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Abstract of the Dissertation

Anti-self-dual Metrics from the Geometry of Plane Conics

by

Marlon de Oliveira Gomes

Doctor of Philosophy

in

Mathematics

Stony Brook University

2020

This Dissertation describes anti-self-dual Riemannian metrics on four-dimensional, oriented

manifolds.

These metrics have the property that their Twistor Spaces admit a meromorphic map

to the projective plane, given by sections of a square-root of the anti-canonical line bundle,

whose differential is of maximal rank. Dan Moraru [Mor04] and later Maciej Dunajski and

Kenneth P. Tod [DT18] described a Penrose Transform relating such anti-self-dual structures

to solutions of an overdetermined system of partial differential equations on the variety of

non-singular conics in the projective plane.

Dunajski and Tod described explicitly a solution to this system of PDE corresponding

to the round metric on the four-sphere. In this Dissertation, we study the geometry of the

cotangent bundle of the projective plane (the twistor space of the projective plane with

reverse orientation, endowed with the Fubini-Study metric) to describe explicitly another

solution to this system.
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Chapter 1

Introduction

Twistor Theory is a term often employed to describe the use of complex-geometric and

analytic methods in the study of field theories. In this Dissertation, we limit the scope of

this term to the study of certain (complex) varieties of rational curves, specifically those

associated to Riemannian four-manifolds whose self-dual Weyl tensors vanish (more on this

below).

While its roots can be dated as far back as the mid XIX century, in the work of Authur

Cayley [Cay69], Julius Plücker [Plü68], and most notably Felix Klein, [Kle70], its modern

formulation, however, is most appropriately attributed to Roger Penrose [Pen76] in the

Lorentzian setting, and Michael Atiyah, Nigel Hitchin, and Isadore Singer1 [AHS78], in the

Riemannian context. Penrose’s key observation is that the vanishing of the self-dual Weyl

tensor of a (pseudo) Riemannian 4-manifold can be interpreted as the obstruction to Nijenhuis

integrability of an almost-complex structure on an auxilliary manifold, the Twistor Space.

A nice feature of twistor theory is that, to a certain extent, the twistor construction is

reversible. That is, there exist conditions which guarantee a complex 3-manifold is a twistor

space, for some anti-self-dual Riemannian metric. In theory, describing the metric is simple,

a basic consequence of Kodaira’s deformation theory for embedded submanifolds. In practice,

however, reversing the twistor construction is not as easy as it seems. This has to do with the

fact that twistor spaces are rather exotic. For instance, one does not find compact twistor

spaces of Kähler type, except for a pair of cases [Hit81]. This makes many of the classical

techniques of algebraic geometry fail, as twistor spaces are not projective manifolds.

It is by imposing additional structure on twistor spaces that one is able to reveal their

underlying Riemannian manifolds. In this thesis, we consider twistor spaces with just enough

1The result of Atiyah-Hitchin-Singer is stated for self-dual metrics. Here we present an adaptation, related
to the original source by a change in orientation on M .
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of an algebraic flavor. In short, they admit natural maps to the projective plane (coming

from sections of powers of their canonical bundles). These were first considered by Dan

Moraru, in his thesis [Mor04] and more recently have been revisited by Maciej Dunajski and

Kenneth P. Tod [DT18], who showed that to each twistor space of this type there corresponds

a function on the space of non-singular conics in CP2 satisfying a system of partial differential

equations. We aim to explore this link between classical geometry of plane conics to describe

anti-self-dual manifolds.

The dissertation is structured as follows:

1. In chapter 1, we discuss preliminaries concerning anti-self-duality, varieties of rational

curves (in particular, twistor spaces) and affine line bundles, culminating in the Penrose

Transform.

2. In chapter 2, we go deeper into the geometry of the space of conics, describing its

realization as a symmetric space, as well as a reduction of its structure group. We

conclude with a description of the range of the Penrose Transform in terms of solutions

to a system of differential equations, called the Dunajski-Moraru-Tod equations (or

DMT equations, for short) and characterize the differential operatros in terms of the

aforementioned geometric structures on the space of conics.

3. In chapter 3 we exploit the geometry of twistor spaces with holomorphic fibrations to CP2

to describe solutions of the the DMT equations. We focus on two key examples: complex

projective 3-space CP3, and the flag manifold F1,2 = P(T ∗CP2). The description of the

solution to the Dunajski-Moraru-Tod equations associated to the latter is the main

contribution of this dissertation.

A remark about reproducilibility is in order. Many of the computations needed in this

dissertation were done with the aid of computer software. The results are at times too large

to appropriately display on the manuscript. A webpage will be hosted at

marlon-gomes.github.io/dissertation

containing the Wolfram Mathematica [Wol] notebooks for these computations, as well as

links to the appropriate dependencies.
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1.1 Anti-self-duality in four-dimensional Riemannian

Geometry

The Riemannian geometry of oriented 4-manifolds enjoys a special character, which sets it

appart from other dimensions, due to the reducibility of the representation of the special

orthogonal group on the space of 2-forms. The Hodge ?-operator, defined by metric and

orientation, acts on the space of 2-forms at a point is an involution, with eigenvalues +1

and −1, and elements of the corresponding eigenspaces are called self-dual and anti-self-dual

forms. Relative to this eigenspace decomposition, the Riemannian curvature tensor, viewed

as an endomorphism on 2-forms, breaks down schematically as

R =


s

12
IdΛ+ +W+ r̊

r̊
s

12
IdΛ− +W−

 , (1.1.1)

where s is the scalar curvature, r̊ the traceless Ricci endomorphism, and W+, W− are

components of the Weyl tensor relative to the self-dual/anti-self-dual decomposition.

Let (M, g) be an oriented, Riemannian 4-manifold, and denote by Z the total space of the

unit sphere bundle of its bundle of self-dual 2-forms, Z = S(Λ+M). The manifold Z inherits

a natural Riemannian metric and orientation from Λ+M . The connection induced on Λ2M

by the Levi-Civita connection of (M, g) respects the self-dual/anti-self-dual decomposition,

and induces an Ehresmann connection on Z (viewed as a sphere bundle over M), splitting

its tangent bundle into horizontal and vertical components relative to the natural fibration

to M .

The 6-manifold Z can be endowed with an almost-complex structure2, depending on g,

which we will denote by Jg. Its action on the tangent bundle of Z is described in terms

of the splitting discussed in the previous paragraph. On the vertical component, the fibers

are two-dimensional vector spaces endowed with orientation and metric, to which we can

associate a unique compatible linear complex structure, denoted by JV . By means of a local

trivialization, a point z ∈ Z may be identified with a pair consisting of a point p in M , and a

linear almost-complex structure J ∈ End(TpM), the association between self-dual two-forms

2Not all 6-manifolds admit this property. For a compact 6-manifold, the obstructions to the existence of
an almost-complex structure can be summarized as follows: it must be orientable; in addition, it must admit
a complex line bundle whose first Chern class reduces to the second Stiefel-Whitney class modulo 2.
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and almost-complex structures is obtained by raising an index with the metric

ωab 7→ Jab = gacωcb.

Given a horizontal vector, we may thus project it to TpM , act on the projection by J , an lift

it back to TzZ via the connection. The resulting endomorphism on the horizontal subbundle

is trivialization-independent, and we set it as the horizontal component JH of the almost

complex structure Jg on Z.

Theorem 1.1.1. (Atiyah-Hitchin-Singer [AHS78]) Let (M, g) be an oriented, Riemannian

4-manifold, and denote by Z the unit sphere bundle of its bundle of self-dual 2-forms,

Z = S(Λ+M). The almost-complex structure Jg defined as above is integrable, in the sense

of Newlander-Niremberg, if and only if W+ = 0.

Definition 1.1.2. Suppose that (M, g) is an oriented, anti-self-dual Riemannian 4-manifold.

We define the Twistor Space of (M, g) as the complex 3-dimensional manifold (Z,Jg).

Typically, when the metric is understood from context, we will refer to Z itself as the

twistor space, omitting reference to Jg.
We remark that the twistor spaces of conformally-related Riemannian metrics are naturally

isomorphic as almost-complex manifolds, thus the construction is associated to the conformal

structure of M, rather than a particular Riemannian metric. The details of this construction,

as well as a proof of conformal invariance can be found in [dBN98].

Example 1.1.1. The model example is R4, with its usual flat metric. Its twistor space is the

complement of a projective line in CP3 (more on that on the next section). A related example

(obtained by conformal compactification) is the sphere S4, with its constant curvature metric,

whose twistor space is CP3.

Example 1.1.2. The complex projective plane, CP2, admits a natural orientation, compatible

with its complex structure. By reverse-oriented CP2, represented by CP2 we mean the same

underlying 4-manifold (forgetting about its complex structure) but with the orientation reversed.

The Fubini-Study metric gFS (viewed simply as a Riemannian metric, no Kähler structure

assumed) is then anti-self-dual.

To describe its twistor space, let us denote by (CP2)∗ the manifold parametrizing proojective

lines in CP2. Abstractly, this manifold is isomorphic to CP2, but there is a duality aspect

between the two that we wish to explore in subsequent chapters, hence the distinguished

notation. The manifold CP2× (CP2)∗ thus parametrizes pairs of points and lines in CP2. We
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define the flag manifold F1,2 as the subvariety of CP2 × (CP2)∗ consisting of pairs of incident

points and lines in CP2. This manifold, endowed with its natural subspace complex structure,

is the twistor space of (CP2, gFS).

Example 1.1.3. Hyperkähler 4-manifolds are, in particular, anti-self-dual and Ricci-flat.

One famous example is the K3 surface, whose oriented diffeomorphism type is that of a smooth,

quartic hypersurface in CP3. This 4-manifold admits a plethora of hyperkähler metrics. If

(X, gHK) is a K3 surface endowed with a hyperkähler metric, its bundle of self-dual 2-forms

is parallel, hence the twistor space Z is, as a smooth, real 6-dimensional manifold, simply a

product X × S2.

