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Abstract of the Thesis

Variational Formulas and Strata of Abelian Differentials

by

Xuntao Hu

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

In this thesis we study the degenerations of abelian differentials. We adapt the
jump problem technique developed in a recent paper [GKN17] to compute the vari-
ational formulas of any stable differential and its periods to arbitrary precision in
plumbing coordinates. In particular, we give explicit variational formula for period
matrices, easily reproving results of Yamada [Yam80] for nodal curves with one node
and generalizing them to arbitrary stable curves. We apply the same technique to
give an alternative proof of the sufficiency part of the theorem in [BCGGM18] on
the closures of strata of abelian differentials with prescribed multiplicities of zeroes
and poles.

We also give an explicit modular form defining the locus of quartics with a hyper-
flex ΩModd

3 (4), also known as the odd component of the minimal stratum of abelian
differentials in genus 3. Using our variational formulas for the period matrices and
the modular form we obtained, we provide a direct way to compute the divisor class
of this locus in M3.
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Chapter 1

Introduction

1.1 Background and Motivations

We work over the field of complex numbers C. LetMg be the moduli space of curves.
Points ofMg correspond to smooth Riemann surfaces of genus g. The Hodge bundle
ΩMg is a rank g holomorphic vector bundle overMg, where the fiber over each point
[C] ∈Mg is the space of holomorphic abelian differentials (one-forms) on C.

1.1.1 Strata of Abelian Differentials

Given an abelian differential Ω on a curve C, we have div(Ω) = m1p1 +m2p2 + . . .+
mnpn, where pi are the zeroes of Ω and mi are the multiplicities of the zeroes. We
have

∑
mi = 2g − 2, where g is the genus of C. There is a natural stratification of

the Hodge bundle by the multiplicities of zeroes.

Definition 1.1.1. Let µ = (m1, . . . ,mn) be an integral partition of 2g − 2. Set-
theoretically the moduli spaces of abelian differentials (or stratum of abelian differ-
entials) is defined as

ΩMg,n(µ) :=

{
(C; p1, . . . , pn; Ω) :

[C; p1, . . . , pn] ∈Mg,n, Ω ∈ H1,0(C,C),
div(Ω) =

∑g
i=1mipi

}
,

Each stratum ΩMg,n(µ) is a complex orbitfold of dimension d := 2g+n−1. Away
from orbitfold points, each stratum has an atlas of charts to Cd. Local coordinates
(called the period coordinates) on ΩMg,n(µ) are defined as follows: for an abelian
differential with marked zeroes (C; p1, . . . , pn; Ω), a basis of the integral relative ho-
mology group H1(C,Σ;Z) is given by a symplectic basis (A1, . . . , Ag;B1, . . . , Bg) of
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the absolute homology H1(C;Z), together with a choice of paths (γ1, . . . , γn−1) where
γk connects pn and pk. The period coordinates on the stratum are the local coor-
dinates given by the integrals of ω over {Ai, Bi} (these are called absolute period
coordinates), and over {γk} (these are called relative period coordinates).

The strata are intensively studied in Teichmüller dynamics. Away from the zeroes
of Ω, we can find a local coordinate z on C such that Ω = dz; at a zero of order m of
Ω, we can find a local coordinate z such that Ω = zmdz. By identifying C with R2,
namely taking the real and imaginary parts of Ω, SL2(R) acts on the set of abelian
differentials on C. The strata are preserved under this SL2(R)-action, because the
action does not change the multiplicities of zeros of Ω. Details of this action and the
associated flat geometry will be given in Section 2.1.1.

The guiding problem in Teichmüller dynamics is to classify the SL2(R) orbit
closures in every stratum. A complete classification of the orbit closures in genus
2 is due to McMullen [McM05a] [McM05b] [McM06] by using a very interesting
connection between the orbit closures and number theory. Partial study in genus 3
is done by Bainbridge, Möller, Habegger and Zagier [BM12] [BM14] [BHM16] [MZ16].

In [Hu17], I studied the stratum ΩModd
3 (4). This is one of the two connected

components of the stratum of the lowest dimension in genus 3. A generic point of
ΩModd

3 (4) corresponds to a plane quartic with a hyperflex point. In [Hu17], I gave
a modular form on a level cover of A3, the modular space of principally polarized
abelian variety of dimension 3. The zero locus of my modular form is the image of
ΩModd

3 (4) inM3. We will briefly introduce this result in Section 1.2.2, while the full
context will be given in Chapter 5.

1.1.2 Degeneration of Abelian Differentials

It is well known that the Hodge bundle ΩMg can be extended over the Deligne-
Mumford compactification Mg (see [HM]). The fiber of ΩMg over a stable nodal
curve C in the boundary ofMg parametrizes stable differentials on C, that is, mero-
morphic differentials on C that have at worst simple poles with opposite residues at
the two pre-images of a given node.

It is natural to ask for an explicit description of how abelian differentials degener-
ate to stable differentials. To this end, we need local versal deformation coordinates
onMg. While many choices are available, we choose to use the plumbing coordinates,
and we will introduce them briefly in Section 1.2.1 and properly in Chapter 3.

Our goal is to derive a variational formula for abelian differentials in plumbing
coordinates. The term “variational formula” means an expansion in terms of both
the plumbing coordinates and the logarithms of the plumbing coordinates. Such

3



variational formulas were studied by Yamada [Yam80] and Fay [Fay73] in the case
where the stable curve has only one node. Given the variational formula of abelian
differentials, it is a direct computation to derive the variational formulas for integrals
of abelian differentials over homology 1-cycles (periods of abelian differentials) on a
Riemann surface. Via this approach, Yamada [Yam80] and Fay [Fay73] gave the
variational formula for period matrices of stable curves with one node. For more
general cases, Taniguchi [Tan89] computed the logarithmic term in the variational
formula of the period matrices. We will review the results of Yamada, Fay and
Taniguchi in Section 2.2.2.

In [HN18], Norton and I improve their results in full generality. I briefly introduce
our result in Section 1.2.1, and the full context will be given in Chapter 3 and 4.

Our variational formulas are very important in the study of strata of abelian
differentials. I provide two applications in this thesis. One application is to reprove
the result of [BCGGM18], which I will introduce in the next subsection. Another
application is that by using the degeneration of period matrices, I computed the
vanishing order of my modular form in A3, and deduce the divisor class of the image
of ΩModd

3 (4) in M3.
It is also worth mentioning that in a recent paper [AN19], Aulicino and Norton use

our formula for the period matrices to show that there are no Shimura-Teichmüller
curves generated by genus five surfaces. Their result completes the classification of
Shimura-Teichmüller curves for all genera.

Since we are able to describe the degeneration of a general period (Section 4.1),
it should not be hard to compute the degeneration of period coordinates in the com-
pactified strata. I hope that this will shed new light on understanding the boundary
of the SL2(R)-orbit closures, which in turn may provide a way towards the classifi-
cation of the orbit closures.

1.1.3 Compactifications of Strata

A compactified stratum can be useful in studying the classification of the orbit clo-
sures. The question of finding a smooth compactification of the strata ΩMg,n(µ) is
also interesting for its own sake. The most natural and näıve option is to compactify
ΩMg(µ) by taking its closure in the compactified Hodge bundle ΩMg. However, a
disadvantage of this approach is that some abelian differentials may become identi-
cally zero on some components of the limit stable curve. We then lose all information
on the positions of the zeroes of these differentials on such a component.

In order to overcome this disadvantage, one can rescale the family of abelian
differential with a suitable power of the local deformation coordinate, so that the
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limit differential does not vanish identically on a given component. In [BCGGM18],
Bainbridge, Chen, Grushevsky, Gendron, and Möller define the incidence variety
compactification (IVC) of strata by taking the closure of the strata in the projec-
tivized compactification of the Hodge bundle PΩMg,n. This compactification of

strata is denoted by PΩMinc

g,n(µ). In the paper they gave and proved the necessary
and sufficient conditions for a stable differential to lie in the boundary of the IVC.
We will give a comprehensive review of their result in Section 2.3.

In [HN18], Norton and I use the jump problem approach to give an alternative
proof of the sufficiency of their conditions, which is the harder direction of the re-
sult in [BCGGM18]. Furthermore, our approach gives more information about the
neighborhood of the boundary of the IVC (see Theorem 3.3.2 and Corollary 3.3.3).

1.2 Main Results

1.2.1 Degeneration of Abelian Differentials and Period Ma-
trices.

The plumbing coordinates are local coordinates on Mg defined as follows: Given a
stable nodal curve C with m nodes, the standard plumbing construction cuts out
neighborhoods of the two pre-images qe and q−e of each node q on the normalization
of C, and identifies their boundaries (called seams, denoted by γ±e). The identi-
fication map is given by Ie : ze → z−e := se/z

−1
e , where se is called the plumbing

parameter and ze and z−e are chosen local coordinates near two pre-images of the
node respectively. The plumbing construction thus constructs a family of curves
{Cs} =: C → ∆ with the central fiber C0 identified with C, where ∆ is the small
poly disc neighborhood of 0 ∈ Cm with coordinates given by the plumbing parameters
s := (s1, . . . , sm).

In [HN18], we compute the Taylor expansion of any stable differentials in plumb-
ing coordinates, and give the explicit variational formula for the degeneration of any
periods of the differential near an arbitrary stable curve. In particular we give the
variational formulas for period matrices, which generalize the results of Yamada-Fay
and Taniguchi.

The technique we use to construct the degenerating family {Cs,Ωs} is called
(solving) the jump problem, which was developed and used in the real-analytic set-
ting by Grushevsky-Krichever-Norton [GKN17]. Roughly speaking, given a stable
differential Ω on C, we have the mis-matches {Ω|γe − I∗e (Ω|γ−e)} (which we call the
jumps of Ω) on the seams γ±e at opposite sides of each node. The solution to the
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jump problem with initial conditions from Ω is a“correction” differential η whose
jumps at the seams equal to the negative of the jumps of Ω. By adding η to Ω on
each irreducible component, one obtains new differentials with zero jumps. We can
thus glue this newly-derived differentials to get a global meromorphic differential Ωs

on Cs. In [HN18], we construct explicitly the solution to the jump problem:

Theorem 1.2.1 (= Theorem 3.2.3). Let (C,Ω) ∈ ∂ΩMg be a stable differential.
Let Ωv be the restriction of Ω to the connected component Cv. For any |s| small
enough, {Ωv,s := Ωv + ηv} defines a meromorphic differential Ωs on Cs satisfying

Ωv = lims→0 Ωs|Cv , where ηv =
∑∞

k=1 η
(k)
v is the unique solution with vanishing A-

periods to the jump problem with the initial conditions from Ω. Furthermore, we have
||ηv,s||L2 = O(

√
|s|).

Furthermore, we compute the leading term of the s-expansion for η
(k)
v , which in

particular gives the linear term of the s-expansion for Ωs (Proposition 3.2.4). In the
one node case, this expansion is the same as in [Yam80].

We denote re := resqe Ω, and have re = −r−e. Let α be any oriented loop in
C. Let {q1, . . . , qN} be the ordered collection of nodes that α passes through (with
possible repetitions). Let αs be a perturbation of α such that its restrictions on each
Cv minus the neighborhood at each node glue correctly to give a loop on Cs.

Theorem 1.2.2 (= Theorem 4.1.2). The variational formula of the period of Ωs

over αs is given by: ∫
αs

Ωs =
N∑
i=1

(rei ln |sei |+ ci + li) +O(|s|2),

here ci and li are the constant and linear terms in s respectively, which are explicitly
given.

The explicit expressions for the constant and the linear terms can be found in
Theorem 4.1.2.

For the variational formula of the degeneration of the period matrices, we choose
a suitable symplectic basis {Ak,s, Bk,s}gk=1 of H1(Cs,Z) that depends continuously in
s. We take a basis {v1, . . . , vg} of H0(C,KC) dual to {A1, . . . , Ag}, such that after
applying the jump problem construction, the resulting set of differentials {vk,s}gk=1

is a basis of H0(Cs, KCs) dual to {A1,s, . . . , Ag,s}. We then have:
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Corollary 1.2.3 (= Corollary 4.2.1). For any fixed h, k such that 1 ≤ h, k ≤ g, the
expansion of τh,k(s) is given by

τh,k(s) =
∑
e∈EC

N|e|,h ·N|e|,k
2

· ln |se|+ ch,k + lh,k(s),

where N|e|,k is the intersection number of the seam γ|e| and Bk,s, and EC is the set
of nodes of C. Moreover, the constant term ch,k and the linear term lh,k(s) are given
explicitly.

The expression for the constant and the linear terms can be found in Corollary

4.2.1. This corollary in particular shows that τh,k(s) −
∑

e∈EC

N|e|,h·N|e|,k
2

· ln |se| is
holomorphic in s, which is the main result in [Tan89].

1.2.2 A Modular Form for ΩModd
3 (4).

Classically, the Riemann theta constants with characteristics (or theta characteris-
tics) θ[ εδ ](τ, 0) are known to be modular forms of weight 1

2
. The theta-null modular

form is defined as Θnull(τ) :=
∏

(ε,δ)even θ[
ε
δ ](τ, 0), where the parity on the character-

istics is given by the Weil pairing. It is known that the theta-null modular form cuts
out the hyperelliptic locus in genus 3. We will discuss the theta characteristics and
modular forms in more detail in Section 2.4.1.

In [Hu17], I give the counterpart of the theta-null modular form for Modd
3 (4),

which is the image of the forgetful map from ΩModd
3 (4) toM3. In this thesis we also

callModd
3 (4) the hyperflex locus, because it parameterizes the closure of the locus of

plane quartics where one of the 28 bitangent lines of the quartic is in fact a hyperflex
line, i.e. its two tangent points comes together. Equivalently, it is the locus where
a (generically non-hyperelliptic) curve C has a Weierstrass point p of weight 4, such
that 4p ≡ KC .

It is known that for a given curve C, the Riemann theta function with charac-
teristics (or theta characteristics) is a section of the line bundle 1

2
K twisted by a

two-torsion line bundle. One can identify the set of two-torsion points in Jac(C)
with (Z2)3 × (Z2)3, sending m = (τε + δ)/2 to the characteristics (ε, δ), where τ is
the period matrix of C. Technically our discussion depends on the choice of such an
identification, and hence should be on a level cover of A3. In order to simplify the
discussion, we choose to neglect these issues here in the introduction; they will be
discussed in detail in Chapter 5.

For simplicity, let us denote the characteristics (ε, δ) by (i, j), where i = 4ε1 +
2ε2 + ε3, j = 4δ1 + 2δ2 + δ3. For instance, ([1, 1, 0], [0, 1, 1]) is denoted by (6, 3).
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Theorem 1.2.4 (= Theorem 5.1.5). On A3, the modular form Ω77(τ) defined by

Ω77(τ) : = [θ01θ10θ37θ43θ52θ75θ42θ06θ30θ21θ55 + θ02θ25θ34θ40θ67θ76θ33θ05θ14θ60θ42]2

− 4θ01θ02θ10θ25θ34θ37θ40θ43θ52θ67θ75θ76θ00θ04θ57θ70θ61θ73θ20θ07θ00θ16

vanishes at the period matrix τ of a smooth plane quartic C if and only if C has
a Weierstrass point P of weight 4 such that the 2-torsion point [1

2
KC − 2P ] on Aτ

corresponds to the characteristic (i, j) = (7, 7). Here θij := θij(τ, 0) is the Riemann
theta constant with characteristics (i, j).

The requirement that the 2-torsion point correspond to the characteristic (i, j) =
(7, 7) is merely a technical condition to fix the choice of the identification Aτ [2] '
(Z/2Z)6. In other words, the modular form Ω77 cuts out a locus on the level two
cover of A3 that maps one-to-one onto the image of Modd

3 (4) in A3.
We can use the modular form Ω77 to compute the divisor class of the closure of

the locus Modd
3 (4) in M3:

[Modd
3 (4)] = 308λ− 32δ0 − 76δ1,

where λ is the Hodge class onM3, and δ0, δ1 are the classes of the boundary divisors.
This class was first computed in [Cuk89] using a different method.

Generally speaking, the weight of a modular form F gives the multiplicity of
the Hodge class in the class of the locus cut out by F . In order to compute the
analogous coefficients of the boundary divisor classes, one computes the vanishing
orders of F at the boundary components. We therefore study the degeneration of
the theta constants with characteristics near the boundary ofM3, which requires an
understanding of the degeneration of the period matrices. The computation of the
degeneration of theta constants is given in detail in Section 2.4.4.

1.3 Structure of the Dissertation

In Chapter 2, we review the preliminaries needed for the two main results in the
dissertation. We first introduce the moduli space of curves and the strata of abelian
differentials in Section 2.1. We review the Deligne-Mumford compactification ofMg

in Section 2.2 and the Incidence Variety compactification of strata in Section 2.3. In
Section 2.4, we discuss the moduli space of principally polarized abelian varieties and
theta characteristics. We also discuss in detail how to extend the theta characteristics
to the boundary of M3 in Section 2.4.4.
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In Chapter 3, we give the main results and proofs in [GKN17] using the jump
problem technique. In Chapter 4 we use the results in Chapter 3 to compute the
variational formula for period matrices. We also gives examples in Section 4.3 that
cover the results in [Yam80]. Furthermore, we use the jump problem technique to
give an alternative proof to the main results in [BCGGM18] in Section 3.3.

In Chapter 5, we give main results and proofs in [Hu17]. We compute the modular
form for ΩModd

3 (4). We use the extension of theta characteristics (Section 2.4.4) and
the degeneration of period matrices (Section 4.3) to finish the computation of the
divisor class (Section 5.2 and 5.3).
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Chapter 2

Preliminaries

2.1 The Moduli Space of Curves and Strata of

Abelian Differentials

In this chapter, we provide a more detailed discussion of the notions and definitions
provided in Chapter 1.

A Riemann surface is a complex manifold of real dimension two. A connected,
compact Riemann surface is equivalent to a smooth irreducible projective algebraic
curve. In this text we always assume that a Riemann surface is compact and con-
nected, so we don’t distinguish these two concepts. We will use C to denote a
Riemann surface throughout the text.

An abelian differential (or a holomorphic differential) Ω on a Riemann surface C
is a global section of the cotangent bundle of C. In this thesis, we sometimes use
the term “abelian differential” to denote the pair (C,Ω) when we need to specify
the curve C. In some context, others extend the definition of abelian differentials
to include meromorphic differentials, but in this thesis we only consider abelian
differentials that are holomorphic.

