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Abstract of the Dissertation

by

Xuemiao Chen

Doctor of Philosophy

in

Mathematics
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2019

In this thesis, we study the analytic tangent cones of admissible Hermitian-
Yang-Mills connections at an isolated singular point. When the singularity is
homogeneous, we show that the tangent cone is uniquely determined by certain
canonical algebraic data. In general, by assuming the existence of certain stable
algebraic tangent cone, we charaterize the tangent cone connection. Further-
more, we construct some optimal algebraic tangent cone for reflexive sheaves at
any singular point (not necessarily isolated), which turns out to be unique in a
suitable sense.
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1 Introduction

Given a holomorphic vector bundle E over a compact Kähler manifold (X,ω),
we say E is stable if any subsheaf S ⊂ O(E) with torsion free quotient satisfies

c1(S) · [ω]n−1

rank(S)
<
c1(E) · [ω]n−1

rank(E)
.

A Hermitian metric h on E determines a unique compactible connection, called
Chern connection, with curvature Fh. We say h is Hermitian-Eistein or Hermitian-
Yang-Mills if ∧ωFh is a constant multiple of the identity map. In 1980, Hitchin
and Kobayashi conjectured that when E is stable, there exists a Hermitian-Yang-
Mills metric on E . Later, this was solved by Donaldson [10, 11], Uhlenbeck and
Yau [39], which is now known as Donaldson-Uhlenbeck-Yau theorem. Donald-
son proved the theorem in the case when (X,ω) is projective by using the heat
flow method while Uhlenbeck and Yau proved the theorem using continuity
method for general Kähler manifold. Combining these two methods, Simpson
proved the convergence of the heat flow for stable bundles over general Kähler
manifolds [37]. Later, the Donaldson-Uhlenbeck-Yau theorem was generalized
by Bando and Siu to the case of stable reflexive sheaves using a notion of admis-
sible Hermitian-Yang-Mills connections. Bando and Siu again studied the heat
flow and proved the convergence of the flow. When E is not necessarily stable,
the convergence of heat flow has been extensively studied and well understood
by the work of Jacob ([21, 22]), Sibley ([34]), Wentworth and Daskalopoulos
([9]), Sibley and Wentworth ([36]). It turns out that the flow will converge to
an admissible Hermitian-Yang-Mills connection on the double of the canonical
graded sheaf associated to the Harder-Narasimhan-Seshadri filtration of E .

In this thesis, we will focus on the study of admissible Hermitian-Yang-Mills
connections. More specifically, let (X,ω) be an n dimensional Kähler manifold,
and (E,H) be a Hermitian vector bundle over X \ S for a closed subset S ⊂ X
with locally finite real codimension four Hausdorff measure. A smooth unitary
connection A on (E,H) is called an admissible Hermitian-Yang-Mills connection
on X if the following two conditions hold

(1) A satisfies the Hermitian-Yang-Mills equation

F 0,2
A = 0;

√
−1ΛωFA = µ · IdE , (1.1)

where µ ∈ R is a constant. In the literature, (1.1) is also usually referred to
as the Hermitian-Einstein equation with Einstein constant µ –in this paper
we will use both terminologies interchangeably;

(2) A has locally finite Yang-Mills energy, i.e. for any compact subset K ⊂ X,
we have ∫

K\S
|FA|2

ωn

n!
<∞ (1.2)

In particular, ∂̄A defines a holomorphic structure on E over X \ S. We denote
the resulting Hermitian holomorphic vector bundle by (E , H). Then A is the
Chern connection associated to (E , H). Bando and Siu [4] proved that E 1

1Strictly speaking here E should be the locally free sheaf generated by local holomorphic
sections of E. In this thesis, to make notations simpler, we will not distinguish between a
holomorphic vector bundle and the corresponding locally free sheaf.
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actually extends to be a reflexive sheaf over the whole X, and H (hence A)
extends smoothly to the complement of the singular set of E , which is a complex
analytic subvariety of codimension at least three.

There are several motivations for studying admissible Hermitian-Yang-Mills
connections. First, from the complex geometric point of view, as mentioned
above, it is proved by Bando-Siu [4] that a polystable reflexive sheaf over a
compact Kähler manifold always admits an admissible Hermitian-Yang-Mills
connection, as a generalization of the Donaldson-Uhlenbeck-Yau theorem [10,
39] for holomorphic vector bundles. As a result, these connections have their
relevance in algebraic geometry. Second, from the gauge theory point of view, by
[27] (see also [38]) these admissible Hermitian-Yang-Mills connections naturally
arise on the boundary of the moduli space of smooth Hermitian-Yang-Mills
connections with bounded Yang-Mills energy, as Uhlenbeck limits, and therefore
they play an important role in understanding the structure of the compactified
moduli space in gauge theory over higher dimensional Kähler manifolds. The
third motivation is that, in connection with gauge theory over G2 manifolds,
singularities of admissible Hermitian-Yang-Mills connections in dimension three
are expected to provide one possible model for singularities of G2 instantons
(when the G2 metric is close to the product of S1 with a three dimensional
Calabi-Yau metric) (see [31, 40, 32, 24] for recent research along this direction).

Given an admissible Hermitian-Yang-Mills connection A, a natural and in-
teresting question is to study the behavior of A near a singular point x ∈ S. In
this thesis, we will always restrict to the special case when S is discrete. This
is largely due to technical reasons and we certainly hope this assumption will
be removed in the future. So without loss of generality, we may assume that X
is the unit ball B = {|z| < 1} in Cn endowed with the standard Kähler form
ω0 :=

√
−1∂̄∂|z|2, and S = {0}. We also always assume n ≥ 3 in this paper,

since the singularity is removable if n ≤ 2.
Our goal is to understand the infinitesimal structure of A near 0 in terms

of the complex/algebraic geometric information on the stalk of E at 0. Loosely
speaking we are searching for an analytic/algebraic correspondence, which can
be viewed as a local analogue of the well-known Donaldson-Uhlenbeck-Yau the-
orem.

From the analytic point of view, we can take analytic tangent cones of A at
0, which are defined as follows. Let λ : z 7→ λz be the rescaling map centered
at the origin on Cn. Then by Uhlenbeck’s compactness result ([27, 38, 39]),
we know as λ → 0, by passing to a subsequence, the rescaled sequence of
connections Aλ := λ∗A converge to a smooth Hermitian-Yang-Mills connection
A∞ on Cn∗ \ Σ. Here Cn∗ := Cn \ {0}, and Σ is a closed subset of Cn∗ that
has locally finite Hausdorff codimension four measure, and we may assume Σ
is exactly the set where the convergence is not smooth. We call Σ the analytic
bubbling set2. By Bando-Siu [4], A∞ extends to be an admissible Hermitian-
Yang-Mills connection on Cn and it defines a reflexive sheaf E∞ on Cn. By [38]
(see also the discussion in Section 2), passing to a further subsequence we may
assume the Yang-Mills energy of Aλ weakly converges to a limit Radon measure

2For our purpose in this paper we will always remove the point 0 and we only consider
the convergence of smooth connections, locally away from 0, so that we can directly use the
Uhlenbeck convergence theory. In general one could try to understand the bubbling set of a
sequence of admissible Hermitian-Yang-Mills connections, which we leave for future study.
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µ on Cn. Write
µ = |FA∞ |2dVol + 8π2ν,

and define the blow-up locus as Σb := Supp(ν) \ {0}. We know that Σ is always
a complex-analytic subvariety of Cn∗ and by [38], Σb consists of precisely the
closure of the complex codimension two part of Σ, and to each irreducible com-
ponent of Σb one can associate an analytic multiplicity ; the lower dimensional
strata corresponds to the essential singularities of the connection A∞ which can
not be removed. For more detailed discussion see Section 2.

Throughout this paper, we shall call the triple (A∞,Σ, µ) an analytic tangent
cone of A at 0. A priori (A∞,Σ, µ) depends on the choice of subsequences as λ→
0. We also know that A∞ is a HYM cone connection in the sense of Definition
2.22. Namely, the corresponding reflexive sheaf E∞ on Cn is isomorphic to
ψ∗π

∗E∞, where π : Cn∗ → CPn−1 is the natural projection map and ψ : Cn∗ → Cn
is the inclusion map, and

E∞ =
⊕
j

F j

where each F j is a stable reflexive sheaf. The connection A∞ is isomorphic to
the direct sum of the pull-back of the (unique) Hermitian-Yang-Mills connection
on each F j under the projection map π, twisted by µj times the pull-back of
the Chern connection associated to the Fubini-Study metric on O(1) (this is
necessary to make the Einstein constant vanish). So in short the limit connection
A∞ is uniquely characterized by the algebraic data E∞ := ⊕jF j . We emphasize
again that the analytic tangent cone is a priori not known to be unique, since
it depends on not only the connection A but also the choice of subsequences.

Theorem 1.1. Suppose E is a reflexive sheaf on B with 0 as an isolated sin-
gularity, such that E is isomorphic to (ψ∗π

∗E)|B for some holomorphic vector
bundle E over CPn−1. Then for any admissible Hermitian-Yang-Mills connec-
tion A on E,

• all the tangent cones at 0 have the connection A∞. More precisely, the
corresponding E∞ is isomorphic to ψ∗π

∗(GrHNS(E))∗∗, and A∞ is gauge
equivalent to the natural Hermitian-Yang-Mills cone connection that is in-
duced by the admissible Hermitian-Yang-Mills connection on (GrHNS(E))∗∗.
Furthermore, π−1(Sing(GrHNS(E))) ⊂ Σ for any tangent cone (A∞, µ,Σ).

