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Abstract of the Dissertation
Stein domains with exotic contact boundaries
by
Mu Zhao
Doctor of Philosophy
in
Mathematics
Stony Brook University
2020
We introduce a new invariant, the positive idempotent group, for strongly asymptotically dy-
namically convex contact manifolds. This invariant can be used to distinguish different contact
structures. As an application, for any complex dimension n > 8 and any positive integer &, we

can construct n—dimensional Stein manifolds V{, V7, - - - , V} such that F[J(V;) =0, #n—1,n.

Vs are almost symplectomorphic, their boundaries are in the same almost contact class but
not contactomorphic.
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1 Introduction

In this paper, we will introduce a new invariant I (X), the positive idempotent group, for strongly
asymptotically dynamically convex contact manifolds (%, £, ®)(see definition in Section 3.1). The
definition of positive idempotent group 7, (17') depends on the filling WW: it is well defined when
SH,.(W) # 0 for some Liouville filling W, and it is independent of filling when (X,£, ®) is a
strongly ADC contact manifold.

The main purpose of this paper is to prove the following theorem:

Theorem 11. If (X, £, @) is a strongly asymptotically dynamically convex contact structure with a
Liouville filling W such that SH.(W') # 0, then all connected Liouville fillings of (3, &, P) with
nonzero symplectic homology have isomorphic positive idempotent group I .

Remark 1.2. Here a Liouville filling W of (3, £, ®) means that W is a filling of (3, ) and the
trivialization ® of the canonical bundle extends over W. Now that all these Liouville fillings
have isomorphic positive idempotent group, we can regard /; as an invariant for strongly ADC
contact manifold. We will prove the result in section 4.

As an application, we will use the positive idempotent group to distinguish contact boundaries
of Stein manifolds, which has a long history. Y.Eliashberg [E*91] constructed an exotic contact
structure representing the standard almost contact structure on S**1 and I.Ustilovsky [Ust99]
proved that every almost contact class on S*1 has infinitely many different contact structures.
M.McLean [McL07] has shown that there are infinitely many exotic Stein structures C} on
C",n > 4. Using flexible Weinstein structures, O.Lazarev [Lazl6] proved that any contact
manifold admitting an almost Weinstein filling admits infinitely many exotic contact structures
with flexible fillings. We have the following theorem:

Theorem 1.3. For any complex dimension n > 8 and any positive integer k, there are Stein domains

Vo, Vi, , Vi such that:
o Vs are almost symplectomorphic,
o the contact boundaries OV; of V; are in the same almost contact class,

 OV; are mutually non-contactomorphic.
« Hj(Vi) =0 forj #mn,n— 1.

Remark 1.4. In Theorem 1.14 [Lazl6], O.Lazarev proved that if V' is almost symplectomorphic to
a domain containing a closed (regular) Lagrangian, then there are infinitely symplectic structures
Vi almost symplectomorphic to V' that are not symplectomorphic and their contact boundaries
are not contactomorphic either. The Stein domains constructed in this paper are different from
Lazarev’s examples.

11 Sketch of the proof

The contact structure on OV, in Theorem 1.3 is asymptotically dynamically convex. In the case
when [, (¥) is finite, we can define the positive idempotent index i(X) := |1 (X)] (see Section 3.2).
The theorem 1.3 is based on the following theorem, which will be proved in Section 7:
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Theorem 1.5. There exists connected Weinstein domains (W?", X, 1)), for any n > 8 such that
o (OW, \) is asymptotically dynamically convex,
e« SH.(W,Z/27Z) # 0,
o |[I(W,Z/27)| < .
« H;(W,Z/27) =0, fori #n,n — 1.
Remark 1.6. The definition of [ is in equation 3.3.

The basic idea to construct the Weinstein domain is to use Brieskorn variety. First we take
the complement of a specific Brieskorn variety and then attach a Weinstein 2-handle to kill the
fundamental group. With the help of a covering trick we can show that the resultant manifold
has asymptotically dynamically convex boundary. The full proof is at the end of this paper, see
Section 7.

We will need the fact that any almost Weinstein domain admits a flexible Weinstein structure
in the same almost symplectic class (See Section 2.8). Moreover, if a contact manifold admits a
flexible filling, then it is asymptotically dynamically convex, as stated in the following lemma:

Lemma 1.7 (Corollary 4.1 [Lazl6]). If (Y*"7' &),n > 3, has a flexible filling, then (Y,¢) is
asymptotically dynamically convex.

Proof of Theorem 1.3. Let (W, \,¢) be in Theorem 1.5. There is a flexible Weinstein domain
(W1, A1, 1) that is almost symplectomorphic to W. Let

(Wi? )\l’wl) = (W7 )\ﬂﬂ)U(VVa )\aw)h e u(VVa Aaw) h (Wb )‘l>w1)h(W17 )‘lawl)n T u(le)\lvwl) :

N / \

7 k—i

That is, 1¥; is the boundary connect sum of 7 copies of W and k — i copies of the flexibilization
of Wj. The boundary connect sum is equivalent to attaching a Weinstein 1-handle, so W, is a
Weinstein domain. By construction, they are all almost symplectomorphic, see subsection 2.8.3,
and their boundaries are in the same almost contact class by lemma 2.35. Theorem 2.7 allows
us to deform a Weinstein structure into a Stein structure, which is denoted by V;. The last
condition is obvious. There’s only the third condition left to be verified. Indeed, we have
(0V;, \;) is asymptotically dynamically convex. Furthermore, we have:

Proposition 1.8. |1 (OW;)| # |L.(OW})|, # J.
The proof of Proposition 1.8 will be defer to Subsection 3.3.

2 Background

2.1 Conventions and notation

(See Section 2 for detailed definitions.)



Let A be a Liouville 1-form on a Liouville manifold V.
dX(-,J-) =gy (Riemannian metric),

d\( Xy, ) = —dH, Xy=JVH (Hamiltonian vector field),
LW = C>(SY, W), S'=R/Z (loop space),

Ay LW S R, Ap(z) = / N — | H(t,z(t))dt (action),
st st

VAg(z) = —J(x)(z — Xg(t,z)) (L?-gradient),
u:R— LW, Osu = VAg(u(s,-)) (gradient line)
— Osu+ J(u)(Ou — Xpg(t,u)) =0 (Floer equation), (2.])
P(H) := Crit(Ay) = {1-periodic orbits of the Hamiltonian vector field X},

For each h € H, (W), P"(H) := Crit),(Ay) = {x € T(H)Hx] =he[S'— W]}

M(z_, v H, J) ={u:Rx S* = W | du=VAy(u(s,-)), u(+oo,-) = 2. }/R

(moduli space of Floer trajectories connecting x4 € P(H)),
Mp(r_,z; H, J) ={u: R x S' = W | ou = VAg(u(s,)), u(£oo,-) =2+ € P"(H)}/R

(moduli space of Floer trajectories connecting r. € P"(H)),

dimM(z_, x4 H, J) = pez(zy) — pez(z-) — 1,

An(ry) — Ap(z-) = /

RxS1

|0su|*ds dt = / u*(d\ — dH N dt).

RxS1!

Here the formula expressing the dimension of the moduli space in terms of Conley-Zehnder

indices is to be understood with respect to a symplectic trivialization of u*T'W.
Let K be a field and a < b with a,b ¢ Spec(OW, ). We define the filtered Floer chain
groups with coefficients in K by

Sy = @) Kow  SOWY(H) = SCR(H)/SOS(H),
z € P(H)

with the differential d : SC " (H) —» S C’,EZ’I{)(H ) given by

dr, = Z #M(x_ x4 H, J) - x_.

pez(z-)=pcz(@4)-1



Here # denotes the signed count of points with respect to suitable orientations. We think of
the cylinder R x § I as the twice punctured Riemann sphere, with the positive puncture at +oco
as incoming, and the negative puncture at —oco as outgoing. This terminology makes reference
to the corresponding asymptote being an input, respectively an output for the Floer differential.
Note that the differential decreases both the action Ay and the Conley-Zehnder index. The
filtered Floer homology is now defined as

SH*Y(H) = kerd/imd.

*

Note that for @ < b < c the short exact sequence
0 — SCUY(H) = SC@I)(H) - SCP(H) = 0
induces a tautological exact triangle

SH{"(H) — SH\"(H) ~ SH(H) ~ SH*" (H)[~1]. 22)

*

Remark. We will suppress the field K from the notation. As noted in the Introduction, the
definition can also be given with coefficients in a commutative ring. In this paper, K = Z.

Notation. Let a = (ag, ay,- -, a,) be an (n+1)-tuple of integers a; > 1,z := (20,21, "+ , 2n) €
C™*1, and set f(z) := 2{° + 2{* + -+ + 2, and let B(s) to be the closed ball of radius s.

Va(t) = {(ZO7 Rl 7Zn) S Cn+1|f(z) = t}
We will often suppress a from the notation. Let
X; =V(t)NB(s).

and let 5 € C*°(R) be a smooth monotone decreasing cut-off function with 5(z) = 1,z <
and f(z) = 0,2 > 2,

Ua(€) i= {2 € C"7 |50 + -+ 2 = e B({[2]")}-
Likewise a will often be suppressed. Moreover let

W* = Ule) N B(s).

€

2.2 Symplectic and contact structures

A symplectic manifold (M, w) is a smooth 2n-dimensional manifold M together with a nonde-
generate, closed 2-form w. A function H € C*°(M) on a symplectic manifold (M, w) is called
Hamiltonian. We define its Hamiltonian vector field X i via

dH = —1x,w = —w(Xy, ) =w(-, Xu).

A contact manifold Y. is a smooth (2n — 1)-dimensional manifold together with a completely
non-integrable smooth hyperplane distribution { € T'X. The distribution is called a contact
structure. It can be locally defined as £ = ker « for some local I-form « such that aA(da)" ™! #£ 0
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pointwise. If o is globally defined, then « is called a contact form. We will always assume « is
globally defined. Under this assumption o A (da)" ! gives rise to a volume form and hence &
is orientable. Once an orientation is chosen we require that a A (da)"™ > 0. Associated with
a contact form « one has a Reeb vector field R, uniquely defined by the equations

tr(da) =0,
trae = 1.
Clearly R is transverse to £. If we have two different forms o, ' which define the same contact

structure, then we can find a nowhere vanishing function f such that o' = f - a. Indeed,

f = a/(R). The flow of a Reeb vector field is called Reeb flow, and closed trajectories of Reeb
flow are called the Reeb orbits. The action of a Reeb orbit 7y is defined as

A7) = /S 7

Note that A() is always positive and equals the period of v. The spectrum spec(¥, «) is the
set of actions of all Reeb orbits of o. We will need the following definition for Reeb trajectories
which is part of a closed Reeb orbit.

Definition 2.1. v : [0,7] — X is called a fractional Reeb orbit for contact manifold (X, &) if
there is a closed Reeb orbit 7y of (X, ) such that y(t) = v (t),t € [0, T].

We say that a Reeb orbit v of « is non-degenerate if the linearized Reeb flow along ~ from
&p to itself for some p € v has no eigenvalue 1. Moreover we say that a contact form is non-
degenerate if all Reeb orbits of o are non-degenerate. We can always assume a contact form is
non-degenerate after a €°-small perturbation, since a generic contact form is non-degenerate.
Notice that when « is non-degenerate, spec(X, «) is a discrete subspace of RT.

2.3 Liouville and Weinstein domains
A Liouville domain is a pair (W?", \) such that
« W?" is a compact manifold with boundary,
* d\ is a symplectic form on IV,

o the Liouville field X, defined by ixd\ = ), is outward transverse along 0.

Let a := Mgw be a contact one-form on OW. The negative flow of X gives rise to a collar:
¢ (1—e 1] xOW — W,
P'N=ra, ¢ X =r0,.
We can attach an infinite cone to it, which is called the completion of (W, \):
W =W Ugw ([1,00) x IW),  Aw = A
A([1,00) x W) = ra,  X|([0,00) x OW) =rd,, & = dA\.

A Liouville isomorphism between domains W, W, is a diffecomorphism ) : Wo — W) satisfying

w*):l = Xo + df, for some f compactly supported. We also say that VI/Z) and VI/Z are Liouville
isomorphic. Clearly v is compatible with the Liouville flow at infinity.

5



Definition 2.2. A Liouville domain (W, \) is called G-equivariant if a group G acts on W
and A\ is G-invariant, ie, g*\ = \,Vg € (. A diffeomorphism f between two G-equivariant
Liouville domains is called GG-equivariant if the following diagram commutes, for all g € G:

(Wi, A1) —2 (W, M)
(Wi, A1) —L— (Wo, Ao)

Remark 2.3. A manifold M is called GG-equivariant if G acts on it.

Proposition 2.4 (Proposition 11.8 [CE12]). Let W be a compact symplectic manifold with contact type
boundary and M\, t € [0, 1] be a homotopy of Liouville forms on W . Then there exits a diffeomorphism

of the completions f - Wy — W1 such that f* 1 — o = dg where g is a compactly supported function.
We have an immediate corollary for Proposition 2.4:

Corollary 2.5. Let (\)o<i<1 be a family of (G—equivariant) Liouville structures on W. Then all
the (W, \;) (W, X)) are mutually (G—equivariantly) Liouville isomorphic.

A Weinstein domain is a triple (W?" X, ¢) such that

e (W, ) is a Liouville domain,

e ¢ : W — R is an exhausting Morse function with W being a regular level set,
* X, is a gradient-like vector field for ¢.

Since W is compact and ¢ is an exhausting Morse function with W as a regular level set, ¢
has finitely many critical points. Liouville and Weinstein cobordisms are defined similarly. If a
contact manifold (Y €) is contactomorphic to (W, ), then we say that (¥, \) is a Liouville or
Weinstein filling of (Y, £).

Definition 2.6. A Stein manifold (M, J, ¢) is a complex manifold (M, J) with an exhausting
plurisubharmonic function ¢ : M — R. A manifold of the form ¢! ((—o0, ]) is called a Stein
domain, where c is a regular value of ¢.

We also have the following famous theorem by Eliashberg:
Theorem 2.7 (Theorem 1.1 [CEL2]). Given a Weinstein structure M = (w, X, ¢) on V, there exists
a Stein structure (J, @) on'V such that M (J, ¢) is Weinstein homotopic to N with fixed ¢.

2.4 Symplectic homology

This section is mainly taken out from [Lazl6]. The convention used here agrees with [COI18] .



2.4.1 Admissible Hamiltonians and almost complex structures

Let Hq(1V) denote the class of admissible Hamiltonians, which are functions on W defined up
to smooth approximation as follows:

e H*=0in W,

 H? is linear in 7 with slope s &€ Spec(Y, a) in /W\W =Y x[1, 00). We will often suppress
s.

To be precise, H is a C2-small Morse function in W and H = h(r) in W \ W for some function
h that is increasing convex in a small collar (Y x [1,1 + €], ra) of Y and linear with slope s
outside this collar.

For H € Hyq(W), recall the Hamiltonian vector field Xy is defined by the condition
dS\(-, Xpy) = dH. The time-1 orbits of X are called the Hamiltonian orbits of H and fall into

two categories depending on their location in W:

e In IV, the only Hamiltonian orbits are constants corresponding to critical points of H |y

«In W \ W, we have Xy = h'(r)R,, where R, is the Reeb vector field of (Y,«). So
all Hamiltonian orbits lie on level sets of r and come in S'-families corresponding to
reparametrizations of some Reeb orbit of o with period /(7).

Since the slope s of H at infinity is not in Spec(Y, a), all non-constant Hamiltonian orbits lie
in a small neighborhood of Y in W. After a C*-small time-dependent perturbation of H, the
orbits become non-degenerate, i.e. the linearized Hamiltonian flow from 7,,W to T,,W, for some
p in the Hamiltonian orbit, does not have 1 as an eigenvalue. These non-degenerate orbits also
lie in a neighborhood of 11 and so their number is finite. In fact, under this perturbation, each
S'-family of Hamiltonian orbits degenerates into two Hamiltonian orbits.

We say that an almost complex structure J is c¢plindrical on the symplectization (Y x
(0,00), ra) if it preserves { = ker «, J|¢ is independent of r, is compatible with d(ra)|¢, and
J(r0,) = R,. Let Juq(WW) denote the class of admissible almost complex structures .J on W
which satisfy

* J is compatible with w on W

e J is cylindrical on W\W = (Y x [1,00), 7).

2.42 Floer complex
For H € Hyuyq(W),J € Jsa(W), the Floer complex SC(W, A, H,J) is generated as a free

abelian group by Hamiltonian orbits of /7. In this paper we need to consider all Hamiltonian
orbits, as opposed to only the contractible ones, see [Wen)].
First, let’s fix a reference loop

I, : S' > W

with [I;] = h € H{(W,Z). Denote by P"(H) the set of all 1—periodic orbits of Xp, in the
homology class /.



For a fixed reference class h, we will often write the chain complex generated as a free
abelian group by orbits in P"(H) as SC"(H,.J) when we do not need to specify (W,\). We
will suppress i when it causes no confusion.

