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Abstract of the Dissertation

Ellipticity of Bartnik Boundary Data for Vacuum Stationary Spacetimes

by

Zhongshan An

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

In this dissertation, we establish a moduli space of stationary vacuum spacetimes and
prove it admits manifold structure. In the moduli space, we set up a well-defined boundary
map, assigning a metric class with its Bartnik boundary data. Furthermore, we prove
the boundary map is Fredholm, by showing ellipticity for the boundary value problem
consisting of stationary vaccum equations and Bartnik boundary conditions (combined
with proper gauge terms). As an application, we prove that locally, the Bartnik boundary
data near the standard flat one of the unit 3-ball admits a unique (up to diffeomorphism)
stationary vacuum extension.
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1 Introduction

1.1 The Bartnik quasi-local mass

A spacetime (V (4), g(4)) is a 4-manifold with a smooth Lorentzian metric g(4) of signature
(−,+,+,+). A space-like hypersurface (Σ, g) ⊂ (V (4), g(4)) is an embedded hypersurface
such that the induced metric g is Riemannian. On the hypersurface Σ, there is the second
fundamental form K of (Σ, g) ⊂ (V (4), g(4)). The triple (Σ, g,K) is called an initial data
set of the spacetime.

An initial data set (Σ, g,K) is called asymptotically flat , if there is a compact set
D ⊂ Σ such that Σ\D is equal to a disjoint union of ends, where every end is diffeomorphic
to R3\B – the 3-dimensional Euclidean space minus the unit ball. For simplicity, we assume
there is only one end, i.e. there is a diffeomorphism φ : Σ\D → R3\B. The diffeomorphism
φ is called a chart at infinity for the initial data set. In this chart, there are coordinates
{xi}3i=1 and a smooth radius function r. In addition, as r increases to infinity, the metric
g decays to the Euclidean metric and K decays to zero, i.e.

gij − δij = O(r−δ),

Kij = O(r−δ−1),

where δ is called the decay rate. With suitable decay rate δ and additional decay conditions
on the derivatives of g and K, one can define the ADM energy momentum (E,Pi) for the
initial data set as follows:

E =
1

16π
lim
r→∞

∫
Sr

(gij,i − gii,j)dSj ,

Pi =
1

8π
lim
r→∞

∫
Sr

(Kij − (trK)gij)dS
j .

The ADM mass is then defined as,

mADM =
√
E2 − Σ3

i=1P
2
i .

Schoen-Yau (cf. [SY]) proved that under the dominant energy condition, the ADM mass
is well defined, i.e. E2 − Σ3

i=1P
2
i ≥ 0 in the expression above.

With the total mass of an asymptotically flat spacetime well understood, mathemati-
cians and physicists try to define a local notion to measure the mass of a bounded region
in the spacetime. There are now numerous proposals for a notion of local or quasi-local
mass in general relativity, such as the Brown-York mass, Wang-Yau mass, and so on. See
e.g.[Sz] for a detailed survey. In this thesis we focus on one of the most interesting and
well-studied candidates, the Bartnik quasi-local mass.

Let Ω ⊂ Σ be a bounded smooth 3-manifold with boundary ∂Ω ∼= S2. Then Ω is
naturally equiped with the restricted metric g|Ω and symmetric 2-tensor K|Ω, which will
still be denoted as g,K in the following. On the boundary ∂Ω, we define the Bartnik
boundary data as,

(g∂Ω, H∂Ω, tr∂ΩK,ωn∂Ω
). (1.1)

Here g∂Ω is the metric induced on the boundary ∂Ω; H∂Ω is the mean curvature of ∂Ω ⊂ Ω;
tr∂ΩK is the trace of the restriction K|∂Ω of the second fundamental form; and ωn∂Ω

is the
connection 1-form of the spacetime normal bundle of ∂Ω, which is defined as,

ωn∂Ω
(v) = K(n∂Ω, v), ∀v ∈ T (∂Ω),
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where n∂Ω is the outward unit normal vector field on ∂Ω ⊂ (Ω, g).
The Bartnik quasi-local mass of the data set (Ω, g,K) is defined as (cf.[B1],[B2]),

mB [(Ω, g,K)] = inf{mADM [(M, g,K)]},

where the infimum is taken over all asymptotically falt initial data set (M, g,K) which are
admissible extensions(cf.[B1]) such that the following geometric boundary conditions are
satisfied under a certain diffeomorphism ∂M ∼= ∂Ω:

g∂M = g∂Ω

H∂M = H∂Ω

tr∂MK = tr∂ΩK

ωn∂Ω
= ωn∂M .

(1.2)

It was conjectured in [B1] that Bartnik quasi-local mass of (Ω, g,K) is realized by an ad-
missible extension (M, g,K) which can be embedded as an initial data set into a stationary
vacuum spacetime. Following the conjecture, Bartnik proposed the natural question:

Given the Bartnik boundary data (g∂Ω, H∂Ω, tr∂ΩK,ωn∂Ω
), is there

an asymptotically flat, stationary vacuum extension satisfying the

boundary conditions (1.2)?

(1.3)

This is a very difficult question and many efforts have been made to answer it. In [M1], local
existence and uniqueness near the standard flat metric on the unit 3-ball was proved for
the static case under a certain reflection invariance condition. This result was generalized
in [A3] to the case without reflection invariance. (cf. also [J][R] for results with different
boundary conditions.)

In fact, before considering the existence problem, Bartnik proposed a more basic open
problem:

Is the Bartnik boundary data elliptic for stationary vacuum metrics? (1.4)

Anderson and Khuri answered this question for the static case ([AK]), but the stationary
case is very complicated and remained open. This is the main motivation of the present
work, and we will give a positive answer to the question (1.4) in this dissertation.

1.2 Stationary vacuum spacetimes

To proceed, we first give a brief introduction to the stationary vacuum spacetime.
A spacetime (V (4), g(4)) is called stationary if it has a time-like Killing vector field. A

trivial example is the flat Minkowski space (R1,3, gMin), where

gMin = −dt2 + dx2
1 + dx2

2 + dx2
3.

Stationary vacuum spacetimes are stationary spacetimes (V (4), g(4)) that solve the vacuum
Einstein field equations

Ricg(4) = 0. (1.5)

They are important and much studied in general relativity. There are two famous nontrivial
examples: the Schwarzschild metric,

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2θdφ2);
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and the Kerr metric,

ds2 =− (1− 2Mr

Σ
)dt2 − 4Marsin2θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2

+ (r2 + a2 +
2Ma2rsin2θ

Σ
)sin2θdφ2,

cf.[W].
Throughout this thesis, we assume that the spacetime (V (4), g(4)) is globally hyperbolic,

i.e. it admits a Cauchy surface Σ. The topology of a globally hyperbolic spacetime V (4) is
necessarily Σ×R. In the following, we recall two well-known formulations of the stationary
vacuum field equations — the hypersurface formalism and the projection formalism.

1.2.1 The hypersurface formalism

In the hypersurface formalism, one define a global time function t on V (4) so that ∂t is the
Killing field. The metric g(4) may then be written globally in the form

g(4) = −N2dt2 + (gM )ij(dx
i +Xidt)(dxj +Xjdt), (1.6)

where {xi}(i = 1, 2, 3) are local coordinates of the space-like hypersurface M = {t = 0}
in V (4). The lapse function N , the shift vector X = Xi∂xi and the induced metric gM =
(gM )ijdx

idxj are all independent of the time t.
The stationary spacetime (V (4), g(4)) is vacuum if and only if the following stationary

vacuum field equations hold on M , cf.[M],
2NK − LXg = 0,

RicgM + (trK)K − 2K2 − 1
ND

2N + 1
NLXK = 0,

sgM + (trK)2 − |K|2 = 0,

δK + d(trK) = 0.

(1.7)

HereD2N denotes the Hessian of functionN ; sgM denotes the scalar curvature of the metric
gM on M ; and K is the second fundamental form of the hypersurface M ⊂ (V (4), g(4)).

It is known and easy to see that when the hypersurface M is a closed 3−manifold,
there are no non-flat stationary vacuum solutions to the field equations. Lichnerowicz
(cf.[L]) proved that a geodesically complete stationary vacuum spacetime is necessarily flat
Minkowski space gMin when the 3−manifold M is complete and asymptotically flat, cf.
also [A2] for a generalization with no asymptotic condition.

Thus nontrivial solutions of (1.7) only exist on 3-manifolds with nonempty boundary,
where the issue of boundary conditions arises. Particularly, in view of the Bartnik question
(1.3), we are interested in the Bartnik bounday conditions (1.2). So questions (1.3) and
(1.4) are essentially asking whether the boundary value problem consisting of (1.7) and
(1.2) is solvable and elliptic. However, it is very complicated to directly work with such a
boundary value problem in the hypersurface formalism. So alternatively, we will first use
the projection formalism to get some insight of the problem.

1.2.2 The projection formalism

In the projection formalism, we use S to denote the collection of all trajectories of the
time-like Killing field Z in (V (4), g(4)), i.e. S is the orbit space of the action of 1-parameter
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group R generated by Z. Since the spacetime is globally hyperbolic, the qoutient space S
is a smooth 3-manifold and the metric g(4) restricted to the horizontal distribution — the
orthogonal complement of span{Z} in TV (4) — induces a well-defined Riemannian metric
gS on S. Let π : V (4) → S denote the projection map, then metric g(4) is globally of the
form

g(4) = −e2u(dt+ θ)2 + π∗gS . (1.8)

Here θ is a 1-form on S so that the dual of the Killing vector field Z is ξ = −e2u(dt+ θ).
The twist tensor ω is defined as

ω =
1

2
?g(4) (ξ ∧ dξ), (1.9)

where ?g(4) is the hodge star of the metric g(4). The twist tensor provides a measurement of

the integrability of the horizontal distribution TS in V (4). It actually lives on the quotient
manifold S, because (1.9) is equivalent to

ω = −1

2
e3u ?gS dθ.

It is easy to observe that under the reparametrization of time

t′ = t+ f,

where f is a function on S, the formula (1.8) becomes

g(4) = −e2u(dt′ + θ′) + π∗gS ,

with θ′ = θ − df . The twist tensor ω remains invariant under this gauge transformation.
Therefore, a stationary spacetime (V (4), g(4)) corresponds uniquely to a collection of data
(gS , u, dθ) or (gS , u, ω) on the quotient manifold S. We refer to [K] and [CH] for more
details of the projection formalism.

Notice that the restriction (π|M : M → S) of the projection π, gives a diffeomorphism
between the hypersurface M and the quotient manifold S. Thus boundary problems in
the setting {M, (gM , N,X)} can be transferred to equivalent boundary problems with data
{S, (gS , u, ω)} via this diffeomorphism and vice versa. In certain respects, the projection
formalism is more canonical, since there are many distinct hypersurfaces giving rise to the
same stationary solution on the 4−manifold, but the projection data is unique.

The stationary vacuum field equations in the projection formalism, which are equivalent
to (1.7) in the hypersurface formalism, are given by, cf.[H1],[H2],

RicgS −D2u− (du)2 − 2e−4u(ω ⊗ ω − |ω|2gS) = 0,

∆gSu− |du|2 − 2e−4u|ω|2 = 0,

δω + 3〈du, ω〉 = 0,

dω = 0.

Here ∆gS denotes the geometric Laplacian operator, ∆gSu = −trgSD2gSu. The last
equation indicates that ω is exact. In the case S ∼= R3 \ B3, we can assume ω = dφ for
some function φ on S. Thus the system above can be expressed equivalently as,

RicgS −D2u− (du)2 − 2e−4u(dφ⊗ dφ− |dφ|2gS) = 0,

∆gSu− |du|2 − 2e−4u|dφ|2 = 0,

∆gSφ+ 3〈du, dφ〉 = 0.

(1.10)
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Compared with the system (1.7), the work of choosing proper gauge terms and dealing
with the principal symbols turns out to be much easier in (the conformal transformation
of) the system above. Thus it is of interest to study the ellipticity of the system (1.10)
with geometrically natural prescribed boundary conditions on the quotient manifold S.

Rather than transforming the Bartnik boundary conditions from the slice M to the
quotient space S, we analyze some simpler boundary conditions arising naturally from
the projection formalism. In view of the Bartnik conditions, we choose (g∂S , H∂S) —
the induced metric on the boundary and the mean curvature of the boundary — as the
boundary conditions of the metric. In addition, we pose a restriction on the twist tensor
ω, by requiring ω(n) = n(φ) fixed on the boundary ∂S, where n is the normal vector of
the boundary pointing outwards. Actually the collection of boundary data,

{g∂S , H∂S ,n(φ)}, (1.11)

also arises naturally from the boundary terms in the variation of a functional on S, which
is the reduction of the Einstein Hilbert action from V (4) to S, c.f.§2.4.2.

The first main theorem we will prove is the ellipticity of the boundary data (1.11).

Theorem 1.1. The stationary vacuum field equations (1.10) and boundary conditions
(1.11) form an elliptic boundary value problem, modulo gauge transformations.

To prove this theorem, we first present in §2.1 the conformal transformation of the
vacuum field equations, which gives an operator with simpler symbols. For the purpose of
ellipticity, we modify the equations using certain gauge terms. After that, in §2.4 ellipticity
for (the conformal transformation of) the boundary conditions (1.11) is proved with respect
to different choices of gauge terms.

Remark. The method we use to prove ellipticity in this paper is not only valid for
the boundary conditions (1.11). It can also be applied to more general boundary value
problems for the stationary vacuum field equations.

In §2.5 we prove a manifold structure theorem for the moduli space EC = Em,αC of sta-
tionary vacuum spacetimes. The space EC is basically the space of all Cm,α asymptotically
flat stationary vacuum solutions to the system (1.10) on S modulo the action of the group
Dm+1,α

0 (S) of diffeomorphisms on S equal to the identity on ∂S. In addition, based on the
boundary conditions (1.11), we have a natural map Π, from the moduli space EC to the
space of boundary data defined as follows,

ΠC :EC →Metm,α(∂S)× Cm−1,α(∂S)× Cm−1,α(∂S),

ΠC [(gS , u, φ)] = (g∂S , H∂S ,n(φ)).
(1.12)

Here Metm,α(∂S) is the space of Cm,α metrics on ∂S; Cm−1,α(∂S) is the space of Cm−1,α

functions on ∂S. By applying the ellipticity result, we will prove the following theorem.

Theorem 1.2. The moduli space EC is an infinite dimensional C∞ Banach manifold, and
the map ΠC is C∞ smooth and Fredholm, of Fredholm index 0.

With the help of the manifold structure of the moduli space EC and using the idea
developed in the projection formalism, we can then come back to prove ellipticity of the
Bartnik boundary data.

5



1.3 Bartnik boundary data

The Bartnik boundary data is of crucial importance both in determining the Bartnik quasi-
local mass of a bounded spacelike 3−manifold in a spacetime, as shown in the first section,
and in the variation problem of the regularized Hamiltonian. In fact, a regularization
H of the Regge-Teitelboim Hamiltonian is constructed in [B3]. When the spacetime has
empty boundary, by analyzing the functional H and following an approach initiated by
Brill-Deser-Fadeev (cf.[BDF]), Bartnik proved that stationary metrics are critical points
of the ADM energy functional on the constraint manifold. However, if the spacetime has
non-empty boundary, the Bartnik boundary terms arise from the variation of H; they were
explicitly identified by Bartnik in [B1].

Come back to the Bartnik questions (1.3-4). Similarly as in the previous section, we will
establish a boundary value problem (BVP) to interpret the Bartnik questions. Since the
boundary conditions (1.2) are defined in the hypersurface formalism, one needs to couple
system (1.7) with (1.2). However, as mentioned before, it is very complicated to work with
the system (1.7) directly. So instead, we couple the equation (1.5), which is equivalent to
(1.7), with the boundary conditions (1.2) to obtain a BVP given by,

Ricg(4) = 0 on M,
g∂M = γ

H∂M = H

tr∂MK = k

ωn∂M = τ,

on ∂M.
(1.13)

Here we use (γ,H, k, τ) to denote the prescribed boundary data for simplicity. The above
system (1.13) is understood as a BVP of unknown g(4) = (gM , X,N), which is a tensor field
defined on M and independent of the time, as is shown in (1.6). The ellipticity/exsistence
question (1.3-4) is essentially asking whether this BVP is elliptic/solvable.

Another way to formulate questions (1.3-4) is to establish a boundary map. Let B
denote the space of Bartnik boundary data, i.e. tuples (γ,H, k, τ) on ∂M . Let E be the
space of stationary vacuum metrics on V (4). Then a natural boundary map Π1 arises as,

Π1 : E→ B,

Π1(g(4)) = (g∂M , H∂M , tr∂MK,ωn).
(1.14)

The map Π1 being Fredholm is essentially equivalent to that BVP (1.13) is elliptic. How-
ever, it is easy to observe that (1.5) is not elliptic, since it is invariant under diffeomor-
phisms, i.e., if g(4) is a stationary metric that solves (1.5), then the pull back metric Φ∗g(4)

of g(4) under an arbitrary diffeomorphism Φ of V (4), gives another stationary solution.
This means that we need to add gauge terms to (1.5), and at the same time, modify the
domain space E of the boundary map Π to a moduli space.

In section 3, we first analyze how to choose the right moduli space in order to obtain
a well-defined boundary map. We conclude in §3.2 that the boundary map should be
established as,

Π : E → B,

Π([g(4)]) = (g∂M , H∂M , tr∂MK,ωn).

6



Here the moduli space E is the quotient of E by a particular diffeomorphism group D. We
refer to §3.1, for the exact definition of D; roughly it is a natural intermediate group D3 ⊂
D ⊂ D4 between the groups of 3-dimensional diffeomorphisms on M and 4-dimensional
diffeomorphisms on V (4). In order to prove ellipticity of the map Π, we establish in §3.2 a
BVP under an additional technical assumption (cf. Assumption 3.1). We prove this BVP
is elliptic in §3.3, and from this derive the main theorem of this paper:

Theorem 1.3. The moduli space E is a C∞ smooth Banach manifold of infinite dimension
and the boundary map Π is Fredholm.

We show in §3.4 that the theorem is still true without the technical assumption in §3.3,
completing the proof of Theorem 1.3.

To conclude, we apply this ellipticity result in §3.5 to show that the Bartnik boundary

data near the standard flat (Minkowski) metric g̃
(4)
0 on R×(R3 \B) can be locally uniquely

realized by a stationary vacuum metric up to diffeomorphism in D.

Theorem 1.4. There is a neighborhood U ⊂ [Metm,α×Cm−1,α×Cm−1,α×(∧1)m−1,α](S2)
of the standard flat boundary data (g0, 2, 0, 0) such that for any (γ,H, k, τ) ∈ U , there is a

unique stationary vacuum metric g(4) ∈ E near g̃
(4)
0 up to isometry in D, for which

Π(g(4)) = (γ,H, k.τ).

Remark. Throughout, we assume the hypersurface M ∼= R3 \ B3 (exterior problem),
together with certain asymptotically flat assumptions on the metric g(4). Meanwhile, all
the methods and results here can be applied equally well in the case where M ∼= B3

(interior problem).

Theorem 1.3 is a generalization of the results proved in [AK], where spacetimes are
static. Theorem 1.4 generalizes the result in [A3] of static metrics.

The results we prove in this thesis provide a firm foundation for future work on Bartnik’s
conjecture about the quasi-local mass in spacetimes and the existence problem of stationary
vacuum metrics that satisfy the Bartnik boundary conditions. To the author’s knowledge,
this is the first ellipticity result of the Bartnik boundary data for general stationary vacuum
metrics.

2 Projection Formalism of stationary vacuum space-
times

2.1 Background discussion

2.1.1 Asymptotic flatness

Throughout this section, the quotient manifold S is assumed to be diffeomorphic to R3 \B.
When it goes to the infinite end, we assume that the data (gS , u, φ) is asymptotically flat,
in the sense that

gS − gF → 0, u→ 0, φ→ 0, as r →∞

where gF is the flat metric on R3 \B3 and r is the pull back to S of the radius function on
R3 \ B3 under a fixed diffeomorphism. To describe rigorously the decay behavior above,
we use the weighted Holder spaces defined as follows, cf. [B2], [LP].

7



Definition 2.1. We define several Banach spaces for m ∈ N, and α, δ ∈ R on a general
Riemannian manifold M ∼= R3 \B3:

Cmδ (M) = {functions v on M : ||v||Cmδ = Σmk=0sup r
k+δ|∇kv| <∞},

Cm,αδ (M) = {functions v on M :

||v||Cmδ + supx,y[min(r(x), r(y))m+α+δ∇mv(x)−∇mv(y)

|x− y|α
] <∞},

Metm,αδ (M) = {metrics g on M : (gij − δij) ∈ Cm,αδ },
(Tp)

m,α
δ (M) = {p− tensors τ on M : τi1i2..ip ∈ C

m,α
δ },

(∧p)m,αδ (M) = {p− forms σ on M : σi1i2..ip ∈ C
m,α
δ }.

Definition 2.2. The data (gS , u, ω) is called asymptotically flat of order δ if

(gS , u, φ) ∈ [Metm,αδ × Cm,αδ × Cm,αδ ](S), (2.1)

for some m, α and δ.

Throughout the following, the orders m,α and the decay rate δ are fixed, and chosen
to satisfy,

m ≥ 2, 0 < α < 1,
1

2
< δ < 1.

Remark. In the previous section, we introduced the diffeomorphism π|M : M → S
between hypersurface M and quotient space S. In fact, under this diffeomorphism, the
asymptotic flatness condition (2.1) of (gS , u, φ) in S is equivalent to the asymptotic condi-
tion in M :

(gM , u, Y ) ∈ [Metm,αδ × Cm,αδ × (∧1)m,αδ ](M),

which, furthermore, is equivalent to the decay behavior as in Bartnik’s work.

2.1.2 Conformal transformation of the stationary vacuum field equations and
gauge choice

To simplify the symbols of the stationary field equations (1.10), we first apply a conformal
transformation on the quotient manifold S:

g = e2ugS . (2.2)

Under such a transformation, the data (gS , u, φ) is in 1-1 correspondence to the triple
(g, u, φ); and if (gS , u, φ) is asymptocially flat as described in (2.1), it also holds that the
data (g, u, φ) is asymptotically flat, i.e.

(g, u, φ) ∈ [Metm,αδ × Cm,αδ × Cm,αδ ](S).

Furthermore, the stationary vacuum field equations (1.10), which are expressed in terms
of (gS , u, φ), can be simplified to the following system for (g, u, φ), cf. [K],

(I)


Ricg − 2du⊗ du− 2e−4udφ⊗ dφ = 0,

∆gu− 2e−4u|dφ|2 = 0,

∆gφ+ 4〈du, dφ〉 = 0.
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The field equations above can be expressed in an equivalent way, where the Ricci tensor in
Ricg is replaced by the Einstein tensor Eing = Ricg − 1

2sgg. In fact, the trace of the first
equation is given by

sg − 2|du|2 − 2e−4u|dφ|2.

Let t be the term

t =
1

2
(sg − 2|du|2 − 2e−4u|dφ|2)g.

Then it is easy to see that, system (I) is equivalent to the following system (II) by inserting
t into the first equation,

(II)


Ricg − 2du⊗ du− 2e−4udφ⊗ dφ− t = 0,

∆gu− 2e−4u|dφ|2 = 0,

∆gφ+ 4〈du, dφ〉 = 0.