• the analytic bubbling set Σ is also independent of the choice of subse-
quences. Moreover, it agrees with the singular set Σalg of π∗(GrHNS(E))
as a set and for each irreducible codimension 2 component, the analytic
multiplicity agrees with the algebraic multiplicity. In particular, the limit
measure µ is also uniquely determined by E.

For the definition of algebraic multiplicity we refer to Section 3.3. Notice
Sing(E∞) \ {0} is obviously a subset of Σalg, and by Theorem 1.1 the difference
only appears when GrHNS(E) fails to be reflexive.

Remark 1.2. The theorem has been proved by [23] using PDE method when E
is stable.

One particular interesting fact is that there are examples where GrHNS(E) is
not reflexive and its double dual is a direct sum of line bundles, so ψ∗π

∗(GrHNS(E))∗∗

is trivial, i.e. ψ∗π
∗(GrHNS(E))∗∗ ∼= O⊕ rank(E)

Cn . As a result, the following inter-
esting phenomenon can happen.
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Corollary 1.3. There exists an admissible Hermitian-Yang-Mills connection
on a rank two reflexive sheaf over CP3, such that at all of its singular points the
analytic tangent cones have trivial flat connections but non-empty bubbling sets.

In general, we can find plenty of examples with non-homogeneous isolated
singularities by studying the fitting ideal of the stalk of E at the singular point
(see section 5.2). In the non-homogeneous case, there is no longer a canonical
choice of algebraic data like GrHNS(E) as above. An algebraic picture in general
was missing.

To solve the most general case, the natural way would be to study the
reflexive extension of p∗(E)|B̂\D across D where D := p−1(0). Here p : B̂ → B
denotes the blow-up at 0. Let A be the set of all such extensions modulo
isomorphisms over B̂. A can be easily seen to be non-empty since (p∗E)∗∗ ∈ A.
We call an element Ê ∈ A an extension of E at 0 and the torsion-free sheaf Ê |D
an algebraic tangent cone of E at 0. Then we can prove the following concerned
about non-homogeneous singularities.

Theorem 1.4. Suppose E is a reflexive sheaf on B with isolated singularity
at 0, such that there is an algebraic tangent cone given by a stable vector bun-
dle Ê. Then for any admissible Hermitian-Yang-Mills connection A on E, all
the tangent cone have the same tangent connection A∞, which is gauge equiva-
lent to the natural Hermitian-Yang-Mills cone connection that is induced by the
Hermitian-Yang-Mills connection on Ê.

Even though such a locally free stable algebraic tangent cone does not always
exist, it is natural to try to find some algebraic tangent cones that are close to
being stable.

To state the result, we set up a few notations. In the following, E will be any
fixed reflexive sheaf over B with 0 ∈ Sing(E) (0 not necessarily isolated) and we
let A be the space of extensions as above. We define a function Φ : A → Z≥0

by Φ(Ê) = µ(E1) − µ(Em/Em−1) where 0 ⊂ E1 ⊂ · · · Em−1 ⊂ Em = Ê := Ê |D
is the Harder-Narasimhan filtration of Ê with respect to the O(1) polarization
and µ(·) is the slope of the corresponding sheaf. Intuitively, φ(Ê) measures
how far Ê is from being semistable. We denote by GrHN (·) the graded sheaf
associated to the Harder-Narasimhan filtration of the corresponding sheaf. We
say an extension Ê of E at 0 is optimal if Φ(Ê) ∈ [0, 1). Then we have

Theorem 1.5. Given a reflexive coherent sheaf E over B, the following hold

(I). (Existence)An optimal extension always exists. More precisely, given
any Ê ∈ A, there are finitely many Hecke transforms that transform Ê
into an optimal one.

(II). (Uniqueness) Suppose Ê1 and Ê2 ∈ A are both optimal, then there is a k ∈
Z such that Ê1 and Ê2([D]⊗k) differ by a Hecke transform of special type
(see Definition 6.12). In particular, GrHN (Ê1) ∼ GrHN (Ê2).3Moreover,

if φ(Ê1) + φ(Ê2) < 1, Ê1 and Ê2 are isomorphic up to tensoring with a
power of [D]; if φ(Ê1) = 0, then all the other optimal extensions are
isomorphic to Ê1 up to tensoring with O(k).

3∼ means the two sheaves are isomorphic up to tensoring with each direct sum factor with
certain powers of O(1).
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(III). (Homogeneous case) Suppose E is homogeneous at 0, i.e. E|B\0 ' π∗E|B\0
for some reflexive sheaf E on CPn−1, then there exists an optimal exten-
sion Ê ∈ A with

Ê ∼ G̃r(E),

where G̃r(E) denotes the graded sheaf determined by the partial Harder-
Narasimhan filtration of E (see section 6.2.3 for definition). In particu-
lar,

GrHN (Ê) ∼ GrHN (E).

2 Background

2.1 Harder-Narasimhan-Seshadri filtration and canonical
metrics

In this section, we denote (X,ω) = (CPn−1, ωFS) although the results apply to
general compact Kähler manifolds. Recall a coherent sheaf F on X is torsion
free if the natural map F → F∗∗ is injective and reflexive if the map is an
isomorphism. The singular set Sing(F) is the set of points x ∈ X where Fx is
not free over OX,x. We know that Sing(F) is always a complex analytic subset
of X. It has complex co-dimension at least two if F is torsion free, and at least
three if F is reflexive. A good nontrivial local example of a reflexive sheaf can
be given by the sheaf ψ∗π

∗F on Cm, where F is a holomorphic vector bundle
on CPm−1 and π : Cm \ {0} → CPm−1 and ψ : Cm \ {0} → Cm are the natural
maps.

The slope of a coherent sheaf F is defined as

µ(F) :=
2π(n− 1)

∫
X
c1(F) ∧ ωn−2

rank(F)
∫
X
ωn−1

∈ Q (2.1)

Here c1(F) can be understood as the first Chern class of the determinant line
bundle of F , which is always an integer, and rank(F) denotes the rank of F .

Definition 2.1. A torsion free sheaf F is

• semistable if for all coherent subsheaves F ′ ⊂ F with rank(F ′) > 0 we
have µ(F ′) ≤ µ(F);

• stable if for all subsheaves F ′ ⊂ F with 0 < rank(F ′) < rank(F) we have
µ(F ′) < µ(F);

• polystable if F is the direct sum of stable sheaves with equal slope;

• unstable if F is not semistable.

The following definition is taken from Bando-Siu [4]

Definition 2.2. An admissible Hermitian metric on F is a smooth Hermitian
metric defined on F|X\Sing(F) such that the corresponding Chern connection
A satisfies

∫
X\Sing(F)

|FA|2dVolω < ∞, and that |ΛωFA| is uniformly bounded

on X \ Sing(F); it is an admissible Hermitian-Einstein metric if furthermore√
−1ΛωFSFA = µ(F)Id.
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By definition it follows that the Chern connection of an admissible Hermitian-
Einstein metric is indeed an admissible Hermitian-Yang-Mills connection as de-
fined in the introduction. Conversely, by [4] any admissible Hermitian-Yang-
Mills connection on F defines a unique reflexive sheaf together with an admissi-
ble Hermitian-Einstein metric so that A is the corresponding Chern connection.
From now on, we will use the two terminologies interchangeably. We also drop
the word “admissible” when the meaning is clear from the context.

The following theorem was proved by Donaldson and Uhlenbeck-Yau in the
case of vector bundles, and later generalized by Bando-Siu to reflexive sheaves.

Theorem 2.3 (Donaldson-Uhlenbeck-Yau [10, 11, 39], Bando-Siu [4]). A re-
flexive sheaf F on (X,ω) admits an admissible Hermitian-Einstein metric if and
only if it is polystable.

For later purpose we need the following

Proposition 2.4 ([4], Proposition 3). Let H be an admissible Hermitian-
Einstein metric on a reflexive sheaf F . Suppose µ(F) ≤ 0, then any holo-
morphic section s of F must be parallel with respect to the Chern connection.
Furthermore, if µ(F) < 0, then the only holomorphic section of F is the zero
section.

This has a few consequences

Corollary 2.5. Let φ : F1 → F2 be a non-trivial homomorphism between a
stable reflexive sheaf F1 and a polystable reflexive sheaf F2 with µ(F1) = µ(F2),
then φ realizes F1 as a direct summand of F2.

Proof. We view φ as a holomorphic section of Hom(F1,F2) = F∗1 ⊗ F2. By
Theorem 2.3 we know F1 and F2 both admit a Hermitian-Einstein metric, so we
get an induced Hermitian-Einstein metric on Hom(F1,F2) . On the other hand,
µ(Hom(F1,F2)) = µ(F2) − µ(F1) = 0. So by Proposition 2.4 φ is parallel. In
particular, on the complement of Sing(F1)∪Sing(F2), Ker(φ) defines a parallel
sub-bundle of F1, and Im(φ) defines a parallel sub-bundle of F2, and both
Ker(φ) and Im(φ) admits induced Hermitian-Einstein metrics induced from F1

and F2 respectively. So by [4] they extend to be polystable reflexive sheaves on
X. By assumption we have Ker(φ) = 0, and F ′ = Im(φ) is a direct summand
of F2. Hence φ : F1 → F ′ is an isomorphism away from Sing(F1) ∪ Sing(F ′),
so extends as an isomorphism globally by Hartogs’s theorem. Indeed, by taking
a locally free resolution of F∗1 ⊗ F ′ and taking its dual, one obtains the sheaf
exact sequence 0 → (F ′)∗ ⊗ F1 → G1 → G2 for locally free sheaves G1 and G2.
φ−1 can be naturally seen as a section of G1 away from Sing(F1) ∪ Sing(F ′)
which has complex codimension at least three, and it maps to zero in G2. So by
the usual Hartogs’s theorem φ−1 extends to a global section of G1 that maps to
zero in G2, thus it defines a global homomorphism from F ′ to F1. Clearly it is
the inverse of φ.