The differential is given by counts of Floer trajectories. In particular, for two Hamiltonian
orbits z_, x, of H, let J/V\[(l’,, x,; H,J) be the moduli space of smooth maps u : R x S — W

such that lim wu(s,-) = x4 and u satisfies Floer’s equation
s—+Fo00

Osu+ J(Ou — Xg) = 0.

Here s,¢ denotes the R, S’ coordinates on R x S' respectively. Since the Floer equation is R-
invariant, there is a free R-action on ﬁ[(:lj',, xy H J)forz_ # xy. Let M(x_, 2, : H,J) be the
quotient by this R-action, i.e. ﬁ[(x,, z4; H, J)/R. After a small time-dependent perturbation
of (H,J), M(x_,x4, H,J) is a smooth finite-dimensional manifold.

A maximal principle ensures that Floer trajectories do not escape to infinity in W. For the
following, let V' C (W, \y/) be a Liouville subdomain, i.e. (V, A\y/|/) is a Liouville domain. Then
(Z,az) = O(V, ) is a contact manifold. Since V' is a Liouville subdomain, there is a collar of
Z in W that is symplectomorphic to (Z x [1,1 + ¢], d(taz)) for some small 0.

Lemma 2.8. [AS70] Consider H : W — R such that H = h(r) is increasing near Z, where r
is the cylindrical coordinate and J € J3q(W) is cylindrical near Z. If both asymptotic orbits of a
(H, J)-Floer trajectory u : R x S — W are contained inV, then u is contained in V.

Applying this result to V' = W, we can proceed as if W were closed and conclude by the
Gromov-Floer compactness theorem that M(z_, x; H, J) has a codimension one compactifica-
tion. This implies that M, (z_, x; H, J), the zero-dimensional component of M(z_,z; H, J),
has finitely many elements and the map d : SC(H, J) — SC(H, J), defined by

doy =) #Mu(o—, v H, J)z_

€T —

on generators and extended to SC(H, J) by linearity, is a differential. Here #M,,(z_,z; H, J)
denotes the mod 2 count of elements of My, (z_,z,; H,J). We have that (SC(H, J),d) is a
chain complex. Note that the underlying vector space SC(H, J) depends only on H while the
differential d depends on both H and J. The resulting homology H F(H, J) is independent of
J and compactly supported deformations of /.

If ¢;(W,w) = 0, as will always be the case in this paper, HF(H,J) has a Z-grading. More
precisely, if ¢; (W, w) = 0, the canonical line bundle of (W, w) is trivial. After choosing a global
trivialization of this bundle, we can assign an integer called the Conley-Zehnder index picz(x)
to each Hamiltonian orbit z; see Subsection 2.7. For a general orbit z, ucz(z) depends on
the choice of trivialization of the canonical bundle. For a Hamiltonian orbit corresponding to a
critical point p of the Morse function H |y, the Conley-Zehnder index coincides with n—Ind(p),
where Ind(p) is the Morse index of H |y at p.

Furthermore, dim M(z,y; H, J) = pcoz(y) — poz(x) — 1 so the differential, which counts the
zero-dimensional components of M(x,y; H, J), decreases the degree by one.



2.4.3 Continuation map

Although HF'(H, J) is independent of J and compactly supported deformations of H, HF'(H, J)
does depend on the slope of H at infinity and so is not an invariant of W. In particular,
HF(H,J) only sees Reeb orbits of period less than the slope of H at infinity. To incorporate
all Reeb orbits, we need to consider Hamiltonians with arbitrarily large slope. More formally,
this can be done by considering continuation maps between SC(H, J) for different H. Given
H  H, € Hyq(W),let H; € Hyq(W), s € R, be a family of Hamiltonians such that H; = H_
for s < 0 and H; = H, for s > 0. Similarly, let J; € Jsq(W) interpolate between J_, J,. For
Hamiltonian orbits z_,x, of H_, H, respectively, let M(/:c:, xy; Hy, Js) be the moduli space of

parametrized Floer trajectories, i.e. maps u : R x S' — W
Osu + Js(Ou — Xp,) =0
To ensure that parametrized Floer trajectories do not escape to infinity, we again need
to use a maximal principle. For this principle to hold, it is crucial that the homotopy of
Hamiltonian functions is decreasing, i.e. 0H/0s < 0. If J; is s-independent, we use the
following parametrized version of ‘no escape’ Lemma 2.8, which is proven in Proposition 3.1.10

of [Gutl)]. If J; does depend on s and V' = IV, then we use the maximal principle from [Sei06)].
We state both in the following lemma.

Lemma 2.9. [Gut15], [Sei06] Consider a decreasing homotopy H : W — R such that H, = h(t)
is increasing in t near Z = OV and H,|y is s-independent; let J € Jq(W) be cylindrical near Z.
Ifu:Rx St — Wisa (Hs, J)-Floer trajectory with both asymptotes in V, then u is contained in
V. IfV =W, the same claim also holds for a homotopy Js € Jq(W) that is cylindrical near Z.

By applying the second part of Lemma 2.9, we can proceed as if W were closed and conclude
that M(xz_,x; H, Js) has a codimension one compactification. Then the continuation map

¢H57Js : SC(H"Fa J+) — SC(H—, :]_) deflned by
om,,7. () Z#Mh x_,xy; Hg, Jg)w_

T—

on generators and extended to SC'(H, J; ) by linearity is a chain map. Up to chain homotopy,
this map is independent of J; and H,. Note that there is no R-action since the parametrized
Floer equation is not R-invariant. As a result, ¢y, ; is degree-preserving. Finally, we define
symplectic homology as the direct limit

SH(W,\) := lim HF(H, J).
—

The direct limit is taken over continuation maps ¢p, s, : HF(H,,J.) - HF(H_,J_) on
homology One key property is that SH (W, \) depends only on the symplectomorphism type

of (W d)) [Sei06].

2.5 Positive symplectic homology

Positive symplectic homology SH™ (W) is defined using the action functional. For a small
time-dependent perturbation of H € H4(1V), the action functional Ay : C*(S*, W) — R is

/ wA— [ H(t)d
St St



Under our conventions, the Floer equation is the positive gradient flow of the action functional
and so action increases along Floer trajectories, i.e. if u € M(x_, 2, ) is a non-constant Floer
trajectory, then Ay (xy) > Apy(x_). Let SC<%(H, J) be generated by orbits of action less than
a. Since action increases along Floer trajectories, the differential decreases action and hence
SC<%(H,J) is a subcomplex of SC(H,.J); we define SC~“(H, J) to be the quotient complex
SC(H,J)/SC<*(H,J).

For H € Hyq(W), the constant orbits corresponding to Morse critical points z € W
have action —H(x). The non-constant orbits that correspond to Reeb orbits have action
close to the action of the corresponding Reeb orbit, which is positive. In fact, for sufficiently
small €, SC<(H, J) corresponds to the Morse complex of —H |y with a grading shift. More
precisely, Hy(SC<(H,J)) = H"*(W;Z). Define SC*(H,J) to be the quotient complex
SC(H,J)/SC<¢(H,J) and let HF*(H,J) be the resulting homology. Using a direct limit
construction, we can also define HFT(W). More precisely, suppose H; is a decreasing ho-
motopy such that H;, = H_ for s < 0 and Hy; = H, for s > 0. Then the continua-
tion Floer trajectories are also action increasing and hence there is an induced chain map

Of,, : SCT(Hy, Jy) = SCT(H_, J_). As with SH(WV), we define SH*(IW) by
SHY(W,X) :=limHF*(H,J).
—

The direct limit is taken over the continuation maps ¢}; ; : HF"(H,,J,) — HF*(H_, J_)
on homology.

Like SH(W), SH* (W) depends only on the symplectomorphism type of (W, d)). Note
that as a vector space, SCT(H, J) essentially depends only on (Y, «) and not on the interior
(W, ). This is because SC*(H,J) is generated by non-constant Hamiltonian orbits, which
live in the cylindrical end of W and correspond to Reeb orbits of (Y, ). On the other hand,
the differential for SC*(H, J) may depend on the filling W of (Y, «a) since Floer trajectories
between non-constant orbits may go into the filling, so different Liouville fillings of (Y, ) might
have different SH™.

The chain-level short exact sequence

0— SC<(H,J)— SC(H,J) — SC*(H,J) =0
induces the ‘tautological’ long exact sequence in homology

oo = H"FN W, Z) — SH(W,\) — SHF(W,\) — H"FY W Z) — - - -

2.6 Summary of the TQFT structure on SH. (V)

This is taken out of chapter 6 in [Ritl3]. For a detailed construction, see chapter 16 of [RitlI3].

Note that both the grading and action functional differ from ours by a negative sign, and our
homology SH,(W?") is cohomology SH*(W?") in [Ritl3]. We summarize here the TQFT

structure. Suppose we are given:
1. a Riemann surface (S, j) with p 4+ ¢ punctures, with fixed complex structure j;

2. ends: a cylindrical parametrization s + it near each puncture, with 70, = 0;
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3. p > 1 of the punctures are negative (i.e, we converge to the puncture as s — —o0), they
are indexed by a =1, ..., p;

4. q¢ > 0 of the punctures are positive (i.e, we converge to the puncture as s — +00), they are
indexedby b=1,...,¢

5. weights: constants A,, B, > 0 satisfying > - A, — > B, > 0;
6. a 1-form (3 on S with d < 0, and on the ends § = A, dt, § = By dt for large |s|.

Remark 2.10. Negative/positive parametrizations are modelled on (—oo, 0] x S* and [0, c0) X
S, respectively. In (6), d3 < 0 means df(v,jv) < 0 for all v € T'S. By Stokes’ theorem,
> A.—> By = — [,dB > 0. This forces p > 1 and (5). Subject to this inequality, such 3
exists. See Lemma 16.1 [Rit13].

Fix a Hamiltonian H : W — R linear at infinity with /' > 0 (required in Section 16.3 [Ritl3]),
this defines X = Xy. Fix an almost complex structure ./ on W of contact type at infinity.

The moduli space M(z,; ys; S, 3) of Floer solutions consists of smooth maps u : S — W
such that du — X ® f is (j, J)-holomorphic, and u converges on the ends to 1-orbits z,, y;, of
A.H, ByH which we call the asymptotics.

After a small generic S-dependent perturbation J, of J, M(x,;vs; S, 5) is a smooth mani-
fold. One can ensure that on the ends .J, does not depend on z=s+ it €S for |s| > 0. Just
as for Floer continuations maps (2.4.3), a maximum principle and an a priori energy estimate
E(u) = > Apu(ys) — > Aa,u(z,) holds, so the M(x,;yp; S, 5) have compactifications by
broken Floer solutions: Floer trajectories for A,H, ByH can break off at the respective ends.
When gradings are defined (2.7),

dim M(l’zﬁ Yb; S, ﬁ) = — Z NCZ(an) + Z ,uCZ(yb) + nX(S) (23)
= Zﬂcz(yb) - Z poz(xy) +n(2—29—p—q). (2.4)

Define 95 : ®/_,SC.(ByH) — ®@"_,SC.(A,H) on generators by counting isolated Floer solu-
tions

bs®-®y) = Y amn®- @,
u€Mo (Za;yp;S,5)

where €, € {11} are orientation signs (In this paper we use Z, coefficients, so these signs
don’t matter. In general, see Section 17 of [Ritl3]). Then extend s linearly.

The 1)g are chain maps. On homology,

Vs @ SH(ByH) — ®"_ | SH.(A.H)

is independent of the choices (3, ], .J) relative to the ends. Taking direct limits, we get
induced maps:

Ys: SHLOW)® 5 SHW)®  (p>1,4>0).
So SH.(W) has a unit ¢ (1).
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Figure 1: Pair of pants product: the operation ¢p receives inputs at positive punctures of P and
emits output at the negative puncture. So it goes “from right to left".

2.6.1 The product

The pair of pants surface P (Figure 1) defines the product
Yp: SHi(W) @ SHj(W) — SHi j(W), x-y = ¥p(z,y),

which is graded-commutative and associative.

Remark 2.11. The pair of pants product also respects the action filtration. As mentioned in
[Uebl5] and in Section 16.3 of [Ritl3], we have

.AQH(LEg) S AH(xl) + .AH(Z'Q)
Hence the product restricts to a map
SHia’b) (W) > SHia’,b’) (W) N SHLmax{a—&—b’,d—l—b},b-l—b’) (W),

where on the right hand side it is necessary to divide out all generators with action less than
max{a + V', a’ + b} to make the map well defined. So one does not get a product on the whole
positive symplectic homology, but we can define maps:

SHM (W) x SHPY(W) — SHP20)(W)

2.6.2 The unit

Let C' = C with p = 1, ¢ = 0. The end is parametrized by (—oc0,0] x S* via s+ it - e~ 27(sFit),
On this end, 8 = f(s)dt with f'(s) <0, f(s) =1for s < -2 and f(s) =0 for s > —1. Extend
by 8 = 0 away from the end (See Figure 2). Thus we get a map ¢¢ : K — SH.(H).

Definition 2.12. Let ey =v¢(1) € SH,(H). We can define e=limey eSH,(W).
Theorem 2.13 (Theorem 6.1 [Ritl3]). e is the unit for the production on SH.(W).
Proof. By the gluing illustrated in the Figure 3, ¢p(e, ) = ¥puc(-) = ¥z(-) = id. O
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Floer’s equation for H

< J—holomorphic since 0 - H =0

C

Floer’s continuation equation f(s) - H

Figure 2: A cap C, and its interpretation as a continuation cylinder.

Figure 3: Unit for pair of pants product

Remark 2.14. For “gluing = compositions” results, see Theorems 16.10, 16.12, 16.14 in [RitI3].
Before taking direct limits, the above is the continuation map

SH,(H) ™S SH,(H)®2 25 SH,(2H).

Lemma 2.15 (Lemma 6.2 [Ritl3]). ey is a count of the isolated finite energy Floer continuation
solutions u : R x S — W for the homotopy f(s)H from H to 0.

Lemma 2.16 (Lemma 6.3 [Ritl3]). For H as in Section 2.4.7, ey = sum of the local minima of H.

Theorem 2.17 (Theorem 6.4 [Rit13]). e = lim ey is the image of 1 underc, : H.(W) — SH. (W),
and egy = c, g (1) where c,pr - Ho(M) = SHZ(H) — SH,(H) is the inclusion map.

2.6.3 The TQFT structure on SH, (V) is compatible with the grading by H, (W)

We can grade SC.(H) = @ SC"(H) by the homology classes h € Hl(ﬁ/\) of the gen-
heH (W)
erators. The Floer differential preserves the /; grading, and so do Floer operations on

a cylinder and a cap. The pair of pants product respects this grading as follows: g :
SHM(W)®SH!M (W) — SHM+h2 (V). We can also grade SH,.(W) = @ SH!(M) by the free
h

homotopy classes h € [S*, M] of the generators. The TQFT operations for genus zero surfaces
are compatible with the grading (the equation above holds after replacing > by concatenation
of free loops).
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Remark 2.18. Let SH?(WW) denote the summand corresponding to the contractible loops.
Considering only contractible loops determines a TQFT with operations g : SH?(W)®? —
SHY(W)®P (p > 1,q > 0). Also ¢, : H (W) — SH’(W) C SH.(W) naturally lands in
SHO(W).

2.6.4 Viterbo Functoriality

For Liouville subdomains W C M, Viterbo [Vit99] constructed a restriction map SH,.(M) —
SH,(W) and McLean [McL07] proved that it is a ring homomorphism.

Theorem 2.19 ([McLO07] [CO18]). Let W and V' be compact symplectic manifolds with contact type
boundary and assume that the Conley-Zehnder index is well-defined on W. If V' is obtained from W
by attaching to OW x [0, 1] a subcritical symplectic handle H}", k < n, then it holds that

SH(V,Zs) = SH.(W, L)
as rings.

Remark 2.20. A Ritter proved a stronger statement in Theorem 9.5 of [Rit13].

2.7 Conley-Zehnder index

In this section we discuss Conley-Zehnder index as in Fauck [Faul6]. To define ¢z, let Sp(2n)
denote the group of 2n x 2n symplectic matrices. We will discuss a generalization, called the
Robbin-Salamon index as follows: any smooth path U : [a,b] — Sp(2n) satisfies an ordinary
differential equation

V(1) = LS(HU(),  U(a) € Sp(2n),

Where ¢t — S(t) = S(¢)T is a smooth path of symmetric matrices and J, is the standard almost
complex structure. We say ¢ € [a, b] is called a crossing if det(id — ¥(¢)) = 0. The crossing
form at time ¢ is a quadratic form I'(V, ¢) defined for v € ker(id — ¥(t)) by

(W, t)v =<v,S(t)v >

A crossing t is called regular if I'(¥,¢) is non-degenerate. For a path with only regular
crossings, the Robbin-Salamon index is defined by

1 1
puez(V,a,b) == §signf(\ll,a) + Z signl’ (W, t) + Esignf(\ll,b)

a<t<b

where the sum runs all over crossings ¢ € (a, b), and sign(M) denotes the signature of the matrix
M, which equals the number of positive eigenvalues minus the number of negative eigenvalues.
Here we use pcz to denote the Robbin-Salamon index.The fact that the Robbin-Salamon index
coincides with Conley-Zehnder index when det(id — W(b)) # O sort of justifies this abuse of
notation.