Notice that by rearranging the terms, the first equation in (II) can be expressed as

(Ricg −
1

2
sgg)− 2du⊗ du− 2e−4udφ⊗ dφ+ (|du|2 + e−4u|dφ|2)g = 0, (2.3)

where the leading term — the term with highest order of derivative with respect to the
data (g, u, φ) — is exactly the Einstein tensor (Ricg − 1

2sgg).
Observe that the system (I) (or (II)) is not elliptic, because the full system is invariant

under diffeomorphism, i.e. if (g, u, ω) is a solution of the Einstein field equations, then the
pull back data Ψ∗(g, u, ω) under some diffeomorphism Ψ on S, is also a solution. So to
ensure ellipticity, as is usual we modify the system using a gauge term, and obtain

(III)


Ricg − 2du⊗ du− 2e−4udφ⊗ dφ+ T + δ∗G = 0,

∆gu− 2e−4u|dφ|2 = 0,

∆gφ+ 4〈du, dφ〉 = 0.

The pair (T,G) can be {
T1 = 0,

G1 = βg̃(g),

where g̃ is a reference metric near g, and β is the Bianchi operator: βg̃g = δg̃g+ 1
2dtrg̃g. This

corresponds to inserting G1 = βg̃(g) (the Bianchi gauge) into the system (II). Alternately,
one can set (T,G) to be {

T2 = −t,
G2 = δg̃(g),

which corresponds to inserting G2 = δg̃(g) (the divergence gauge) into (II).
We will be concerned with both distinct choices of gauge terms here. In the case

(T,G) = (T1, G1), the principal symbols of the system (III) are simple and ellipticity can
be proved by straightforward computation. However, such a system is not self-adjoint,
which makes it not suitable for the proof of the manifold theorem in §2.5. On the other
hand, the system (III) with (T,G) = (T2, G2) is formally self-adjoint, whereas its principal
symbols are much more complicated. We will use the ellipticity result of the case (T,G) =
(T1, G1) to prove the ellipticity for the gauge (T2, G2). We refer to §2.4 for more details.
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Since the boundary ∂S is not empty, it is necessary to include a boundary condition
for the gauge term G. A convinient choice is

G = 0 on ∂S. (2.4)

Next we will prove that, equipped with this boundary restriction, solutions to the gauged
system (III) when (T,G) = (T2, G2), correspond to solutions to the stationary vacuum
system (II) modulo diffeomorphisms.

2.2 Moduli space of stationary vacuum spacetimes I

We begin by defining the following subsets of the space of stationary vacuum solutions.

Definition 2.3.

E = {(g, u, φ) ∈ [Metm,αδ × Cm,αδ × Cm,αδ ](S) : solutions of (II)};
EC = {(g,u, φ) ∈ [Metm,αδ × Cm,αδ × Cm,αδ ](S) :

solutions of (II) with δg̃g = 0 on S};
ZC = {(g,u, φ) ∈ [Metm,αδ × Cm,αδ × Cm,αδ ](S) :

solutions of (III) with (T,G) = (T2, G2) and boundary condition (2.4)}.

Obviously, EC ⊂ ZC . The following lemma shows the converse is also true, i.e. ZC ⊂
EC .

Lemma 2.4. Elements in ZC are also in EC . As a consequence, ZC = EC .

Proof. It suffices to prove the gauge term G2 is zero in (III) under the boundary condition
(2.4). From the equation (2.3) we know that, if (T,G) = (T2, G2) then leading term of
the first equation in (III) is the Einstein tensor Eing, where we have the Bianchi identity,
δgEing = 0. Thus, taking the divergence (with respect to g) of the first equation in (III),
we obtain

δg{Eing − 2du⊗ du− 2e−4udφ⊗ dφ+ (|du|2 + e−4u|dφ|2)g + δ∗G2} = 0,

which gives,

δg{−2du⊗ du− 2e−4udφ⊗ dφ+ (|du|2 + e−4u|dφ|2)g}+ δδ∗G2 = 0.

Basic computation gives

δ{−2du⊗ du− 2e−4udφ⊗ dφ+ (|du|2 + e−4u|dφ|2)g}
= −2(∆gu)du− 8e−4u〈du, dφ〉dφ− 2e−4u(∆gφ)dφ+ 4e−4udu|dφ|2.

Together with the equations: ∆gu− 2e−4u|dφ|2 = 0 and ∆gφ+ 4〈du, dφ〉 = 0 from (III), it
is easy to see that the expression above is equal to zero, and consequently

δδ∗G2 = 0.

Thus we obtain the following system for G2,{
δδ∗G2 = 0 on S,

G2 = 0 on ∂S.
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Integration by parts gives:

0 =

∫
S

〈δδ∗G2, G2〉 =

∫
S

|δ∗G2|2 −
∫
∂S

δ∗G2(n, G2)−
∫
∂S∞

δ∗G2(n, G2).

Here the finite boundary term must vanish because G2 = 0 on ∂S. Basic computation
shows that the term δ∗G2(n, G2) decays at the rate r−2δ−2, so the boundary term at
infinity is also zero. It follows that δ∗G2 = 0 in S. Thus, G2 is a Killing field vanishing on
∂S, and hence G2 = 0.

Remark. The lemma above shows that adding the divergence gauge to the system (II)
preserves the stationary vacuum property of the solutions. In contrast, it is unknown in
general whether adding the Bianchi gauge to system (II) will work in the same way. In
the case (T,G) = (T1, G1), the leading term in the first equation of (III) is the Ricci
tensor Ricg. Thus instead of taking divergence as in the lemma 2.4, one needs to apply
the Bianchi operator to the first equation, which yields βδ∗G1 = 0. The operator βδ∗ is
not positive in general, so the argument above does not apply to the Bianchi gauge.

Next, we will show E = ZC in the sense of moduli space.
First define a Banach space Xm,αδ (S) of asymptotically flat vector fields vanishing on

∂S:
Xm,αδ (S) = {vector fields X on S : Xi ∈ Cm,αδ (S) and X = 0 on ∂S}.

Then the following lemma holds for the space Xm,αδ (S).

Lemma 2.5. The map δδ∗ : Xm,αδ (S)→ (Λ1)m−2,α
δ+2 (S) is an isomorphism.

Proof. From the proof of the previous lemma, one sees that kernel of δδ∗ : Xm,αδ (S) →
(Λ1)m−2,α

δ+2 (S) is zero. On the other hand, δδ∗ is an elliptic operator with Fredholm index
0, thus it is an isomorphism.

Next, let Dm+1,α
0 (S) be the group of Cm+1,α

δ diffeomorphisms of S which equal to the
identity map on ∂S. These are diffeomorphisms decaying asymptotically to the identity
at the rate r−δ. The group Dm+1,α

0 (S) acts freely and continuously on Metm,αδ (S) by pull
back and one has the following local result.

Theorem 2.6. Given any g ∈ Metm,αδ (S) near g̃, there is a unique diffeomorphism

Ψ ∈ Dm+1,α
0 (S) near the identity map Id such that the pull back metric Ψ∗g satisfies

the divergence gauge condition δg̃(Ψ
∗g) = 0.

Proof. : Define a map F as follows,

F : [Dm+1,α
0 ×Metm,αδ ](S)→ (Λ1)m−1,α

δ+1 (S),

F(Ψ, g) = δg̃(Ψ
∗(g)).

Linearization of F at (Id, g̃) with respect to (X,h) is given by

D0F(X,h) = δδ∗X + δ(h).

Here X ∈ Xm+1,α
δ (S), and hence δδ∗ is an isomorphism by the previous lemma. According

to the inverse function theorem, for any g in a neigbourhood of g̃, there exists a unique Ψ
near Id such that F (Ψ, g) = 0, which proves the theorem.
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Now define the moduli space EC = Em,αC to be the quotient of the space E by the
diffeomorphism group:

EC = E/Dm+1,α
0 (S).

By Lemma 2.4, any element of ZC is in one of the equivalence classes in EC . Conversely,
given stationary vacuum data (g, u, φ) near g̃, according to the theorem above, one can
choose a unique diffeomorphism Ψ ∈ Dm+1,α

0 (S) near Id so that δg̃(Ψ
∗g) = 0, i.e. the pull

back data Ψ∗(g, u, φ) belongs to ZC . Therefore, locally elements in the set ZC near g̃ are
in 1-1 correspondence to equivalence classes in the moduli space EC near [g̃]. Therefore,
ZC = EC locally near g̃.

2.3 Boundary value problem in the projection formalism

As in the Introduction, we pose a geometrically natural collection of boundary conditions
on ∂S: 

gTS = γ,

HgS = λ,

ngS (φ) = f,

(2.5)

where γ ∈ Metm,α(∂S) is a fixed metric of the surface ∂S; and λ, f ∈ Cm−1,α(∂S) are
prescribed functions on ∂S. Here and in the following sections, we use gTS to denote the
metric on the boundary ∂S induced by gS , HgS the mean curvature of the boundary
∂S ⊂ (S, gS), and ngS the unit normal vector field of ∂S ⊂ (S, gS). Under the conformal
transformation (2.2), these tensor fields are transformed as,

gTS = e−2ugT , HgS = eu(Hg − 2ng(u)), ngS = eung.

Thus one can translate the boundary conditions (2.5) to the following for the data (g, u, ω),
e−2ugT = γ,

Hg − 2ng(u) = e−uλ,

ng(φ) = e−uf,

on ∂S. (2.6)

Pairing these boundary conditions with the gauged vacuum field equations (III), we obtain
the following boundary value problem,

Ricg − 2du⊗ du− 2e−4udφ⊗ dφ+ T + δ∗G = 0

∆gu− 2e−4u|dφ|2 = 0

∆gφ+ 4 < du, dφ >= 0

on S,


G = 0

e−2ugT = γ

H − 2n(u) = e−uλ

n(φ) = e−uf

on ∂S.

(2.7)

The main step to prove Theorem 1.1 is verifying that the boundary value problem
above is elliptic. To do this, we define a differential operator P = (L,B) based on it, where
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L denotes the interior operator and B the boundary operator. The interior operator L,
mapping the data (g, u, φ) to the interior equations of (2.7), is defined as follows,

L : [Metm,αδ ×Cm,αδ × Cm,αδ ](S)→ [(S2)m−2,α
δ+2 × Cm−2,α

δ+2 × Cm−2,α
δ+2 ](S),

L(g, u, φ) = { 2(Ricg − 2du⊗ du− 2e−4udφ⊗ dφ+ δ∗G+ T ),

8(∆gu− 2e−4u|dφ|2),

8e−4u(∆gφ+ 4〈du, dφ〉) }.

Here S2 denotes the bundle of symmetric 2-tensors and (S2)m,αδ is the space of Cm,α

asymptotically flat symmetric 2-tensors which is defined similarly as the spaces of tensor
fields in Definition 2.1. The extra scalar factors 2, 8 and function 8e−4u are for later use
when proving self-adjointness below. They do not affect the ellipticity, but are necessary
for the self-adjointness of the operator.

The boundary operator B, mapping the data (g, u, φ) to the boundary terms in (2.7),
is given by,

B : [Metm,αδ × Cm,αδ ×Cm,αδ ](S)

→ [(Tm−1,α
1 × Cm−1,α)× Sm,α2 × Cm−1,α × Cm−1,α](∂S),

B(g, u, φ) = { G,
e−2ugT − γ,
H − 2n(u)− e−uλ,
n(φ)− e−uf },

where we write G ∈ [Tm−1,α
1 × Cm−1,α](∂S) because the gauge term G is a 1-tensor on

S, and when restricted to ∂S, it induces a tangential 1-tensor GT and a Cm−1,α function
G(n) on ∂S. For simplicity of notation, we will use Bm,α(S) to denote the target space of
B, i.e.

Bm,α(S) = [(Tm−1,α
1 × Cm−1,α)× Sm,α2 × Cm−1,α × Cm−1,α](∂S).

In the following, P will be written as P1 = (L1,B1) if the gauge terms in L,B correspond
to the Bianchi gauge, and P2 = (L2,B2) if the divergence gauge is applied.

Let (g, u, φ) be a fixed element in the zero set P−1(0), and choose g̃ = g in the gauge
term. The linearization of P at (g, u, φ) is given by

DP(h, v, σ) = (DL(h, v, σ), DB(h, v, σ)),

where (h, v, σ) is an infinitesimal deformation of the data (g, u, φ), and DL, DB are lin-
earizations of the operators L and B, expressed as follows,

DL : [(S2)m,αδ × Cm,αδ × Cm,αδ ](S)→ [(S2)m−2,α
δ+2 × Cm−2,α

δ+2 × Cm−2,α
δ+2 ](S),

DL(h, v, σ) = { D∗Dh− Z(h) +O1,

8∆gv +O1,

8e−4u(∆gσ + 4〈du, dσ〉) +O0 },

13



and

DB : [(S2)m,αδ × Cm,αδ ×Cm,αδ ](S)→ Bm,α(S),

DB(h, v, σ) = { G′h,
e−2u(−2vg + h)|∂S ,
H ′h − 2n(v) +O0,

n(σ) +O0 }.

In the expression above, D∗Dh = −∇i∇ih. The terms Z and G′h depend on the choice of
gauge terms. They are of the form {

Z1(h) = 0,

(G1)′h = βg̃h,
(2.8)

when the Bianchi gauge is choosen, and{
Z2(h) = D2(trh) + ∆g(trh)g + (δδh)g,

(G2)′h = δg̃h,
(2.9)

when the divergence gauge is used.
The expressions O1 and O0 stand for terms which involve the derivative of (h, v, σ) with
order not higher than 1 and 0. In the linearization DB, the term H ′h denotes the variation
of the mean curvature. We refer to §4.1 for the details of the calculation.

Since ellipticity only depends on the principal part of the operator, we can remove
the lower order terms O1 and O0 in DP and study the simplified operator P (h, v, σ) =
(L(h, v, σ), B(h, v, σ)), where L and B are as follows:

L : [(S2)m,αδ × Cm,αδ × Cm,αδ ](S)→[(S2)m−2,α
δ+2 × Cm−2,α

δ+2 × Cm−2,α
δ+2 ](S),

L(h, v, σ) = { D∗Dh− Z(h),

8∆gv,

8e−4u(∆gσ + 4〈du, dσ〉) },

and

B : [(S2)m,αδ × Cm,αδ ×Cm,αδ ](S)→ Bm,α(S),

B(h, v, σ) = { G′h,
e−2u(−2vg + h)|∂S ,
H ′h − 2n(v),

n(σ) }.

In the last component of L, we keep the lower order term 4〈du, dσ〉 for the purpose of
self-adjointness discussed later; again this does not affect the ellipticity.

In the following section, if the pair (Z,G′h) takes the values in (2.8), the operator P
will be denoted by P1 = (L1, B1); and if equipped with the divergence gauge (2.9), P will
be written as P2 = (L2, B2). We will prove the ellipticity of both operators P1 and P2. As
a consequence, the boundary value problem (2.7) is elliptic with respect to both choices of
gauges.
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2.4 Ellipticity of the BVP I

Throughout this section, we use ξ to denote a generic 1−form on S, η to denote a nonzero
1−form tangent to the boundary ∂S, i.e. η(n) = 0, and µ a nonzero 1−form normal to the
boundary ∂S, i.e. µT = 0.

To check ellipticity, we will follow [ADN]: Let P = (L,B) be a differential operator
consisting of an interior operator L and a boundary operator B. Denote the matrix of
principal symbols of the interior operator at ξ as L(ξ) and the matrix of principal symbols
of the boundary operator asB(ξ). The operator P forms an elliptic boundary value problem
if and only if the following two conditions hold.
(A) (properly elliptic condition): determinant l(ξ) of L(ξ) has no nontrivial real root;
(B) (complementing boundary condition): Take the adjoint matrix L∗(ξ) of L(ξ). Let
ξ = (η + zµ). The rows of B · L∗(η + zµ) are linearly independent modulo l+(z), where
l+(z) =

∏
(z− zk) and {zk} are the roots of l(η+ zµ) = 0 having positive imaginary parts.

2.4.1 Ellipticity with the Bianchi gauge

Theorem 2.7. P1 is an elliptic operator.

Proof. It is easy to observe that the matrix of principal symbols for L1 at ξ is given by

L1(ξ) =

|ξ|2I6×6 0 0
0 8|ξ|2 0
0 0 8e−4u|ξ|2

 .
The adjoint matrix of L(ξ) is then given by

L∗1(ξ) =

64e−4u|ξ|14I6×6 0 0
0 8e−4u|ξ|14 0
0 0 8|ξ|14

 .
The determinant of L1(ξ) is l(ξ) = 64e−4u|ξ|16. So it is obvious that the interior operator
is properly elliptic.
The root of l(η + zµ) with positive imaginary part is z = i|η|, and this implies

l+(z) = (z − i|η|)8.

Let C be a general vector in C8. The complementing boundary condition holds if the
equation below has no nontrivial solution in C8:

C ·B1(η + zµ) · L∗1(η + zµ) = 0 (mod l+(z)). (2.10)

One sees easily that equation (3.1) is equivalent to the following,

(z − i|η|) | C ·B1(η + zµ) ·

64e−4uI6×6 0 0
0 8e−4u 0
0 0 8

 .
And furthermore, this holds if and only if the following is true,

C ·B1(η + i|η|µ) ·

64e−4uI6×6 0 0
0 8e−4u 0
0 0 8

 = 0.
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So to prove the condition (B), it suffices to prove that the matrix of principal symbol
B1(ξ), has trivial kernel, when ξ = η + i|η|µ. In the following, the subscript 0 represents
the direction normal to ∂S, while indices 1, 2 represent the directions tangent to ∂S. Write
the nonzero tangential 1-form η = (η1, η2), so the root of the interior operator is ξ =
(i|η|, η1, η2). Basic computation (cf.§4.1) shows that the principal symbols of the boundary
operator B1 are given by,

|η|h00 − iη1h10 − iη2h20 −
1

2
|η|(h00 + h11 + h22) = 0 (2.11)

|η|h01 − iη1h11 − iη2h21 +
1

2
iη1(h00 + h11 + h22) = 0 (2.12)

|η|h02 − iη1h12 − iη2h22 +
1

2
iη2(h00 + h11 + h22) = 0 (2.13)

−2v + h11 = 0 (2.14)

h12 = 0 (2.15)

−2v + h22 = 0 (2.16)

−1

2
|η|(h11 + h22)− iη1h10 − iη2h20 + 2|η|v = 0 (2.17)

−|η|σ = 0 (2.18)

According to equations (2.14),(2.15) and (2.16), we can replace h11 and h22 by 2v and h21

by 0. Then equation (2.17) gives

2|η|v − (iη1h10 + iη2h20)− 2|η|v = 0,

i.e.
(iη1h10 + iη2h20) = 0.

Equation (2.11) gives:

1

2
|η|h00 − (iη1h10 + iη2h20)− 2|η|v = 0.

It follows that
h00 = 4v.

Multiplying (2.12) by (iη1) and (2.13) by (iη2), and then summing gives:

2|η|2v + 4|η|2v = 0.

Thus v = 0 and consequently hij = 0 for all 0 ≤ i, j ≤ 2.
Finally, it’s obvious from equation (2.18) that σ = 0. This completes the proof.

Remark. One can see from the proof above that principal symbols of the operator P1

are simple so that ellipticity follows from a direct verification of the conditions (A) and
(B). However, in the divergence-gauge case, principal symbols of the operator P2 are too
complicated for us to carry out the same computation as above. In the following, we
will use an intermediate operator which has Bianchi gauge term G1 in the interior and
divergence gauge G2 on the boundary, to prove the ellipticity of the operator P2.
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2.4.2 ellipticity for the divergence gauge

We begin with the following lemma:

Lemma 2.8. If we replace (G′1)h by (G′2)h in the boundary part B1 of P1, the operator is
still elliptic.

Proof. This can be proved by a slight modification of the previous proof. After changing
β(h) to δ(h) (they only differ by a trace term) in the boundary operator, the new principal
symbols of the boundary operator at ξ = (i|η|, η1, η2) become

|η|h00 − iη1h10 − iη2h20 = 0 (2.19)

|η|h01 − iη1h11 − iη2h21 = 0 (2.20)

|η|h02 − iη1h12 − iη2h22 = 0 (2.21)

−2v + h11 = 0 (2.22)

h12 = 0 (2.23)

−2v + h22 = 0 (2.24)

−1

2
|η|(h11 + h22)− iη1h10 − iη2h20 + 2|η|v = 0 (2.25)

−|η|σ = 0 (2.26)

By equations (2.22),(2.23) and (2.24), we can replace h11 and h22 by 2v and h21 by 0.
Then (2.25) gives

2|η|v − (iη1h10 + iη2h20)− 2|η|v = 0,

i.e.
(iη1h10 + iη2h20) = 0.

Equation (2.19) gives: h00 = 0.
Multiplying (2.20) by (iη1) and (2.21) by (iη2), and then summing gives

2|η|2v = 0.

Thus v = 0 and consequently hij = 0 for all 0 ≤ i, j ≤ 2.

Next, we follow the idea in [AK] to prove ellipticity for the operator P2.

Theorem 2.9. The operator P2 is elliptic.

Proof. The ellipticity of a general operator P = (L,B) is equivalent to the existence of a
uniform estimate:

||(h, v, σ)||Cm,α ≤ C(||L(h, v, σ)||Cm−k,α + ||B(h, v, σ)||Cm−j,α + ||(h, v, σ)||C0), (2.27)

together with such an estimate for the adjoint operator. In the expression above, k and j
denote the order of derivative in the principal parts of the operators L and B.

The operator P2 is then elliptic as a consequence of the following two facts, which are
proved in Lemma 2.10 and Proposition 2.11 below.
(1) The inequality (2.27) holds for P2;
(2) The operator P2 is formally self-adjoint.
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Lemma 2.10. Inequality (2.27) holds for P2, i.e.

||(h, v, σ)||Cm,α ≤ C(||L2(h, v, σ)||Cm−2,α + ||B2(h, v, σ)||Cm−j,α + ||(h, v, σ)||C0). (2.28)

Proof. By Lemma 2.8, the inequality (2.28) must hold if L2 is replaced by L1, i.e.

||(h, v, σ)||Cm,α ≤ C(||L1(h, v, σ)||Cm−2,α + ||B2(h, v, σ)||Cm−j,α + ||(h, v, σ)||C0).

Observe that L1(h, v, σ) = L2(h, v, σ) + (D2(trh) + ∆g(trh)g + δδhg, 0, 0). So by the
interpolation inequality, ||h||Cm−1,α ≤ ε||h||Cm,α + ε−1||h||C0 , it suffices to prove

||δh||Cm−1,α ≤ C(||L2(h, v, σ)||Cm−2,α + ||B2(h, v, σ)||Cm−j,α + ||(h, v, σ)||C0 , (2.29)

and

||D2trh||Cm−2,α ≤ C(||L2(h, v, σ)||Cm−2,α + ||B2(h, v, σ)||Cm−j,α + ||(h, v, σ)||C0). (2.30)

First notice that, L2(h) is the 2nd−order part of the linearization of the map:

Φ(g) = Ricg + δ∗G2 + T2 − 2du⊗ du− 2e−4udφ⊗ dφ.

From the proof of Lemma 2.4, one sees that

δΦ(g) + 2(∆gu− 2e−4u|dφ|2)du+ 2e−4u(∆gφ+ 4〈du, dφ〉)dφ = δδ∗δg̃g.