Let g denote the genus of C. The space of abelian differentials H1,0(C) on C is
a complex g-dimensional vector space. When g > 0, any abelian differential Ω has
2g− 2 zeroes, counted with multiplicities. Namely, (Ω)0 = m1p1 + . . .+mnpn where
p1, . . . , pn ∈ C and µ = (m1, . . . ,mn) is a partition of 2g − 2.

Let Mg be the moduli space of genus g Riemann surfaces. Points in Mg corre-
spond to biholomorphic equivalence classes of smooth Riemann surfaces of genus g.
One can defineMg by taking the quotient of the Teichüller space Tg by the mapping
class group. The complex dimension of Mg is 3g − 3.

10



The space of all abelian differentials on genus g curves forms a rank g vector
bundle ΩMg over Mg, which is called the Hodge bundle. We fix a partition µ =
(m1, . . . ,mn) of 2g − 2, then we can define the stratum of abelian differentials as
follows:

ΩMg,n(µ) :=

{
(C; p1, . . . , pn; Ω) : pi ∈ C,Ω ∈ H1,0(C,C), div(Ω) =

g∑
i=1

mipi

}
.

These spaces give a stratification of the Hodge bundle ΩMg. Hereafter we will
use the strata terminology for simplicity.

2.1.1 Action of GL+
2 (R)

A translation structure on a Riemann surface C is an atlas of complex charts {(Uα, fα)}α∈I ,
where all transition functions are translations. If g > 1, the flat metric introduced
by the translation structure has a non-empty set of singularities, denoted by Σ. We
call the singularities of the translation structure saddle points. We also call the pair
(C,Σ) a translation surface.

The abelian differentials on a Riemann surface C are naturally equivalent to
translation structures on C. Given an abelian differential (C,Ω), we get local charts
by integrating Ω away from the zeroes of Ω. Given a translation surface (C,Σ), on
each chart we have a local holomorphic differential dz, where z is the local coordinate
on the chart. Since all transition functions are translations, dz is globally defined
on C − Σ. Moreover, a m-th order zero of Ω can be locally written as zmdz =
d(zm+1)/(m+ 1). This gives a saddle point that has cone angle 2π · (m+ 1).

By identifying C with R2, the group GL+
2 (R) acts on the set of translation struc-

tures on C by post-composing the chart maps fα with the linear map. Therefore the
group GL+

2 (R) acts on the Hodge bundle ΩMg. This action preserves the number
and multiplicities of the zeroes of the 1-form, i.e., the stratum ΩMg,n(µ) is GL+

2 (R)-
invariant. Moreover, given the differential Ω, we can compute the area of the Rie-
mann surface A(C) =

∫
C

Ω ∧ Ω̄. We define ΩM1
g,n(µ) the strata of the unit area

abelian differentials. The GL+
2 (R)-action decends to an SL2(R)-action on ΩM1

g,n(µ).
One can also interpret this action using the flat model of an abelian differential (see
[Zor06], [Wri15]).

The strata ΩMg,n(µ) and the action of GL+
2 (R) are intensively studied in Te-

ichmüller dynamics. A central open problem is the classification of GL+
2 (R)-orbit

closures. In genus 2, the classification is done by McMullen [McM03] [McM05a]
[McM05b] [McM06]. McMullen’s approach uses Hilbert modular varieties. These
objects are of great importance in the number theory, but they are out of the range
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of our discussion here. A further study of the relationship between Hilbert modular
varieties and Teichmüller curves in g = 2, 3, 4 is done by Bainbridge-Möller [BM12]
[BM14], Bainbridge-Habegger-Möller [BHM16], and Möller-Zagier [MZ16]. However,
given any stratum in genus≥ 3, a complete classification of Teichmüller curves within
the stratum still remains an open problem.

When the GL+
2 (R) has a closed orbit, that is, the stabilizer of the abelian differen-

tial (C,Ω) under the GL+
2 (R)-action is a lattice in SL2(R), then the GL+

2 (R) projects
to an algebraic curve inMg. One can show that the curve is isometrically immersed
with respect to the Teichmüller metric. Such a curve is called a Teichmüller curve.
Whether the algebraicity also holds for higher dimensional orbit closures has long
been an open problem.

The recent breakthrough work of Eskin-Mirzakhani-Mohammadi [EM13] [EMM15]
gives that any SL2(R)-orbit closure is locally cut out by linear equations of real coeffi-
cients in period coordinates. Filip [Fil16] further shows that all SL2(R)-orbit closures
are algebraic varieties.

2.1.2 A Theorem of Kontsevich and Zorich and the Minimal
Stratum in Genus 3

Since the classification of orbit closures in genus 2 case was completed by McMullen,
the simplest case that remains open is in genus 3. We first introduce a general
result by Kontsevich and Zorich [KZ03], who classified the connected components
of ΩMg,n(µ) for all g and µ. In order to state their result, we need the following
definition.

Definition 2.1.1. A spin structure (or theta characteristic) on a smooth curve C is
a line bundle L whose square is the canonical bundle, i.e. L⊗2 ∼ KC . The parity of
a spin structure is given by dimH0(C,L) mod 2.

Theorem 2.1.2. [KZ03] The strata of abelian differentials ΩMg(µ) have up to three
connected components, distinguished by the parity of the spin structure and by being
hyperelliptic or not. For g ≥ 4, the strata ΩMg(2g − 2) and ΩMg(2l, 2l) with an
integer l = (g − 1)/2 have three components, the component of hyperelliptic flat
surfaces and two components with odd or even parity of the spin structure but not
consisting exclusively of hyperelliptic curves.

In genus 3, the stratum of the lowest dimension is ΩM3(4). By [KZ03, Cor 1], it
has exactly two connected components, the hyperelliptic locus ΩMhyp

3 (4), and one
having the odd parity of the spin structure ΩModd

3 (4). Their dimensions are 5 and
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6, respectively. The generic points in ΩModd
3 (4) correspond to plane quartics with a

hyperflex point. We hence call ΩModd
3 (4) the hyperflex locus.

It is a well-known result that in genus 3, the hyperelliptic locus is cut out by the
theta-null modular form. The theta null modular form is given by the product of
all even theta characteristics. In [Hu17], I gave the counterpart description of the
hyperflex locus. Namely, I gave an explicit modular form written in terms of the
theta characteristics whose zero locus is the hyperflex locus (image of ΩModd

3 (4) in
M3) (see Theorem 5.1.5). In order to fully state the results, we will need the notion
of abelian varieties and Riemann theta functions. We will introduce these concepts
in Section 2.4.

2.2 The Deligne-Mumford Compactification ofMg

The Deligne-Mumford compactificationMg is defined to be the moduli space of stable
genus g curves (see [HM]). A stable curve is a complete connected curve with finite
automorphism group and at worst nodal singularities. Mg is a compactification of
Mg, where the boundary points correspond to stable nodal curves.

A node p in a stable nodal curve C is called a separating node if C − p has two
connected components. And we call C of compact type if C has only separating
nodes. We introduce the following combinatorial way to describe loci of equisingular
stable curves.

Definition 2.2.1 (Dual Graphs). The dual graph ΓC of a stable curve C is an
unoriented graph where each edge corresponds to a node of C, and each vertex v
corresponds to the normalization of an irreducible component Cv of C. The edge
connecting vertices corresponds to the node between components.

2.2.1 Plumbing Coordinates

Given a stable nodal curve C with m nodes, we choose local coordinates z±e near the
two pre-images qe and q−e of each node q|e| of C. The standard plumbing construction

cuts out neighborhoods U±e = {|z±e| ≤
√
|se|} on the normalization of C, and

identifies their boundaries γ±e = {|ze| =
√
|se|} via a gluing map Ie sending ze to

z−e := se/z
−1
e , where |se| � 1 is called the plumbing parameter. The irreducible

components of the nodal curve C are denoted by Cv.
The plumbing construction thus constructs a family of curves C → ∆ with the

central fiber identified with C, where ∆ is the small polydisc neighborhood of 0 ∈ Cm

with coordinates given by the plumbing parameters s := (s1, . . . , sm). Depending
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on circumstances s are also called the plumbing coordinates, as they give versal
deformation coordinates on Mg to the boundary stratum containing the point C.
The Riemann surface resulting from plumbing with parameters s is denoted by Cs.

2.2.2 Compactification of the Hodge Bundle

It is a classical result that the Hodge bundle ΩMg can be extended over Mg (see
[HM]). The fiber of the extension ΩMg over a nodal curve C in the boundary of
Mg parametrizes stable differentials, that is, meromorphic differentials that have at
worst simple poles at the nodes with opposite residues.

A degenerating family of abelian differentials is a flat family (C,W) over a complex
poly disc ∆ centered at 0 ∈ Cm, such that the central fiber is identified with (C,Ω),
where C is a stable nodal curve and Ω is a stable differential on C.

The result of Yamada [Yam80] and Fay [Fay73] gives a variational formula for
degenerating families of abelian differentials in the case that the limit curve has only
one node. We briefly review their results on curves of compact type here. For curves
of non-compact type, the statement is of similar fashion.

In the case where the limit curve C has only one node q, we have only one
plumbing parameter s. Let (C,Ω) be a stable differential, we denote C1 and C2 the
two connected components of C, and Ωi the restriction of Ω on Ci (i = 1, 2). Then
[Yam80, Theorem 1] states that there exists a meromorphic differential Ωs on the
plumbed surface Cs, which has the same singularities as Ωi outside of Ui.

The construction of Ωs in [Yam80] was explicit. Therefore he was able to compute
the variational formula for the degeneration of period matrices in one-node case. For
curves of compact type, the period matrix has the following expansion:

τs =

[
τ1 0
0 τ2

]
− s

[
0 R
RT 0

]
+ o(s)

where τ1 ∈ Matg1×g1(C) and τ2 ∈ Matg2×g2(C) satisfying g1 + g2 = g, and R ∈
Matg1×g2(C) is some matrix independent of s. We will use this formula for the
discussion in Section 2.4.4.

For the case of multiple nodes, Taniguchi [Tan89] [Tan91] computes the first term
of the variational formulas for the period matrices.

In my paper with Norton [HN18], we give a full generalization of these results.
Namely, we give the complete variational formula for abelian differentials and the
period matrices when the curve has any number of nodes (See Theorem 3.2.3).

Using our variational formula for abelian differentials, we compute the variational
formula for any periods on the limit curve (see Theorem 4.1.2). As a corollary, we
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deduce the variational formula for period matrices (see Theorem 4.2.1). The special
case m = 1 in Theorem 1.2.1 matches the main result by Yamada and Fay. Theorem
4.2.1 gives the same logarithmic term as in [Tan89]. Beyond the logarithmic term, we
also give the constant and the linear term explicitly. We want to remark that via our
approach one can in principle compute all the higher order terms in the variational
formulas, both for abelian differentials and for their periods.

2.3 The Incidence Variety Compactification of Strata

In [BCGGM18], Bainbridge, Chen, Grushevsky, Gendron, and Möller define the

incidence variety compactification (IVC) of strata PΩMinc

g,n(µ) by taking the closure

of the strata in the projectivized compactification of the Hodge bundle PΩMg,n.
In this section we briefly review the definitions and results in [BCGGM18].
Take a stable pointed differential (C,Ω) in the boundary of ΩMg,n, where C is

a stable nodal curve with marked points p1, . . . , pn, and Ω is a stable differential on
C. Let (C,W) → ∆ be a one parameter family in the stratum ΩMg,n(µ), where
∆ is a disk with parameter t, such that C0 = C. Note that Ω may be identically
zero on some irreducible component Cv of C. By an analytic argument [BCGGM18,
Lemma 4.1] one can show that for each Cv there exist lv ∈ Z≤0 such that

Ξv := lim
t→0

tlvΩv

is non-zero and not equal to infinity. Such differentials {Ξv}v must satisfy the fol-
lowing conditions (see the proof of necessity of [BCGGM18, Theorem 1.3]):

(0) If pk ∈ Cv for some k, Ξv vanishes to the correct order: ordpk Ξv = mk;

(1) The only singularities of Ξv are (possible) poles at the nodes of Cv;

(2) For any node q|e| on C, ordqe Ξv(e) + ordq−e Ξv(−e) = −2;

(3) If ordqe Ξv(e) = ordq−e Ξv(−e) = −1 at some node q|e|, then the residues are
opposite at the node: resqe Ξv(e) = − resq−e Ξv(−e).

Definition 2.3.1 ([BCGGM18, Def. 1.1]). A differential Ξ satisfying Conditions
(0) ∼ (3) is called a twisted differential of type µ.

Given a one parameter family, l : v 7→ lv gives a (full) level function on the
vertices of the dual graph ΓC . The function l makes ΓC into a level graph, in which
the order is denoted by “ < ”. Moreover, the twisted differential Ξ constructed from
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the one-parameter family must satisfy the following conditions (again see the proof
of necessity of [BCGGM18, Theorem 1.3]):

(4) At a node e, v(e) < v(−e) if and only if ordqe Ξv(e) ≥ ordq−e Ξv(−e), and v(e) �
v(−e) if and only if ordqe Ξv(e) = ordq−e Ξv(−e) = −1

(5) For any level L in the level graph, for any v such that lv > L, let EL
v be the

set of all the nodes e such that v(e) = v, lv(−e) = L, we have∑
e∈EL

v

resq−ei
Ξv(−ei) = 0.

The last condition is called the Global residue condition in [BCGGM18].

Definition 2.3.2 ([BCGGM18, Def. 1.2]). A twisted differential Ξ is called compat-
ible with the stable differential Ω and the full level function l (or equivalently the
full level graph ΓC) if (i) Ξ and l satisfy the Conditions (0)∼(5); (ii) the maxima of
the level graph correspond to the components Cv where Ωv is not identically zero,
and on those components, Ξv = Ωv.

The main result of [BCGGM18] is that the necessary and sufficient condition for
a pointed stable differential (C,Ω) to lie in the boundary of the IVC compactification
of strata is the existence of a twisted differential Ξ (on C) and a full level function l
(on ΓC) such that Ξ is compatible with Ω and l.

2.4 The Moduli Space of PPAVs and Theta Char-

acteristics

This section provides the necessary background for Chapter 5, where we give the
modular form that cuts out the hyperflex locus in genus 3 and we compute its
divisor class in M3. To this end, we start by introducing Ag, the moduli spaces of
principally polarized abelian varieties (ppav) and explain how they are closely related
to the moduli space of curves. We move on to discuss the Riemann theta functions
with characteristics and how they extend to the boundary of the compactification of
Ag.

Our discussion on the extension of theta characteristics to the boundary will be
restricted to genus 3, while our discussion on the moduli space of ppav and theta
functions is for all genera.
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2.4.1 The Moduli Space of Principally Polarized Abelian Va-
rieties

An abelian variety is a projective algebraic variety A, with the structure of an abelian
group on the set of its points, such that the group operations are morphisms. A polar-
ization on A is the first Chern class of an ample line bundle L on A. A polarization [L]
on an abelian variety A is called principal if its space of sections is one-dimensional,
i.e. if h0(A,L) = 1.

Over the complex numbers, an abelian variety can also be seen as a complex torus
Cg/Λ, where Λ is a full rank integral lattice isomorphic to Z2g. Up to biholomor-
phisms, we can normalize the generators of Λ such that the first g generators are unit
vectors. By the Riemann bilinear relations, in order for a complex torus to be pro-
jective, the remaining g vectors must consist a g×g matrix τ with a positive-definite
imaginary part, called the period matrix.

The Siegel upper half-space of dimension g is the space of all g by g period
matrices, denoted by Hg:

Hg := {τ ∈ Mat(g × g,C) | τ = τ t, Im (τ) > 0}.

Definition 2.4.1 (Moduli Space of ppavs). The moduli space of principally polarized
abelian varieties (ppav) of dimension g: Ag = Γg \ Hg is the quotient of Hg by the
symplectic group Γg := Sp(2g,Z).

The moduli space of curves of genus g is closely related to Ag. The Jacobian of a
curve is defined by H1,0(C,C)∗/H1(C,Z), where H1,0(C) ≡ Cg, H1(C,Z) ≡ Z2g and
the embedding is given by [γ] : ω →

∫
γ
ω. We see that the Jacobian is a projective

complex torus. We have the Torelli map u : Mg → Ag, sending a curve to its
Jacobian. The image of Torreli map is called the Schottky locus. Characterizing the
Schottky locus is a classical problem in algebraic geometry.

The period matrix of the Jacobian is explicit: we take a symplectic basis {Ai, Bi}i=1,...,g

of H1(C,Z). We then find a normalized basis of holomorphic differentials {v1, . . . , vg}
in H0(C,KC), such that

∫
Ai
vj = δij. Then the period matrix of C is given by

τij =
∫
Bi
vj.

The Hodge vector bundle over Ag is defined by E := π∗(Ω
1
Xg/Ag

), where π : Xg →
Ag is the universal family of ppavs, with the fiber over the point [A] ∈ Ag being the
variety A itself. The fiber of the Hodge vector bundle over a point [A] ∈ Ag is the
g-dimensional space of holomorphic one-forms on A. By pulling back via the Torelli
map, we obtain the Hodge bundle ΩMg over Mg defined above.
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2.4.2 Riemann Theta Function and Modular Forms

In Definition 2.1.1, we have seen that for a given curve C, the Riemann theta function
with characteristics (theta characteristics for short) is a section of the line bundle
1
2
KC twisted by a two-torsion line bundle. One can identify the set of two-torsion

points in Jac(C) with (Z2)g × (Z2)g, sending m = (τε + δ)/2 to the characteristics
(ε, δ), where τ is the period matrix of C.

We can also define the theta characteristics outside of the Schottky locus. For
an abelian variety Aτ , we denote its set of two-torsion points by Aτ [2] ' (Z/2Z)2g,
identifying a two-torsion point m = (τε+δ)/2 with a characteristic (ε, δ) ∈ (Z/2Z)g.
One can then define analytically the Riemann theta function with characteristics
(ε, δ):

θ

[
ε
δ

]
(τ, z) =

∑
m∈Zg

exp
[
πi
(
(m+

ε

2
)tτ(m+

ε

2
) + 2(m+

ε

2
)t(z +

δ

2
)
)]
.

When [ε, δ] = (0, 0), we have the usual Riemann theta function. For a fixed τ , the
theta function defines a section of a line bundle on the corresponding abelian variety
Aτ , which gives a principal polarization. We define e(m) := (−1)ε·δ = ±1 to be the
parity of m. The theta function with characteristics is an odd/even function of z
when [ε, δ] is odd/even. Hence as a function of τ , θ(τ, 0) is identically zero iff [ε, δ]
is odd, and gradz θ[ε, δ](τ, z)|z=0 vanishes identically iff [ε, δ] is even.