Corollary 2.6. A stable reflexive sheaf admits a unique Hermitian-Einstein
metric up to constant rescalings. In general, any two Hermitian-Einstein met-
rics on a polystable reflexive sheaf determine the same Chern connection and
the two metrics differs by a parallel complex transform on the complement of
singular set of the sheaf.

6



Proof. Suppose F is polystable, and H1 and H2 are two Hermitian-Einstein
metrics on F , then by Proposition 2.4 the identity map in End(F) is parallel,
with respect to the Chern connection of the Hermtian metric H∗1 ⊗ H2. This
implies that the Chern connections of H1 and H2 coincide. Suppose H2(·, ·) =
H1(g·, ·) for a complex gauge transformation g of F over X \ Sing(F) which is
Hermitian with respect to H1. Then it follows that g is holomorphic. Now by
Proposition 2.4 we conclude that g is parallel with respect to the Hermitian-
Einstein metric H∗1 ⊗ H1 on End(F). Hence it decomposes F into the direct
sum of eigenspace pieces, each of which is again polystable. If F is stable, then
g must be a multiple of identity.

Now we move on to discuss the case when F is not polystable. The following
two results are well-known, see for example Page 174 in [25].

Proposition 2.7. Suppose F is an unstable reflexive sheaf, then there is a
unique filtration by reflexive subsheaves

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F ,

such that the successive quotient Qi := Fi/Fi−1 is torsion free and semistable,
with µ(Qi+1) < µ(Qi).

Remark 2.8. The construction of [25] on Page 174 only states that Fi is torsion-
free since they state the result for F being torsion free, but it is easy to see each
Fi is indeed reflexive if F is reflexive. By Proposition 5.22 in [25] a coherent
subsheaf of a reflexive sheaf is reflexive if the corresponding quotient sheaf is
torsion free. One then applies this fact inductively to Fi for i = m, · · · , 1.

The above filtration is called the Harder-Narasimhan filtration of F . It
follows that the associated graded object

⊕
iQi, which we denote by GrHN (F),

is also uniquely determined by F .

Proposition 2.9. Suppose Q is a semistable torsion-free sheaf, then there is a
filtration by subsheaves

0 = S0 ⊂ S1 ⊂ · · · ⊂ Sq = Q,

so that the quotients Si/Si−1 are torsion free and stable, with µ(Si) = µ(Q).

Such a filtration is usually referred to as a Seshadri filtration of Q. Note
that Seshadri filtration is in general not unique; however, the associated graded
object

⊕
i Si/Si−1 is nevertheless uniquely determined by Q up to an isomor-

phism.
Combining the above two results, given any reflexive sheaf F , there is a

double filtration by reflexive subsheaves

0 = F0 ⊂ F1 ⊂ · · · Fm = F (2.2)

and
Fi−1 = Fi,0 ⊂ Fi,1 ⊂ · · · Fi,qi = Fi (2.3)

such that the successive quotients Fi,j/Fi,j−1 are torsion free and stable, and
moreover the slope of these quotients is constant when i is fixed, and strictly
decreasing when i increases. This is called the Harder-Narasimhan-Seshadri

7



filtration of F , and we emphasize again that only the associated graded object
GrHNS(F) is uniquely determined by F up to an isomorphism.

One can ask what is the analogue of a canonical Hermitian metric structure
on a general F . For semistable vector bundles on projective manifolds, the fol-
lowing is proved by Kobayashi [25], using Hermitian-Yang-Mills flow. This is
sufficient for our purpose, but we also mention that the result has been gener-
alized to all compact Kähler manifolds by Jacob [21].

Theorem 2.10 (Kobayashi, Theorem 10.13 in [25]). Suppose F is a semistable
vector bundle over (X,ω). Then F admits approximately Hermitian-Einstein
metrics. Namely, for any ε > 0, there exists a Hermitian metric H on F such
that the associated Chern connection A satisfies

|
√
−1ΛωFA − µ(F)Id|L∞(X) < ε. (2.4)

In the remainder of this section, we always assume F is locally free which
may in general be unstable. This situation is more involved. Suppose the
Harder-Narasimhan filtration of F is given as in (2.2), and denote by S(F) the
subset of X where GrHNS(F) is not locally free. Given any Hermitian metric
H on F , by [39], each Fi can be identified with a weakly holomorphic projection
map πi ∈ W 1,2(F∗ ⊗ F) which is smoothly defined outside S(F) and satisfies
the following:

(a). πi = π∗i = π2
i . This means that πi is a self-adjoint projection map.

(b). (Id − πi)∂̄Fπi = 0. This condition is equivalent to that Fi being a holo-
morphic sub-bundle outside S(F).

In particular, (∂̄Fπi)πi = 0, and taking adjoint we also have πi∂Fπi = 0, where
∂F is the (1, 0) component of the Chern connection on End(F) determined by
the chosen metric H.

Now we define

ψH =
∑
i

µi(πi − πi−1),

where µi = µ(Fi/Fi−1). Denote by X0 = X\S(F). Then we have an orthogonal
splitting over X0 as

F =
⊕
i

Qi,

where Qi := Fi/Fi−1 is naturally identified as a sub-bundle of Fi, given by
the orthogonal complement of Fi−1 in Fi. The splitting gives F another holo-
morphic structure ∂̄S outside S(F), and this together with the fixed Hermitian
metric determines a unique Chern connection which we deonte by A(H,∂̄S).

Remark 2.11. By definition,

∂̄S =
∑
i

(πi − πi−1) ◦ ∂̄F ◦ (πi − πi−1). (2.5)

In particular, ∂̄F = ∂̄S −
∑
i(πi − πi−1)∂̄Fπi.
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Recall for each i, with respect to the orthogonal splitting F = Fi ⊕F⊥i , the
second fundamental form of Fi in F is a smooth section of Λ1,0

X ⊗Hom(Fi,F⊥i )
over X0, whose adjoint is given by βi = −πi∂̄Fπ⊥i = ∂̄Fπi, where π⊥i denotes
the projection map from F to F⊥i .

Lemma 2.12. The following estimates hold in general

(1)
|Λω∂Fβi| = |Λω∂F ∂̄Fπi| ≤ |ΛωFA(H,∂̄F )

+
√
−1ψH |+ 2|βi|2 (2.6)

(2)
|∂Fβi| ≤ 2|βi|2 + |FA(H,∂̄F )

| (2.7)

Proof. Since ∂̄F = ∂̄Si − βi, where ∂̄Si defines the split holomorphic structure
with respect to the splitting F = Fi

⊕
F⊥i , we have

FA(H,∂̄F )
= ∂F ◦ ∂̄F + ∂̄F ◦ ∂F
= FA(H,∂̄Si

)
− ∂Siβi + ∂̄Siβ

∗
i − βi ∧ β∗i − β∗i ∧ βi.

Notice Λω∂Siβi is a section of Hom(Fi,F⊥i ) and therefore is perpendicular to
the remaining terms, we have

|Λω∂Siβi| ≤ |ΛωFA(H,∂̄F )
+
√
−1ψH |.

Since ∂F = ∂Si + β∗i , we have |Λω∂Fβi| ≤ |ΛωFA(H,∂̄F )
+
√
−1ψH | + 2|βi|2.

Similarly |∂Siβi| ≤ |FA(H,∂̄F )
| and thus |∂Fβi| ≤ 2|βi|2 + |FA(H,∂̄F )

|.

Proposition 2.13. There is a K > 0 such that for any ε > 0 and δ > 0, ∃ a
smooth Hermitian metric H on F such that the following holds for each i

1. supi
∫
X
|βi|2 ≤ ε;

2. supi
∫
X
|Λω∂Fβi| ≤ ε;

3.
∫
X
|
√
−1ΛωFA(H,∂̄S)

− ψH | ≤ ε;

4. |ΛωFA(H,∂̄F )
|L∞ ≤ K;

5. supX\S(F)δ(|
√
−1ΛωFA(H,∂̄S)

−ψH |+ supi |βi|+ supi |Λω∂Fβi|) ≤ ε, where

S(F)δ denotes the δ-neighborhood of S(F).

Proof. This is indeed an easy consequence of [22] and [36]. Starting from any
initial Hermitian metric H0 on F , let Ht be the family of Hermitian metrics on F
evolving along the Hermitian-Yang-Mills flow. We denote by At the Chern con-
nection of Ht and πti the projection map determined by the Harder-Narasimhan
filtration and the metric Ht. Then the following holds

(1).

lim
t→∞

∫
X

|
√
−1ΛωFAt − ψHt |2 = 0, (2.8)

see Proposition 8 in [22].
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(2).

lim
t→∞

∫
X

|∇Atπti |2 = 0, (2.9)

see (4.20) in [22].

(3). There exists a constant K > 0 independent of t such that

|ΛωFAt |L∞ ≤ K (2.10)

see Lemma (8.15) on Page 220 in [25].

We claim for t large, Ht satisfies the desired properties in the Proposition with
the choice of K as in the third item above. In fact, let βti = ∂̄Fπ

t
i . Then (2.9)

implies

lim
t→∞

∫
X

|βti |2 = 0.