Assume g is a zero of Φ. Linearizing the above equation at g̃ = g with respect to h gives

δDΦ(h) +O0 = δδ∗δ(h),

where O0 denotes terms of 0-derivative order with respect to h. It is of derivative order 3
on the right hand side of the equation above, so the left hand side must be also of order 3,
hence we obtain,

δL2(h) = δδ∗δ(h).

The operator δδ∗ is elliptic with respect to Dirichlet boundary conditions, and δh is included
in the boundary operator B2. Thus inequality (2.29) holds.

To prove inequality (2.30), we use the Gauss equation at ∂S :

|Ag|2 −Hg + sgT = sg − 2Ricg(n,n),

where Ag is the second fundamental form of ∂M ⊂ (M, g) and sgT is the scalar curvature
of the metric gT on ∂M . It follows that,

(|Ag|2 −Hg + sgT )′h = −L2(n,n) + 2δ∗δ(h) +O1,

where O1 denotes terms of derivative order no higher than 1 with respect to h. Observe that
s′gT = ∆gT (trhT )+δδ(hT )+O1 and the terms A′h, H ′h only involve first order derivatives in h

so they can be ignored according to the interpolation inequality. Writing hT = B2,0 +2vgT ,
where B2,0 = hT − 2vgT is one of the boundary conditions for P2, it following that

s′gT = ∆gT (trhT − 2v) + δδ(B2,0) +O1
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Therefore, by the ellipticity of the Laplace operator on ∂S, and together with (2.29) being
true, we obtain the estimate for (trhT − 2v) along ∂S:

||(trhT − 2v)|∂S ||Cm,α ≤ C(||L2(h, v, σ)||Cm−2,α + ||B2(h, v, σ)||Cm−j,α + ||h||C0). (2.31)

Since the term (hT − 2vgT ) is included in the boundary operator, tr(hT − 2vgT ) =
(trhT − 4v)|∂S is also controlled. Comparing with (2.31), we obtain the control for v on
∂S,

||v|∂S ||Cm,α ≤ C(||L2(h, v, σ)||Cm−2,α + ||B2(h, v, σ)||Cm−j,α + ||h||C0).

In addition, ∆gv is one of the components of the interior operator L2, so from the ellipticity
of Laplace operator with Dirichlet boundary condition, we obtain the uniform estimate for
v over S,

||v||Cm,α ≤ C(||L2(h, v, σ)||Cm−2,α + ||B2(h, v, σ)||Cm−j,α + ||(h, v, σ)||C0).

Furthermore, observe that ∆gσ is the last component of the interior operator L2 and
n(σ) is one of the boundary terms in B2. Thus, based on the ellipticity of Laplace operator
with Neumann boundary condition, we also have the uniform estimate for σ over S:

||σ||Cm,α ≤ C(||L2(h, v, σ)||Cm−2,α + ||B2(h, v, σ)||Cm−j,α + ||(h, v, σ)||C0).

Now with v, σ being well controlled, inequality (2.30) is equivalent to the following
inequality,

||D2trh||Cm−2,α ≤ C(||L2(h)||Cm−2,α + ||δ(h)|∂S ||Cm−1,α + ||hT |∂S ||Cm,α
+ ||H ′h|∂S ||Cm−1,α + ||h||C0).

This estimate is proved in Lemma 3.2 of [AK], and this completes the proof of the uniform
estimate.

Proposition 2.11. LetM2 be the space of data (h, v, σ) on S in the kernel of the boundary
operator B2, i.e.

M2 = { (h, v, σ) ∈[(S2)m,αδ × Cm,αδ × Cm,αδ ](S) :
δg(h) = 0,

hT − 2vgT = 0,

H ′h − 2n(v) = 0,

n(σ) = 0,

on ∂S }.
(2.32)

Then the operator L2 :M2 → (S2)m−2,α
δ × Cm−2,α

δ × Cm−2,α
δ ](S), given by

L2(h, v, w) = { D∗Dh− Z2(h), 8∆gv, 8e−4u[∆gσ + 4〈du, dσ〉] }
= { D∗Dh−D2(trh)−∆g(trh)g − (δδh)g, 8∆gv, 8e−4u[∆gσ + 4〈du, dσ〉] },

is formally self-adjoint.

Proof. We will prove this proposition by showing that L2 arises as the 2nd variation of a
natural variational problem on the data (g, u, φ).
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To begin, the Einstein equation Eing(4) = 0 is the functional derivative of the Einstein-
Hilbert action

IEH =

∫
V (4)

Rg(4)dvolg(4) .

Reducing this action from 4-dimensional spacetime V (4) to the 3-dimensional quotient space
S, one obtains the following functional on the data (g, u, φ), of which the Euler-Lagrange
equations are exactly the field equations (II) in §2.1,

Ieff =

∫
S

s− 2|du|2 − 2e−4u|dφ|2dvolg.

We refer to [H1][H2] for further discussion of the action Ieff .
Since the boundary ∂S is nonempty, as is well known it is necessary to add boundary

terms to the action such as Gibbons-Hawking boundary terms, cf.[GH]. The proper action
with respect to the boundary data in our case is given by

I =

∫
S

s− 2|du|2 − 2e−4u|dφ|2dvolg + 2

∫
∂S

HgdvolgT + 16πmADM (g).

Next, let (E,F,H) denote the expressions in the system (II), i.e.

E[(g, u, φ)] =
1

2
(s− 2|du|2 − 2e−4u|dφ|2)g −Ricg + 2(du)2 + 2e−4u(dφ)2,

F[(g, u, φ)] = −4∆gu+ 8e−4u|dφ|2,
H[(g, u, φ)] = −4e−4u(∆gφ+ 4〈du, dφ〉).

(2.33)

Then the variation of I with respect to g is given by

I ′g(h) =

∫
S

〈E, h〉dvolg +

∫
∂S

−〈A, h〉+HtrhT dvolgT

−
∫
∂S∞

n(trh) + δh(n)dvol∂S∞ + 16π(mADM (g))′h.

(2.34)

We refer to §4.2 for the details of the computation. To abbreviate notation, we shall omit
the volume form in the following.

Notice that the terms in the second line of the equation (2.34) can be removed, because
we have ∫

∂S∞

n(trh) + δh(n) = 16π(mADM (g))′h,

based on the definition of ADM mass and its variation, cf.[RT],[B1].
Basic computation shows the variations of I with respect to u and φ are of the form,

I ′u(v) =

∫
S

〈F, v〉+

∫
∂S

−4n(u)v +

∫
∂S∞

−4n(u)v, (2.35)

and

I ′φ(σ) =

∫
S

〈H, σ〉+

∫
∂S

−4e−4un(φ)σ +

∫
∂S∞

−4e−4un(φ)σ. (2.36)

By simply checking the decay rate, one sees easily that the boundary terms at infinity in
the expressions above are both zero.
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Now let (g, u, φ) be a triple such that (E,F,H)[(g, u, φ)] = 0, and take a 2-parameter
varation of data (gst, ust, φst) = (g, u, φ) + s(h, v, σ) + t(k,w, ζ), with infinitesimal defor-
mations (h, v, σ), (k,w, ζ) ∈M2.

Based on the boundary conditions in the expression (2.32), we have hT = 2vgT . The
equation (2.34) then becomes:

I ′g(h) =

∫
S

〈E, h〉+

∫
∂S

2vH. (2.37)

Take one more variation of the equation (2.37) with respect to k, and we obtain

I ′′g (h, k) =

∫
S

〈E′k, h〉+

∫
∂S

2vH ′k + 4vwH. (2.38)

Similar operation of the equations (2.35) and (2.36) yields,

I ′′u (v, w) =

∫
S

〈F′w, v〉+

∫
∂S

−4n(w)v, (2.39)

and

I ′′φ(σ, ζ) =

∫
S

〈H′ζ , σ〉+

∫
∂S

−4e−4un(ζ)σ. (2.40)

From the symmetry of second variation, we know that I ′′(h, k) = I ′′(k, h), I ′′(w, v) =
I ′′(v, w) and I ′′(σ, ζ) = I ′′(ζ, σ). The equations (2.38− 40) then imply that:∫

S

[〈E′k, h〉+ 〈F′w, v〉+ 〈H′ζ , σ〉] +

∫
∂S

[2vH ′k + 4vwH − 4n(w)v − 4e−4un(ζ)σ]

=

∫
S

[〈E′h, k〉+ 〈F′v, w〉+ 〈H′σ, ζ〉] +

∫
∂S

[2wH ′h + 4vwH − 4n(v)w − 4e−4un(σ)ζ].

By the boundary condition in (2.32), H ′h− 2n(v) = 0, n(σ) = 0 and the same for (k,w, ζ).
Thus we can remove the boundary terms above and obtain∫

S

[〈E′k, h〉+ 〈F′w, v〉+ 〈H′ζ , σ〉] =

∫
S

[〈E′h, k〉+ 〈F′v, w〉+ 〈H′σ, ζ〉]. (2.41)

On the other hand, from the boundary condition δh = δk = 0, it follows that,∫
S

〈δ∗δk, h〉 =

∫
S

〈δk, δh〉 =

∫
S

〈δ∗δh, k〉. (2.42)

Combining equations (2.40) and (2.41), we obtain,∫
S

〈(E′k − δ∗δk,F′w,H′ζ), (h, v, σ)〉 =

∫
S

〈(E′h − δ∗δh,F′v,H′σ), (k,w, ζ)〉. (2.43)

Notice that the terms of second order and first order derivative in (E′h− δ∗δh,F′v,H′α) are
the same as in the operator − 1

2L2; and the zero order terms in the equation (2.43) can be
removed because of symmetry. Therefore it follows that∫

S

〈L2(k,w, ζ), (h, v, σ)〉 =

∫
S

〈L2(h, v, σ), (k,w, ζ)〉,

which proves the formal self-adjointness of the operator P2.

Ellipticity of the operator P2 implies that the boundary value problem (2.7) with the
divergence gauge is elliptic. Together with the local equivalence between the sets ZC and
EC in §2.2, we conclude that the collection of boundary conditions (2.6) is elliptic for the
stationary vacuum field equations (II) modulo diffeomorphisms in Dm+1,α

0 (S).
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2.4.3 Back to gS

It is now basically trivial to prove the ellipticity of the system (1.10) equipped with bound-
ary conditions (1.11), using the result we have obtained.

First observe that, by combining the first and second equations in (1.10), the system is
equivalent to the following one,

RicgS −D2u− (du)2 − 2e−4u(dφ⊗ dφ− |dφ|2gS)

+(∆gSu− |du|2 − 2e−4u|dφ|2)gS = 0,

∆gSu− |du|2 − 2e−4u|dφ|2 = 0,

∆gSφ+ 3〈du, dφ〉 = 0.

(2.44)

The trace of the first equation above is given by

sgS + 4∆gSu− 4|du|2 − 2e−4u|dφ|2.

Denote TS as the trace term

TS = −1

2
(sgS + 4∆gSu− 4|du|2 − 2e−4u|dφ|2)gS ,

and let GS be the pull back by conformal transformation of the divergence gauge term δg̃g,
i.e.

GS = δe2ug̃S (e2ugS),

where g̃S is a reference metric near gS .
Inserting (TS + δ∗e2ugSGS) to the first equation in system (2.44), we obtain

RicgS −D2u− (du)2 − 2e−4u(dφ⊗ dφ− |dφ|2gS)

+(∆gSu− |du|2 − 2e−4u|dφ|2)gS + TS + δ∗e2ugSGS = 0,

∆gSu− |du|2 − 2e−4u|dφ|2 = 0,

∆gSφ+ 3〈du, dφ〉 = 0.

(2.45)

According to the system above, we define a differential operator PS = (LS ,BS), which
consists of the interior operator LS , mapping the data (gS , u, φ) to the interior expressions
in (2.45), given by

LS : [Metm,αδ × Cm,αδ ×Cm,αδ ](S)→ [(S2)m−2,α
δ+2 × Cm−2,α

δ+2 × Cm−2,α
δ+2 ](S)

LS(gS , u, φ) = { 2[RicgS −D2u− (du)2 − 2e−4u(dφ⊗ dφ− |dφ|2gS)

+ (∆gSu− |du|2 − 2e−4u|dφ|2)gS + TS + δ∗e2ugSGS ],

8e−2u(∆gSu− |du|2 − 2e−4u|dφ|2),

8e−6u(∆gSφ+ 3〈du, dφ〉) };

and the boundary operator BS , mapping the data (gS , u, φ) to boundary data including
the gauge term GS and the terms in (1.11), given by

BS : [Metm,αδ × Cm,αδ × Cm,αδ ](S)

→ [(Tm−1,α
1 × Cm−1,α)× Sm,α2 × Cm−1,α × Cm−1,α](∂S),

B(g, u, ω) = { GS , gTS |∂S − γ, HgS − λ, ngS (φ)− f }.
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In addition, define an operator Q as the conformal transformation in (2.2),

Q : [Metm,αδ × Cm,αδ ×Cm,αδ ](S)→ [Metm,αδ × Cm,αδ × Cm,αδ ](S)

Q(gS , u, φ) = (e2ugS , u, φ),

It is easy to see, by elementary computation, that the operator PS is exactly the compo-
sition of P2 in §2.3 and Q, i.e.

PS = P2 ◦ Q.

The operator P2 has already been proved to be elliptic and Q is obviously an isomorphism.
As a consequence, the operator PS is also elliptic. This gives the proof of Theorem 1.1.

�

In the following section, we will apply the ellipticity of P2 to prove the manifold theorem
for the moduli space EC of stationary vacuum spacetimes.

2.5 Manifold theorem for the moduli space

Throughout this section, (g̃, ũ, φ̃) denotes a collection of the conformal data which solves
(II). We start by defining the following Banach spaces.

Definition 2.12.

MS = { (g, u, φ) ∈[Metm,αδ × Cm,αδ × Cm,αδ ](S) :
δg̃g = 0,

e−2ugT |∂S = γ

H − 2n(u) = e−uλ

n(φ) = e2uf

on ∂S, for some fixed γ, λ and f. };

MC = { (g, u, φ) ∈[Metm,αδ × Cm,αδ × Cm,αδ ](S) : δg̃g = 0 on ∂S }

In the definition ofMS , we modify the previous boundary condition n(φ) = e−uf into
n(φ) = e2uf , to ensure that the operator DΦ̂ below is formally self-adjoint on the tangent
space TMS . This does not affect the elliptic property of the operator.

Define a map:

Φ : MC → [(S2)m−2,α
δ+2 × Cm−2,α

δ+2 × Cm−2,α
δ+2 ](S)

Φ(g, u, φ) = ( E− δ∗δg̃g, F, H )

where the terms E,F,H are defined as in (2.33). Thus, the zero set Φ−1(0) consists of
stationary vacuum data (g, u, φ) satisfying δg̃g = 0 on S, i.e.

Φ−1(0) = ZC ,

where ZC is as in Definition 2.3. Henceforth, based on the analysis in §2.2, to prove the
moduli space EC has the structure of a Banach manifold, it suffices to prove the zero set
Φ−1(0) is a smooth Banach manifold. The main step of that is the following theorem.

Theorem 2.13. The map Φ is a submersion at the point (g̃, ũ, φ̃) ∈ Φ−1(0), i.e. the
linearization DΦ is surjective and its kernel splits in TMC .

23



2.5.1 Proof of submersion

To prove surjectivity, we follow the methods in [A1] and [AK]. Let DΦ̂ be the restriction
of DΦ to the subspace TMS ⊂ TMC , i.e.

DΦ̂ = DΦ|TMS
.

Then the operator DΦ̂ is elliptic by Theorem 2.9. So Im(DΦ̂) is closed in [(S2)m−2,α
δ+2 ×

Cm−2,α
δ+2 × Cm−2,α

δ+2 ](S) and has finite dimensional cokernel K. If K is trivial, then DΦ̂ is
surjective, and hence so is DΦ.

If K is nontrivial, then from the self-adjoint property of DΦ̂ (cf. §4.3), it follows that,

K⊥ = ImDΦ̂.

Thus for any element (k,w, ζ) ∈ K and an arbitrary element (h, u, σ) ∈ TMS , the following
equation holds, ∫

S

〈DΦ̂(h, v, σ), (k,w, ζ)〉 = 0.

To prove surjectivity of DΦ, it suffices to prove that for any triple (k,w, ζ) ∈ K, there
exists an element (h, v, σ) ∈ TMC , such that

∫
S
〈DΦ(h, v, σ), (k,w, ζ)〉 6= 0.

Assume this is not true, i.e. there exists an element (k,w, ζ) ∈ K such that,∫
S

〈DΦ(h, v, σ), (k,w, ζ)〉 = 0, ∀(h, v, σ) ∈ TMC . (2.46)

First choose (h, v, σ) = (δ∗X,LXu, LXφ), for some vector field X which vanishes on
∂S. Thus we are varying the data using diffeomorphisms in Dm+1,α

0 (S). In this case, since
the stationary vacuum field equations (II) are invariant under diffeomorphisms, it follows
that

DΦ(δ∗X,LXu, LXφ) = (δ∗Y, 0, 0) at (g̃, ũ, φ̃),

where Y = δδ∗X. Note that Lemma 2.5 shows the operator δδ∗ is surjective, so Y can be
arbitrarily prescribed. Moreover, the fact (h, v, σ) ∈ TMC implies that δh = 0 on ∂S, so
that Y = 0 on ∂S. It follows from the equation (2.46) that,

0 =

∫
S

〈δ∗Y, k〉 =

∫
S

〈Y, δk〉+

∫
∂S

k(Y,n) =

∫
S

〈Y, δk〉,

and thus,
δk = 0 on S. (2.47)

Next applying integration by parts to (2.46), we obtain∫
S

〈DΦ(k,w, ζ), (h, v, σ)〉+

∫
∂S

B̃[(h, v, σ), (k,w, ζ)] = 0.

This holds for any (h, v, σ) ∈ TMC , thus it implies that

DΦ(k,w, ζ) = 0 on S, (2.48)

and ∫
∂S

B̃[(h, v, σ), (k,w, ζ)] = 0, ∀(h, v, σ) ∈ TMC . (2.49)
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Here the bilinear form B̃ is as follows

B̃[(h, v, σ), (k,w, ζ)] = B[(h, v, σ), (k,w, ζ)]−B[(k,w, ζ), (h, v, σ)],

where

B[(h, v, σ), (k,w, ζ)] = −k(δh,n) +
1

2
{−〈∇nh, k〉 − k(n, dtrh) + trk[n(trh) + δh(n)]}

+ [4n(w)− 4k(n, dũ) + 2trkn(ũ)]v

+ 4e−4ũσ[n(ζ)− k(n, dφ̃) +
1

2
trkn(φ̃)− 4wn(φ̃)].

On the other hand, since the operator DΦ̂ is formally self-adjoint in the space TMS ,
the cokernel K of DΦ̂ is the same as the kernel of DΦ̂ in TMS . Therefore, the element
(k,w, ζ) must satisfy the following boundary conditions,

δk = 0

kT − 2wg̃T = 0

H ′k − 2n(w)− 2n′k(ũ) + w(H − 2n(ũ)) = 0

n(ζ) + n′k(φ̃)− 2wn(φ̃) = 0

on ∂S. (2.50)

Based on the first equation δk = 0, together with the fact that h ∈ TMC implies δh = 0 on
∂S, the bilinear form B can be simplified by removing the divergence terms and becomes,

B[(h, v, σ), (k,w, ζ)] =
1

2
{−〈∇nh, k〉 − k(n, dtrh) + trkn(trh)}

+ [4n(w)− 4k(n, dũ) + 2trkn(ũ)]v

+ 4e−4ũσ[n(ζ)− k(n, dφ̃) +
1

2
trkn(φ̃)− 4wn(φ̃)].

(2.51)

Taking a triple (h, v, σ) such that h = 0, ∇nh = 0 and σ = v = 0 on ∂S, and inserting it
into equation (2.49), we obtain,∫

∂S

4n(v)w + 4e−4uζn(σ) = 0.

The terms n(v) and n(σ) can be chosen to be arbitrary functions along ∂S, so this implies
that,

w = ζ = 0 on ∂S. (2.52)

And consequently, we obtain
kT = wgT = 0 on ∂S, (2.53)

according to the second equation in (2.50); and

n(ζ) + n′k(φ̃) = 4wn(φ̃) = 0 on ∂S, (2.54)

according to the last equation in (2.50).
Since kT = 0 on ∂S, the trace of k is trk = k(n,n). Thus in the last line of equation

(2.51), the term [n(ζ) − k(n, dφ̃) + 1
2 trkn(φ̃) − 4wn(φ̃)] vanishes on ∂S, according to the
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following computation,

n(ζ)− k(n, dφ̃) +
1

2
trkn(φ̃)− 4wn(φ̃)

= n(ζ)− k(n, dφ̃) +
1

2
k(n,n)n(φ̃)− 4wn(φ̃)

= n(ζ) + n′k(φ̃)− 4wn(φ̃)

= 0.

Here the second equality is based on the formula of the variation of n, cf. equation (4.5):

n′k = −k(n) +
1

2
k(n,n)n.

In addition, we have ζ = 0 from equation (2.52). Therefore, the form B can be simplified
further by removing the last line in (2.51) and becomes,

B[(h, v, σ), (k,w, ζ)] =
1

2
{−〈∇nh, k〉 − k(n, dtrh) + trkn(trh)}

+ [4n(w)− 4k(n, dũ) + 2trkn(ũ)]v
(2.55)

Choose a triple (h, v, σ) so that h = 0 and ∇nh = 0 on ∂S for equation (2.49). Then it
follows that, ∫

∂S

[4n(w)− 4k(n, dũ) + 2trkn(ũ)]v = 0,

Since the term v can be arbitrarily prescribed on ∂S, one obtains

4n(w)− 4k(n, dũ) + 2trkn(ũ) = 0 on ∂S, (2.56)

which is equivalent to the following equation since trk = k(n,n),

n(v) + n′k(ũ) = 0 on ∂S. (2.57)

Combining this with the third equation in (2.50), one obtains

H ′k = 0 on ∂S. (2.58)

Based on equation (2.56), we can simplify the form B further into the following expression,

B[(h, v, σ), (k,w, ζ)] =
1

2
{−〈∇nh, k〉 − k(n, dtrh) + trkn(trh)} (2.59)

Consequently (2.49) implies that the following equation holds for any h ∈ TMC ,∫
∂S

{−〈∇nh, k〉 − k(n, dtrh) + trkn(trh)}

− {−〈∇nk, h〉 − h(n, dtrk) + trhn(trk)} = 0.

(2.60)

It follows from equations (2.58) and (2.60) that, c.f.[AK],

(A′k)T = 0 on S. (2.61)
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Summing up the equations (2.47), (2.48), (2.52), (2.53), (2.54), (2.57), and (2.61), one ob-
tains that the element (k,w, ζ) must satisfy the following system,{

DΦ(k,w, ζ) = 0,

δk = 0,
on S, (2.62)

and the boundary conditions 

kT = 0,

(A′k)T = 0,

w = ζ = 0,

n(v) + n′k(ũ) = 0,

n(ζ) + n′k(φ̃) = 0.

on ∂S. (2.63)

Remark The first equation in (2.62) implies that the variation of (E − δ∗δg̃g,F,H) with
respect to the deformation (k,w, ζ) vanishes, i.e.

