite. And, hence, π is a proper birational morphism. Let E be
the exceptional locus of π. By Abhyankar’s lemma ([18], Theorem 4.26, p.112),
E is ruled over its image. Let E′ be its image. Then E is birationally equivalent
over E′ to W ×E′ P1

E′ . Note that, since fT is defined over V , E′ is finitely many
closed points in the closed fiber P1

l and E is of codimension one. Then W is
dimension zero over E′, hence finitely many closed points. Thus, W ×E′ P1

E′ is
a finite disjoint copy of P1

kj
with each kj a finite extension of l. Base change to

the algebraic closure l of l, then each P1
kj

splits to finitely many disjoint copies

of P1
l
. Now, take one of these copies, say, C. If C is mapped to a single point of

Xl, then the image of C in (P1
T ×T XT )×T l is a single point, contradicting that

Γl → (P1
T ×T XT )×T l is a finite morphism. Therefore, C is a rational curve in

Xl = Xk. And this contradiction shows that XK does not contain any rational
curve.

Definition 2.13. Let R be a DVR with fraction field K and E = R× ∪ {0}.
Let H be a hypersurface in PnK . We say that (H, f) is a unitary hypersurface if
the defining equation f of H has coefficients in E.

Theorem 2.14. Let R be a Nagata DVR with fraction field K. Suppose that
the residue field k is uncountable and algebraically closed, and d is an integer
prime to char k. Then, there exists unitary hypersurfaces of degree d ≥ 2n − 1
in PnK admitting a Néron model.

Proof. Suppose that XK = V+(f)K ⊂ PnK is a unitary hypersurface defined by
an irreducible homogeneous polynomial f of degree d in n+ 1 variables. Since
all the nonzero coefficients of f are in the group of units E of K, there is no
term in f vanishing in the residue field of R, so the specialization Xk = V+(f)k
is a hypersurface of degree d in Pnk . Conversely, every hypersurface of degree d
in Pnk arises as a specialization of some unitary hypersurface of degree d in PnK .

Set N =
(
n+d
d

)
− 1. Let E be the space of unitary hypersurfaces in PnK . The

argument above gives a surjective map of parameter spaces F : E → PNk by
sending (XK , f) to its specialization Xk. Let U be an intersection of countably
many open dense subsets of PNk such that every member in U is smooth without
rational curves. Take XK ∈ F−1(U) a K-point. By Lemma 2.12, there is no
rational curve on XK . Let X = V+(f) ⊂ PnR be the R-model of XK .

Since f is irreducible, X is an integral hypersurface. Thus, X is flat over
SpecR and every nonempty fiber is irreducible of dimension n−1([20], Cor.4.3.10,
p.137). Let Fittn−1(Ω1

X/R) be the (n − 1)-th Fitting ideal of Ω1
X/R, which is a

coherent ideal sheaf of OX . Then, Fittn−1(Ω1
Xk/k

) is equal to (Fittn−1(Ω1
X/R)) ·

OXk ([6], Cor.20.5, p.498). Since Xk is smooth, Ω1
Xk/k

is locally free of rank

n−1. Thus, Fittn−1(Ω1
Xk/k

) is equal to OXk ([6], Prop.20.6, p.498). And hence,

Fittn−1(Ω1
X/R) is equal to OX . Then, Ω1

X/R can be locally generated by n− 1

elements ([6], Prop.20.6, p.498). So Ω1
XK/K

can be locally generated by n − 1

10



elements, and hence locally free of rank n − 1 ([20], Lemma 6.2.1, p.220, and
[3], Prop.2.2/15, p.43). Thus XK is smooth. At this stage, every fiber of X is
smooth and X is flat over R, then X is a smooth R-scheme ([3], Prop.2.4/8,
p.53). Therefore, by Lemma 2.12 and Proposition 2.7, X is the Néron model of
XK .

This theorem gives a direct corollary in the geometric setting as following.

Corollary 2.15. Let k be an uncountable algebraically closed field. Let S be a
Dedekind scheme of finite type over k with field of functions K (for example,
S is a smooth curve over k). Let d be an integer prime to char k. Then, a
very general smooth hypersurface of degree d ≥ 2n− 1 defined over k in PnK has
a Néron model. In particular, the Néron model of such a hypersurface is the
constant family over S.

Note that we say a K-scheme X is defined over k if there exists a k-scheme
Y such that X is isomorphic to Y ×Spec kSpecK (see [17], Definition 1.15, p.19).

Proof. S is a Nagata Dedekind scheme ([20], Prop.8.2.29, p.340). First assume
that S = SpecR affine. Let f be a homogeneous polynomial of degree d ≥
2n− 1 defined over k in Pnk such that there is no rational curve on the smooth
hypersurface V+(f). Define XK = V+(f)K in PnK . Denote V+(f)R ⊂ PnR by
X, an R-model of XK . Then, exactly the same argument as in Theorem 2.14
shows that X is the Néron model of XK .

Now, take a finite affine covering {SpecRi}i∈I of S. Then there exists a
Néron model Xi of XK over SpecRi for every i ∈ I. By the uniqueness of
Néron model and that Néron model is local on the base ([3], Prop.1.2/3, p.13),
{Xi}i∈I glues to be a Néron model of XK over S.

Combining Theorem 2.1 and Corollary 2.15, we get the following corollary.

Corollary 2.16. Keep the notations of Corollary 2.15. Let XK be a smooth
K-variety admitting a finite morphism to a very general smooth hypersurface
of degree d ≥ 2n − 1 defined over k in PnK . Then XK has a normal pseudo-
Néron model over S. In particular, every smooth subvariety of a very general
hypersurface of degree d ≥ 2n− 1 in PnK , where the hypersurface is defined over
k, has a normal pseudo-Néron model.

From this Corollary, we see that there are many smooth varieties admitting
normal pseudo-Néron model over a smooth curve defined over an uncountable
algebraically closed field. In the situation of our corollary, we cannot control
the regularity of other fibers except XK . It is a normal model of XK , but in
general not a Néron model in the sense of Definition 1.5. Moreover, the variety
XK is not necessarily defined over k, unlike the constant case in Corollary 2.15.

2.3 Base change properties

The next lemma shows that pseudo-Néron models commute with étale extension
of the base scheme, which is the analogue of [3] Prop.1.2/2 (c) for Néron models.
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Lemma 2.17. Let S be a Dedekind scheme with function field K and XK be
a smooth K-variety with pseudo-Néron model X over S. Suppose that S′ is
another Dedekind scheme with S′ → S étale and the function field of S′ is K ′.
Let XS′ = X ×S S′ and XK′ = XK ×K K ′ be its generic fiber. Then XS′ is a
pseudo-Néron model of XK′ .

Proof. Let Z be smooth of finite type over S′. Take a K ′-morphism ZK′ → XK′ .
Then, Z is smooth over S and ZK′ , as the K-generic fiber, is smooth over K.
By the weak extension property of X, there exists an S-morphism from Z → X
extending ZK′ → XK . Hence the universal property of fiber products gives
Z → X ′ as an extension of ZK′ → XK′ .

The following lemma is an analogue of [3] Prop.1.2/4. However, since a
pseudo-Néron model is not unique, we can not have the converse direction as in
[3] Prop.1.2/4.

Lemma 2.18. Let S be a Dedekind scheme with function field K, X finite type
over S and it is a pseudo-Néron model of its generic fiber. Then, for each closed
point s ∈ S, the OS,s-scheme Xs = X ×S OS,s is a pseudo-Néron model of its
generic fiber.

Proof. Let Ys be an smooth OS,s-scheme with a K-morphism uK : Ys,K →
Xs,K . By limit arguments ([3], Lemma 1.2/5), there exists a connected open
neighborhood S′ of s, and a smooth S′-scheme Y ′ such that Y ′×S′ SpecOS,s =
Ys. Lemma 2.17 gives that XS′ = X ×S S′ is a pseudo-Néron model of XK

over S′. Then, by the weak extension property of XS′ , uK extends to an S′-
morphism u′ : Y ′ → XS′ . Therefore, the base change u = u′ ×S′ SpecOS,s is a
required extension of uK .

Definition 2.19. Let S be a Dedekind scheme and let X be an S-scheme sat-
isfying the weak extension property. We say that X satisfies the weak extension
property universally if for any S′ a Dedekind scheme and for any S′ → S of
finite type, the base change X ×S S′ also satisfies the weak extension property.

Definition 2.20. Let S be a Dedekind scheme with fraction field K. Let XK

be a smooth, separated K-scheme of finite type, and let X be a pseudo-Néron
model of XK . We say that X is a universal pseudo-Néron model of XK if X
satisfies the weak extension property universally.

Lemma 2.21. Keep the notations and hypothesis as in Corollary 2.8. Then,
X is a universal pseudo-Néron model of XK .

Proof. Let g : S′ → S be a morphism of Dedekind schemes of finite type and
X ′ = X ×S S′. Take s ∈ S and t ∈ S′ closed points such that s = g(t). Then
the residue field κ(t) is finite over κ(s), thus X ′

t
= Xs, and hence X ′

t
does not

contain rational curves. And by Lemma 2.12, there is no rational curve on the
geometric generic fiber of X ′. Then X ′ satisfies the weak extension property by
Corollary 2.8.
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Lemma 2.22. Let S be a Dedekind scheme with function field K. Let XK be a
smooth and separated variety of finite type over K. If XK has a proper S-model
satisfying the weak extension property universally, then XK contains no rational
curve.

Proof. Suppose that X is a proper S-model of XK , i.e., X is flat, separated and
finite type over S satisfying the weak extension property and has generic fiber
XK . By Lemma 2.18, we can replace S by OS,s for any closed point of S, and
assume that S = SpecR for some discrete valuation ring R. If XK contains a
rational curve, then there exists a nonconstant K-morphism fK : P1

K
→ XK .

By a limit argument as in Lemma 2.12, there exists a DVR in K dominating
R with fraction field L and residue field l such that fK is a base change of a
nonconstant morphism fL : P1

L → XL. Since X is a universal pseudo-Néron
model, XT also satisfies the weak extension property.

Let C be the normalization of the schematic closure of fL. Then, C is a
proper normal curve over the field L sinceXL is Nagata, and hence i : C → XL is
a finite morphism. Moreover, fL has a unique factorization via C, i.e., fL = i◦gL
where gL : P1

L → C is a morphism of nonsingular proper curves. Then gL is
finite ([20], Lemma 7.3.10 and Cor.4.4.7). Therefore, fL is a finite morphism.

Since XT satisfies the weak extension property, fL extends to a T -morphism
fT : P1

T → XT . Let fl be the closed fiber of fT . Then, the morphism fl is
nonconstant. The same argument as for fL shows that fl is finite. Therefore,
fT is finite ([20], Cor.4.4.7). Then, from Lemma 2.2, P1

T satisfies the weak
extension property. Now, consider an L-isomorphism σL : P1

L → P1
L. However,

not all these isomorphisms can be extended to be a T -morphism P1
T → P1

T ([3],
Example 5, p.75), contradicting that P1

T satisfies the weak extension property.
Thus, XK contains no rational curve.