While both X and S2 admit complex structures, the twistor complex structure JgHK
is not

the product of the complex structures in the factors. In fact, while both factors admit Kähler

metrics, it is a celebrated result of Hitchin [Hit81] that there is no compact Kähler twistor

space besides the two preceding examples, CP3 and F1,2.

1.2 Twistor space as a variety of rational curves

In what follows we will extensively use another, more geometric, interpretation of twistor

spaces. Throughout this section we assume that the complex 3-manifold Z is a twistor space,

but omit references to its underlying Riemannian atructure. Recall that Z naturally arises as

a sphere bundle over M , the fiber over x describing linear, orientation-compatible, orthogonal

almost-complex structure on TxM . Such spheres are embedded, holomorphic submanifolds

of Z. Since each of them is isomorphic to R1, they are rational curves within Z.

Let j : C −→ Z be one such rational curve (j is a particular embedding, which ultimately

is not relevant to the construction). Its normal bundle is defined (as a complex vector bundle)

as the quotient

NC|Z = j∗(T Z)/T C,

where we use the symbol T to denote the holomorphic tangent bundle of a complex manifold.

The normal bundle admits a natural holomorphic structure, characterized as the unique

holomorphic structure on its underlying complex vector bundle making the sequence

0 T C j∗T Z NC|Z 0.

an exact sequence of holomorphic vector bundles. Fortunately, CP1 is a simple enough variety

that all such bundles are classified. This is a good point to fix notation. We define the
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tautological line bundle over the projective line, OCP1(−1), as the subbundle of the trivial,

rank 2 bundle CP1 × C2 whose fiber over a point p ∈ CP1 is the line p represents in C2. All

holomorphic vector bundles over CP1 are obtained by a combination of duals and tensor

powers of this tautological bundle. The notation OCP1(n) is reserved for the n-th tensor

power of either OCP1(−1) or its dual, OCP1(1), depending on whether n is negative or positive,

respectively, whereas OCP1 is used to denote the trivial line bundle.

Theorem 1.2.1. (Birkhoff-Grothendieck, [Gro57]) Every holomophic vector bundle E over

CP1 admits a holomorphic splitting,

E =
r⊕

k=1

OCP1(ak),

unique up to reordering the summands.

Penrose [Pen76] observed that if C ⊂ Z is one of the rational curves arising from the

twistor construction, then its normal bundle has the decomposition OCP1(1)⊕OCP1(1), the

same type of normal bundle of a projective line3 in CP3, thus we call such curves twistor

lines.

In fact, this is just one facet of the story. In the early 60s, Kodaira developed a theory of

deformations of compact, complex submanifolds of a fixed ambient complex manifold (not

necessarily compact)[Kod62]. We summarize the relevant findings below.

Definition 1.2.2. Let W r+d be a complex manifold. By an analytic family of compact

d-submanifolds of W we mean a pair (B,Z), consisting of:

1. a connected complex manifold B, called the base of the family;

2. a codimension r submanifold Z of W × B, such that the restriction of the natural

projection onto the second factor

$ : W ×B −→ B

(w, t) 7→ t,

to Z is a holomorphic submersion with compact fibers.

If (B,Z) is a family of d-submanifolds of W , we call the submanifold

Vt = ($|Z)−1{t}

the fiber of the family over t ∈ B.
3By a projective line we mean the quotient of a complex 2-plane in C4 under the quotient map defining

CP3.
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Definition 1.2.3. Let W r+d be a complex manifold, V d a compact submanifold. By a

deformation of V within W , we mean

1. A connected complex manifold B, with a distinguished point t0;

2. an analytic family (B,Z) of compact d-dimensional submanifolds of W , such that the

fiber over t0 ∈ B is Zt0 = V .

Definition 1.2.4. Let W be a complex manifold, (Bi, Zi), i = 1, 2, families of d-dimensional

submanifolds. A morphism of families from (B1, Z1) to (B2, Z2) is a pair (f, F ), consisting of

1. a holomorphic map between bases, f : B1 −→ B2,

2. a holomorphic map between the total spaces of the families,

F : W ×B1 −→ W ×B2,

which maps Z1 holomorphically into Z2, and covers f , that is, the diagram below

commutes:

W ×B1 W ×B2

B1 B2

F

f

$1 $2

Definition 1.2.5. Let W a complex manifold, V a compact submanifold, and (Bi, ti,0, Zi),

i = 1, 2, be deformations of V within W . A morphism of deformations from (B1, t1,0, Z1) to

(B2, t2,0, Z2) is a morphism of families (f, F ) ∈ Mor((B1, Z1), (B2, Z2) such that

f(t1,0) = t2,0.

This morphism is called a monomorphism if f is injective and

(V1)q = (V2)f(q),

for all q ∈M1. It is called an epimorphism if f is surjective and if for all s ∈M2 there exists

q ∈ f−1(q) such that

(V1)q = (V2)s.

7



Definition 1.2.6. Let W be a complex manifold, V a compact submanifold, and (M, p,V)

a deformation of V within M . This deformation is called locally maximal if for any other

deformation (M ′, p′,V ′), there exists a neighborhood N ′ of p′ in M ′, and a monomorphism of

deformations (f, F ) ∈ Mor((N ′, p′,V ′|N ′), (M, p,V)).

Given an analytic family of submanifolds of W , (B,Z), and a point t ∈ B, we denote by

Nt the normal bundle of the fiber Vt in W . There is a natural linear map

Kt : TtB −→ H0(Vt,Nt),

which Kodaira called the infinitesimal displacement. Naively, one constructs this as follows:

for a curve γ : D(0, R) ⊂ C −→ B with γ(0) = t, ∂γ
∂z

(0) = v, and a fixed point p ∈ Vt, we

associate a lift to W , satisfying

γ̂p(0) = p

and consider the lift’s velocity modulo vertical (i.e., along the fiber direction) displacements,

resulting in the equivalence class of a tangent vector to W at p, modulo directions which

are tangent to Vt at p, i.e., an element of (Nt)p. It turns out that the particular lift is not

relevant (the velocities associated to distinct choices of lift differ by a vector tangent to Vt),

so this map is well-defined on TtB. By varying the choice of p ∈ Vt we obtain a section of

Nt along Vt, the image Kt(v) of Kodaira’s infinitesimal displacement map. Some work is

necessary to show that this all varies holomorphically from point to point, we refer the reader

to Kodaira’s paper for the details.

Kodaira showed that under a vanishing condition on the normal bundle of the subvariety,

it admits a locally maximal family of deformations, roughly parametrized at t ∈ B by the

space of sections of Nt.

Theorem 1.2.7. (Kodaira [Kod62]) Let W be a complex manifold, V a compact submanifold

thereof. Suppose that the normal bundle of V in W satisfies the condition

H1(V,NV |W ) = {0}.

Then there exists a family (B, t0, Z) of deformations of V within W , such that the infinitesimal

displacements

Kt : TtB −→ H0(Vt,Nt),

are isomorphisms. This family is locally maximal at every t ∈ B.

8



Naively, there are two simple ways a deformation of a subvariety can come about: intrinsic

deformations of its complex structure, and extrinsic deformations (which change its normal

bundle). In our setting, deformations of the first kind do not occur: CP1 is a rigid complex

manifold, any two complex structures on it are isomorphic. The second issue is a bit more

delicate: there are deformations of embedded rational curves that indeed change the normal

bundle. According to Kodaira, what we need to ensure the local rigidity of the normal bundle

is another vanishing condition: H1(V,End(NV |W ) = {0}).
The normal bundle of a twistor line satisfies the necessary vanishing condition to ensure

the existence of locally maximal deformations,

H1(CP1, [OCP1(1)]⊕2) ≈ [H1(CP1,OCP1(1))]⊕2

≈ [H0(CP1,KCP1 ⊗OCP1(−1))∗]⊕2,

≈ [H0(CP1,OCP1(−3))∗]⊕2

= {0}.

where we applied the Serre duality isomorphism Hk(Xd, F ) ≈ [Hd−k(Xd,KX ⊗ F ∗)]∗, on the

second line. Furthermore, the dimension of H0(C,NC|Z) = 4, we should have a (complex)

4-parameter family of nearby rational curves. Again using Serre duality,

H1(CP1,End(OCP1(1)⊕2)) = H0(CP1,OCP1(−2)⊕4)) = {0},

on a sufficiently small neighborhood of C, the normal bundles of such curves retain the

Birkhoff-Grothedieck decomposition [OCP1(1)]⊕2. The real four-dimensonal family of twistor

lines on Z arising as fibers of the twistor construction is thus part of a complex 4-dimensional

family of rational curves, which we also call twistor lines. What sets real twistor lines apart

is the fact that they are invariant under the anti-holomorphic involution that acts as the

antipodal map on fibers of the twistor construction. An important technical remark is that

the action of the involution on real twistor lines has no fixed points.

We are now in a position to characterize Twistor Spaces among complex, 3-dimensional

manifolds, following [Pen76].

Theorem 1.2.8. (Penrose) Let Z be a 3-dimensional complex manifold such that:

1) Z is fibered over a real, oriented 4-dimensional manifold M by a family of rational

curves with normal bundle O(1)⊕O(1);

2) Z posesses an anti-holomorphic involution σ which acts as the antipodal map on the

fibers.

9



Then M admits an anti-self-dual Riemannian metric, with respect to which Z is its twistor

space.

We shall not present a proof of the theorem here, instead referring the reader to the original

source, or [Bes87], chapter 13. We will, however, say a few words about how the metric

structure is encoded in the hypotheses of the theorem. According to Kodaira’s deformation

theory, M is but a real slice of a complex 4-dimensional family of twistor lines, MC, so it

makes sense to talk about the holomorphic tangent space at a point p on M . If p corresponds

to a real twistor line C, one can identify the (holomorphic) tangent space TpMC with the

space of sections of a rank 2 vector bundle,

H0(C,OC(1)⊕OC(1)) = H0(C,OC(1))⊕ H0(C,OC(1)).