D(E− δ∗δg̃g,F,H)(g̃,ũ,φ̃)(k,w, ζ) = 0,

Combining with the second equation in (2.62), we observe that (k,w, ζ) is a vacuum de-
formation, i.e. it makes the first variation of (E,F,H) vanish,

D(E,F,H)(g̃,ũ,φ̃)(k,w, ζ) = 0. (2.64)

Translating to normal geodesic gauge

k → k̃ = k + δ∗V,

where V is a vector field such that V = 0 and k̃0i = 0 on ∂S, the boundary conditions in
(2.63) imply that the Cauchy data for (k,w, ζ) vanishes on ∂S. To complete the proof, we
will use the following unique continuation result, which is proved in §2.5.2.

Proposition 2.14. The boundary value problem formed by equations (2.62) and (2.63) has
only the trivial solution k = w = ζ = 0.

As a consequence, DΦ is sujective. It is then a standard fact that the kernel of DΦ
splits, cf.[A1]. This completes the proof of Theorem 2.13.

2.5.2 Proof of the unique continuation

We prove the Proposition 2.14 by generalizing the unique continuation result of [AH] from
Riemannian Einstein metrics to sationary Lorentzian Einstein metrics. We first formulate
a local result as follows.

On the quotient manifold (S, g̃), take an embedded cylinder C ∼= I × B2 ⊂ R3,
where I = [0, 1] and B2 is the unit disk, in such a manner that the horizontal boundary
∂0C = {0} ×B2 is embedded in ∂S, and the vertical boundary ∂C = I × S1 is located in
the interior of S. Equip C with the induced metric g̃, and choose H-harmonic coordinates
{τ, xi}(τ ≥ 0, i = 1, 2), such that level set {τ = 0} coincides with the horizontal boundary
∂0C, cf. [AH] for the definition of H-harmonic coordinates.
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Notice that under the H-harmonic coordinate system, a general metric g in C can be
written in the form,

g = zdτ2 + γ(ψidτ + xi)(ψjdτ + xj).

Here γ is the induced metric on the level sets of τ function, z is called the lapse function
and ψ is the shift vector. In addition, by writing the Ricci tensor Ricg in these coordinates,
one can obtain the following equations on every τ−level set {τ = constant} (cf.[AH]):

(∂2
τ + z2∆− 2ψk∂k∂τ + ψkψl∂2

kl)γij = −2z2(Ricg)ij − 2z∇i∇jz +Qij(γ, ∂γ), (2.65)

∆z + |Aγ |2z + zRicg(N,N)− ψ(Hγ) = 0, (2.66)

∆ψi + 2z〈D2xi, Aγ〉+ z∂iHγ + 2[(Aγ)ij∇jz −
1

2
H∇iz] + 2zRic0ig = 0, (2.67)

where the Laplace operators ∆ and the connection∇ are with respect to the induced metric
γ on the level surface. In (2.67), the index i = 1, 2 denotes the tangential direction on the
hypersurface {τ = constant} ⊂ C, and the index 0 denotes the normal direction. In (2.66),
N denotes the normal vector of the hypersurface {τ = constant} ⊂ C such that

N =
1

z
(∂τ − ψ), (2.68)

and the second fundamental form is given by

Aγ =
1

2
LNγ. (2.69)

In the equation (2.65), Qij(γ, ∂γ) is a term which involves at most first order derivatives
of (γ, z, ψ) in all directions and the 2nd tangential derivatives of ψ.

In addition, on the vertical boundary ∂C, we have the following conditions in H-
harmonic coordinates:

z|∂C ≡ 1, ψ|∂C ≡ 0. (2.70)

Without loss of generality, we can assume the cylinder C is sufficiently small so that g̃
is Cm,α close to the standard product metric on the cylinder.

Proposition 2.15. Let data (g̃, ũ, φ̃) be a stationary vacuum solution, Φ(g̃, ũ, φ̃) = 0 in
C. If (k,w, ζ) is an infinitesimal deformation of (g̃, ũ, φ̃) such that it satisfies the equations
(2.62) in C and the boundary conditions (2.63) on ∂0C, then there exists a vector field X
with X = 0 on ∂0C, such that

k = δ∗X, w = LX ũ, and ζ = LX φ̃.

Proof. First we define a Banach space M∗ as follows,

M∗ = {(g, u, φ) ∈[Metm,α × Cm,α × Cm,α](C) : δg̃g = 0 on ∂C and,

gT , A, u, φ, n(u) and n(φ) are all fixed on ∂0C}.
(2.71)

Observe that the deformation (k,w, ζ), by the hypothesis of the Proposition, is tangent
to the space M∗, i.e. (k,w, ζ) ∈ TM∗. Thus, we can assume (k,w, ζ) is the variation of a
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smooth curve (gt, ut, φt) at t = 0, where (gt, ut, φt) ∈M∗ for t ∈ (−ε, ε), with some ε > 0,
and (g0, u0, φ0) = (g̃, ũ, φ̃).

According to [AH], there exists a smooth curve of Cm+1,α diffeomorphisms Ψt of C,
which equal to Id on ∂0C for all t ∈ (−ε, ε) and Ψ0 = Id in C, so that Ψ∗t (gt) share
the same H-harmonic coordinates. We denote the infinitesimal variation of the new curve
(Ψ∗t (gt),Ψ

∗
t (ut),Ψ

∗
t (φt)) at t = 0 as (g′, u′, φ′). It is given by

(g′, u′, φ′) = (k + δ∗g̃X,w + LX ũ, ζ + LX φ̃),

for some vector field X, with X = 0 on ∂0C. Therefore, to prove the Proposition, it suffices
to prove that g′ = u′ = φ′ = 0.

For simplicity of notation, the normalized curve (Ψ∗t (gt),Ψ
∗
t (ut),Ψ

∗
t (φt)) will still be

denoted as (gt, ut, φt) in the following. Since the infinitesimal variation (g′, u′, φ′) is the
sum of a vacuum deformation (k,w, ζ), cf.(2.64), and a diffeomorphism deformation d

dtΨ
∗
t ,

it must preserve the stationary vacuum property, i.e. it satisfies the following equation:

d

dt
|t=0(E,F,H)[(gt, ut, φt)] = 0 in C,

which furthermore implies that,

s′gt = (2|dut|2 + 2e−4ut |dφt|2)′, (2.72)

Ric′gt = (2dut ⊗ dut + 2e−4utdφt ⊗ dφt)′, (2.73)

(∆ut − 2e−4ut |dφt|)′ = 0, (2.74)

(∆φt + 4〈dut, dφt〉)′ = 0, (2.75)

where the prime mark ′ means d
dt |t=0.

Let {τ, xi}(i = 1, 2) denote the common H-harmonic coordinates for gt, where the lapse
function is zt and the shift vector is ψt. Thus the metric gt is in the form,

gt = ztdτ
2 + γt(ψ

i
tdτ + xi)(ψjtdτ + xj).

Write (γ′, z′, ψ′, u′, φ′) as the infinitesimal variation of the curve (γt, zt, ψt, ut, φt) at t = 0,
then by the boundary conditions in (2.71), we obtain the following equation

γ′ = (A′)T = u′ = φ′ = n(u′) + n′(u0) = n(φ′) + n′(φ0) = 0, (2.76)

on the boundary surface ∂0C = {τ = 0}.
Notice that equations (2.65−67) hold for all (γt, zt, ψt, ut, φt), t ∈ (−ε, ε). Linearization

of the equation (2.66) at t = 0 gives

0 =∆z′ + |A|2z′ + z′Ricg0
(n,n)− ψ′(H)

+ ∆′z + (|At|2)′z + z[Ricgt(n,n)]′ − ψ(H ′t).
(2.77)

Here the terms ∆′, (|At|2)′, and H ′t only involve the tangential variation of γ and A, thus
they are all zero on the boundary surface ∂0C according to (2.76). In addition, for the
term [Ricgt(n,n)]′, we have the following equation:

[Ricgt(n,n)]′ = Ric′gt(n,n) + 2Ricg0(n′,n)

= (2dut ⊗ dut + 2e−4utdφt ⊗ dφt)′(n,n)

+ 2(2du0 ⊗ du0 + 2e−4udφ0 ⊗ dφ0)(n′,n)

= [(2du⊗ du+ 2e−4udφ⊗ dφ)(n,n)]′.

(2.78)
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The second equality above is based on the equation (2.73) and the fact that (g0, u0, φ0) is
a vacuum solution. Equation (2.78) shows that [Ricgt(n,n)]′ only involves the variation of
u,n(u) and n(φ). Thus it is also zero on ∂0C according to the boundary condition (2.76).

Henceforth, by restricting the equation (2.77) to ∂0C, we can remove those terms on
the second line and obtain

∆z′ + |A|2z′ + z′Ricg0
(n,n)− ψ′(H) = 0 on ∂0C. (2.79)

For the same reason, it follows from the linearization of the equation (2.67) that

∆(ψ′)i + 2z′〈D2xi, A〉+ z′∂iH + 2[(A)ij∇jz′ −
1

2
H∇iz′] + 2z′Ric0ig0

= 0 on ∂0C. (2.80)

Furthermore, on the boundary of the surface ∂0C, we have the Dirichlet condition for z′

and ψ′, because linearization of the boundary condition (2.70) gives,

z′|∂C ≡ 0, ψ′|∂C ≡ 0.

Since g0 is assumed to be Cm,α close to the standard cylinder metric, equations (2.79) and
(2.80) together with the Dirichlet boundary condition, imply that

z′ = ψ′ = 0 on ∂0C. (2.81)

Based on (2.68) and (2.69), we have

A′γt =
1

2
[L 1

zt
(∂τ−ψt)γt]

′.

On the boundary ∂0C, (A′γ)T = z′ = ψ′ = 0 by (2.76) and (2.81). Hence it follows from
the equation above that,

∂τγ
′
ij = 0 on ∂0C. (2.82)

Observe that N = −n on the boundary ∂0C. From (2.68) and (2.81), it follows that,

n′(u0) = −[
1

zt
(∂τ − ψt)]′(u0) = 0 on ∂0C.

Therefore, according to the boundary conditions in (2.76), we obtain

∂τu
′ = 0 on ∂0C. (2.83)

Similarly, one can derive that,
∂τφ

′ = 0 on ∂0C. (2.84)

By the conditions in (2.76) and (2.82 − 84), the triple (γ′, u′, φ′) has trivial Cauchy data
on the boundary ∂0C. In the interior of C, linearization of the equation (2.65) shows

(∂2
τ + w2γkl∂2

kl − 2σk∂k∂τ + σkσl∂2
kl)γ

′
ij = O(γ′, w′, σ′, u′, φ′), (2.85)

where O(γ′, w′, σ′, u′, φ′) is used to denote a term when it only depends on the tangential
derivatives (at most 2nd order ) of w′, σ′ and derivatives (at most 1st order) of γ′, u′, φ′.
Equations (2.74) and (2.75) gives:

gαβ∂2
αβu

′ = O(γ′, w′, σ′, u′, φ′), (2.86)

gαβ∂2
αβφ

′ = O(γ′, w′, σ′, u′, φ′). (2.87)
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which are equivalent to the following equations,

[∂2
τ − 2σi∂2

0i + (w2γij + σiσj)∂2
ij ]u
′ = O(γ′, w′, σ′, u′, φ′), (2.88)

[∂2
τ − 2σi∂2

0i + (w2γij + σiσj)∂2
ij ]φ
′ = O(γ′, w′, σ′, u′, φ′), (2.89)

since g00 = w−2, g0i = −w−2σi, and gkl = γkl + w−2σkσl, where index 0 denotes the ∂τ
direction.

Observe that equations (2.85) and (2.88 − 89) have the same principal operator on
(γ′, u′, φ′). We denote it as P ,

P = [∂2
τ − 2σi∂2

0i + (w2γij + σiσj)∂2
ij ].

This is the same operator as in [AH], and the same procedure there can be applied to
derive that γ′ = u′ = φ′ = 0, on condition that the Cauchy data of (γ′, u′, φ′) vanishes on
the boundary ∂0C. This completes the proof.

Proposition 2.15 implies that there exists a vector field Z, which is zero on ∂S, such
that k = δ∗g̃Z,w = LZ ũ, ζ = LZ φ̃ in a neighborhood U of ∂S. From [A1] we known, in the

case S ∼= R3−B, Z can be uniquely extended to the entire manifold so that k = δ∗Z holds
globally. From the second equation in (2.62), it follows that,

δδ∗Z = δk = 0.

For a fixed radius R > 1, let BR ⊂ S denote the pull back of a closed ball of radius
R under a chosen diffeomorphism S ∼= R3 \B3, and Aε denote the annulus between BR−ε
and BR. Take a cutoff function f ∈ Cm+1,α(S) such that f |BR−ε ≡ 1 and f |S\BR ≡ 0. Let
W be the compactly supported vector field W = fZ. Since Z is bounded in BR, we can
take ε small enough such that,∫

S

〈W,Z〉 =

∫
BR−ε

|Z|2 +

∫
Aε

〈fZ,Z〉 ≥ 1

2

∫
BR/2

|Z|2 (2.90)

According to Lemma2.5, the map δδ∗ is surjective, therefore there exist a vector field Y ,
which is asymptotically zero of decay rate (4 + δ) and Y |∂S = 0, such that

δδ∗Y = W.

Notice that δ∗Z has the decay rate δ, since δ∗Z = k. From this one can derive that Z can
blow up no faster than r2−δ (cf. §4.4). Therefore, applying integration by parts, one can
obtain ∫

S

〈W,Z〉 =

∫
S

〈δδ∗Y,Z〉 =

∫
S

〈Y, δδ∗Z〉 = 0. (2.91)

From equations (2.90) and (2.91), it is easy to derive that Z = 0 in BR/2, thus k, w,
and ζ vanish in BR/2 , which further implies that they are vanishing globally because of
ellipticity. This finishes the proof of Proposition 2.14.

In conclusion, we obtain the following result:

Theorem 2.16. The moduli space EC is an infinite dimensional C∞ Banach manifold,
with tangent space

T[(g̃,ũ,φ̃)]EC ∼= Ker(DΦ(g̃,ũ,φ̃)).
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Proof. This is an immediate consequence of Theorem 2.13, the fact from §2.2 that Φ−1(0) =
EC (locally), and the implicit function theorem in Banach spaces.

Moreover, from the ellipticity results in §2.4, it follows that,

Theorem 2.17. The boundary map,

Π : EC → [Sm,α2 × Cm−1,α × Cm−1,α](∂S)

Π[(gS , u, φ)] = (e−2ugT , eu(Hg − 2ng(u)), eung(φ))

is a C∞ Fredholm map, of Fredholm index 0.

Proof. The fact from §2.4 that the operator P2 is elliptic implies that the boundary map
Π̃

Π̃ : EC → [Sm,α2 × Cm−1,α × Cm−1,α](∂S),

Π̃(g, u, φ) = (e−2ugT , eu(Hg − 2ng(u)), eung(φ))

is smooth and Fredholm. It is of Fredholm index 0 because P2 is formally self-adjoint.
Moreover, since EC = EC/Dm+1,α

0 , and Π̃ is invariant under the action of diffeomorphisms
in Dm+1,α

0 , so it follows that Π is also a smooth Fredholm map and of index 0.

Now translating the results above from conformal data (g, u, φ) back to (gS , u, φ) via
the isomorphism Q as in §2.4, proves Theorem 1.2.

�

3 Bartnik boundary data

3.1 Moduli space of stationary vacuum spacetimes II

Fix a 3−dimensional manifold M ∼= R3 \B3. Let V (4) be a spacetime such that

V (4) ∼= R×M.

Let S denote the space of spacetime metrics g(4) which satisfy the following conditions:

1. (globally hyperbolic) There exist a global time function t defined in V (4), so that M
equals to the level set {t = 0} and the metric g(4) can be expressed globally as

g(4) = −N2dt2 + (gM )ij(dx
i +Xidt)(dxj +Xjdt), (3.1)

where {xi}(i = 1, 2, 3) are local coordinates on M , and gM denotes the induced metric on
M , which is Riemannian .
2. (stationary) The vector field ∂t is a time-like Killing vector field in (V (4), g(4)). In other
words, the lapse function N , shift vector X and the induced metric gM that appear in the
expression (3.1) are all independent of the time variable t. In addition, since g(4)(∂t, ∂t) =
−N2 + |X|2gM must be negative, one has

N2 > |X|2gM . (3.2)
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3. (asymptotically flat) The metric g(4) decays to the flat (Minkowski) metric at infinity.
Explicitly, N , X and gM belong to the weighted Hölder spaces on M , given by,

gM ∈Metm,αδ (M),

N − 1 ∈ Cm,αδ (M),

X ∈ Tm,αδ (M),

(3.3)

for some fixed number m ≥ 2, 0 < α < 1, and 1
2 < δ < 1.

It is obvious that an element in S is uniquely determined by a data set (gM , X,N). Thus
S admits a smooth Banach manifold structure equipped with the weighted Hölder norm.

As mentioned in the introduction, one can establish a BVP (1.13) for g(4) ∈ S, but
in order to make it elliptic, we need to add gauge terms. A standard choice is to use the
Bianchi gauge leading to a modified system with unknown g(4) ∈ S as follows:

Ricg(4) + δ∗βg̃(4)g(4) = 0 on M,

g∂M = γ

H∂M = H

tr∂MK = k

ωn = τ

βg̃(4)g(4) = 0.

on ∂M
(3.4)

Here and throughout the following we use ωn as the abbreviation of ωn∂M . In the gauge
term βg̃(4)g(4) above, g̃(4) is a fixed background metric that belongs to S and is in addition

vacuum. The effect of adding the gauge term βg̃(4)g(4) in the vacuum equation is to give a
slice to the action on the solution space of (1.13) by the group D4 of diffeomorphisms of the
spacetime. The last boundary condition βg̃(4)g(4) = 0 in (3.4) corresponds geometrically
to the requirement that the diffeomorphisms in D4 fix the boundary ∂M .

However, such a modification has two issues. Firstly, it is easy to observe that (3.4) is
not well posed, because there are 10 interior equations on M but 11 boundary conditions on
∂M — notice that, the gauge term βg̃(4)g(4) defines a vector field in V (4), so it contributes
to 4 extra boundary equations in (3.4).

Secondly, let E be the space of stationary vacuum metrics, i.e.

E = {g(4) ∈ S : Ricg(4) = 0}; (3.5)

then, as is explained above, after adding the gauge term βg̃(4)g(4), the boundary map Π1

defined in (1.14) should be modified to Π2 as follows,

Π2 :E/D4 → B,

Π2([g(4)]) = (g∂M , H∂M , tr∂MK,ωn),

where the target space B is given by, B = Metm,α(∂M)× [Cm−1,α(∂M)]2×∧m−1,α
1 (∂M).

However, this map is not well defined, because elements in D4 do not always preserve the
Bartnik boundary data (cf. Proposition 3.1), which means that the Bartnik boundary data
is not well defined for an element [g(4)] — an equivalence class of metrics — in the moduli
space E/D4.
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Since we are working with stationary metrics, it is natural to require elements in D4

to be time-independent and preserve the Killing vector field ∂t. Thus a general element in
D4 can be decomposed into two parts — a diffeomorphism on the hypersurface M and a
translation of time, i.e. D4 can be defined as,

D4 = {Φ(ψ,f)| ψ ∈ Dm+1,α
δ (M) and ψ|∂M = Id∂M ;

f ∈ Cm+1,α
δ (M) and f |∂M = 0;

Φ(ψ,f) : V (4) → V (4),

Φ(ψ,f)[t, p] = [t+ f, ψ(p)], ∀t ∈ R, p ∈M. },

Here Dm+1,α
δ (M) denotes the group of Cm+1,α diffeomorphisms of M which are asymp-

totically IdM at the rate of δ.

Proposition 3.1. If an element Φ(ψ,f) ∈ D4 has a nontrivial time translation function f ,
then it does not preserve the Bartnik boundary data on ∂M .

Proof. Take an arbitrary stationary metric g(4) ∈ S,

g(4) = −N2dt2 + gij(dx
i +Xidt)(dxj +Xjdt).

Here we use gij to denote the induced metric on slice M = {t = 0}. Choose a function

f ∈ Cm+1,α
δ (M), and take the diffeomorphism Φ(IdM ,f) ∈ D4 :

Φ(IdM ,f) : V (4) → V (4)

Φ(IdM ,f)(t− f, x1, x2, x3) = (t, x1, x2, x3).

In the following, we will use Φf as the abbreviation of Φ(IdM ,f). Let s denote the new time
function, i.e.

s = t− f.

Then the pull back metric Φ∗fg
(4) can be written as

Φ∗fg
(4) = −N2[d(s+ f)]2 + gij [dx

i +Xid(s+ f)][dxj +Xjd(s+ f)]

= −u2ds2 − u2df � ds+Xidx
i � ds− u2(df)2 +Xidx

i � df + gijdx
idxj ,

where u2 = N2 − |X|2g. Let M̂ denote the new slice M̂ = {s = 0} in V (4). Then, from the

expression above, one easily observes that the induced metric on M̂ is given by,

ĝij = −u2(df)2 +Xidx
i � df + gijdx

idxj .

Since Φf ∈ D4, we have f |∂M = 0, i.e. the time translation is fixing the boundary

— ∂M and ∂M̂ coincide in the spacetime. Then it is obvious that g∂M in the Bartnik
boundary data remains the same under such a time translation. However, this is not the
case for the other data H∂M , tr∂MK and ωn∂M .

Let N ∈ TV (4) denote the future-pointing time-like unit normal vector to the slice M
and n denote the outward unit normal of ∂M ⊂ M . When switching to the new slice M̂ ,
those two normal vectors (N,n) are related to (N̂, n̂) on the boundary ∂M in the following
way, [

dΦf (N̂)
dΦf (n̂)

]
=

[
a b
b a

] [
N
n

]
,
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where a, b are scalar fields on ∂M and a2 − b2 = 1 (cf.§4.5).
For the induced metric ĝ = Φ∗f (g) and the connection ∇ĝ = Φ∗(∇g), we obtain the

following formula for the mean curvature on ∂M :

Ĥ∂M̂ = tr∂M̂ (∇ĝn̂)

= tr∂M [∇gdΦf (n̂)]

= tr∂M [∇g(bN + an)]

= btr∂M (∇gN) + atr∂M (∇gn)

= btr∂MK + aH∂M .

(3.6)

It is easy to show that tr∂MK is transformed in a similar way as above, i.e.

tr∂M̂K̂ = atr∂MK + bH∂M (3.7)

As for the last boundary term ωn, one has ∀v ∈ T (∂M),

ω̂n(v) = Φ∗fK(n̂, v)

= Φ∗fg
(4)(Φ∗f (∇)vN̂, n̂)

= g(4)(∇dΦf (v)(aN + bn), bN + an)

= −b · da[dΦf (v)] + a · db[dΦf (v)] + (a2 − b2)g(4)(∇dΦf (v)N,n)

= a2[dΦf (v)](b/a) +K(n, dΦf (v)),

= a2v(b/a) + ωn(v).