We have the following properties for pcz:

s (Naturality) For any path @ : [a,b] — Sp(2n), pcz(PVP™1) = pcz(0)
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o (Homotopy) 11cz (V) is constant for any homotopy U with fixed endpoints.

o (Product) If Sp(2n) ® Sp(2n') is identified with a subgroup of Sp(2(n+n')) in the natural
way, then pcz(V & ') = pez(V) + pez(V).

The homotopy property allows us to define pcz(V,a,b) also for paths with non-regular
crossings, given that having regular crossings is a C* generic property among paths with fixed
endpoints.

Remark 2.21 (Lemma 59 [Faul6]). Let Wy, Uy, U5 : [0,7] — Sp(2) be the following paths:
Uy(t) =€, Wo(t) = e, Wy(t) = diag(e®, e V), f € C'(R).

Then, their Conley-Zehnder indices are given as follows:

poz(¥1) = %J + {%w
poz(Ws) = ;—:J + {;_ZW = —pcz(¥),

pez(Us) = 0.

Trivialization

Suppose we have a symplectic manifold (M,w) with ¢;(M) = 0 and J is an w—compatible
almost complex structure. Then the anti-canonical bundle of M is the highest exterior power
of (T'M,J), i.e, k% = N"(T'M,J). The canonical bundle «; is the dual of x¥%. In the same
manner, we can define the canonical bundle of a contact manifold (C, ) with a choice of one
form o and da-compatible almost complex structure on €.

A trivialization of the canonical bundle is a bundle isomorphism ® : k; — M x C. A
trivialization of (v*T M, J)( where ~ is a loop in M) is a bundle isomorphism ¥ : v*T'M —
St x C™. Such a trivialization has a one-to-one correspondence (up to homotopy) with the
trivialization of v*x% and hence the trivialization of the canonical bundle via:

detc (V) : A"(V*TM) = v*k% — S* x C.
For a 1-periodic Hamiltonian orbit z, we fix a trivialization of (z*T'M, J) along x as:
U:z*'TM — S' x C"
Suppose ¢ is the Hamiltonian flow and dvp, : TM |,y — T' M|, is its linearization, then define
My(z) == U, o dipy o U5t

The Conley-Zehnder index of x is defined as pcz () := pcz(M(z)). Similarly, we can define
the Conley-Zehnder index of a Reeb orbit. In particular, let (W, \) be a Liouville domain and
(C = OW, ¢ := ker \|¢) its boundary. We have TM|c = £ < Xpeew > & < X >, where
Xpeev, X are a Reeb vector field and a Liouville vector field, respectively. Since < Xpee, >=
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J < X >, we can identify < Xp.o, > & < X > with C, i.e. v"T'M = v*¢ @ C, where v is a
Reeb orbit. Due to the fact that Reeb flow preserves Xg.., and extends to the symplectization,
we have

My () = Myg(y) @ [ é (1) }

where M; 5/(7y) is the symplectic matrix associated to the linearization of the Reeb flow with
respect to a trivialization of T'M|,, i.e, M, ¢(y) is defined in the same manner. The product
property of Conley-Zehnder index implies that jicz (M (7)) = pez(Mie(y)). Hence we will
not specify which index we are referring to in the rest of this paper.

Now consider a G—equivariant Liouville domain (¥, \). Suppose the group action is free
and |G| < co. Then we have that the quotient map

e (W, A) — (W/G, )

is a finite covering map. Each Reeb orbit v in O(W/G) then lifts to a fractional orbit 7 in OW.
That is, 7(t) = Y(t),t € [0,T] for some closed Reeb orbit 7 in (W). In particular, we can
choose 7y with period of |G| - T. If we choose a G—equivariant trivialization for the canonical
bundle ryy, then such trivialization descends down to k. Equivalently, if we choose G-
equivariant trivialization of £|,,, and M, ¢(7o) is the matrix of the linearized map, then we have
for some Mg € Sp(2n,R),

Mg - Mye(v0) = Mysre(0)-

where M satisfies M};G‘ = Mg1¢(70) is a constant matrix, which only depends on the homo-
topy class of our G-equivariant trivialization. In particular, Mr¢(v0) = M, so piez(Mie(70)),t €
[0, 77 is well defined since the Conley-Zehnder index is constant for any homotopy with fixed
endpoints. We can therefore define the Conley-Zehnder index of such a fractional Reeb orbit
of v to be the Conley-Zehnder index of M, ¢(vo),t € [0, 7.

As a consequence, we have

tez(v) = pez(7)-

Lemma 2.22. Let (R x S',d(rdf)) be the symplectization of (S*,0). Choose the canonical trivial-
ization of T(R x S') = TR x T'S', then all fractional Reeb orbits of (S*,0) have Conley-Zehnder
index (Robbin-Salamon index) zero, with respect to any cyclic group action rotating the cylinder.

Proof- Since Reeb flow preserves (0,, Jy), so the matrix for linearized return map is

M(t):[é”.

Therefore, the Conley-Zehnder index is zero. ]

The following lemma gives a formula for the Reeb vector field in terms of the Hamiltonian
and Liouville vector field.

Lemma 2.23. Let (W, \) be a Liouville manifold. Suppose H is a function on W with 0 as its
regular value and the Liouville vector field X is transverse to the O-level set. Then (3 := H~1(0), \)
is a contact manifold whose Reeb vector field is given by X pee, = %, where X7 is the Hamiltonian
vector field of H.
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Proof- (3, ) is well known to be contact. We only need to prove the latter part of the lemma.
Since

LXHCZ)\|Z = —dH‘E =0
and
Ly A = Ly txd\ = dA(X, Xy) = dH(X) = X(H),

it follows X peep = % ]

Lemma 2.24 (Lemma 5.20 [McLI16]). Let (C,&) be a contact manifold with associated contact form
a and let h : R — R be a function with h' > 0,h"” > 0 and W' (0) = 1. Let C = C xR be the
symplectization of C' with symplectic form d(e" o) where r parameterizes R. Let ~(t) be a Reeb orbit
of a of period L with a choice of trivialization of the symplectic vector bundle &3\ TM along this
orbit. This choice of trivialization induces a choice of trivialization of v* ®I_| & in a natural way.
Then the Hamiltonian Lh(e") has a 1 periodic orbit x equal to y(Lt) inside C x {0} = C' and its
Conley-Zehnder index is equal to jic7(7y) + 3.

Remark 2.25. Notice that the Hamiltonian vector field in [McL16] differs from ours by a minus
sign. We have

1 0
Mt,M('r) = Mt,£(7> D |: ah"t 1 :| ;

for some constant a > 0.
If instead, 1" < 0, then the index equals yicz(7) — 5. And if 2/ < 0, then the Hamiltonian
orbit goes in the opposite direction of the Reeb orbit, and the index differs by a minus sign.

We will conclude this subsection with a lemma relating Morse index of critical point with
Conley-Zehnder index of the corresponding constant Hamiltonian orbit.

Lemma 2.26. If S is an invertible symmetric matrix with ||S|| < 2w and V(t) = exp(tJoS), then
pez(W) =n — Ind(S)
where Ind(S) is the number of negative eigenvalues of S.
Corollary 2.27 (Corollary 7.2.2 [AD14]). Let W be a symplectic manifold of dimension 2n, let
H:W —=R

be a Hamiltonian and x be a critical point of H. We assume that H is C*-small (in this case, we
can choose a Darboux chart centered at x such that the usual norm ||Hess,.(H)|| < 2m). Then the
Conley-Zehnder index 1oz () of x as a periodic solution of the Hamiltonian system and its Morse
index Ind(x) as a critical point of the function H are connected by

poz(x) =n— Ind(x).
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2.8 Weinstein handle attachment and contact surgery
2.8.1 Contact surgery

This section is already included in Chapter 6 of [Gei08]. We will highlight the parts which
should be paid attention to in this paper, namely, the trivialization of the conformal symplectic
normal bundle.

Definition 2.28. Let (M, ¢) be a contact manifold. A submanifold L of (M, §) is called an
isotropic submanifold if T,,L. C &, for all point p € L.

Let L C (M, & = ker a) be an isotropic submanifold in a contact manifold with cooriented
contact structure. Let (T'L)* C &, be the subbundle of £, that is symplectically orthogonal to
T'L with respect to the symplectic bundle structure da|¢.The conformal structure of this bundle
does not depend on the choice of contact form and therefore (T'L)" is determined by £. The
fact L is isotropic implies that 'L C (T'L)*. So we have the following definition,

Definition 2.29. The quotient bundle
CSNy(L) := (TL)*/TL

with the conformal symplectic structure induced by do is called the conformal symplectic normal
bundle of L in M.

So we have
€l =€/ (TL)Y & (TL)YY/TL®TL =TL® €|,/ (TL)* & CSNy/(L).

Let J : £ — & be a complex bundle structure on { compatible with the symplectic structure
given by do. Then the bundle |7 /(TL)* is isomorphic to J(T'L). So the contact structure has
the following natural splitting on the isotropic submanifold:

Lemma 2.30.
flp=TL® J(TL)® CSNy(L)

Therefore, if we fix a trivialization of T'L & J(T'L), then the trivialization of C'SNy, (L) is
determined by the trivialization of £|;,. Now we can state the contact surgery theorem:

Theorem 2.31 (Theorem 6.2.5 [Gei08]). Let A*~! be an isotropic sphere in a contact manifold
(M, ¢ = kera) with a trivialization of the conformal symplectic normal bundle C SNy (A*~1).
Then there is a symplectic cobordism from (M, &) to the manifold M’ obtained from M by surgery
along A"~ with the natural framing. In particular, the surgered manifold M' carries a contact
structure that coincides with the one on M away form the surgery region.

Remark 2.32. The resulting contact structure on M’ is uniquely determined up to isotopy by
the isotopic isotropy class of A*~! and the homotopy class of the trivialization of C'SN,;(A*~1).
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2.8.2 Weinstein handlebodies

For the purposes of this paper, we need to attach a handle to a Weinstein domain. We will
follow Section 13 in [CE06]. The standard handle of index & will be the bidisk in C™:

k k n
OICELEES WD ITIETSS
j=1 j=1

j=k+1

where z; = z;+iy;,j = 1,2, -- ,n, are the complex coordinates in C". In particular, the handle
H carries the standard complex structure ¢, along with the standard symplectic structure wgy.
The symplectic form wg; on H admits a hyperbolic Liouville field

k

0 0 1< 0 0
Xstd:Z(—fja—%ﬂL?yja—%)Jrg ) (xla_:c,wla_y,)'

Jj=1 I=k+1

Let us denote by ¢~ the contact structure ag|sp-y = 0 defined on 0~ H by the Liouville
form oy = tx,,,wsd, where O~ H := DY x D?>"% is the lower boundary. Notice that the
bundle [y« canonically splits as TA*! @ J(TA*1) & e"~*, where ¢"* is a trivial (n —
k)—dimensional complex bundle. We will denote by o, the isomorphism

TN @ J(TAF Y @™ — 7).

Suppose we are given a real k—dimensional bundle £, a complex n—dimensional bundle
7,n > k, and an injective totally real homomorphism ¢ : £/ — 7. Then ¢ canonically extends
to a complex homomorphism ¢ ® C : E®@ C — 7. If ¢ ® C extends to a fiberwise complex
isomorphism ® : £ ® C @ ¢"* then ® is called a saturation of E covering ¢. When n = k the
saturation is unique.

Let (V,w, X, ¢) be a Weinstein manifold, p a critical point of index k of the function ¢,
a < b= ¢(p) aregular value of ¢. Denote W := {¢ < a}. Suppose that the stable manifold of p
intersects V' \ IntW along a disc D*, and let A*~! = 9D be the attaching sphere. The inclusion
TA*! < ¢ extends canonically to an injective complex homomorphism TA*~!1 @ J(TA*1) —
¢, while the inclusion TD* < TV extends to an injective complex homomorphism 7' D* @
J(TD*) — TV. There exists a homotopically unique complex trivialization of the conformal
symplectic normal bundle C'SNay (A*~1) in € which extends to D¥ as a trivialization of the
conformal symplectic normal bundle to D* in TV. This trivialization provides a canonical
isomorphism @ px : TA® J(TA) D "% — £|pr-1, and we will call this the canonical saturation
of the inclusion A1 < W,

We have the following theorem on attaching a handle to a Weinstein domain:

Theorem 2.33 (Propl3.11 [CE06], [WT91]). Let (W,w, X, ¢) be a 2n—dimensional Weinstein do-
main with boundary OW and & the induced contact structure {c|ow = 0} on W defined by the
Liouville form o = 1xw. Let h : A — OW be an isotropic embedding of the (k — 1)—sphere A. Let
®:TA® J(TA) ® e — & be a saturation covering the differential dh : TA — £. Then there
exists a Weinstein domain (W, @, X, gz~5) such that W C IntW, and

(Z) ((Z),X,QE”W = (W7X7 ¢)’
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(ii) the function &|M\1ntw has a unique critical point p of index k.

(iii) the stable disc D of the critical point p is attached to OW along the sphere h(\), and the
canonical saturation ®p coincides with .

Given any two Weinstein extensions (Wy,wo, Xo, ¢o) and (Wi, w1, X1, ¢1) of (W,w, X, 9)
which satisfy properties (i)-(iii), there exists a diffeomorphism g fixed on W such that g : Wy — W,
satisfying (wo, Xo, ¢o) and (g w1, 9" X1, g* 1) are homotopic in the class of Weinstein structures
which satisfy (i)-(iii). In particular, the completion of these two Weinstein domains are symplectomor-
phic via a symplectomorphism fixed on W .

We say that the Weinstein domain (TW,&, X, @) is obtained from (W, w, X, ¢) by attaching
a handle of index k along an isotropic sphere i : A — OW with the given trivialization ®.

Definition 2.34. A Weinstein domain (W?", \, ¢) is flexible if there exist regular values ¢y, - - - , ¢
of ¢ such that ¢c; < ming < ¢ < --- < ¢ < max¢p < ¢ and forall e = 1,--- bk — 1,
{ci < ¢ < c¢iq1} is a Weinstein cobordism with a single critical point p whose attaching sphere
A, is either subcritical or a loose Legendrian in (Y%, A

ye).

Flexible Weinstein cobordisms are defined similarly. Also, a Weinstein handle attachment or
contact surgery is called flexible if the attaching Legendrian is loose. So any flexible Weinstein
domain can be constructed by iteratively attaching subcritical or flexible handles to (B?", wsg).
A Weinstein domain that is Weinstein homotopic to a Weinstein domain satisfying Definition
2.34 will also be called flexible. Loose Legendrians have dimension at least 2 so if (Y, &) is
the result of flexible contact surgery on (Y_,&_), then by Proposition 2.36 ¢;(Y,) vanishes if
and only if ¢;(Y_) does. Finally, we note that subcritical domains are automatically flexible.

Since they are built using loose Legendrians and subcritical spheres, which satisfy an h-
principle, flexible Weinstein domains also satisfy an h-principle [CE12]. Again, the h-principle
has an existence and uniqueness part:

 any almost Weinstein domain admits a flexible Weinstein structure in the same almost
symplectic class

* any two flexible Weinstein domains that are almost symplectomorphic are Weinstein
homotopic (and hence have exact symplectomorphic completions and contactomorphic
boundaries).

2.8.3 Formal structures

There are also formal versions of symplectic, Weinstein, and contact structures that depend on
just the underlying algebraic topological data. For example, an almost symplectic structure (W, J)
on W is an almost complex structure J on W; this is equivalent to having a non-degenerate
(but not necessarily closed) 2-form on . An almost symplectomorphism between two almost
symplectic manifolds (W71, Jy), (Wa, J2) is a diffeomorphism ¢ : W, — W, such that ¢*J; can
be deformed to .J; through almost complex structures on W;. Equivalently, it also means that
there is a family of non-degenerate 2-forms w; interpolating between w; and ws.

An almost Weinstein domain is a triple (W, J, ¢), where (W, J) is a compact almost symplectic
manifold with boundary and ¢ is a Morse function on ¥ with no critical points of index greater
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than n and maximal level set OW. An almost contact structure (Y, J) on'Y is an almost complex
structure .J on the stabilized tangent bundle 7Y @ €' of Y. Therefore an almost symplectic
domain (W, J) has almost contact boundary (OW, J|sw); it is an almost symplectic filling of
this almost contact manifold. Therefore a family of almost symplectic structures give rise to a
family of almost contact structures on the boundary:

Lemma 2.35. Almost symplectomorphic Liouville domains have almost contactomorphic boundaries.

Note that any symplectic, Weinstein, or contact structure can also be viewed as an almost
symplectic, Weinstein, or contact structure by considering just the underlying algebraic topo-
logical data.