A more general notion on the Siegel upper half space Hg is the modular forms:

Definition 2.4.2 (Modular Form). Given an arithmetic subgroup Γ ⊂ Γg and a
representation ρ : GL(g,C) → GL(W ), a holomorphic function f : Hg → W is
called a ρ-valued Siegel modular form w.r.t Γ if

f(γ ◦ τ) = ρ(Cτ +D) ◦ f(τ)

for any γ = ( A B
C D ) ∈ Γ, and any τ ∈ Hg. For g = 1 we also require f to be regular

at the cusps of Γ \H1.

If W = C, and ρ(γ) = det(Cτ + D)k, then the modular form is called a weight
k (scalar) modular form for Γ. We recall the following transformation formula for
theta functions with characteristics:

θ[ε, δ](γτ, (Cτ +D)−1z) = φ · det(Cτ +D)1/2θ[γ ◦ (ε, δ)](τ, z)

for any γ = ( A B
C D ) ∈ Γg acting on the characteristic (ε, δ) in the following way:

γ ◦
[
ε
δ

]
=

[
D −C
−B A

] [
ε
δ

]
+

[
diag(CtD)
diag(AtB)

]
, (2.4.1)
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and φ = φ(ε, δ, γ, τ, z) is some complicated function, which will become trivial if
γ ∈ Γg(4, 8) (we will define it below). Moreover, by differentiating with respect to z
we obtain:

∂

∂zi
θ[ε, δ](γτ, (Cτ +D)−1z) = det(Cτ +D)1/2

∑
j

(Cτ +D)ij
∂

∂zj
θ[γ ◦ (ε, δ)](τ, z)

for any γ ∈ Γg(4, 8).
This is to say that the theta constant with characteristics is a modular form of

weight 1
2
, and the theta gradient evaluated at z = 0 (see [SM83]) is a vector-valued

modular form for the representation ρ = det
1
2 ⊗std (i.e. a section of detE⊗1/2 ⊗ E)

with respect to a level subgroup Γg(4, 8) ⊂ Γg, which is defined in general as follows:

Γg(m) := {γ ∈ Γg | γ ≡ 12g mod m},

Γg(m, 2m) := {γ ∈ Γg(m) | diag(CtD) ≡ diag(AtB) ≡ 0 mod 2m}.
We will call the quotient Ag(m, 2m) := Γg(m, 2m) \Hg a level moduli space of ppav.
This cover of Ag is Galois when m is even.

From this point forward until the end of this section, we will restrict ourselves
in genus 3. In genus 3, the canonical image of a non-hyperelliptic curve is a plane
quartic, and the bitangent lines to the plane quartic are given by the gradients of the
theta functions with odd characteristics (cf. [Dol12, ch. 5]). We will use this fact in
our discussion in Chapter 5.

2.4.3 Boundary of Level Covers in Genus 3

In genus 3, the Torelli map is dominant and can be extended to a surjective morphism
u : M3 → A3, where M3 is the Deligne-Mumford compactification, and A3 is the
toroidal compactification (note that for g=3 the perfect cone, second Voronoi, and
central cone toroidal compactifications are all the same).

Recall that PicQ(A3) = QL⊕QD where L is the first Chern class of the Hodge
bundle E on A3, and D is the class of the boundary divisor (See [HS02]). We further
recall (see [ACG11]) that PicQ(M3) = Qλ⊕Qδ0 ⊕Qδ1, where λ := u∗L, δ0 := ū∗D
is the class of the boundary component ∆0, the closure of the locus of irreducible
curves with one node, and δ1 is the class of the locus ∆1 ' M1,1 ×M2,1, i.e. the
closure of the locus of nodal curves of compact type. The Torelli map contracts ∆1

onto the locus P := A1 ×A2 ⊂ A3.
By definition A3(2) is the moduli of ppav together with a chosen symplectic basis

for the group of two torsion points. Denote p : A3(2) → A3 the level map, there
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is a level toroidal compactification (cf. [AMRT10]) such that p can be extended to
p̄ : A3(2) → A3. The pre-image p̄−1D is reducible, and its components are indexed
by non-zero characteristics: p̄−1D = ∪n∈(Z/2Z)6−0Dn.

The pre-image p̄−1(P ) is also reducible, and we now recall its irreducible compo-
nents: since for a generic point A in P we have A = E×A′, the group of two-torsion
points splits as A[2] ' (Z/2Z)2 ⊕ (Z/2Z)4. Choosing such an isomorphism is the
same as choosing a 2-dim symplectic subspace V in (Z/2Z)6. Hence the irreducible
components of p̄−1(P ) are labeled by the choice of such subspaces, and we denote
them by PV .

2.4.4 Extension of Theta Characteristics to the Boundary

In order to use a modular form to compute the corresponding divisor class in M3,
we need to know its vanishing order at the boundary. We will first compute the
extensions of theta functions and theta gradients to the boundary.

Recall that we identify a two-torsion point m = (τε + δ)/2 with a characteristic
(ε, δ) ∈ (Z/2Z)g, and define e(m) := (−1)ε·δ = ±1 to be the parity of m. We have
the following standard definition (see [Dol12] for a more detailed discussion):

Definition 2.4.3. 1. We call a triple of characteristics m1,m2,m3 azygetic (resp.
syzygetic) if

e(m1,m2,m3) := e(m1)e(m2)e(m3)e(m1 +m2 +m3) = −1 (resp. 1).

2. A sequence m1,m2, . . . ,mr is essentially independent if for any choice of 1 ≤
i1 < i2 < . . . < i2k ≤ r and k ≥ 1 we have

mi1 +mi2 + . . .+mi2k 6= 0 mod 2.

Recall the notation Dn and PV for the components of p̄−1D and p̄−1P in A3(2).
For the purpose of computing the vanishing order of θm and gradz θm, we need the
characterization of the orbits of the Γg-action given by (2.4.1) on sets of character-
istics. We have the following proposition.

Proposition 2.4.4 ([Igu72], [SM94]). Two ordered sequences m1,m2, . . . ,mr and
n1, n2, . . . , nr of characteristics are conjugate under the action of Γg if and only if
e(mi) = e(ni), and e(mi,mj,mk) = e(ni, nj, nk) for any 1 ≤ i ≤ r, 1 ≤ i < j < k ≤ r,
and the essentially independent subsequences correspond to each other.
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If there exists γ ∈ Γg such that γ(m,n) = (m′, n′), then ordDn θm = ordDn′
θm′ .

Thus it suffices to compute this vanishing order for one element in each Γg orbit of
pairs (m,n), and same argument applies to the pair (m,V ) for the vanishing orders
of the pulled back theta functions on ∆1.

Since the groups Γg acts transitively on the set Dn of boundary components, each
orbit of (m,n) under Γg contains all possible n. Thus we can from now on fix the
boundary component Dn, and apply the proposition to find the orbit of (m,n) when
m is varying: consider the set of triples (m,n, 0) where n is fixed and m is even
(resp. odd), so that the parity of m and n remains the same, the orbits only depend
on e(m,n, 0). By definition e(m,n, 0) = e(m)e(n)e(m + n), hence these orbits only
depend on the parity of m+ n.

We will also need the description of orbits of Γg action on pairs (m,V ), where V is
a symplectic 2-dim subspace of (Z/2Z)2g, to calculate the extension to the boundary
of curves of compact type PV .

Proposition 2.4.5. The action of Γg on the set of pairs (m,V ), where V = span(n1, n2)
is a symplectic 2-dim subspace of (Z/2Z)2g, has only two orbits, they correspond to
the two cases when the number of even elements among {m+n1,m+n2,m+n1 +n2}
is 1 or 3.

Proof. Let X be the set of pairs (m,V ), Y be the set of quadruples {m,n1, n2, n1 +
n2}. Let the map q : Y → X be the quotient under the symmetric group S3

permuting the last three elements. Then q is Γg-equivariant. Denote the induced
map by q′ : Y/Γg → X/Γg.

By the previous characterization, the Γg action on Y has eight orbits only de-
pending on the parities of the triple {m+n1,m+n2,m+n1 +n2}, namely Y/Γ ' F3

2.
The map q′ forgets the order of elements in the triple. Hence the orbits of σ depend
only on the number of odd elements in the triple {m+ n1,m+ n2,m+ n1 + n2}.

Now by the following observation: for m odd and n1, n2 satisfying ω(n1, n2) 6= 0,
where ω is the standard symplectic form, we have e(m+n1+n2) = e(m+n1)·e(m+n2),
the only possibilities for the number of even elements in the triple {m+n1,m+n2,m+
n1 + n2} is then 1 and 3.

The work of extension of theta constants and theta gradients to the boundary
component Dn is done in [GH12], the vanishing orders are computed using Fourier-
Jacobi expansion of theta function (which we write in a way that will make it easier
to compute on ∆1):

θ
[
ε′ ε
δ′ δ

]([
τ ′ b
bt τ

]
, 0
)

=
∑

m′∈Z,m′′∈Zg−1

expπi
[
2(m′ +

ε′

2
)b(m′′ +

ε

2
)
]
A(m′,m′′) (2.4.2)
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where

A(m′,m′′) = exp πi

(
[(m′ +

ε′

2
)2τ ′ + (m′ +

ε′

2
)δ] + [(m′′ +

ε

2
)tτ(m′′ +

ε′

2
) + (m′′ +

ε

2
)tδ]

)
.

By the characterization of orbits of Γg we only need to work on a chosen boundary
component Dn0 corresponding to n0 = [ 0 0 ... 0

1 0 ... 0 ]. The vanishing order of θm(τ, 0) and
gradz θm(τ, 0) in τ is as follows:

Proposition 2.4.6. We have the following:

ordDn0
θm(τ, 0) =

{
0 if e(m+ n0) = 1
1
8

if e(m+ n0) = −1
(2.4.3)

ordDn0
gradz θm(τ, z)|z=0 =

{
(1

2
, 0, . . . , 0) if e(m+ n0) = −1

(1
8
, 1

8
, . . . , 1

8
) if e(m+ n0) = 1

(2.4.4)

The notation above indicates the vanishing order for each partial derivative ( ∂
∂z1
θ, ∂

∂z2
θ . . . ∂

∂zg
θ).

For the boundary ∆1, we can do a similar computation, which to our knowledge
has not been done in literature. Following [Yam80] and [Fay73], we will consider the
pinching/plumbing family of Riemann surfaces pinching a cycle homologous to zero.
For a Riemann surface C of genus g, we fix an element of π1(C) which maps to zero
in homology and is represented by a simple closed curve, and consider the plumbing
family C ⊂ M3 parameterized by shrinking the length s of this curve to zero: for
s 6= 0 the curve Cs is smooth, while for s = 0 the curve C0 lies in ∆1. We denote the
period matrix of Cs by τs. Recall from Section 2.2.2, we have τs has an expansion at
s = 0:

τs =

[
τ1 0
0 τ2

]
− s

[
0 R
RT 0

]
+O(s)

where τ1 ∈ Matg1×g1(C) and τ2 ∈ Matg2×g2(C) satisfying g1 + g2 = g, and R ∈
Matg1×g2(C) is some matrix independent of s. In our case g1 = 1, g2 = 2 and
substitute into (2.4.2), so for the theta functions on the image of this degenerating
family in A3 we have:

θ
[
ε′ ε
δ′ δ

]
(
[
τ ′ 0
0 τ ′′

]
, 0) = θ[ε′, δ′](τ ′, 0)× θ[ε, δ](τ ′′, 0) (2.4.5)

which vanishes if and only if ε′ · δ′ = 1 because both of the terms in the product
are odd functions with respect to z. The Taylor expansion of θm(τ, 0) with respect
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to b = s · R yields ordb θm(τ, 0) = 1 if ε′ · δ′ = 1, and it does not vanish generically
otherwise.

Take the component PV0 of p∗P corresponding to the following two-dimensional
symplectic subspace:

V0 = Span(n1 = [ 1 0 0
0 0 0 ], n2 = [ 0 0 0

1 0 0 ]).

The ū pre-image of PV0 is a component of p′∗∆1 inM3(2). Then from the discussion
above, one can conclude:

Proposition 2.4.7. On the boundary component ū∗PV0 in M3(2), we have:

ordb θm(τ, 0) =

{
1 if e(m+ n1) = e(m+ n2) = −1

0 otherwise
(2.4.6)

ordb gradz θm(τ, 0) =

{
(0, 1, 1) if e(m+ n1) = e(m+ n2) = 1

(1, 0, 0) otherwise.
(2.4.7)

The notation again indicates the vanishing order for each partial derivative.

Proof. We have the observation:

e(m+ n1) = (−1)(ε′+1)δ′+εtδ = (−1)δ
′ · e(m)

e(m+ n2) = (−1)ε
′ · e(m).

So the conditions in the proposition is the same as ε′ = δ′ = 1. And the computation
for gradients is parallel to the theta functions, we therefore omit it here.
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Chapter 3

Degeneration of Abelian
Differentials

In my paper collaborated with C.Norton [HN18], we fully generalize the results by
Yamada [Yam80], Fay [Fay73] and Taniguchi [Tan89] [Tan91]. I present this result
in this section, and will use the result to compute the variational formula for period
matrices in Section 4.

The term “variational formula” means an expansion in terms of both se and
ln |se|. Note that a variational formula in this sense is not synonymous to a power
series expansion in plumbing coordinates s. We will use specifically the term “s-
expansion” when we mean the latter, where no logarithmic terms are involved.
Moreover, throughout the section objects subscripted by “e” are indexed by the
set of edges of the dual graph of the stable curve C, and those by “v” are indexed
by the set of vertices of the dual graph.

3.1 Smoothing Riemann Surfaces

Let C be a stable nodal curve over the complex numbers. In this section we recall
the plumbing construction and fix the notation.

We first recall Definition 2.2.1 for the definition of dual graph. For future conve-
nience we write EC for the set of oriented edges e of ΓC . We will use −e to denote the
same edge as e but with the opposite orientation, and |e| = | − e| the corresponding
unoriented edge. Namely, q±e are the pre-images of the node q|e| in the normalization
of C. We write v(e) to denote the source of the oriented edge e, and write Ev for
the set of edges e such that v = v(e), that is, edges pointing out of the vertex v. We
denote |E|C = {|e|}e∈EC

the set of unoriented edges. The cardinality of |E|C is half
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of the cardinality of EC .

3.1.1 Plumbing Construction

We now recall the local smoothing procedure of a nodal curve C via plumbing. There
are many equivalent versions of the local plumbing procedure, we follow the one used
in [Yam80], [Wol13] and [GKN17].

Definition 3.1.1. (Standard plumbing) Let qe, q−e be the two preimages of the node
q|e| in the normalization of C. Let z±e be fixed chosen local coordinates near q±e.

Take a sufficiently small se = s−e ∈ C, we denote U±e = U se
±e := {|z±e| <

√
|se|} ⊂ C,

and denote γ±e := ∂U±e, which we call the seams. We orient each seam γe counter-
clockwise with respect to Ue. The standard plumbing Cse of C is

Cse := [C\Ue t U−e]/(γe ∼ γ−e),

where γe ∼ γ−e is identified via the diffeomorphism Ie : γe → γ−e sending ze to
z−e = se/ze. We call the identified seam γ|e|. The holomorphic structure of Cse is
inherited from C\U e t U−e.

Notation 3.1.2. 1. Since se = s−e, we can use the notation s|e| and denote s :=
{s|e|}|E|C . In later parts of the paper we will continue to use se (instead of s|e|)
for simplicity.

2. We write Cs for the global smoothing of C by plumbing every node q|e| with

plumbing parameter se, so that C = C0. Let Ĉv := Cv\ te∈Ev Ue, then Ĉv has

boundaries γ := {γe}e∈Ev . We use C̃v to denote the interior of Ĉv, and Ĉs to

denote the disjoint union of Ĉv for all v. We have Cs = Ĉs/{γe ∼ γ−e}|E|C .

3. Throughout this paper, in a specified component Cv, the subscripted ze is used
to denote the chosen local coordinate near the node qe for every e ∈ Ev for
the standard plumbing. The non-subscripted notation z is used to denote an
arbitary local coordinate of any point in C̃v.

4. For future convenience, we denote |s| := max|e|∈|E|C |se|.

Remark 3.1.3. Let u = (u1, . . . , uk) be some coordinates along the boundary stra-
tum of Mg that C lies in. One can think of the boundary stratum as a Cartesian
product of moduli of curves with marked points, and u is the combination of some
coordinates chosen on each moduli space. It is a standard result in Teichmüller
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theory (see [IT]) that the set of plumbing parameters s together with u give local
coordinates on Mg near C. We denote Cu,s a nearby curve of C, then C = Cu0,0
for some u0. Our results depend smoothly on u throughout the paper, and all the
bounds we derive in this paper hold for u varying in a small neighborhood of u0,
therefore we fix the coordinate u0 for C and consistently write Cs = Cu0,s.

3.1.2 Conditions on Residues

Our goal is to express the variational formulas for abelian differentials with at worst
simple poles on C in plumbing coordinates. Take a stable differential Ω on the stable
curve C in the boundary of the Deligne-Mumford compactification Mg. Denote Ωv

to be the restriction of Ω to the irreducible component Cv. We require Ωv to be a
meromorphic differential whose only singularities are simple poles at the nodes of Cv.
We denote the residue of Ωv at qe to be re (possibly zero). We have re = −r−e for
any e ∈ EC by the definition of the extended Hodge bundle ΩMg (see e.g., [HM]).

3.1.3 Jump Problem

The technique we use to construct the degenerating family of abelian differentials Ωs

along the plumbing family Cs is called (solving) the jump problem. The main idea is
that given a stable differential Ω on C, we have the mis-matches {Ω|γe − I∗e (Ω|γ−e)}
(which we call the jumps of Ω) on the seams γ±e at opposite sides of each node q|e|.
The solution to the jump problem is a “correction” differential η that matches the
jumps of Ω with opposite sign. By adding η to Ω on each irreducible component,
one obtains new differentials with zero jumps, that can thus be glued to get a global
holomorphic differential Ωs on Cs.

The jump problem is a special version of the classical Dirichlet problem. It was
developed and used in the real-analytic setting in a recent paper by Grushevsky,
Krichever and the second author [GKN17]. In the classical approach, the Cauchy
kernel on the plumbed surface is used, while in [GKN17] the fixed Cauchy kernels
on the irreducible components of the nodal curve are used, which is crucial to obtain
an L2-bound of the solution to the jump problem in plumbing parameters.