By Lemma 2.12 and (2.8), we have

lim
t→∞

∫
X

|Λω∂Fβti | = lim
t→∞

∫
X

|Λω∂̄F (βti )
∗| = 0.

Then by Remark 2.11, ∂̄F = ∂̄S −
∑
i(π

t
i − πti−1)βti , which implies

ΛωFAt = ΛωF(Ht,∂̄S) −
∑
i,j

Λω(πti − πti−1)βti ∧ (βtj)
∗(πtj − πtj−1)

−
∑
i,j

Λω(βtj)
∗(πtj − πtj−1) ∧ (πti − πti−1)βti −

∑
i

Λω∂S [(πti − πti−1)βti ]

+
∑
i

Λω∂̄S [(βti )
∗(πti − πti−1)].

From this, we get

|ΛωF(Ht,∂̄S) +
√
−1ψHt | ≤ |ΛωF(Ht,∂̄S) +

√
−1ψHt |+C(sup

i
|βti |2 +sup

i
|Λω∂Eβti |)

Then we have

lim
t→∞

∫
X

|ΛωF(Ht,∂̄S) +
√
−1ψHt | = 0.

The last item follows from [36], where the analytic bubbling set of the Hermitian-
Yang-Mills flow is identified with S(F) as a set, and outside this set At converges
smoothly to a direct sum of Hermitian-Yang-Mills connection.

Remark 2.14. Although not needed in this paper, we mention that in [34] Sibley
proved the existence of Lp approximate critical Hermitian metrics, in the sense
that for any δ > 0 and 1 ≤ p < ∞ there exists a metric Hδ whose associated
Chern connection Aδ satisfies

‖
√
−1ΛωFAδ − ψHδ‖Lp(X) < δ.

Now consider a complex gauge transform away from S(F) of the form

g =
∑
i

fi(πi − πi−1),

where each fi is a smooth positive function. Denote β = ∂̄F − ∂̄S = −
∑
i(πi −

πi−1)∂̄Fπi.
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Lemma 2.15.
F(H,g·∂̄F ) = T0 + T1 + T2

with
T0 = F(H,g·∂̄S) = F(H,∂̄S) −

∑
i

∂∂̄ log(f2
i )(πi − πi−1);

T1 = −(g · ∂̄S)(gβg−1)∗ + (g · ∂̄S)∗(gβg−1);

T2 = −gβg−1 ∧ (gβg−1)∗ − (gβg−1)∗ ∧ gβg−1.

Here

(g · ∂̄S)(gβg−1)∗ =
∑
i<j

fi
fj

(πj − πj−1)(∂̄Sβ
∗)(πi − πi−1)

− 2
∑
i<j

∂̄(
fi
fj

) ∧ (πj − πj−1)(∂Fπi)(πi − πi−1),

and (g · ∂̄S)∗ denotes the (1, 0) component of the Chern connection determined
by (H, g · ∂̄S).

Proof. By definition,

F(H,g·∂̄S) = (g · ∂̄S)∗ ◦ (g · ∂̄S) + (g · ∂̄S) ◦ (g · ∂̄S)∗

Now the first part follows from this by plugging g · ∂̄S = g · ∂̄F − gβg−1. As for
the second part,

(g · ∂̄S)(gβg−1)∗ = (∂̄S − ∂̄Sg · g−1)(g−1β∗g)

= ∂̄S(g−1β∗g)− [∂̄Sg · g−1, g−1β∗g]

= g−1∂̄Sβ
∗g + 2(∂̄Sg

−1) ∧ β∗g − 2g−1β∗ ∧ ∂̄Sg

Plugging β = −
∑
i(πi−πi−1)∂̄Fπi and using πj(∂̄Sβ

∗)(πi−πi−1) = 0 for j ≤ i,
we obtain the conclusion.

Corollary 2.16. |F(H,∂̄S)| ≤ |F(H,∂̄E)|+ C supi |βi|2

Proof. This follows from choosing g = 1 in Lemma 2.15 and applying Equation
(2.7),

We finish this subsection with a technical result which will be used in Section
3.1.2.

Proposition 2.17. Let G ⊂ F be a saturated subsheaf and fix any smooth
Hermitian metric H on F , then there exists δ = δ(G) > 0 so that∫

X\Sing(G)

|∂̄πG |2+δ <∞,

where πG is the weakly holomorphic projection map defined by G with respect to
H.
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Proof. By Hironaka resolution of singularities (see [4]), there is a sequence of
blow-ups pk : Xk → Xk−1 (k = 1, · · · , N) along smooth submanifolds of Xk−1

of codimension at least two, with X0 = X, such that p = pN ◦ · · · ◦ p1 is
biholomorphic on the complement of Sing(G), p−1(Sing(G)) is a union E =

⋃
Ej

of simple normal crossing divisors (with possibly multiplicities), and p∗G|XN\E
extends to a holomorphic sub-bundle of p∗F . We denote the sub-bundle by G̃.
Pulling back the given Hermitian metric on F to p∗F , we obtain a corresponding
smooth projection map πG̃ defined by G̃. So∫

X\Sing(G)

|∂̄πG |2+δωn−1 =

∫
XN\p−1(Sing(G))

|∂̄πG̃|
2+δ
p∗ω p∗ωn−1.

Let ωk be a smooth Kähler metric on Xk, where ω0 = ω. Then we can naturally
view ωk as a smooth real valued (1, 1) form on XN which are Kähler metrics
outside E. On XN \ E we have

|∂̄πG̃|
2+δ
ω0
≤ (Trp∗ω0ωN )1+δ/2|∂̄πG̃|

2+δ
ωN .

Notice

Trp∗ω0
ωN

(p∗ω0)n−1

ωn−1
N

=
(n− 1)ωN ∧ (p∗ω0)n−2

ωn−1
N

is uniformly bounded, and ∂̄πG̃ is smooth on XN . Therefore to prove the con-
clusion it suffices to show that we can find δ > 0 such that∫

XN\E
(Trp∗ω0

ωN )δ/2ωn−1
N <∞.

To prove this, we first notice on XN \ E we have

Trp∗ω0
ωN ≤ ΠN

k=1(pN · · · pk+1)∗Trp∗kωk−1
ωk

with ω0 = ω. Now for each k, by fixing any smooth Hermitian metric on the
corresponding line bundle associated to the exceptional divisor of pk and doing
a local calculation, one can easily check that the Trp∗kωk−1

ωk ≤ C|sk|−2, where
sk is the defining section for the exceptional divisor of pk. Then we have

Trp∗ω0ωN ≤ CΠj |σj |−2aj ,

where σj is the defining section of Ej over XN , and aj is a positive integer.
Since E is a union of simple normal crossing divisors, it is clear that we can find
the desired δ > 0, again by estimating the corresponding integral locally near
any point of E.

2.2 PDE estimates

Let B
∗

= B \ {0} ⊂ Cn. Again we always assume n ≥ 3. For a function g, we
denote g+ = max{g, 0}. The following lemma is crucial for us.

Lemma 2.18. Suppose g ∈ C2(B∗) ∩ C0(B
∗
) with

∫
B∗
|g+|

n
n−1 < ∞ and f is

a non-negative function on B∗. If on B∗ we have

∆g(z) ≥ −|z|−2f(z), (2.11)

then for all z ∈ B∗ the following hold,
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(1). For all z ∈ B∗,

g(z) ≤ |g|L∞(∂B) +

∫
B∗
G(z, w)|w|−2f(w)dw,

where G(z, w) is the (positive) Green’s function for −∆ on B. The inequal-
ity is only meaningful when the right hand side is finite.

(2). For all z ∈ B∗,

g(z) ≤ C0(|g|L∞(∂B) + sup
|w−z|≤|z|/2

f(w) + (− log |z|) sup
r∈(0,1]

r1−2n

∫
∂Br

f),

where C0 depends only on n. In particular, if |f |L∞(B∗) <∞, then

lim sup
z→0

g(z)

− log |z|
≤ C0 sup

r∈(0,1]

r1−2n

∫
∂Br

f.

Proof. We first solve the Dirichlet problem ∆h = 0, h|∂B = g|∂B , then |h|L∞(B) ≤
|g|L∞(∂B). So we can reduce to the case that g|∂B = 0. Fix any z ∈ B∗, for
ε < |z|/4, we choose a cut-off function χε supported in B \ Bε, and equal to
1 on B \ B2ε, with |∇χε| ≤ Cε−1 and |∇2χε| ≤ Cε−2. For τ > 0 we denote

gτ = 1
2 (
√
g2 + τ2 − τ + g), then gτ = 0 on ∂B and one can check

∆gτ (z) ≥ 1

2

√
g2 + τ2 + g√
g2 + τ2

∆g ≥ −1

2

√
g2 + τ2 + g√
g2 + τ2

|z|−2f(z) ≥ −|z|−2f(z).

Using Green’s representation formula we have

gτ (z) =

∫
B∗

2∇wG(z, w)∇χε(w)gτ (w) +G(z, w)∆χε(w)gτ (w)−G(z, w)χε(w)∆gτ (w)

Let τ → 0, we get

g+(z) ≤
∫
B∗

2∇wG(z, w)∇χε(w)g+(w)+G(z, w)∆χε(w)g+(w)+G(z, w)χε(w)|w|−2f(w).

Now let ε → 0, we claim the first two terms tend to zero. We only prove this
for the second term and the first term can be dealt with similarly. We have

|
∫
B∗
G(z, w)∆χε(w)g+(w)|

≤ Cε−2

∫
B2ε\Bε

|z − w|−2n+2|g+(w)|

≤ Cε−2V ol(B2ε)
1/n|z|−2n+2(

∫
B2ε\Bε

|g+(w)|
n
n−1 )

n−1
n ,

and the last term tends to zero, since
∫
B∗
|g+|

n
n−1 <∞. So we obtain

g+(z) ≤
∫
B

G(z, w)|w|−2f(w)dw.
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This finishes the proof of (1).