Such a section sv decomposes into a pair of sections (az0 + bz1, cz0 + dz1) of OC(1) (written

in homogeneous coordinates [z0 : z1]). We declare the null cone in TpMC by stating that

a tangent vector is null if the two sections have a common zero, that is ad− bc = 0. This

defines a complex conformal structure (the freedom in choosing the scale parameter owes to

the fact that (a, b) and (c, d) can only be specified up to scale) on TpMC. A quadratic form

defining this conformal structure restricts to the real slice as a positive-definite4 quadratic

form, thus defining a conformal family of Riemannian metrics as we vary p along M .

1.3 Affine line bundles as twistor spaces

In this section we describe the main idea behind the construction of anti-self-dual metrics

in this thesis: that twistor spaces may be constructed as affine line bundles over a complex

surface. This idea appeared in the early 80s, in the work of Hitchin [Hit82] and Phillip E. Jones

and K. P. Tod [JP85], in what was called the minitwistor correspondence, Claude LeBrun

[LeB91], in the hyperbolic ansatz, and was later revealed to be related to the construction of

hyperkähler metrics by Ulf Lidnström and Martin Roček [LR88] (a discussion of the relation

between affine line bundles and the generalized Legendre Transform is presented in Moraru’s

thesis).

Definition 1.3.1. Let A denote the group of affine transformations in C. A holomorphic,

affine line bundle over a complex manifold S is a fiber bundle with fiber C and transition

functions given by local sections of the sheaf of A-valued holomorphic maps on S.

4It is here that the behavior of the involution on twistor lines is used. If the involution behaved like
conjugation, for instance, this process would result on a pseudo-riemannian metric of split signature (2, 2).
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Naively, one can think of an affine line bundle as a holomorphic line bundle without a

preferred zero section. In fact, to each affine line bundle we can associate an underlying

holomorphic line bundle as follows. Let U = {Uj}j∈J be a covering of S, and

{φjk ∈ AS(Uj ∩ Uk)}

a Čech cocycle defining an affine line bundle. Define a 1-cochain

θjk := Θ(φjk) ∈ C1(U,OS)

by means of the homomorphism Θ : A −→ C∗ described above. The cocycle conditions φ,

combined with the fact that Θ is a group homomorphism, readily imply that θ is a cocycle.

Thus we may assign to a Čech cocycle φ defining an affine line bundle another cocycle θ

defining a holomorphic line bundle. One verifies by a routine computation that if φ is modified

by a coboundary, so is θ, thus the construction is unambiguous in cohomology. If an affine

line bundle A is associated to a holomorphic line bundle L by this construction, we say that

A is modeled after L.

We are interested in understanding under which conditions may we reverse this con-

struction, that is, associate an affine structure to a holomorphic vector bundle. Let L be a

holomorphic line bundle with transition data φkj ∈ O∗(Uj ∩ Uk) associated to an open cover

U = {Uj}j∈J of X. These transition functions satisfy the usual constraints,

φjkφkj = 1,

φjkφklφlj = 1,

on the respective intersections where these equalities make sense. Consider the Cartier data

associated to L and U , that is, a global section of the quotient sheaf M∗/O∗, represented

locally by a collection of invertible meromorphic functions sj ∈M∗ satisfying

sj = φjksk.

We denote by D the Weil divisor associated to the collection sj, and denote by O(D) the

corresponding invertible sheaf, whose local sections are meromorphic functions fp ∈M∗(Up)

such that fpsp is holomorphic. Under the correspondence between invertible sheaves and line

bundles, O(D) = L.

If we wish to construct an affine bundle modeled after L, we need to augment its transition

data to include the translation components, that is, we need sections ψjk ∈ OS(Uj ∩ Uk) so

that the local sections

θjk =

(
φjk ψjk

0 1

)
∈ A(Uj ∩ Uk)
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satisfy the 1-cocycle condition

θkl(θjl)
−1θjk = 1, (1.3.1)

where this equality makes sense. This suggests a cohomological interpretation, and the next

proposition shows that this is the case.

Proposition 1.3.2. Let S be a complex manifold and L a holomorphic line bundle on S.

The space of affine line bundles modeled on L is given by the cohomology group H1(S, L).

Proof. Equation (1.3.1) amounts to 4 equations on the entries of the matrix, two of which

(the bottom row) are identities, and one of which (upper diagonal) is satisfied by assumption

(since φ satisfies its own cocycle condition). The remaining equation is

φklφljψjk − φklφljψjl + ψkl = 0.

The interpretation of this equation is that the OS(D)-valued cochain defined by

ξjk =
ψjk
sj

on Uj ∩ Uk, satisfies a cocycle condition: on a triple overlap Uj ∩ Uk ∩ Ul,

ξkl − ξjl + ξjk =
ψkl
sk
− ψjl

sj
+
ψjk
sj

=
ψkl
sk
− ψjl
φjksk

+
ψjk
φjksk

=
ψkl − φklφljψjl + φklφljψjk

sk

= 0.

We recall that the boundary operator acting on a cochain ζ ∈ C0(U,OS(D)),

ζ = {ζj ∈ OS(D)|Uj
}

is defined by

(∂ζ)jk = ζk − ζj ∈ OS(D)(Uj ∩ Uk).

Suppose that ξ′ differs from ξ by such a coboundary, that is,

ξ
′

jk = ξjk + ζk − ζj.
ψ
′

jk

sj
=
ψjk
sj

+ ζk − ζj

ψ
′

jk = ψjk + (ζk − ζj)sj

12



We will try to define a cochain γ ∈ C0(U,A), depending upon ζ, so that the cochain associated

to

θ
′

jk = γjθjkγ
−1
k

is ξ′. Write

θ
′

jk =

(
φ
′

jk ψ
′

jk

0 1

)
, θjk =

(
φjk ψjk

0 1

)
,

and

γp =

(
ap bp

0 1

)
,

for p = j, k. Then the above equality implies that(
φ
′

jk ψ
′

jk

0 1

)
=

(
aj bj

0 1

)(
φjk ψjk

0 1

)(
ak bk

0 1

)−1

=

(
aj bj

0 1

)(
φjk ψjk

0 1

)(
a−1
k −bka−1

k

0 1

)

=

(
ajφjk (ajψjk + bj)

0 1

)(
a−1
k −bka−1

k

0 1

)

=

(
ajφjka

−1
k (−ajφjkbka−1

k + ajψjk + bj)

0 1

)
from which we derive two equations for a and b,

φ
′

jk = ajφjka
−1
k ,

ψ
′

jk = −ajφjkbka−1
k + ajψjk + bj.

The first equation tells us the the cochains φ
′
, φ ∈ C1(U,O∗S) differ by a coboundary. In

particular, they define the same model holomorphic line bundle, L. To interpret the second

equation, we make the choice of ap = 1 on Up, for all p, reducing it to

ψ
′

jk = −φjkbk + ψjk + bj.

Comparing this equation to

ψ
′

jk = ψjk + (ζk − ζj)sj

we deduce that bp = −ζpsp ∈ OS(Up) yields a cochain

γp =

(
1 bp

0 1

)
∈ C0(U,A)

13



satisfying the desired criteria.

We have shown that to each cocycle ξ ∈ C1(U,OS(D)) = C1(U,L) we can associate an

affine structure on the holomorphic line bundle L, and that if two such cocycles ξ, ξ′ differ

by a coboundary, the resulting affine structures are isomorphic. Thus the cohomology group

H1(S, L) classifies affine structures on L.

Next we discuss how twistor spaces can be realized as the total spaces of affine line bundles

over surfaces. Consider a complex surface S endowed with a holomorphic line bundle L for

which H1(S, L) 6= 0, so that L admits proper (i.e. without a zero section) affine structures.

Let Z be an affine line bundle over S, modeled after L, with bundle projection p : Z −→ S.

Assume that S contains a rational curve C with normal bundle OC(n),n ≥ 1. Suppose

this curve admits a lift to Z (an assumption we will have to come to terms with later), say

C̃. Consider the pull-back of the normal bundle of C in S to Z, p∗OC(n). Since C̃ is a lift

of C through p, p|C̃ preserves degree, so p∗OC(n) = OC̃(n). The normal bundle of C̃ in Z,

NC̃|Z , maps surjectively onto OC̃(n), with kernel consisting of vertical sections of NC̃|Z along

C̃, that is, sections in the kernel of the bundle projection p. The kernel subbundle can thus

be identified with the pull-back of model line bundle L|C to C̃, p∗L|C̃ . We can summarize

this in the following exact sequence:

0 p∗L|C̃ NC̃|Z
ι OC̃(n)

η
0.

(1.3.2)

If we wish for C̃ to be a twistor line in our presumptive twistor space Z, its normal bundle

should be

NC̃|Z = OC̃(1)⊕OC̃(1),

therefore in order for the exact sequence (1.3.2) to hold, p∗L should have degree (2− n) on

C̃. Again, since p|C̃ preserves degree, this implies that our starting line bundle L must have

degree (2 − n) when restricted to C. Readers familiar with the minitwistor construction

[Hit82] will now recognize that when n = 2, this is the condition that L is trivial along

minitwistor lines.

Let us now restrict our attention to the central theme of the thesis: conics in the projective

plane. Such curves have normal bundle with degree 4, so to proceed with the construction,

we need a line bundle L on CP2 whose restriction to every conic has degree (−2). In this

case, the line bundle L = OCP2(−1) is the right tool for the job. There is, however, one minor

issue: the cohomology group H1(CP2, L) vanishes, thus violating our initial assumption that
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L admits proper affine structures. We will resolve this by restricting our attention to open

subsets of CP2 instead.