Note that the first Chern class ¢;(/J) is an invariant of almost symplectic, almost Weinstein,
or almost contact structures. In this paper, we will often need to assume that ¢, (/) vanishes. The
following proposition, which will be used several times in this paper, shows that the vanishing
of ¢1(Y,J) is often preserved under contact surgery and furthermore implies the vanishing of

Cl(VV, J)

Proposition 2.36 (Proposition 2.1 [Laz16]). Let (W?", J),n > 3, be an almost Weinstein cobordism
between W = (Y_, J_) and 0. W = (Yo, J,). If H*(W,Y_) = 0, the following are equivalent:

e er(J) = 0,(J.) =0
b Cl(J) = 0.
If O_W =0, the vanishing of c1(J,) and c1(J) are equivalent.

Proof- Let iy : Yo — W be inclusions. Then i%ci(J) = ¢1(J1) so the vanishing of ¢i(.J)
implies the vanishing of ¢;(J_) and ¢;(J;). To prove the converse, consider the cohomology
long exact sequences of the pairs (WW,Y_) and (W, Y,):

HA(W,Yi;Z) — HAW;Z) 5 H2(Yi: ).

By assumption, H?(1W,Y_;Z) vanishes and hence i* is injective. By Poincaré-Lefschetz duality,
H?*(W,Y,;Z) = Hy, o(W,Y_;Z). Since 2n —2 > n + 1 for n > 3 and W is a Weinstein
cobordism, Hy,_o(W,Y_;7Z) vanishes and hence i* is also injective. Then if either ¢;(J_) =
i*c1(J) or ¢1(J4) = i%ci(J) vanish, so does ¢;(J).

If 9_W = (), we just need the vanishing of H?(W,Y;Z), which holds for n > 3. O

2.9 Morse-Bott case

The results of this section largely come from [McLI16].

Definition 2.37. A Morse-Bott family of Reeb orbits of (C, «) of period T is a closed path con-
nected submanifold B C C where B is contained in the image of the union of closed Reeb
orbits of period T, satisfying ker(Dvr)|g = T'B, where if 1), : B — B is the Reeb flow of .
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We are interested in indices of Reeb orbits and so from now on we assume that we work
with a fixed trivialization of a fixed power of the canonical bundle of (C, «).

Note that the Conley-Zehnder index of the period 7' orbits starting in B are all the same
because B is path connected. Hence we define the Conley-Zehnder index of B, pcz(B), to be
the Conley-Zehnder index of one of its period 1" Reeb orbits.

We can define an index closely related to the Conley-Zehnder index, called lower SFT index,
ISFT(7), as follows:

1. .
ISFT(7y) := pez(y) — 3 dim ker(D.oytr|e — id) + (n — 3).

Similarly, we have the following definition:

Definition 2.38. Let K be a Hamiltonian on a symplectic manifold (X,wy) and B is a set
of fixed points of its time 7" flow. We say that B is isolated if any such fixed point near B is
contained in B. suppose B is a path connected topological space and we have fixed a symplectic
trivialization of the canonical bundle of 7 X. Then every such Hamiltonian orbit has the same
Conley-Zehnder index and we will write pcz(B, K) for the Conley-Zehnder index. The set
B is said to be Morse-Bott if B is a submanifold and ker(DwkL — id) = T'B along B where
YE X — X is the time 7" Hamiltonian flow of K.

The following lemma is a technical lemma which relates the index of Reeb orbits in a contact
hypersurface (which is a regular level set of a Hamiltonian) and the index of the corresponding
Hamiltonian orbits.

Lemma 2.39 (Lemma 5.22 [McLI16)). Let (W,wy ) be a symplectic manifold with a choice of
symplectic trivialization of the canonical bundle of TW . Let Oy be a 1-form satisfying dfy = wy,
and K be an Hamiltonian with the property that b := 1x, dK > 0. This means C, := K=Y(r)
is a contact manifold with contact form o, = Oy |c,. Let B C W be a connected submanifold
transverse to C,. for each r so that B, := C, N B is a Morse-Bott submanifold of the contact manifold
(Cy, ) of period L,, where L, smoothly depends on r. Suppose that b = Ly along B, and that
db(V) > X)) o along By, where V is a vector field tangent to B satisfying dK (V) = 1. Then

dr
By is Morse-Bott for K and pic7(Bo, K) = pcz(Bo, ap) + 1.

Remark 2.40. Our sign convention is different from McLean’s in [McL16] since we use w(-, Xp) =
dH. So the condition on b := 1x, dK > 0 differs by a minus sign. If b # L, along By, we have
to either rescale b or L,.

Remark 2.41. In light of lemma 2.22, we have jcz(7,7%) = 3, where v is any Morse-Bott
manifold of Hamiltonian orbits.

3 ADC structures and positive idempotent group

We will define (strongly) asymptotically dynamically convex contact structure first. Then we
introduce a new invariant called the positive idempotent group base on SH,.(W). It does not de-
pend on the filling for ADC contact structures and therefore can be seen as a contact invariant.
The proof will be deferred to section 4. In subsection 3.3, we show that the (strongly) ADC
property is preserved under subcritical contact surgery.
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3.1 Asymptotically dynamically convex contact structures

Let’s take a moment to look at the degree of Reeb orbits, which is essential for the definition of
ADC contact structures. For any contact manifold (X, o) with ¢;(X, £), the canonical line bundle
of £ is trivial, as will always be the case in this paper. After choosing a global trivialization of
this bundle, we can assign an integer to each Reeb orbit v of (X, «)-the reduced Conley-Zehnder
index:
Y| = pez(y) +n—3.

For a general Reeb orbits, || depends on the choice of trivialization of the canonical bundle.
However, if the Reeb orbit || is contractible in X, then the grading does not depend on the
trivialization. We will consider both the contractible and non-contractible Reeb orbits in this
paper.

Let P37 (2, a) be the set of Reeb orbits v of (2, ) satisfying A(y) < D, where ® is a
specific trivialization of the canonical bundle. In a similar manner , we can define P5” (%, )
to be the set of contractible Reeb orbits v of (¥, «) satisfying A(y) < D. Here we dropped
the subscript ® since the degree of contractible Reeb orbits does not depends on the choice of
trivialization.

Lemma 3.1 (Proposition 3.1 [Laz16]). For any D,s > 0, there is a grading preserving bijection
between P3P (Y, sa) and T;D/S(Y, Q).

Proof- Note that R, = %Ra. So if 7, : [0,7] — Y is a Reeb trajectory of a with action 7, then
Ysa = Yaomz : [0,sT] — Y is a Reeb trajectory of sa with action s7’; here m1 : [0, sT] — [0, 7]
is multiplication by % The map v, — 7sq is a bijection between the set of Reeb orbits. If

T < D/s, then sT" < D and so it is a bijection between ?;D/S(Y, a) and P3P (Y, sa). This
bijection is grading-preserving since the Conley-Zehnder index of a Reeb orbit is determined by

the linearized Reeb flow on the trivialized contact planes £ but does not depend on the speed
of the flow. 0

We will also need the following notation. If a4, a5 are contact forms for &, then there exists
a unique f : Y — R* such that ap = foay. We write g > g, a0 > g if f > 1,f > 1
respectively. Note that if ap > a3, a2 > «y, then for any diffeomorphism ¥ : Y' — Y| we have
Vg > Urag, Uray > WUy, respectively.

Definition 3.2. A contact manifold (X, §) is asymptotically dynamically convex (strongly asymptot-
ically dynamically convex with respect to @ ) if there exists a sequence of non-increasing contact
forms oy > s > az--- for £ and increasing positive numbers Dy < Dy < Dj---going to
infinity such that all elements of P5 "% (2, ay) (P3"* (2, o)) have positive lower SFT index.

Remark 3.3. The ADC property defined in definition 3.6 [Lazl6] requires the non-degeneracy
of o;. Here we define the strongly ADC property (with respect to ®) using lower SFT index.
Therefore the contact form «; in the definition doesn’t have to be non-degenerate. It is an
immediate corollary of lemma 3.4, also see remark 3.7 (2) of [Laz16].

Lemma 3.4 (Lemma 4.10 [McLI16]). Let v be any Reeb orbit of o of period T and define K =
dim ker(Dr|€(7(0)) — id). Fix some Riemannian metric on C. There is a constant § > 0 and a
neighborhood N of v(0) so that for any contact form oy with ||a — o ||e2 < § and any Reeb orbit
of a starting in N of period in [T — 6, T + 6] we have pcz(v1) € [nez(v) — 5, pez(v) + £1.
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3.2 Positive idempotent group /.

Now we consider a strongly asymptotically dynamically convex contact manifold (X, £, ®) with
Liouville filling (W, A). We have the following result due to Lazarev:

Theorem 3.5 (Proposition 3.8 [Lazl6]). If (X, &, ®) is a strongly asymptotically dynamically convex
contact structure, then all Liouville fillings of (X, &, ®) have isomorphic SH™.

3.21 Definition of positive idempotent group /

We also want to define the ring structure. However as in Remark 2.11, we can not define a
product on SH™. Having said that, we can use the pair-of-pants product on SH,.(W) to define
an invariant for SH which is independent of the Liouville filling.

First, let’s recall the tautological short exact sequence:

0—= SC(W) = SC.(W) = SC.(W)/SC: (W) — 0.
We have long exact sequence:
o= SHE(W) — SH, (W) — SHY (W) — SHZ (W) — - - (3.)

We also have H"*(W, H) = SH:¢(W, H) since the admissible Hamiltonian H is €? small in
W. Therefore we can replace SH=¢ terms in equation 3.1 by H"™*, in particular, we have a
long exact sequence

oo > HY(W) = SH, (W) — SHF (W) = HY(W) — - (3.2)

In fact, the map H°(W) — SH,(W) in equation 3.2 is a ring homomorphism, see Appendix.
A of [CO18]. Suppose SH,.(W) # 0, then 1y does not maps to the unit in SH, (W), where 1y,
is the unit of H(WW), by Theorem 2.17 (also see Lemma A.3 of [CO18]). Therefore H°(1W) —
SH, (W) is injective, and we will regard it as a subring of SH,(W). We can thus identify
elements in SH,,(W)/H°(W) with elements in SH" (). In particular, SH,(W)/H°(W) =
SHF (W) if H\(W) = 0,

Now let’s consider the subgroup of SH,, (W) as follows:

I(W) :={a€SH,(W)|a*—aeH W)} (3.3)

Notice the group action here is "addition".

Define the positive idempotent group 1, (W) by
1L(W) = 1(W)/HO().

By the previous analysis, we can regard I, (W) as a subgroup of SH; (W). In the case I (W)
is finite, we can further define positive idempotent index (W) := |I.(W)|.
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3.2.2 Properties of [

Since HY(W,Zy) = Zsy, I.(W,Zs) is determined by I(W,Z,). Recall that SH,(W,Z,) has
a H(W,Z)/Tors grading. The first observation is that elements in H°(WW) have H,/Tors
grading zero. Indeed, it’s true for all elements in /(1¥). Suppose R is an algebra over Z,
which is graded by a finitely generated torsion-free abelian group /. This means that as a

vector space, R = € Ry with the property that if a € Ry,,b € Ry, then ab € Ry, j,. Define
keK

Ip(R) :={0,1} and I(R) := {z € R|z* —z € Iy}
Lemma 3.6 (Lemma 7.6 [McL07)). Ifa € I(R) then a € R, where e is identity of group K.

Proof. We argue by contradiction. Suppose we have a = ay, + - -- + ay, where k; € K and
ay, € Ry, k1 # e. Then a* = apz + --+ + ap2. Since K is torsion free, there is a group
homomorphism p : K — Z such that p(k;) # 0. This map actually gives R a Z grading. Let b
be an element in R, then it can be uniquely written as b = b; + - - - + by, where b, are non-zero
elements of R with grading d; € Z. We can define a function f as follows:

f(b) := min{|d;| # 0}

Note that f is well-defined only if at least one of the d.s is non-zero. And when it is well-
defined, f(b+ 1) = f(b) because 1 € R, and has grading 0. The assumption p(k;) # 0 implies
that f(a) is well defined and positive. On the other hand, we have a € I(R), which means
a’> = a or a®* = a + 1. Either way, it implies f(a?) = f(a), which contradicts the fact that

f(a?) = 2f(a). O
Corollary 3.7. Any element in (W) is null-homologous in H,(W,Z)/Tors.

Therefore, we can refine our definition of /(W) to be
I(W):={aeSH)(W)|a>—aec H (W)}

where SH?(W) is generated by all null-homologous Reeb orbits. In the case of strongly asymp-
totically dynamically convex contact manifolds (with respect to certain framing @), different
Liouville fillings have isomorphic positive idempotent group, as stated in Theorem 1.1, the proof
will be deferred to section 4.

3.3 Effect of contact surgery

Theorem 3.8 (Theorem 3.15 [Laz16], [Yau04]). If (Y"1, &1),n > 2, is an asymptotically dynam-
ically convex contact structure and (Y5, &o) is the result of index k # 2 subcritical contact surgery on
(Y1,&1), then (Y, &) is also asymptotically dynamically convex.

Now we are in the position to prove Proposition 1.8.

Proof of Proposition 1.8. Recall that W, is a flexible Weinstein domain, so SH.(W) = 0 (see
[BEE12]). By lemma 1.7, W, is asymptotically dynamically convex and so is W by assumption.
Moreover, 0V}, is obtained by attaching a Weinstein 1—handle to asymptotically dynamically
convex contact manifold, therefore it is asymptotically dynamically convex by Theorem 3.8. A
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well known fact is that subcritical surgery does not change symplectic homology as a ring, see
Theorem 2.19. We have

~~ "

% k—i

SH, (W) = SH,(W) @ -+ @ SHy(W) & SH, (W) © - & SH, (W) = @ SH,(W)

so we have

IW,)=IW)e---eI(W).

Since SH,(W) # 0 and is finite dimensional, {0, 1y} C I(W). We therefore have 2 <
|[I(W)| < o0, so |[I(W;)| = |[I(W)|* are mutually distinct. Therefore, |1, (W;)| # |I..(W;)| for i #
J-

]

Theorem 3.9 ( [Lazl6], [YauO4]). Let (31,&1) be a strongly asymptotically dynamically convex
contact structure with respect to ®, and (o, Dy) as in Definition 3.2 and (X2,&2) be the result of
index 2 contact surgery on A' C 331 so that the trivialization ® extends to the handle. Then (X5, &5)
is also strongly asymptotically dynamically convex with respect to .

Remark 3.10. Since the trivialization ® of the canonical bundle of (3;,&;) extends to the
attaching handle, so by abuse of notation, the trivialization of the canonical bundle of (35, &>)
which is obtained by extending ® to the attaching handle is still denoted by .

Proposition 3.11 (Proposition 5.5 [Lazl6], [YauO4]). Let A*~1 C (33"7! ay),n > 1, be an isotropic
sphere with k < n. For any D > 0 and integer i > 0, there exists ¢ = ¢(D,i) > 0 such that
if (X2, g) is the result of contact surgery on U(A, ) with respect to the trivialization ©, then
there is a grading preserving bijection between Pg” (Yo, an) and PgP (X1, 1) U{L, -+ 7'} where
V| =2n — k — 4 + 2i.

Remark 3.12. The proof largely follows [Lazl6] proposition 5.5, with only minor changes re-
garding the non-contractible Reeb orbits. The difference in the Strongly ADC case is that we
need to choose the trivialization to define the Conley-Zehnder index.

Proof of Proposition 3.71. As explained in [Yau04], the surgery belt sphere S?"~*~! contains a
contact sphere (S?"~2¢~1 ¢,,). After taking appropriate sequence of contact forms on (33, &),
the Reeb orbits of (X2, &) correspond to the old Reed orbits of (X1, &;), plus the new orbits of
(§2n=2k=1 ¢ .,) inside the belt sphere of action less than D. The correspondence is natural since
the trivialization of the canonical bundle extends over the surgery. These new orbits corresponds
to the iterations v*,--- ;4! of a single Reeb orbit v, see [Yau04]. Moreover, jicz(Y') =n — k —
1+ 2i and therefore |y'| = 2n — k — 4 + 2i. Meanwhile, by shrinking the handle, the action can
be made arbitrarily small and therefore we can ensure that arbitrarily large iterations of  have
action less than D. ]

For A C %, Since J'(A) ~ T*A x R, choose a Riemannian metric on A. Let U°(A) C
(JH(A), asa) be {|ly|| < €]z] < €}, the metric on A to define ||y|| on the fiber, z is the

coordinate on R. If A C (Y, «) is Legendrian, let U(A, ) C (Y, «) be a neighborhood of A
that is strictly contactomorphic to U¢(A).
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Proposition 3.13 (Proposition 6.7 [Lazl6]). Let a; > v be contact forms for (X,€) and let A C
(33,€) be an isotropic submanifold with trivial symplectic conormal bundle. Then for any sufficiently
small 6y, 0o, there exists a contactomorphism h of (3, €) such that

o his supported in U (A, 1), h|y = Id, and h*ay < 4oy
* R*alyenaar) = Clusi(a,ay) for some constant ¢ (depending on 61, 02)
o h(U(A, aq)) C U%(A, ).