Remark 2.23. Let XK be a smooth, separated K-scheme of finite type, and let
X be a proper S-model of XK . The above lemma and theorem give us the
following picture:

(i) no rational curve in any geometric fiber,

(ii) universal pseudo-Néron model,

(iii) no rational curve in the generic geometric fiber.

Then, (i)⇒(ii)⇒(iii).

13



3 Theorem of Restriction of Sections

3.1 Higher dimensional pseudo-Néron model

We will need the notion of higher dimensional pseudo-Néron model which gen-
eralizes definition 4.10 in [10].

Definition 3.1. ([10] Definition 4.10) Let S be an integral, regular, separated,
Noetherian scheme of dimension b ≥ 1. A flat, finite type, separated morphism
X → S has the weak extension property if for every triple (Z → S,U, sU ) of

(i) a smooth morphism Z → S,

(ii) a dense, open subset U ⊂ S,

(iii) and an S-morphism sU : Z ×S U → XU ,

there exists a pair (V, sV ) of

(i) an open subset V ⊂ S containing U and all codimension 1 points of S,

(ii) and an S-morphism sV : Z×S V → X whose restriction to Z×SU is equal
to sV .

Definition 3.2. Let S be an integral, regular, separated, Noetherian scheme
of dimension b ≥ 1. Let K be the fraction field of S, and XK be a smooth,
separated K-scheme of finite type. A flat, finite type, separated S-scheme X is
called a pseudo-Néron model of XK if XK is isomorphic to its generic fiber and
X satisfies the weak extension property as in Definition 3.1.

By a limit argument, it is easy to see that Definition 3.1 (resp. Definition 3.2)
implies Definition 1.7 (resp. Definition 1.8) when S is a Dedekind scheme,
and they agree when S = SpecR, where R is a DVR. Now, we prove the
corresponding results for Lemma 2.1, Lemma 2.2 and Theorem 2.5.

Lemma 3.3. Suppose that S is an integral, regular, separated, Noetherian Na-
gata scheme of dimension b ≥ 1 with fraction field K. Let YK be a smooth K-
variety and Y be its normal pseudo-Néron model over S. Let XK be a smooth
K-variety with a finite K-morphism f : XK → YK . Then there exists a flat
normal S-scheme X admiting a finite morphism g : X → Y which extends f .

Proof. Since S is Noetherian, we can cover S by finitely many affine opens. As
we assume that S is Nagata, the same proof of Lemma 2.1 and Theorem 2.5
gives the extension as claimed.

Lemma 3.4. Keep the same hypothesis of S as in Lemma 3.3. Let Y be a
separated, flat S-scheme of finite type satisfying the weak extension property.
Suppose that X is an integral S-scheme with a finite S-morphism f : X → Y .
Then X satisfies the weak extension property.
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Proof. Let U be a dense open of S, and let Z be a smooth S-scheme with a
U -morphism tU : ZU → XU . Composing this morphism with fU gives a U -
morphism sU : ZU → YU . Since Y satisfies the weak extension property, there
exists an open dense V in S containing all the codimension one points, and an
extension s : ZV → YV of sU . Up to replacing S by V , we can assume that V
is the whole S. Cover S and Y by open affines as in Lemma 2.2, then the same
proof as in Lemma 2.2 completes the proof.

Therefore, combining the above two lemmata and the proof of Theorem 2.5,
we get the following theorem.

Theorem 3.5. Keep the same hypothesis of S as in Lemma 3.3. Let XK be a
smooth scheme admitting finite K-morphism to a smooth, separated variety YK
of finite type which has a normal pseudo-Néron model Y over S. Then XK has
a normal pseudo-Néron model X over S.

The theorem also holds if XK and YK are replaced by some XU and YU
defined over a dense open U of S.

Moreover, Corollary 4.12 in [10] and Theorem 3.5 give us the following corol-
lary.

Corollary 3.6. Let W be an integral, regular, separated, Nagata Noetherian
scheme of dimension b ≥ 1. Let S be a dense open subset of W , and let X be a
scheme admitting a finite morphism to an Abelian scheme over S. There exists
an open subset S̃ of W containing S and all codimension one points, and there
exists a normal pseudo-Néron model X̃ over S̃ whose restriction over S equals
X.

3.2 Bertini’s theorems for higher order curves

Recall that a scheme X is called algebraically simply connected if for every
connected scheme Y , and every surjective finite étale morphism f : Y → X, the
morphism f is an isomorphism ([5], p.97). In this section, by a scheme over a
field k or a k-scheme, we mean a scheme that is of finite type over k.

Theorem 3.7. ([21], Prop.3.1) Let k be a field of characteristic zero. Let X
be a smooth, algebraically simply connected variety over k. Let N be a nor-
mal, connected and quasi-projective k-scheme. Let h : N → X be a projective
k-morphism. If the closed subscheme Nh of N where h is not smooth has codi-
mension at least 2, then the geometric generic fiber of h is connected.

We include the proof here for completeness.

Proof. Let u : Ñ → X be the finite part of the Stein factorization of h. Since
Nh has codimension at least two, Ñh also has codimension at least two. Since
X is smooth, u is étale by the Purity Theorem ([14], X, section 3). Since X is
algebraically simply connected, u is an isomorphism. Therefore, h has connected
fibers.
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Proposition 3.8. Let k be a field. Let X be a smooth, irreducible k-scheme
that is algebraically simply connected. Let Y be an irreducible quasi-projective k-
scheme. Let M be a normal, irreducible, quasi-projective k-scheme. Let (h, g) :
M → X ×k Y be a k-morphism such that h is projective and surjective, and g
is dominant with irreducible geometric generic fiber. Let Z be an irreducible k-
scheme. Let f : Z → Y be a finite, surjective k-morphism. Denote by ν : N →
Z×Y M the normalization of the fiber product Z×Y M . Denote by h′ : N → X
the composition of h and projection from N to M . If the closed subscheme of N
where h′ is not smooth has codimension at least 2, then the geometric generic
fiber of h′ is connected.

N
ν //

$$

h′

//

Z ×Y M //

��

Z

f

��

M
(h,g)

//

h
&&

X ×k Y //

pr1

��

Y

X

Proof. Since the geometric generic fiber of g is connected and Z is irreducible,
also the normalization N is irreducible. Then the statement reduces to Theo-
rem 3.7 because h′ is projective.

Definition 3.9. Let Y be a regular locally Noetherian scheme. Let f : Z → Y
be a finite surjective morphism that is generically étale. The closed subscheme
R inside Z where f is not étale is called the ramification locus of f . The closed
subscheme B = f(R) of Y is called the branch locus of f .

Note that, by Zariski’s purity theorem ([20], Exercise 8.2.15(c), p.347), the
branch locus B of f is either empty or pure of codimension one if f generically
separable. In particular, this holds when char k = 0 and Y is a smooth k-scheme.

Theorem 3.10. Let k be an algebraically closed field of characteristic zero. Let
Z be a normal k-scheme. Let f : Z → Pnk be a finite surjective morphism that is
generically étale. Then, for a general smooth curve C ⊂ Pnk , the inverse image
f−1(C) is a smooth curve.

Proof. This follows from Kleiman-Bertini’s Theorem ([15], Theorem III.10.8).

Theorem 3.11. Let k be an algebraically closed field of characteristic zero. Let
f : Z → Pnk be a finite surjective morphism from a normal irreducible variety.
Then, for a general genus-0, degree-d smooth curve C in Pnk , the inverse image
f−1(C) is connected.

Proof. Keep the notations in Proposition 3.8. Let Y be projective space Pnk .
Let X be the non-stacky locus inside the stack of genus-0, degree-d stable maps
to Pnk . In other words, X is the maximal open subscheme of this stack. The
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open subscheme X is algebraically simply connected. Let M be the universal
family of curves over X, and let g be the universal morphism. Then, the generic
geometric fiber of g is connected.

To complete the proof, we need to prove that the singular locus of h′ inside
N has codimension at least 2. The codimension one subset of X parameterizes
degree-d, genus-0 curves in Pnk that are not transversal to the branch locus.
Thus, away from codimension one points in X, the fibers are everywhere smooth
(Theorem 3.10). Moreover, for a genus-0, degree-d curve that is not transversal
to the branch locus, the singularities of the fiber of h′ occur only over the
intersection points of the curve with the branch locus, and this is codimension
one in the fiber. Thus, the total codimension of singular locus of h′ in N is at
least two. By Proposition 3.8, for a general genus-0, degree-d curve C in Pnk ,
the inverse image f−1(C) is connected.

Corollary 3.12. Let k be an algebraically closed field of characteristic zero. Let
f : Z → Pnk be a finite surjective morphism from a normal irreducible variety.
Then, for a general genus-0, degree-d smooth curve C in Pnk , the inverse image
f−1(C) is smooth and irreducible.

Theorem 3.13. Let k be an algebraically closed field of characteristic zero. Let
Z be a normal k-scheme that is not necessarily connected. Let f : Z → S be a
finite surjective morphism to a smooth, connected, quasi-projective k-scheme S
where S admits a finite, generically étale morphism to an open dense subset of
Pnk , u0 : S → Pnk . Then, for a general genus-0, degree-d smooth curve C in S
(cf. Definition 1.1), the restriction map of sections

Sections(Z/S)→ Sections(ZC/C)

is bijective.

Proof. Shrinking S if necessary, we can assume that f is étale. Also, we can
assume that Z is connected. By taking a normal projective compactification of
Z, Corollary 3.12 shows that for a general genus-0, degree-d curve C the inverse
image f−1(C) is an irreducible and smooth curve. If deg(f) is strictly greater
than one, then there is no section for f ([28], Prop.5.3.1, p.165). Since f is
flat, deg(f |f−1(C)) equals deg(f) ([20], Exercise 5.1.25(a), p.176). Thus, there
is no section for f |f−1(C) neither. If deg(f) is one, then the restriction map of
sections is trivially bijective.

3.3 Notations and Set up

In the rest of this paper, we will assume that S is a smooth, quasi-projective
k-variety of dimension≥ 2, where k is an uncountable algebraically closed field
of characteristic zero. And we fix a generically finite dominant morphism u0 :
S → Pnk so that we can talk about lines and line-pairs, or curves and curve-pairs
in S (see Definition 1.1). Note that, without changing any of the results, we
can shrink S to a dense open subset and assume further that u0 is a finite, étale
morphism onto a dense open subset of Pnk .
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3.3.1 Isotrivial quotient and spaces of sections

Let k be an algebraically closed field of characteristic zero. Suppose that S is a
smooth variety over k with a finite étale morphism onto a dense, Zariski open
subset of Pnk , say, u0 : S → Pnk . We claim that there exists a smooth projective
compactification W of S extending u0. Since S is quasi-projective, let W be the
reduced projective completion of S. Up to replacing W by its normalization,
we can assume W is normal. Then, W is singular only at a codimension two
closed subset([20], Prop.4.2.24). Moreover, since the characteristic of k is zero,
by Hironaka’s resolution of singularities, there exists smooth W ′ and W ′ →W ,
which is birational, projective and an isomorphism on the smooth locus of W .
So, replacing W by W ′, we can assume further that W is smooth and projective
over k, and S is a dense open subset in W . We include the following diagram
to clarify the situation.