Our construction of the solution to the jump problem largely follows the method
in that paper. Instead of the real normalization condition used in [GKN17], we
normalized the solution by requiring that it has vanishing A-periods, where A is a set
of generators of a chosen Lagrangian subgroup of H1(Cs,Z) containing the classes of
the seams. This normalization condition allows us to work in the holomorphic setting
(as opposed to the real-analytic setting in [GKN17]) where we can use Cauchy’s
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integral formula. As a consequence, the construction of the solution is simpler.
Take a stable differential Ω on the stable curve C in the boundary of the Deligne-

Mumford compactification Mg. Denote Ωv to be the restriction of Ω to the irre-
ducible component Cv. We require Ωv to be a meromorphic differential whose only
singularities are simple poles at the nodes of Cv. We denote the residue of Ωv at qe
to be re (possibly zero). We have re = −r−e for any e ∈ EC by the definition of the
extended Hodge bundle ΩMg (see e.g., [HM]).

Definition 3.1.4. (Jump problem) The initial data of the jump problem is a collec-

tion φ of complex-valued continuous 1-forms {φe} supported on the seams γ of Ĉs,
satisfying the conditions

φe = −I∗e (φ−e),

∫
γe

φe = 0, ∀e ∈ EC . (3.1.1)

We call the set {φe}e∈EC
jumps. A solution to the jump problem is a holomorphic dif-

ferential ηs on Ĉs such that it is holomorphic on C̃s and continuous on the boundaries
γ, satisfying the condition

ηs|γe − I∗e (ηs|γ−e) = −φe ∀e ∈ EC .

Note that by letting {φe}EC
be the mis-matches {Ωv(e)|γe − I∗e (Ωv(−e)|γ−e)}EC

of
Ω, one can check that they satisfy (3.1.1). Therefore (Ω +ηs)|Cv(e)

and (Ω +ηs)|Cv(−e)

have no jump along γe at every node e, where ηs is the solution to the jump problem
with jumps the mis-matches of Ω. We can thus glue them along each seam to obtain
a required global differential Ωs on Cs.

Notation 3.1.5. For simplicity, we drop the subscript s in ηs throughout the paper.
But it is important to bear in mind that the solution depends on s as the size of the
seams varies with s.

Note that the solution to the jump problem is never unique: adding any differ-
ential on Cs gives another solution. We need to impose a normalizing condition to
ensure the uniqueness of the solution.

On each irreducible component Cv of the nodal curve C we choose and fix a
Lagrangian subspace of H1(Cv,Z), and we also choose and fix a basis of the subspace.

In Definition 3.1.1, the plumbed surface Ĉs is seen to be a subset of C. Since

the seams (as boundaries of Ĉs) are contractible on each Cv (without boundaries),
we know that the classes of the seams {[γ|e|]}|E|C together with the union of the
basis of the Lagrangian subspaces on the irreducible components span a Lagrangian
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subspace of H1(Cs,Z). We can fix this Lagrangian subspace of H1(Cs,Z) along the
plumbing family {Cs}. If some γ|e| is homologous to zero on Cs, as se approaches
0 the Lagrangian subspace of H1(Cs,Z) is invariant; if the class of γ|e| is non-zero,
then the rank of the Lagrangian subspace drops by 1 as the corresponding element
in the basis goes to zero.

We denote this choice of basis as {A1,s, . . . , Ag,s} where the firstm cyclesA1,s, . . . , Am,s
generate the subspace spanned by the seams {[γ|e|]}|E|C . This choice of indexing will
be used later in the computation of the period matrices in Section 4.2.

Definition 3.1.6. A solution to the jump problem is A-normalized if it has vanishing
periods over A1,s, . . . , Ag,s.

Note that this definition only depends on the choice of Lagrangian subspace of
H1(Cs,Z). In particular by our choice of Lagrangian subspace, an A-normalized
solution η must have vanishing periods over the seams:

∫
γ|e|

η = 0.

It is a standard fact (see e.g., [GH]) that any holomorphic A-normalized differen-
tial is identically zero on a compact Riemann surface without boundaries. Given two
A-normalized solutions η and η′ on Ĉs which are both holomorphic by definition, the
differential η−η′ has zero jumps on the seams and thus defines a global holomorphic
A-normalized differential on Cs, which is therefore identically zero. This shows the
uniqueness of an A-normalized solution.

3.2 General Variational Formula for Abelian Dif-

ferentials

In this section we construct the degenerating family Ωs in a plumbing family Cs,
and give the variational formula for Ωs in terms of s. As introduced in beggining
of this section, we plan to construct the solution to the jump problem that matches
the jumps of Ω0 = Ω. In the classical construction, such differentials are obtained by
integrating the jumps against the Cauchy kernel (see the following section) on the
whole Cs. In this approach the Cauchy kernel depends on s, and this dependence is
implicit and hard to determine.

Alternatively, following [GKN17], we fix the Cauchy kernels on each irreducible
components of the normalization of the limit stable curve C. On each component Cv
we integrate the jumps {Ωv(e)|γe − I∗e (Ωv(−e)|γ−e)}e∈Ev against the Cauchy kernel. In
this way we obtain a differential in the classical sense on each component Cv which
has jumps across the seams. We then restrict it to Ĉv, the component minus the
“caps”. In this way the original jumps are compensated by the newly-constructed
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differentials, but these differentials in turn produce new jumps. However, since the
L∞-norms of the newly-constructed differentials along the seams γ|e| in local coordi-
nates ze are controlled in an explicit way by s, the new jumps are also controlled by s.
By iterating the process one obtain a sequence of differentials, each term controlled
by a higher power of s. This sequence converges to the desired solution to the jump
problem.

3.2.1 The Cauchy Kernels

The construction of the A-normalized solution to the jump problem is parallel to
the construction of the almost real-normalized solution in [GKN17], which uses a
different normalizing condition, and the solution differential obtained there allows
one to control the reality of periods.

Given a smooth Riemann surface C ′, the Cauchy kernel is the unique object on
C ′ × C ′, satisfying the following properties:

1. It is a meromorphic differential of the second kind in p whose only simple poles
are at p = q and p = q0 with residue ± 1

2πi
;

2. It is an A-normalized differential in p:
∫
p∈Ai

KC′(p, q) = 0, for i = 1, . . . , g and

∀q ∈ C ′.

The Cauchy kernel can be viewed as a multi-valued meromorphic function in q
whose only simple pole is at p = q. Let {Ai, Bi} be a symplectic basis of H1(C ′,Z),
and let {vi} to be the basis of holomorphic 1-form dual to the A-cycles. The multi-
valuedness is precisely as follows (where q + γ denotes the value of the kernel at q
upon extension around the loop γ):

K(p, q + Ai) = K(p, q); K(p, q +Bi) = K(p, q) + vi(p).

Note that the Cauchy kernel is a section of a line bundle on C ′×C ′ satisfying the
first two normalization conditions above, and therefore it can be written in terms
of theta functions and the Abel-Jacobi map (for a reference of the theta function
see [Gun76]). We also remark that KC′ depends on the choice of the Lagrangian
subspace spanned by the A cycles. For completeness below we include the explicit
expression for the Cauchy kernel in terms of theta functions:

KC′(p, q) :=
1

2πi

∂

∂p
ln
θ(A(p)− A(q)− Z)

θ(A(p)− Z)
,
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where θ denotes the theta function on the Jacobian of C ′, Z denotes a general point
of the Jacobian, and A denotes the Abel-Jacobi map with some base point q0 ∈ Z.
The expression does not depend on the choice of Z.

We call ωC′(p, q) := 2πidqKC′(p, q) the fundamental normalized bidifferential of
the second kind on C ′ (also known as the Bergman kernel). Note that the term
“normalized” here means A-normalization. Namely,∫

p∈Ai

ωC′(p, q) = 0, i = 1, . . . , g.

The fundamental normalized bidifferential has its only pole of second order at p =
q. It is uniquely determined by its normalization along A-cycles, symmetry in the
entries, and the bi-residue coefficient along p = q. See notes [Ber06, Ch. 6] for a
review of the Cauchy kernel and fundamental bidifferential.

When C is a nodal curve with irreducible components Cv, we denote by Kv

(resp. ωv) the Cauchy kernel (resp. bidifferential) on each Cv. Recall that ze (or we,
when we need to distinguish between two distinct points in the same neighborhood)
denotes the local coordinates in some neighborhood Ve of qe that contains U e. We
define a local holomorphic differential Kv ∈ Ω1,0(te∈EvVe × te∈EvVe), by taking the
regular part of Kv:

Kv(ze, we′) :=

{
Kv(ze, we′) if e 6= e′,

Kv(ze, we)− dze
2πi(ze−we)

if e = e′.

Define ωv(ze, we′) = 2πidwe′
Kv(ze, we′), then similarly we have

ωv(ze, we′) =

{
ωv(ze, we′) if e 6= e′,

ωv(ze, we)− dzedwe

(ze−we)2
if e = e′.

For future convenience we fix the notation for the coefficients in the expansion of
ωv(ze, we′):

ωv(ze, we′) =: dwe′dze

(
βve,e′ +

∑
i,j≥0,i+j>0

βvi,jz
i
ew

j
e′

)
. (3.2.1)

Clearly we have βve,e′ = ωv(qe, qe′). When the context is clear, we drop the superscript
v and write simply βe,e′ instead.

3.2.2 Approach to Solving the Jump Problem

In this section we approach the jump problem directly in order to clarify the appear-
ance of a series expression for local differentials (3.2.3) below.
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We first look at the simplest example: g = 0. On P1 the Cauchy kernel is simply
K(z, w) = dz

w−z . Let γ be a Jordan curve bounding a region R on P1. Cauchy’s
integral formula implies that integrating K(z, w) against a differential f(w)dw holo-
morphic inside the region R along γ (negatively oriented with respect to R) vanishes
when z is in the exterior of R; it is equal to f(z)dz when z ∈ R. In other words
integrating f(w)dw against the Cauchy kernel defines a differential on P1 \ γ whose
jump along γ is precise f(z)dz.

When replicating this idea on Riemann surfaces of higher genus, integrating a
differential which is holomorphic inside a contractible loop γ against the Cauchy
kernel produces a holomorphic differential on that Riemann surface whose jump
across γ is given by the differential. Below z+ is an point outside γ and z− is inside
γ:

lim
z+→z′∈γ

∫
γ

K(z, w)f(w)dw − lim
z−→z′∈γ

∫
γ

K(z, w)f(w)dw = f(z)dz.

This follows directly from Cauchy’s integral formula. In [GKN17], or in general
when integrating against a jump which is not meromorphic, obtaining a result such
as above would require the Sokhotski-Plemelj formula (for reference see [Ro88]).

We would like to explicitly analyze the dependence of the solution to the jump
problem on the plumbing parameters. Solving the jump problem on Cs by integrating
against the Cauchy kernel on Cs, as described above is classical [Ro88], but it does
not allow one to study the dependence on plumbing parameters. Therefore the
approach we take, which was introduced in [GKN17], is integration against fixed
Cauchy kernels defined individually on each irreducible component of the nodal curve,
which are thus independent of s. The result will give an explicit expansion of the
solution in s, and constructing this solution is more involved.

The procedure of the construction of the solution is clarified below.
Step 1. We denote the holomorphic part of the differential Ωv(e)(ze) as ξ

(0)
e (ze) :=

Ωv(ze) − redze
ze

. It follows from the residue condition that the singular parts of the
differentials on the opposite sides of the node cancel. Thus the jumps can be written
as follows:

{Ωv(e)|γe − I∗e (Ωv(−e)|γ−e)}e∈Ev = {ξ(0)
e |γe − I∗e (ξ

(0)
−e |γ−e)}e∈Ev .

Step 2. We integrate the jumps against the Cauchy kernel. This integration
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defines a differential on the open Riemann surface C̃v,

η(1)
v (z) :=

∑
e∈Ev

∫
ze∈γe

Kv(z, ze)(ξ
(0)
e |γe − I∗e ξ

(0)
−e |γ−e)(ze)

=
∑
e∈Ev

∫
ze∈γe

Kv(z, ze)I
∗
e ξ

(0)
−e |γ−e(ze)

where the equality follows from Cauchy’s integral formula. We also extend η
(1)
v (z)

continuously to the boundary of the plumbing neighborhood.
We have an important remark here: The differential η

(1)
v (z) can be seen as our

first attempt at solving the jump problem, but it does not give the solution of the
desired jump problem. There is a new jump between Ωv(e) + η

(1)
v(e) and Ωv(−e) + η

(1)
v(−e)

on each node. The “error” comes from the holomorphic part of the Cauchy kernel.
Step 3. We look at this “error” explicitly. Locally near the seam γe0 , the

differential η
(1)
v (ze0) for

√
|se0| < |ze0 | < 1 has the following expression:∑

e∈Ev

∫
ze∈γe

Kv(ze0 , ze)I
∗
e ξ

(0)
−e (ze) =

∑
e∈Ev

∫
ze∈γe

Kv(ze0 , ze)I
∗
e ξ

(0)
−e (ze)+

1

2πi

∫
we0∈γe0

dze0
ze0 − we0

I∗e0ξ
(0)
−e0(we0).

Where we recall that Kv is the holomorphic part of Kv, and the last part involves the
integral of the singular part of the Cauchy kernel. The last integral can be evaluated
by Cauchy’s integral formula by noting that |sez−1

e | <
√
se where we point out that

I∗ is orientation reversing,

1

2πi
dze

∫
we∈γe

I∗e ξ
(0)
−e (we)

ze − we
= − 1

2πi

dze
ze

∫
w−e∈γ−e

w−eξ
(0)
−e (w−e)

w−e − sez−1
e

= −se
dze
z2
e

ξ̃
(0)
−e (

se
ze

) = I∗ξ
(0)
−e (ze) .

(3.2.2)
Therefore we have the following:

{η(1)
v(e)|γe − I

∗
e η

(1)
v(−e)|γ−e}e∈Ev =− {Ωv(e)|γe − I∗eΩv(−e)|γ−e}e∈Ev

+
( ∑
e′∈Ev

∫
ze′∈γe′

Kv(e)(ze, ze′)I
∗
e′ξ

(0)
−e′(ze′)

− I∗
∑

e′∈Ev(−e)

∫
ze′∈γe′

Kv(−e)(z−e, ze′)I
∗
e′ξ

(0)
−e′(ze′)

)
e∈Ev

.
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Thus we see that η
(1)
v (z) has the desired jump plus the jump of (local) holomorphic

differentials
∑

e′∈Ev

∫
ze′∈γe′

Kv(ze, ze′)I
∗
e′ξ

(0)
−e′(ze′), which is exactly the “error”.

Step 4. We give an estimate on the size of the “error”. We show in Lemma 3.2.2
below that the L∞-norm of the “error” is controlled by the L∞-norm of the plumbing
parameters |s|. We therefore apply the jump problem again to further reduce the gap.
Finally, our approach to solving the jump problem is by integrating against a series
constructed from the recursively appearing jump problems. We prove (in Lemma
3.2.2) that the “errors” produced in the k-th step of the recursion is controlled by
the k-th power of |s|, and we use this to show the convergence of the desired solution
of the jump problem.

In the following section we first define the “errors” ξ
(k)
e (ze) in each step, and then

we prove Lemma 3.2.2 which bounds each by a power of the plumbing parameters,
thus the series defined by adding the “errors” converges. And at last we prove that
the solution to the jump problem, denoted ηv, is the result of integrating this series
against the Cauchy kernel on each irreducible component.

3.2.3 Construction of the A-normalized Solution to the Jump
Problem

We construct the A-normalized solution to the jump problem as suggested by the
computation above, namely we define local holomorphic differentials, which can be
understood as the recursively appearing jumps, and show the series converges. The
resulting local differentials are such that when integrated against the Cauchy kernel
on each irreducible component of the nodal curve, the jump is given by the first term
in the series.

Let Ω be a stable differential on the stable curve C. We can define recursively the
following collection of holomorphic differentials described locally in the neighborhood
of each node :

k = 0 : ξ(0)
e (ze) := Ωv(ze)−

redze
ze

;

k > 0 : ξ(k)
e (ze) :=

∑
e′∈Ev

∫
we′∈γe′

Kv(ze, we′) · I∗e′ξ
(k−1)
−e′ (we′).

(3.2.3)

Note ξ
(k)
e for k > 0 depend on s as γe and I∗ depend on s. We suppress this in

the notation.
Let ΓC be the dual graph of C. Let lk := (e1 . . . , ek) be an oriented path of

length k in the dual graph, starting from the vertex v = v(e1). We denote Lkv the
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collection of all such paths starting from the vertex v. We remark that given the
Cauchy kernels on each component, the differential ξ

(k)
e1 (ze1) is determined by the

collection of local differentials {ξ(0)
−ek(w−ek)}Lk

v
where ek is the ending edge of lk ∈ Lkv .

We define ξe(ze) :=
∑∞

k=0 ξ
(k)
e (ze). Since Kv(ze, we′) is holomorphic in the first

variable, we have
∫
γe
ξ

(k)
e = 0 for any e and k, therefore∫

γe

ξe = 0, ∀e ∈ EC . (3.2.4)

The convergence of this series is ensured by the following lemma, whose proof follows
very much along the lines of [GKN17]. We include the proof here for completeness.
The essential ingredient of the proof is the fact that our Cauchy kernels and the
bidifferentials are defined on the irreducible components, thus they are independent
of the plumbing parameters s.

Notation 3.2.1. 1. Throughout this section and Section 4 we use the tilde nota-
tion to denote the function corresponding to a given differential in a given local
coordinate chart, for instance K(z, w) =: K̃(z, w)dz, ω(z, w) =: ω̃(z, w)dzdw,

and also ξ
(k)
e (ze) := ξ̃

(k)
e (ze)dze.

2. To simplify notation, we denote

ξ̃e := ξ̃(0)
e (qe) (3.2.5)

at every node qe.

3. When the function ω̃v(z, w) of the bidifferential ωv(z, w) is evaluated in the
second variable at any node qe, by an abuse of notation, we write ωv(z, qe) =

ω̃v(z, qe)dz for z ∈ C̃v.

4. Recall that |s| := maxe∈EC
|se|. For future convenience, for any collection of

holomorphic functions on the unit disks neighborhood at each node f := {fe ∈
O(Ve)}e∈EC

, we define the following L∞-norms:

|fe|s := sup
ze∈γe

|fe(ze)|; |f |s := max
e∈EC

|fe|s.

Moreover by the Schwarz lemma on Ue = {|ze| <
√
|se|} we have that |f |s ≤

|f |1
√
|s|ord f

, where ord f := mine∈EC
ordqe fe.
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Lemma 3.2.2. For sufficiently small s, there exists a constant M1 independent of
s, such that the following estimate holds:

|ξ̃(k)|s ≤ (|s|M1)k|ξ̃(0)|s. (3.2.6)

In particular, the local differential ξe(ze) is a well-defined holomorphic differential at
each node e ∈ EC.