Proposition 3.14 (Remark 6.5 [LazI6]). Let A C (X3"7' &), n > 2 be an isotropic sphere and
(32, &2) be the result of contact surgery on A which extends the chosen trivialization O of the canonical
bundle. Suppose (31, &) is a strongly asymptotically dynamically convex contact structure with respect
to the trivialization ® and has (ay,, Dy,) as in Definition 3.2. If a|ye(a,a1) = Crt1|ue(a,a,) for some
constants €, cy, then (X2,&2) is also strongly asymptotically dynamically convex with respect to the
trivialization .

Proof of Theorem 3.9. Now we will proceed exactly as Lazarev did, keeping in mind that we are
dealing with the strongly ADC property. We can apply Proposition 3.13 so that the conditions
of Proposition 3.14 are satisfied.

O]

4 [, is an invariant of ADC contact manifolds

We will follow Lazarev’s approach. First we will introduce the procedure called stretching-the-
neck. Here we use the notation in [Laz16].

Let VV C W be a Liouville subdomain with contact boundary (Z, az). Consider a collar of Z
in V' symplectomorphic to (Z x [1 — 4, 1], d(taz)) for small §. Let J € J5q(W) be cylindrical in
Z x[1—=46,1] and set J' := J|zxp-51)- For 0 < R <1 — 4, we extend J’ to a cylindrical almost
complex structure on Z x [R, 1], which we also call J'. Now let fr be any diffeomorphism
[R,1] — [1 — 6, 1] whose derivative equals 1 near the boundary. We can define Jgr € Jsq(WV)
to be (Id x fr)«J' on Z x [1 —4,1] and J outside Z x [1 — §, 1]. It is smooth because of the
derivative condition on fr. If J; € Jsq(W) is a homotopy that is cylindrical and s-independent
in Z x [1 — 0, 1], then we can apply the same construction to obtain a homotopy Jg ;.

Let (Hs, Js),s € R be a homotopy with (Hy, Js) = (H_,J_) for s < 0 and (H,, J5) =
(Hi,Jy) for s > 0,and H; =0in Z x [1 —§,1] C V. Furthermore, let z, z_ be Hamiltonian
orbits of H, H_ respectively in the source and target of the maps induced by (H, J;).

Proposition 4.1 (Proposition 3.10 [Lazl6]). Suppose that (Z, ) is strongly ADC with respect to the
trivialization ® and all elements of P5P(Z, o) have positive degree. If Ay, (x4) — Ay (v_) < D,
then there exists Ry € (0,1 — ¢) such that for any R < Ry, all rigid (H,, Jr s)-Floer trajectories are

contained in W \ V.

Remark 4.2. If H, is independent of s, then the Floer trajectories define the differential; if H
is an decreasing homotopy, then (Hj, Jg )-Floer trajectories define the continuation map.
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pez(x1) — pez(es) — pez(m) —n+3>0

xr X2

poz(z2) — pez(v2) +3 >0

Figure 4: Top of Floer building is connected (such breaking does no¢ occur). Hamiltonian orbits
are represented by continuous lines, Reeb orbits by dashed lines.

In P.Uebele’s paper [Uebl5], the pair-of-pants product is defined for “index-positive” contact
manifold, where the symplectic homology used is actually Rabinowitz-Floer homology. Though
as the paper points out, the ring structure is not well defined on SH™. However, at the chain
level, if the pair-of-pants product is asymptotic to Hamiltonian orbits of positive action, then by
the stretching-the-neck technique, we can prove the pair-of-pants does not enter the interior of
the Liouville filling. In [Uebl5], this is proved for index-positive contact manifolds. However, it is
not true for Strongly ADC contact manifolds in general. That being said, the pair-of-pants does
not enter the interior of the filling when the indices of the Hamiltonian orbits of the asymptotes
are high enough. To be precise, we have the following:

Proposition 4.3. Suppose that (Z, ) is strongly ADC with respect to the trivialization ¢ and all
elements of P5”(Z, ) have positive reduced Conley-Zehnder index. Furthermore, let Ay(x;) <
D/2(i =1,2,3) be non-constant Hamiltonian orbits such that picz(x1) + poz(xe) — poz(r3) =n
and pcz(x;) > n,i = 1,2, then there exists Ry € (0,1 — §) such that for any R < Ry, all
pair-of-pants products are contained in W \ V.

Proof. The proof is a combination of proposition 3.10 of [Laz16] and lemma 3.12 of [Uebl5]. First
of all, we have to rule out the breaking as in Figure 4 (Similarly with z; and x5 exchanged).
Suppose we have the breaking as in Figure 4, then the top level has positive dimension, and

we have (see lemma 3.10 of [Uebl])

pez(x1) — poz(rs) — poz(n) —n+3 >0

and
pez(r2) — poz(v2) +3 > 0.
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Then, since
pez(x1) + pez(s) — pez(zs) = n,

these conditions are reduced to

poz(m) <3 = pez(rz) and  pez(y2) < 3+ poz(ws).
In particular,
poz(m) <3 —n.
Meanwhile, the Floer energy of the top level would be

0< E=Ay(z1) — Au(zs) — A(mn).

So

We have v, € P37(Z, ), which implies jicz(71) > 3 — n, which is a contradiction. Now we
know that the top of the Floer building is connected, so we can proceed as in the proof of
proposition 3.10 of [Lazl6]. We prove this by contradiction. Suppose the pair-of-pants product
breaks after neck-stretching and ~; are the Reeb orbits in the top of the Floer building as in
[Laz16]. The virtual dimension of the moduli space of the top Floer building is

1| + [a2| = Jas] = |l < 0.
Contradiction. O

Now if we further require that the admissible Hamiltonian /7 has a unique minimum (which
is always possible and compatible with our requirements on admissible Hamiltonians), then
the Floer chain complex SC.(W,H,J) = O.(W,H,J) & C,(W, H, J), where O,.(W, H,J) is
generated by all non-constant Hamiltonian orbits and C,(W, H, J) is generated by all constant
Hamiltonian orbits (critical points of H). Since H is C? small in W, the action of the critical
points is small, and the Floer differential d coincides with the Morse boundary operator d;. We
therefore have (SC=°(W, H,J),d) = (C.(W, H, J),d;) and SCS (W, H,J) = O.(W, H, J).

For degree reasons, C,, (W, H, J) = Zy < p >, where p is the unique minimum of H. Note
that d(p) = di(p) = 0 and we have the fact that d(z + p) = 0 implies d(z) = d(p) = 0.

Proof of Theorem 1.1. As shown in Figure 5, let W,V be two different Liouville fillings for a
strongly ADC contact manifold (2, )\). Suppose H{,, HY are Hamiltonians (as in Subsec-
tion 2.4.1) whose slopes at infinity are D ¢ Spec(X,\). We can further assume that they
have unique minima which are denoted by p,q respectively. Note that any element z &
O.(W, Hy, Jw) has action Ay, () < D. As shown above, O.(W, Hy, Jw) = SCH(W, Hy, Jw ).

After neck-stretching, we can assume that

(HW, JW)\Zx[R,oo) = (HV7 JV)|Z><[R,oo)

So we have O.(W, Hy, Jw) = O.(W,Hy,Jy). Proposition 4.1 shows that Floer cylinders
with asymptotes in SC (W, Hy, Jy) are entirely contained in ¥ x [R,00). Therefore Floer
differentials of O.(W, Hy, Ji) and O.(W, Hy, Jy) coincide. We will suppress W and V in the
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Figure 5: Pair-of-pants product for different fillings W and V' and the natural identification of
CP(W, Hy, Jw) and C*P(V, Hy, Jy/). On the chain level, pair-of-pants product are the same,
up to a difference in O, Morally, the difference vanishes when elements are quotiented by
O:P; I, (W) is therefore isomorphic to I, (V).
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notation and denote them by (O.(H, J),d)((O:5(H, J),d) if it is filtered above by action K).
We have the pair-of-pants product @y on

SCPRW, HP J) = OP(HP, J) @ CP2 = O0PR(HP, )@ Zy < p >

defined as

SCPRW, HP  J) @ SCPR(W, HP | J) — SCP(W, HP | J) (4.1)

(z,y) — = Qw y. (4.2)
By Proposition 4.3, @y coincides with ®y on components in O (HP | J), that is, for z,y €
O;D/Q(HD,J), T Qwy = z+ ow(z,y), where z € OSP(HP J) and Sy (z,y) € Zy < p >.
Note that &y (x,y) is closed in SCP(H,J). Likewise, we have 7 @y y = z + dy(z,y),
where z € OSP(HP,J) and dy(2,y) € Zy < q >. Now for any a € I<P/2(W, Hy,, Jw) C
SHyP2(W, Hy, Jw), we have
a =[x+ eplw = [x]w + €[plw = [z]w + €eny,
where = € OE/Q(H, J),e=0orl. z @w x = z + dw(x, x) implies
o’ — o= [z + ey, — 2w —eeny, = [z —x +6(z,2)lw = [z — 2lw + [6(z, 2)]w
So a € I<P/2(W, Hy, Jy) is equivalent to
[z — zlw + [8(z, 2)lw € H'(W).
But since [§(z, 7))y € H'(W), a € I<P/2(W, Hy, Ji) is equivalent to [z — z]y € HO(W).
Hence for = € O;D/Q(H, J),0(x) = 0 (0 is Floer differential on OZD/Z(H, J)),
(]} € I, (W, Hy, Jw) <= [z — x|}, € SH<P2(H,.J)

where [y];;; stands for the equivalence class of y € O.(H, J) in SH," (W, Hy, Jy ). We can prove
the same results for V' similarly. Therefore we have an isomorphism between / _fD/ 2(I/V, Hw, Jw)

and I-""*(V, Hy, Jy):
[=]3y =[]

Since SH, P> (W, Hy, Jw), SHA<"/*(V, Hy, Ji/) can be defined by (S x [R,00), H, J) as

the Floer cylinder never enters the interior. Therefore we have the identity
SHP<PR(W, Hy, Jw) = H,(OFP?(H, J),0) = SH<PP(V, Hy, Jy),

the inclusion map SHJKD/Q(W, Hw,Jw) — SH(W, Hy, Jy) commute with the above iso-
morphism,

[P (W, Hy, Jw) —— SH<PP(W, Hy, Jy) —— SH; (W, Hy, Jv)

: ’ ;

157V Hy, Jy) —— SHPP(V Hy Jy) —— SH(V, Hy, Jy)
and we can therefore take the direct limit with respect to Hy . Since we already know SH,F (1)

is isomorphic to SH,F (V') by Theorem 3.5, it follows that I, (W) = I, (V).
0
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Remark 4.4. We can also proceed exactly as in proof of proposition 3.8 in [Lazl6]. The key
point is to use the essential complex as defined in that proof.

5 Brieskorn Manifolds

5.1 Definition of Brieskorn manifolds

Let a = (ag,a;, - ,a,) be an (n + 1)-tuple of integers a; > 1,z := (29,21, - , 2,) € C"T,
and set f(z) := 25° + 21" + - - - + 2%, we define Brieskorn Variety as

Va(t) = {(20, 21, , 20) € C"*|f(z) =t} foreach teC. (5.0)

We will often suppress a when it causes no confusion, and define X7 = V(¢) N B(s).
Further, with S*"*! denoting the unit sphere in C"', we define the Brieskorn Manifold as
the intersection of Brieskorn Variety V,(0)with the unit sphere:

Y(a) := V,(0) N S+

Lemma 5.1 (Lemma 96 [Faul6], Lemma 7.1.1 [Gei08]). ¥(a) and V,(t),t # 0 are smooth mani-
folds.

Proof- We set p(z) :=||z]|* = >_ 212, and consider the maps
f:ctt -cCc  and  (f,p):C""' - CxR

Since V,(t) = f~(t) and X(a) = (f,p)~1(0,1), it suffices to show that ¢ (respectively (0, 1))
are regular values. With a little Wirtinger calculus (and using the fact that f is holomorphic) we
find the Jacobian matrix

ap—1 —1
apzy Cee Qe 0 e 0
l)(fap):: 0 e 0 @oibaofl e anzhanil
20 . e Zn ZO . e Zn

For z # 0 the first two rows of D(f, p) are linearly independent, which implies that ¢ # 0
is a regular value of f. If z is a point where this matrix has rank smaller than 3, there exists a
non-zero complex number A such that 2, = )\akzzkfl for all £ and hence

n _
kLK

ZE =N = f(2)
ko k=0

This equality is incompatible with the conditions p(z) = 1 and f(z) = 0 for a point z € 3(a).
U

5.2 ‘Topology of Brieskorn manifolds

Now, we give some topological facts about Brieskorn manifolds without proof.

Proposition 5.2 (Theorem 5.2 [Mill6] ). A Brieskorn manifold ¥.(a)*"~! is (n — 2)-connected.
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5.3 'Trivialization and Conley-Zehnder index

Let us consider on C"*! the following Hermitian form given by

n

SAERED P A
k=0

It defines a symplectic 2-form
Wy = i kz_o akdzk VAN dgk.

Notice that Y)(z) := ? is a Liouville vector field for w,, with the corresponding 1-form

; n
)\a = Wa(Y)u ) - g Zak(zkdz_k - Z_dek>

k=0

Proposition 5.3 (Proposition 97 [Faul6], [LM76]). The restriction o, :== ;| is a contact form on
Y.(a) with Reeb vector field R, given by

L R0 R Zn
Ra:4l<—,—,"' _

ap’ ay "ay,

).
Proof. The gradient of f with respect to < -,- >, is given by
Vaof i=2(5%" 797t .. gm0,
The Liouville vector field Yy of the restricted 1-form A,y (o) with respect to the restricted
symplectic form w,|v, )is given by

< Vafa Y)\ >a
[ Vafll2

Note that T'V,(t) = ker df = ker < V,f, - >,, which shows that Y}, € T'V,(0). Furthermore, we
have for any & € T'V,(0),

< vafv Y)\ >a‘
I Vafll2

YV 2:Y)\— 'vaf-

< vafa Y)\ >a

wa(wa) :Wa(YAaf)_ Hvaf‘|2

wa(Vaf,§) = Aa(§)+

=0

So this indicates that Yy, is the Liouville vector field for the pair (wa|v,(0), Aa|va(0)). Now notice

that dp = > Zxdzy, + z1dZ; (p is defined in the proof of lemma 5.1) and we have
k=0

2k 2k < vafa Y)\ >a _ —ap—1 p(Z) < Vaf7 Y)\ >a 7 1
do(Yy) = — 2 . ag — _ .9 ———
POV =2 7~ g SR NI A

since p(z) = 1 and f(z) = 0. It follows that Y} points out of the unit sphere and hence out
of 3(a) in V,(0). It follows that >(a) is a contact hypersurface in V,(0). Now we are going to
check that R, is the Reeb vector field of a,. For any z € ¥(a), we have

< Ra,Vaf >a=4i Y 2p* = 4if(z) =0,

k=0
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dp(Ra) = 2k (—4i)zp + Zdiz, = 0
k=0

The two equations above shows that ?, is a tangent vector. We also have

ta(Ra) = Ma(Ra) = =3 (o5 — imty) = plz) = 1,

a a
k=0 k k

. n
7

—~, ko - I
Lr Aoy = 2 Z(4z—kdzk — () )y =— Z(zkdzk + zZxdzy) = —dp.

g Qg

k=0 k=0

The latter form is zero for vectors in 7% (a), therefore, R, is the Reeb vector field. O
Proposition 5.4 (Corollary 98 [Faul6]). The symplectic complement £+ with respect to w, of the
contact structure &, := ker a, inside C"' is symplectically trivialized by the following 4 vector
Sfields:

VY . _Vaf

X1 = 9

b Yi =1 X1

b X2 = YV

e Y5 := R,.

Proof X1,Y) generate the complex complement of 7'V, (0) while X3, Y5 generate the symplectic
complement of &, in T'V,(0), so we have

wa(Xla XQ) - Wa(Xl, }/2) - Wa(}/la XQ) - wa<Y17 YVQ) - 0

Meanwhile we have

wa(Xl,Yi) = 17 wa(X27}/é> = )\a(Ra) =1.