S �
�

open
dense //

finite
étale

��

W

��

Image(S)
� �

open
dense

// Pnk

Now, the image of W contains an open dense subset of Pnk since S is finite
and étale over a dense open subset of Pnk . Moreover, since W is projective over
Spec k, W → Pnk is projective, and hence the image of W is the whole Pnk . So
the space of conics in W and the space of curve-pairs in W are the same as the
space of conics and curve-pairs in Pnk .

Notation 3.14. The smooth projective varietyW constructed as above is called
a projective compactification of S.

Recall that an Abelian scheme over S is defined as a proper and smooth S-
group scheme with connected fibers. Theorem 1.2 gives the result for restriction
of sections over line-pairs for a family of Abelian varieties. We hope to generalize
Theorem 1.2 to schemes X admitting a finite morphism to some Abelian scheme
A over S. Unfortunately, in this situation, the trick of taking boundaries fails to
apply on X (cf. [10], Lemma 4.3, Lemma 4.4 and Lemma 4.5). So the isotrivial
factor of A gives moduli of sections (see Remark 3.47), and hence we have to
consider curves of higher degree instead of line-pairs. The process of proof will
involve the application of pseudo-Néron models.

We first fix some notations to clarify the situation. Let A be an Abelian
scheme over S, and f : X → A a finite S-morphism. There exists an open dense
subset V ⊂ S and a finite étale Galois cover p : V ′ → V such that the pullback
of A to V ′ is isogenous to a product of a strongly nonisotrivial family of Abelian
varieties and a trivial family (see the proof of Theorem 4.7 in [10]). We can
assume that V = S. And denote V ′ by S′.

Notation 3.15. Let A0 be an Abelian variety over k such that (A0, v0) is a
Chow S′/k-trace of S′ ×S A where v0 : S′ ×k A0 → S′ ×S A is a morphism
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of Abelian schemes over S′ ([10], Theorem 3.2 (i), p.315). Then, there exists
a strongly nonisotrivial Abelian scheme Q over S′ with vQ : Q → S′ ×S A a
morphism of Abelian schemes, and ρiso := v0×vQ : (S′×kA0)×S′Q→ S′×SA
is an isogeny of Abelian schemes over S′ ([10], Corollary 3.7, p.317). Recall
that an isogeny of Abelian schemes is a surjective S-group morphism with finite
fibers, and such an isogeny must be finite.

Since A0 ×S S′ is projective over S′, the Weil restriction RS′/S(A0 ×k S′)
exists ([3], Theorem 7.6/4, p.194). Moreover, since S is a normal scheme, it is
geometrically unibranch. Thus, A is projective over S ([26], Théorème XI 1.4).
Therefore, the Weil restriction RS′/S(A ×S S′) also exists. We can check that
the functorial morphism

RS′/S(v0) : RS′/S(A0 ×k S′)→ RS′/S(A×S S′)

is a closed immersion (see the disscusion after Theorem 6.2 in [4] p.72).

Proof. Let {Si} be a finite set of étale neighborhoods of S such that
∐
i Si → S

is faithfully flat and the base change of S′ → S by Si is an open immersion
([3], Prop.2.3/8, p.49). Denote

∐
i Si by T . Since T → S is faithfully flat and

locally of finite presentation, it suffices to prove that RS′/S(v0)× IdT is a closed
immersion ([7], Prop.1.15, p.9). However, since Weil restrictions commute with
base change, we are reduced to the case where S′ is the disjoint union

∐
i Si.

Therefore, we have the isomorphisms

RS′/S(A0 ×k S′) =
∏
i

RSi/S(A0 ×k S′ ×S Si) =
∏
i

A0 ×k S′ ×S Si,

and

RS′/S(A×S S′) =
∏
i

RSi/S(A×S S′ ×S Si) =
∏
i

A×S S′ ×S Si

(see the proof of Prop.7.6/5 in [3], p.196). Since k is a field of characteristic zero,
the morphism v0 is a closed immersion ([4], p.20 and p.21). Thus, RS′/S(v0) is
a closed immersion.

Definition-Lemma 3.16. Let A→ RS′/S(A×SS′) be the functorial morphism
of S-schemes, which is a closed immersion sinceA is separated over S ([3], p.197).
The isotrivial factor Iso(A) of the Abelian scheme A over S is the fiber product
of A and RS′/S(A0 ×k S′) over RS′/S(A ×S S′). In other words, the following
diagram is Cartesian

Iso(A) //

��

RS′/S(A0 ×k S′)

RS′/S(v0)

��

A // RS′/S(A×S S′).

It is easy to check that Iso(A) is a closed Abelian subgroup scheme of A over
S, and the fiber dimension of Iso(A)→ S is just dimA0.
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Proof. For any S-scheme W , the Weil restriction RS′/S(A×S S′) represents the
functor

W 7→ HomS′(W ×S S′, A×S S′).
Thus, RS′/S(A ×S S′) is a group scheme over S because A ×S S′ is a group
scheme. Moreover, since A → RS′/S(A ×S S′) is induced by the identity on
A ×S S′, the functorial morphism A → RS′/S(A ×S S′) is a homomorphism
of group schemes. Similarly, RS′/S(A0 ×k S′) is a group scheme over S and
RS′/S(A0 ×k S′) → RS′/S(A ×S S′) is a homomorphism of group schemes.
Therefore, Iso(A) is a group scheme over S.

Let T be the disjoint union of schemes as in Lemma ??. Then, Iso(A)×S T
is
∏
iA0 ×k S′ ×S Si. Thus, Iso(A) is smooth over S by the standard descent

results ([7], Prop.1.15, p.9). Moreover, since Iso(A) is a closed subscheme of the
projective S-scheme A, Iso(A) is projective over S.

Let bi be a point in Si and b be the image of bi in S. Then, κ(bi) is a
finite separable extension of κ(b). Since surjectivity is stable under base change
and S′ ×S Si → Si is an open immersion, the morphism S′ ×S Si → Si is an
isomorphism. Let b′′ be a point in S′×S Si whose image in Si is bi. Then, κ(b′′)
is the same as κ(bi). Denote the image of b′′ in S′ by b′.

S′

finite
étale

��

S′ ×S Sioo

open
immersion
��

S Si
étale

oo

Then, RS′/S(A ×S S′) ×S Si equals RS′×SSi/Si(A ×S S′ ×S Si) which is A ×S
S′ ×S Si since S′ ×S Si → Si is an isomorphism. Therefore, the geometric fiber
RS′/S(A×S S′)b is equal to

(A×S S′ ×S Si)×Si Specκ(bi)

which is the same as

A×S (S′ ×S S′)×S′ Specκ(b′′).

Let G be the Galois group of S′ → S ([3], Example B, p.139). Then, S′ ×S S′
is isomorphic to the disjoint union of S′, G× S′. So the geometric fiber is

A×S (G× S′)×S′ Specκ(b′′),

i.e., a disjoint union of |G| copies of the geometric fiber Ab. The same argument
gives that the geometric fiber RS′/S(A0 ×k S′)b is a disjoint union of |G| copies

of the Abelian variety A0 ×k Specκ(b).
Because A→ RS′/S(A×S S′) is a closed immersion, this morphism includes

the geometric fiber Ab as one copy of the disjoint union of |G| copies of Ab.
Therefore, the geometric fiber of Iso(A) over b is the Abelian variety A0 ×k
Specκ(b), which is irreducible. As a consequence, Iso(A) is a smooth, projective
group scheme over S with connected geometric fibers. So Iso(A) is an Abelian
S-scheme.
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Remark 3.17. By Poincaré’s complete reducibility theorem, there exists a mor-
phism of S-schemes π : A→ Iso(A) such that the composition

Iso(A)−−−−−→A
π

−−−−−→ Iso(A)

is an isogeny on the generic fiber of Iso(A). We call such a morphism π an
isotrivial quotient of the Abelian scheme A. For the rest of this article, we fix
an isotrivial quotient π : A → Iso(A). Denote by ρ : Iso(A) → S the structure
morphism of Iso(A). If b is a point in S, we will denote the fiber of Iso(A) over
b by Iso(A)b.

Proof. Over the function field K of S, Iso(A)K is an Abelian subvariety of AK .
By Poincaré’s complete reducibility theorem ([2], Theorem 8.9.3, p.267), there
is an Abelian subvariety B of AK such that the restriction of multiplication
gives an isogeny

m : Iso(A)K ×K B → AK .

Since K is a perfect field, there is a dual isogeny

m̂ : AK → Iso(A)K ×K B

such that m̂ ◦ m : Iso(A)K ×K B → Iso(A)K ×K B is the multiplication by
deg(m). Let pr1 be the first projection from Iso(A)K ×K B to Iso(A)K . Let ι :
Iso(A)K → AK be the closed immersion. Then, (pr1 ◦m̂)◦ι is the multiplication
by deg(m) on Iso(A)K , which is an isogeny.

Since the Abelian scheme Iso(A) is a Néron model of Iso(A)K ([3], Prop.1.2/8,
p.15), the morphism pr1 ◦m̂ : AK → Iso(A)K extends to an open dense subset
of S containing all codimension one points of S (Corollary 3.6). Therefore, we
have a rational map π : A 99K Iso(A). Since S is regular, the rational map π is
defined everywhere ([3], Cor.8.4/6, p.234).

Notation 3.18. Let Sectionspb(A/S) (resp. Sectionspb(X/S)) be the set of sec-
tions of A (resp. X) over S such that every section in the set maps b ∈ S to
p ∈ Iso(A) via π : A→ Iso(A) (resp. π ◦ f).

Notation 3.19. Take a smooth, projective compactification W of S. Let Ã→
W0 be the Néron model of A → S where W0 is an open dense subset of W
which contains all the codimension one points of W . Let A→W be a projective
morphism whose restriction over W0 equals Ã.

Every section of A over S gives a unique rational section of A→ W , whose
maximal domain of definition contains all the codimension one points of W
since A has Néron model. Conversely, let τ be a rational section of A → W .
The maximal domain of definition of τ contains S since every geometric fiber
of A → S does not contain any rational curve ([9], Proposition 6.2, p.1234).
Thus, the set of rational section of A → W bijectively correspondes to the set
of sections of A→ S.