Proof. For all v and all e, e′ ∈ Ev, the Cauchy kernel K̃v(ze, we′) is analytic in
both variables and independent of s. Thus there exists a uniform constant M2

(independent of s) such that for any ze ∈ Ve,

|K̃v(ze, we′)− K̃v(ze, 0)| < M2|we′ |.

This in turn implies

max
we′∈γe′

∣∣∣∣∣K̃(ze, we′)− K̃(ze, 0)

w2
e′

∣∣∣∣∣ < M2√
|se′ |

. (3.2.7)

By (3.2.4), we have∣∣∣∣∣
∫
we′∈γe′

K̃v(ze, we′)I
∗
e′ξ

(k−1)
−e′ (we′)

∣∣∣∣∣ =

∣∣∣∣∣
∫
we′∈γe′

[
K̃v(ze, we′)− K̃v(ze, 0)

]
I∗e′ξ

(k−1)
−e′ (we′)

∣∣∣∣∣
= |se′ |

∫
we′∈γe′

∣∣∣∣∣K̃(ze, we′)− K̃(ze, 0)

w2
e′

∣∣∣∣∣ ∣∣∣I∗e′ ξ̃(k−1)
−e′ (we′)

∣∣∣ dwe′ < |se′|M2 · 2π|ξ̃(k−1)
−e′ |s

The second equality is the result of pulling back dw−e′ . Note that the last in-

equality is due to the fact that for we′ ∈ γe′ , we have |I∗e′ ξ̃
(k−1)
−e′ (we′)| = |ξ̃(k−1)

−e′ (
se′
we′

)| ≤
|ξ̃(k−1)
−e′ |s, therefore the integration over γe′ gives a

√
|se′| that cancels the one in

(3.2.7). By definition of ξ̃
(k)
e , there exists a constant M1 independent of s and k such

that,

|ξ̃(k)
e |s ≤ |s|M1 max

e′∈Ev(e)

|ξ̃(k−1)
−e′ |s < |s|M1|ξ̃

(k−1)|s.

Note that the RHS is independent of e and v, we can thus pass to the maximum

over e ∈ EC of the LHS and obtain |ξ̃(k)|s < |s|M1|ξ̃
(k−1)|s. By induction, we have

the desired estimate (3.2.6).

When |s| < 2M−1
1 , the geometric series |ξ̃|s :=

∑∞
k=0 |ξ̃

(k)|s converges to a limit

bounded by
(

1 + |s|M1

1−|s|M1

)
|ξ̃(0)|s < 2|ξ̃(0)|s < 2

√
|s|ord ξ̃

(0)

|ξ̃(0)|1. We therefore con-

clude that the local differential ξe(ze) is analytic in s.
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We now construct the solution to the jump problem with initial data {Ωv(e)|γe −
I∗e (Ωv(−e)|γ−e)}. We define the following differential on Ĉv:

ηv(z) =
∑
e∈Ev

∫
ze∈γe

Kv(z, ze)I
∗
e ξ−e(ze). (3.2.8)

where z ∈ C̃v. By extending continuously to the seams, the differential ηv is defined
on Ĉv.

Recall ξe(ze) :=
∑∞

k=0 ξ
(k)
e (ze). For future use we denote,

η(k)
v (z) :=

∑
e∈Ev

∫
ze∈γe

Kv(z, ze) · I∗e ξ
(k−1)
−e (ze). (3.2.9)

In this notation we have ηv :=
∑∞

k=1 η
(k)
v .

We claim the differentials ηv(z) are single-valued. This follows from noticing
the multi-valuedness of K(z, ze) along Bi depends exclusively on z, and thus any
multi-valuedness is canceled after integration against I∗e ξ−e by (3.2.4).∫
ze∈γe

Kv(z+Bi, ze))·I∗e ξ−e(ze)−
∫
ze∈γe

Kv(z, ze))·I∗e ξ−e(ze) = vi(z)

∫
ze∈γe

I∗e ξ−e(ze) = 0

Although the Cauchy kernel Kv has a simple pole with residue (2πi)−1 at the base
point q0, it follows from (3.2.4) that ηv(z) is holomorphic at q0 and hence defines a

holomorphic differential on C̃v. Let γq0 be a small loop around the point q0. Here we
verify integrating ηv along γq0 is zero. The paths γq0 does not intersect any γe, and we
could exchange the order of integration in z and ze. The integral of Kv(z, ze) along
z ∈ γq0 is (2πi)−1 for any q. Thus by (3.2.4) integrating the result times I∗e ξ−e(ze)
along γe is zero.

We recall that the L2-norm of a holomorphic differential ω on a smooth Riemann
surface C ′ is given by ||ω||L2 := i

2

∫
C′
ω∧ω. Note that both ξe(ze) and ηv(z) implicitly

depend on s. The following theorem establishes an L2 bound on ηv, and shows that
it is the desired solution to the jump problem.

Theorem 3.2.3. Let C be a stable nodal curve with irreducible components Cv, Ω
a stable differential on C. Let Ωv be the restriction of Ω on Cv. For |s| small
enough, {ηv} is the unique A-normalized solution to the jump problem with jump
data Ωv(e)|γe − I∗e (Ωv(−e)|γ−e). Moreover, there exists a constant M independent of v
and s, such that the following L2-bound of the solution holds:

||ηv||L2 <
√
|s|

1+ord ξ̃
(0)

M |ξ̃(0)|1. (3.2.10)
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Therefore {Ωv,s := Ωv + ηv} defines a holomorphic differential when all |se| > 0,
denoted Ωs on Cs, satisfying Ωv = lims→0 Ωs|Cv uniformly on compact sets of Cv \
∪e∈Evqe.

Proof. Step 1. We first show that the solutions ηv are A-normalized. Recall that
our choice of the maximal Lagrangian subspace of H1(Cs,Z) contains the subspace
generated by the classes of the seams γ|e|. By the fact that {Kv(z, ze)}v,e are A-

normalized in the first variable, the integral
∫
z∈Ai,s

η
(k)
v (z) is zero if the class [Ai,s]

does not belong to the span of the seams {[γ|e|]}.
In order to compute the integrals of η

(k)
v along the seams, we compute the local

expression for η
(k)
v in the neighborhood {|√se| < |ze| < 1}. Note that the Cauchy

kernel Kv(ze, we′) is holomorphic if e 6= e′, and it has a singular part dz
2πi(ze−we)

when
both variables are in the neighborhood of the same nodes. Therefore we have

η(k)
v (ze) =

dze
2πi

∫
we∈γe

1

ze − we
I∗e ξ

(k−1)
−e (we) +

∑
e′∈Ev

∫
we′∈γe′

Kv(ze, we′)I
∗
e′ξ−e′(we′).

=
dze
2πi

∫
we∈γe

1

ze − we
I∗e ξ

(k−1)
−e (we) + ξ(k)

e (ze)

=
(
I∗e ξ

(k−1)
−e + ξ(k)

e

)
(ze),

(3.2.11)

the equality follows from Cauchy’s integral formula, see (3.2.2) for details. Note that

η
(k)
v admits continuous extension to the boundary γe. By this expression and property

(3.2.4), we conclude that
∫
z∈γe η

(k)
v (z) = 0 and hence the solution ηv is A-normalized.

Step 2. We show that the differentials {Ωv,s} have zero jumps among the seams
γ = {γe}e∈EC

. It is sufficient to prove

(
Ωv(e) − I∗eΩv(−e)

)
|γe(ze) = −

∞∑
k=1

(
η

(k)
v(e) − I

∗
e η

(k)
v(−e)

)
|γe(ze). (3.2.12)

First we note that by the opposite residue condition (re = −r−e) the singular
parts of Ωv(e) and I∗eΩv(−e) cancels, therefore we have

(
Ωv(e) − I∗eΩv(−e)

)
|γe(ze) =(

ξ
(0)
e − I∗e ξ

(0)
−e |γe

)
(ze).

For k ≥ 1, by (3.2.11) the jumps along the identified seams for each terms η
(k)
v

37



can be analyzed.(
η(k)
v − I∗e η

(k)
v(−e)

)
(ze) =

(
I∗e ξ

(k−1)
−e + ξ(k)

e − ξ(k−1)
e − I∗e ξ

(k)
−e

)
(ze)

=
(
ξ(k)
e − I∗e ξ

(k)
−e

)
(ze)−

(
ξ(k−1)
e − I∗e ξ

(k−1)
−e

)
(ze).

Therefore
∑∞

k=1

(
η

(k)
v(e) − I∗e η

(k)
v(−e)

)
|γe(ze) = −

(
ξ

(0)
e − I∗e ξ

(0)
−e |γe

)
(ze), and we have

shown (3.2.12).
Step 3. We want to prove the L2-bound (3.2.10) for the solution. We take the

L∞ norm of η̃
(k)
v (ze) := η

(k)
v (ze)/dze on the seams. By (3.2.11) we have

|η̃(k)
v |s := max

|ze|=|
√
se|
|η̃(k)
v (ze)| ≤ |I∗e ξ̃

(k−1)
−e (ze)|s + |ξ̃(k)

e |s. (3.2.13)

By Lemma 3.2.2, we know that for any k ≥ 1, there exists a constant M ′ such
that |η̃(k)

v |s < (M ′|s|)k−1|ξ̃(0)|s. By the summing the series, we have |η̃v|s < M ′′|ξ̃(0)|s
for some constant M ′′.

Take any base point z0 ∈ Cv, define πv(z) :=
∫ z
z0
ηv. Then since dπv = ηv, by

Stokes theorem, we have

||ηv||2L2 =
i

2

∫
Ĉv

ηv ∧ ηv =
∑
e∈Ev

∫
γe

πvηv < M ′′|ξ̃(0)|s
∑
e∈Ev

∫
zeγe

|πv(ze)|dze.

Since ηv is bounded on γe, by taking z0 ∈ γe the length of arc from z0 to ze ∈
γe is at most 2π

√
|s|. Therefore we can bound |πv|s = |πv|s by 2π

√
|s||η̃v|s =

2πM ′′
√
|s||ξ̃(0)|s. At last we have

||ηv||2L2 < |s| · (2πM ′′|ξ̃(0)|s)2 ·#Ev.

Thus by letting M := 2πM ′′√maxv #Ev, since |ξ̃(0)|s ≤ |ξ̃
(0)|1

√
|s|ord ξ̃

(0)

we have the
required L2-bound (3.2.10) for ||ηv||L2 .

Note that for holomorphic differentials, convergence in L2 sense implies uniform
convergence on compact sets. Therefore we conclude that Ωv = lims→0 Ωs|Cv uni-
formly on compact sets of Cv \ ∪e∈Evqe.

Lastly, the holomorphicity of Ωv,s for s > 0 follows from the holomorphicity of Ωv

away from the nodes and the holomorphicity of ηv on C̃v. Recall the Cauchy kernel
is holomorphic in C̃v except at q0, and we’ve verified that ηv does not have a pole at
q0.
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In fact, by construction (3.2.9) we can compute the s-expansion of each summand

η
(k)
v explicitly, and thus the s-expansion of the differential Ωs. For future applications

and comparisons to earlier works, we compute the first term in the s-expansion for
each summand.

Proposition 3.2.4. Let lk = (e1, . . . , ek) ∈ Lkv be a path of length k in ΓC starting
from a given vertex v = v(e1). Denote s(lk) =

∏k
i=1 sei, and β(lk) =

∏k−1
j=1 β−ej ,ej+1

.

Then the expansion of η
(k)
v is given by

η(k)
v (z) = (−1)k

∑
lk∈Lk

v

s(lk) · ωv(z, qe1)β(lk)ξ̃−ek +O(|s|k+1), (3.2.14)

where z ∈ Ĉv, βe,e′ is defined in (3.2.1), and ξ̃e is defined in (3.2.5).

Proof. Fix a vertex v in ΓC . First for a fixed e ∈ Ev, we show the following expansion
for ξ

(k)
e for k > 0:

ξ(k)
e (ze) = (−1)k

∑
lk∈Lk

v

s(lk) · ωv(ze, qe1)β(lk)ξ̃−ek +O(|s|k+1). (3.2.15)

This is derived by induction. For k = 1, we have L1
v = Ev, and l1 = (e1) where

e1 ∈ Ev. We compute

ξ(1)
e (ze) =

∑
e1∈Ev

∫
we1∈γe1

Kv(ze, we1)I
∗
e1
ξ

(0)
−e1(we1)

= −
∑
e1∈Ev

∫
we1∈γe1

Kv(ze, we1)
se1
w2
e1

· ξ̃−e1dwe1 +O(s2
e1

)

= −
∑
e1∈Ev

se1ωv(ze, qe1)ξ̃−e1 +O(|s|2),

(3.2.16)

where the last equality follows from Cauchy’s integral formula.
For the general case, by applying the inductive assumption (3.2.15) to I∗e1ξ

(k−1)
−e1 ,

we have

I∗e1ξ
(k−1)
−e1 = (−1)k−1I∗e1

(
ωv(−e1)(w−e1 , qe2)

)
·

∑
lk−1∈Lk−1

v(−e1)

s(lk−1)β(lk−1)ξ̃−ek +O(|s|k).

Therefore it suffices to prove that for any e1 ∈ Ev we have:∫
we1∈γe1

Kv(ze, we1)I
∗
e1

(
ωv(−e1)(w−e1 , qe2)

)
= −se1ωv(ze, qe1)β−e1,e2 +O(|s|2).

(3.2.17)
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This is due to I∗e1
(
ωv(−e1)(w−e1 , qe2)

)
= I∗e1 ((β−e1,e2 + o(w−e1))dw−e1) = − se1β−e1,e2dwe1

w2
e1

+

O(|s|2) and Cauchy’s integral formula. We conclude the induction for (3.2.15).

The expansion (3.2.14) for η
(k)
v (z) is obtained by integrating ξ

(k−1)
e1 (ze1) against

Kv(z, ze1), and the computation is exactly the same as (3.2.17):∫
we1∈γe1

Kv(z, we1)I
∗
e1

(
ωv(−e1)(w−e1 , qe2)

)
= −se1ωv(z, qe1)β−e1,e2 +O(|s|2),

where z ∈ Ĉv. The proof is thus completed.

Remark 3.2.5. It is important to point out that the expansion (3.2.14) is not the
s-expansion of the solution ηv, while the latter is also computable by expanding
the error term in (3.2.16) using the higher order coefficients βvij of ωv. The explicit
formula for the case where ΓC contains only one edge is given by [Yam80], and will
be recomputed (up to the second order) in Section 4.3.

However, as we highlighted by the proposition, it is often more useful and practical
to consider ηv as the series

∑∞
k=1 η

(k)
v , given the bound (3.2.13) and the recursive

construction (3.2.9). In most cases it is already useful to know the first non-constant
term of Ωv,s, which the proposition suffices to give:

η(1)
v (z) = −

∑
e∈Ev

seωv(z, qe)ξ̃−e +O(s2
e).

3.3 Jump Problem for Higher Order Plumbing

In this section we construct the solution to the jump problem with the initial data
arising from the jumps of an abelian differential that has higher order zeroes and
poles at the nodes of the limit curve. Following the terminology in [Gen15] and
[BCGGM18], we call the procedure of smoothing such a differential higher order
plumbing. We obtain an alternative proof of the sufficiency part of the main the-
orem in [BCGGM18]. Moreover, our approach gives more information than the
two constructions given in that paper. A brief review of definitions and results in
[BCGGM18] has been given in Section 2.3.

The proof of sufficiency of this result requires a construction of a family of abelian
differentials in the smooth locus of the strata that degenerates to the limit differen-
tial (C,Ω), given the compatible data (Ξ, l). In [BCGGM18], the authors give two
proofs to the sufficiency by: 1) constructing a one complex parameter family using
plumbing; 2) constructing a one real parameter family via a flat geometry argument.
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We now give a third argument via the jump problem approach. Moreover, the num-
ber of parameters over C in our degenerating family is equal to the number of levels
in ΓC minus 1. Similar to the plumbing argument used in [BCGGM18], we will also
use a modification differential to match up the residues. Furthermore, the original
argument in [BCGGM18] on the operation merging the zeroes will also be applied
here to embed the family into the stratum.

Take a plumbing family {Cs} as in Definition 3.1.1 such that C = C0, and
s = {s|e|}|e|∈|E|C are the plumbing parameters. Denote the restriction of Ξ on the
irreducible component Cv by Ξv. Let Nl be the number of levels in ΓC . Without loss
of generality, we assume the range of the level function l to be {0,−1, . . . , 1−Nl}.

Assume j = lv(−e), recall that Ej
v = {e ∈ Ev : lv(−e) = j} as defined in condition

(5). To glue the twisted differentials Ξv and Ξv(−e), we need to add a modification
differential φv,j to Ξv in order to match the residue (denoted by r−e) of Ξv(−e). The
modification differential φv,j is chosen to be any differential which has simple pole at
qe with residue re = −r−e, where e ∈ Ej

v. The global residue condition ensures that
the sum of the residues of φv,j is zero. The existence of φv,j is due to the classical
Mittag-Leffler problem.

For e ∈ Ej
v, assume Ξv has a zero of order ke at the node qe, then by Condition

(2), Ξv(−e) has a pole of order ke + 2 at the node q−e. In order to apply the jump
problem to obtain a global differential, the following conditions need to be imposed
on the plumbing parameters s:

(i) For any e, e′ ∈ Ej
v, we have ske+1

e = s
ke′+1
e′ ;

(ii) For any two vertices v0, v1 at different levels (namely lv0 6= lv1), for any two
paths {ei}i∈I and {ẽj}j∈J connecting v0, v1 with lv(ei) > lv(−ei) (∀i ∈ I) and the

same for {ẽj}, we have
∏

i∈I s
kei+1
ei =

∏
j∈J s

kẽj +1

ẽj
=: s(v0, v1);

(iii) If lv0 = lv1 , we require that s(v0, v1) = 1.

It is important to remark that for such a tuple of plumbing parameters one can
deduce that s(v0, v1) depends only on the levels of v0, v1, namely, s(v0, v1) = s(v′0, v

′
1)

as long as lv0 = lv′0 and lv1 = lv′1 . We can thus choose one parameter for each level
drop:

Definition 3.3.1. Let ti,j := s(v0, v1) where v0, v1 are two vertices at level i, j
respectively. The tuple t := {t−1, . . . , t1−Nl

} where ti := t0,i/t0,i+1 are called the
scaling parameters.
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Note that ti,j =
∏j

k=i tk. The theorem below gives a degenerating family of
abelian differentials parametrized by t with central fiber the differential (C,Ω) in the
boundary of the IVC.