Recall we made an earlier assumption that the rational curves has lifts to Z, i.e., that

A|C admitts sections. This means that the affine line bundle A, when restricted to a conic C,

must be improper, isomorphic to L|C . Since the latter is a negative line bundle over C, if it

is indeed the case that A|C has a section, it is unique (the zero section of L). Determining

whether A|C has a section or not comes down to understanding how the affine bundle A

restricts to C, as an element in

H1(C,L|C) = H1(C,OC(−2)) = [H0(C,OC)]∗ ≈ C,

where in the second equality we used the Serre duality isomorphism, and in the third an

identification between sections of the trivial line bundle of C and constants. As we vary the

curves C in CP2, the latter identication in this process is not canonical, but we may fix this

by using a consistent identification between the canonical bundle of C and the restriction of

a globally defined bundle on CP2

KC = OCP2(−1)|C ,

a consequence of the adjunction formula. We thus obtain a function F , defined on the space

of conics Y 5 taking values in C, which characterizes whether the affine bundle A stands a

chance of being a twistor space or not: if a conic C ∈ CP2 admits a lift to a twistor line in A,

its image under F must be 0.

An alternative description of this function is as follows. Let an affine structure f ∈
H1(U,L) be interpreted as a holomorphic one-form with values in L = OCP2(−1) defined on a

neighborhood5 U of a conic C in the projective plane. Restricting f to the conic, if becomes

a holomorphic differential with values in OC(−2), which by means of integration, yields the

value of F at C. This makes the dependence of F on the affine structure on L clear.

The crrespondence between affine structures on L and functions on the space of conics is

what we call the Penrose Transform. Its properties will be investigated further in subsequent

chapters.

5As we explained above, there are no non-zero globally defined one forms
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Chapter 2

Geometry on the space of plane conics

In this chapter, we describe geometric structures on the space of smooth, irreducible conics

in CP2 which are central to the construction of anti-self-dual metrics. Upon fixing a choice of

homogeneous coordinates in CP2, x = [x0 : x1 : x2], we may assign to a non-denegerate conic

C a symmetric, 3x3 matrix defining it:

C : xAxT = 0.

Of course, A is only defined up to an overall scale, so we fix the representation by setting

det(A) = 1.

We can describe this space in a coordinate-free manner as well. The group SL(3,C) acts

on the space of complex-symmetric 3x3 matrices by

(B,A) 7→ BABT ,

for B ∈ SL(3,C), A a complex, symmetric 3x3 matrix. This action preserves the determi-

nant, and the stabilizer of the identity is the subgroup of SL(3,C) consisting of matrices

whose transposes and inverses coincide, i.e., the complex special orthogonal group SO(3,C).

Therefore, the space of non-degenerate plane conics can be interpreted as the quotient

YC = SL(3,C)/SO(3,C).

This complex, 5-dimensional manifold admits a real form central to the construction of

anti-self-dual metrics presented here. This is the locus of real conics without real points.

Upon fixing homogeneous coordinates in CP2, we can define an involution by conjugation,

σ([x0 : x1 : x2]) = [x0 : x1 : x2],

whose fixed-point set is an embedded real projective plane, RP2. A conic is called real if it is

an invariant locus of this involution, and it is said to have no real points if it does not contain

17



fixed points of σ. The conic defined by the identity matrix is a real conic without real points,

and so is any other conic in its SL(3,R)-orbit. Of course, its stabilizer relative to the SL(3,R)

action is SO(3,R), so the locus of real conics without real points is Y = SL(3,R)/SO(3,R).

2.1 Conformal and SO(3) structures

The space of plane conics may be interpreted as a family of rational curves in CP2, in the sense

of Kodaira’s deformation theory. Such a curve C has normal bundle OCP2(2)
∣∣
C

, a line bundle

of degree 4 on C (that is, two conics intersect at 4 points, counted with multiplicity). This

bundle has vanishing cohomology in degree 1, and its space of global sections has dimension

5, hence the manifold YC is indeed the locally maximal family whose existence is guaranteed

by Kodaira’s theorem. The infinitesimal displacement map provides an isomorphism between

tangent spaces to YC at C and the space of sections of OC(4), H0(C,OC(4)).

We will introduce a family of bilinear forms on spaces of binary quantics which will serve

to streamline notation in this and the next section.

Let Vn denote the space of homogeneous binary quantics of degree n,

Vn = Symn+1(C2) = H0(CP1,OCP1(n))

and denote by V the space formed by the direct sum of all Vn,

V =
∞⊕
l=0

Vn.

The k-th order transvectant, where k is a non-negative integer, is the bilinear form

〈·, ·〉k : V × V −→ V

defined by

〈φ, ψ〉k =
k∑
j=0

(−1)j
(
k

j

)
∂kφ

∂sk−j∂tj
∂kψ

∂sj∂tk−j
.

If φ has degree m, ψ has degree n, and m+ n ≥ 2k, their k-th transvectant has degree

m+ n− 2k. In particular, if m = n = k, the transvectant yields a constant. Some special

cases are well-known invariants, as the example below shows.

Example 2.1.1. The zeroth-order transvectant is simply the product of the quantics. The

first-order transvectant is the Jacobian determinant:

〈φ, ψ〉1 =
∂φ

∂s

∂ψ

∂t
− ∂φ

∂t

∂ψ

∂s
,
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an operation we used in section 1.2 to describe the conformal structure on the space of twistor

lines.

Example 2.1.2. If φ is quadratic, φ = as2 + 2bst + ct2, then the transvectant 〈φ, φ〉2 is a

multiple of the familiar discriminant:

〈φ, φ〉2 =

(
2

0

)
∂2φ

∂s2

∂2ψ

∂t2
−
(

2

1

)
∂2φ

∂s∂t

∂2ψ

∂s∂t
−
(

2

2

)
∂2φ

∂t2
∂2ψ

∂s2

= 4ac− 8b2 + 4ac

= −8(b2 − ac)

The 4th-order transvectant on binary quartics yields a non-denegerate quadratic form on

TCYC ≈ H0(C1,OC1(4)): if [t : s] are homogeneous coordinates on C, and v a tangent vector

to C in YC, identified with

v = αt4 + 4βt3s+ 6γt2s2 + 4δts3 + εs4, (2.1.1)

then we find

〈v, v〉4 = 1152(αε− 4βδ + 3γ2). (2.1.2)

This collection of quadratic forms on the tangent spaces of YC defines a complex conformal

structure.

Next we describe the restriction of this conformal structure to the real slice Y . It is

convenient to introduce coordinates at this point. On a neighborhood of the identity, any

real symmetric matrix A with det(A) = 1 can be represented as

A = BBT ,

where B takes the form

B =


ec peb qea

0 eb rea

0 0 ea

 ,

and a+b+c = 1. We use (a, b, p, q, r) as coordinates on Y (on a neighborhood of the identity),

so that a conic A is represented by

A =


e−2(a+b) + e2aq2 + e2bp2 e2aqr + e2bp e2aq

e2aqr + e2bp e2ar2 + e2b e2ar

e2aq e2ar e2a
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Let us define a complex coframe on Y by

η1 = −4da− 2db− 2
√
−1e2a+b(dq − pdr)),

η2 = −ea+2bdp+
√
−1ea−bdr,

η3 = 2db,

η4 = −e2,

η5 = e1.

The dual frame will be denoted by µ1, · · · , µ5. In terms of this frame, the identification

between tangent vectors to a conic C = C(A) (as matrices) and quartic polynomials is given

by

µ1 7→ t4, µ2 7→ 4t3s, µ3 7→ 6t2s2, µ4 7→ 4s3t, µ5 7→ s4

With respect to this coframe, the metric (2.1.2) simplifies to

g = 2η1 � η5 − 8η2 � η4 + 6η3 � η3, (2.1.3)

where we divide the transvectant by a constant to simplify the expression for the metric.

Dunajski and Tod [DT18] explicitly described one representative of the conformal class of

metrics defined above in these coordinates.

Proposition 2.1.1. (Dunajski-Tod) The conformal structure on YC restricts to a positive-

definite conformal structure on Y . In the coordinates described above, the metric (2.1.2) can

be written at a conic A as

g = 4Tr(A−1dA · A−1dA) (2.1.4)

= 8
(
4da2 + 4dadb+ 4db2 + e2a+4bdp2 + e4a+2b (pdr − dq)2 + e2a−2bdr2

)
, (2.1.5)

or in terms of its component matrix,

32 16 0 0 0

16 32 0 0 0

0 0 8e2a+4b 0 0

0 0 0 8e4a+2b −8pe4a+2b

0 0 0 −8pe4a+2b 8p2e4a+2b + 8e2a−2b


.

The group SL(3,R) acts on (Y, g) by isometries, with isotropy SO(3,R), thus g realizes Y as

the symmetric space SL(3,R)/SO(3,R). The metric is Einstein with constant − 3
16

.
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Proof. Simply expanding the metric in terms of the coframe {da, db, dp, dq, dr} leads to the

expression (2.1.5), which clearly shows it is positive definite.

Showing that SL(3,R) acts by isometries can be done computationally, as the generators

of the action

X1 = ∂p + r∂q

X2 = ∂q

X3 = ∂r

X4 = ∂a − p∂p − 2q∂q

X5 = ∂b − 2p∂p − q∂q + r∂r

X6 = p∂b − (1 + p2 − e−2a−4b)∂p − r∂q + q∂r

X7 = r∂a − r∂b − (1 + r2 − e2b−2a)∂r + (e2b−2ap− rq)∂q + (pr − q)∂p
X8 = q∂a − rp∂b + (p2r − re−2a−4b − qp)∂p

+ (p2e2b−2a + e−4a−2b − q2 − 1)∂q + (e2b−2ap− rq)∂r

can be shown to be Killing fields. The latter three generate the group of rotations SO(3,R),

as they satisfy the commutator relations

[X6, X7] = X8, [X6, X8] = −X7, [X7, X8] = X6.