Now we prove (2). Notice G(z, w) ≤ C|z−w|2−2n for a positive constant C,
so it suffices to estimate the integral

∫
B
|z − w|2−2n|w|−2f(w). We divide this

into three parts. When |w − z| ≤ |z|/2 we have∫
|w−z|≤|z|/2

|z − w|2−2n|w|−2f(w) ≤ C sup
|w−z|≤|z|/2

f(w). (2.12)

When |w − z| ≥ |z|/2, we have |w| ≤ 3|z − w|. Then∫
|w|≥ |z|2 ,|z−w|≥

|z|
2

|z − w|2−2n|w|−2f(w) ≤ 32n−2

∫
|w|≥ |z|2

|w|−2nf(w)

≤ 32n−2(− log |z|) sup
r∈(0,1]

r1−2n

∫
∂Br

f

We also have∫
|w|≤|z|/2

|z − w|2−2n|w|−2f(w) ≤ 22n−2|z|2−2n

∫
|w|≤|z|/2

|w|−2f(w)

≤ 22n−1 sup
r∈(0,1]

r1−2n

∫
∂Br

f.

Combining the estimates above, we easily get the conclusion.

Let H be an admissible Hermitian metric on a reflexive sheaf E defined on
B.

Theorem 2.19 ([4]). For any holomorphic section s of E, we have log+ |s|2
belongs to H1

loc, and the following inequality holds in weak sense

∆ log+ |s|2 ≥ −2
〈
√
−1Λω0

Fs, s〉
|s|2

≥ −2|
√
−1Λω0

F |. (2.13)

In particular, by Moser iteration, |s| ∈ L∞loc. Moreover, if |s| is in L2(B),
then we have

|s|L∞(B1/2) ≤ K1|s|L2(B) (2.14)

for K1 depending on |
√
−1Λω0F |L∞(B).

Now suppose E has an isolated singularity at 0. let H and H ′ be two admis-
sible Hermitian metrics on E , then TrH(H ′) and TrH′(H) are both the norms
of the identity section of End(E) with respect to the two admissible Hermitian
metrics H∗ ⊗H ′ and (H ′)∗ ⊗H respectively. Applying (2.13) and Lemma 2.18
on the ball Br with r → 0 (notice (2.11) is scaling invariant), we obtain

lim sup
z→0

| log TrH(H ′)(z)|+ | log TrH′(H)(z)|
− log |z|

≤ C0 lim sup
r→0

r1−2n

∫
∂Br

r2(|Λω0FH |+ |Λω0FH′ |). (2.15)

Notice by elementary means the left hand side bounds the ratio between
the metrics H and H ′. In particular, if both H and H ′ are Hermitian-Einstein
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with vanishing Einstein constant, then there is a constant C > 0 such that
C−1H ′ ≤ H ≤ CH ′. This has been observed in [23].

For our later purposes we also need to deal with more general classes of
Hermitian metrics which may not be admissible. The following Lemma makes
it convenient to use Lemma 2.18.

Lemma 2.20. Suppose E has an isolated singularity at 0, and H, H ′ be two
smooth Hermitian metrics on E|B∗ such that for some δ ∈ (0, 1],

|FH |+ |FH′ | ∈ L1+δ(B).

Then
g+ ∈ L

n
n−1 (1+δ)(B)

where g denotes either log TrHH
′ or log TrH′H. In particular, by Lemma 2.18,

if we further assume r2(|ΛFH | + |ΛFH′ |) ∈ L∞(B∗), then (2.15) continues to
hold.

Proof. The argument essentially follows from the proof of Theorem 2 in [4]. Fix
any complex subspace V ⊂ Cn of dimension n−2, and denote by p : B → B∩V
the orthogonal projection. Let χ : C2 → [0, 1] be a cut-off function which is
equal to 1 for |z| ≤ 1/100 and equal to zero for |z| ≥ 2/100. For each t ∈ V
with 0 < |t| ≤ 1/2, χ defines a natural cut-off function on p−1(t). Since p−1(t)
is a complex subspace, and E is a holomorphic vector bundle over p−1(t), we
can apply the above discussion to p−1(t) and obtain

∆tg ≥ −C(|FH |+ |FH′ |),

where ∆t is the Laplacian operator on p−1(t). Multiplying both sides by
χ2(g+)δ, and integrating by parts on p−1(t) we obtain (∇t denotes the derivative
on p−1(t)) ∫

p−1(t)

|∇t(χ(g+)
δ+1

2 )|2

≤ C(

∫
p−1(t)

χ2(g+)δ(|FH |+ |FH′ |) +

∫
p−1(t)

|∇tχ|2(g+)1+δ

+

∫
p−1(t)

χ|∇tχ|(g+)δ|∇tg+|),

where the constant C depends on δ. Notice ∇tχ is supported outside the ball
|z| ≤ 1/100, and H and H ′ are both smooth away from zero, so the last two
terms are uniformly bounded independent of t. For the first term on the right
hand side we can use Young’s inequality, and obtain for any ε > 0, a number
C(ε) > 0 such that∫

p−1(t)

|∇t(χ(g+)
δ+1

2 )|2

≤ ε

∫
p−1(t)

χ2(g+)δ+1 + C(ε)

∫
p−1(t)

χ2(|FH |+ |FH′ |)δ+1 + C
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Using the Poincaré inequality on the unit ball in C2, and choosing ε sufficiently
small, we conclude that∫
p−1(t)

|∇t(χ(g+)
δ+1

2 )|2+

∫
p−1(t)

χ2(g+)δ+1 ≤ C(ε)

∫
p−1(t)

χ2(|FH |+|FH′ |)δ+1+C.

Integrating this along V , and noticing that the inequality is uniform for all

choices of complex subspaces V , one sees that (g+)
δ+1

2 ∈ W 1,2(B). Then by

Sobolev embedding theorem, we get g+ ∈ L
n
n−1 (δ+1)(B).

2.3 Analytic tangent Cones

We first describe some generalities on Hermitian-Yang-Mills cones. Let A be
an admissible Hermitian-Yang-Mills connection on (E,H) over (CPn−1, ωFS)
with singular set Σ. Let E be the corresponding reflexive sheaf on CPn−1, then
the Einstein constant µ = µ(E). Let π : Cn \ {0} → CPn−1 be the natural
holomorphic projection, and denote Σ = π−1(Σ). On E := π∗E (since π is flat,
we know E is reflexive ), we consider the Hermitian metric H := |z|2µπ∗H, and
let A be the corresponding Chern connection, then it follows that

FA = π∗FA +
√
−1µπ∗ωFS · Id. (2.16)

We first state a simple Lemma, whose proof follows easily from the fact
that (CPn−1, ωFS) is the symplectic reduction of (Cn, ω0) under the natural S1

action.

Lemma 2.21. Let α be a two form on CPn−1, then Λω0π
∗α = |z|−2π∗(ΛωFSα).

It follows from Lemma 2.21 and Equation (2.16) that A is an admissible
Hermitian-Yang-Mills connection on E with singular set Σ and vanishing Ein-
stein constant.

Definition 2.22. We call such a Hermitian-Yang-Mills connection (E , H,A)
a simple HYM cone. When there is no confusion, sometimes we also use the
notation (E , A) or simply A for brevity.

Remark 2.23. Strictly speaking, E is only defined on Cn \ {0}, but by [4] we
know E has a unique extension to Cn as a reflexive sheaf and the connection A
can be viewed as an admissible Hermitian-Yang-Mills connection on the whole
B. In our discussion in this paper (by abusing notation) we will not distinguish
E and E|Cn\{0}.

Next we discuss the natural question that to what extent the connection A
(on the sheaf E over Cn \ {0}) determines A and E . Notice there is a standard
S1 action on Cn, given by eiθ.z = eiθz. Parallel transport along the S1 orbit
determines a smooth section P of the gauge group G of A. P can be naturally
viewed as a section of End(E), and using our definition it is easy to see that

P = e−2π
√
−1µId. It follows that µ is uniquely determined by A, modulo Z.

On the other hand, for any m ∈ Z, let A(m) be the Chern-connection on
E ⊗ O(m), where O(m) is endowed with the natural Hermitian metric whose
Chern connection has curvature −

√
−1mωFS , then it is easy to see that the

Einstein constant of A(m) is µm = µ+m, and A(m) also gives rise to a simple
HYM cone which is isomorphic to A. On the underlying sheaf, this is just the
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obvious fact that π∗O(m) is trivial hence π∗(E ⊗ O(m)) is isomorphic to π∗E
and the metric then differs by a factor |z|2m.

Now once we have chosen µ, we can then modify the Hermitian metric H to
H ′ := |z|−2µH, so that the corresponding new Chern connection A′ has trivial
holonomy around the S1 orbit. Then by choosing local trivializations of E that
is parallel along the C∗ orbits we see that (E , A′, H ′) descends naturally to an
admissible Hermitian-Yang-Mills connection A on E with Einstein constant µ.
We summarize the above discussion into

Proposition 2.24. A simple HYM cone A determines uniquely (A, E), up to
possibly tensoring with O(m) for some m ∈ Z.

For convenience we will simply call the matrix e−2π
√
−1µId the holonomy of

A.