The latter equation comes from the proof of proposition 5.3. ]
The Reeb vector field R = 4i(22, 2L, - - -, 22) generates the following flow:
: dit dit
wa(z) — (euo © 20, ,€0n - Zn)

The submanifolds Y7 of period T' € 7Z/2 are given by

ZT:{ZEE(a)‘ZkIOifZGWZ/Z}.

ag

Y is not empty if and only if the relation % € 7Z/2 is satisfied by at least 2 different &, as
z € Y.(a) has at least 2 non-zero entries. Note that X7 is the intersection ¥(a) NV (a, T"), where
V(a,T') denotes the complex linear subspace

V(a,T) := {z e C"tt

T @
—0if — —Z}
2k 1 ak¢2
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whose complex dimension is given by

dimc V(a,T) :=

{k: ogkgn,zefz},
Qg 2

where |S| denotes the cardinality of the set S. We notice that X1 is therefore isomorphic to the
Brieskorn manifold (a(7’)), where

a(T):(a(]’... 7@@.’... ’a/n)

is a subset of a. Here d; means the term a; is omitted, when aZ ¢ ZZ. The differential of ¢, at
time ¢ is given by
Dl/}; _ diag(e4’t/a0, . 7e4zt/an)

It follows that
ker(D,f |, s —id) =T,X(@)NV(a,T) = T,5r

Therefore Y7 is Morse-Bott submanifold.
The calculation of the indices of all closed Reeb orbits can be found in various literature,
see [KvK16], [Ust99]. We conclude this subsection with the following proposition:

Proposition 5.5 ( [KvK16], [Faul6]). Lety € X(a) be a fractional Reeb of period t. We have

o522 (2D

Proof. First we notice that the indices are canonically defined when n > 4, by Proposition 5.2.
Recall the Reeb vector field in Proposition 5.3, Ra = 4i(22, 2, ... 22) The associated Reeb

ao’ a1’

flow is
4it 4it

Ua(2) = (e -z, e - zp).

We regard this as a flow on C""! as opposed to X(a). This perspective gives us the advantage
of calculating the indices directly on C™*1!. If we take the standard trivialization of 7C"*!, then
the linearized return map is

Dwg = diag(e4it/“°, . ,64”/“") =: ;.

By Proposition 5.4, we have the trivialization of the symplectic complement 6: The linearized
return map of the flow on &5 gives:

* Dy (Xi(2)) = e - Xy (¢5(2)),
* Dy(Vi(z)) = "' - Vi(¢5(2)),
* Dipa(Xa(2)) = Xa(¢4(2)),

* D (Ya(2)) = Ya(¢5(2)).
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It follows that the linearized map of D! on & under the prescribed trivialization is the
diagonal matrix:
\Ijl; _ |: 641lt 0 :|
0 1
A trivialization of &, along the Reeb orbit gives us the linearization of ¥} of ¢’} on &,. Any
trivialization of &, and £ combined gives rise to a trivialization of TC""!, which is homotopic

to the standard one. Therefore by the product property of the Conley-Zehnder index and using
remark 2.21, we find that

poz(v) = tez(V) =pcz(V) — poz(P2)

S (e asl) - (1)

Lemma 5.6. Let a = (ag, a1, a9, ,ay), where the as are positive integers, and i > 1. Then
the following function f, : R, — 7Z,

we=3(|a o)) - (el + 1)

k=0

]

has a minimum, denoted by m(a). In particular, ifa = (2,2,2,a4,--- ,ay,), then m(a) > 2, where
ays are positive integers, n > 2.

Proof. We notice that 2z — 1 < |z| + [z] < 22 + 1, we have

fa(x)>2(§n:i_1)x—”—12—n—1,

a
=0 K

which proves the first part. For the second part, we have

o[- () S )¢+

Note that f,(x

+2) >
have f,(z) = B(FJ

fa(z) 4 2, so the minimum is obtained in x € (0, 2]. On this interval, we
e] ) e (o] # o]

2+n ze€(0,1),

14+4n x=1,
al\l) =
fal@) n z€(1,2),
44+n z=2.
hence our conclusion. O
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6 Exotic contact manifolds

6.1 Liouville domains admitting group actions

We need to find a Liouville domain (W, \) with the contact manifold (a) as its boundary.
While V,(0) has a singularity at the origin, V,(¢€) is smooth. Therefore we will follow Alexander
Fauck’s approach [Faul6] to overcome this by constructing an interpolation between V,(0) and
Va(€). First, we choose a smooth monotone decreasing cut-off function § € C*(R) with
B(z) =1,2 < 1 and B(z) = 0,z > 3. Then we define (we will often omit a)

Ua(€) = {2 € C" 26" + - - + 25 = ¢ B(||zI ") }.
Let
W :=U.N B(s)

we have

Proposition 6.1 (Proposition 99 [Faul6)). For sufficiently small €,(X!, \) is a Liouville domain
with boundary (¥(a), an) and vanishing first Chern class.

Moreover, we have a cyclic group
C(L):={eT €ClkeZ}=<(>
acting on (C"™1)*, which is generated by :

C* . ((Cn—i-l)* — (Cn—l—l)*
(207 21y 7Zn) — (ZOCb07 zlgblv T azncbn)

omi

where L := lema;, b; := L/a;,( := eZ . We can easily see that the I-form \, is C(L)-
invariant.

We can restrict this group action to the subsets of (C"*!)* mentioned above and obtain a
C(L)—action on the manifolds X? and W?. By definition, XM = Ule) N B(1/2) = V(e) N
B(1/2) = /2 We have the following proposition:

Proposition 6.2. For sufficiently small ¢ > 0, there is a C(L)-equivariant isotopy between the
Jollowing pairs of Liouville domains:

o X! and X?,

e W' and and WEI/Q.

€

Proof: We only give a proof for the existence of a C'(L)-equivariant isotopy between 1¥! and

Wel/ 2. We can prove the same results for Xe1 and Xe1 /2 verbatim. Consider the function

p(z) = ||z||* on V.. If for sufficiently small ¢, the critical values of p restricted to W} are

less that 1/4, then we are done, by lemma 6.3. Indeed, we have f.(z) := f(z) — ¢ - 3(]|z||*) on
C"*! and its differential is given by

Df.=Df —e-5(||z]]*) - Dp
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so the map

(fo,p) :C"™™ - C xR
has Jacobian matrix (Df — ¢- 8(||z||?) - Dp, Dp), which has the same rank as (D f, Dp). So by

the same argument in the proof of lemma 5.1, if z is a point where the Jacobian is not full rank,
then we have for some complex number )\, 2, = Aagz{* " for all k. For ||z|| > 1/2, we have
|2k | > f for some ko, so

|Zk0| - |)“ Ok - ’Z/fo|ako_1
i.e,
2—ayg 2 ag,—2
A = el L @V iy (61
CLkO ako
where C'(a) := [nax {(2‘F) o 2} only depends on a and n. Meanwhile, we have

zkzk ag 2

—Azzk X () = A e (2l (62
k=0

Combining equations (6.2) and (6.1), we have

BN eBlel) < e Cla) (6.3
ag
k=0
On the other,
"L 25 1 " 1 ) 1
> > _ 6.4
g ar — max{a;} — k= max{a;} izl = 4 max{a;} (6.4)

Equations (6.4) and (6.3) cannot hold for sufficiently small € at the same time, and therefore
the function p has no critical points in ||z|| > 1/2, hence all critical values are less than 1/4. [

Lemma 6.3 (Theorem 2.2.2 [Nicll]). Suppose finite group G acts on a manifold M and [ is a
G-invariant exhausting function on M. Moreover, assume that no critical value of f is contained in
la,b] C R, then there is a G-equivariant isotopy ¢; between the sublevel sets M := f~1((—o0,al)
and M° = f~1((—o00,b]), and ¢; coincides with Id outside a compact set.

Proof. Since there are no critical values of f in [a, b] and the sublevel sets are compact, we
deduce that there exists € > 0 such that

{a—e< f<b+e} C M\ Crit(f).

First we fix a gradient-like G-invariant vector field Y and construct a compactly supported
G-equivariant smooth function
g: M —|0,00)

such that
v a< fla) <0,
0, f(z) ¢ (a—eb+e).
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We can now construct a G-invariant vector field X := gY on M and we denote by
o RxM— M, (t,x)— ¢i(x)

the flow generated by X. Clearly the flow commutes with the group action, so ¢, is G-
equivariant. If u(t) is an integral curve of X, then differentiating f along wu(t) in the region
{a < f < b} and get

df 1

o Xf= Y—fo =1
This implies
Gp—a(M?) = M"
and ¢, is identity outside the region {a — e < f < b+ €}. ]

Remark 6.4. By proposition 6.1, (X, 2 ®F\) is a family of C'(L)—equivariant Liouville struc-
tures. Then by corollary 2.5, we have (X /2 A) is C(L)— equivariant Liouville isomorphic to
(X!, \). By the same token, (W} \) is C'(L)— equivariant Liouville isomorphic to (Wel/ 2\
and therefore to (X!, \).

Let ¢y(z) := 3 Y ¢;(t)|2;|?, where ¢;(t) is a linear interpolation such that ¢;(0) = 1,¢;(1) =

j=0

a;. It’s easy to check that ¢; is plurisubharmonic on V,(¢). Indeed, ¢; is i-convex on C"** since
A¢; > 0 and Vj,(¢) is a smooth complex submanifold. So (Va(€), 4, ¢;) are C(L)— equivariant
Stein manifolds.

Since X! = ¢y ((—00,1/8]), (X!,i,¢0) is a C(L)—equivariant Stein domain. Seen as a

Liouville domain, (X}, —d%¢) is C'(L)—equivariant Liouville isomorphic to (X2, \) as follows:

Proposition 6.5. There is a C(L)-equivariant Liouville homotopy between (X}, —d¢y) and (X!, \),
Jor sufficiently small e.

Proof. Notice that for A\ = —dC¢;, it suffices to prove the critical points of ¢; are contained in
a compact set {||z|| < 1/3}, then V¢, will be transversal to the boundary, and —d®¢, will
be a family of C'(L)—equivariant Liouville structures on X!, so we can conclude the result by
corollary 2.5. In the following we are going to prove that all critical points satisfy ||z|| < 1/3.
Consider the map

(f,0¢) : C""' - C xR

Its Jacobian matrix is

apz(0t - a2t 0 e 0
D<f7 p) = 0 T 0 a(ﬁbgoa()i1 e anzinanil
éCo(t)Z_U . %cn(t)z_n %co(t)zo _ %cn(t)zn

If z is a point where this matrix has rank smaller than 3, there exists a non-zero complex
number )\ € C such that C’“T@Zk = )\akzg’“_l for all £ and

n

Z%?Tz:z_’“zAizgk:Aﬂz):xe (6.5)
k=0

k=0
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For ||z]| > 3, we have |z,| > m for some 0 < r < n. So we have

(T _ _
“ e = A ar - )
8
i.e,
Gl _ (3 + 1)
Al = <C
A 8a, |24 =2 8 -

where ' = max w

na; , only depends on a. On one hand,we have
SIS

= Ck(t>ZkZ_k u a
— == =) *=A-f(z)=X-e<(C-e 6.6
o kzzok f(2) (0.6)

k=0

On the other hand, we have

PEAUEC e AP— (67)
— Sar — ap, — T2 Orgzagi{ai}

So for € small enough, equations (6.6) and (6.7) cannot both hold, which implies the critical
points of ¢, is contained in {||z|| < 1/3}.
O]

n

Remark 6.6. Since we have ¢y(z) = HZBHQ, Veobo = Y (2:0% + %,0z;)/2 is complete in C"1.
i=0

Therefore ¢ is a completely exhausting function on V,(¢). By the proof of Proposition 6.5, all

critical points of ¢y are in the interior of X!. It follows that V() is the completion of X! by

matching the corresponding trajectories of the Liouville fields.

6.2 Topology of manifolds M) and M
Now let’s consider C(L)-equivariant Stein manifold (C*, 7, (log|z|)?/2) where the C'(L)—action
is multiplication given by

R x (R/27Z) — C*, (r,0) > "™,

The map gives rise to polar coordinates form of the same Stein manifold (R x S, j,r?/2) and
the Liouville vector is r0,, which is complete.

Now we consider the product of the Stein manifolds (C*, 1, (log |z])?/2) and (Va(e€), 1, ¢). It
has a free C'(L) action as follows:

Co: Val(e) X C" — Vy(e) x C*
(Zo, Z1y "ty Rny 77) = (zogboa Zle17 e 7anbn7 770,

where b; = L/a;,( € C(L). The product function ¢ := (log|z|)?/2) + ¢y is a completely
exhausting J—convex Morse function, and the product Stein manifold is of finite type. By
abuse of the notation, we use ¢ to denote the function on the quotient manifold as well. Also,
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My := {¢ < C} is a Stein domain, where C is greater than all critical values of ¢. Hence the
completion My(a) = (Va(e) x C*)/C(L) since ¢ is complete. Oftentimes we will suppress a. If
we consider the Weinstein structure instead, the Weinstein domain can be cut out in other ways,
as stated in the following lemma:

Lemma 6.7. Suppose (W, \, ¢) is a finite type Weinstein manifold. Let v : W — R be an
exhausting Morse function. Suppose X is nondegenerate and gradient-like for ¢ outside {1) < 0}.
Then {1 < 0} together with X is Liouville homotopic to a Weinstein domain W1 := {¢ < K}, for
K sufficiently large.

Proof. Let K satisfy
{p <0 Wi CcWy={y <C}

for some large enough C (conditions will be evident along the line of proof). Notice that
{1y < 0} is Liouville homotopic to W5. Fix a smooth function p (it can be constructed on the
level sets of ¢) such that

e p=1in Wi, p = 0 outside .
« Xip) <0.

Let M := rv%a\}%/v (¢ — ). Now consider the function f = p¢ + (1 — p)(¢p + M). We will
pEW2\W1

show that f is Morse and X, is gradient-like for f. We only need to verify X is gradient-like
in Wy \ ;. We have

Xa(f) = pXa(@) + (1 = p) XA () + (¢ — ¢ = M)(Xi(p)) = pXi(¢) + (1 = p) Xx(¢) > 0

So X, is gradient-like for f and f doesn’t have new critical points outside 1W;. Because

flwy, = é|lw,y, f is Morse. Hence (,, f) is also a Weinstein structure on W5, and a linear
interpolation between f and ¢ gives rise to a family of Weinstein structures. In particular, it
gives rise to a Liouville homotopy. ]

In fact, we have an explicit form for the topology of M. The following quotient map
71 Va(e) x C* — C"1\ V4(0)
(Z07 21y Rny t) — (Z(]tb07 thblv ) Zntbn)

coincides with the C'(L)— action quotient.

—

Therefore My(a) (hence M) is diffeomorphic C"*'\ V;(0).We have the following proposition
about M,:

Proposition 6.8. Let My(a), n > 3 be the manifold defined above. Then m\(My) = Z, H;(My) =
0,i>2,7#n,n+ 1.

Proof- 1t suffices to prove the results for C"! \ V,(0). We have a deformation retraction

7 C"E\ VR(0) — S\ X(a),
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and we have the Milnor fibration:

S Y(a) — S!
f(2)
1 (=)l
The fibers are homotopic to a bouquet of n—spheres, which is simply connected since n > 3,

the long exact sequence gives us (M) = Z. Meanwhile, H,(M,) = H,(S*"*!\ X(a)), and
for 1 < i < 2n, by Alexander duality we have

(2072:17”' 7Zn) =

H;(S*1\ S(a)) = H* ' (S(a)).
The conclusion follows Theorem 5.2. O]

Proposition 6.9. Let My be a manifold with m(My) = Z,H;(My) = 0,i > 2,7 # n,n + 1.
Suppose vy is a generator for w (My) and M, is the result of attaching a 2-handle along . Then

Proof. The attaching 2-handle kills the generator [y] so m;(M;) = 0. Meanwhile, H;(M;) =
0,i > 2,i # n,n+ 1 implies Hy(M;) = 0,k > 3,k # n,n + 1 since attaching a 2-handle
does not change higher homology. Let’s denote the 2-handle by /7. We have the Mayer-Vietoris
sequence:

Here [7] is the generator of both H;(My N H) and H;(M,), so i, is isomorphism. Hence we
have N
o0 Hy (M) - Z —Z—0—---

So Hy(M;) = 0. The conclusion follows. O

6.2.1 Handle attachment and trivialization

Now we need to fix a trivialization of the canonical bundle r7;- of (T ]\/4\0, J). Since we have the
C(L)— equivariant quotient map V,(¢) x C* — Mo, it suffices to fix C (L)— trivializations on
both V,(€) and C* since

T(Va(e) x C*) =TVa(e) x TC*
Notice that the trivialization of the symplectic complement in Proposition 5.4 is C'(L)—equivariant,

and the standard trivialization of 7C"** is also C'(L)—equivariant, as long as ) ;. ai € Z. In-
deed, if we take Q2 = dzg A dzs A - -+ A dz,, then the C'(L)—actions on ) is

n () = Chodag A Aeomdz, =X w0 = Q.
Therefore a C'(L)—equivariant trivialization of T'V,(€) exists. Since V,(¢) is simply connected,
the trivialization of T'V,(¢€) is homotopically unique. We will take the natural trivialization of

TC* — C* x C, which determines the trivialization ® of T'(V,(e) x C*) . We will also fix ¢ for
the rest of this paper, which will be crucial in two places:
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* Determining the framing for the Weinstein 2-handle attachment in Proposition 6.10.

* Determining the trivialization for the calculation of Conley-Zehnder index in Proposi-
tion 6.21.

Proposition 6.10. There is a contractible Weinstein domain (M, wy, X1,11) obtained from the
Weinstein domain (Mo, —dd®¢, ¥ 46, ¢) by attaching a 2-handle such that the canonical saturation
(see Subsection 2.8.2) coincides with the trivialization ®.