A verification of this assertion was done via machine-aided computation, by means of the

TensoriaCalc package for Wolfram Mathematica [Wol], developed by Yi-Zen Chu [Chu].

Alternatively, if one uses the condensed form of the metric, (2.1.4), showing SL(3,R)-

invariance is simple: if B ∈ SL(3,R), then

g(BABT ) = 4Tr((BABT )−1d(BABT ) · (BABT )−1d(BABT ))

= 4Tr((BT )−1A−1B−1B(dA)BT · (BT )−1A−1B−1B(dA)BT )

= 4Tr((BT )−1[A−1(dA)A−1(dA)]BT )

= 4Tr([A−1(dA)A−1(dA)](BT )−1BT )

= 4Tr(A−1(dA)A−1(dA))

Direct computation of curvature would be a cumbersome task, as the Riemann curvature

tensor has dozens of non-zero components. Instead, we resort to computation of the Ricci

21



tensor via TensoriaCalc, which leads to

rij =



−6 −3 0 0 0

−3 −6 0 0 0

0 0 −3
2
e2a+4b 0 0

0 0 0 −3
2
e4a+2b 3

2
pe4a+2b

0 0 0 3
2
pe4a+2b −3

2
e2a−2b

(
p2e2a+4b + 1

)


.

In other words, the metric is Einstein

rab = − 3

16
gab,

with scalar curvature −15
16

.

We define a second transvectant operation which will be useful to establish the Penrose

correspondence in the next section. According to Marcin Bobieński and Pawel Nurowski

[BN07], there is a symmetric, cubic 3-form which encodes the reduction of the structure

group of the SO(5)-frame bundle of Y to the image of SO(3) associated to the 5-dimensional

irreducible representation of the latter.

The key properties of the cubic form G are encoded in the following result of Bobieński

and Nurowski.

Proposition 2.1.2 ([BN07]). Suppose an oriented, Riemannian 5-manifold (M, g) admits

a reduction of its SO(5,R)-frame bundle to an irreducible SO(3,R)-bundle (defined by the

unique 5-dimensional representation of SO(3,R)). Then there exists a rank 3 tensor field G

satisfying the following three properties:

1. it is totally symmetric: Gabc = G(abc);

2. it is trace-free: gbcGabc = 0;

3. it satisfies the identity

Ga
(bcGde)a = g(bcgde)

Conversely, the existence of such a tensor defines a reduction of the structure group of the

frame bundle to an irreducible SO(3,R).

This cubic 3-form G can be easily described in terms of transvectants, as being generated

by

〈〈v, v〉2 , v〉4 .
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If v is written as a quartic as in (2.1.1), then G is

G(v) = −γ(αε+ 2βδ) + αδ2 + β2ε+ γ3

(here we drop the multiplicative factor of (−497664) for the sake of convenience). In terms of

the complex coframe defined above, G takes the form

G = η1 � η4 � η4 + η2 � η2 � η5 + η3 � η3 � η3 − η1 � η3 � η5 − 2η2 � η3 � η4,

which makes it evident that G is symmetric. In terms of the coordinates a, b, p, q, r

G = −8p2e4a+2bdbdr2 + 16pe4a+2bdbdqdr + 8e4a+2bdpdqdr − 8pe4a+2bdpdr2 − 8e2a+4bdadp2

− 8e4a+2bdbdq2 + 8e2a−2bdadr2 + 8e2a−2bdbdr2 − 32da2db− 32dadb2.

It can be laboriously verified that G satisfies properties (2) and (3) above. In addition, G is

invariant under the SL(3,R) isometry group of g, and G is parallel

∇aGbcd = 0,

a condition described as integrability by Bobieński and Nurowski.

2.2 The Penrose Transform on the space of conics

The link between the geometry of the space of conics and anti-self-duality is provided by

the Penrose Transform. Recall from chapter 1 that this is a correspondence between affine

structures on the holomorphic line bundle OCP2(−1) (over suitable open subsets of CP2) and

functions on the space of conics. In his thesis, Moraru [Mor04] found that functions arising

from this construction are not arbitrary, but rather satisfy a system of linear, second-order

differential equations on Y = {A ∈ M3×3(R)|A = At, det(A) = 1},

D1F =

(
Tr

(
A
∂

∂A

))2

F − F = 0,

D2F =

(
A
∂

∂A

)2

F = 0,

where by ∂
∂A

we mean the matrix-operator(
∂

∂A

)
ij

=

(
1 + δij

2

)
∂

∂aij
.
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Conversely, given a solution to D1F = D2F = 0 on Y , one induces an anti-self-dual conformal

structure on the level set F = 0 (provided a certain set of regularity conditions is satisfied,

more on that later) via restriction of the conformal structure on Y . Furthermore, Moraru

proved that the solution sets to this system of equations is SL(3,R)-invariant, that is, if F is

any solution and g ∈ SL(3,R), then F ◦ g is also a solution. This should, in principle, lead to

a great deal of solutions obtained by linearity and SL(3,R)-tranlations, and this is the main

motivation of the thesis.

These operators were obtained by extensive use of machine-aided computation, and their

geometric nature was unclear until Dunajski and Tod [DT18] put them into the context of

the metric and SO(3)-structure defined in the previous section. One is simply

∆gF +
1

12
F

where ∆g is the metric Laplacian, while the other is defined in terms of the SO(3) structure

as

�F − 1

24
dF,

where

�F = (G bc
a ∇b∇cF )ηa,

dF stands for the usual exterior derivative, and η is the coframe defined in the previous

section. Their result is as follows.

Theorem 2.2.1. Dunajski-Tod, [DT18] Let the function F : Y −→ R belong to the image of

the Penrose transfrom. Then

∆gF +
1

12
F = 0

�F − 1

24
dF = 0.

As a result of this new interpretation, Dunajski and Tod were able to obtain explicit

families of solutions (most of which are defined on non-compact manifolds, or have singularities

along which the normal bundles of twistor lines degenerate into OCP1 ⊕OCP1(2)).

We end this section with a summary of the results of Moraru, Dunajski and Tod concerning

the relation between solutions to the DMT system and anti-self-dual metrics.

Theorem 2.2.2. Moraru, [Mor04], Dunajski-Tod, [DT18] Let F : Y −→ R, and let M

denote its zero locus. Let ρ denote the identification between 1-forms on Y and quartic

polynomias provided by the coframe η, and consider the polynomial ρ(dF ). Define a 1-form ω
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(identifed with a polynomial) to be null if it can be written as ω = κ× λ, where κ is a cubic

and λ is a linear form, and

〈ρ(dF ), κ〉3 = 0.

The quadratic cone thus defined is non-degenerate if the J-invariant1 of the quartic,

J = 〈〈ρ(dF ), ρ(dF )〉2 ρ(dF )〉
4

does not vanish. In this case, the Weyl tensor of the metric is anti-self-dual if F satisfies the

DMT system.

1Observe that this is the metric on Y .
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Chapter 3

From conics to anti-self-dual metrics

3.1 Complex projective 3-space

This example is due to Dunajski and Tod [DT18]. We summarize their work here as a

guideline for our construction in the next section.

Consider the vector space V3 of homogeneous binary cubics in variables [s, t]. This is a

4-dimensional complex vector space, endowed with an irreducible representation of SL(2,C),

V3 = Sym3(C2).

There is on V3 a holomorphic symplectic structure, that is, a closed holomorphic 2-form Ω

such that Ω4 is a nowhere-vanishing top degree form. In a coordinate system pABC = p(ABC)

(A,B,C ∈ {0.1}), this is simply the form

Ω = dpABC ∧ dpABC .

where indices are raised with respect to the anti-symmetric matrix εAB with ε01 = −1.

Proposition 3.1.1. The SL(2,C) action on V3 given by

(A, u� v � w) ∈ SL(2,C)× V3 7→ (Au� Av � Aw)

on decomposable elements preserves the symplectic form.

Proof. A set of infinitesimal generators of the action can be computed explicitly,

HAB = 2p BC
(A ∂B)CD ,

where ∂BCD = ∂
∂pBCD . The interior products of the generators with Ω are closed 1-forms,

ιHAB
Ω = d(p DE

A pBDE)

hence by Cartan’s magic formula LHAB
Ω = 0.
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The Hamiltonians ξAB = p DE
A pBDE span a 3-dimensional vector space isomorphic to

sl2(C), namely the 3-dimensional representation of SL(2,C) on V2, the space of binary

quadratics. In fact, the image of the moment map can be described in terms of a transvectant

operations: a cubic p = as3 + 3bs2t+ 3cst2 + dt3 is mapped to the quadratic

〈p, p〉2 = (as+ bt)(cs+ dt)− (bs+ ct)2

= (−b2 + ac)s2 + (ad− bc)st+ (bd− c2)t2.

up to a multiplicative factor of 72. The image thus vanishes if and only if the polynomial p

has three common zeros.

Away its zero locus, the moment map descends to a map between the projectivizations

of V3 and V2: Q : CP3 \ R3 −→ CP2, where R3 is the rational normal cubic consisting of

polynomials with a triple root.

The map Q is quadratic on the homogeneous coordinates [a : b : c : d] in CP3, that is, it is

given by sections of the OCP3(2) = K
−1
2

CP2 line bundle, the fundamental line bundle of CP3 as a

twistor space. It follows that Q maps twistor lines in CP3 (which miss the rational normal

cubic, a generic condition) into conics in CP2. Dunajski and Tod characterized the conics in

Y which are images of twistor lines under Q.