Remark 2.25. It follows that A is isomorphic to a pull-back connection from
CPn−1 if and only if the holonomy is trivial. In general µ does not have to be
an integer. For a simple example, we can take E to be the tangent bundle of
CPn−1(n ≥ 3). It is well-known that E is stable, with the obvious Hermitian-
Einstein metric, and µ = n

n−1 . The corresponding simple HYM cone would have
non-trivial holonomy and hence can not be a pull-back connection.

Definition 2.26. A HYM cone is a direct sum of simple HYM cones.

Similar to the above discussion, we can uniquely write a HYM cone A as a
direct sum of simple HYM cones

⊕
j Aj such that each Aj has distinct holon-

omy e−2π
√
−1µj . We can similarly define the holonomy of A as an element of

(S1)k ⊂ U(k), where k = rank(E). It is uniquely determined by its eigenvalues
(with multiplicities). The underlying sheaf E is also isomorphic to

⊕
j π
∗Ej

for reflexive sheaves Ej over CPn−1, with µj = µ(Ej), and the correspond-

ing Hermitian-Einstein metric on E can be written as H =
⊕

j |z|2µjπ∗Hj for

Hermitian-Einstein metrics Hj on Ej . So it is clear that µj ∈ (k!)−1Z for all j.

Next we give an intrinsic characterization of a HYM cone. This is also
observed in [23].

Theorem 2.27. Let A be an admissible Hermitian-Yang-Mills connection on
Cn \ {0} with vanishing Einstein constant and with singular set Σ, then A is
gauge equivalent to a HYM cone if and only if ι∂rFA = 0 holds on Cn \ Σ.

Proof. The “only if” direction follows easily from definition, so it suffices to
prove the “if” direction. Notice a priori we are not assuming Σ is C∗-invariant.
We let Σ′ = {λ.x|x ∈ Σ, λ ∈ C∗}, then since Σ is of complex codimension at
least three, Σ′ is of complex codimension at least two. We can use parallel
transport along the S1 orbit with respect to A to define a smooth section P
of the gauge group G over Cn \ Σ′. We claim P is covariantly constant, when
viewed naturally as a section of End(E). Notice this is a local property. To see
this, we fix a point z ∈ Cn \ {0}, and locally we can choose a trivialization of
E under which we can write dA = d + A0 for a u(l)-valued 1-form A0, where l
is the rank of E. Modifying by an element of G we may assume locally around
z that A0(∂r) = A0(J∂r) = 0. Notice since ι∂rFA = 0, and F 0,2

A = 0 we also
have ιJ∂rFA = 0. It then follows from a direct computation that A0 is invariant
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under the local C∗ action, so we can write A = π∗A for a locally defined unitary
connection A on CPn−1. It then follows easily that parallel transport along the
C∗ action orbit commutes with the co-variant derivative dA, hence propagating
along the S1 orbit we obtain dAP = 0.

Using P we obtain a parallel splitting of (E,A) over Cn \ Σ′ into the direct
sum of Hermitian-Yang-Mills connections. Since Σ′ has complex codimension
at least two, by [4] each direct summand extends to an admissible Hermitian-
Yang-Mills connection on Cn. Moreover, on each piece the holonomy P is given
by multiplication by e−2π

√
−1µ for some µ. Then we can follow the proof of

Proposition 2.24 to conclude that each piece is indeed a simple HYM cone. It
also follows from the above argument that Σ is indeed C∗ invariant.

Now we will apply the discussion above to our setting. We first recall known
results on the convergence of a sequence of Hermitian-Yang-Mills connections
with locally uniformly bounded Yang-Mills energy, adapted to our setting of
getting analytic tangents cones. Let A be the admissible Hermitian-Yang-Mills
connection on E over B∗. For any λ ∈ (0, 1], we consider the rescaling map
defined by

λ : Bλ−1 → B; z 7→ λz

and denote
Aλ := λ∗A.

Given any subsequence λi → 0, by Price’s monotonicity formula [30] (see also
Page 20, Remark 3 in [38]), for any R > 0, the sequence {Aλi}i has uniformly
bounded Yang-Mills energy over BR \ {0}. Then by Uhlenbeck’s compactness
result ([27, 38, 39]) after passing to a subsequence, we may assume {Aλi}i
converges locally smoothly to A∞ on Cn∗ \ Σ modulo gauge transformations,
where Cn∗ = Cn \0 and Σ is a closed subset of Cn∗ so that the Hausdorff (2n−4)
measure of Σ ∩BR is finite for any fixed R > 0. More explicitly, we have

Σ = {z ∈ Cn∗ | lim
r→0

lim inf
i→∞

r4−2n

∫
Br(z)

|FAλi |
2 ≥ ε0} (2.17)

where ε0 > 0 denotes the constant in the ε-regularity theorem (see Equation
(3.1.4) in [38]). We denote Sing(A∞) as the set of essential singularities of A∞ on
Cn∗ i.e. where A∞ can not be extended smoothly after a local gauge transform.
Clearly Sing(A∞) ⊂ Σ, but in general Sing(A∞) may be strictly smaller due to
the removable singularities of A∞. Passing to a further subsequence, we may
assume that the sequence of Radon measures {µi := |FAλi |

2dVol}i converge
weakly to µ on Cn. We define the triple (A∞,Σ, µ) to an analytic tangent cone
of A (associated to the chosen subsequence), and Σ is called the analytic bubbling
set. For simplicity of notation, we denote

lim
i→∞

Aλi = (A∞,Σ, µ).

By Fatou’s lemma, there exists an nonnegative measure ν on Cn so that

µ = |FA∞ |2dVol + 8π2ν.

By [38], supp(ν) \ {0} is the blow-up locus Σb of the sequence {Aλi}i given as

Σb = {x ∈ Cn∗ |Θ(µ, x) > 0, lim
r→0

r4−2n

∫
Br(x)

|FA∞ |2 = 0}.
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where Θ(µ, x) := limr→0 r
4−2nµ(Br(x)) is called the density function. It is easy

to see that
Σ = Σb ∪ Sing(A∞). (2.18)

The removable singularity theorem in [4] implies that A∞ defines a reflexive
sheaf E∞ on Cn, and we have

Sing(A∞) = Sing(E∞) \ {0}.

In particular Sing(A∞) is a complex-analytic subvariety of Cn∗ . As a conse-
quence of the monotonicity formula, Tian ([38], Lemma 5.3.1) proved that the
connection A∞ satisfying ∂rFA∞ = 0, thus is a HYM cone by Theorem 2.27.
Therefore Sing(A∞) is C∗ invariant, which implies π(Sing(A∞)) is an algebraic
subvariety of CPn−1. Also the invariance of A∞ implies that for any r ∈ (0, 1),
the function

z 7→ (|z|r)4−2n

∫
B|z|r(z)

|FA∞ |2

is invariant under the natural C∗ action on Cn∗ . By Theorem 4.3.3 in [38], we
know4 that Σb is also a complex-analytic subvariety of Cn∗ of pure codimension
two (see also Lemma 3.2.3 in [38]), with finitely many irreducible components
Σk, and there are positive integers mk such that the following current equation
holds on Cn∗

lim
i→∞

1

8π2
tr(FAλi ∧ FAλi ) =

1

8π2
tr(FA∞ ∧ FA∞) +

∑
man
k [Σk]. (2.19)

In particular,

ν =
∑
k

man
k [Σk].

Later when talking about Σb, we always assume Σb =
∑
km

an
k Σk to include the

multiplicities. (This will only be used in Section 3.3.) Again by Lemma 5.3.1 in
[38], we know Σb is also radially invariant, hence it is also invariant under C∗
action.

Summarizing the above we have

Lemma 2.28. Σ = π−1(Σ) where Σ is a subvariety of CPn−1 of complex codi-
mension at least 2.

Now fix a smooth point z ∈ Σk, and let ∆ be a transverse slice at z, i.e. ∆ is
a smooth complex two dimensional submanifold in B such that ∆ is transversal
to Σk. The following is proved in [36] (see Lemma 4.1) and the argument is
purely local.

Lemma 2.29. For ∆ which is a transverse slice at a generic point z ∈ Σk, we
have

man
k = lim

i→∞

1

8π2

∫
∆

{tr(FAλi ∧ FAλi )− tr(FA∞ ∧ FA∞)}. (2.20)

4The proof in [38] is written in the case of compact manifolds, but as remarked in [38]
(Remark 5), one only requires the boundedness of local Yang-Mills energy, which is valid in
our case due to Price’s monotonicty formula.
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Remark 2.30. Lemma 2.29 holds for any irreducible component Σk which is not
necessarily a component of Σ. Indeed, man

k = 0 in this case.

The radial invariance of tangent cones has a few easy consequences, which
will be used frequently later.

Corollary 2.31. Given any z ∈ B \ {0} and r < |z|, we always have

(a). limi→∞ µi(Br(z)) = µ(Br(z));

(b). lims→r µ(Bs(z)) = µ(Br(z));

(c). limi→∞ µi(Bri(zi)) = µ(Br(z)), for zi → z, ri → r.

Proof. For (a), by general theory on convergence of Radon measures it suffices to
show that µ(∂Br(z)) = 0. Since Σ = π−1(Σ) where Σ is a complex subvarierty
of real codimension 4 in CPn−1, Σ∩∂Br0(z) is of Hausdorff codimension at least
5, hence we have µ(∂Br(z)) = 0. Now for (b) we notice that Σ being radially
invariant implies that

|µ(Bs(z))− µ(Br(z))| ≤ |
∫
Bs(z)

|FA∞ |2 −
∫
Br(z)

|FA∞ |2|+ C|s− r|

for some fixed constant C. So (b) follows. For (c), fix r < r′ < |z| and for i
large one has Bri(zi) ⊂ Br′(z). This implies

µ(Br′(z)) = µ(Br′(z)) ≥ lim sup
i→∞

µi(Bri(zi)).