Here the last equality is based on the observation that dΦf (v) = v ∀v ∈ T (∂M), since
Φf |∂M = Id∂M . From the formula above, we conclude that,

ω̂n = a2d∂M (b/a) + ωn, (3.8)

where d∂M (b/a) denotes the exterior derivative of the scalar field on ∂M . Along the
boundary ∂M , one has

a =
1 + 〈X,n〉n(f)√

[1 + 〈X,n〉n(f)]2 −N2|n(f)|2
. (3.9)

We refer to the Appendix §4.5 for the detailed calculation of the scalar fields a, b. Therefore,
if the function f is nontrivial, in the sense that n(f)|∂M 6= 0, then a 6= 1 by (3.9) and hence
it is easy to observe from equations (3.6-8) that the Bartnik boundary conditions are not
invariant under the diffeomorphism Φf .

In view of the fact above, one may suggest to reduce the diffeomorphism group D4 to
a smaller one D3 consisting of only 3-dim diffeomorphism on the slice, i.e.

D3 = {ψ ∈ Dm+1,α
δ (M) : ψ|∂M = Id∂M}. (3.10)

However, this approach does not work either. Let Π3 be the boundary map as follows,

Π3 : E/D3 → B

Π3([g(4)]) = (g∂M , H∂M , tr∂MK,ωn).
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Given a fixed boundary condition (γ,H, k, τ), and an element g(4) in the pre-image set
Π−1

3 [(γ,H, k, τ)], we can take an arbitrary function f such that f |∂M = n(f)|∂M = 0, and
make time translation Φf to obtain a new metric ḡ(4) = Φ∗fg

(4). Then, by the previous

analysis, ḡ(4) also belongs to Π−1
3 [(γ,H, k, τ)].

When the metric g(4) is varied by a smooth curve of such time translations, the corre-
sponding infinitesimal deformation is of the form,

(g(4))′ = Lf∂tg
(4) = df � (∂t)[ = df � (−u2dt+Xidx

i).

The analysis in the previous paragraph implies that (g(4))′ ∈ KerDΠ3. This contributes
to a nontrivial kernel element if it is not tangent to any 3-dim diffeomorphism variation,
i.e. the following equation is not solvable for Z ∈ TM ,

df � (−u2dt+Xidx
i) = LZg

(4). (3.11)

Since (3.11) is an overdetermined system for Z, it is not solvable for generic choices of f .
This means that the kernel of DΠ3 should be of infinite dimension, which indicates that
Π3 is not a Fredholm map.

From all the analysis above, we notice that the Neumann data n(f) of the time trans-
lation function plays an important role. It suggests defining a new diffeomorphism group
D as follows,

D = {Φ(ψ,f) ∈ D4 : ng(f) = 0 on ∂M}. (3.12)

It is in fact an intermediate group in the sense that D3 ⊂ D ⊂ D4.

Remark 3.2. The vector field ng in (3.12) can be taken as the unit normal vector of ∂M
with respect to any Riemannian metric g on M — the group D does not depend on the
choice of the metric g. In fact, it is easy to observe that D can be defined in an equivalent
way:

D = {Φ(ψ,f) ∈ D4 : df = 0 at ∂M}.

Geometrically, elements in the group D are diffeomorphisms of the spacetime (V (4), g(4))
which fix the boundary ∂M and the time-like unit normal vector field N along ∂M , since
n(f) = 0 yields a = 1 in (3.9).

Define E to be the quotient space,

E = E/D.

Elements in E are equivalence classes [g(4)] given by,

[g(4)] = {Φ∗(ψ,f)g
(4) : g(4) ∈ E, Φ(ψ,f) ∈ D}.

Now we can consider the natural boundary map:

Π :E → B

Π([g(4)]) = (g∂M , H∂M , tr∂MK,ωn).
(3.13)

This map is well defined — the Bartnik boundary data is the same for all the metrics
inside one equivalence class [g(4)] ∈ E , because the transformation formulas (3.6− 8) show
that Bartnik boundary data is preserved under diffeomorphisms in D. In the following
sections we will prove this boundary map Π is Fredholm.
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3.2 Well-defined boundary value problem

Throughout this section, we take g̃(4) ∈ E as a fixed reference metric and make the following
assumption:

Assumption 3.3. The BVP with time-independent unknown Y ∈ Tm,αδ (V (4)), given by,{
βg(4)δ∗g(4)Y = 0 on M

Y = 0 on ∂M
(3.14)

has only the zero solution Y = 0 when g(4) = g̃(4).

Remark. Throughout this paper, we say a tensor field T in V (4) is time-independent if
L∂tT = 0. In the above, Tm,αδ (V (4)) denotes the space of Cm,α vector fields in V (4), which
are in addition asymptotically zero at the rate of δ.

In the following, we call the operator βg̃(4)δ∗g̃(4) invertible if (3.14) has trivial kernel. This

is an open condition, since βg(4)δ∗g(4) with Dirichlet boundary data is an elliptic and self-

adjoint operator (cf.Lemma 3.10). Thus, if βg̃(4)δ∗g̃(4) is invertible, then so is the operator

βg(4)δ∗g(4) for g(4) near g̃(4) in the space S.

We set up a BVP with unknowns (g(4), F ) ∈ S × Cm,αδ (M) as follows,{
Ricg(4) + δ∗βg̃(4)g(4) = 0

∆F = 0
on M,

g∂M = γ

aH∂M + btr∂MK = H

atr∂MK + bH∂M = k

ωn + a2d∂M (a/b) = τ

βg̃(4)g(4) = 0

on ∂M,

(3.15)

where

a =
1 + 〈X,n〉F√

(1 + 〈X,n〉F )2 −N2F 2
, and b =

√
a2 − 1, (3.16)

with N and X denoting the lapse function and shift vector of g(4). Here ∆ = −trHess
denotes the Laplace operator (i.e. the time-independent wave operator) with respect to
the metric g(4). The argument to follow works in the same way if one sets ∆ to be the
Laplacian of the induced Riemannian metric g on the slice M . But with the former choice,
the principal symbol which we will compute in §4 is simpler.

Applying the Bianchi operator to the first equation of (3.15), one obtains,

βg(4)δ∗g(4) [βg̃(4)g(4)] = 0 on M. (3.17)

In addition, the last boundary condition in (3.15) gives,

βg̃(4)g(4) = 0 on ∂M. (3.18)

Combining (3.17) and (3.18), together with the Assumption 3.3, it follows that,

βg̃(4)g(4) = 0,

∀ solution g(4) of (3.15) near g̃(4).

37



Therefore, if we use Q to denote the solution space of (3.15), then near g̃(4), it is given by

Q = {(g(4), F ) : Ricg(4) = 0, βg̃(4)g(4) = 0,∆F = 0, on M ;

(g∂M , aH∂M + btr∂MK, atr∂MK + bH∂M , ωn + a2d∂M (b/a)) = (γ,H, k, τ) on ∂M}.

To establish a well-defined boundary map, we first define a space C as follows:

C := { (g(4), F ) : Ricg(4) = 0, βg̃(4)g(4) = 0, ∆F = 0 on M }.

Next, let Π̃ be the boundary map:

Π̃ : C → B

Π̃(g(4), F ) = (g∂M , aH∂M + btr∂MK,atr∂MK + bH∂M , ωn + a2d∂M (b/a)).

This map Π̃ is closely related to the boundary map Π defined in (2.13). In fact, we have
the following theorem.

Theorem 3.4. There is a map P so that the space C is diffeomorphic to E via P, and the
boundary maps Π and Π̃ are related by

Π̃ = Π ◦ P.

Proof. Given an element (ĝ(4), F̂ ) ∈ C, one can take a function f on M such that f |∂M = 0
and n(f)|∂M = F̂ |∂M , and apply the 4-dim diffeomorphism Φ(ψ,f) to ĝ(4) with an arbitrary

ψ ∈ D3. Thus, any element (ĝ(4), F̂ ) ∈ C gives rise to a class of elements as follows,

{Φ∗(ψ,f)(ĝ
(4)) : Φ(ψ,f) ∈ D4; n(f)|∂M = F̂ |∂M}. (3.19)

It is easy to observe that the equivalence class above actually defines an element in E.
Henceforth we can define a map P as,

P : C → E,

P(ĝ(4), F̂ ) = [g(4)],

where [g(4)] is defined as the equivalence class (3.19).
On the other hand, consider the following map:

G : S × D4 → (∧1)m,αδ V (4)

G(g(4),Φ) = βg̃(4)Φ∗g(4),

The linearization of G at (g̃(4), IdV (4)) is given by,

DG|(g̃(4),Id
V (4) ) : TS × TD4 → (∧1)m,αδ V (4)

DG|(g̃(4),Id
V (4) )[(h

(4), Y )] = βg̃(4)δ∗g̃(4)Y + βg̃(4)h(4).

By the definition of D4, the vector field Y ∈ TD4 is time-independent, asymptotically zero
and Y = 0 on ∂M . So the operator βg̃(4)δ∗g̃(4) in the linearization above is invertible by

the Assumption 3.3. Therefore, by the implicit function theorem, for any g(4) ∈ S near
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g̃(4), there is a unique element Φ(ψ,f) ∈ D4 such that the pull back metric Φ∗(ψ,f)g
(4) is

gauge-free, i.e. βg̃(4)(Φ∗(ψ,f)g
(4)) = 0 in V (4).

Now take an arbitrary vacuum metric g(4) ∈ E ⊂ S. Then the gauge-free metric
ĝ(4) = Φ∗(ψ,f)g

(4) is also vacuum, and trivially it follows,

g(4) = (Φ∗(ψ,f))
−1ĝ(4) = Φ∗(ψ−1,−f)ĝ

(4).

So we take F̂ as the unique harmonic function (with respect to the metric ĝ(4)) on M
satisfying the Dirichlet boundary condition F̂ = n(−f) on ∂M . Pair it with ĝ(4) to obtain
an element (ĝ(4), F̂ ) ∈ C.

Moreover, if two elements g
(4)
1 , g

(4)
2 ∈ E near g̃(4) are equivalent under some 4-diffeomorphism

Φ(ψ0,f0), then they correspond to the same gauge-free metric ĝ(4) because of the uniqueness

shown above. If, in addition, the time translation f0 makes n(f0) = 0 on ∂M , then g
(4)
1

and g
(4)
2 also generate the same harmonic function F̂ as described above. Therefore, all

the metrics that belong to the same equivalence class [g(4)] ∈ E give rise to a unique pair
(ĝ(4), F̂ ) ∈ C. This implies that there is a well-defined map P̃ given by,

P̃ : E→ C,
P̃([g(4)]) = (ĝ(4), F̂ ),

where (ĝ(4), F̂ ) is obtained in the manner described above.
It is easy to check that P and P̃ are the inverse map of each other. Thus, the spaces C

and E are diffeomorphic via P.
Moreover, based on the formulas (2.6 − 8), one can easily observe that if [g(4)] =

P(ĝ(4), F̂ ), then their Bartnik boundary data are related in the following way,

(g∂M ,H∂M , tr∂MK,ωn)

= (ĝ∂M , aĤ∂M + btr∂MK̂, atr∂MK̂ + bĤ∂M , ω̂n + a2d∂M (b/a)),

where a, b are given by equations in (3.16) with F = F̂ . Therefore, the boundary maps Π̃
and Π are related by,

Π̃ = Π ◦ P.

Theorem 3.5. The space C is a smooth Banach manifold, and the boundary map Π is
Fredholm.

Proof. For any stationary vacuum metric g(4), define Hg(4) as the space of harmonic func-
tions on M :

Hg(4) = {f ∈ Cm,αδ (M) : ∆g(4)f = 0 on M}.

Since ∆g(4) is invertible when subjected to Dirichlet boundary conditions, it is easy to
prove that,

Hg(4)
∼= Cm,α(∂M).

Thus H admits a smooth Banach manifold structure.
We observe that if (g(4), F ) ∈ C, then g(4) ∈ E and it satisfies the gauge condition

βg̃(4)g(4) = 0. By the analysis in the proof of Theorem 3.15, it is easy to see that such a
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metric g(4) is the representative of an equivalence class of metrics [g(4)] ∈ E/D4. Therefore,
the space C is actually a fiber bundle over E/D4, with the fiber at [g(4)] being Hg(4) . Thus

near the reference metric g̃(4), we have,

C ∼= E/D4 ×Hg̃(4) .

It is easy to observe that E/D4 = ZC , thus by the result from §2.5, E/D4 is a smooth
Banach manifold, and hence it follows that C has a smooth Banach manifold structure. To
prove that the map Π̃ is Fredholm, it suffices to prove BVP (3.15) is elliptic, which will be
shown in the next section.

Combining Theorem 3.4 and Theorem 3.5 gives Theorem 1.3, modulo Assumption 3.3
(cf.§3.4).

3.3 Ellipticity of the BVP II

In this section, similar as in §2.4, we use ξ to denote a 1−form on M , η to denote a nonzero
1−form tangential to the boundary ∂M , and µ a nonzero 1−form normal to the boundary
∂M . We use the index 0 to denote the direction along ∂t in V (4), and index 1, 2, 3 to
denote the tangential direction on M . When restricted on the boundary, index 1 denotes
the (outward) normal direction to ∂M ⊂ M and indices 2, 3 denote directions tangent to
∂M . We use greek letters when 0 is included in the indices, and latin letters when there
are only tangential components.

To prove ellipticity of the system (3.15), we define a differential operator F = (L,B)
with interior operator L, mapping a pair (g(4), F ) to the interior equations in (3.15):

L : S × Cm,αδ (M)→ Sm−2,α
δ+2 (V (4))× Cm−2,α

δ+2 (M)

L(g(4), α) = ( Ricg(4) + δ∗g(4)βg̃(4)g(4), ∆F );

and a boundary operator B mapping (g(4), F ) to the boundary terms in (3.15):

B : S × Cm,αδ (M)→ B

B(g(4), F ) = ( g∂M ,

aH∂M + btr∂MK,

atr∂MK + bH∂M ,

ωn + a2d∂M (b/a),

βg̃(4)g(4) ).

In the above, Sm−2,α
δ+2 (V (4)) denotes the space of symmetric 2-tensors in V (4), which are

time independent, Cm−2,α smooth and asymptotically zero at the rate of (δ + 2); B is an
abbreviation of the target space of B, given by,

B = Sm,α(∂M)× [Cm−1,α(∂M)]2 × ∧m−1,α(∂M)× [Cm−1,α(∂M)]2 × ∧m−1,α(∂M).

Theorem 3.6. The linearization DF of F at (g̃(4), 0) is elliptic.

Proof. We use the characterization of ellipticity in Agmon-Douglis-Nirenberg [ADN]. We
first show in §3.3.1 that DF is properly elliptic. In §3.3.2 we show that DF satisfies the
complementing boundary condition.
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3.3.1 Properly elliptic condition

The linearization of the interior operator at (g̃(4), 0) is given by (cf.[Be])

DL : TS × Cm,αδ (M)→ Sm−2,α
δ+2 (V (4))× Cm−2,α

δ+2 (M)

DL(h(4), G) = ( D∗g̃(4)Dg̃(4)h(4), ∆G ).

Here D∗
g̃(4)Dg̃(4)h

(4)
αβ can be expressed in the 3 + 1 slice formalism (2.1) of the metric as:

D∗g̃(4)Dg̃(4)h
(4)
αβ = −DNDNh

(4)
αβ + Σ3

i=1DeiDeih
(4)
αβ +O1(h(4))

= −D 1
N (∂t−X)D 1

N (∂t−X)h
(4)
αβ + Σ3

i=1DeiDeih
(4)
αβ +O1(h(4))

= − 1

N2
∂X∂Xh

(4)
αβ + Σ3

i=1∂ei∂eih
(4)
αβ +O1(h(4)),

where {ei}, (i = 1, 2, 3) is an orthonormal basis of the tangent space on M and O1(h(4))
denotes those terms with lower(≤ 1) order derivatives. Recall that N denotes the time-like
unit vector perpendicular to M . Based on (2.1),

N = N−1(∂t −X).

A similar formula holds for the term ∆G, i.e.

∆G = − 1

N2
∂X∂XG+ Σ3

i=1∂ei∂eiG+O1(G).

Thus, the matrix of principal symbol for DL is given by,

L(ξ) = a(ξ)I11×11 (3.20)

with

a(ξ) = ξ2
1 + ξ2

2 + ξ2
3 −

1

N2
(Xiξ

i)2. (3.21)

The determinant of this matrix is obviously

det(L(ξ)) = [a(ξ)]11.

Notice that |X|
2

N2 < 1 by (3.2) and hence,

a(ξ) = |ξ|2 − 〈X
N
, ξ〉2 ≥ |ξ|2 − |X|

2

N2
|ξ|2 > 0,

Therefore, the interior operator L is properly elliptic.

3.3.2 Complementing boundary condition

Recall that the complementing boundary condition is defined as (cf.[ADN]):
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Let L∗(ξ) be the adjoint matrix of L(ξ) and set ξ = η + zµ. The rows of the matrix
[B · L∗](η + zµ) are linearly independent modulo l+(z) =

∏
(z − zk), where {zk} are the

roots of detL(η + zµ) = 0 having positive imaginary parts.

Since the principal symbol of L is the identity matrix (up to a scalar) as shown in (3.20),
the complementing condition will hold as long as the boundary matrix B(η + zµ) is not
singular when z is a root of detL(η + zµ) = 0 with positive imaginary part.

The linearization of the boundary operator B at (g̃(4), 0) is given by,

B : TS × Cm,αδ (M)→ B

DB(h(4), G) = ( h∂M

DH∂M (h(4)) +O0(G)

Dtr∂MK(h(4)) +O0(G)

D[ωn](h(4)) +Nd∂MG+O0(G)

βg(4)h(4) ).

(3.22)

Notice that at (g̃(4), 0), a = 1, b = 0. The formula (3.16) of the scalar field a involves
only the 0−order information of F , thus the 2nd and 3rd boundary terms in DB, which
represent the linearization of Bartnik conditions (aH∂M +btr∂MK) and (atr∂MK+bH∂M )
at (a = 1, b = 0), do not contain high order (≥ 1) derivatives of G. It is easy to check at
(a = 1, b = 0)

D[a2d∂Mb/a](G) = Nd∂MG+O0(G),

which contributes to the third term in DB.
Based on (3.22), the principal symbol of B is of the form:

B(ξ) =

03×8

1 0 0
0 1 0
0 0 1

B̃8×8 ∗

 . (3.23)

Here B(ξ) is a 11× 11 matrix, since the boundary terms in (3.22) contain 11 equations in
total and 11 (ordered) unknowns

(G, h
(4)
αβ), 0 ≤ α ≤ β ≤ 3.

Obviously, the first boundary term h∂M = h
(4)
ij , (2 ≤ i ≤ j ≤ 3). Thus the first three rows

of B in (3.23) contain only zeros in the first eight columns and a 3 × 3 identity matrix
at the end. The remaining eight rows of B represent the symbol of 2nd-5th boundary
terms in (3.22), with B̃ denoting the first eight columns which are determined by the G

and h
(4)
αβ (0 ≤ α ≤ 1, α ≤ β ≤ 3) components of the corresponding boundary terms.

Obviously, for the complementing boundary condition, it suffices to verify that B̃(η + zµ)
is nonsingular when z is a root of a(η+zµ) in (3.21) with positive imaginary part. Detailed
calculation given in §4.1.2 shows that the matrix B̃ is given by

B̃ = −32−1N−11[(B̂1)8×4 (B̂2)8×4],
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where the first four columns are given by

B̂1 =



0 0 0 0
0 0 0 ξ2

−2N2ξ2 0 ξ2 ξ1
−2N2ξ3 0 ξ3 0

0 ξ1 2S − 2ξ1X
1 −2ξ1X

2

0 ξ2 −2ξ2X
1 2S − 2ξ2X

2

0 ξ3 −2ξ3X
1 −2ξ3X

2

0 S N2ξ1 − SX1 N2ξ2 − SX2


,

and the last four columns are given by

B̂2 =



0 0 −ξ2 −ξ3
ξ3 0 −ξ2X1 −ξ3X1

0 −ξ2X1 ξ3X
3 −ξ2X3

ξ1 −ξ3X1 −ξ3X2 ξ2X
2

−2ξ1X
3 ξ1X

1X1 +N2ξ1 − 2SX1 ξ1X
1X2 − 2SX2 + 2N2ξ2 ξ1X

1X3 − 2SX3 + 2N2ξ3
−2ξ2X

3 ξ2X
1X1 −N2ξ2 ξ2X

1X2 − 2SX1 + 2N2ξ1 ξ2X
1X3

2S − 2ξ3X
3 ξ3X

1X1 −N2ξ3 ξ3X
1X2 ξ3X

1X3 − 2SX1 + 2N2ξ1
N2ξ3 − SX3 0 0 0


,

inside which S = ξ1X
1+ξ2X

2+ξ3X
3. We can simplify B̂ using elementary row and column

operation of matrices (cf.§4.1.2 for the detailed calculations) and obtain an equivalent
matrix:

0 0 0 0 0 0 −ξ2 −ξ3
0 0 0 ξ2 ξ3 0 0 0

−2N2ξ2 0 0 ξ1 0 0 ξ1X
1 + ξ3X

3 −ξ2X3

−2N2ξ3 0 0 0 ξ1 0 −ξ3X2 ξ1X
1 + ξ2X

2

0 ξ1 2S 0 0 2N2ξ1 −2SX2 −2SX3

0 ξ2 0 2S 0 0 2N2ξ1 0
0 ξ3 0 0 2S 0 0 2N2ξ1
0 S N2ξ1 + SX1 SX2 SX3 N2S +N2ξ1X

1 0 0


. (3.24)

Computing the determinant of the matrix above gives

det(B̂)(ξ) = 8N8(ξ2
1 −

S2

N2
)2(ξ2

1 + ξ2
2)2.

If ξ = η + zµ, then

det(B̂)(η + zµ) = 8N8(z2 − 〈X, η + zµ〉2

N2
)2|η|4.

If z is a complex root of a(η + zµ) = 0, then from (4.2) it follows,

|η + zµ|2 − 1

N2
〈X, η + zµ〉2 = 0,

i.e. |η|2 + z2 = 〈X,η+zµ〉2
N2 , and thus

det(B̃)(η + zµ) = 8N8(z2 − 〈X, η + zµ〉2

N2
)2|η|4

= 8N8(z2 − z2 − |η|2)2|η|4

= 8N8|η|8,
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which is obviously nonzero for η 6= 0. Thus the complementing boundary condition holds.
This finishes the proof of Theorem 4.1.

To conclude this section, recall that in §3.1 we proved the moduli space E is diffeo-
morphic to the solution space C constructed according to the BVP (3.15), which admits a
Banach manifold structure. Thus, C can be interpreted geometrically as a local coordinate
chart of the moduli space E, and the map Π̃ is exactly the map Π expressed in this chart.
However, such a local chart is effective only if the Assumption 3.3 holds. In the following
section, we will develop an alternative local chart at a reference metric g̃(4) in E where
Assumption 3.3 may not hold. Furthermore, we show that the ellipticity result still holds
in this case.

Remark 3.7. The operator βg(4)δ∗g(4) with Dirichlet boundary condition is elliptic and self-

adjoint. This is shown in §3.4 using the quotient formalism of stationary spacetimes. When
expressed on the quotient manifold (S, gS), this operator contains negative 0-order terms
generated by the twist tensor of the metric. Thus if the metric is not static, these 0-order
terms may create a nontrivial kernel of the operator, in which case Assumption 3.3 might
fail. However, because of ellipticity and self-adjointness, this operator must be invertible
at least for generic metrics in the space E. It would be interesting to understand whether
invertibility holds for all g(4) ∈ E.

3.4 Alternative charts

In this section, we assume that g̃(4) is a fixed stationary vacuum metric where the Assump-
tion 3.3 fails.