Theorem 3.1.2. Dunajski-Tod, [DT18] Let Q : CP3 \ R3 −→ CP2 be the projectivization

of the moment map for the irreducible SL(2,C) representation on V3. A conic C ∈ YC,

parametrized by a symmetric, 3x3 matrix A with unit determinant, is the image of a twistor

line in CP3 \ R3 if and only if

Tr(A2)− 2Tr(A)2 = 0

Under the Penrose fibration, P : CP3 −→ S4 = HP1, given by

[z0 : z1 : z2 : z3] 7→ [z0 + z1j : z2 + z3j],

the rational normal cubic R3 : [s, t] 7→ [s3 : s2t : st2 : t3] is to a sphere S2 in a 2-sheeted

branched covering, which on the affine chart covering the north pole [1 : 0] ∈ R3 with

coordinate u = s/t, can be written as ω(u) = [1 + uj : u2(1 + uj)] ∈ HP1, or using affine

coordinates on a neighborhood of [1 : 0] ∈ HP1, ω(u) = u2, a 2-1 cover branched at the origin

in C. A similar phenomenon is observed near the south pole [0, 1] of R3.

The Penrose transform thus constructs an anti-self-dual metric the complement of an S2

in S4. By means of a conformal change, the metric may be extended to S4, resulting in the

usual round metric which gives rise to CP3 as its twistor space.
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3.2 The Flag variety

The flag variety F1,2(C3), henceforth denoted simply by F1,2, is the variety parametrizing

flags {l,Π}, consisting of lines, l, and planes, Π, containing the origin in C3, and such that

the line is contained in the plane.

In what follows, we shall use two concrete models of the flag variety: as a hypersurface

in CP2 × (CP2)∗ (where (CP2)∗ denotes the projectivization of the dual space (C3)∗); as the

projectivized cotangent bundle of CP2.

The first model is explained as follows. A line through the origin in C3 is described as

a point [p] ∈ CP2, while a plane Π is the kernel of a non-zero linear functional, thus it can

be described as a point [ζ] ∈ (CP2)∗. The incidence relation l ∈ Π is thus translated by the

equation

ζ(p) = 0, (3.2.1)

which holds true, regardless of the chosen representatives p, ζ of the projective classes of l

and Π. This describes the flag variety as a hypersurface in CP2 × (CP2)∗.

Next we explain the second model. Consider the projections

$1 : CP2 × (CP2)∗ −→ CP2,

onto the first factor, and

$2 : CP2 × (CP2)∗ −→ (CP2)∗,

onto the second factor.

The projection $1 restricts to the flag variety as a holomorphic submerssion to CP2.

The fiber over a point in CP2, representing a line l ⊂ C3, consists of all the planes Π ⊂ C3

containing this line. In what follows we describe a way to parametrize this collection of

planes. Consider a plane Π
′ ⊂ C3, transverse to the line l. The pair of planes Π,Π

′
intersects

along a line l′ ⊂ C3. This line uniquely determines the plane Π, as the plane spanned by l

and l′. Thus, planes containing the line l are parametrized by their intersections with a fixed

transverse plane Π
′
. The collection of such intersections spans is the set of lines through the

origin in Π
′
, hence the set of planes containing l is parametrized by P(Π

′
), a projective line.

In fact, $1 : F1,2 −→ CP2 is a projective line bundle, i.e., the fiberwise projectivization of

a rank 2 vector bundle over CP2. To prove this, we recall the Euler exact sequence of the

holomorphic cotangent bundle of CP2,

0 Ω1
CP2 [OCP2(−1)]⊕3ι OCP2

η
0.

(3.2.2)
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The map of sheaves

η : [OCP2(−1)]⊕3 −→ OCP2 ,

is defined as follows: a local section of [OCP2(−1)]⊕3 ≈ OCP2(−1)⊗ (C3)∗ is an O(−1) twisted

linear functional on C3, say ζ, which the map η evaluates against the tautological (Euler)

section of [OCP2(1)]⊕3, given by

[x0 : x1 : x2] 7→ (x0, x1, x2).

That is,

[η(ζ)](p) = ζ(p),

in the notation of equation (3.2.1).

The map $1 : CP2 × (CP2)∗ −→ CP2 can be interpreted as a CP2-bundle over CP2, the

projectivization of the trivial C3 bundle O⊕3
CP2 → CP2. Since twisting by a line bundle does

not change the projectivization, we may also think of CP2× (CP2)∗ as the projectivization of

the twisted bundle

[OCP2(−1)]⊕3 → CP2.

We now recognize the equation characterizing points in CP2×(CP2)∗ lying on the flag manifold,

(3.2.1), as the condition that the corresponding line on the vector bundle [OCP2(−1)]⊕3 lies

in the subbundle ι(Ω1
CP2). Thus

F1,2 = P(Ω1
CP2),

and the map

$1 : F1,2 −→ CP2

is the bundle projection.

The canonical contact structure

The previous paragraph presents the Flag variety as the projectivization of the cotangent

bundle of CP2. Complex manifolds obtained in this way possess a canonical holomorphic

contact structure, which we shall describe in the end of this subsection.

A holomorphic contact structure is a holomoprhic subbundle of hyperplanes in the

holomorphic tangent bundle, satisfying the following complete non-integrability condition: for

a given point on the manifold, there is no analytic hypersurface through it whose holomorphic

tangent spaces are, on a neighborhood of this point, given by the hyperplane distribution.

One can describe the non-integrability of the hyperplane distribution in analytic terms.

Let H denote the hyperplane distribution in T X, and denote by L the quotient bundle T X/H.
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The complete non-integrability of H, is the extreme opposite of Frobenius integrability: given

a local holomorphic vector field tangent to the distribution H, there exists another such vector

field whose Lie bracket with the given one is transverse to H. Thus, a holomorphic contact

structure defines, via the Lie Bracket, and projection to the quotient L, a nowhere-vanishing,

L-valued section ω of Λ2H∗,

ω(u, v) = [U, V ] mod H,

where u, v ∈ Hp (the fiber of H over a point p in X), and U, V are holomorphic extensions to

local sections of H (the particular choice of such extensions is irrelevant). In fact, this section

is non-degenerate, in the sense that given u a local section of H, s a local, nowhere-vanishing

section of L, there exists a local section v of H such that

ω(u, v) = s.

Indeed, we can construct such a section explicitly by the following procedure: let w a local

section of H, defined on the same neighborhood of u, such that [u, s] is transverse to H.

Then we can define a local, nowhere-vanishing holomorphic function f by

[u,w] = fs.

Hence v = f−1w is a well-defined, local holomorphic section of H, satisfying

[u, v] = [u, f−1w]

= u(f−1)v + f−1[u,w]

= u(f−1)v + s,

i.e.,

ω(u, v) = s.

It follows that the exterior product

ωn = ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
n factors

is a nowhere-vanishing section of the line bundle Λ2nH∗ ⊗ Ln.

The section ω has a simple interpretation, locally. Consider the L-valued 1-form θ ∈ Ω1
M (L)

whose value on a holomorphic tangent vector v is given by

θ(v) = v mod H.
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It’s kernel consists of the distribution H, so this is called a contact 1-form for H. In a local

trivialization of L, one can differentiate θ, and by Cartan’s formula, one has for any u, v ∈ H,

dθ(u, v) = θ(u)− θ(v)− θ([u, v])

= −θ([u, v])

= −[u, v] mod H

= −ω(u, v),

by the assumption of complete non-integrability. Making the differential of θ precise in the

global context would require additional structures (namely, a connection on L). However, as

seen above, this differential has an unanbigous meaning when restricted to vectors tangent to

the distribution H, hence

θ ∧ (dθ)n

is a nowhere-vanishing section of Ω2n+1
X ⊗Ln+1 = KX⊗Ln+1, whose meaning does not depend

on the choice of trivialization used to compute dθ. Thus, the existence of a holomorphic

contact structure on a complex, (2n+ 1)-dimensional manifold X implies that KX ⊗ Ln+1

is trivial, i.e., the anti-canonical bundle admits an (n+ 1)-th root, L, on which the contact

form θ takes values.

Such structures are not easy to come by. For instance, the above restriction on the

canonical bundle rules out the existence of holomorphic contact structures on all the even-

degree hypersurfaces in CP4. However, manifolds like the flag manifold F12, obtained by

projectivization of the cotangent bundle of a complex manifold, there exists a canonical

contact structure, which we explain next.

Let Y be an n-dimensional complex manifold, and X = CP(Ω1
Y ) the projectivization of

its holomorphic cotangent bundle (a complex manifold of dimension (2n+ 1)), whose bundle

projection is denoted by $ : X −→ Y . We consider the pullback of the cotangent bundle of

Y to X,

ζ : $∗(Ω1
Y ) −→ X,

and define the relative tautological bundle of Y as the subbundle OX(−1), whose fiber at a

point x ∈ X is the line this point represents in the vector bundle Ω1
Y ,

[OX(−1)]x = {v ∈ $∗(Ω1
Y )(x) ≈ Ω1

Y ($(x))|v ∈ x}.

We denote the tensor powers of this line bundle by

OZ(n) = [OZ(−1)]⊗(−n),
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and given a vector bundle V over X, its twisting by OX(n) is

V (n) = V ⊗OX(n).

There is an induced short exact sequence of vector bundles over X,

0 OX(−1) $∗Ω1
Y Q 0,

where Q, the quotient bundle, is related to the relative tangent bundle of X (the kernel of

the differential $∗) by:

TX|Y = HomOX
(OX(−1), Q).

Tensoring with OX(1), we obtain the relative (tangent) Euler exact sequence

0 OX OX(1)⊗$∗Ω1
Y

ι TX|Y
η

0,
(3.2.3)

We seek to show that X admits a contact form, i.e., a 1-form vith values in an (n+ 1)-th

root of the canonical bundle KX , satisfying the non-degeneracy condition. We will first

describe the canonical bundle of X, and a natural choice of root.