Proof. If we can find an isotropic circle in M, which generates the fundamental group, then
by Theorem 2.33, we can attach a Weinstein handle in such a way that the trivialization of
the contact structure extends to the Weinstein handle body. The existence of such an isotropic
circle is guaranteed by the A—principle in lemma 6.11, which states a subcritical embedding can
be perturbed into an isotropic embedding. ]

Let M be a contact manifold of dimension 2n + 1 and V' a smooth manifold of subcritical
dimension, i.e. dimV < n. Let Mono®™ be the space of monomorphisms 7'V — T'M which
cover embeddings V' — M, and Monof™ its subspace which consists of isotropic monomor-

phisms F': TV — T'M. Let MonoS™ be the space of homotopies

isot

Monof™ = {F,,t € [0,1]|F; € Mono®™ Fy = dfy, F; € Monot™

150t 1sot J *

emb

The space E'mb;s, of isotropic embeddings V' — M can be viewed as a subspace of Monofi, .

Indeed, we can associate to f € Emb;s,; the homotopy F; = df,t € [0, 1], in Mono§™?

1sot *

Lemma 6.11 (Proposition 12.4.1 [EMO02]). The inclusion

Embisp; — Monot™

1s0t
is a homotopy equivalence.
The above h—principle also holds in the relative and C’—dense forms.

Remark 6.12. By Theorem 2.7, (M;, w1, X1, 1) is homotopic to a Stein domain through Wein-
stein structures. We denote the Stein structure by the same notation (M, Jy, ¢1).

6.3 The Weinstein domain 1/

We notice (Va(e), —d%¢y) = ()/(:1, —d®¢y) while (X!, —d¢g) is C(L)—equivariant Liouville
homotopic to (WEI, A), and in light of lemma 6.7, we can define different Weinstein domains in

(@ x C*, \g := A\ + rdf) by different functions.

First of all, we need the following technical proposition.

Proposition 6.13. Let (M, \) be a G-equivariant Liouville domain,and R be the coordinate for its
cylindrical end. Assume ¢ is a G-equivariant Morse function on M such that X (¢) < O near the
boundary of M. Then for any € > 0, there exists &1 > 62 > 0 and a G-equivariant Morse function
f (see Figure 6) such that:

o ||1 — flle2 < € in the region M \ {R > 1 — 61 + 262}.
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f only depends on R, f'(R) < 0, (f(R)*)” <0

Ty

= flles < e |
s o
f(R)=(1- 62)\/1 - (—R%;;‘”) T
1~ 4 0
N
interior of VVE1 1—01 | 1
1—9;+ 26,

cylindrical coordinate 1?

Figure 6: G—equivariant Morse function f.

 fand ¢ have same set of critical points, and the Morse indices are the same.

o fsatisfies the equation

(i)2+ <—R_(1_51>>6:1 (6.8)

a 51
on the region 1 — 61 + 9y < R < 1, for some 0 < a < 1.

Proof. First, we can fix the canonical collar of the boundary using the negative Liouville flow

t:(l—e, 1] xOM — M
UA=R\ "X = ROp

where €; > 0 is sufficiently small, so that X(¢) < 0 in the canonical collar and R is the
cylindrical coordinate. Notice that R is G-equivariant and so is any function in .

Now let’s fix a sufficiently small €1 > 6; > 5 > €5 > 0 ( the exact constraints on Jq, 02, €2
will be clear along the proof), and an increasing bump function p such that p(R) = 1 for R > 1

and p(R) =0 for R < 0. Let p(R) := p(%;él)), then we have

. 1
l1/]le2 < §HPHGQ (6.9)
2

~

Define a bump function p on M to be p(R) on its canonical collar and extended by 0.
Apparently p is G-equivariant. Let & > 0 be a function of radial coordinate on [1 — d;, 1] x OM

satisfying the conditions:
h o \2 —(1— 6
(o) (=5 =
1—62 (51
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Then h can be extended to a smooth function on M. Without loss of generality, we can
assume ||1 — ¢[|ez < €2. Otherwise we can simply replace ¢ by 1 + c¢ for ¢ > 0 sufficiently
small. We claim the function

f=o-(1=p)+hp
satisfies all conditions in this proposition. Firstly, & is well-defined and G-equivariant, and since
f coincides with / on the region {R > 1 — d; + 2}, equation 6.8 is satisfied.
Secondly, we only need to show that f has no critical points in the region {1 —d; < R <
1 — &y + 92}, for which we have

Or(f) =NWp+hp'+ (1= p)Or(¢) — ¢p" = (h—d)p+h'p+ (1= p)Or(d) <0

since ROr(¢) = X(¢) < 0 and h < 1 — €3 < ¢. Therefore f has no critical point in the
canonical collar. Since outside the canonical collar f = ¢, the second condition follows.

Now we show that f also satisfies the first condition. In the region M \ {R > 1 — 0, }, we
have f = ¢, so we only need to check the region {1 —0; < R <1 — §; + 2d5}, where

1f = Ule2 = [I(¢ = 1) + (h = ¢)plle>
< |l¢ = 1le2 +[I(¢ = h)plle>
< e+ 2l[(0— 1)+ (1= h)lfex - [[Alle:
1
< e+ 5—§(|I¢>— Ule2 + [[1 = Alle2)llplle2

1
<+ e +It - hle) e
2

The Taylor expansion of 1 —h at R=1— ¢ is:

1—h((1=6)+1t) =€+ Ct° +o(t'), C:%
1

Therefore ||1 — hl|ez < €3 + C165, for t < 205 < &1, where C; = C(81). Thus we have

2¢y + C103
1= Sl < e+ =2 <c
2
The last inequality holds as long as €5 < d3 and d, < 6;. N

Lemma 6.14. Let f, p be defined as above, g := p(62 — R). Then g - Xy is C* small, where Xy is
the Hamiltonian vector field of f with respect to d ).

Proof- We only need to prove this in {1 — d; + d2 < R < 1 — §; + 2d5}. Notice that

[1X¢ller < 11— flle= < K63,

45



where K is independent of d;. Meanwhile, we have

g - Xypller < lgl - [1Xp11+ [ldgl] - [| X[ + 1g] - [[dX]]
< (gl + Ildgll) - (I1X¢[| + [ldX]])
< llgller - [IX¢ller

02
< K'0y

]

Suppose G is a finite group and M is a G—manifold. Let M“(M,R) denote the set of
G —equivariant Morse functions on M and C(M, R) the set of smooth functions.

Lemma 6.15 (Density Lemma 4.8 [Was69]). M (M, R) is dense in C(M,R) with respect to the
C* topology.

Remark 6.16. Note that (1V!, \) is G—equivariantly Liouville isomorphic to (X!, —d®¢). Since
¢p is i—convex on X! (and we can perturb it into a G—equivariant Morse function if necessary),
the index of each critical point of —¢y is at least n (half of the dimension of a Stein Manifold).
Therefore we can find such function ¢’ on ! as well.

Apply proposition 6.13 to (W/, X), with ¢ as in remark 6.16. Then consider the function F

€
_—

on the product Liouville manifold (W} x R x S', \g := A + rdf) defined as:

F:WIxRxS'>R, (6.10)
(p, (r,0)) = 1> — f(p)* for pe W} (6.11)

(¢, R), (r,0) = 1 — a? (1 _ (%1—51))6) for (g,R) € OW! x (1 — 81 + 28, 00).
(6.12)
where a = 1 — ¢;. It is easy to check that F' is a smooth C(L)-equivariant function on

ﬁ/? X R x S', and 0 is a regular value. Furthermore, the following lemma shows that the
Liouville vector filed Y := Y} + rd,( where Y, is the Liouville field on (W}, \)) is gradient-like
for F on {F > 0}.

Lemma 6.17. The Liouville vector field Y of(ﬁ/? X R x SY, N+ rdf) is gradient-like for F' outside

Proof. We will verify the statement on the regions {R > 1 — 0, + 2} and {R > 1 — 01 + 252}°

6
separately. In the region {R > 1—0;+02}, Y = r0,+ ROg with F' = r*—a? (1— <%{61)> ,

the claim is trivial. In the region {R > 1 — §; + 2J5}¢, we have Y = r0, + Y. Notice that this
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region is a product W’ x (R x S'), where W’ = @\ {R>1—0; + 205} is W} attached with

a cylindrical cobordism. Now,
Y(F) = (ro, + Y))(r* — f2) = 2(r* — fYa(f)) (6.13)

Since 1 — f is €% small, the coordinate r is nonzero in the region W N {R > 1 — §}¢, and W’
is compact, we have 2(r? — fY,(f)) > 0. The conclusion follows. O]

Remark 6.18. Note that ({F' < 0}, A+ rdf) is a C(L)-equivariant Liouville domain, and C(L)
acts freely on it. The quotient domain is Liouville homotopic to the Stein domain (M, J, ¢), by
Lemma 6.7. Since the properties of interest are invariant under Liouville isomorphism, we will

also denote the quotient domain({F < 0}, \o)/C(L) by (Mo, Ao)-

Remark 6.19. The region (U := {R > 1/2}° N {|r|] < 1/2}, ) is a Liouville domain with
corners. We can smooth out the corner with a €*°-small perturbation. By abuse of notation,
the boundary of this Liouville domain is denoted by M = {R = 1/2} x {|r| < 1/2} U{R >
1/2}¢ x {|r| = 1/2}, with Liouville vector field Y = ROgr + r0,. The time 1 flow of Y
sends M to a new boundary {R = ¢/2} x {|r| < e/2} U{R > ¢/2}¢ x {|r| = e¢/2}, that is,
UUMx[0,1] ={R > e/2}N{|r| < e/2}. It’s easy to check that U C {F < 0} C UUM x[0, 1].

6.4 Strongly ADC property of )/

In this subsection, we will prove that the contact boundary of (1, A\o)(as in remark 6.18) with
respect to the trivialization ® is strongly asymptotically dynamically convex. Let us first state

what the framing is. Since (ﬁ/? xR x S, \g) is a product, it suffices to choose the G-equivariant
trivialization on both components, since it descends naturally to the quotient (W, A\g) (see
subSection 6.2.1). We denote the boundary of (M, Ag) by (3o, Ag)-

Theorem 6.20. Let F' be the function of Lemma 6.77. Then (X, \o) satisfies the strongly ADC
property with respect to a trivialization @, provided a satisfies the conditions n > 3 and m(a) > 2.

Proposition 6.21. For any K > 0, there exits a C(L)—equivariant function F' as defined in 6.10
on the Liouville domain (W} x R x S, \o) with a chosen trivialization ® such that

(1) 3 := {F = 0} is a regular level set and the Liouville vector field Y points outwards along X..
(2) The quotient X := /G has the property that all elements of P5" (X0, No) have lower SFT
index at least min{m(a) — 3/2,n — 5/2}.

Proof. We will show that by choosing a proper C?-small function f as in Proposition 6.13, the
corresponding function [’ satisfies the required conditions. The first condition is satisfied by
the construction of F), as proved in Lemma 6.17, we only need to show the second condition is
also satisfied. Recall the quotient map

X — Yo

is an L—sheeted covering map. Therefore, the Reeb orbits in ¥ lift to fractional Reeb orbits
in 3. To be precise, if y(t),t € [0,7] is a Reeb orbit in ¥, then the L— fold Reeb orbit
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critical points of f, [SFT >n —5/2

(b) 7y is contractible
ith ISFT > m(a) — 3/2

(c) Fractional Reeb orbits ¥ correspond to

Wo

interior of 1! 1—0

cylindrical coordinate I?

Figure 7: Lower SFT index of Fractional Reeb orbits in X.

—_—

v(t),t € [0,¢T] can be lifted to a Reeb orbit (¢),t € [0, LT] in X. It follows that the index of
7 in ¥y can be calculated through the index of ¥ in ;. We will proceed by investigating the
Reeb orbits in three regions:

(a) XN {l > R >1— 04, + d2}, where ¥ has constant 7, R coordinates.
(b) ¥ N {1 = R}, where 7 is contractible, and ~ lifts to closed Reeb orbit 7 in X.
(c) N{R >1—0; + 20}, where 7 has constant coordinate in the W! component.

We will show that all elements of P5" (3o, Ao)(see Figure 7) can be lifted to fractional Reeb
orbits either entirely contained in part (a), (b) or (c) and

(a) orbits in part(a) have lower SFT index at least m(a) — 3/2 ;

(b) orbits in part (b) have lower SFT index at least m(a) — 3/2;

(c) orbits in part (c) have lower SFT index at least n — 5/2.
First, in region (a), by lemma 2.23, we have

XF - 27“89—2fo _27‘89—2ff/<]8R
Y(F)  2r2 —2fY\(f)  2r2—2Rff"

XReeb -

So Xpee» has no dr component, and therefore the Reeb flow in the region (a) has constant
R coordinate. So any Reeb orbits 7 intersecting {R > 1 — §; + d2} remains entirely in region
(a). Let us begin the proof with a lemma:

Lemma 6.22. WithW, and I defined as in Lemma 6.77, the conditions in Lemma 2.39 are satisfied.

48



Proof. We will verify the conditions in three cases:
a. in the region Wy \ {R > 1 — §; + 205}, where ||1 — f||e2 < €
b. in the region {1 — 0; + 0 < R < 1}, where Y = 10, + ROg, and f = f(R).
c. in the region R = 1,7 = 0.

First of all, note that b = dF(Y) = 2r? — 2fY,\(f) > 0 by Lemma 6.17.
Case (a): Let p be a critical point of f and define

PN f(p)?+1,0) € W xR x S'|t € (—€,e0)}

Define C; := F'~1(t), which is transverse to A as 0, is transverse to it. Let

A =0CnA={(p,\Vf( t,0) € W xR x S}
and L; = /f(p)? +1t,b/Lo = 2f(p). We can rescale L; by 2f(p), and with V' = <=, we have

st
dt

Case(b): Let B be a Morse-Bott manifold of the Brieskorn manifold (X(a), \), and g(R) =
—f%(R). Then F(t) = r(t)? + g(R(t)),t € (—¢o,€0) . We have the following:

(V) =2>2f(p)—| =1

dF = 2rdr + ¢'(R)dR, b=dF(Y)=2r>+ Rg'(R),

Xpeeh = Xp/Y(F) = (2rds + ¢'(R)JJOR) /b
Now, define for any constant a > 0 (—1/a is the slope of tangent line of F at (7, R)),

A(a) :={(q, R(t),0,7(t)) € Bx(1—0,+0, 1)xS*xR|r*—f(R)? = t,r = ag (R),t € (—¢p, )}
Again let C; := F~!(t), which is transverse to A(a), and
A =CNA= {(Q7 R(t)a (97 T(t)) }

Then A(t) is a Morse-Bott manifold in C}. Since

/
Li=b/2r(t) =1 + R92£R) — %, b/Lo = 2r(0) (6.14)
dL, R
ot = oy 6.15
r L rr 4+ . (6.15)

and on the other hand, V' =10, + R’@R, db = 4rdr + (¢'(R) + Rg"(R))dR, we have that

Ryl

db(V) =4rr' + R'¢'(R) + RR'¢"(R) > 2rr' + o
a

since ' > 0, R’ > 0,¢"(R) > 0.
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Case (c): Let g = —f?(R), B defined as above, define
A:={(q,R(t),0,0) € BxRx S*xR|g(R) =t,t € (—¢,€0)}
Once more, C; := F~1(t), which is transverse to A as Oy is transverse to it, and
A =CinA={(q,R(t),0,0) € BxRx S' xR}
are pseudo Morse-Bott manifolds. Moreover,

dF = ¢'(R)dR, b= dF(Y) = R¢'(R), L, = R(t), b/Lo = ¢'(1)

Here,

dL, d

/ 0t — / / = =
GO = d(RR N = S o(RO)]mo =1
and with V = ?i, we have
g'(R)
Rg"(R) dL,
AV)=1+—=—-2>1=4¢(1)— )

]

Now let us compute the index of the Reeb orbits in region (a). Any Reeb orbit v can be lifted
to a fractional Reeb orbit 7 in the region X N {R > 1 — 0; + 05}, where F' = r* — f(R)?. The
Reeb orbit can be written as 7 = (71, 72), where 71, 7, are fractional Reeb orbits of (X(a), R\)
and (S, r0), for fixed r, R, so by Lemma 6.22,

1
poz(v, F) = pez(y, Ao) + R

Meanwhile,
poz(v, F) = poz(n, —f(R)?) + poz(va, %)
follows the product property of Conley-Zehnder index. Note that

(=f(R)?) > 0,(=f(R)*)" >0,
therefore we have )
tiez(y1, —F(R)?) = poz (i, a)) + 3

Moreover, by Remark 2.41,
1

MCZ(%,?"Q) = 5-

Notice 7, is a fractional Reeb orbits on the Brieskorn manifold (3(a), R\), which has the same
index as (X(a), ). By Lemma 5.5 and Lemma 5.6, we then have pcz(71) > m(a). Putting all
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equations together:
1
ISFT(v) = pcz(v, Ao) — 5 dimB+ (n+1)—3

> (Mcz(%F)—l)—"+(n+1)—3

2

1 5
> (pez(m,A) + 5) + poz(v,r?) — 5
> m(a) + L + L5
=m 27279
=m(a) — 3/2.