By letting r′ → r, we have

µ(Br(z)) ≥ lim sup
i→∞

µi(Bri(zi)).

Similarly one can prove µ(Br(z)) ≤ lim infi→∞ µi(Bri(zi)). This finishes the
proof.

In our definition of analytic tangent cones we always need to pass to sub-
sequences. For our later purpose we want to restrict to a particular discrete
subsequence as λ → 0. Namely, we define λi := 2−i and Ai = λ∗iA. We say
two analytic tangent cones are equivalent if they have the same bubbling set
and the same analytic multiplicity of each irreducible Hausdorff codimension 4
component and the corresponding connections are gauge equivalent.

Corollary 2.32. Any analytic tangent cone (A∞,Σ, µ) is equivalent to an an-
alytic tangent cone arising from the limit of a subsequence of {Ai}i.

Later, we need to talk about convergence of holomorphic section of E to
holomorphic sections on an tangent cone, so here we first clarify the meaning of
this. Suppose

lim
ji
Aji = (A∞,Σ, µ).

Then we can write E∞ = π∗E∞ and E∞ is a direct sum of stable reflexive sheaves
on CPn−1

E∞ = ⊕lQl.
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Then
A∞ =

⊕
l

π∗Al + µl∂ ln |z|2 · Idπ∗Q
l
,

where Al is the unique Hemitian-Yang-Mills connection on Q
l
. We let H l denote

the Hermitian-Einstein metric on Q
l
. Then A∞ is the Chern connection on

(E∞, H∞) where H∞ := ⊕l|z|2µ(Q
l
)π∗H l. Fix a smooth Hermitian H ′ on E , and

let H ′ = π∗H ′. Let Hi = (2−i)∗H and fi = (H ′−1Hi)
1
2 be the complex gauge

transform (note fi is Hermitian with respect to H ′). Here H is the unknown
Hermitian-Einstein metric on E . Let Ai be the Chern connection given by the
hermitian metric H ′ and the holomorphic structure fi · ∂̄E := fi ◦ ∂̄E ◦f−1

i . Then
{Ai}i is a sequence of Hermitian-Yang-Mills metrics on a fixed unitary vector
bundle. Then there exists a unitary gauge isomorphism

P : (E , H ′)→ (E∞, H∞)

outside Σ and a sequence of unitary gauge transform {gji}i of (E , H ′) defined
outside Σ so that {gji ·Aji}i converges to P ∗A∞ smoothly outside Σ.

Now given a sequence of holomorphic sections {σi} of E over B∗, we know
fi(σi) is a holomorphic section of (E , fi(∂̄E)). We say {σi} converges to a holo-
morphic section σ∞ of E∞, if gjifi(σji) converges smoothly to P−1σ∞ locally
away from Σ. Since gji · fi(Aji) converges to P ∗A∞ outside Σ, by the elliptic
regularity of ∂̄-operator, we know that for any sequence of holomorphic sections
{σi}i which are normalized suitably, by passing to subsequences, we can always
obtain limit holomorphic sections of E∞ in the above sense. However, the limit
is not a priori nontrivial. This would rely on the convexity result that we are
going to discuss.

2.4 Cut-off

We first make a few conventions. We say a subset E of an open (or closed)
annulus A is symmetric if for any z ∈ E, then

C∗.z ∩A ⊂ E.

For any subset E ⊂ B2−1 \B2−2 , we define its symmetrization to be the smallest
symmetric subset that contains E i.e. the set π−1(π(E))∩ (B2−1 \B2−2). Below
we shall discuss convergence of compact subsets of B, and it will always be with
respect to the Hausdorff distance on the space of all compact subsets of B.

For any r ∈ (0, 10−3] and integer j ≥ 1, we define Erj to be symmetrization
of the closed set

{z ∈ B2−1 \B2−2 : (|z|r)4−2n

∫
B|z|r(z)

|FAj |2 ≥
ε0
2
}.

Given a tangent cone (A∞,Σ, µ), we define a symmetric set

Nr(A∞,Σ, µ) := {z ∈ B \B2−3 : (|z|r)4−2nµ(B|z|r(z)) ≥
ε0
2
}.

Furthermore, from the definition of Σ we see that for any r > 0,

Σ ∩ (B \B2−3) ⊂ Nr(A∞,Σ, µ).

21



For notational convenience, we will sometimes simply denote Nr(A∞,Σ, µ) by
Nr if the relevant tangent cone is clear from the context. Given a subsequence
{Aji}i converging to (A∞,Σ, µ), we denote

Σrji := 2Erji−1 ∪ Erji ∪ 2−1Erji+1.

Now we are ready to state the main theorem of this section.

Theorem 2.33. There exists r0 ∈ (0, 10−3) such that for any r ∈ (0, r0], and
for any given tangent cone (A∞,Σ, µ) = limi→∞Aji the following holds

(I). Suppose V1 and V2 are limits of Erji and Erji+1 respectively, then

m(V1 \ V2) = m(V2 \ V1) = 0

where m(·) denotes the Lebesgue measure on Cn;

(II). N
r
2 ⊂ Σrji ⊂ N

2r for i large. Moreover,

d((B \B2−3) \N2r, N
r
2 ) > 0,

lim inf
i

d(B \B2−3) \N2r,Σrji) > 0,

and
d((B \B2−3) \N r

2 ,Σ) > 0;

(III). There exists a constant C = C(r) > 0 so that for any z ∈ (B2−1 \B2−2) \N r
2 ,

there exists a flat holomorphic disk Dz ⊂ B 3
4
\B 3

16
such that Dz ∩ Σ = ∅

and ∂Dz ⊂ (B 3
4
\B 3

16
) \N2r and d(Dz,Σ) ≥ C > 0.

2.4.1 Proof of Theorem 2.33 (I).

Given a tangent cone (A∞,Σ, µ), we consider the following function

f : B2−1 \B2−2 × (0, 10−3)→ R+, (z, r) 7→ (|z|r)4−2nµ(B|z|r(z)).

Lemma 2.34. f(z, r) = ε0
2 if and only if B|z|r(z) ∩ Σ = ∅ and

(|z|r)4−2n

∫
B|z|r(z)

|FA∞ |2 =
ε0
2
.

Proof. The if part follows directly from the definition. For the only if part,
suppose limiAji = (A∞,Σ, µ). If f(z, r) = ε0

2 , by Corollary 2.31, there exists
r′ > r such that

f(z, r′) ≤ 3ε0
4
,

hence for i large

(|z|r′)4−2n

∫
B|z|r′ (z)

|FAji |
2 ≤ 5

6
ε0.

By the choice of ε0, {Aji}i converge to A∞ smoothly over B|z| r′+r2

(z) and

B|z| r+r′2

(z) ∩ Σ = ∅. As a result,

(|z|r)4−2nµ(B|z|r(z)) = (|z|r)4−2n

∫
B|z|r(z)

|FA∞ |2 =
ε0
2
,

and B|z|r(z) ∩ Σ = ∅. This finishes the proof.
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Remark 2.35. The conclusion also holds if we replace ε0
2 by any c < ε0.

Lemma 2.36. For any fixed r ∈ (0, 10−3], the set

{z ∈ B2−1 \B2−2 : f(z, r) =
ε0
2
}

is a symmetric real analytic subvariety of B2−1 \ B2−2 , which is proper if Σ is
non-empty. In particular, if Σ 6= ∅, then

m({z ∈ B2−1 \B2−2 : f(z, r) =
ε0
2
}) = 0.

Proof. Locally near any smooth point, under a holomorphic frame, the Hermitian-
Einstein metric h∞ on E∞ satisfies the following elliptic equation

P (h∞) :=
√
−1Λω0

∂̄(h−1
∞ ∂h∞) = 0.

Since the coefficients of P are real analytic in z, it follows from Theorem 41 on
page 467 in [1] that h∞ is also real analytic in z. Therefore, the function

Q : {z ∈ B \ {0} : B|z|r(z) ∩ Σ = ∅} → R; z 7→ (|z|r)4−2n

∫
B|z|r(z)

|FA∞ |2

is real analytic. Now by Lemma 2.34, we know

{z ∈ B2−1 \B2−2 : f(z, r) =
ε0
2
}

={z ∈ B2−1 \B2−2 : (|z|r)4−2n

∫
B|z|r(z)

|FA∞ |2 =
ε0
2
, B|z|r(z) ∩ Σ = ∅}.

This easily implies {z ∈ B2−1 \B2−2 : f(z, r) = ε0
2 } is a symmetric real analytic

subvarierty of B2−1 \ B2−2 . The last statement follows from well-known facts
about the zero set of a real analytic function (see for example [3]).

Remark 2.37. It also follows from the proof that for any fixed z such that
B|z|r(z) ∩ Σ = ∅, the function

s 7→ (|z|s)4−2n

∫
B|z|s(z)

|FA∞ |2

is real analytic in (0, r). Then given any constant C, the set

{s ∈ (0, r) : (|z|s)4−2n

∫
B|z|s(z)

|FA∞ |2 = C}

is either equal to (0, r) or consists of finitely many points.