There is a Chow variety parameterizing cycles in A. The Chow variety has
countably many irreducible components. There is an open subset of this Chow
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variety parameterizing cycles Z ⊂ A such that Z → W is birational. Then,
this variety is the parameter space for rational sections of A → W . By the
correspondence of rational sections of A→W and sections of A→ S as above,
also this is the parameter space for sections of A→ S. Denote by this parameter
space Sec(A/S). Every irreducible component of Sec(A/S) is quasi-projective
over k.

The fiber product Sec(A/S)×k S parameterizes the pairs ([σ], b) where σ ∈
Sections(A/S) and b ∈ S. Let prev : Sec(A/S)×kS → S be the projection to S,
i.e., mapping ([σ], b) to b. Denote by Secb(A/S) the product Sec(A/S) × {b}.
Let Σ : Sec(A/S) ×k S → A be the universal section over Sec(A/S). Then
the morphism Σb := π ◦ (Σ|Secb(A/S)) : Secb(A/S) → Iso(A) maps each [σ], a
section σ of A over S, to σ(b) ∈ Iso(A). Therefore, Secb(A/S) is also a space
parameterizing pairs ([σ], p), a closed point p ∈ Iso(A) and a section of A over
S, σ ∈ Sections(A/S), such that σ(b) = p. Denote by Secpb(A/S) the fiber of Σb
over a point p ∈ Iso(A)b. Similarly, we can define Secb(X/S) and Secpb(X/S).

3.3.2 Curves and curve-pairs

Take a smooth, projective compactification W of S. Then, there is a projective,
surjective morphism W → Pnk extending u0 : S → Pnk . Let X be a scheme over

S such that it admits a pseudo-Néron model X̃ over an open dense S̃, containing
S, of codimension at least two in W , e.g., X admits a finite morphism to an
Abelian scheme A over S.

Definition 3.20. An 1-pointed, genus 0, degree d+2, k-curve-pair C = (s, [m], t, [`])
in W is a projective, connected, reduced, nodal curve of arithmetic genus 0 and
degree d+ 2 (see Definition 1.1) such that

• C = m ∪ ` where m is a smooth curve of genus 0, degree d, ` is a smooth
conic, and m intersects with ` transversally at a closed point t,

• the marked point s ∈ m is a nonsingular closed point of C.

Notation 3.21. Let M≤2

0,1(W,d+ 2) be the stack:

T 7→

{
flat, projective families AT → T of geneus zero, degree

d+ 2, 1-pointed curves in W , at worst curve-pairs

}

where T is a k-scheme. Moreover, if the marked point on every curve is a fixed

point b ∈W , we denote the stack by M≤2

0,1(W,d+ 2; b).

Remark 3.22. Our notations are motivated by [1] and [8], but the curves we
consider have at most two irreducible components. Also, if d > 2, the marked
point is always on the irreducible component that is not a smooth conic.

Notation 3.23. Denote by ∂M≤2

0,1(W,d+ 2) (resp. ∂M≤2

0,1(W,d+ 2; b)) be the

substack of M≤2

0,1(W,d+ 2) (resp. M≤2

0,1(W,d+ 2; b)) of 1-pointed curve-pairs.

22



Keep the notations in Definition 3.20 and Notation 3.21, the marked point
s ∈ C defines an evaluation morphism

ρev : ∂M≤2

0,1(W,d+ 2)→ S, (s, [m], t, [`]) 7→ s

whose fiber over b ∈ S is just ∂M≤2

0,1(W,d+ 2; b).

Notation 3.24. Denote by M0,1(W,d) the stack over k:

T 7→

{
flat, projective families BT over T of pairs (s, [m]) genus zero,

degree d smooth curve m ⊂W with a marked point s ∈ m

}

where T is a k-scheme. If the marked point is a fixed closed point b ∈ W , we
denote the stack byM0,1(W,d; b). Similarly, denote byM0,0(W, 2) the stack of
smooth conic curves; note that there is no marked points on conics.

There are forgetful morphisms from ∂M≤2

0,1(W,d+ 2):

δ1 : ∂M≤2

0,1(W,d+ 2)→M0,1(W,d), (s, [m], t, [`]) 7→ (s, [m]),

δ2 : ∂M≤2

0,1(W,d+ 2)→M0,0(W, 2), (s, [m], t, [`]) 7→ [`].

Notation 3.25. As subspaces of M≤2

0,1(W,d+ 2) and ∂M≤2

0,1(W,d+ 2), denote

the open locus of genus-0, degree-(d + 2) curves or curve-pairs contained in S̃

(resp. S) by M≤2

0,1(S̃, d + 2) and ∂M≤2

0,1(S̃, d + 2) (resp. M≤2

0,1(S, d + 2) and

∂M≤2

0,1(S, d + 2)). Similarly, we can define the subspaces of M≤2

0,1(W,d + 2; b)

and ∂M≤2

0,1(W,d+ 2; b) for curve or curve-pairs contained in S̃ and S.

Remark 3.26. Taking the maximal open subschemes of the stacks in Nota-
tion 3.25, we can assume that they are all schemes over k. Then, the scheme

M≤2

0,1(W,d+2) is an integral and smooth k-scheme and the locus ∂M≤2

0,1(W,d+2)

is an integral, smooth divisor in M≤2

0,1(W,d+ 2).

Notation 3.27. Suppose that ∂M≤2

0,1(S, d+ 2)RS ⊂ ∂M≤2

0,1(S, d+ 2) is the very
general subset parameterizing genus zero, degree d+ 2 curve-pairs C in S such
that the restriction of sections

Sections(A/S)→ Sections((A×S C)/C) (†)

is bijective. Denote by M0,1(S, d)RS ⊂ M0,1(S, d) the very general subset
parameterizing genus-0, degree-d smooth curves such that (†) is bijective. We

will prove the existence of ∂M≤2

0,1(S, d + 2)RS and M0,1(S, d)RS for d ≥ 2 an
even integer in Corollary 3.42. Similarly, for a fixed very general closed point

b ∈ S, we can define ∂M≤2

0,1(S, d+ 2; b)RS and M0,1(S, d; b)RS.
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3.3.3 Bad sets in parameter spaces

Now we define the bad set for sections and curve-pairs. The fiber product

∂M≤2

0,1(S, d + 2) ×ρev,S,prev (Sec(A/S) ×k S), see the notation at the end of
Notation 3.19 and the notation after Notation 3.23, parameterizes the pairs of
sections and curve-pairs ((b, [m], t, [`]), ([σ], p)) where σ is a section of A over S
mapping b to p and the marked point on the curve m is a point b ∈ S.

For a pair of closed points b ∈ S, p ∈ Iso(A)b, and let σ be a section of A
over S that maps b to p. Denote by C = m ∪ ` a curve-pair in S where m is a
smooth curve, ` is a conic. Consider the following two properties,

(i) Sectionspb(A/S)→ Sectionspb((A×S C/C) is bijective;

(ii) Sectionspb((X ×A,σ S)/S)→ Sectionspb((X ×A,σ S ×S `)/`) is bijective,

where the maps of the sets of sections are restrictions and the fiber product
X ×A,σ S comes from the section σ from S to A mapping b to p.

Definition 3.28. The subset

Bad(d+ 2) ⊂ ∂M≤2

0,1(S, d+ 2)×ρev,S,prev (Sec(A/S)×k S)

such that either (i) is false or (ii) is false is called the bad set of sections and
curve-pairs. Denote by Bad(d+ 2; b) the fiber of Bad(d+ 2) over b ∈ S, and we
call Bad(d+ 2; b) the bad set of sections and curve-pairs marked by b.

Remark 3.29. By Theorem 3.13, there is a very general subset U ⊂ M0,0(S, 2)
such that for each [`] ∈ U and each σ ∈ Sections(A/S) the property (ii) holds.
Then, Bad(d+ 2) is contained in the complement of the very general subset

(δ−1
2 (U) ∩ ∂M≤2

0,1(S, d+ 2)RS)×ρev,S,prev (Sec(A/S)×k S).

Remark 3.30. The subset Bad(d + 2; b) is contained in ∂M≤2

0,1(S, d + 2; b) ×k
Secb(A/S). Denote by φ1 and φ2 the projections from Bad(d+2; b) to ∂M≤2

0,1(S, d+
2; b) and Secb(A/S). The composition of φ2 and Σb (see Notation 3.19) gives

φ3 : Bad(d+ 2; b)→ Iso(A)b, by {(b, [m], t, [`]), ([σ], p)} 7→ p.

Definition 3.31. Denote by Bad(d+ 2; b, p) the fiber of φ3 over p ∈ Iso(A)b. If

{(b, [m], t, [`]), ([σ], p)} ∈ Bad(d+ 2; b, p),

p is called a bad point for the curve-pair (b, [m], t, [`]), and σ is called a bad
section for (b, [m], t, [`]). Otherwise, (b, [m], t, [`]) is called good for the section
σ ∈ Sectionspb(A/S). If (b, [m], t, [`]) is good for every section in Sectionspb(A/S),
the point p is called a good point for (b, [m], t, [`]).

Definition 3.32. An irreducible smooth curve C with a marked point b ∈ S
is called good for a section σ in Sectionspb(A/S) if the following two properties
hold
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(i) Sectionspb(A/S)→ Sectionspb((A×S C)/C) is bijective,

(ii) Sectionspb((X ×A,σ S)/S)→ Sectionspb((X ×A,σ S ×S C)/C) is bijective,

where the maps of the set of sections are restrictions and the fiber product
X ×A,σ S comes from the section σ from S to A. And p is a good point for
(b, [C]) if (b, [C]) is good for every section in Sectionspb(A/S).

The same construction as for curve-pairs shows that there is a subset Bad(d)
in the fiber product of M0,1(S, d) and Sec(A/S) ×k S over S via evaluation
maps such that Bad(d) parameterizes smooth curves making either (i) false or
(ii) false. Also, Bad(d) is contained in a countable union of closed subsets.

Remark 3.33. Precisely, we should use different notations for bad sets of curve-
pairs and curves since they are in different parameter spaces. Since in our proof
of Theorem 1.3 every family of curves is clear from context, we apply the same
notation Bad and just indicate the degrees of the curves.

3.3.4 Universal curves and universal sections

Notation 3.34. Let CM(W ) ⊂M
≤2

0,1(W,d+ 2; b)×k W be the universal family

of curves over M≤2

0,1(W,d+ 2; b). Denote the open subset of universal family of

curves in S̃ (resp. S) by CM(S̃) (resp. CM(S)).

Notation 3.35. Fix closed points b ∈ S and p ∈ Iso(A)b. Denote by Hp
b

be the scheme parameterizing sections γ of XC → C where C is a curve in

M≤2

0,1(S, d+ 2; b) and γ maps b to p via π ◦ f .

Equivalently, we have the following diagram, where Φ is the composition of

the structure morphism of Hp
b over M≤2

0,1(S, d + 2; b) and the open immersion

M≤2

0,1(S, d+ 2; b)→M≤2

0,1(S̃, d+ 2; b) and all squares are Cartesian.