For the region (b), the claim will be proved in Lemma 6.24.
Now suppose (t),t € [0,7],T < K is a Reeb orbit in ¥, and can be lifted to a fractional
Reeb orbit in region (c). Then the L— fold Reeb orbit y(t) := 7o(t), ¢ € [0, LT] can be lifted to

a closed Reeb orbit y(t) in this region. Let g(R) be a smooth function defined in Lemma 6.14.
So g(R) =1for R <1—04; + 09 and g(R) = 0 for R > 1 — §; + 2J5. By abuse of notation, ¢
can be regarded as a function on X N {1 —d; + o < R < 1 —9; + 202}. We extend g to ¥ by a
constant. Now define a new vector field X = ¢ - Xpgep. Let Xy be the projection of X to W,
ie.
— Xy -1
B S AT I TR

Since (1 — f) is C%-small, ||f_+A(f)||@1 < 2. By Lemma 6.14, Xy is C'-small. Then by Corol-

lary 6.28, for f sufficiently C?-small, any periodic orbit of period less than LK is a constant
orbit, and therefore corresponds to a critical point of f. We claim that any such Reeb orbit 7
has lower SFT index at least n — 5/2, which will be proved in Proposition 6.26. ]

Remark 6.23. Reeb orbits in 1/, can be graded by their H;/Tors class. Let’s have a closer
look at the Reeb orbits with H;/Tors grading 0. In the proof of Proposition 6.21, the Reeb
orbits in the regions (a) and (c) are never null-homologous.

Lemma 6.24. Any Reeb orbit ~y in region (b) is contractible in >, and its lower SFT index is at
least m(a) — 3/2.

Proof- In region (b), Xgeepy = JOr. In fact, X N {1 = R} = X(a) x S*. The Reeb flow is
stationary on S! and coincides with the Reeb flow on the Brieskorn manifold Y:(a). Therefore,
any Reeb orbit v is contractible. Suppose 7 is a lift of 7. Let B C X(a) be a Morse-Bott
manifold for (X(a), A). In light of Lemma 6.22, we have

1
pioz(B x ST F) = poz(B x S', A) + 5

By the product property of Conley-Zehnder index,

pez(B x SYF) = ez (B, —f*(R)) + pez(S', 1) = pez(B, —f*(R)) + %

On the other hand,

pez(B,~F(R)) = pes(BN) + 5 > m(a) + 5
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So we conclude that
1 1
poz(B x S', Xo) = poz(B x S'F) — 32 m(a) + B
and

L.
ISFT(v) = pez(y) — 5 dimker(Dyytpr —id) + (n + 1 —3)

1
pez(B x St \g) — §(dimB+ )+ (n+1-3)
>m(a)+1/2—n+n—2=m(a)—3/2.
O

Remark 6.25. Let M B(p), p € Z be the Morse-Bott manifold of return time Z* in the Brieskorn
manifold, then M B(p) x S'/C(L) is a Morse-Bott manifold in 3. Conversely, any Morse-Bott
manifold of contractible Reeb orbits in ¥ can be lifted to >. By Lemma 6.24 and Remark 6.23,
the contractible Morse-Bott manifolds in Yy can be lifted to ¥(a) x S' C . Indeed, each Reeb
orbit in Xy has L different lifts in >. In terms of Morse-Bott manifolds of contractible Reeb
orbits, we have a one-to-one correspondence:

m:%(a) x ST = (X(a) x SY)/C(L) C X
MB(p) x S* +— (MB(P) x S*)/C(L).

The group action is trivial on the first factor, therefore
(MB(p) x §1)/C(L) = MB(p) x (S'/C(L)) = MB(p) x §'

and
1

poz(MB(p) x S', %) = pez(MB(p), A) + 3"

Proposition 6.26. As defined in the proof of part (c) of Proposition 6.21, the Reeb orbit vy has lower
SFT index at least n — 5/2.

—

Proof: The L—fold iterate y(t) can be lifted to a Reeb orbit (¢) in the Region (c). Its WW!

€
component is a critical point p of f. Since the conditions of Lemma 2.39 are satisfied,

1
pez(Bo, Ao) + 3= poz(Bo, F).

Everything descends down to the quotient //;,. We will use the same notations for the quotient.
We have the Hamiltonian orbit 9 = (p,72), where p is a constant orbit in ! while 7, is an
orbit in R x S'. The index is

poz(Bo, F) = poz(p, = %) + pez(v2,7%) = pez(p, — %) + %
Since f(p) # 0, Ind,(f?) = Ind,(f), hence
poz(p, —f2) = Ind,(f*) —n = Ind,(f) —n

52



by Corollary 2.27. Since indices of critical points of f is at least n, so ucz(p) > 0 (see
remark 6.16). Thus lower SFT index

1
ZSFT(”)/) = ,ucz(Bo, )\0) — 5 dll’IlBo + (Tl + 1) -3
! 1+( +1)-3
o\
1
20—|—§+n—3:n—5/2

= pcz(Bo, F) —

where the Morse-Bott manifold B, = S*. O

Proof of Theorem 6.20. Recall the definition of a strongly ADC contact manifold: there exists
a sequence of non-increasing contact forms «; and increasing positive numbers D; going to
infinity such that all elements of P5"* (2, o;) have positive lower SFT index.

In light of Proposition 6.21, let K; = K'(K is a fixed large number, the explicit conditions will
be clear later in this proof), there exists a C'(L)— equivariant function F; such that all elements
of P35 (%;, Ao|s,) have positive lower SFT index (since min{m(a) — 3/2,n — 5/2} > 0), where
Y := F;71(0)/C(L) is the boundary of the quotient manifold.

By Remark 6.19, we notice that conditions of Corollary 6.31 are satisfied, so there exists a
contactomorphism f; : ¥y — ¥,;; and a constant C independent of F;, such that

| *

c’ Aolsy < fi(Qols;) < C - Aols.
So the non-increasing contact forms «; can be defined as «; = Z; f7(A\ols,) < @;—1, and
D; := K;/C", which goes to infinity as long as K > C. Then P3" (3o, o) = Pg™ (s, Mols, ),
which shows that all elements have positive lower SFT index. [

We follow the idea of F.laudenbach in the proof of the following lemma.

Lemma 6.27 (Proposition 6.1.5 [AD14], [LbdmO04]). Let X be a vector field on R*". If ||dX||;> <
2% the only periodic orbits with period less than L are constant orbits.

Proof. Consider the solution u(t) of period T < L and take its Fourier expansion as well as

: . 2kmi i
I D

So by Parseval’s identity, we have

. 4k>7? . 472 . 4%
il = 3 @ = 3 T @] = 2l

since ¢y(u) = 0. Hence,
il [z = 2TH(t)H
Ul|r2 u L2-

On the other hand, since @ = (dX)(), ||dX]|;2 < 2, so

2 2
lillz> < <Hla(®)llze < Sl 22
if 4 # 0. Therefore u(t) is a constant orbit. O
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Corollary 6.28 ( [LbdmO04]). If M is a compact manifold with boundary and X is a vector field
which vanishes in the neighborhood of the boundary. Then for any L > 0, the flow generated by X
has no non-constant periodic orbit with period less than L for sufficiently C*-small X .

Proof. First we get rid of the boundary by doubling M (glue M with itself along the boundary).
Now that X can be smoothly extended since it vanishes in a neighborhood of the boundary.
Now consider the new closed manifold M. Let us fix a finite collection of compact charts K.
Since X is C'-small, every closed orbit with bounded period 7" of the flow of X has a small
diameter(D < ||X||uniform - L), which implies the entire orbit remains in one of the charts K;.
The C! norm is equivalent to the Euclidean norm so the lemma above applies. O]

Lemma 6.29. Let (U, \) be a Liouville domain, (U, )\) its completion, and X1 = OU be the contact
boundary. Suppose we have a Liouville domain (V, \) such that U C V C U U X, x [0, M].Then

there is a contactomorphism U
v (21, Ay = 5\|21) — (EQ = 8‘/, Ay = 5\|22).
such that A\ < U*)\, < eM ).
Proof- Since
UcCV cC¥x[0,M]
let ¢ be the flow generated by the Liouville vector field and #(p) be the time when the flow
starting at p € X; reaches Xy, i.e, 1y (p) € Xa. Then M > ¢(p) > 0. Let p be a function on
U supported on (—e, M + 1) x Xy, such that p((r,p)) = ¢(p) on the region [—0, M] x ;. Now
consider the vector field Y := p - 9, and we denote by
VRxU—U, (tp)— Uyp)

the flow generated by Y. Clearly we have ¥ (¥;) = X9 and U\, = et® )\,. Now the conclusion
follows. 0

Remark 6.30. If the Liouville domains in the Lemma above are GG-equivariant, then there is
G-equivariant contactomorphism satisfying the above statement.

Corollary 6.31. Let (U, \) be a Liouville domain, suppose we have two Liouville domains Vi, Vs with
¥ =0V1,39 = OVh such that U C V; C UUOU x [0, M]. Then there exists a contactomorphism
f and a constant C' independent of V;, such that

1

A A C - Als,.
C ’21 < f ’22 < ’21

7 Finiteness of positive idempotent group

We are going to show that the positive idempotent group 7, (%) is finite. Let’s recall the
definitions: for any filling W of ¥, such that SH,.(W) # 0, we have

IW)={aecSHY(W)|a’—ac H W)}

and I, (W) = I(W)/H°(W), hence it suffices to prove I(1V) is a finite group. Indeed, for the
Liouville filling (Mg, \o) as in remark 6.18, SH}(My, Z,) is finite. We begin by introducing a
spectral sequence which converges to SH?(My, Zy):
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Theorem 7.1 (Theorem 5.4 [KvK16]). Let(W,w = dX) be a Liouville domain satisfying the assump-
tions:

7 The Reeb flow on OW is periodic with minimal periods T - 5,15 - 5, -+ [T}, - 5, where T}, - 5
is the common period, i.e. the period of a principal orbit. We assume that all T}, are integers.

2 The restriction of the tangent bundle to the symplectization of OW,T'(R x OW)|aw, is trivial
as a symplectic vector bundle, c,(W) = 0 and we have a choice of the trivialization of the
canonical bundle.

3 There is a compatible complex structure J for (£ := ker Agw, dN\ow ) such that for every pe-
riodic Reeb orbit ~y the linearized Reeb flow is complex linear with respect to some unitary
trivialization of (€, J, da) along .

For each positive integer p define C(p) to be the set of Morse-Bott manifolds with return time p, and
for each Morse-Bott manifold > € C(p) put
1
A(E) = ,ucz(z) - 5 dlmE/Sl,

where the Robbin-Salamon index is computed for a symplectic path defined on [0, p|. Then there is a
spectral sequence converging to SH(W'; R), whose E'— page is given by

D Hprg-am)(ER) p>0
2eC(p)

Bl =
ra — \ Hypn(W,0W; R) p=0
0 p < 0.

Remark 7.2. The above spectral sequence respects the /1, grading. Therefore, to compute
SH?Y(Mj), we only need to focus on the Morse-Bott manifolds of null-homologous Reeb orbits.

Lemma 7.3. SH?(My,Z,) is finite for all k.

proof of lemma 7.3. Note that it suffices to find all the Morse-Bott manifolds. By Remark 6.25,
the first page of the spectral sequence which converges to SH?(My, Zs) is

D Hy i g auaB(p)) (M B(p) x SYZy) p>0
E;q = Hq+n(M07 OMy; Zs) p=0
0 p < 0.

The finiteness of SHY (M, Z) follows from the following two facts: first, there are only finitely
many Morse-Bott manifolds M B(p) satisfying A(M B(p)) = k, i.e.

b= nea(MB(p) x 8') = S(dim(MB(p) x $)/8") = fulp) - 5 (dim MB(p) — 1),

The above equation can only be satisfied by finitely many p € ﬁZ, and for any p there is at
most one Morse-Bott manifold with return time p7/2 in the Brieskorn manifold > (a). Secondly,

H.(MB(p) x S*;Zy) =0 % < 0orx* > 2n.
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and H,(M B(p) x S';Z,) is finite dimensional for 0 < x < 2n. Therefore SH} (M, Z) is finite

for each k, since the dimension of P E;q is finite for each k.
ptq=k

O
Now we are going to prove that SH?(My(a),Zy) # 0, where a is defined as in Remark ??.

Lemma 7.4. Fora = (2,2,2,--- ,py.), we have SHY(Mo(a), Zs) # 0, where k+3 = n,n > 8, pls
are sufficiently large integers.

Proof- 1t suffices to prove that SH. |(My,Zs) # 0. To that end we will focus on the total degree

p+q=n—2,n—1,n in the spectral sequence above. First of all, for p = 0, we have

ZQ) q=n

E} = H, (My, OMy; Zy) =
0q +q( 0 0 2) {07 q%n.

On the other hand,

AMB(p) x §Y) = pes(MB(p) x §') — S(dim(MB(p) x 5)/5")

1

= fa(p) ) (dim M B(p) — 1)

where p7/2,p € Z is the period. Meanwhile,

=[] BN 2 (2] [2]) -l ) >wes s

so A(MB(p) x S') > p—4>n+1 for any p > n + 5, that is, for any Morse-Bott manifold to
contribute to the homology of degree at most n, the period of such manifold is at most n + 5.
Thus, if we require p; > n + 5, then the only Morse-Bott manifolds could possibly contribute to
total degree p + g < nis MB(p) x S, p = 2[,2] < n+5 for some 0 < [ € Z (see Subsection
5.5 [KvK16]). Now that p = 2I, [ < n, we have M B(p) = 3(2,2,2) = RP®.

Lo, i=0,4
H;(RP? x SN = Zo ®Zy, i=1,2,3
0, otherwise

In this case,
AMBQ2l) x SYY=6l+n—-3—4—1=2+n—4=p+n—4.
So for [ > 2, A(MB(2l) x S') > n. For [ = 1,2, we have (see Figure 8)

L, g=n—4n
E;q: q—(n—4)(RP3XSI§Z2): Zo®Zy, q=n—3,n—2,n—1
0, otherwise.

Hence, E5,_4(My, Zy) # 0 stabilizes at the second page, so SHy_,(My,Z,) # 0. It follows
that SH?(My, Zy) # 0. In particular, SHY(My, Zs) # 0, since the unit lives in degree n.
U
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n—+2

nl e . . . .
n—4 @-b \®. -. ..
n—~6

0 2 4 6 8

Figure 8: E2 (Mo, Zy) = E, (Mo, Zy): dim E3, 3(My,Z;) = 2, so it can not be killed by ds
(red arrow) since dim £}, (Mo, Zs) = 1 on the second page.

Remark 7.5. Lemma 7.4 shows that I, (3(a)) is well-defined since SH,.(M;) # 0. Further-
more, [ (Xp(a)) is a finite group.

Now we are ready to prove Theorem 1.5: first, we will take a = (2,2,2,py, - - - , i) satisfying

‘pi>k+87

. 1 _1
Zpk - 2
Recall
Ua(€) = {2 € C"20° + - + 25 = e~ B(||2]|*)},

and

W!=UnB(1), oW!=3(a).
Let (Moy(a), Ao) be defined as in Remark 6.18. Then we have the following facts:

L. (My, \o) is strongly ADC;
2. SH?(My) # 0 and is finitely dimensional.
3. Hl(Mo) =0,2>1,1 7é n,n+ 1.

The first claim is true due to Proposition 6.20. We only need to check the condition that
m(a) > 3, which in turn is the result of Lemma 5.6. The second claim is proved in Lemma 7.3.

On the other hand, the Liouville vector field Y), is gradient-like (Lemma 6.17) for the function
F which we used to define the Weinstein domain. Therefore, it is Liouville homotopic to Stein
domain (My, J, ¢)(Remark 6.18). m(My) = Z since M, is diffeomorphic to C"™! \ V(0)
(Proposition 6.8). Let 7 be an isotropic circle generating m(My). Such 7 exists by the
h—principle(Lemma 6.11). Let M; be Weinstein manifold obtained from M, by attaching a
Weinstein 2-handle with respect to the trivialization ® (Proposition 6.10). M; is of finite type
because M is. Furthermore, attaching 2-handle along ~ kills the fundamental group. Now we
are going to prove that(M;, A1, 1) satisfies all conditions in Theorem 1.5
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proof of Theorem 1.5. Indeed,we have the following facts about (M7, Ay, ¢ ):

1. (OM;, \) is asymptotically dynamically convex;

2. SH.(M,) = SH.(M,) as rings.

3. Hi(M)=0,i#n,n+1

The first statement is true because subcritical surgery preserves the ADC property, by Theo-
rem 3.9. The second statement is due to the fact that subcritical surgery doesn’t change the ring
structure of symplectic homology, see Theorem 2.19. The last statement on homology follows

Proposition 6.9. L
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