Theorem 3.3.2. Let (C,Ω, p1, . . . , pn) be a stable pointed differential in a given
stratum ΩMg,n(µ). Given the triple (C,Ξ, l) where Ξ is a twisted differential of type
µ on C and l is a full level function on ΓC, such that Ξ is compatible with Ω and l,
there exists a degenerating family of Abelian differentials (Ct,Ξt) ⊂ ΩMg,n(µ) such
that limt→0(Ct,Ξt) = (C,Ω), where t are the scaling parameters.

Proof. The proof is completed in three steps. Firstly we construct via the jump
problem method a degenerating family of abelian differentials (Ct, Ξ̂t) in ΩMg,n.
Then we show that the family lies sufficiently “near” the stratum, that is, we show
that the solution to the jump problem is uniformly controlled by some positive power
of |t| := max1≤i≤Nl−1 |ti|. Lastly we apply [BCGGM18, Lemma 4.7] to merge the

zeroes of Ξ̂t to obtain a family contained in the stratum.
For the jump problem construction, we only need to construct the correct initial

data {ξ(0)
e }, the rest of the construction is given by (3.2.3) and (3.2.8).

Assume that the vertex v lies on the i-th level. We define

Ξ̂v := Ξv +
∑
j<i

ti,jφv,j,

where φv,j is the modification differential we defined earlier.
We now apply the jump problem construction to glue the differentials at the

opposite sides of each node q|e|. Assume v(e) and v(−e) are on the levels i and j

respectively. We glue t0,i · Ξ̂v and t0,j · Ξ̂v(−e) from the opposite sides of the node q|e|.
Namely, let

ξ(0)
e (ze) := t0,i ·

(
Ξ̂v(ze)− ti,jI∗eP (Ξ̂v(−e))(ze)

)
;

ξ
(0)
−e (z−e) := t0,j · hol(Ξ̂v(−e))(z−e),

where P (·) denotes the principal part of a differential, and hol(·) denotes the holo-
mophic part. Conditions (i) ∼ (iii) ensures that t0,iti,j = t0,j.

Note that the initial data t0,i(Ξ̂v − I∗e Ξ̂v(−e))(ze) is equal to (ξ
(0)
e − I∗e ξ

(0)
−e )(ze). In

order to apply (3.2.3) and (3.2.8) to construct the A-normalized solution to the jump

problem with this initial data, we need to show that ξ
(0)
e (ze) is holomorphic in ze. It

is immediate because the pair of differentials Ξ̂v and ti,jΞ̂v(−e) have opposite residues
at the node q|e| and the pull-back of the principal part by Ie is holomorphic.
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We recall here the construction of the A-normalized solution in (3.2.3) and (3.2.9):
For k ≥ 1, we define

for ze ∈ Ue : ξ(k)
e (ze) :=

∑
e′∈Ev

∫
we′∈γe′

Kv(ze, we′) · I∗e′ξ
(k−1)
−e′ (we′);

for z ∈ Ĉv : η(k)
v (z) :=

∑
e∈Ev

∫
ze∈γe

Kv(z, ze) · I∗e ξ
(k−1)
−e (ze).

By Theorem 3.2.3, ηv :=
∑

k≥1 η
(k)
v (z) is the A-normalized solution to the jump

problem of higher order zeroes and poles.
Similar to the proof of Theorem 3.2.3, we need to show that ηv is convergent by

giving a L2-bound for the solution ηv. We can repeat the proof in Lemma 3.2.2 and
Theorem 3.2.3 to get (3.2.10), which we recall as

||ηv||L2 <
√
|s|

1+ord ξ̃
(0)

M |ξ̃(0)|1

for some constant M . We have shown above that ξ
(0)
e (ze) is holomorphic for every e,

therefore ord ξ̃
(0)

= mine ordqe ξ̃
(0)
e ≥ 0. The only thing left to show here is that |ξ̃(0)|1

is bounded by some power of t, in other words, the power of t in ξ
(0)
±e is non-negative

for any e.
Note that the power of t in ξ

(0)
−e is automatically non-negative, we only need to

show the same holds for ξ
(0)
e . Note that when pulling back the principal part of Ξ̂v(−e)

through Ie, its lowest order term z−ke−2
−e dz−e contributes a factor of s−ke−1

e , which is
seen to be equal to t−1

i,j by condition (ii). Since all other terms in the principal part

contribute factors of lower powers of se, the power of t in ξ
(0)
e must be non-negative.

We can thus apply the same argument as in the proof of Lemma 3.2.2 and Theorem
3.2.3 and achieve an L2-bound for ηv.

Let Ξ̂v,t := t0,iΞ̂v + ηv for any v at level i, then by the argument in the proof of

Theorem 3.2.3, we have that {Ξ̂v,t}v glues to a global differential Ξ̂t on Ct such that

limt→0(Ct, Ξ̂t) = (C,Ω).
Note that by adding the modification differential φv,j and the solution differential

ηv to Ξv, the zeroes of multiplicitymi of Ξv at pi ∈ Cv are broken intomi simple zeroes
in a small neighborhood Ui of pi. The radius of the neighborhood is controlled by
the norm of the added differentials. The modification differentials φv,j are multiples
of ti,j, and the argument above gives the L2-bound on ηv. We can thus merge the

zeroes of Ξ̂t using the arguments in [BCGGM18, Lemma 4.7] to get the wanted
degenerating family (C,Ξt) with ordpi Ξt = mi, and limt→0(Ct,Ξt) = (C,Ω).
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Although the differential Ξt depends on the choice of the modification differentials
{φLv }, the existence of such a degenerating family does not rely on the choice of {φLv }.
Theorem 3.3.2 in particular implies:

Corollary 3.3.3. [BCGGM18, Sufficiency Part of Theorem 1.3] A stable pointed

differential (C,Ω, p1, . . . , pn) lies in the boundary of PΩMinc

g,n(µ) if there exist a twisted
differential Ξ of type µ and a full level function l such that Ξ is compatible with Ω
and l.
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Chapter 4

Degeneration of Period Matrices

4.1 General Periods

Using the construction (3.2.8) and expansion (3.2.14) of the stable differential Ω, we
can compute the variational formula of its periods.

Notation 4.1.1. For a stable curve C and its dual graph ΓC , define the map
p : H1(C,Z) → H1(ΓC ,Z) as follows: for the class of a homological (oriented) 1-
cycle [γ] on C, p([γ]) is the class of the oriented loop in the dual graph that contains
the vertices corresponding to the components that γ passes, and the edges corre-
sponding to the nodes contained in γ. The orientation of p([γ]) is inherited from
the orientation of γ. It is easy to see that the map is surjective, but not injective
unless all components have genus zero. Moreover, if γ is completely contained in
some component Cv, then p([γ]) = 0.

Let α be any closed oriented path on the stable curve C, such that p([α]) 6= 0
(the zero case is trivial in our discussion below). For any small enough s, there exists

a small perturbation αs of α such that the restriction of αs on Ĉs glues to be a path
on Cs. This can be seen by requiring 1) αs∩ γe = I−1

e (αs∩ γ−e) for any seam γe that
α passes; 2) αs does not totally contain any seam γe. By an abuse of notation, the
path on Cs after the gluing is also denoted by αs.

The following theorem computes the leading terms in the variational formula of∫
αs

Ωs. To this end, recall that Ue = {|ze| <
√
|se|} and denote We = {|ze| < |se|}

and Ve = {|ze| < 1}.

Theorem 4.1.2. For any stable differential Ω on C with residue re at the node qe,
let α be any closed oriented path on C such that p([α]) 6= 0 and {e0, . . . , eN−1} be the
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collection of oriented edges that p([α]) passes through (with possible repetition), such
that v(−ei−1) = v(ei), and let eN = e0. Then we have∫

αs

Ωs =
N∑
i=1

(rei ln |sei |+ ci + li) +O(|s|2), (4.1.1)

where ci and li are the constant and linear terms in s respectively, explicitly given as

ci = lim
|s|→0

(∫ z−1
ei

(
√
|sei |)

z−1
−ei−1

(
√
|sei−1 |)

Ωv −
1

2
(rei−1

ln |sei−1
|+ rei ln |sei |)

)
, (4.1.2)

li := −
∑

e∈Ev(ei)

seξ̃−e · σe, (4.1.3)

where ξ̃e is defined in (3.2.5), and

σe :=



lim|s|→0

(
z−1
ei

(sei )∫
q−ei−1

ωv(ei)(zei , qei) + 1
sei

)
if e = ei;

lim|s|→0

 qei∫
z−1
−ei−1

(sei )

ωv(ei)(z−ei−1
, q−ei−1

)− 1
sei

 if e = −ei−1;∫ qei
q−ei−1

ωv(ei)(z, qe) otherwise.

(4.1.4)

Remark 4.1.3. Prior to the proof of the theorem we have two remarks. Firstly,
the period integral in (4.1.1) depends not only on p[α], but also on the class of the

actual path α. The integration over α∩ Ĉv gives precisely the constant term (4.1.2).
Secondly, note that the limits of the integrals in (4.1.4) are singular because the
integrants have a double pole on the nodes. However the singular parts are canceled
by ± 1

sei
, so the limits are indeed well-defined. Computations leading to both remarks

are contain in the proofs of the following lemma and the theorem.

To prove the theorem, it suffices to compute the integral on each component
Cv(ei), i = 1 . . . N that α passes through. To simplify notation, throughout the proof
below we consider α only passing each component once, while the proof also holds for
the general case. Let us denote the intersection of αs with ∂Uei , ∂Vei , ∂U−ei−1

, ∂V−ei−1

respectively by uei , vei , u−ei−1
and v−ei−1

. Then αs|Cv(ei)
breaks into three pieces

bounded by the four points:

1. αs|V−ei−1\U−ei−1
connecting u−ei−1

and v−ei−1
;
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2. αs|Ĉv(ei)
\Vei∪V−ei−1

connecting vei and v−ei−1
;

3. αs|Vei\Uei
connecting vei and uei ;

For convenience, by a composition of a rotation we can assume that uei =
z−1
ei

(
√
sei), vei = z−1

ei
(1) and similarly u−ei−1

= z−1
−ei−1

(
√
s−ei−1

), v−ei−1
= z−1

−ei−1
(1).

Therefore in the lemma and the proofs below, integrations in the local chart zei from
uei to vei will be written as from

√
sei to 1, for any i = 0, . . . , N − 1. We also remark

that this assumption does not change the statement of the theorem.
The following lemma simplifies the computation:

Lemma 4.1.4. Given an edge e, let Ωv,s and ξ
(k)
e be defined as before. We have the

following equality:∫ √se
1

Ωv(e),s(ze) +

∫ 1

√
se

Ωv(−e),s(z−e) =re ln |se|+
∞∑
k=0

∫ se

1

ξ(k)
e (ze)

+
∞∑
k=0

∫ 1

se

ξ
(k)
−e (z−e)

(4.1.5)

Proof of Lemma 4.1.4. We recall that Ωv,s = Ωv(ei) +
∑

k η
(k)
v , and as we are con-

cerned with the regular part of the period, locally in the annuli Ve \We, we have the

following expression Ωv,s(ze) = re
dze
ze

+ ξ
(0)
e (ze) +

∑∞
k=1 η

(k)
v . The logarithmic term in

(4.1.5) is given by ∫ √se
1

re
dze
ze

=
1

2
re ln |se|

and re = −r−e. What is left to show is∫ √se
1

ξ(0)
e +

∫ 1

√
se

ξ
(0)
−e +

∞∑
k=1

∫ √se
1

η(k)
v +

∞∑
k=1

∫ 1

√
se

η
(k)
v(−e) =

∞∑
k=0

∫ se

1

ξ(k)
e +

∞∑
k=0

∫ 1

se

ξ
(k)
−e

(4.1.6)

Note that for each k ≥ 0, we have
∫ se√

se
ξ

(k)
e (ze) =

∫ 1√
se
I∗e ξ

(k)
e (z−e) and

∫ √se
se

ξ
(k)
−e (z−e) =∫ √se

1
I∗e ξ

(k)
−e (ze). This gives for k ≥ 0:∫ √se

1

ξ(k)
e (ze) +

∫ 1

√
se

ξ
(k)
−e (z−e) =

∫ se

1

ξ(k)
e (ze) +

∫ 1

se

ξ
(k)
−e (z−e)

−
∫ 1

√
se

I∗e ξ
(k)
e (z−e)−

∫ √se
1

I∗e ξ
(k)
−e (ze).

(4.1.7)
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Grouping the last two terms above with the (k + 1) entries in
∑∞

k=1

∫ √se
1

η
(k)
v +∑∞

k=1

∫ 1√
se
η

(k)
v(−e), and applying (3.2.11), we obtain:∫ √se

1

(η
(k+1)
v(e) − I

∗
e ξ

(k)
−e )(ze) +

∫ 1

√
se

(η
(k+1)
v(−e) − I

∗
e ξ

(k)
e )(z−e)

=

∫ √se
1

ξ(k+1)
e (ze) +

∫ 1

√
se

ξ
(k+1)
−e (z−e)

(4.1.8)

Summing up both (4.1.7) and (4.1.8) over all k ≥ 0 and adding the two equalities
together, we immediately obtain (4.1.6). The lemma follows.

Proof of Theorem 4.1.2. Our goal is to compute the leading terms of the variational
formula of

∑N−1
i=0

∫
αv(ei)

Ωv(ei),s. To this end, we rearrange the terms and compute

the following integrals:∫ z−1
ei

(1)

z−1
−ei−1

(1)

Ωv(ei),s +

∫ √sei
1

Ωv(ei),s(zei) +

∫ 1

√
sei

Ωv(−ei),s(z−ei) (4.1.9)

It needs to be pointed out that the first two entries above are integrals inside Cv,
while the last entry is in Cv(−ei). To simplify notation, in the rest of the proof we
denote v := v(ei).

Using the lemma, the last two entries of (4.1.9) are equal to rei ln |sei |+
∑∞

k=0

∫ sei
1

ξ
(k)
ei (zei)+∑∞

k=0

∫ 1

sei
ξ

(k)
−ei(z−ei). By definition of Ωv,s, the first integral in (4.1.9) is equal to∫ z−1

ei
(1)

z−1
−ei−1

(1)

(
Ωv +

∑
k≥1 η

(k)
v

)
.

Note that by (3.2.14) and (3.2.15), for k ≥ 1 the integrals of ξ
(k)
±ei and η

(k)
v only

give terms of order ≥ k. Also observe that
∫ vei
v−ei−1

Ωv is a constant independent of s.

Thus to compute the remaining part of the constant term we only have to compute
the integrals of

∫ sei
1

ξ
(0)
ei (zei) +

∫ 1

sei
ξ

(0)
−ei(z−ei).

Since ξ
(0)
±ei(z±ei) is holomorphic in V±ei , we have∫ sei

1

ξ(0)
ei

(zei) +

∫ 1

sei

ξ
(0)
−ei(z−ei) =

∫ 0

1

ξ(0)
ei

(zei) +

∫ 1

0

ξ
(0)
−ei(z−ei)

+ sei ·
(
ξ̃ei − ξ̃−ei

)
+O(|s|2).

(4.1.10)

Summing up the constant terms on the RHS over i, we have computed the constant
term (4.1.2).
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Now we compute the linear term. Note that ξ
(k)
v are holomorphic in s. Again by

(3.2.15), we only need to compute the integrals of ξ
(1)
v(±ei), whose expansion is already

given by (3.2.16). Therefore we have the following:∫ sei

1

ξ(1)
ei

(zei) =−
∑
e∈Ev

seξ̃−e

∫ sei

1

ω̃v(zei , qe)dzei +O(|s|2)

=−
∑
e∈Ev

seξ̃−e

∫ sei

1

ω̃v(zei , qe)dzei + sei ξ̃−ei

∫ sei

1

dzei
z2
ei

+O(|s|2)

=sei ξ̃−ei −
∑

e∈Ev ,e 6=ei

seξ̃−e

∫ 0

1

ω̃v(zei , qe)dzei

− sei ξ̃−ei lim
sei→0

(

∫ sei

1

ω̃v(zei , qei)dzei +
1

sei
) +O(|s|2).

The existence of the limit above can be seen by integrating the 1/z2
ei

term in the
expansion of ω̃v(zei , qei).

The linear term in
∫ 1

sei
ξ

(1)
−ei(z−ei) is computed similarly:∫ 1

sei

ξ
(1)
−ei(z−ei) =− sei ξ̃ei −

∑
e∈Ev(−ei)

,e 6=−ei

seξ̃−e

∫ 1

0

ω̃v(z−ei , qe)dz−ei

− sei ξ̃ei lim
sei→0

(

∫ 1

sei

ω̃v(z−ei , q−ei)dz−ei −
1

sei
) +O(|s|2).

Note that the linear terms in (4.1.10) have been canceled by the linear terms
produced by the singular part of ωv. Moreover,∫ vei

v−ei−1

η(1)
v (z) = −

∑
e∈Ev

se · ξ̃−e ·
∫ z−1

ei
(1)

z−1
−ei−1

(1)

ωv(z, qe) +O(|s|2).

Summing up all the linear terms above, then summing up over i, we have the
desired linear term.

Remark 4.1.5. Note that in the proof of the theorem, the function h(s) :=
∫
αs

Ωs−∑N
i=1 rei ln |sei| is computed as

N∑
i=1

(
∞∑
k=0

∫ sei

1

ξ(k)
ei

(zei) +
∞∑
k=0

∫ 1

sei

ξ
(k)
−ei(z−ei) +

∫ z−1
ei

(1)

z−1
−ei−1

(1)

Ωv(ei),s

)
.
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The analyticity of h(s) in s follows from the analyticity of each integrand above. The
analyticity of h(s) will be used in our improvement of the result of [Tan91] below.
In [GKN17, Lem. 5.5], without computing any terms in h(s), an estimate of |h(s)| is
derived in the real normalized setup.

Moreover, from the proof one can see that besides the complexity of the compu-
tation, there is no obstacle in computing every higher order terms in the expansion
of the periods of Ωs.

4.2 Period Matrices

Recall that in Section 3.1.3 we have chosen a basis {Ai,s}gi=1 for a Lagrangian sub-
space of H1(Cs,Z) along the plumbing family. We required that the first m A-cycles
generate the span of the classes of the seams. In order to study degenerations of
the period matrix, we now choose B1,s, . . . , Bg,s completing the A-cycles to a sym-
plectic basis of H1(Cs,Z). The cycles B1,s, . . . , Bg,s are chosen such that they vary
continuously in the family.