Hp
b ×M≤2

0,1(S̃,d+2;b)
CM(S̃) ×S̃ X̃ //

��

X̃ ×S̃ CM(S̃)
//

��

X̃

��

Hp
b ×M≤2

0,1(S̃,d+2;b)
CM(S̃)

��

// CM(S̃)
//

��

S̃

Hp
b

Φ //M≤2

0,1(S̃, d+ 2; b)

We note that Hp
b is locally of finite type over M≤2

0,1(S̃, d + 2; b), and hence
over k, but may have infinitely many irreducible components. Every irreducible

component is quasi-projective over M≤2

0,1(S̃, d+ 2; b).
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Notation 3.36. There is a universal section of Hp
b ×M≤2

0,1(S̃,d+2;b)
CM(S̃)×S̃ X̃ →

Hp
b ×M≤2

0,1(S̃,d+2;b)
CM(S̃). We compose it with the top row of the digram above,

and denote the morphism by

% : Hp
b ×M≤2

0,1(S̃,d+2;b)
CM(S̃) → X̃,

which factors through the inclusion X → X̃.

3.4 Restrictions of Sections for Abelian Schemes

3.4.1 Main pseudo-Néron model theorem

In this subsection, we prove the key theorem that applies pseudo-Néron models
to the problem of restriction of sections. The proof is similar to Lemma 4.13
of [10], but we prove a relative version of this result, i.e., for fixed b ∈ S and
p ∈ Iso(A)b.

Lemma 3.37. Let X → S be a morphism locally of finite type of regular Noethe-
rian schemes. Let Z be a codimension one regular closed subscheme of X, and
suppose that Z → S is smooth. Then, there exists an open subset U of X that
contains Z such that U → S is smooth.

Proof. See Appendix B.

Recall that W is a smooth, projective compactification of S.

Theorem 3.38. Suppose that:

• X is smooth projective over S,

• X has a pseudo-Néron model X̃ over W , and

• every geometric fiber Xs for s ∈ S does not contain any rational curve.

Then, sections of X → S over genus-0, degree-(d + 2) smooth curves special-
ize to sections over genus-0, degree-(d + 2) curve-pairs. More precisely, any

irreducible component H0 of Hp
b which dominates M≤2

0,1(S̃, d + 2; b) also dom-

inates ∂M≤2

0,1(S̃, d + 2; b). That is, the intersection of the image Φ(H0) with

∂M≤2

0,1(S̃, d+ 2; b) contains a dense open subset of ∂M≤2

0,1(S̃, d+ 2; b).

Proof. As in [10], we consider the diagram:

C∂M(W )
//

��

CM(W )
//

��

W

∂M≤2

0,1(W,d+ 2; b) //M≤2

0,1(W,d+ 2; b)
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where C∂M(W ) is the universal family of curve-pairs with nodes of curve-pairs

deleted so that C∂M(W ) → ∂M≤2

0,1(W,d + 2; b) is smooth. Also, the morphisms
CM(W ) →W and the composition C∂M(W ) →W are smooth.

Since H0 is quasi-projective overM≤2

0,1(S̃, d+2; b), we can choose a compact-

ification H of H0 such that H is normal and Φ extends to a proper surjection

Φ : H →M≤2

0,1(W,d + 2; b). Thus, D := Φ
−1

(∂M≤2

0,1(W,d + 2; b)) is nonempty,

and we may assume that D is irreducible. Since H is normal, it is regular at a
general point of D. Set Dred as the reduced structure of D. Denote by H

reg
the

regular locus of H. By the generic smoothness theorem, there is a dense open

V ⊂ Dred ∩H
reg

such that Φ : Dred → ∂M≤2

0,1(W,d+ 2; b) is smooth on V .

Denote by CH the base change CM(W ) ×M≤2
0,1(W,d+2;b)

H. Then, CV → W is

smooth, CV → CH is an immersion and V is contained in the regular locus of
H. We summarize the objects in the following diagram (cf. [10], p.324).

CV

��

//

&&

CH //

��

xx

X̃

��

C∂M(W )
//

��

CM(W )
//

��

W

∂M≤2

0,1(W,d+ 2; b) �
�

//M≤2

0,1(W,d+ 2; b)

V //

Φ

88

D
� � //

Φ

ii

H

Φ

ff

By Lemma 3.37, there exists a maximal open subset U of CH containing CV
such that U → W is smooth. The universal section % (see Notation 3.36) gives

a rational map U 99K X, which is marked as the dashed arrow from CH to X̃
in the diagram above. Denote this rational map also by %.

Now, let W̃ ⊂ W be the image of U → W . By construction, W̃ contains S
and an open dense subset of the image of C∂M(W ) in W . Since X̃ is a pseudo-

Néron model of X over S, U 99K X̃ is well-defined outside a codimension two
subset of W̃ by the weak extension property. Every such codimension two subset
in W̃ can be avoided by a general smooth curve or curve-pair in S. This gives an
open dense subset U ′ of U such that U ′ contains an open dense subset of C∂M(W )

and % is well-defined on U ′. As a consequence, every curve-pair intersecting an
open subset of C∂M(W ) with nodes deleted can be lifted. Moreover, since there
is no rational curve on every geometric fiber of X → S, any morphism from a
punctured curve-pair to X can be extended to the node by Abhyankar’s lemma
([17], Theorem (1.9.3), p.290). Since Hp

b parameterizes the space of genus zero,
degree-(d+ 2) curves that can be lifted (Notation 3.35), an open subset of V is
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contained in the image of H0, i.e., H0 also dominates ∂M≤2

0,1(W,d+ 2; b).

Remark 3.39. Technically, that the characteristic of k is zero is required to apply
the generic smoothness theorem.

3.4.2 Inductive pseudo-Néron deforming step

Now we prove the existence of the very general subset ∂M≤2

0,1(S, d + 2)RS of

∂M≤2

0,1(S, d+ 2), see Notation 3.27. That is, the very general subet parameter-
izing genus zero, degree-(d+ 2) curve-pairs C such that the restriction

Sections(A/S)→ Sections((A×S C)/C)

is bijective. In [10] (Theorem 1.2), it was proved that this very general subset
exists if C is a line-pair. And since we work over a field of characteristic zero,
the same is true for a very general smooth conic by using the pseudo-Néron
model (Theorem 1.2). The following inductive step gives the relative version
of Theorem 1.2 for very general genus-0, degree-(d+ 2) curves, and curve-pairs
with fixed b ∈ S, p ∈ Iso(A)b.

Corollary 3.40. Fix b ∈ S and p ∈ Iso(A)b closed points. Suppose that for a
very general genus-0, degree-(d+ 2) curve-pair C = m ∪ `, where ` is a smooth
conic, every section in Sectionspb(XC/C) is the restriction of a unique section in
Sectionspb(X/S), see Notation 3.18. Then, for a very general genus-0, degree-
(d + 2) irreducible smooth curve containing b, every section over this curve
mapping b to p is the restriction of a unique section of X over S.

Proof. Since k has characteristic zero, f : X → A is generically unramified.
Thus, up to shrinking S, we assume that f is finite and unramified. Let Y be
the scheme parameterizing sections of X over S mapping b to p. Then, because

f is unramified, Hp
b has reduced fibers over M≤2

0,1(S, d + 2; b). Moreover, there

is a M≤2

0,1(S, d + 2; b)-morphism Υ : M≤2

0,1(S, d + 2; b) ×k Y → Hp
b that maps

{[C1]}×{[σ]} to [σ|C1
] for each [C1] ∈M≤2

0,1(S, d+ 2; b) and [σ] ∈ Y. The image
of this morphism is a union of irreducible components of Hp

b .

Suppose that there exists an irreducible component ofHp
b dominatingM≤2

0,1(S, d+
2; b) such that a generic section parameterized by this component is not a restric-
tion of a section of X over S. By Theorem 3.38, this irreducible component also

dominates ∂M≤2

0,1(S, d+2; b). But then by hypothesis this component intersects

with the image of Υ, which contradicts that the fibers of Hp
b →M

≤2

0,1(S, d+2; b)
are reduced.

Lemma 3.41. Suppose that every section of A over a very general genus-0,
degree-d, irreducible, smooth curve is contained in a unique section of A over
S. Then, for very general points b′ and b′′ in S and for a very general conic `
containing b′ and a very general genus-0, degree-d curve m containing b′′ with
d ≥ 2 such that ` and m intersect at a very general point c, every section in
Sections(Am∪`/m ∪ `) is the restriction of a unique section in Sections(A/S).
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Proof. Denote by M ′ the space of conics in S and M ′′ the space of genus-0,
degree-d curves. Denote by C ′, resp. C ′′, the universal family of curves over M ′,
resp. M ′′ (Definition A.4 (i)). Let γ be a section in Sections(Am∪`/m∪`). Then,
by Theorem 1.2, γ|` is contained in a unique global section σ ∈ Sections(A/S),
and the same is true for γ|m by hypothesis. Let τ ∈ Sections(A/S) be the unique
global section extending γ|m. Set r = 2 dim(S)− 2. The transversal Grassman-
nian G′ is the Grassmannian parameterizing r-dimensional linear subvarieties
N ′ of M ′, and similarly define G′′ for M ′′ (Definition A.4 (vii)).

For very general m and `, they are contained in some very general linear
subvariety N ′ of M ′ and linear subvariety N ′′ of M ′′ respectively. Denote by
u′S and u′′S the composed morphisms

C ′ → S ×Spec kM
′ → S,

and
C ′′ → S ×Spec kM

′′ → S

(Definition A.4 (iii)). The base change of σ, resp. τ , to C ′, resp. C ′′, gives a u′S-
multisection σ1, resp. u′′S-multisection τ1 of A → S (Definition A.3). Consider
the 2-pointed bi-gon (C ′t′ ∪c C ′′t′′ , b′, b′′) parameterized by a point t′ ∈ N ′, resp.
t′′ ∈ N ′′, whose curve C ′t′ contains c and b′, resp. whose curve C ′′t′′ contains c
and b′′ (see the statement of Lemma A.10). Denote the image of σ1, resp. τ1 in
C ′ ×S A, resp. C ′′ ×S A by Ω′, resp. Ω′′ (Definition A.3).

The following composition

Ω′ ×N ′ C ′N ′ → A×S (C ′N ′ ×N ′ C ′N ′)
IdA×u[2]

N′,S

−−−−−−−−−−→ A×S (S ×Spec k S)

defines a (S ×Spec k S, pr1)-multisection of A→ S (Lemma A.7). Let the image
of the restriction of this multisection on the fiber pr−1

1 (b′) in A be Ω′M ′,N ′,b′ ,
and similarly define Ω′′M ′′,N ′′,b′′ (see the notations in Lemma A.10). The base
change of σ via the composition

C ′N ′ ×N ′ C ′N ′
u
[2]

N′,S

−−−−−−−−→ S ×Spec k S
pr1

−−−−−→ S

gives a section of A×S (C ′N ′ ×N ′ C ′N ′) over C ′N ′ ×N ′ C ′N ′ , which is the same as
the base change of σ via

C ′N ′ ×N ′ C ′N ′
pr1

−−−−−→ C ′N ′
u′S

−−−−−→ S.