The cotangent bundle of Y , Ω1
Y , sits naturally into the cotagent bundle of Ω1

X , via the

pull-back of forms. The quotient bundle,

Ω1
X|Y = Ω1

X/$
∗Ω1

Y ,

is called the bundle of relative 1-forms on X (its local sections are 1-forms on X modulo

pullbacks of 1-forms from Y ). Thus, the canonical bundle of X satisfies

KX = det(Ω1
X)

= det($∗Ω1
Y )⊗ det

(
Ω1
X|Y
)

= $∗KY ⊗KX|Y ,

where KX|Y = det(Ω1
X|Y ) is the relative canonical bundle of this fibration. It follows from the

relative Euler exact sequence that

KX|Y = det([TX|Y ]∗)

= det
([
OX(1)⊗$∗Ω1

Y

]∗)
= det (OX(−1)⊗$∗TY )

= OX(−n− 1)⊗ det ($∗TY )

= OX(−n− 1)⊗$∗K−1
Y .
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It follows that

K−1
X = OX(n+ 1)

admits a natural choice of (n+ 1)-th root, the relative hyperplane bundle OX(1).

We are finally in a position to describe the canonical contact 1-form on X. This is a

1-form θ ∈ Ω1
X(1), with values in the relative hyperplane bundle OX(1) = K

− 1
n+1

X . In fact,

we’ve already seen it in disguise, embedded into the relative Euler sequence as the image of a

trivial section of OX in $∗Ω1
Y (1) by ι, but now we shall present it concretely.

Let y0 ∈ Y , and consider a non-zero element ϑ ∈ Ω1
Y (y0). Then, on the linear subspace

spanned by ϑ, 〈ϑ〉 ⊂ Ω1
Y (y0), we define a linear functional, fϑ, by the relation

ε = fϑ(ε)ϑ,

for ε ∈ 〈ϑ〉. We use such functionals to define the contact form as follows: at a point

x0 = (y0, [ϑ]) ∈ X, with ϑ ∈ Ω1
Y (y0), set

θ(x0) = $∗(ϑ)(y0)⊗ fϑ ∈ [Ω1
X ⊗OX(1)]x0 .

Neither $∗ϑ nor fϑ are well-defined sections of the bundles $∗Ω1Y , and OX(1), respectively,

but their tensor product is well-defined, owing to the way they transform under a change in

the representative of the class [ϑ] ∈ CP(Ω1
Y (y0)), namely

$∗(cϑ)(y0)⊗ fcϑ = c$∗(ϑ)(y0)⊗ c−1fϑ

= $∗(ϑ)(y0)⊗ fϑ,

for any non-zero constant c.

The flag variety as a twistor space

Recall the characterization of twistor spaces from chapter 1: a twistor space of a complex

3-manifold Z, equipped with an anti-holomorphic involution σ : Z −→ Z (henceforth called

its real structure), satisyfing the following properties:

1. Z contains a 4-parameter family of rational curves, whose normal bundles are isomorphic

to O(1)⊕O(1). Such curves are called twistor lines.

2. The involution maps a twistor lines into a twistor lines The twistor lines which are

mapped onto themselves are called real twistor lines. On each real twistor line, the

involution σ acts as the antipodal map.
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A Hermitian inner product h on C3 endows it with two C3-antilinear isomorphisms: the

index-lowering operator

[ : C3 −→ (C3)∗,

given by

[[(v)](u) = h(u, v),

and its inverse, the index-raising operator

] : (C3)∗ −→ C3.

We shall denote the corresponding operators between projective spaces CP2 and (CP2)∗ by

the same symbols, and refer to them, collectively, as “musical isomorphisms”. The image of

a vector x in C3 or a point in projective space CP2 under the index-lowring operator will be

denoted by x[, while the image of a linear functional in (C3)∗ or a point in the dual projective

space (CP2)∗ under the index-raising isomorphisms will be denoted by l].

Together, the musical isomorphisms endow CP2 × (CP2)∗ with a real structure, that is,

an anti-holomorphic involution σ, given by

σ(x, l) = (l], x[).

This involution leaves the flag manifold invariant, for given a point (x, l) in F1,2, we have

x[(l]) = (l(x)) = 0.

In addition, σ has no fixed points along F1,2, hence it defines a real structure therein.

Additionally, the Hermitian form endows the flag manifold with a projection to CP2,

which assigns to a pair consisting of a point x and a line l the intersection between the

Hermitian-orthogonal complement of x and l. For clarity, we will assume that the choice of

homogeneous coordinates is so that the Hermitian form is written

h(u, v) = v†u,

where v† denotes the conjugate-transpose of v. Let (x, l) be a point in F1,2. The Hermitian

orthogonal complement of x is a projective line x⊥ defined by the equation

x†z = 0.

Now let l be the projective line given by the equation yT z = 0. Then the intersection between

x⊥ and l, call it P(x, l), is given by x† × y, where × denotes the cross product. In other

words,

P([x0 : x1 : x2], [y0 : y1 : y2]) = [y1x̄
2 − y2x̄

0 : y2x̄
0 − y0x̄

2 : y0x̄
1 − y1x̄

0].
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The map P : F1,2 −→ CP2 is the Penrose fibration, as we shall see. Here we regard the target

CP2 as endowed with its non-standard orientation.

Proposition 3.2.1. The flag variety admits a 4-paramter family of rational curves with

normal bundle O(1)⊕O(1).

Proof. We shall exhibit a 4-parameter family directly. Consider the open subset

U = {(q,m) ∈ CP2 × (CP2)∗| q /∈ m}.

Fix a point (q,m) ∈ U . Denote by Aq the variety parametrizing lines through q in CP2 (a

rational curve). Concretely, if q has homogeneous coordinates [q0 : q1 : q2], then Aq can be

parametrized as

[ξ, ζ] 7→ [ξq2, ζq2,−ξq0 − ζq1] ∈ (CP2)∗.

For each point t = [ξ, ζ] ∈ Aq, consider the point rt, the intersection of t and m. If m is

described by homogeneous coordinates [m0 : m1 : m2], then rt is given by the cross product,

rt = [m1ξq
0 +m1ζq

1 +m2ζq
2 : −m0ξq

0 −m0ζq
1 −m2ξq

2 : m1ξq
2 −m0ζq

2] ∈ CP2.

The pair (rt, t) belongs to F1,2. The assignment t ∈ Aq 7→ (rt, t) ∈ F1,2 defines an embedding

φq,m : Aq −→ CP2 × (CP2)∗ of the rational curve Aq (parametrized by [s, t]) into F1,2,

depending upon the choice of m, given by

([m1ξq
0 +m1ζq

1 +m2ζq
2 : −m0ξq

0−m0ζq
1−m2ξq

2 : m1ξq
2−m0ζq

2], [ξq2, ζq2,−ξq0− ζq1]).

(3.2.4)

The image of Aq under this embedding will be denoted by Cq,m.

As (q,m) varies within U , the flag manifold is swept by the rational curves Cq,m, no two

such curves being the same, thus U can be thought of as a 4-parameter family of rational

curves in the flag manifold. It is clear from expression(3.2.4) that C = Cq,m has normal

bundle OC(1)⊕OC(1).

Given integers m,n, we will use the notation

O(m,n)

to denote the line bundle

$∗1(OCP2(m))⊗$∗2(O(CP2)∗(n)).
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A section of the line bundle O(m,n) is said to have bi-degree (m,n). In this language, the

flag variety is the zero locus of a section of bi-degree (1, 1), thus we can identify its normal

bundle as

N = O(1, 1)
∣∣
F1,2

.

The canonical bundle of CP2 × (CP2)∗ is expressed in this notation as O(−3,−3). The

adjunction formula yields the canonical bundle of the flag variety:

KF1,2 = KCP2×(CP2)∗

∣∣
F1,2
⊗N

= [O(−3,−3)⊗O(1, 1)]
∣∣
F1,2

= O(−2,−2)
∣∣
F1,2

.

Thus, the fundamental line bundle of F1,2 is

K
− 1

2
F1,2

= O(1, 1)
∣∣∣
F1,2

.

The canonical contact 1-form on F1,2 can be written in a simple form in terms of dual

homogeneous coordinates on CP2 × (CP2)∗,

θ = x0dy0 + x1dy1 + x2dy2. (3.2.5)

We will often write this form in short-hand notation as xidyi, assuming summation over

the repeated indices, or even xdy. As remarked earlier, this one-form does not have an

unanbiguous differential (one must choose a connection on O(1, 1) to differentiate it, and

even doing so, the differential would depend on the chosen connection. However, a näıve

computation would suggest that

dθ = dxi ∧ dyi,

whence

θ ∧ dθ = xjdyj ∧ dxi ∧ dyi.

As it turns out, the O(2, 2)-valued 3-form θ ∧ dθ is globally well-defined on F1,2.

An SL(2,C)-action on the flag variety

The group SL(2,C) admits a 3-dimensional, irreducible representation on V = Sym2(C2),

ρ : SL(2,C) −→ GLC(V ),
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which on decomposable elements is given by

A(u� v) = Au� Av,

where u, v ∈ C2, and A ∈ SL(2,C). This induces an action on V ∗, given by

ρ∗ : SL(2,C) −→ GLC(V ∗)

by

[ρ∗(A)y](x) = y(ρ(A)−1x),

for all x ∈ V and y ∈ V ∗.
Concretely, the action of a matrix

A =

(
a b

c d

)
∈ SL(2,C),

on a point (x0, x1, x2) ∈ V (thought of as a column-vector) is given by

A


x0

x1

x2

 =


a2 ab b2

2ac (ad+ bc) 2bd

c2 cd d2




x0

x1

x2

 ,

or, in other words

ρ(A) =


a2 ab b2

2ac (ad+ bc) 2bd

c2 cd d2

 .