One can easily see that for 1 ≤ k ≤ m, p([Bk,0]) 6= 0, while for m+1 ≤ k ≤ g, the
map p annihilates the classes of Bk,0. From now on we write Ak := Ak,0, Bk := Bk,0.
Note that for 1 ≤ k ≤ m, one can also see Bk,s as constructed from Bk by applying
a small perturbation as introduced in the previous section.

By the Riemann bilinear relations, we define the following basis of abelian differ-
ential {vk}gk=1 in H0(C,KC) where C = C0 is a stable curve:

1. For m + 1 ≤ k ≤ g, Bk is contained in C̃v for some v, thus Ak is contained in
the same component. Define vk(z) to be the abelian differential dual to Ak in
H0(Cv, KCv).

2. For 1 ≤ k ≤ m, p([Bk]) 6= 0, assume p([Bk]) passes the edges e0, . . . eN−1. De-
fine vk :=

∑N−1
i=0 ωqei−q−ei−1

, where ωqei−q−ei−1
denotes the A-normalized mero-

morphic differential of the third kind supported on Cv(ei) that has only simple
poles at q−ei−1

and qei with residues −1 and 1 correspondingly.

By applying the jump problem construction, we have a collection of abelian
differentials {vk,s}gk=1 for the curve Cs, which is seen to be a normalized basis of
H0(Cs, KCs). For every k and |e|, we have

∫
γ|e|

vk,s =
∫
γ|e|

(vk + ηk,s) on Cs. Since

the solution ηk,s to the jump problem with initial jumps of vk is A-normalized, this
is equal to the integral

∫
γe
vk on Cv(e). Therefore by the residue theorem, we have∫

Aj,s
vk,s = 2πi · δjk. This shows that {vk,s}gk=1 is a normalized basis of H0(Cs, KCs).

The period matrix of Cs is hence defined to be {τh,k(s)}g×g where τh,k(s) :=
∫
Bh,s

vk,s.
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We can apply Theorem 4.1.2 to compute the leading terms in the variational
formula of τh,k(s).

Corollary 4.2.1. For every |e| and k, denote N|e|,k := γ|e| · Bk,s the intersection
product. For any fixed h, k, the expansion of τh,k(s) is given by

τh,k(s) =
∑
|e|∈|E|C

(N|e|,h ·N|e|,k) · ln |se|

+ lim
|s|→0

N∑
i=1

(∫ z−1
ei

(
√
|sei |)

z−1
−ei−1

(
√
|sei−1 |)

vk −N|ei|,hN|ei|,k ln |sei |

)
−
∑
e∈EC

se (hol(ṽk)(qe) hol(ṽh)(q−e)) +O(|s|2),

(4.2.1)

where {ei}N−1
i=0 is the set of oriented edges p([Bh]) passes through, and hol(ṽk) denotes

the regular part of the Laurent expansion of the function of vk near the nodes of the
components where vk is not identically zero. Furthermore, under our choice of the
symplectic basis, N|e|,h ·N|e|,k is equal to 1 if h = k and the node q|e| lies on Bh and
equals 0 otherwise.

Remark 4.2.2. (1) For the purpose of defining the intersection product, we assign
an random orientation to γ|e|. We further remark that there is no canonical way to
orient γ|e|, and the assigned orientation does not affect the statement and the proof.

(2) The main result in [Tan91] is that h(s) := τh,k(s)−
∑
|e|∈|E|C (N|e|,h·N|e|,k)·ln |se|

is holomorphic in s. We can see that only the logarithmic term was computed. By
Remark 4.1.5, our corollary in particular reproves his result, and we express more
terms in the expansion.

(3) We want to point out that Taniguchi does not require the classes of γ|e| to
be part of the symplectic basis, therefore N|e|,h ·N|e|,k may be any integer. Since the
A,B-cycles generate H1(Cs,Z), the general case follows by linearity.

Proof. We first compute the logarithmic term. Note that the intersection product
is independent of s. When e does not lie on p([Bh,s]), we have N|e|,h = 0, otherwise
N|e|,h = ±1 and the sign depends on the orientation of [γ|e|] compared to that of the
corresponding generator [Ai] of the symplectic basis. We now only need to prove
that vk has residue N|e|,h · N|e|,k at qe, which is seen as follows: if e ∈ p([Bk]), then
by construction of vk, it has residue ±1 = N|e|,k at q|e| depending again on whether
[γ|e|] = [Ai] or −[Ai]; if |e| does not lie on p([Bk]), both the intersection number
and the residue are 0. Note that the signs of N|e|,h and N|e|,k are always the same,
therefore N|e|,h ·N|e|,k = δi,h · δi,k.
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Secondly, we compute the linear term. Note as can be verified from the normal-
ization conditions of the fundamental bidifferential, vh(z) =

∫
Bh
ω(w, z) for m+ 1 ≤

h ≤ g, and vh(z) =
∑N

i=1

∫ qei
q−ei−1

ωv(ei)(w, z) for 1 ≤ h ≤ m, where {ei}N−1
i=0 is the set

of edges p([Bh]) passes through. To compute the linear term for τh,k(s) =
∫
Bh,s

vk,s,

we observe that by definition of σe in (4.1.4), we have

σe = hol(ṽh)(qe).

Since Ω := vk, we have ξ̃e = hol(Ω̃)(qe) = hol(ṽk)(qe). Note that vh is only supported
on ∪v∈p([Bh])Cv, the sum in (4.2.1) is taken over all edges.

Lastly, the constant term follows directly from Theorem 4.1.2.

4.3 Examples

In this section we will compute four explicit examples of the variational formula for
abelian differentials and for the period matrix of a stable curve C. Throughout this
section the stable curve has geometric genus g, Ω is a stable differential on C. We
choose the symplectic basis of holomorphic 1-cycles and its dual basis of 1-forms as
in the previous sections. The notation will vary among the examples according to
the structure of C.

4.3.1 One Node: Compact Type

We first deal with the case where the curve C has only one node q. In [Yam80],
Yamada computed the variational formula of both abelian differentials and the period
matrices to any order of the plumbing parameter s. We will reprove his result up to
the second order, while the full expansion can also be found using our method.

When C is of compact type, it has two components C1 and C2 that meet at a
single separating node q, whose pre-images are denoted by q1 ∈ C1 and q2 ∈ C2. Let
zi be the local coordinates near qi. Denote the restriction of Ω to Ci by Ωi (i = 1, 2).
The subscripts of the Cauchy kernel and its derivative are changed correspondingly.

Since the curve is of compact type, the differentials Ωi have no residue at qi,
therefore they are holomorphic and we have ξ

(0)
i (zi) = Ωi(zi). We denote ξ̃i :=

ξ̃
(0)
i (qi), and Ωs is defined on Cs by formulas (3.2.3) (3.2.9). Explicitly, by Proposition

3.2.4, the expansion of the restriction Ωi,s (i = 1, 2) is given by

Ωi,s(z) = Ωi(z) +
(
−s · ωi(z, qi)ξ̃i′ + s2 · ωi(z, qi)βi′ ξ̃i

)
+O(s3) (4.3.1)
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where by convention, i′ = 2 if i = 1 and vice versa, and βi denotes the leading
coefficient in the expansion of ωi as in (3.2.1).

Let gi be the genus of Ci, with g1 + g2 = g. We take a normalized basis of
abelian differentials {vk}gk=1 of C such that {v1, . . . , vg1} are supported on C1, and
{vg1+1, . . . , vg} on C2.

For 1 ≤ k ≤ g1, letting Ω1 = vk,Ω2 = 0 in (4.3.1), we obtain

vk,s(z) =

{
vk(z) + s2 · ω1(z, q1)β2vk(q1) +O(s3) z ∈ C̃1,

−s · ω2(z, q2)vk(q1) +O(s3) z ∈ C̃2.

For g1 + 1 ≤ k ≤ g, the formula is symmetric. We have then reproven [Yam80,
Cor. 1].

4.3.2 One Node: Non-Compact Type

In this case C is irreducible, with a single node q. We denote q1, q2 the pre-images
of q in the normalization C̃, and z1, z2 the corresponding local coordinates. Let Ω
be a meromorphic differential on the normalization of C which has simple poles of
residues ri at qi (i = 1, 2). By the residue theorem r1 = −r2.

We now have ξ
(0)
i (zi) = Ω(zi)− ridzi

zi
. Denote ξ̃i = ξ̃

(0)
i (qi). By Proposition 3.2.4,

we have
Ωs(z) = Ω(z)− s ·

(
ω(z, q1)ξ̃2 + ω(z, q2)ξ̃1

)
+O(s2). (4.3.2)

For a symplectic basis {Ak,s, Bk,s}gk=1, we choose A1,s to be the seam, whereas
B1,s is taken to intersect A1,s once, oriented from the neighborhood of q1 to the
neighborhood of q2. As in Section 4.2, we take v1 = ωq2−q1 , and {vk}gk=2 to be the

normalized basis of H1(C̃,C).
By letting Ω = vk for 2 ≤ k ≤ g, we have ri = 0, and the equation (4.3.2)

gives [Yam80, Cor. 4]. For the case Ω = v1, we have r2 = −r1 = 1, then (4.3.2)
gives [Yam80, Cor. 5]. Moreover, we can compute the period matrix of Cs, reproving
[Yam80, Cor. 6]. By Corollary 4.2.1 we have

τ1,1(s) =

∫
B1,s

ωq2−q1,s = ln |s|+ c1,1 + s · l1,1 +O(s2),

where c1,1 = lim|s|→0

(∫ z−1
2 (
√
|s|)

z−1
1 (
√
|s|)

ωq2−q1 − ln |s|
)

, and l1,1 = −2σ1σ2.

We also have

τk,1(s) = τ1,k(s) =

∫
B1,s

vk,s = c1,k + s · l1,k +O(s2)
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for 2 ≤ k ≤ g. Since vk(x) is holomorphic, we have ξ
(0)
i (zi) = vk(zi) and hence

ξ̃i = vk(pi). The constant term c1,k is equal to
∫ q2
q1
vk, and the linear term l1,k is seen

to be −vk(q1)σ2 − vk(q2)σ1 by (4.2.1).
Finally for 2 ≤ k, h ≤ g we have

τk,h(s) = τk,h + s · lhk,

where τh,k is the period matrix of the normalization of C, and lh,k = −vk(q1)vh(q2)−
vh(q1)vk(q2).

4.3.3 Banana Curves

The second example we consider is the stable genus g curve C that has two irre-
ducible components meeting in two distinct nodes (so-called “banana curve”). This
computation has not been done in the literature before.

Let the two components of C be Ca, Cb with genera ga and gb where ga+gb = g−1.
The edges corresponding to the two nodes are denoted by e1 and e2. The preimages
of the nodes and the local coordinates are denoted as q±ei and z±ei (i = 1, 2), where
“+” corresponds to the Ca side, and “−” the Cb side.

Note that in the case where C has only two components (with any number of

nodes connecting them), the path lk can only go back and forth. Therefore ξ
(k)
ei

(resp. ξ
(k)
−ei) (i = 1, 2) and η

(k)
a (resp. η

(k)
b ) are determined by Ωa if k is even (resp.

odd), and Ωb if k is odd (resp. even), as we can see from the terms in expansion

(4.3.1). Also note that in expansion (3.2.14) of η
(k)
a and η

(k)
b , there is no residue of Ω

involved. Therefore the we can simplify our computation by assuming that Ωb = 0
and the residues of Ωa at both nodes are zero. Under these assumptions, we have
ξ

(0)
ei (zei) = Ωa(zei) (i = 1, 2). Furthermore, for any integer k ≥ 0, we have

ξ
(2k)
−ei = ξ(2k+1)

ei
= 0 (i = 1, 2),

thus by construction (3.2.9), we have

η(2k+1)
a (z) = 0 z ∈ Ĉa;
η

(2k)
b (z) = 0 z ∈ Ĉb.

By Proposition 3.2.4, we have for z ∈ Ĉb:

η
(1)
b (z) = −s1ωb(z, q−e1)ξ̃e1 − s2ωb(z, q−e2)ξ̃e2 +O(|s|2),
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and for z ∈ Ĉa:

η(2)
a (z) = s2

1ωa(z, qe1)β
b
1,1ξ̃e1 + s2

2ωa(z, qe2)β
b
2,2ξ̃e2

+ s1s2

(
ωa(z, qe1)β

b
1,2ξ̃e2 + ωa(z, qe2)β

b
2,1ξ̃e1

)
+O(|s|3),

where βbjk := βb−ej ,−ek is the constant term in the expansion of ωb(z−ej , z−ek) as in
(3.2.1).

Note that we can also assume Ωa = 0, and that the residues of Ωb at both nodes
are zero. The general case follows by adding the differentials in these two cases
together.

We now compute the degeneration of period matrix for the banana curve. For
the symplectic basis of H1(Cs,Z), we let A1 := γe2 , and B1 is taken to intersect each
seam once, with the orientation from qe1 to qe2 , then from q−e2 to q−e1 . Thus we let
v1 := ωqe2−qe1 + ωq−e1−q−e2

where ωqe2−qe1 is supported on Ca, and ωq−e1−q−e2
on Cb.

Take {Ak, Bk}ga+1
k=2 and {Aj, Bj}gj=ga+2 to be the symplectic bases of H1(Ca,Z) and

H1(Cb,Z) respectively. The normalized basis of holomorphic differentials {vk}gk=2 on
the two components are taken correspondingly, and we require that vk is identically
zero on Cb if 2 ≤ k ≤ ga + 1, and on Ca if ga + 2 ≤ k ≤ g.

Note that v1 has residues re2 = r−e1 = 1, thus we have τ1,1(s) = ln |s1|+ ln |s2|+
c1,1 + l1,1 +O(|s|2). By (4.1.2), the constant term is

c1,1 = lim
|s|→0

(∫ z−1
e2

(
√
|s2|)

z−1
e1

(
√
|s1|)

ωqe2−qe1 +

∫ z−1
−e1

(
√
|s2|)

z−1
−e2

(
√
|s2|)

ωq−e1−q−e2
− ln |s1| − ln |s2|

)
.

As for the linear term l1,1, by (4.2.1) we obtain

l1,1 = −2s1σ−e1σe1 − 2s2σ−e2σe2 .

We also see that the expansion of τk,1(s) = τ1,k(s) is given by

τ1,k(s) =

{∫ qe2
qe1

vk − s1vk(qe1)σ−e1 − s2vk(qe2)σ−e2 +O(|s|2) if 2 ≤ k ≤ ga + 1,∫ q−e1

q−e2
vk − s2vk(q−e2)σe2 − s1vk(q−e1)σe1 +O(|s|2) if ga + 2 ≤ k ≤ g.

The remaining (g − 1) × (g − 1) minor τg−1(s) := {τh,k(s)}gh,k=2 of the period
matrix is computed as:

τg−1(s) =

(
τa 0
0 τb

)
− s1 ·

(
0 tRa(qe1)Rb(q−e1)

tRb(q−e1)Ra(qe1) 0

)
− s2 ·

(
0 tRa(qe2)Rb(q−e2)

tRb(q−e2)Ra(qe2) 0

)
+O(|s|2),
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where τa (resp. τb) is the period matrix of Ca (resp. Cb), and Ra := (v2, . . . , vga+1),
Rb := (vga+2, . . . , vg).

4.3.4 Totally Degenerate Curves

It is a fact that the stable curves that lie in the intersection of the Teichmüller curve
and the boundary ofMg are of arithmetic genus zero. In this subsection we study the
largest dimensional boundary stratum of such stable curves and give the variational
formula of its period matrix, which to the knowledge of the authors is again not dealt
with in literature before. The periods of totally degenerate curves has been studied
by Gerritzen in his series of papers [Ger90] [Ger92a] [Ger92b]. The perspectives in
those papers are algebraic, mainly by studying the theta functions, the Torreli map
and the Schottky problem. No analytic construction such as plumbing is involved.

Let C be a totally degenerate stable curve, namely the normalization C̃ is a P1

with g pairs of marked points {q±i}gi=1. Let qi and q−i be the preimages of the i-th
node on C, and ri = −r−i be the residue of Ω at qi.

Let z be the global coordinate, then the local coordinates at the pre-images of
nodes are given by z±i := z − q±i, where i = 1, . . . , g. We have as usual ξ

(0)
±i (z) :=

Ω(z)∓ ridz
z−q±i

, and ξ̃±i := ξ̃
(0)
±i (q±i).

The Cauchy kernel and the fundamental bidifferential on P1 are given explicitly:
K(z, w) = dz

2πi(z−w)
; ω(z, w) = 2πi∂wK(z, w) = dzdw

(z−w)2
. We compute ω̃(z, qi) = 1

(z−qi)2 ,

for i ∈ {±1, . . . ,±g}. The expansion of Ωs is thus given by

Ωs(z) = Ω(z)− dz
g∑

k=1

sk

(
ξ̃−k

(z − qk)2
+

ξ̃k
(z − q−k)2

)
+O(|s|2)

where z ∈ Ĉ.
The classes of the seams {[γi]}gi=1 generate the Lagrangian subgroup of H1(Cs,Z),

thus we can take Ai := γi and Bi the path from q−i to qi. The corresponding

normalized basis of 1-forms will be vi := ωqi−q−i
= dz

(
1

z−qi −
1

z−q−i

)
for i = 1, . . . , g.

Let Ω = vi, we have for k 6= ±i, ξ̃k = qi−q−i

(qk−qi)(qk−q−i)
and ξ̃i = ξ̃−i = 1

q−i−qi .

One thus computes the period matrix as follows.

i = j : τi,i = ln |si| − 2 ln |qi − q−i| −
2si

(qi − q−i)2

−
∑

k∈{1,..̂i,..g}

2sk(qi − q−i)2

(qk − q−i)(qk − qi)(q−k − q−i)(q−k − qi)
+O(|s|2)
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i 6= j : τi,j = ln (qi, q−i; qj, q−j)−
∑
k 6=i,j

sk

( (qi − q−i)(qj − q−j)
(qk − qi)(qk − q−i)(q−k − qj)(q−k − q−j)

+
(qi − q−i)(qj − q−j)

(qk − qj)(qk − q−j)(q−k − qi)(q−k − q−i)

)
− si

qj − q−j
q−i − qi

( 1

(qi − qj)(qi − q−j)
+

1

(q−i − qj)(q−i − q−j)

)
− sj

qi − q−i
q−j − qj

( 1

(qj − qi)(qj − q−i)
+

1

(q−j − qi)(q−j − q−i)

)
+O(|s|2)

where (qi, q−i, qj, q−j) stands for the cross-ratio of the (ordered) four points.
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Chapter 5

The Modular Form for the
Hyperflex Locus in M3

This section contains the main results in [Hu17]. We give a modular form for the
stratum ΩModd

3 (4). This stratum is also known as the hyperflex locus, because the
points in the stratum correspond to smooth plane quartics with a hyperflex point.
We will follow the notation in [Hu17] in our discussion and denote the hyperflex locus
as HF .