Thus, the image of σ in A equals the image of Ω′×N ′ C ′N ′ in A. The restriction
of Ω′ ×N ′ C ′N ′ on the pr1-fiber pr−1

1 (b′) is the restriction of σ on the curves
C ′t′ containing b′ and parameterized by t′ ∈ N ′. Therefore, the image of γ|`
is contained in Ω′M ′,N ′,b′ , and the same argument shows that the image of γ|m
is contained in Ω′′M ′′,N ′′,b′′ . By the Bi-gon Lemma (Lemma A.10), for a very
general pair (N ′, N ′′, b′, c, b′′) in G′ ×Spec k G

′′ ×Spec k S ×Spec k S ×Spec k S, γ
comes from a unique section of A over S.
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Corollary 3.42. Let S be a smooth, quasi-projective k-scheme of dimension
b ≥ 2. Let A be an Abelian scheme over S. For a very general curve-pair
C = m ∪ ` in S such that the degree of m is even, ` is a smooth conic, the
restriction map of sections

Sections(A/S)→ Sections(AC/C)

is a bijection. This also holds for C a very general genus-0, irreducible, smooth
curve of even degree in S.

Proof. Take X = A in Corollary 3.40. In Lemma 3.41, take m as a conic
curve. Then by Theorem 1.2 and Lemma 3.41 the result holds for a very general
m ∪ `. Next, use Corollary 3.40 to deform m ∪ ` to a very general genus-0,
irreducible smooth curve of degree 4. Attach a very general conic to this curve
at a very general point and apply Lemma 3.41 and Corollary 3.40 again. Then,
the corollary follows by induction.

3.5 Moduli of bad points caused by Iso(A)

Lemma 3.43. Let A and B be two Abelian varieties over a field k. Then, there
are at most countably many homomorphism of Abelian varieties from A to B.

Proof. See Appendix B.

Lemma 3.44. Let C be a smooth curve in S. Then, for fixed b ∈ C and
p ∈ Iso(A)b closed points, there are at most countably many sections of X (resp.
A, resp. Iso(A)) over C that map b to p. And there are at most countably many
sections of X (resp. A, resp. Iso(A)) over S that map b to p.

Proof. It suffices to prove the statement for the Abelian scheme A since X → A
is finite and Iso(A) is a closed subscheme of A.

First suppose that A = A0 ×k S for some abelian variety A0 over k. Since
the inclusion C → S is fixed, giving a morphism from C to A0 ×k S is the
same as giving a morphism from C to A0. Up to a translation we can assume
that the image of p is the identity in A0. Then, this is equivalent to specifying
a homomorphism (Jac(C), 0) to (A0, 0), where Jac(C) is the Jacobian of C.
By Lemma 3.43, there are at most countably many such homomorphisms, and
hence at most countably many sections from C to A that map b to p.

Now, suppose that A is not a trivial family of Abelian varieties. However,
by a finite, étale and Galois base change S′ → S, we have an isogeny of Abelian
S′-schemes,

ρiso : (A0 ×k S′)×S′ Q→ A×S S′

where A0×kS′ is a trivial family of Abelian varieties over S′ and Q is a strongly
nonisotrivial Abelian scheme over S′.

Consider the product (A0×k S′)×S′Q. Let b′ ∈ S′ and p′ ∈ A0×k S′. Every
section of (A0 ×k S′)×S′ Q over C ′ = C ×S S′ that maps b′ to p′ comes from a
section of A0 ×k S′ over C ′ mapping b′ to p′ and a section of Q over C ′. There
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are at most countably many sections of A0×k S′ over C ′ mapping b′ to p′. And
since Q is strongly nonisotrivial, there are at most countably many section of
Q over S′ ([10], Lemma 3.6, p.316). Thus, there are at most countably many
sections of (A0 ×k S′)×S′ Q over C ′ mapping b′ to p′.

By the standard descent result, HomS(C,A) → HomS′(C
′, A ×S S′) is in-

jective ([3], Theorem 6.1/6 (a), p.135). And, if a morphism from C to A is an
immersion after the base change by S′, so is the original morphism ([13], IV2,
Prop.2.7.1). So the problem reduces to counting the sections of A×S S′ over C ′

mapping a fixed point b′ ∈ S′ to a fixed point p′ ∈ A×S S′. Let

τiso : A×S S′ → (A0 ×k S′)×S′ Q

be the dual isogeny of ρiso. Let p′′ be the image of p′ under τiso. Then, since

τiso is finite, for every section σ′′ in Sectionsp
′′

b′ ((A0 ×k S′) ×S′ Q/C ′), there
are at most finitely many sections of A ×S S′ over C ′ lifting σ′′ and mapping

b′ to p′. However, since Sectionsp
′′

b′ ((A0 ×k S′) ×S′ Q/C ′) is at most count-

able, Sectionsp
′

b′ (A ×S S′/C ′) is at most countable. Putting all these together,
Sectionspb(A/C) is at most countable.

Replacing the Jacobian of a smooth curve by the Albanese variety of S ([24],
Theorem 5.7.13, p.141), the result for Sectionspb(X/S), resp. Sectionspb(A/S),
resp. Sectionspb(Iso(A)/S) follows immediately.

Lemma 3.45. Fix closed points b ∈ S, p in Iso(A)b. Let σ be a section in
Sectionspb(A/S). Recall Definition 3.31 and Definition 3.32 for good curves for
sections.

(1). For a very general smooth conic ` and a very general genus-0, degree-d curve
m containing b with d ≥ 2 such that ` and m intersect at a very general point,
every section in Sectionspb(Xm∪`/m∪ `) that maps to σ|m∪` is the restriction of
a unique section in Sectionspb(X/S) that maps to σ if m ∪ ` is good for σ.

(2). Let C be a very general genus-0, degree-d, irreducible smooth curve marked
by b with d ≥ 2. Then, every section in Sectionspb(XC/C) that maps to σ|C is
the restriction of a unique section in Sectionspb(X/S) that maps to σ if C is good
for σ.

(3). Conversely, if p is a bad point for a very general irreducible smooth curve C,
then there exists a section in Sectionspb(XC/C) that cannot be extended uniquely.

Proof. (1). Let fσ : X ×A,σ S be the finite morphism arising from base change
of f by σ. Denote gσ : XS → X to be the base change of σ by f . For any
two different sections in Sectionspb(X/S), the intersection in X maps in S to a
proper closed subset of S. Moreover, there are at most countably many sections
in Sectionspb(Xm/m). For any two distinct such sections, the intersection in X
maps in S, via the structure morphism of X, to a proper closed subset of S.
The complement of all these closed subsets is a very general subset of S. Denote
this very general subset by S0.
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Take c ∈ S0 as the intersection point ofm and `. Let γ ∈ Sectionspb(Xm∪`/m∪
`) such that (f ◦ γ)|m is contained in the section σ in Sectionspb(A/S). Then
form the following diagram.

m ∪ `

γ

��

$$

γ0

##

XS
fσ

//

gσ

��

S

σ

��

X
f
// A

π //

��

Iso(A)

ρ
||

S

Since XS is the fiber product of X and S via f and σ, every section of fσ over
S (resp. over m∪ `) arises from a unique section of X over S (resp. over m∪ `).
Thus, γ gives a section, γ0, of fσ over m ∪ ` such that gσ ◦ γ0 = γ. Since m ∪ `
is good for σ, γ0|` is contained in a unique section of fσ over S, say, τ . Then,
gσ ◦τ is a section of X over S such that f ◦gσ ◦τ = σ. By construction, (gσ ◦τ)|`
equals gσ ◦ (γ0|`), which is γ|`. Let γ1 be the restriction of gσ ◦ τ on m. Suppose
that γ1 6= γ|m, then γ1(c) = gσ ◦ τ(c) = γ(c) is in the intersection of the images
of γ1 and γ|m. Since γ1 is a also section of X over m mapping b to p, c is in the
complement of S0, contradicting the choice of c. Therefore, γ1 equals γ|m, and
γ extends to a unique section of X over S, which is gσ ◦ τ . The statement (2)
follows from the same proof as (1).

(3). Suppose that p is a bad point for C. For every two distinct sections in
Sectionspb(A/S), the intersection of their images in A maps to a proper closed
subset of S. Remove these countably many closed subsets from S0. Denote
this very general subset by S◦. Take C such that S◦ ∩ C 6= ∅ and a section
τ ∈ Sectionspb(A/S) such that C is bad for ([τ ], p). Since p is a bad point, there
exists a section of γ of X over C mapping b to p such that either γ0 cannot be
extended, the extension is not unique, or f◦γ cannot be extended. If f◦γ cannot
be extended, γ does not have an extension. If γ0 cannot be extended, then γ
cannot be extended. If the extension is not unique, these different extensions
gives distinct extensions of γ as in the proof of the first part.

Corollary 3.46. Fix a very general point b ∈ S and a point p in Iso(A)b.
Then, for a very general conic ` and a very general genus-0, degree-d curve
m containing b with d even and d ≥ 2 such that ` and m intersect at a very
general point, every section in Sectionspb(Xm∪`/m ∪ `) is the restriction of a
unique section in Sectionspb(X/S).

Proof. Consider the very general subset S◦ as in Lemma 3.45. For a very general
b, and very general m ∪ `, the restriction of sections

Sectionspb(A/S)→ Sectionspb(Am∪`/m ∪ `)
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is bijective by Corollary 3.42.
Let c ∈ m ∩ S◦ be a closed point. For every σ in Sectionspb(A/S), there is

a general family of conic curves N2(σ, c) such that every section of fσ over `
extends to a unique section of fσ by Bertini’s theorem (Theorem 3.13). Take a
very general conic ` that is contained in N2(σ, c) for every σ ∈ Sectionspb(A/S).
Now, for every section γ ∈ Sectionspb(Xm∪`/m∪`), f ◦γ is contained in a unique
section σ ∈ Sectionspb(A/S). Therefore, by Lemma 3.45 (1), γ is contained in a
unique section of Sectionspb(X/S).

Remark 3.47. For a fixed p ∈ Iso(A)b, Corollary 3.46 claims the existence of
good curve-pairs for sections in Sectionspb(A/S). However, such a good curve-
pair might be bad for other choices p0 ∈ Iso(A)b. And as we vary the point p0,

the bad sets Bad(d + 2; b, p0) might sweep out the moduli space ∂M≤2

0,1(S, d +
2)×ρev,S,prev (Sec(A/S)×k S), see Definition 3.28. To resolve this problem, we
have to increase the degree of curve-pairs (Theorem 1.3).

3.6 Proof of The Main Theorem

Now, we can give the proof of Theorem 1.3.