We shall regard elements of V ∗ as column vectors too, but use subindices on the coordinates,

i.e., y1, to distinguish them from their counterparts in V . In this sense, the action on V ∗ is

given by the inverse-traspose matrix,

ρ∗(A)


y0

y1

y2

 =


d2 −bd b2

−2cd (ab+ bc) −2ab

c2 −ac a2



y0

y1

y2


Proposition 3.2.2. The product action R = ρ× ρ∗ preserves the flag variety

F1,2(V ) = {(x, y) ∈ V × V ∗| 〈x, y〉 = 0},

where 〈·, ·〉 denotes the natural pairing between V and V ∗. Furthermore, this action preserves

the canonical contact form.

38



Proof. Showing that R preserves the flar variety is simple,

〈ρ(A)x, ρ∗(A)y〉 = [ρ∗(A)(y)](ρ(A)x)

= y(ρ(A)−1ρ(A)x)

= y(x)

= 〈x, y〉 .

As for preservation of the contact form,

[R(A)]∗(xidyi) = (ρ(A)x)id((ρ(A)−1y)i

= ρ(A)ijx
jd([ρ(A)−1]kiyk)

= ρ(A)ij[ρ(A)−1]kix
jdyk

= (ρ(A)−1ρ(A))kjx
jdyk

= xjdyj

Next we describe infinitesimal generators for this action. We shall use the following

generators for the Lie algebra sl(2,C):

A =

(√
−1 0

0 −
√
−1

)
, B =

(
0 1

0 0

)
, C =

(
0 0

1 0

)
,

with associated 1-parameter subgroups

etA =

(
e
√
−1t 0

0 e−
√
−1t

)
, etB =

(
1 t

0 1

)
, etC =

(
1 0

t 1

)
,

for t ∈ C.

Proposition 3.2.3. The contact moment map for the SL(2,C) action on the flag manifold

can be described as Θ : F1,2 −→ H0(F1,2, K
− 1

2
F1,2

)⊗ sl(2,C)

Θ([x], [y]) = 2
√
−1(−x0y0 + x2y2)A∗ + (−x1y0 − 2x2y1)B∗ + (−2x0y1 − x1y2)C∗. (3.2.6)

Proof. The action of the 1-parameter subgroup etA on an element ([x], [y]) ∈ CP2× (CP2)∗ is

given by

etA([x], [y]) =



e2
√
−1tx0

x1

e−2
√
−1tx2

 , [e−2
√
−1ty0 y1 e2

√
−1ty2

] ,
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with infinitesimal generator

χA([x], [y]) =
d

dt

[
etA([x], [y])

] ∣∣∣
t=0

= 2
√
−1(x0∂x0 − x2∂x2 − y0∂y0 + y2∂y2).

Meanwhile, the 1-parameter subgroup etB acts by

etB([x], [y]) =



x0 + tx1 + t2x2

x1 + 2tx2

x2

 ,


y0

−ty0 + y1

t2y0 − 2ty1 + y2


 ,

with infinitesimal generator

χB([x], [y]) =
d

dt

[
etB([x], [y])

] ∣∣∣
t=0

= x1∂x0 + 2x2∂x1 − y0∂y1 − 2y1∂y2 .

Finally, we consider the 1-parameter subgroup etC acts by

etC([x], [y]) =




x0

2tx0 + x1

t2x0 + tx1 + x2

 ,

y0 − 2ty1 + t2y2

y1 − ty2

y2


 ,

with infinitesimal generator

χC([x], [y]) =
d

dt

[
etC([x], [y])

] ∣∣∣
t=0

= 2x0∂x1 + x1∂x2 − 2y1∂y0 − y2∂y1 .

Restricting our attention to F1,2 and applying the contact form to each of the infinitesimal

generators of the action yields three sections of the fundamental line bundle K
−1/2
F1,2

=

O(1, 1)|F1,2 ,

θ(χA) = 2
√
−1(−x0y0 + x2y2),

θ(χB) = −x1y0 − 2x2y1,

θ(χC) = −2x0y1 − x1y2,

and this is our promised moment map.
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The base locus

The linear system spanned by these three sections defines a map to CP2, away from its base

locus, where the follwing equations hold:

x0y0 − x2y2 = 0, (3.2.7)

x1y0 + 2x2y1 = 0, (3.2.8)

2x0y1 + x1y2 = 0. (3.2.9)

We observe that this set of equations defines a codimension 2 subvariety of F1,2. To wit,

consider the open subset of the flag variety where x0 6= 0. Therein, equations (3.2.7) and

(3.2.9) imply that

y0 =
x2y2

x0
,

y1 = −x
1y2

2x0
,

respectively, thus equation (3.2.8) is satisfied automatically:

x1y0 + 2x2y1 = x1

(
x2y2

x0

)
− 2x2

(
x1y2

2x0

)
=

(
x1x2

x0

− x2x1

x0

)
y2

= 0.

Let’s analyze the intersection of the zero locus of the moment map with the open subset

U0 = {([x], [y]) ∈ CP2 × (CP2)∗|x0 6= 0}.

Using the descriptions of y0 and y1 on U into the defining equation of the flag manifold, as a

subvariety of CP2 × (CP2)∗, yields

0 = x0

(
x2y2

x0

)
+ x1

(
−x

1y2

2x0

)
+ x2y2

= y2

[
2x2 − (x1)2

2x0

]
.

We remark that on U , y2 cannot vanish, as if this were the case so would y0 and y1, in view

of equations (3.2.7), (3.2.9), so it must be the case that

2x2 − (x1)2

2x0
= 0.
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Multiplying by (2x0) yields an equation that makes sense on all of F1,2,

4x0x2 − (x1)2 = 0, (3.2.10)

the defining equation of the zero locus of the moment map.

Let C̃ ⊂ F1,2 be the subvariety defined by (3.2.10), and consider its twistor projection

to CP2, C = P(C̃). The curve C is a conic, and C̃ is nothing but its canonical lift to

the projectivization of the holomorphic tangent bundle1 of CP2, T CP2, that is, a point in

C̃ ⊂ F1,2 is of the type (p, lp) ∈ CP2×(CP2)∗, where p belongs to the conic C, and lp ∈ (CP2)∗

is the tangent line to C at p. Therefore a twistor line Cq,m ⊂ F1,2 instersects C̃ if, and only

if, m is tanget to the conic.

Images of twistor lines

Recall that twistor lines are parametrized by equation (3.2.4), a point [ξ, ζ] is mapped by

φq,m to

([m1ξq
0 +m1ζq

1 +m2ζq
2 : −m0ξq

0−m0ζq
1−m2ξq

2 : m1ξq
2−m0ζq

2], [ξq2, ζq2,−ξq0− ζq1]).

We wish to understand how such curves are mapped to CP2 under the moment map Θ. We

expect that the generic twistor line (which does not meet the base locus) will be mapped to

a conic. This is indeed the case. Furthermore, we can characterize the locus of conics in Y

which are images of twistor lines.

Theorem 3.2.4. If a conic in CP2, represented by a symmetric 3×3 matrix A with det(A) = 1,

is the image of a twistor line from F1,2 via the contact moment map, then its coefficients

satisfy the cubic relation

A3
11 − 4A11A12A13 + 2A2

13A22 − A2
11A23 + (−2A2

12 + A11A22 − A22A23)A33 = 0 (3.2.11)

Proof. Let Cq,m be a twistor line in F1,2, where q = [q0 : q1 : q2], m = [m0 : m1 : m2]. The

image of Cq,m under the moment map Θ satisfies the following equation. Applying the

moment map to the coordinates of the twistor line φq,m([ξ, ζ] (cf. (3.2.4), we obtain a point

u with coordinates (u0, u1, u2), where

u0 = −2
√
−1(q2ξ(q0ξm1 + q1ζm1 + q2ζm2)− (−q0ξ − q1ζ)(q2ξm1 − q2ζm0)),

u1 = q2ξ(q0ξm0 + q1ζm0 + q2ξm2)− 2q2ζ(q2ξm1 − q2ζm0),

u2 = −(−q0ξ − q1ζ)(−q0ξm0 − q1ζm0 − q2ξm2)− 2q2ζ(q0ξm1 + q1ζm1 + q2ζm2)

1Which we identify with the holomorphic cotangent bundle, i.e. the flag variety, by means of the fixed
metric on CP2.
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By elimination of ξ, ζ, we find that u0, u1, u2 safisty a quadratic equation, best expressed

using matrices: uTAu = 0, where

A =


q0m0 + q2m2

√
−1
2

(2q0m1 − q1m2)
√
−1
2

(q1m0 − 2q2m1)
√
−1
2

(2q0m1 − q1m2) −2q0m2
1
2
(2q0m0 + 4q1m1 + 2q2m2)

√
−1
2

(q1m0 − 2q2m1) 1
2
(2q0m0 + 4q1m1 + 2q2m2) 2q2m0

 .

(3.2.12)

Again applying a sequence of eliminations, we find that the entries of Λ satisfy a cubic

polynomial,

A3
11 − 4A11A12A13 + 2A2

13A22 − A2
11A23 + (−2A2

12 + A11A22 − A22A23)A33 = 0

Corollary 3.2.5. The function F : Y −→ R given on a matrix A by

F (A) = A3
11 − 4A11A12A13 + 2A2

13A22 − A2
11A23 + (−2A2

12 + A11A22 − A22A23)A33 (3.2.13)

is a solution to the Dunajski-Moraru-Tod system. The corresponding metric is generates

on the submanifold M = {A ∈ Y |F (A) = 0} is anti-self-dual, and extends, via conformal

compactification, to the Fubini-Study metric on CP2.

In summary, we have described an explicit solution to the DMT system by exploiting the

geometry of the flag variety. This system is linear, and admits a large symmetry group. We

expect that careful superposition of the solutions steming from sections 3.1 and 3.2 shall

result in new solutions admitting conformal compactifications. This will be subject of future

research.
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