5.1 The Modular Form for ΩModd
3 (4)

It can be shown that HF is an irreducible divisor:

Proposition 5.1.1 ([Ver83, Ch. 1, Prop. 4.9]). HF is an irreducible, five-dimensional
subvariety of M3, and it is closed in M3 −H3 where H3 is the hyperelliptic locus.

We denote HF the closure of u(HF) in A3. We define HFm ⊂ A3(2) to be the
set of ppav (J(C), i) where the bitangent line corresponding to m under the basis
defined by i : J(C)[2] ' (Z/2Z)6 is a hyperflex to C.

To determine the scalar modular form for Γ3(2) whose zero locus is HF77, we
need to know equation of plane quartics using their bitangents. Such a formula
was known classically for an individual curve ([Dol12, Ch. 5]), but only recently
Dalla Piazza, Fiorentino and Salvati Manni obtained such an expression globally
[DPFSM14]. They derived an eight by eight symmetric matrix parametrizing the
bitangents of a given plane quartic, such that the determinant of any four by four
minors of the bitangents matrix gives the equation of the quartic. We recall their
notations and results.
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Definition 5.1.2. 1. We call a triple of characteristics m1,m2,m3 azygetic (resp.
syzygetic) if

e(m1,m2,m3) = e(m1)e(m2)e(m3)e(m1 +m2 +m3) = −1 (resp. 1).

2. A (2g + 2)-tuple of characteristics is called a fundamental system if any triple
within it is azygetic.

For a more detailed discussion see [Dol12]. In our case g = 3, any fundamental
system consists of 8 characteristics, within which 3 are odd and 5 are even.

We denote:
bij := gradz θ[ε, δ](τ, z)|z=0,

where i = 4ε1 + 2ε2 + ε3, j = 4δ1 + 2δ2 + δ3, and denote the so-called Jacobian
determinant by:

D(n1, n2, n3) := bn1 ∧ bn2 ∧ bn3 .

It is a scalar modular form of weight 5
2

and it can be written in terms of theta
constants using Jacobi’s derivative formula:

Proposition 5.1.3 ([Igu81]). If n1, n2, n3 is an azygetic triple of odd theta charac-
teristics, then there exists a unique quintuple of even theta characteristics m1, m2,
m3, m4, m5 such that the 8-tuple forms a fundamental system. For this fundamental
system, we have

D(n1, n2, n3) = ±π3 · θm1θm2θm3θm4θm5 .

The result of Dalla Piazza, Fiorentino, Salvati Manni is then:

Proposition 5.1.4 ([DPFSM14, Cor. 6.3]). Let τ be the period matrix of the Ja-
cobian of a plane quartic, then the equation of the plane quartic is given by the
determinant of the following symmetric matrix:

Q(τ, z) :=


0 D(31,13,26)

D(77,31,26)
b77

D(22,13,35)
D(77,31,26)

b64
D(77,64,46)
D(77,31,26)

b51

∗ 0 D(22,13,35)
D(77,46,51)

b13
D(77,13,31)
D(77,31,26)

b26

∗ ∗ 0 D(64,13,22)
D(77,31,26)

b35

∗ ∗ ∗ 0

 .

Using this we derive the modular form Ω77:
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Theorem 5.1.5. Let Ω77 be the following modular form with respect to Γ3(2):

Ω77 := [θ01θ10θ37θ43θ52θ75 ·D(77, 64, 13) + θ02θ25θ34θ40θ67θ76 ·D(77, 51, 26)]2

− 4θ01θ02θ10θ25θ34θ37θ40θ43θ52θ67θ75θ76 ·D(77, 64, 51) ·D(77, 13, 26), (5.1.1)

then its zero locus in A3(2) is HF77.

By Proposition 5.1.3 the modular form above is the same (up to a constant) as
the following:

Ω77 = [θ01θ10θ37θ43θ52θ75θ42θ06θ30θ21θ55 + θ02θ25θ34θ40θ67θ76θ33θ05θ14θ60θ42]2

− 4θ01θ02θ10θ25θ34θ37θ40θ43θ52θ67θ75θ76θ00θ04θ57θ70θ61θ73θ20θ07θ00θ16. (5.1.2)

The proof is by directly computing the formulas for the bitangents, and uses the
following lemma:

Lemma 5.1.6. Let l = l1x + l2y + l3z be the equation of a line in P2, and suppose
m,n, k, s are lines written similarly. Then the two intersection points of the line
l = 0 and the quadric mk − ns = 0 coincide if and only if the following expression
vanishes:

Ψl,m,n,k,s =
(∣∣∣ l1 l2 l3

m1 m2 m3
k1 k2 k3

∣∣∣+
∣∣∣ l1 l2 l3
n1 n2 n3
s1 s2 s3

∣∣∣)2

− 4 ·
∣∣∣ l1 l2 l3
m1 m2 m3
n1 n2 n3

∣∣∣ · ∣∣∣ l1 l2 l3
k1 k2 k3
s1 s2 s3

∣∣∣. (5.1.3)

Proof. The proof is a direct computation: we plug in the equation of l to {mk−ns =
0} and get:

[(m1l2 −m2l1)x+ (m3l2 −m2l3)z] · [(k1l2 − k2l1)x+ (k3l2 − k2l3)z]

− [(n1l2 − n2l1)x+ (n3l2 − n2l3)z] · [(s1l2 − s2l1)x+ (s3l2 − s2l3)z] = 0.

We will now dehomogenize at z. The discriminant of the quadric of x is a homogenous
polynomial F of degree 8 in the coefficient of l,m, n, k, s. We further observe that F
is divisible by l22. Denote Ψ := F/l22, we hence get the expression in the lemma. One
can verify that Ψ is independent of the dehomogenization.

Proof of Theorem 5.1.5. Using Lemma 5.1.6 we can write the coefficients of Q(τ, z)
given by proposition 5.1.4 as rational functions of even theta characteristics. By
clearing the denominators we have the equation of the plane quartic:

detQ(τ, 0) = (θ75θ52θ43)4·(θ2
04θ73θ60)2·[(af)2+(be−cd)2−2(af)(be+cd)] = 0, (5.1.4)
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where
a = θ66θ41θ50b77,
b = θ70θ52θ43b64,
c = θ40θ76θ67b51,
d = θ02θ25θ34b13,
e = θ37θ01θ10b26,
f = θ24θ12θ03b35.

Recall that on A3 the vanishing of theta-null defines the hyperelliptic locus, which
we already know is disjoint from the hyperflex locus by Proposition 5.1.1. Thus we
need to exclude the locus defined by (θ75θ52θ43)4 · (θ2

04θ73θ60)2 from the zero locus of
detQ(τ, 0), by dividing detQ(τ, 0) by factor (θ75θ52θ43)4 · (θ2

04θ73θ60)2. Rewrite the
remaining part:

(af)2 + (be− cd)2 − 2(af)(be+ cd) = a · F + (be− cd)2

where F is a homogenous degree 3 polynomial in a, b, c, d, e, f . Then

{a = 0} ∩ {a · F + (be− cd)2 = 0} = {a = 0} ∩ 2 · {be− cd = 0}

gives the two tangent points.
Hence by the lemma, plugging a, b, c, d, e in to (5.1.3) we have

Ψa,b,c,d,e = θ66θ73θ41θ50θ04 · Ω77

where Ω77 is defined in (5.1.1). We then need to throw out the above factor for the
same reason and hence have the modular form.

Using the modular form we can now compute the class of the hyperflex locus HF
in M3:

Corollary 5.1.7. The class [HF ] ∈ H2(M3,Q) is equal to 308 · λ.

Proof. First we need to compute the weight of the modular form Ω77. The weight
of D(n1, n2, n3) is 5

2
and the weight of each θm is 1

2
, hence 12 · 1

2
+ 2 · 5

2
= 11 is the

weight of the scalar modular form Ω77 with respect to Γ3(2).
Hence [HF77] = 11 ·p∗L in A3(2). Set-theoretically the hyperflex locus HF ⊂ A3

is the image of HF77 ⊂ A3(2) under the level two cover map p. Also for any odd
characteristics m we have p(HFm) = HF for the same reason. Thus for the classes
we have

p∗[HF ] =
∑
m odd

[HFm] = 28 · 11 · p∗L = 308 · p∗L. (5.1.5)

61



The second equality is due to the fact that with a fixed symplectic basis, any
odd characteristics are equally likely to appear, and hence for all odd m, the class
of HFm is equal to that of HF77. Pushing forward by p, by projection formula we
obtain:

[HF ] = 308 · L.
By definition, λ = u∗L in M3, we hence have the corollary claimed.

5.2 Class of the Closure of Hyperflex Locus

Let Ωm be the image of Ω77 under the action of Γg so that it is a modular form with
respect to Γ3(2) whose zero locus in A3(2) is HFm. As in the case of the vanishing
orders of θm on Dn (resp. PV ), the vanishing order of Ωm on Dn (resp. PV ) is
also invariant under the action of Γg on the pairs (m,n) (resp. (m,V )). Denote for
simplicity dm,n := ordDn Ωm(τ, 0), and pm,V to be the vanishing order of the pull-
back of Ωm(τ, 0) on the component ū−1PV . There are only two possible values of
dm,n corresponding to the two Γg orbits on (m,n), we denote the vanishing orders by
d0 and d1 for the cases e(m+ n) = 0 and 1. Similarly let p1 and p3 be the values of
pm,V in the Γg orbit on the set of pairs (m,V ) (subindex being the number of even
elements in the triple). We have the following:

Proposition 5.2.1. In M3, we have

[HF ] = 308 · λ− (16d0 + 12d1) · δ0 − (10p3 + 18p1) · δ1.

Proof. It can be concluded from a direct computation that for each n ∈ (Z/2Z)6−0,
there are 16 m such that m+ n is even, 12 m such that m+ n is odd; for a fixed V ,
there are 18 odd theta characteristics m lies in the orbit corresponding to the case
when the number of even elements in the triple (m + n1,m + n2,m + n1 + n2) is 1,
and 10 odd theta characteristics in the other orbit.

Consider the following commutative diagram:

M3(2)
ū′−−−→ A3(2)yp′ yp

M3
ū−−−→ A3

Summing up all m, we get on M3(2):

ū′∗

(∑
m odd

[HFm]

)
= 308 · p′∗λ−

∑
m,n

dm,n · ū′∗Dn −
∑
V,n

pm,V · ū′∗PV .
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At the right hand side we have:

∑
m,n

dmn · ū′∗Dn = ū′∗

 ∑
m+n even

d0Dn +
∑

m+n odd

d1Dn


= ū′∗

(
d0

∑
n

16Dn + d1

∑
n

12Dn

)

= ū′∗

(
(16d0 + 12d1)

∑
n

Dn

)
= (16d0 + 12d1) · ū′∗(p∗D)

= (16d0 + 12d1) · p′∗δ0.

Similarly we have
∑

V,n pm,V · ū′∗PV = (10p3 + 18p1) · p′∗δ1. Also for the same reason

as in equation (5.1.5) we have ū′∗
(∑

m odd [HFm]
)

= p′∗[HF ]. Pushing forward by
p′, by the projection formula both sides are multiples of deg(p′). Note that the level
cover map branches along the boundary components, but the projection formula
applies regardless of the branching. At last we divide both sides by deg(p′) and thus
have the equality claimed.

We now use results from previous section to compute d0, d1 and p1, p3.

Proposition 5.2.2. We have the following:

dm,n =

{
5
4

if m+ n is even

1 otherwise
(5.2.1)

pm,V =

{
4 all elements in the triple are even

2 otherwise.
(5.2.2)

Proof. We only need to choose in each orbit a special representative to calculate, and
will thus fix m = 77. For d0 we choose n = 04 so that m + n is even. We have the
order at D04 of θ43, θ52, θ75, θ40, θ67, θ76 are all 1/8, while others are non-vanishing. We
also have the order of D(77, 64, 13) = D(77, 51, 26) = 1/4, D(77, 64, 51) = 3/8, and
D(77, 13, 26) = 1/8. Hence we have d0 = min{(3/8+1/4)×2, 6/8+3/8+1/8} = 5/4.

Similarly we choose n = 06 for the case m + n is odd. We have the order of
θ43, θ52, θ37, θ40, θ25, θ34 is 1/8, all others are 0. And the order of D(77, 64, 13) =
1/2, D(77, 51, 26) = 1/4, D(77, 64, 51) = D(77, 13, 26) = 1/8, hence d1 = min{5/4, 1} =
1.
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To compute the vanishing orders on PV , we now choose the standard symplectic
2-dim subgroup V0 as in section 3.2. Then m + n1,m + n2 are both even, and we
can thus compute p3. We will have ordV0 D(77, 64, 13) = ordV0 D(77, 64, 51) = 1,
and ordV0 θ75 = ordV0 θ67 = ordV0 θ76 = 1 and all the others are zero, hence p3 =
min{(1 + 1)× 2, 4} = 4.

Similarly we choose V1 generated by n1 = [101, 000], n2 = [000, 100] to compute
p1. We have ordV1 D(77, 64, 51) = 1, ordV1 θ43 = ordV1 θ76 = 1, all others are non-
vanishing. We hence have p1 = min{1× 2, 1 + 1 + 1} = 2.

Lastly, since the expression of the modular form is explicit, one can check by
hand that the lowest order term in each case does not get cancelled, and it is indeed
the case.

Combining the results above, we can verify Cukierman’s result in [Cuk89]:

Corollary 5.2.3. In M3, we have

[HF ] = 308 · λ− 32 · δ0 − 76 · δ1.

Also, the class [HF ] in A3 is equal to 308 · L− 32 ·D.

Proof. We only need to plug in the values d0 = 5/4, d1 = 1, p1 = 2, p3 = 4 in
proposition 3.6. And the second claim follow easily from the discussion.

5.3 Boundary of Higher Codimension

Using the modular form Ω77, we can apply similar argument as the previous section
to find out the intersection of any boundary component ofM3 with the closure of the
hyperflex locus HF . As an application we consider the boundary stratum T ⊂M3

of stable curves which consist of two genus one curves intersecting at two nodes (so-
called “banana curves”). This boundary stratum is contained in ∆0 and is indeed
an irreducible component of the self-intersection of ∆0.

Proposition 5.3.1. The boundary locus T is contained in the hyperflex locus HF .

Remark 5.3.2. This result was recently also shown from a different approach in
[Che15].

To prove the proposition, we will use Corollary 4.2.1 . We fix n elements in π1(C)
represented by simple closed curves Si with lengths 0 ≤ si � 1 for i = 1 . . . n. We
also fix a homology basis {Aj, Bj}gj=1 such that for 1 ≤ i ≤ n, Si is homotopic to one
of the Aj possibly with a sign.
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For the boundary locus T , we have g = 3 and n = 2 in Corollary 4.2.1. Further-
more, we choose the homology basis to be the standard one with intersection matrix
I, so that S1 and S2 are both homotopic to A1. Then the entries in the period matrix
[τh,k]g×g we have

2πiτh,k =

{
ln s1 + ln s2 + fh,k(s1, s2) for (h, k) = (1, 1)

fh,k(s1, s2) otherwise
(5.3.1)

We denote τ =
[
τ1 b1 b2
b1 τ2 c
b2 c τ3

]
, and recall Fourier-Jacobi expansion (2.4.2), we conclude

the following for θ

[
ε
δ

]
(τ, 0):

1. If ε1 = 1, then

θ

[
ε
δ

]
(τ, 0) = exp(

1

4
πiτ1)·exp(2πiδ1)·θ

[
ε2 ε3

δ2 δ3

]( [τ2 c
c τ3

]
, (
b1

2
,
b2

2
)
)

+O(s1)+O(s2).

Note that due to (5.3.1), we have exp(πiτ1) = s
1
2
1 s

1
2
2 ·expG(s1, s2) for some holo-

morphic function G(s1, s2). Hence in this case the vanishing order of θ

[
ε
δ

]
(τ, 0)

with respect to s1 and s2 are 1
8
.

2. If ε1 = 0, similarly θ[ εδ ](τ, 0) = θ[ ε2 ε3δ2 δ3 ]([ τ2 c
c τ3 ], 0) +O(s1) +O(s2), by definition

[Tan89] of c = f2,3(s1, s2), we deduce that c = 0 when s1 = s2 = 0, i.e.
when the curve hits boundary T . In that case, we have the constant term
θ[ ε2 ε3δ2 δ3 ](

[
τ2 0
0 τ3

]
, 0) = θ[ ε2δ2 ](τ2, 0) · θ[ ε3δ3 ](τ3, 0) = 0 if and only if ε2 = δ2 = 1.

Hence the only theta functions with characteristics that vanish when s1 = 0
and s2 = 0 are θ33(τ, 0) and θ37(τ, 0), but by taking partial derivatives one can
directly show that neither is divisible by any power of (s1 · s2).

Proof of Proposition 5.3.1. As in Proposition 2.4.6 we choose the standard boundary
component D04 so that the two cases ε1 = 0 or 1 correspond to the two orbits of Γg
action on the pair (m, 04). Hence by the same discussion in the proof of Proposition
5.2.2, we have

Ω77(τ, 0) = (s1 · s2)
5
4 · F (s1, s2)

for some holomorphic function F (s1, s2). Moreover, by the expression of Ω77 in
Theorem 0.1, in each summand there is either θ33 or θ37, which means

F (s1, s2) = θ[ 1 1
1 1 ]([ τ2 c

c τ3 ], 0) +O(s1) +O(s2)
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where τi = fi,i(s1, s2) (i = 2 or 3) and c = f2,3(s1, s2) are holomorphic functions in s1

and s2, and c(0, 0) = 0. From the discussion above, F (s1, s2) vanishes when s1 = 0
and s2 = 0, but is not divisible by any power of (s1 · s2).

As the normal direction of ∆0 in the open part ofM3 is given by q = exp(πiτ11),
and T is the self-intersection of ∆0 where s1, s2 give the two normal directions.
Because the modular form Ω77 vanishes along T with higher order in s1, s2 than q,
we can then conclude that the boundary stratum T is contained in the hyperflex
locus HF .
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