3.4.1 Perturbation of the metric

We will use the projection formalism of stationary spacetimes in this section. Suppose that
in the projection formalism, g̃(4) is expressed as above,

g̃(4) = −u2(dt+ θ)2 + π∗gS . (3.25)

Take a smooth curve (parametrized by ε) of perturbations of g̃(4) given by,

g(4)
ε = g̃(4) + ε(dt+ θ)2. (3.26)

First we prove the following property of this family of metrics.

Proposition 3.8. The metric gε is Bianchi-free, i.e.

βg̃(4)g(4)
ε = 0.

Proof. Clearly by (3.26),
βg̃(4)g(4)

ε = εβg̃(4)(dt+ θ)2.

Let
α = (dt+ θ), (3.27)

then obviously α(∂t) = 1, α(v) = 0, ∀v ∈ TS, and hence trg(4)α2 = −u−2. As a result,

βg̃(4)(α2) = δg̃(4)(α2) +
1

2
d(trg̃(4)α2) = δg̃(4)(α2) + u−3du. (3.28)
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For the divergence term above, we have

δg̃(4)(α2) = − 1

u2
{−∇∂t [α2(∂t)] + α2(∇∂t∂t)}

=
1

u2
∇∂tα = − 1

u2
∇∂t(

1

u2
ξ)

= − 1

u4
∇∂tξ = −u−3du.

(3.29)

Here ξ = −u2(dt + θ) denotes the dual of ∂t. In the calculation above, we used the fact
that ∇∂t∂t = u∇u (cf. equation (4.18)) so that α(∇∂t∂t) = 0 and ∇∂tξ = udu. Equations
(3.28) and (3.29) now imply that α2 is Bianchi-free.

In addition to Bianchi-free, the curve g
(4)
ε possesses another property — for generic ε,

the operator βg̃(4)δ∗
g

(4)
ε

is invertible in the following sense:

Proposition 3.9. In any neighborhood I of 0, there is an ε ∈ I such that the BVP with
time-independent unknown Y ∈ Tm,αδ (V (4)) given by,{

βg̃(4)δ∗
g

(4)
ε

Y = 0 in V (4)

Y = 0 on ∂V (4)
(3.30)

has only the trivial solution Y = 0.

To prove this proposition, we state the following lemma.

Lemma 3.10. The BVP (3.30) is elliptic (for ε small) and formally self-adjoint.

Proof. Since δ∗
g

(4)
ε

Y = 1
2LY g

(4)
ε = 1

2LY (g̃(4) + εα2) = δ∗
g̃(4)Y + ε

2LY α
2, one has,

βg̃(4)δ∗
g

(4)
ε
Y = βg̃(4)δ∗g̃(4)Y +

ε

2
βg̃(4)LY α

2, (3.31)

where α is as defined in (3.27). It is shown in §4.6 that in the quotient formalism (S, gS)
the operator βg̃(4)δ∗g̃(4)Y can be decomposed as:

[βg̃(4)δ∗g̃(4)Y ]T = (∇gS )∗∇gSY T + u−2Y T (u)∇u− u−1(∇gS )∇uY
T

+2u2dθ(dθ(Y T ))− 2u2dθ(∇Y ⊥

u )

−[βg̃(4)δ∗g̃(4)Y ]⊥ = −u∆gS (Y
⊥

u ) + 3〈∇Y ⊥

u ,∇u〉+ 2u〈dθ,∇gSY T 〉,

(3.32)

where ∇gS (and ∆gS ) denotes connection (and Laplace operator) of gS on the quotient
manifold S. We use the superscript ′′T ′′ to denote the restriction of a vector field in V (4)

to the quotient manifold S, and ′′⊥′′ to denote the vertical component of a vector field, i.e.
Y ⊥ = u−1〈Y, ∂t〉. Notice the leading terms of the operator in (3.32) are [(∇gS )∗∇gSY T ]

and [−u∆gS (Y
⊥

u )]. Thus βg̃(4)δg̃(4) is an elliptic operator on S with respect to the Dirichlet
boundary condition, and so is the operator βg̃(4)δ∗

g
(4)
ε

Y (for ε small) by (3.31).
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Let Y1, Y2 ∈ Tm,αδ (V (4)) be two time-independent vector fields which are vanishing
along ∂V (4). Then,∫

S

〈βg̃(4)δ∗g̃(4)Y1, Y2〉g(4) · u · dvolgS

=

∫
S

{〈[βg̃(4)δ∗g̃(4)Y1]T , Y T2 〉gS + (−[βg̃(4)δ∗g̃(4)Y1]⊥) · Y ⊥2 } · u · dvolgS

Substituting equations in (3.32) into the integral above and then integrating by parts gives,∫
S

{〈[βg̃(4)δ∗g̃(4)Y1]T , Y T2 〉gS + (−[βg̃(4)δ∗g̃(4)Y1]⊥) · Y ⊥2 } · u · dvolgS

=

∫
S

{〈[βg̃(4)δ∗g̃(4)Y2]T , Y T1 〉gS + (−[βg̃(4)δ∗g̃(4)Y2]⊥) · Y ⊥1 } · u · dvolgS

+ (

∫
∂S

+

∫
∞

)[B(Y2, Y1)−B(Y1, Y2)],

(3.33)

where B(Y2, Y1) = u〈∇nY
T
2 , Y

T
1 〉] + 2u2dθ(n, Y T1 )Y ⊥2 + un(Y ⊥1 )Y ⊥2 . It is obvious that the

boundary integral on ∂S is zero, since Y1, Y2 vanish on the boundary. The boundary term
at infinity

∫
∞ = limr→∞

∫
t

∫
Sr

, with Sr denoting the sphere of radius r on (S, gS), is also

zero because the decay rate of the bilinear form B(Y1, Y2) is 2δ + 1 > 2. Thus it follows
that, the differential operator (3.32) is formally self-adjoint with respect to the measure
u · dvolgS on S.

Remark.One has the following integration by parts formula in the spacetime (V (4), g(4)):∫
V (4)

〈∇∗g̃(4)∇g̃(4)
Y1, Y2〉g̃(4)dvolg̃(4) =

∫
V (4)

〈∇∗g̃(4)∇g̃(4)
Y2, Y1〉g̃(4)dvolg̃(4)

+

∫
∂V (4)

〈(∇g̃(4))nY2, Y1〉g̃(4) − 〈(∇g̃(4))nY1, Y2〉g̃(4) .

When the spacetime (V (4), g̃(4)) is stationary, the equation above reduces to the equation
(3.33) on the quotient manifold (S, gS).

Using the same method as above, it is easy to check the following equality∫
S

〈βg̃(4)h, Y 〉g(4) · u · dvolgS =

∫
S

〈h, δ∗g̃(4)Y −
1

2
(divY )g(4)〉g(4)u · dvolgS

+ (

∫
∂S

+

∫
∞

)u[−h(∂t, Y ) +
1

2
trg̃(4)h〈n, Y 〉].

(3.34)

holds for any time-independent symmetric 2-tensor h and vector field Y in V (4). Thus, as
for the second term on the right side of equation (3.31), we have the following equality for
all time-independent vector fields Y1.Y2 ∈ Tm,αδ (V (4)) which are vanishing at ∂V (4):∫

S

〈βg̃(4)LY1α
2, Y2〉g̃(4)u · dvolgS

=

∫
S

〈LY1
α2, δ∗Y2 −

1

2
(divY2)g̃(4)〉g̃(4)u · dvolgS

=

∫
S

−u−2〈 2dθ(Y T1 )− d(
Y ⊥1
u

), − u2

2
[2dθ(Y T2 )− d(

Y ⊥2
u

)] 〉gSu · dvolgS
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=

∫
S

1

2
〈 2dθ(Y T1 )− d(

Y ⊥1
u

), 2dθ(Y T2 )− d(
Y ⊥2
u

) 〉gSu · dvolgS

=

∫
S

〈LY2
α2, δ∗Y1 −

1

2
(divY1)g̃(4)〉g̃(4)u · dvolgS

=

∫
S

〈βg̃(4)LY2
(dt+ θ)2, Y1〉g̃(4)u · dvolgS .

In the calculation above, the first equality comes from the integration by parts formula
(3.34), in which the integral on the boundary ∂S is zero since Y2 = 0 along ∂S, and the
integral at infinity is also zero because the decay behavior of the tensor fields. Furthermore,
the second equality is based on the following observations:

[LY1
α2]T = 0

[LY1α
2](∂t, ∂t) = 0

{[LY1
α2](∂t)}T = 2dθ(Ỹ T1 )− d(

Ỹ ⊥1
u ),

(3.35)

and 
(δ∗
g̃(4)Y2)T = δ∗gS Ỹ

T
2

δ∗
g̃(4)Y2(∂t, ∂t) = −uỸ T2 (u)

[δ∗
g̃(4)Y2(∂t)]

T = −u2dθ(Ỹ T2 ) + 1
2u

2d(
Ỹ ⊥2
u ).

(3.36)

We refer to §4.6 for detailed proof of the equations (3.35-36).
Summing up all the facts above, we conclude that the system (3.30) is formally self-

adjoint.

Now we give proof for the Proposition 3.9.

Proof. We prove it by contradiction. Assume that the proposition is not true, so there
exists an interval I which contains 0 such that for any ε ∈ I, the operator βg̃(4)δ∗

g
(4)
ε

has a

0-eigenvector.
From Lemma 3.10, we see that system (3.30) represents a smooth curve of elliptic

self-adjoint operators parametrized by ε on the quotient manifold (S, gS). By the pertur-
bation theory of self-adjoint operators (cf.[K] Theorem 3.9, [R], [W]), the eigenspaces vary
smoothly with respect to ε. Thus, by our assumption above, there exists a smooth curve
of nontrivial solutions Y (ε) (ε ∈ I) to the system (3.30). In particular, Y (0) is a nontrivial
solution to (3.30) at ε = 0. In the following we will denote it as Ỹ = Y (0).

Taking the linearization of (3.30) at ε = 0, we obtain:{
βg̃(4)δ∗g̃(4)Y

′ + βg̃(4)δ∗g′ Ỹ = 0 on V (4)

Y ′ = 0 on ∂V (4)
, (3.37)

where

Y ′ =
d

dε
|ε=0Y (ε), g′ =

d

dε
|ε=0g

(4)
ε = α2 and δ∗g′ =

d

dε
|ε=0δ

∗
g(ε).

The first equation in (3.37) gives,

−βg̃(4)δ∗g̃(4)Y
′ = βg̃(4)δ∗g′ Ỹ .
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Since βg̃(4)δ∗g̃(4) is self-adjoint, the equation above yields that,∫
V (4)

〈βg̃(4)δ∗g′ Ỹ , Ỹ 〉dvolg̃(4) = −
∫
V (4)

〈βg̃(4)δ∗g̃(4)Y
′, Ỹ 〉dvolg̃(4)

= −
∫
V (4)

〈Y ′, βg̃(4)δ∗g̃(4) Ỹ 〉dvolg̃(4)

= 0

(3.38)

Apply integration by parts to (3.38) and obtain,∫
V (4)

〈δ∗g′ Ỹ , δ∗g̃(4) Ỹ +
1

2
(δỸ )g̃(4)〉dvolg̃(4) = 0. (3.39)

In the above, δ∗g′ Ỹ = 1
2LỸ g

′ = 1
2LỸ α

2, since δ∗g(ε)Ỹ = 1
2LỸ g(ε). Now apply the formulas

(3.35-36) to LỸ α
2 and δ∗

g̃(4) Ỹ , and substitute them into (3.39). It follows that,∫
S

1

4
u2||2dθ(Ỹ T )− d(

Ỹ ⊥

u
)||2gSu · dvolgS = 0.

Therefore, we have

2dθ(Ỹ T ) = d(
Ỹ ⊥

u
). (3.40)

Recall that Ỹ is a nontrivial solution to system (3.30) at ε = 0. By applying the decom-
position equations in (3.32) to the vector field Ỹ , we express the time-independent system
(3.30) (at ε = 0) as an equivalent system:

∇∗gS∇gS Ỹ
T − 1

u (∇gS )∇uỸ
T + 1

u2 Ỹ
T (u)∇u

+2u2dθ(dθ(Ỹ T ))− 2u2dθ(∇ Ỹ ⊥

u ) = 0

∆gS ( Ỹ
⊥

u )− 3 1
u 〈∇u,∇

Ỹ ⊥

u 〉 − 2〈dθ,∇gS Ỹ T 〉 = 0,

(3.41)

on (S, gS). Observe that the last two terms in the first equation in (3.41) can be manipu-
lated as:

2u2dθ(dθ(Ỹ T ))− 2u2dθ(∇ Ỹ
⊥

u
)

=2u2dθ[dθ(Ỹ T )− d(
Ỹ ⊥

u
)]

=− 2u2dθ(dθ(Y T )),

where the last equality is based on (3.40). Plugging this back to (3.41), we obtain

∇∗gS∇gS Ỹ
T − 1

u
(∇gS )∇uỸ

T +
1

u2
Ỹ T (u)∇u− 2u2dθ(dθ(Ỹ T )) = 0

Pairing the equation above with Ỹ T yields,

1

2
∆gS (||Ỹ T ||2) + ||∇gS Ỹ T ||2 −

1

2u
(∇gS )∇u||Ỹ T ||2 +

1

u2
||Ỹ T (u)||2 + 2u2||dθ(Ỹ T )||2 = 0
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Based on this equation and the fact that Ỹ T is asymptotically zero and equals to zero on
∂S, it is easy to derive by the maximum principle that Ỹ T = 0, and consequently Ỹ ⊥ = 0
according to the second equation in (3.41). This contradicts with the assumption that Ỹ
is nontrivial.

Combining Propositions 3.8 and 3.9, it is straightforward to derive that,

Theorem 3.11. In any neighborhood of g̃(4) ∈ S, there always exists a perturbation g
(4)
0

of g̃(4) such that βg̃(4)g
(4)
0 = 0 (Bianchi-free) and βg̃(4)δ∗

g
(4)
0

is invertible.

3.4.2 Alternative local charts

Theorem 3.12. Theorem 1.3 still holds without Assumption 3.3.

Proof. In the case Assumption 3.3 fails, we take a perturbation g
(4)
0 of g̃(4) as described in

Theorem 3.11. and modify (3.15) to a new BVP with unknowns (g(4), F ) ∈ S ×Cm,αδ (M)
as follows: {

Ricg(4) − δ∗
g

(4)
0

βg(4)g
(4)
0 = 0

∆F = 0,
on M

g∂M = γ

aH∂M + btr∂MK = H

atr∂MK + bH∂M = k

ωn + a2d∂M (a/b) = τ

βg(4)g
(4)
0 = 0.

on ∂M

(3.42)

By applying Bianchi operator to the first equation above, one obtains,{
βg(4)δ∗

g
(4)
0

βg(4)g
(4)
0 = 0 on M,

βg(4)g
(4)
0 = 0 on ∂M.

(3.43)

Since the operator βg̃(4)δ∗
g

(4)
0

is invertible, so is the operator βg(4)δ∗
g

(4)
0

when g(4) is near

g̃(4). Thus (3.43) implies that βg(4)g
(4)
0 = 0. So to associate the BVP (3.42) with a natural

boundary map, we first construct a solution space C0 near g̃(4) given by,

C0 = {(g(4), F ) ∈ S × Cm,αδ : Ricg(4) = 0, βg(4)g
(4)
0 = 0,∆F = 0 on M }.

Obviously, g̃(4) ∈ C0 by construction. Next, as in the proof of Theorem 3.4, we need to
prove that any stationary vacuum metric g(4) near g̃(4) can be transformed by a 4−dim

diffeomorphism so that it satisfies the gauge condition βg(4)g
(4)
0 = 0. Consider the following

map:

G : S × D4 → (∧1)m.αδ (V (4))

G(g(4),Φ) = βΦ∗gg
(4)
0 .

Notice that
βΦ∗gg

(4)
0 = Φ∗{βg[(Φ∗)−1g

(4)
0 ]}.
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Thus the linearization of G at (g̃(4), Id) is given by,

DG|(g̃(4),Id) : TS × TD4 → (∧1)m.αδ (V (4))

DG|(g̃(4),Id)[(h
(4), Y )] = −βg̃(4)δ∗

g
(4)
0

Y + β′h(4)g
(4)
0 .

Since in the linearization above, the operator [−βg̃(4)δ∗
g

(4)
0

] is invertible, it follows by the

implicit function theorem that, for any g(4) near g̃(4), there is a unique element Φ ∈ D4

such that the gauge term βΦ∗g(4)g
(4)
0 vanishes.

Therefore, we conclude that C0 is a fiber bundle over the quotient space E/D4 with fiber
being the space of harmonic functions in Cm,αδ (M). Furthermore, based on the Theorems
3.4 and 3.5, we conclude there exists a diffeomorphism P0 such that C0 ∼= E via P0 and

Π0 = P0 ◦Π, (3.44)

where Π0 is the natural boundary map defined on C0 given by,

Π0 : C0 → B

Π0(g(4), F ) = (g∂M , aH∂M + btr∂MK,atr∂MK + bH∂M , ωn + a2d∂M (b/a)).

As for ellipticity of the system (3.42), notice that since β
g

(4)
0
g

(4)
0 = 0, we have

(β
g

(4)
0

)′h(4)g
(4)
0 = −β

g
(4)
0
h(4).

Thus the linearization of the gauge term in (3.42) is given by:

[−δ∗
g

(4)
0

βgg
(4)
0 ]′h(4) = −δ∗

g
(4)
0

(βg̃(4))′h(4)g
(4)
0

= −δ∗
g

(4)
0

(βg̃(4))′h(4)(g̃
(4) + g

(4)
0 − g̃(4))

= δ∗
g

(4)
0

βg̃(4)h(4) − δ∗
g

(4)
0

(βg̃(4))′h(4)(g
(4)
0 − g̃(4))

Comparing the system (3.42) with the previous one (3.15), it is easy to see that, at the
reference metric g̃(4), the only differences between their linearizations are given by the
terms

[δ∗
g

(4)
0

βg̃(4) − δ∗g̃(4)βg̃(4) ](h(4))− δ∗
g

(4)
0

(βg̃(4))′h(4)(g
(4)
0 − g̃(4)) on M,

(β)′h(4)(g
(4)
0 − βg̃(4)) on ∂M.

where h(4) denotes the infinitesimal deformation of g(4). It has been proved that (3.15) is

elliptic. Thus we can choose g
(4)
0 close enough to g̃(4) so that (3.42) is also elliptic. As a

consequence Π0 is a Fredholm map and hence so is Π because of the equivalence relation
(3.44). This completes the proof.

3.5 Local existence and uniqueness

In this section we set the reference metric g̃(4) = g̃
(4)
0 , where g̃

(4)
0 is the standard flat

(Minkowski) metric on R× (R3 \B). Since it is static, i.e. its twist tensor in the quotient
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formalism is zero, it is easy to verify that Assumption 3.1 holds in this case (cf.§4.6). So

we can use the chart (C, Π̃) in §3.2 for the Bartnik boundary map at [g̃
(4)
0 ] ∈ E. Obviously,

the Bartnik data of this metic is

Π̃(g̃
(4)
0 , 0) = (gS2 , 2, 0, 0), (3.45)

where gS2 is the standard metric on the unit 2-sphere S2. In this section we apply the
ellipticity result proved in the previous sections to show that in a neighborhood of the
standard flat boundary data (gS2 , 2, 0, 0), Bartnik boundary data admits unique stationary
vacuum extensions up to diffeomorphisms.

Theorem 3.13. The kernel of DΠ̃
(g̃

(4)
0 ,0)

is trivial.

Proof. Assume that (h(4), G) ∈ Ker(DΠ̃
(g̃

(4)
0 ,0)

). Since (h(4), G) ∈ TC, it must be a vacuum

deformation, in the sense that the following equations hold on M :{
(Ric)′

h(4) = 0

∆G = 0.
(3.46)

In addition, since elements in C satisfy the gauge condition β
g̃

(4)
0
g(4) = 0, the same equation

holds for the deformation h(4):

β
g̃

(4)
0
h(4) = 0 on M. (3.47)

The vanishing of the linearized variation of the Bartnik boundary data implies:
h∂M = 0

H ′h = 0

(tr∂MK)′ + 2G = 0

(ωn)′ +∇∂MG = 0.

(3.48)

As we know, a stationary spacetime metric is uniquely determined by the data set (g,X,N),
where g is the induced metric on the hypersurface M , X is the shift vector and N is the

lapse function. For the standard metric g̃
(4)
0 , the corresponding data is (g0, 0, 1) with g0

being the flat (Euclidean) metric on R3 \ B, because g̃
(4)
0 can be expressed globally as

g̃
(4)
0 = −dt2 + g0. Thus the deformation h(4) can be decomposed as h(4) = (h, Y, v), where
h is the deformation of the Riemannian metric g0, Y is the deformation of the shift vector
and v is that of the lapse function.

The vacuum condition Ricg(4) = 0 is equivalent to the following equations in terms of
(g,X,N) (cf.[M]): 

K = 1
2NLXg

Ricg + (trK)K − 2K2 − 1
ND

2N + 1
NLXK = 0

1
N∆N + |K|2 + 1

N tr(LXK) = 0

δK + d(trK) = 0.
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It is easy to linearize the equations above at (g0, 0, 1) and obtain a system in terms of
(h, Y, v), which is equivalent to equation (3.46), given by,

Ric′h −D2v = 0

∆g0
v = 0

δg0δ
∗
g0
Y − dδg0Y = 0

∆G = 0.

on M (3.49)

The gauge equation (3.47) is equivalent to{
δg0
Y = 0

δg0
h+ 1

2d(trg0
h− v) = 0,

on M (3.50)

and the boundary conditions (3.48) are equivalent to:
h∂M = 0

H ′h = 0

tr∂Mδ
∗
g0
Y + 2G = 0

[δ∗g0
Y (n)]T +∇gT0 G = 0.

on ∂M (3.51)

Here we use the superscript ′′T ′′ to denote the restriction of tensors to the tangent bundle
of ∂M . The first two equations in (3.49) combined with the first two boundary conditions
in (3.51) imply that v = 0 and h = δ∗Z for some vector field Z vanishing on ∂M — this is
proved in the static case, cf.[A2]. Additionally, h must satisfy the gauge equation in (3.50).
It follows that h = 0 on M .

It remains to prove Y = 0 and G = 0. The third equation in (3.49) and the first
equation in (3.50) together imply:

δg0
δ∗g0
Y = 0 on M.