Proof. Let C1 be a very general conic curve containing a very general point
b1 ∈ S. Let B2,b1 be the image of φ3(Bad(2; b1)), i.e. the set of bad points
p1 ∈ Iso(A)b1 for C1. By Corollary 3.46, B2,b1 is a proper subset of Iso(A)b1 .
Take C2 a very general conic intersecting with C1 at a very general point c2,
and a very general point b2 on C2. Denote by ∆′2(C1 ∪ C2, b1) the union of the
images of C1∪C2 under bad sections σ of A over S mapping b1 to some p ∈ B2,b1 .
Let ∆2(C1 ∪ C2, b1) be the image of ∆′2(C1 ∪ C2, b1) in Iso(A) under π. Then,
∆2(C1 ∪ C2, b1) is contained in ρ−1(C1 ∪ C2) and ∆2(C1 ∪ C2, b1) ∩ Iso(A)b1
equals B2,b1 . Define ∆2(C1 ∪ C2, b2) in the same way for points in B2,b2 .

By choosing C2, c2 and b2 very generally, ∆2(C1 ∪ C2, b2) ∩ Iso(A)b1 will
intersect B2,b1 transversally. Moreover, since C1 ∪c2 C2 is very general, we may
assume that

Sections(A/S)→ Sections(AC1∪c2C2
/C1 ∪c2 C2)

are bijective by Corollary 3.42.
Let p be a point in B2,b1 , but not in ∆2(C1 ∪ C2, b2). Let σ be a section in

Sectionspb1(A/S). If σ(b2) does not belong to B2,b2 , (b1, [C1], c2, [C2]) is good for
σ. If σ(b2) is in B2,b2 , then σ(b1) is in ∆2(C1 ∪ C2, b2), which contradicts the
choice of p. Thus, C1 ∪ C2 is good for every section in Sectionspb1(A/S), and
p is a good point for this marked curve-pair. Now, take a point p in the set
∆2(C1 ∪ C2, b2) ∩ Iso(A)b1 , but not in B2,b1 . Denote by γ a section of X over
C1 ∪ C2 mapping b1 to p. Let p2 be the image of γ(b2) in Iso(A). Let σ be a
section of A over S extending f ◦ γ. Since p is not in B2,b1 , (b2, [C2], c2, [C1]) is
good for ([σ], p2). By Lemma 3.45 (1), γ extends to a unique section of X over
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S mapping b2 to p2 and b1 to p. Denote by B′4,b1 the set of points in Iso(A)b1
such that for each p ∈ B′4,b1 the restriction of sections

Sectionspb1(X/S)→ Sectionspb1(XC1∪c2C2
/C1 ∪c2 C2)

is not a bijection. By the argument above, B′4,b1 is contained in the intersection
of ∆2(C1 ∪C2, b2) and B2,b1 . Therefore, dimB′4,b1 is strictly less than dimB2,b1 .

Let C1,2 be a very general, genus-0, degree-4, irreducible, smooth curve
containing b1. By Corollary 3.40 and Lemma 3.45 (3), the bad set of points
B4,b1 for (b1, [C1,2]) is contained in B′4,b1 . Attach a very general conic C3 to C1,2

at a very general point c3. Then inductively, we get a decreasing sequence of
dimensions

dimB2,b1 > dimB′4,b1 ≥ dimB4,b1 > dimB′6,b1 ≥ dimB6,b1 > · · · .

Then, for d > 2e− 2 an even number, B′d+2,b1
for (b1, [m], c, [`]), a very general

genus-0, degree-(d+ 2) curve-pair, is empty, and hence every section of X over
m ∪ ` is the restriction of a unique section. And, by Corollary 3.40, this is also
true for very general irreducible smooth curves of genus-0, degree-(d+ 2).
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Appendix A The Bi-gon Lemma

Let k be an algebraically closed field. In the statement of the Bi-gon Lemma,
also k will be uncountable. Let B be an irreducible, quasi-projective k-scheme
of dimension ≥ 2.

Definition A.1. For every k-morphism of locally finite type k-schemes, f :
R→ S, for every integer δ ≥ 0, the δ-locus of f , Ef,≥δ ⊆ R, is the union of all
irreducible components of fibers of f that have dimension ≥ δ. The δ-image of
f , Ff,≥δ ⊆ S, is the image under f of Ef,≥δ.

Lemma A.2. ([15], Exercise II.3.22, p.95) For every locally finite type mor-
phism f and every integer δ ≥ 0, the subset Ef,≥δ of R is closed. If also f is
quasi-compact, resp. proper, then the subset Ff,≥δ of S is constructible, resp.
closed.

Definition A.3. For every proper, surjective morphism ρ : Y → B, for every
pair (T,w) of an integral scheme T and a dominant, finite type morphism,

w : T → B,

a (T,w)-multisection of ρ is a pair (Ω, v) of an irreducible scheme Ω and a
proper morphism v = (vY , vT ),

v : Ω→ Y ×B T, vY : Ω→ Y, vT : Ω→ T,

such that vT is surjective and generically finite. Since v is proper, also the
image (v(Ω), v(Ω) ↪→ Y ×B T ) is a (T,w)-multisection of ρ. This is the image
multisection of (Ω, v).

For every pair ((Ω′, v′), (Ω′′, v′′)) of (T,w)-multisections, denote the fiber
product of v′ and v′′ by

(π′ : Pv′,v′′ → Ω′, π′′ : Pv′,v′′ → Ω′′), v′ ◦ π′ = v′′ ◦ π′′.

The special subset Sv′,v′′ of the pair is the closed image in T of Pv′,v′′ .

Definition A.4. (i). For an integral, quasi-projective k-scheme M , a family of
smooth, proper, connected curves over M is a smooth, proper morphism,

uM : C →M,

whose geometric fibers are connected curves.

(ii). For every open immersion

ι : C → C

whose image is dense in every fiber of u, the composite morphism uM = uM ◦ ι
is a family of smoothly compactifiable curves over M .
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(iii). A family of curves to B is a pair (M,u) of an irreducible, quasi-
projective k-scheme M and a proper morphism u = (uY , uM ),

u : C → B ×Spec kM, uB : C → B, uM : C →M,

such that uM is a family of smoothly compactifiable curves over M .

(iv). The family of curves to B is connecting, resp. minimally connecting,
if the following induced k-morphism is dominant, resp. dominant and generically
finite,

u(2) : C ×M C → B ×Spec k B, pri ◦ u(2) = uB ◦ pri, i = 1, 2.

By definition, both uM ◦pr1 and uM ◦pr2 are equal as morphisms from C×M C
to M ; denote this common morphism by ũM . Denote by ũ(2) the induced
morphism

(u(2), ũM ) : C ×M C → B ×Spec k B ×Spec kM.

(v). A connecting family of curves to B is a Bertini family if for every integral

k-scheme B̃ and for every finite, surjective k-morphism φ : B̃ → B, the induced
morphism B̃ ×B C → M has integral geometric generic fiber. Denote by Mφ

the maximal open subscheme of M over which B̃ ×B C has integral geometric
fibers.

(vi). An integral closed subvariety N of M is transversal if the following
family of curves to B is minimally connecting,

(N, u× IdN : C×M → B ×Spec kM ×M N).

Such a subvariety is φ-Bertini if N intersects the open Mφ.

(vii). The transversal dimension is d := 2dim(B) − 2. For every integer e
with 0 ≤ e ≤ d, the transversal Grassmannian Ge is the open subscheme of
the Grassmannian parameterizing e-dimensional linear sections N of M .

Lemma A.5. For every connecting family of curves (M,u), for every integer
e with 0 < e ≤ d, a general point of Ge parameterizes a linear section N of M
that is geometrically integral.

Proof. This follows from a Bertini Connectedness Theorem, [16] Théorème 6.10.

Lemma A.6. For every connecting, Bertini family (M,u), for every integer
e with 0 ≤ e ≤ d, a general point of Ge parameterizes a linear section N of

M such that the induced morphism u
(2)
N is generically finite. For every finite,

surjective k-morphism φ : B̃ → B, every general N ∈ Gd is transversal and
φ-Bertini.
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Proof. Generic finiteness of u
(2)
N is proved by induction on e. The base case is

when e = 0. Since the family is connecting, the morphism u is generically finite
to its image. Thus, the morphism ũ(2) is generically finite to its image. The
1-relative locus E of ũ(2) is a proper, closed subset of C ×M C. For the induced
morphism,

ũM |E : E →M,

the 2-relative locus E≥2 of this morphism is a closed subset of E. Since E is
a proper closed subset of C ×M C, and since the geometric generic fiber of ũM
is irreducible, the proper closed subset E≥2 is disjoint from this fiber. Thus,
the image F≥2 of E≥2 in M is a constructible subset that does not contain the
generic point, i.e., it is not Zariski dense. Denote by Mo the open subset of M
that is the complement of the closure of the image of F≥2. For every singleton
N of a closed point of Mo, the restrictions to N of ũ(2) and u(2) are equal; refer

to this common restriction by u
(2)
N . Since ũ(2) is generically finite on the fiber

over N by construction, also u
(2)
N is generically finite. This establishes the base

case.
For the induction step, assume that the result is proved for an integer e

satisfying 0 ≤ e < 2dim(B)− 2. Then for a general linear subvariety N of M of

dimension e, the image of u
(2)
N has dimension e+2 < 2dim(B). Thus, the image

is not Zariski dense. Since u(2) is dominant, a general point of B ×Spec k B
is contained in the image of u(2) over a general point of M , say m. Let N ′

be the intersection of M with the span of N and m. Then N ′ is a linear
subvariety of M of dimension e + 1. By Lemma A.5, for N general and for m

general, the linear section N ′ is geometrically integral. Thus, the image of u
(2)
N ′

is a geometrically integral scheme that is strictly larger than the image of u
(2)
N .

Thus, the dimension of the image of u
(2)
N ′ is strictly larger than the dimension

of the image of u
(2)
N . Since u

(2)
N is generically finite, and since N ′ has dimension

precisely 1 larger than the dimension of N , also u
(2)
N ′ has dimension precisely

1 larger than the dimension of u
(2)
N . Thus, also u

(2)
N ′ is generically finite to its

image.

In particular, for e equal to d, since u
(2)
N is generically finite and the domain

and target both have the same dimension, the image of u
(2)
N contains a nonempty

Zariski open subset of B×Spec kB. By hypothesis, B×Spec kB is integral. Thus,
the image contains a dense Zariski open subset of B×Spec kB. Therefore (N, uN )
is a minimally connecting family, i.e., N is transversal.

Finally, by hypothesis, the open subscheme Mφ contains the generic point of
M , and hence this open subscheme is dense. Therefore, a general N intersects
Mφ.