Pair the equation above with Y , and then integration by parts gives,

0 =

∫
M

〈δg0δ
∗
g0
Y, Y 〉g0dvolg0

=

∫
M

|δ∗g0
Y |2 −

∫
∂M

δ∗g0
Y (n, Y )−

∫
∞
δ∗g0
Y (n, Y )

=

∫
M

|δ∗g0
Y |2 −

∫
∂M

δ∗g0
Y (n, Y T )−

∫
∂M

δ∗g0
Y (n,n)Ỹ ⊥

(3.52)

where Y ⊥ = 〈Y,n〉g0
and Y T denotes the component of Y tangential to ∂M . In the second

line, the boundary term at infinity
∫
∞ = limr→∞

∫
Sr

is zero because the decay rate of

[δ∗g0
Y (n, Y )] is 2δ + 1 > 2. For the second term in the last line, one has,

δ∗g0
Y (n, Y T ) = 〈[δ∗g0

Y (n)]T , Y T 〉 = −〈∇gT0 G, Y
T 〉

= −divgT0 (G · Y T ) +G · divgT0 Y
T

= −divgT0 (G · Y T )− 1

2
(tr∂Mδg0

Y ) · divgT0 Y
T .
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Here the second equality comes from the last boundary equation in (3.51) and the last
equality is based on the third boundary equation in (3.51). As for the last term in (3.52),
notice that we have the following equality on the boundary:

0 = δg0
Y = −δ∗g0

Y (n,n)− tr∂Mδ∗g0
Y,

so that δ∗g0
Y (n,n) = −tr∂Mδ∗g0

Y . Also tr∂Mδ
∗
g0
Y = tr∂Mδ

∗
g0
Y T + tr∂Mδ

∗
g0

(Y ⊥n) =

divgT0 Y
T + Hg0

Y ⊥ = divgT0 Y
T + 2Y ⊥ Substituting these computations into the integral

equation (3.52) gives,

0 =

∫
M

|δ∗g0
Y |2

+

∫
∂M

1

2
(divgT0 Y

T + 2Y ⊥) · divgT0 Y
T +

∫
∂M

(divgT0 Y
T + 2Y ⊥)Ỹ ⊥

=

∫
M

|δ∗g0
Y |2 +

1

2

∫
∂M

(divgT0 Y
T )2 + 4Y ⊥ · divgT0 Y

T + 4(Y ⊥)2

=

∫
M

|δ∗g0
Y |2 +

1

2

∫
∂M

(divgT0 Y
T + 2Y ⊥)2.

It immediately follows,

δ∗g0
Y = 0 on M,

tr∂Mδ
∗
g0
Y = 0 on ∂M.

(3.53)

The first equation above implies that Y is a Killing vector field of the flat metric g0 on
R3 \ B. In addition Y must be asymptotically zero since it comes from a deformation of
the asymptotically flat metrics in C. Thus it follows Y = 0 on M . The boundary equation
in (3.53) implies that G = 0 on ∂M according to (3.51). Furthermore, G is harmonic
according to (3.49). So G = 0 on M .

Next, we prove that the Fredholm map DΠ̃
(g̃

(4)
0 ,0)

is of index 0 by showing the operator

DF = (DL, DB) defined in §4 has index 0 at (g̃
(4)
0 , 0). Here we use the idea in [A1] — the

boundary data in DB can be continuously deformed to a collection of self-adjoint boundary
data DB̃, which is defined as follows:

DB̃ : T
(g̃

(4)
0 ,0)

[S × Cm,αδ ](M)→ B

DB̃(h(4), G) = ( h∂M ,

∇n(h(4)(n,n)),

n(G),

− 1

2
∇n[h(4)(∂t)]

T ,

− 1

2
∇nh

(4)(∂t, ∂t),

−∇nh
(4)(n)T ,

−∇nh
(4)(∂t,n) ).

(3.54)
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Let N denote the space of deformations (h(4), G) of (g̃
(4)
0 , 0) in S × Cm,αδ (M) that are in

the kernel of the boundary operator DB̃, i.e.

N = { (h(4), G) ∈ T
(g̃

(4)
0 ,0)

[S × Cm,αδ ](M) : DB̃(h(4), G) = 0 }.

Lemma 3.14. The operator DL : N → [(S2)m−2,α
δ+2 × Cm−2,α

δ+2 ](M), given by

DL(h(4), G) = (D∗
g̃

(4)
0

D
g̃

(4)
0
h(4),∆G),

is formally self-adjoint.

Proof. Let (h(4), G), (k(4), J) denote two deformations in N . Integration by parts yields:∫
M

〈DL(h(4), G), (k(4), J)〉
g̃

(4)
0
dvolg0

=

∫
M

〈DL(k(4), J), (h(4), G)〉
g̃

(4)
0

+

∫
∂M

B[(k(4), J), (h(4), G)]−B[(h(4), G), (k(4), J)].

Here the boundary term at infinity is zero because of the decay behavior of the the defor-
mations. The bilinear form B is given by,

B[(k(4), J), (h(4), G)] = 〈∇nk
(4), h(4)〉

g̃
(4)
0

+ n(J)G.

It is easy to verify that the terms above are zero because (h(4), G) and (k(4), J) make all
the boundary terms listed in (3.54) vanish. Therefore DL is formally self-adjoint.

In particular, it follows that the operator (DL, DB̃) is of index 0. Next we show that
the boundary data in DB can be deformed through elliptic boundary values to DB̃. Define
a family of boundary operator DBt, t ∈ [0, 1] as follows,

DBt : T
(g̃

(4)
0 ,0)

[S × Cm,αδ ](M)→ B

DBt(h(4), G) = ( h∂M ,

(1− t)(H∂M )′h(4) + t∇n(h(4)(n,n)),

(1− t)(tr∂MK)′h(4) + tn(G),

− 1

2
[∇n[h(4)(∂t)](ei) + (1− t)∇ei [h(4)(∂t)](n)] + (1− t)ei(G),

− 1

2
∇nh

(4)(∂t, ∂t) + (1− t)[1
2
∇ntrMh+ δh(n)],

−∇nh
(4)(n)T + (1− t)[−∇eih(4)(ei)

T +
1

2
∇gT0 (trh(4))],

−∇nh
(4)(n, ∂t)− (1− t)∇eih(4)(ei, ∂t) ).

Here {ei}, i = 2, 3 denotes an orthonormal basis of T (∂M). It is easy to check that
DB1 = DB̃ and DB0 = DB, where the last three lines above are respectively the n,
tangential (∂M) and ∂t components of the gauge term β

g̃
(4)
0
h(4) when t = 0.

Lemma 3.15. The operator (DL, DBt) is elliptic for t ∈ [0, 1].

54



Proof. One can carry out the same proof as in §4. Since the shift vector and lapse function

of g̃
(4)
0 are simply X = 0 and N = 1. The interior and boundary matrices are much simpler

than that in §4.2, given by,

L(ξ) = (ξ2
1 + ξ2

2 + ξ2
3)I11×11

and,

Bt(ξ) =

 03×8

1 0 0
0 1 0
0 0 1

(B̃t)8×8 ∗

 ,
where B̃t is as follows,

B̃t = − 1

32



0 0 0 0 tξ1 −(1− t)ξ2 −(1− t)ξ3 0
0 0 (1− t)ξ2 (1− t)ξ3 0 0 0 −tξ1
0 (1− t)ξ2 ξ1 0 0 0 0 −2(1− t)ξ2
0 (1− t)ξ3 0 ξ1 0 0 0 −2(1− t)ξ3
ξ1 0 0 0 (1− t)ξ1 2(1− t)ξ2 2(1− t)ξ3 0

(1− t)ξ2 0 0 0 −(1− t)ξ2 2ξ1 0 0
(1− t)ξ3 0 0 0 −(1− t)ξ3 0 2ξ1 0

0 ξ1 (1− t)ξ2 (1− t)ξ3 0 0 0 0


.

The determinant of Bt(ξ) is

detBt(ξ) = − 1

32
[tξ4

1 − (2 + t)(1− t)2ξ2
1(ξ2

2 + ξ2
3)] · [2(2 + t)(1− t)2(ξ2

2 + ξ3
3)ξ2

1 − 4tξ4
1 ].

Let ξ = zµ+η, where z = i|η|2, the root of detL(zµ+η) = 0 with positive imaginary part.
Then

det(Bt(zµ+ η)) =
1

32
[t+ (2 + t)(1− t)2] · [2(2 + t)(1− t)2 + 4t]|η|8,

which obviously never vanishes for t ∈ [0, 1], η 6= 0. Thus the complementing boundary
condition holds for all t ∈ [0, 1], which completes the proof.

To conclude, we have the following theorem:

Theorem 3.16. The boundary map Π̃ is locally a diffeomorphism near (g̃
(4)
0 , 0).

Proof. From Lemma 3.14, 3.15 and the homotopy invariance of the index, it follows that

the index of the boundary map Π̃ is 0 at (g̃
(4)
0 , 0). In addition, it is proved in Theorem 3.13

that the kernel of DΠ̃
(g̃

(4)
0 ,0)

is trivial. Thus, the linearization DΠ̃
(g̃

(4)
0 ,0)

is an isomorphism.

Then the inverse function theorem in Banach spaces gives the theorem.

Now the equivalence relation between the maps Π̃ and Π, proved in the Theorem 3.4,
gives Theorem 1.4.

4 Appendix

In this section we provide the details of the computation of the differential operators and
some other basic results used in the previous sections. We refer to [Be] for elementary
geometric formulas.
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4.1 Linearization of differential operators

4.1.1 Linearization of the differential operators in projection formalism

Let h be the infinitesimal deformation of the metric g on S. The variation of Ricci tensor
is given by,

2Ric′h = D∗Dh− 2δ∗δh−D2(trh) +O0. (4.1)

The variation of scalar curvature is given by,

s′h = ∆g(trh) + δδh+O0. (4.2)

Linearization of the gauge term δ∗G in operator L are as follows.
For the Bianchi gauge, we have,

2[δ∗G1]′h = 2[δ∗βg̃(g)]′h

= Lβg̃gh+ 2δ∗βg̃h

= Lβg̃gh+ 2δ∗δg̃h+D2(trh);

(4.3)

and for the divergence gauge, we have,

2[δ∗G2]′h = 2[δ∗δg̃g]′h = Lδg̃gh+ 2δ∗δg̃h. (4.4)

Combining equations (4.1) and (4.3), one can derive the linearization for L, with the
Binachi gauge, at g̃ = g:

L1(h) = D∗Dh+O0.

Combining equations (4.1 − 2) and (4.4), one can derive the linearization for L, with
the divergence gauge, at g̃ = g:

L2(h) = D∗Dh−D2(trh)− (∆g(trh) + δδh)g +O0.

We know that the normal vector n of ∂S satisfies the following equations,{
g(n,n) = 1,

g(n, T ) = 0,

where T is a tangential vector. Let n′h denote the variation of n with respect to deformation
h. Then linearization of the above equations gives,{

2g(n,n′h) + h(n,n) = 0,

g(n′h, T ) + h(n, T ) = 0,

from which, one can solve for the term n′h as,

n′h = −1

2
h(n,n)n− h(n)T = −h(n) +

1

2
h(n,n)n. (4.5)

The variation H ′h of mean curvature Hg is given by

2H ′h = 2(trA)′h = 2trA′h − 2〈Ag, h〉, (4.6)
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where Ag is the second fundamental form of ∂S ⊂ (S, g), defined by Ag = 1
2Lng. Lin-

earization of A is as follows,

2A′h = (Lnh+ Ln′h
g) = ∇nh+ 2h ◦ ∇n + Ln′h

g.

Taking the trace of the equation above, we obtain,

2trA′h = ∇ntrh+ 2〈h,A〉 − 2δ(n′h).

Pluging the expression (4.5) for n′h into the equation above, we obtain,

2trA′h = ∇ntrh+ 2〈h,A〉+ 2δT (h(n)T )− n(h(n,n)) +O0

= ∇ntr
Th+ 2〈h,A〉+ 2δT (h(n)T ) +O0.

(4.7)

Combining equations (4.6) and (4.7) gives,

H ′h =
1

2
∇0(h11 + h22)− Σ2

k=1∇k(h0k) +O0,

which is the same as used in the symbol computation in §2.4.

4.1.2 Linearization of the Bartnik boundary operator

For simplicity of notation, we will write h instead of h(4) in this section. Subindex 1
denotes the outward normal direction to ∂M and 2, 3 denote the tangential directions on
∂M .

1.With respect to the deformation h, linearization of g∂M is easily seen to be:

[Dg∂M ](h) = (h22, h23, h33).

2.Linearization of H∂M :
By the formula of the linearization of mean curvature, one has

2DH∂M (h) = −2∂2h12 − 2∂3h13 + ∂1(h22 + h33) +O0(h).

3.Linearization of the second fundamental form K:
The defining equation for K is

Kij = − 1

2N
LX]gij ,

where gij denotes the Riemannian metric induced from g(4) on M , and Xi = g
(4)
0i denotes

the shift 1−form on M . Here X] (shift vector) is the dual of X with respect to the metric
g on M . Thus, one obtains,

DK(h)ij = − 1

2N
(L(X])′gij + LX]hij) +O0(h).

As for the variation (X])′, it is given by,

(X])i = gikg
(4)
0k ,

[(X])i]′ = h̃ikg
(4)
0k + gikh0k,
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where h̃ is the variation of the inverse gij . It is easy to see that

h̃ijgjk = −gijhjk.

Therefore,

L[X]]′gij = giα∇j [(X])′]α + gjα∇i[(X])′]α

= ∇j{giα[(X])′]α}+∇i{gjα[(X])′]α}

= ∇j{gilh̃lkg(4)
0k + gilg

lkh0k}+∇i{gjlh̃lkg(4)
0k + gjlg

lkh0k}

= ∇j{−hilglkg(4)
0k + h0i}+∇i{−hjlglkg(4)

0k + h0j}
= ∇j{−hil(X])l + h0i}+∇i{−hjl(X])l + h0j},

and

LX]hαβ = ∇X]hαβ + hασ∇β(X])σ + hβσ∇α(X])σ.

Thus,

DK(h)ij = − 1

2N
[∂ih0j + ∂jh0i + ∂X]hij − (X])l(∂ihjl + ∂jhil)] +O0(h),

and consequently,

[Dtr∂MK](h) = tr∂M (DK) +O(h)

= − 1

2N
[2∂2h02 + 2∂3h03 + ∂X](h22 + h33)− (X])l(2∂2h2l + 2∂3h3l)] +O0(h),

[Dωn](h)k = D[K(n)|∂M ]k

= [DK(n)|∂M ]k +O0(h)

= − 1

2N
[∂1h0k + ∂kh01 + ∂X]h1k − (X])l(∂1hkl + ∂kh1l)] +O0(h),

with k = 2, 3.

4. Linearization of the gauge term βg(4)g(4).

Obviously D[βg(4)g(4)](h) = βg̃(4)h. For Y ∈ T (V (4)),

βg(4)h(Y ) = δg(4)h(Y ) +
1

2
Y (trh),

and

δg(4)h(Y ) = ∇Nh(N, Y )−∇kh(k, Y ) +O0(h)

=
1

N2
∇∂t−Xh(∂t −X,Y )−∇kh(k, Y ) +O0(h)

= − 1

N2
∂Xh(∂t −X,Y )− ∂kh(k, Y ) +O0(h),

trh = −h(N,N) + h11 + h22 + h33

= − 1

N2
h(∂t −X, ∂t −X) + h11 + h22 + h33

= − 1

N2
(h00 +XiXjhij − 2X lh0l) + h11 + h22 + h33.
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Therefore, for i = 1, 2, 3,

[βg̃(4)h(4)]i =− 1

2N2
[∂ih00 +XkXj∂ihkj − 2X l∂ih0l] +

1

2
∂i(h11 + h22 + h33)

− 1

N2
[∂Xh0i −Xk∂Xhki]− ∂khki +O0(h);

and

[βg̃(4)h(4)]0 = − 1

N2
[∂Xh00 −Xk∂Xhk0]− ∂khk0 +O0(h).

Summing up all the computations above, we obtain the boundary symbol matrix B̃ in
§3.3.2, given by (up to a scalar −32−1N−11),

B̂ =



0 0 0 0 0 0 −ξ2 −ξ3
0 0 0 ξ2 ξ3 0 −ξ2X1 −ξ3X1

−2N2ξ2 0 ξ2 ξ1 0 −ξ2X1 ξ3X
3 −ξ2X3

−2N2ξ3 0 ξ3 0 ξ1 −ξ3X1 −ξ3X2 ξ2X
2

0 ξ1 2S − 2ξ1X
1 −2ξ1X

2 −2ξ1X
3 ξ1X

1X1 +N2ξ1 − 2SX1 ξ1X
1X2 − 2SX2 + 2N2ξ2 ξ1X

1X3 − 2SX3 + 2N2ξ3
0 ξ2 −2ξ2X

1 2S − 2ξ2X
2 −2ξ2X

3 ξ2X
1X1 −N2ξ2 ξ2X

1X2 − 2SX1 + 2N2ξ1 ξ2X
1X3

0 ξ3 −2ξ3X
1 −2ξ3X

2 2S − 2ξ3X
3 ξ3X

1X1 −N2ξ3 ξ3X
1X2 ξ3X

1X3 − 2SX1 + 2N2ξ1
0 S N2ξ1 − SX1 N2ξ2 − SX2 N2ξ3 − SX3 0 0 0


,

inside which S = ξ1X
1 + ξ2X

2 + ξ3X
3.

We now carry out the following row and column operation to simplify B̂. First, multiply
the first row of B̂ by −X1 and then add it to the second row. Multiply the first row by
2N2 and then add it to the fifth row. The matrix becomes:

B̂1 =



0 0 0 0 0 0 −ξ2 −ξ3
0 0 0 ξ2 ξ3 0 0 0

−2N2ξ2 0 ξ2 ξ1 0 −ξ2X1 ξ3X
3 −ξ2X3

−2N2ξ3 0 ξ3 0 ξ1 −ξ3X1 −ξ3X2 ξ2X
2

0 ξ1 2S − 2ξ1X
1 −2ξ1X

2 −2ξ1X
3 ξ1X

1X1 +N2ξ1 − 2SX1 ξ1X
1X2 − 2SX2 ξ1X

1X3 − 2SX3

0 ξ2 −2ξ2X
1 2S − 2ξ2X

2 −2ξ2X
3 ξ2X

1X1 −N2ξ2 ξ2X
1X2 − 2SX1 + 2N2ξ1 ξ2X

1X3

0 ξ3 −2ξ3X
1 −2ξ3X

2 2S − 2ξ3X
3 ξ3X

1X1 −N2ξ3 ξ3X
1X2 ξ3X

1X3 − 2SX1 + 2N2ξ1
0 S N2ξ1 − SX1 N2ξ2 − SX2 N2ξ3 − SX3 0 0 0


.

In B̂1, multiply the second row by (−N2) and add it to the last row:

B̂2 =



0 0 0 0 0 0 −ξ2 −ξ3
0 0 0 ξ2 ξ3 0 0 0

−2N2ξ2 0 ξ2 ξ1 0 −ξ2X1 ξ3X
3 −ξ2X3

−2N2ξ3 0 ξ3 0 ξ1 −ξ3X1 −ξ3X2 ξ2X
2

0 ξ1 2S − 2ξ1X
1 −2ξ1X

2 −2ξ1X
3 ξ1X

1X1 +N2ξ1 − 2SX1 ξ1X
1X2 − 2SX2 ξ1X

1X3 − 2SX3

0 ξ2 −2ξ2X
1 2S − 2ξ2X

2 −2ξ2X
3 ξ2X

1X1 −N2ξ2 ξ2X
1X2 − 2SX1 + 2N2ξ1 ξ2X

1X3

0 ξ3 −2ξ3X
1 −2ξ3X

2 2S − 2ξ3X
3 ξ3X

1X1 −N2ξ3 ξ3X
1X2 ξ3X

1X3 − 2SX1 + 2N2ξ1
0 S N2ξ1 − SX1 −SX2 −SX3 0 0 0


.

In B̂2, multiply the second column by N2 and add it to the sixth column. Then multiply
the second column by Xi and add it to the (2 + i)th column (i = 1, 2, 3):

B̂3 =



0 0 0 0 0 0 −ξ2 −ξ3
0 0 0 ξ2 ξ3 0 0 0

−2N2ξ2 0 ξ2 ξ1 0 −ξ2X1 ξ3X
3 −ξ2X3

−2N2ξ3 0 ξ3 0 ξ1 −ξ3X1 −ξ3X2 ξ2X
2

0 ξ1 2S − ξ1X1 −ξ1X2 −ξ1X3 ξ1X
1X1 + 2N2ξ1 − 2SX1 ξ1X

1X2 − 2SX2 ξ1X
1X3 − 2SX3

0 ξ2 −ξ2X1 2S − ξ2X2 −ξ2X3 ξ2X
1X1 ξ2X

1X2 − 2SX1 + 2N2ξ1 ξ2X
1X3

0 ξ3 −ξ3X1 −ξ3X2 2S − ξ3X3 ξ3X
1X1 ξ3X

1X2 ξ3X
1X3 − 2SX1 + 2N2ξ1

0 S N2ξ1 0 0 N2S 0 0


.

In B̂3, multiply the ith column by X1 and add it to the (i+3)th column (i = 3, 4, 5). Then
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multiply the second column by Xi and add it to column (i+ 1), (i = 1, 2, 3).

B̂4 =



0 0 0 0 0 0 −ξ2 −ξ3
0 0 0 ξ2 ξ3 0 ξ2X

1 ξ3X
1

−2N2ξ2 0 ξ2 ξ1 0 0 ξ3X
3 + ξ1X

1 −ξ2X3

−2N2ξ3 0 ξ3 0 ξ1 0 −ξ3X2 ξ2X
2 + ξ1X

1

0 ξ1 2S − ξ1X1 −ξ1X2 −ξ1X3 2N2ξ1 −2SX2 −2SX3

0 ξ2 −ξ2X1 2S − ξ2X2 −ξ2X3 0 2N2ξ1 0
0 ξ3 −ξ3X1 −ξ3X2 2S − ξ3X3 0 0 2N2ξ1
0 S N2ξ1 0 0 N2S +N2ξ1X

1 0 0


.

In B̂4, multiply column 2 by Xi and add it to column (i+2), (i = 1, 2, 3). Multiply column
1 by (2N2)−1 and add it to column 3. Then multiply the first row by X1 and add it to
row 2:

B̂5 =



0 0 0 0 0 0 −ξ2 −ξ3
0 0 0 ξ2 ξ3 0 0 0

−2N2ξ2 0 0 ξ1 0 0 ξ3X
3 + ξ1X

1 −ξ2X3

−2N2ξ3 0 0 0 ξ1 0 −ξ3X2 ξ2X
2 + ξ1X

1

0 ξ1 2S 0 0 2N2ξ1 −2SX2 −2SX3

0 ξ2 0 2S 0 0 2N2ξ1 0
0 ξ3 0 0 2S 0 0 2N2ξ1
0 S N2ξ1 + SX1 SX2 SX3 N2S +N2ξ1X

1 0 0


.

This is the matrix given in (3.24).

4.2 Variation of the Einstein Hilbert functional I in projection
formalism

First, we define a functional Ĩ as,

Ĩ =

∫
S

sg − 2|du|2 − 2e−4u|dφ|2dvolg.

Since the variation of scalar curvature sg is given by,

s′h = ∆g(trh) + δδh− 〈Ricg, h〉,

linearization of I with respect to the metric is as follows,

Ĩ ′(h) =

∫
S

[∆g(trh) + δδh− 〈Ricg, h〉+ 2h(du, du) + 2e−4uh(dφ, dφ)

+
1

2
trh(sg − 2|du|2 − 2e−4u|dφ|2)]

=

∫
S

[∆g(trh) + δδh

+ 〈−Ricg + 2du⊗ du+ 2e−4udφ⊗ dφ+
1

2
(sg − 2|du|2 − 2e−4u|dφ|2)g, h〉]

=

∫
S

[∆g(trh) + δδh+ 〈E, h〉].
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The term
∫
S

[∆g(trh) + δδh] in the expression above can be converted to a boundary term
as, ∫

S

[∆g(trh) + δδh]

= −
∫
∂S

[n(trh) + δh(n)]−
∫
∂S∞

[n(trh) + δh(n)]

= −
∫
∂S

[n(trh)− n(h00) + 〈h,A〉]−
∫
∂S∞

[n(trh) + δh(n)].

(4.8)

To balance the finite boundary term, we add an extra term IB =
∫
∂S

2Hg to the functional
I. Notice that the first variation of IB with respect to the metric is given by,

I ′B(h) =

∫
∂S

[2H ′h + trThHg]

=

∫
∂S

[n(trh)− 2δ(n′h) + trThHg].

For a generic vector field V on ∂S, we have δV = δTV T − n(V0). Thus, we can simplify
the term δ(n′h) in the boundary term above and obtain,

I ′B(h) =

∫
∂S

[n(trh)− n(h00) + trThHg]. (4.9)

Combining equations (4.8) and (4.9) we can obtain the formulae of variation for the func-
tional Ĩ + IB :

(Ĩ + IB)′(h) =

∫
S

〈E, h〉+

∫
∂S

[−〈A, h〉+ trThHg]−
∫
∂S∞

[n(trh) + δh(n)].

To remove the boundary term at infinity, we use the mass mADM (g), as shown in equation
(2.34).

4.3 Formal self-adjointness

To prove the self-adjointness for DΦ̂, we will use the functional I, as defined in §2.4,

I =

∫
S

sg − 2|du|2 − 2e−4u|dφ|2dvolg + 2

∫
∂S

HdvolgT + 16πmADM (g).

Recall from §2.4, the first variation of I is given by,

I ′
(g̃,ũ,φ̃)

(h, v, σ) =

∫
S

〈(E,F,H), (h, v, σ)〉

+

∫
∂S

[−〈Ag̃, h〉+Hg̃trh
T − 4n(u)v − 4e−4uσn(φ)].

(4.10)

Let (h, v, σ) be in the tangent space TMS , which is defined by

TMS = { (h, v, σ) ∈ [(S2)m,αδ × Cm,αδ × Cm,αδ ](S) :
δg̃h = 0,

hT − 2vg̃T = 0,

[eu(Hg̃ − 2n(u))]′(h,v) = 0,

[e−2un(φ)]′(h,v,σ) = 0,

on ∂S }.
(4.11)
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Applying the boundary conditions in (4.11) to the equation (4.10), we obtain,

I ′
(g̃,ũ,φ̃)

(h, v, σ)

=

∫
S

〈(E,F,H), (h, v, σ)〉+

∫
∂S

[−〈Ag̃, 2vg̃〉+ 2vHg̃trg̃
T − 4n(u)v − 4e−4uσn(φ)]

=

∫
S

〈(E,F,H), (h, v, σ)〉+

∫
∂S

[2v(Hg̃ − 2n(u))− 4e−4uσn(φ)].

Taking the variation of I ′ with respect a deformation (k,w, ζ) ∈ TMS , we obtain

I ′′
(g̃,ũ,φ̃)

[(h, v, σ), (k,w, ζ)] =

∫
S

〈(E′,F′,H′)(k,w,ζ), (h, v, σ)〉

+

∫
∂S

{2v[Hg̃ − 2n(u)]′(k,w) − σ[4e−4un(φ)]′(k,w,ζ)}

+

∫
∂S

{1

2
trkT [2v(Hg̃ − 2n(u))− 4e−4uσn(φ)]}.

According to (4.11), we have kT = 2wg̃T and 2v[Hg̃ − 2n(u)]′(k,w) = −2vw(Hg̃ − 2n(u)).
Thus the boundary terms in the expression above can be simplifies as

I ′′
(g̃,ũ,φ̃)

[(h, v, σ), (k,w, ζ)]

=

∫
S

〈(E′,F′,H′)(k,w,ζ), (h, v, σ)〉+

∫
∂S

2wv[Hg̃ − 2n(u)]′(k,w)

+

∫
∂S

{−σ[4e−4un(φ)]′(k,w,ζ) − 8we−4uσn(φ)}

=

∫
S

〈(E′,F′,H′)(k,w,ζ), (h, v, σ)〉+

∫
∂S

2wv[Hg̃ − 2n(u)]′(k,w)

+

∫
∂S

4e−4uσ[2wn(φ)− (n(φ))′(k,ζ)].

Here the last boundary term vanishes, because

4e−4uσ[2wn(φ)− (n(φ))′(k,ζ)] = −4e−2u[e−2un(φ)]′(k,w,ζ) = 0,

based on the conditions in (4.11). Therefore, from the symmetry of the 2nd order variation
of the functional I, it follows that,∫

S

〈(E′,F′,H′)(k,w,ζ), (h, v, σ)〉 =

∫
S

〈(E′,F′,H′)(h,v,σ), (k,w, ζ)〉. (4.12)

In addition, it is easy to derive that∫
S

〈δ∗δk, h〉 =

∫
S

〈δ∗δh, k〉 for k, h ∈ TMS . (4.13)

Combining equations (4.12) and (4.13), we obtain the formal self-adjointness for DΦ̂, i.e.∫
S

〈DΦ̂[(k,w, ζ)], (h, v, σ)〉 =

∫
S

〈DΦ̂[(h, v, σ)], (k,w, ζ)〉, ∀(k,w, ζ), (h, v, σ) ∈ TMS .
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4.4 The blow-up rate of Z in proving the unique continuation the-
orem

In the proof of the unique continuation theorem (Theorem 2.14), we show that the de-
formation k = δ∗Z for some (k,w, ζ) ∈ K, so that δ∗Z has the decay rate δ (denoted as
δ∗Z ∼ r−δ), we will find an upper bound for the blow-up rate of Z in the following.

For a radius r large enough, let Sr ⊂ S be the pull back of the sphere of radius r under
the chosen diffeomorphism S ∼= R3 \ B3. Let Nr denote the unit normal vector of the
sphere pointing outwards, then we have

δ∗Z(Nr, Nr) = Nr[g̃(Z,Nr)] + g̃(Z,∇NrNr).

One can extend Nr in a way such that ∇NrNr = 0, and thus

Nr[g̃(Z,Nr)] ∼ r−δ.

Therefore, g(Z,Nr) blows up no faster than r1−δ.
Let ZT denote the tangential component of Z along Sr, then Z = ZT + g(Z,Nr)Nr. Basic
calculation shows

2δ∗Z(Nr, Z
T ) = g̃(∇NrZ,ZT ) + g̃(∇ZTZ,Nr)

= g̃(∇Nr (ZT + g(Z,Nr)Nr), Z
T ) + ZT [g̃(Z,Nr)]− g̃(Z,∇ZTNr)

= g̃(∇NrZT , ZT ) + ZT [g̃(Z,Nr)]−A(ZT , ZT )

= |ZT |Nr(|ZT |) + ZT [g̃(Z,Nr)]−A(ZT , ZT ),

where A denotes the second fundamental form of the hypersurface Sr ⊂ (S, g̃). Thus we
obtain,

Nr(|ZT |)−A(ZT ,
ZT

|ZT |
) = 2δ∗Z(Nr,

ZT

|ZT |
)− ZT

|ZT |
[g̃(Z,Nr)].

This implies that [∂r(|ZT |) − 1
r |Z

T |] blows up no faster than r1−δ, and therefore the in-
creasing rate of |ZT | is at most r2−δ.

4.5 Scalar fields a, b in the time translation formula of the Bartnik
boundary data

As described in Proposition 3.1, since ∂M and ∂M̂ coincide in V (4) under the action of
diffeomorphism Φf : M̂ → M , the unit normal vectors (N̂, n̂) must be mapped to a pair
of vectors which are perpendicular to ∂M in V (4). It follows that,

dΦf (N̂), dΦf (n̂) ∈ span{N,n}

Therefore there exist scalar fields a, b, c, d on ∂M so that{
dΦf (N̂) = aN + bn,

dΦf (n̂) = cN + dn.
(4.14)

In addition, notice that

〈dΦf (N̂), dΦf (N̂)〉Φ∗fg(4) = 〈N,N〉g(4) = −1;

〈dΦf (n̂), dΦf (n̂)〉Φ∗fg(4) = 〈n,n〉g(4) = 1;

〈dΦf (N̂), dΦf (n̂)〉Φ∗fg(4) = 〈N,n〉g(4) = 0.

63



Thus, 
−a2 + b2 = −1,

−c2 + d2 = 1,

−ac+ bd = 0,

(4.15)

which further implies that a2 = d2 and b2 = c2. Without loss of generality (up to the
choice of directions), we can assume,

a = d > 0, b = c > 0.

From the expression (3.1) of the metric g(4), it is easy to see that

N = − ∂t −X
||∂t −X||g(4)

=
∂t −X
N

.

As for N̂, it must be the unit vector such that the following holds,

〈dΦf (N̂), dΦf (∂xi)〉g(4) = 〈N̂, ∂xi〉Φ∗g(4) = 0, ∀i = 1, 2, 3. (4.16)

It is easy to see that dΦf (∂xi) = (∂if)∂t + ∂xi and

〈∂t −X +N2∇f, (∂if)∂t + ∂xi〉g(4) = 0, ∀i = 1, 2, 3. (4.17)

where ∇f denotes the gradient of f with respect to the metric g(4). Thus, equations (4.16)
and (4.17) imply that,

dΦf (N̂) = − ∂t −X +N2∇f
||∂t −X +N2∇f ||

=
∂t −X +N2∇f

N
√

1 + 2X(f)− ||N2∇f ||2

=
∂t −X +N2∇f

N
√

1 + 2X(f) +X(f)2 −N2||∇gf ||2

=
∂t −X +N2∇f

N
√

(1 +X(f))2 −N2||∇gf ||2
,

where ∇gf denotes the gradient of f with respect to the induced metric g on M . Therefore,
according to the first equation in (4.14), we obtain

a = −g(4)(N, dΦf (N̂))

=
g(4)(∂t −X, ∂t −X +N2∇f)

N2
√

(1 +X(f))2 −N2||∇gf ||2

=
1 +X(f)√

(1 +X(f))2 −N2||∇gf ||2
.

Moreover, since f is chosen to be vanishing on ∂M , so ∇gf = n(f) · n on the boundary.
Thus ||∇gf |||∂M = n(f), X(f)|∂M = 〈X,n〉n(f) and consequently,

a =
1 + 〈X,n〉n(f)√

[1 + 〈X,n〉n(f)]2 −N2|n(f)|2
on ∂M,
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which is the formula (3.9). Based on (4.15), we easily derive the formula for b as follows,

b =
Nn(f)√

[1 + 〈X,n〉n(f)]2 −N2|n(f)|2
.

4.6 Useful calculations in the projection formalism

Take a general stationary metric in V (4) expressed in the projection formalism as,

g(4) = −u2(dt+ θ)2 + gS .

We first state two simple facts.
1. Since ∂t is a Killing vector field, it follows that for any vector field Y ∈ TV (4),

〈∇∂t∂t, Y 〉 = −〈∇Y ∂t, ∂t〉 = uY (u).

Thus,
∇∂t∂t = u∇u. (4.18)

2. For any horizontal vector fields v, w ∈ TS, one has 〈v, ∂t〉 = 0, L∂tv = 0, and hence

〈∇vw, ∂t〉 = −〈w,∇v∂t〉 = 〈v,∇w∂t〉 = −〈∇wv, ∂t〉.

It follows that,

〈∇vw, ∂t〉 = dξ(w, v) = −u2dθ(w, v)

ξ([v, w]) = ξ(∇vw −∇wv) = 2〈∇vw, ∂t〉 = −2u2dθ(w, v).
(4.19)

Here ξ = −u2(dt+ θ) is the dual of ∂t.
Next we give a proof for the formula (3.35):
Let α = dt+ θ = −u−2ξ, so α(∂t) = 1, α(v) = 0 ∀v ∈ TS. Then according to the the

following Lie-derivative formula for time-symmetric vectors A,B in the spacetime:

LY α
2(A,B) = Y [α2(A,B)]− α2([Y,A], B)− α2(A, [Y,B]),

it is easy to see that {
LY α

2(∂t, ∂t) = 0

[LY α
2]T = 0.

As for the mixed component of LY α
2, we can carry out the following computation for

v ∈ TS,

LY α
2(∂t, v) = −α2([Y, v], ∂t)

= −α([Y, v])

= u−2ξ([Y, v]).

(4.20)

Any vector field Y ∈ TS can be decomposed as,

Y = Y T − Y ⊥

u
∂t, with Y ⊥ =

1

u
〈Y, ∂t〉. (4.21)
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Thus, for v ∈ TS, one has,

ξ[Y, v] = ξ([Y T , v])− ξ([Y
⊥

u
∂t, v]) = ξ([Y T , v]) + ξ[v(

Y ⊥

u
)∂t]

= 2u2dθ(Y T , v)− u2v(
Y ⊥

u
).

Plugging this to equation (4.20) we obtain

[LY α
2(∂t)]

T = 2dθ(Y T )− d(
Y ⊥

u
)

This completes the proof of (3.35).
Using the same notation as above, we give a proof of the formula (3.36) as follows.
Based on (4.21),

2δ∗g(4)Y = LY T g
(4) − LY⊥

u ∂t
g(4). (4.22)

In the following, we assume v, w ∈ TS. For the first term in (4.22), we have

LY T g
(4)(∂t, ∂t) = 2〈∇∂tY T , ∂t〉 = 2〈∇Y T ∂t, ∂t〉 = −2uY T (u),

LY T g
(4)(∂t, v) = 〈∇∂tY T , v〉+ 〈∇vY T , ∂t〉
= 〈∇Y T ∂t, v〉+ 〈∇vY T , ∂t〉 = −〈∇Y T v, ∂t〉+ 〈∇vY T , ∂t〉
= 2〈∇vY T , ∂t〉
= −2u2dθ(Y T , v),

LY T g
(4)(v, w) = 〈∇vY T , w〉+ 〈∇wY T , v〉 = LY T gS(v, w).

Summing up, 
LY T g

(4)(∂t, ∂t) = −2uY T (u)

[LY T g
(4)(∂t)]

T = −2u2dθ(Y T )

[LY T g
(4)]T = LY T gS .

(4.23)

As for the second term in (4.22), basic calculation yields,

LY⊥
u ∂t

g(4) =
Y ⊥

u
L∂tg

(4) + d(
Y ⊥

u
)� ξ = d(

Y ⊥

u
)� ξ.

Thus, 
LY⊥

u ∂t
g(4)(∂t, ∂t) = 0

[LY⊥
u ∂t

g(4)(∂t)]
T = −u2d(Y

⊥

u )

[LY⊥
u ∂t

g(4)]T = 0.

(4.24)

Equations (4.23) and (4.24) together give (3.36).
At last we derive the decomposition (3.32) of the Bianchi gauge operator.
We assume g(4) is in addition vacuum, which is equivalent to the following system in

the projection formalism, (cf.[H1],[H2]),
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RicgS = 1

uD
2
gSu+ 2u−4(ω2 − |ω|2gS · gS)

∆gSu = 2u−3|ω|2gS
δω + 3u−1〈du, ω〉 = 0

dω = 0

, (4.25)

where ω is the twist tensor defined as,

ω = −1

2
u3 ?gS dθ.

Here we use subscript ′′gS
′′ to denote geometric operators (connection and Laplacian) of

the Riemannian metric gS on the quotient manifold S. First observe that, from the last
equation in (4.25), it follows that

0 = d(u3 ?gS dθ) = d ?gS d(u3θ) = δgS (u3dθ) = u3δgSdθ − 3u2dθ(∇u).

Thus, we obtain

uδgSdθ = 3dθ(∇u). (4.26)

Moreover, based on the second equation in (4.25), one easily obtains,

∆gSu = u3|dθ|2. (4.27)

Now we take the operator βg(4)δ∗g(4) acting on a time-independent vector field Y , which

is decomposed as in (4.21). To begin with, because the metric g(4) is vacuum, a standard
Bochner-Weitzenbock formula gives,

2βg(4)δ∗g(4)Y = ∇∗∇Y −Ricg(4)(Y ) = ∇∗∇Y.

Based on the formula of the Laplace operator, we have,

∇∗∇Y =
1

u2
[∇∂t∇∂tY −∇∇∂t∂tY ]− Σi[∇ei∇eiY −∇∇eieiY ], (4.28)

where ei (i = 1, 2, 3) are taken to be geodesic normal basis on S. In the following, we
compute the tensors in (4.28) term by term.
1.For the first term, since [Y, ∂t] = 0, we have,

∇∂t∇∂tY = ∇∇Y ∂t∂t = ∇∇Y T ∂t∂t −
Y ⊥

u
∇∇∂t∂t∂t = ∇∇Y T ∂t∂t −

Y ⊥

u
∇∇u∇u∂t.

Based on (7.6),
∇v∂t = −u2dθ(v) + u−1v(u) · ∂t ∀v ∈ TS.

Thus, the equation above continues as,

∇∂t∇∂tY

= ∇−u2dθ(Y T )+u−1Y T (u)·∂t∂t −
Y ⊥

u
[−u3dθ(∇u) + u−1u|∇u|2 · ∂t]

= u4dθ(dθ(Y T ))− udθ(Y T ,∇u) · ∂t + Y T (u)∇u+ Y ⊥u2dθ(∇u)− Y ⊥

u
|∇u|2 · ∂t.
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Therefore,

∇∂t∇∂tY = u4dθ(dθ(Y T )) + Y T (u)∇u+ Y ⊥u2dθ(∇u)

− [udθ(Y T ,∇u) +
Y ⊥

u
|∇u|2] · ∂t.

(4.29)

2.For the second term in (4.28),

∇∇∂t∂tY = u∇∇uY = u[∇∇uY T −∇∇u(
Y ⊥

u
∂t)]

= u[∇∇uY T ]T + u〈∇∇uY T , ∂t〉 ·
∂t

−u2
− u[〈∇u,∇Y

⊥

u
〉∂t + (

Y ⊥

u
)∇∇u∂t]

= u(∇gS )∇uY
T − udθ(∇u, Y T ) · ∂t − u〈∇u,∇

Y ⊥

u
〉 · ∂t + Y ⊥u2dθ(∇u)− Y ⊥

u
|∇u|2 · ∂t.

(4.30)

3. As for the third term in (4.28), one first notices that, for two time-independent vectors
v, w ∈ TS,

∇vw = [∇vw]T + 〈∇vw, ∂t〉 ·
∂t
−u2

= (∇gS )vw + dθ(w, v) · ∂t. (4.31)

Applying the formula above, we can carry out the following calculation:

∇ei∇eiY = ∇ei∇eiY T −∇ei∇ei(
Y ⊥

u
∂t),

inside which we have,

∇ei∇eiY T

= ∇ei [(∇gS )eiY
T + dθ(Y T , ei) · ∂t]

= (∇gS )ei(∇gS )eiY
T + dθ((∇gS )eiY

T , ei) · ∂t + dθ(Y T , ei) · ∇ei∂t + [∇eidθ(Y T , ei)] · ∂t
= (∇gS )ei(∇gS )eiY

T + dθ((∇gS )eiY
T , ei) · ∂t

+ dθ(Y T , ei) · (−u2dθ(ei) + u−1ei(u) · ∂t) + [∇eidθ(Y T , ei)] · ∂t
= (∇gS )ei(∇gS )eiY

T − u2dθ(Y T , ei) · dθ(ei))
+ [dθ((∇gS )eiY

T , ei) + u−1dθ(Y T , ei)ei(u) +∇eidθ(Y T , ei)] · ∂t,
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and

∇ei∇ei(
Y ⊥

u
∂t)

= ∇ei [ei(
Y ⊥

u
)∂t +

Y ⊥

u
∇ei∂t]

= ei(ei(
Y ⊥

u
))∂t + ei(

Y ⊥

u
)∇ei∂t +∇ei [

Y ⊥

u
(−u2)(dθ(ei) + u−1ei(u) · ∂t)]

= ei(ei(
Y ⊥

u
))∂t + 2ei(

Y ⊥

u
)[−u2dθ(ei) + u−1ei(u) · ∂t]

+
Y ⊥

u
∇ei [(−u2)dθ(ei) + u−1ei(u) · ∂t]

= ei(ei(
Y ⊥

u
))∂t + 2ei(

Y ⊥

u
)(−u2)dθ(ei) + 2u−1ei(

Y ⊥

u
)ei(u) · ∂t

+
Y ⊥

u
(∇gS )ei [(−u2)dθ(ei)]− uY ⊥dθ(dθ(ei), ei) · ∂t.

+
Y ⊥

u
ei(u

−1ei(u)) · ∂t +
Y ⊥

u2
ei(u)(−u2dθ(ei) + u−1ei(u) · ∂t).

Combining equations above we obtain,

− Σi∇ei∇eiY

= (∇gS )∗∇gSY T + u2dθ(dθ(Y T ))− 2u2dθ(∇Y
⊥

u
)

+
Y ⊥

u
δgS [u2dθ]− Y ⊥dθ(∇u)

+ [〈dθ,∇gSY T 〉+ δgS (dθ(Y T ))−∆gS (
Y ⊥

u
) + uY ⊥|dθ|2] · ∂t

+ [−u−1dθ(Y T ,∇u) + 2u−1〈∇Y
⊥

u
,∇u〉 − Y ⊥

u2
∆gSu] · ∂t.

(4.32)

4.The last term in (4.28) is zero because ∇eiei = 0 based on (4.31).
Summarizing the equations (4.29-30) and (4.32), we have

[∇∗∇Y ]T = (∇gS )∗∇gSY T + u−2Y T (u)∇u− u−1(∇gS )∇uY
T

+2u2dθ(dθ(Y T ))− 2u2dθ(∇Y ⊥

u )

+Y ⊥uδT [dθ]− 3Y ⊥dθ(∇u)

〈∇∗∇Y, u−2∂t〉 = ∆gS (Y
⊥

u )− 3u−1〈∇Y ⊥

u ,∇u〉 − 2〈dθ,∇gSY T 〉
−uY ⊥|dθ|2 + Y ⊥

u2 ∆gSu

−3u−1dθ(∇u, Y T ) + δT dθ(Y T ).

According to equations (4.26) and (4.27), the equations above can be simplified as,
[∇∗∇Y ]T = (∇gS )∗∇gSY T + u−2Y T (u)∇u− u−1(∇gS )∇uY

T

+2u2dθ(dθ(Y T ))− 2u2dθ(∇Y ⊥

u )

〈∇∗∇Y, u−2∂t〉 = ∆gS (Y
⊥

u )− 3u−1〈∇Y ⊥

u ,∇u〉 − 2〈dθ,∇gSY T 〉,

(4.33)
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which directly gives the formula (3.32).

We note that in the case where g̃(4) = g̃
(4)
0 , the standard flat (Minkowski) metric on

R× (R3 \B), equations in (4.33) can be simplified as{
[∇∗∇Y ]T = (∇g0)∗∇g0Y

T

[∇∗∇Y ]⊥ = ∆g0Y
⊥,

because θ = 0, u = 1 for g̃
(4)
0 . Here g0 denotes the flat metric in R3 \ B. Based on the

decomposition above, it is easy to see that the solution to ∇∗∇Y = 0 with trivial Dirichlet
boundary condition must be Y = 0. Therefore, the operator β

g̃
(4)
0
δ∗
g̃

(4)
0

is invertible, i.e. the

Assumption 3.3 holds for g̃
(4)
0 .
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