Lemma A.7. For every minimally connecting family of curves to B,

(N, (uN,B , uN ) : CN → B ×Spec k N),

for every (CN , uN,B)-multisection (Ω, v) of ρ, the scheme Ω×NCN is irreducible,
and the following composition ṽB is a multisection of ρ relative to B ×Spec k
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B
pr1−−→ B,

Ω×N CN
vN×IdCN−−−−−−→ Y ×B CN ×N CN

IdY ×u[2]
N,B−−−−−−−→ Y ×B B ×Spec k B.

Proof. Since the morphism
uN : CN → N

is flat with integral geometric fibers, the following base change morphism is flat
with integral geometric fibers,

prΩ : Ω×N CN → Ω.

Since Ω is irreducible, and since prΩ is flat with integral geometric generic fiber,
also Ω×N CN is irreducible.

Since vC is surjective and generically finite, and since uN is flat, also the
following morphism is surjective and generically finite,

vC × IdCN : Ω×N CN → CN ×N CN .

Since (N, uN ) is minimally connecting, the following morphism is dominant and
generically finite,

u
[2]
N : CN ×N CN → B ×Spec k B.

Thus, the composition is dominant and generically finite. This composition
equals the composition of ṽB with the morphism

ρ× IdB : Y ×Spec k B → B ×Spec k B.

Thus, the morphism ṽB is a multisection of ρ.

For every pair of connecting families of curves to B,

(M ′, u′ : C ′ → B ×Spec kM
′), (M ′′, u′′ : C ′′ → B ×Spec kM

′′),

denote by G, resp. by G′, the open subscheme of the Grassmannian param-
eterizing d-dimensional linear sections N ′ of M ′, resp. N ′′ of M ′′, that are
transversal; by Lemma A.6, there is a dense open subscheme parameterizing
linear sections that are transversal.

Lemma A.8. For every pair of connecting families of curves to B as above
that are Bertini families, for every pair

(Ω′, v′), (Ω′′, v′′)

of a (C ′, u′B)-multisection of ρ and a (C ′′, u′′B)-multisection of ρ, for a general
pair (N ′, N ′′) ∈ G′×Spec k G

′′, the families (N ′, u′× IdN ′) and (N ′′, u′′× IdN ′′)
are minimal connecting families of curves to B. Also, for a general pair (b′, b′′) ∈
B ×Spec k B, the family (N ′, u′N ′), resp. (N ′′, u′′N ′′), is a Bertini family for the
image in Y of the multisection ṽ′B,b′ , resp. ṽ′′B,b′′ of ρ, obtained by restricting to
the fiber of pr2 : B ×Spec k B → B over b′, resp. over b′′.
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Proof. By Lemma A.7, each of (Ω′N ′ ×N ′ C ′N ′ , ṽ′B) and (Ω′′N ′′ ×N ′′ C ′′N ′′ , ṽ′′B) is
a pr1-multisection of ρ. Thus, for general (b′, b′′) ∈ B ×Spec k B, the restriction
of the pr1-multisection Ω′N ′ ×N ′ C ′N ′ , resp. Ω′′N ′′ ×N ′′ C ′′N ′′ , to the pr2-fiber over
b′, resp. over b′′, maps dominantly and generically finitely to B, i.e., each of the
finitely many irreducible components of the the restriction is a u′-multisection
of ρ, resp. a u′′-multisection of ρ. Denote the image in Y of this finite union of
multisection by ṽ′B,b′ , resp. by ṽ′′B,b′′ . By Lemma A.6, for N ′′ general applied
to the finitely many irreducible components of ṽ′B,b′ , the family (N ′′, u′′N ′′) is
transversal and Bertini relative to ṽ′B,b′ . Similarly, for N ′ general, the family
(N ′, u′N ′) is transversal and Bertini relative to ṽ′′B,b′′ .

Lemma A.9. Assume that k is algebraically closed and uncountable. With
the same hypotheses as above, for a countable family of (M ′, u′)-multisections,
(Ω′i′ , v

′
i′)i′∈I′ , with pairwise distinct images in Y ×B C ′, resp. for a countable

family of (M ′′, u′′)-multisections, (Ω′′i′′ , v
′′
i′′)i′′∈I′′ , with pairwise distinct images

in Y ×B C ′′, if (N ′, N ′′) ∈ G′ ×Spec k G
′′ and (b′, b′′) ∈ B ×Spec k B are very

general, then for every (i′, i′′) ∈ I ′ × I ′′, the conclusion holds for (Ω′i′ , v
′
i′) and

(Ω′′i′′ , v
′′
i′′).

Proof. For each (i′, i′′), by Lemma A.8, there exists a dense open Wi′,i′′ of
G′×Spec kG

′′×Spec kB×Spec kB parameterizing (N ′, N ′′, b′, b′′) such that Lemma
A.8 holds. Thus, for every (N ′, N ′′, b′, b′′) in the countable intersection ∩(i′,i′′)Wi′,i′′ ,
the conclusion of the lemma holds for every (Ω′i′ , v

′
i′) and (Ω′′i′′ , v

′′
i′′).

Lemma A.10. (The Bi-gon Lemma) With hypotheses as in the previous lemma,
for a very general (N ′, N ′′, b′, b, b′′) in G′×Spec kG

′′×Spec kB×Spec kB×Spec kB,
for a very general 2-pointed bi-gon (C = C ′t′ ∪b C ′′t′′ , b′, b′′) parameterized by a
point t′ ∈ N ′, resp. t′′ ∈ N ′′, whose curve C ′t′ contains b and b′, resp. whose
curve C ′′t′′ contains b and b′′, the only sections σ of ρ over C whose restriction to
C ′t′ is in some Ω′M ′,N ′,b′,i′ and whose restriction to C ′′t′′ is in some Ω′′M ′′,N ′′,b′′,i′′
are those that come from global sections Ω′M ′,N ′,b′,i′ = Ω = Ω′′M ′′,N ′′,b′′,i′′ over
B.

Proof. Let W denote the countable intersection of Wi′,i′′ inside G′ ×Spec k

G′′×Spec kB×Spec kB as in the proof of the previous lemma. Let (N ′, N ′′, b′, b′′)
be an element of W . Consider the countable collection of image multisections
(Ω′M ′,N ′,b′,i′)i′ and (Ω′′M ′′,N ′′,b′′,i′′) of ρ as closed subschemes of Y . For every
pair (i′1, i

′
2) of distinct elements of I ′, the special subset Si′1,i′2 associated to

Ω′M ′,N ′,b′,i′1
and Ω′M ′,N ′,b′,i′2

) is a proper closed subset of B, and similarly for

the special subset Si′′1 ,i′′2 associated to every pair (i′′1 , i
′′
2) of distinct elements of

I ′′. Finally, for every i′ ∈ I ′ and every i′′ ∈ I ′′, the special subset Si′,i′′ associ-
ated to Ω′M ′,N ′,b′,i′ and Ω′′M ′′,N ′′,b′′,i′′) is a proper closed subset except in those
cases where Ω′M ′,N ′,b′,i′ equals Ω′′M ′′,N ′′,b′′,i′′ .

Choose b to be a very general point of B that is contained in none of these
special subsets that is a proper closed subsets of B. The matching condition at b
for a section σ implies that σ(C) is contained in Ω′M ′,N ′,b′,i′ = Ω′′M ′′,N ′′,b′′,i′′ for
unique Ω′M ′,N ′,b′,i′ and Ω′′M ′′,N ′′,b′′,i′′ in their respective countable multisections.
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By the previous lemma, for every i′ ∈ I ′, if the restriction of ΩM ′,N ′,b′,i′

over C ′′t′′ has a section, then the multisection ΩM ′,N ′,b′,i′ is a global section.
Similarly, for every i′′ ∈ I ′′, if the restriction of ΩM ′′,N ′′,b′′,i′′ over C ′t′ has a
section, then the multisection ΩM ′′,N ′′,b′′,i′′ is a global section. Thus, for every
section σ as in the previous paragraph, Ω′M ′,N ′,b′,i′ = Ω′′M ′′,N ′′,b′′,i′′ is a global
section.
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Appendix B Proofs of Two Lemmas

For completeness, we prove two lemmas that are already in the literature in this
appendix.

Proof of Lemma 3.37.

Proof. This is a local problem, so we can assume that S = SpecR and X is a
closed subscheme of W = AnR defined by g1, · · · , gr. Let Z is defined by g in OX .
Let z ∈ Z and dw1,· · · , dwn be a basis of (Ω1

W/S)z. Then, up to a re-indexing,
gt+1, · · · , gn−t−2, g generate the ideal sheaf defining Z and dw1,· · · , dwt, dgt+1,
· · · , dgn−t−2, dg generate (Ω1

W/S)z ([3], Prop.2.2/7, p.39). Let Y be the closed
subscheme of AnR defined by gt+1, · · · , gn−t−2. Then, we have X ⊂ Y , a closed
subscheme. Since both dw1,· · · , dwn and dw1,· · · , dwt, dgt+1, · · · , dgn−t−2, dg
are basis of (Ω1

W/S)z, there exists some wt+1 such that dw1,· · · , dwt, dwt+1,

dgt+1, · · · , dgn−t−2 form a basis of (Ω1
W/S)z. By the Jacobian criterion, Y is

smooth at z over S. Thus, locally at z, Y is regular ([20], Theorem 4.3.36,
p.142). Therefore, X and Y are regular schemes of the same dimension locally
at z with X ⊂ Y . We get X = Y locally at z, and hence X is smooth at z over
S. Consider every point z ∈ Z, there will be an open subset U ⊂ X such that
U → S is smooth.

Proof of Lemma 3.43.

Proof. Since Abelian varieties are projective, there exists a very ample sheaf L
on A×kB. Then, for every homomorphism u : (A, 0)→ (B, 0), the graph Gu in
A×kB has a Hilbert polynomial P (t) with respect to L. Let HomP

k (A,B) be the
scheme parameterizing homomorphisms from A to B with Hilbert polynomial
P (t). Then, HomP

k (A,B) is quasi-projective over k. Now, take a homomorphism
u from A to B. The Zariski tangent space of HomP

k (A,B) at [u] is isomorphism
to the k-vector space of global sections of

E = HomOA(u∗Ω1
B/k, I0)

where I0 is the ideal sheaf defining the origin 0 in A. Since B is an Abelian
variety, Ω1

B/k is isomorphic to the trivial locally free sheaf Ω0 ⊗k OB where Ω0

is dual space T ∗B,0 of the Zariski tangent space TB,0 of B at the origin ([23], (iii),
p.39). Thus, E is equal to

Homk(Ω0, k)⊗k I0.

Since A is projective and by the exact sequence of the ideal sheaf I0 and struc-
ture sheaf of the origin OA/I0 ([20], Cor.3.3.21), there is no nonzero global
section for I0, and hence the finite direct sum E of I0 does not have nonzero
global section. Therefore, H0(A, E) = 0 and [u] is an isolated point of the quasi-
projective k-variety HomP

k (A,B). So there are at most countably many such
homomorphisms.
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Mathématiques (Paris) [Mathematical Documents (Pairs)], 4, Société
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