Proposition 2.38. There exists r′0 ∈ (0, 10−3) such that for any r ∈ (0, r′0) and
any tangent cone (A∞,Σ, µ),

m({z ∈ B2−1 \B2−2 : f(z, r) =
ε0
2
}) = 0.
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Proof. Otherwise, by Lemma 2.36, we can find a sequence ri → 0 and for each
ri there exists a tangent cone (A∞(i),Σ(i), µ(i)) with Σ(i) = ∅ and

{z ∈ B2−1 \B2−2 : fi(z, ri) =
ε0
2
} = B2−1 \B2−2 .

Taking limits, we obtain (A∞,Σ, µ) with B2−1 \B2−2 ⊂ Σ, which is impossible.
This is a contradiction.

Now we finish the proof of (I) for all r ∈ (0, r′0].

Proof of (I). We claim

(V1 \ V2) ∪ (V2 \ V1) ⊂ {z ∈ B2−1 \B2−2 : f(z, r) =
ε0
2
}.

Given this claim, by Proposition 2.38, we have m(V1 \ V2) = m(V2 \ V1) = 0.
We only prove the claim for V1 \V2 and the proof for V2 \V1 is the same. Given
any z ∈ V1 \ V2, we need to show f(z, r) = ε0

2 . By passing to a subsqequence,
there exists a sequence of points zi ∈ Erji \E

r
ji+1 converging to z. By definition,

for each zi, there exists yi ∈ B2−1 \B2−2 with π(zi) = π(yi) satisfying

(|yi|r)4−2n

∫
B|yi|r(yi)

|FAji |
2 ≥ ε0

2

but

(|yi
2
|r)4−2n

∫
B| yi

2
|r(

yi
2 )

|FAji |
2 <

ε0
2
.

By passing to a subsequence, we can assume {yi}i converge to y ∈ B2−1 \B2−2

with π(y) = π(z). By Corollary 2.31, we have

(|y|r)4−2nµ(B|y|r(y)) ≥ ε0
2

and
(|y

2
|r)4−2nµ(B| y2 |r(

y

2
)) ≤ ε0

2
.

By Corollary 2.31, we have

(|z|r)4−2nµ(B|z|r(z)) = (|y|r)4−2nµ(B|y|r(y)) = (|y
2
|r)4−2nµ(B| y2 |r(

y

2
)) =

ε0
2
.

This finishes the proof.

2.4.2 Proof of Theorem 2.33 (II).

Again suppose we are given a tangent cone (A∞,Σ, µ).

Lemma 2.39. Suppose for some 0 < r1 < r2 < 10−3 and z ∈ B \ {0} we have

(|z|r1)4−2nµ(B|z|r1(z)) = (|z|r2)4−2nµ(B|z|r2(z)),

then exactly one of the following holds:

• (|z|r2)4−2nµ(B|z|r2(z)) ≥ ε0;
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• (|z|r)4−2nµ(B|z|r(z)) ≡ 0 for any r ≤ r2.

Proof. Suppose (|z|r2)4−2nµ(B|z|r2(z)) < ε0, then by Remark 2.35 we have

B|z|r2(z) ∩ Σ = ∅. So on B|z|r2(z), A∞ is smooth and µ = |FA∞ |2dV ol. By
Price’s monotonicity formula, under the above assumption, the following func-
tion

(|z|s)4−2n

∫
B|z|s(z)

|FA∞ |2

is constant on [r1, r2]. So by Remark 2.37, it is constant on (0, r2]. The conclu-
sion follows by letting s tend to zero.

Proof of (II). Suppose {Aji}i converges to (A∞,Σ, µ). We first show the inclu-
sion N

r
2 ⊂ Σrji for i large. Otherwise, by passing to a subsequence, there exists

a sequence of points zji ∈ N
r
2 \Σrji and zji converges to z ∈ N r

2 . In particular,

(|z|r
2

)4−2nµ(B|z| r2 (z)) ≥ ε0
2
.

Since zji /∈ Σrji , by Corollary 2.31, we must have

(|z|r)4−2nµ(B|z|r(z)) ≤
ε0
2
.

By Price’s monotonicity formula (see Equation (5.3.4) in [38]), we have

(|z|r
2

)4−2nµ(B|z| r2 (z)) = (|z|r)4−2nµ(B|z|r(z)) =
ε0
2
.

However, by Lemma 2.39, this is impossible. Similarly, one can get the other
statements in (II) by the same argument. This finishes the proof.

2.4.3 Proof of Theorem 2.33 (III).

Given a point p ∈ Cn \ {0}, we can choose a n− 2 dimensional complex linear
subspace Cn−2

p ⊂ Cn that contains p. Then using the flat metric on Cn, we can
identify Cn with an orthogonal product C2 × Cn−2

p at p.

Definition 2.40. We say a closed subset S ⊂ B admits a good cover if S ∩
(B2−1 \ B2−2) can be covered by finitely many open sets Uk ⊂ B 3

4
\ B 3

16
such

that

• Uk = B2
δk2
×Bn−2

δk3
⊂ C2×Cn−2

pk
for some point pk ∈ Cn \ {0}, some choice

of Cn−2
pk

, and some δk2 , δ
k
3 > 0, where B2

δk2
denotes the ball {|z| < δ} in C2

and B2
δk3

denote the ball of radius δk3 centered at pk in Cn−2
pk

;

• ∅ 6= Uk ∩ S ⊂ Vk = B2
δk1
×Bn−2

δk3
for some δk1 ∈ (0, δk2 );

Lemma 2.41. For any tangent cone (A∞,Σ, µ), Σ admits a good cover.

Proof. By Lemma 2.28, we know Σ is a codimension 2 complex subvarierty of
B\0. Then given any p ∈ Σ∩(B2−1\B2−2), for a generic orthogonal projection ρp
to some Cn−2

p at p, ρ−1
p (y)∩Σ consists of finitely many points for any y ∈ Bn−2

δp3
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for some δp3 > 0. Then near p, one can easily construct a neighborhood Up of
p so that Up = B2

δp2
× Bn−2

δp3
⊂ B 3

4
\ B 3

16
for some δp2 , δ

p
3 > 0 and Up ∩ Σ ⊂ Vp

where Vp = B2
δp1
× Bn−2

δp3
for some δp1 ∈ (0, δp2). Now we get an open cover of

Σ ∩ (B2−1 \B2−2) given by ∪pUp. Since Σ ∩ (B2−1 \B2−2) is compact, one can
get a finite subcover ∪kUpk .

Remark 2.42. In Lemma 2.41, we only need that Σ has locally finite Hausdorff
(2n− 4) measure.

Proposition 2.43. There exists r0 ∈ (0, r′0] such that for any r ∈ (0, r0], N2r

admits a good cover for all tangent cones (A∞,Σ, µ).

Proof. Otherwise, there exists a subsequence ri ↘ 0 such that for each ri there
exists N2ri for some tangent cone (A∞(i),Σ(i), µ(i)) which does not admit a
good cover. By using part (II) of Theorem 2.33, for each i, there exists Aji so
that N2ri ⊂ Σ4ri

ji
. By passing to a subsequence, we can assume {Aji}i converge

to some tangent cone (A∞,Σ, µ) and Σ4ri
ji

converges to a closed subset of Σ.

In particular, {N2ri}i converges to a closed subset of Σ. By Lemma 2.41, Σ
admits a good cover and we let ∪kUk be the corresponding finite cover. Now
we conclude that for i large, ∪kUk is also a good cover of N2ri , which is a
contradiction. It suffices to verify the following

• N2ri ∩ (B2−1 \B2−2) ⊂ ∪kUk for i large. This is obvious since ∪kUk is an
open cover of Σ ∩B2−1 \B2−2 and {N2ri ∩ (B2−1 \B2−2)}i converge to a
closed subset of Σ ∩B2−1 \B2−2 .

• Uk ∩ N2ri ⊂ Vk for i large. Otherwise, by passing to a subsequence and
using the finiteness of {Uk}k, we can assume for some fixed k, there always
exists zi ∈ (Uk ∩ N2ri) \ Vk for each i and zi converges to z ∈ Uk ∩ Σ.
Then z ∈ Vk and thus zi ∈ Vk for i large. Contradiction.

As a direct corollary, we are ready to prove (III) for all r ∈ (0, r0].

Proof of (III). By Proposition 2.43, N2r admits a good cover and let {Uk}k be
the corresponding cover. So for each k

Uk ∩ Σ ⊂ Uk ∩N
r
2 ⊂ Uk ∩N2r ⊂ Vk

where Uk = B2
δk2
× Bn−2

δk3
⊂ C2 × Cn−2

pk
and Vk = B2

δk1
× Bn−2

δk3
. Consider the

projection ρk : C2 × Cn−2
pk
→ Cn−2

pk
. By assumption, we have

(B2
δk2
×Bn−2

δk3
) ∩ Σ = Uk ∩ Σ ⊂ B2

δk1
×Bn−2

δk3

which implies ρ−1
k (y)∩Σ∩B2

δ2
is a compact complex analytic subvariety of B2

δ2

and thus consists of finitely points for any y ∈ Bn−2
δ3

. For any z ∈ N2r \N r
2 ∩

(B2−1\B2−2), suppose z ∈ Uk, then ρ−1
k (ρk(z))∩Σ∩B2

δ2
consists of finitely many

points which lie in B2
δ1

. As a result, one can easily find a flat holomorphic disk

Dz ⊂ Uk containing z such that Dz ∩Σ = ∅ and ∂Dz ⊂ Uk \ Vk ⊂ (B 3
4
\B 3

16
) \

N2r. By perturbing the disk Dz, we can find an open neighborhood Vz of z so
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that for each z′ ∈ Vz there exists a flat holomorphic disk Dz′ ⊂ B \B2−3 so that
Dz′ ∩Σ = ∅ and ∂Dz ⊂ (B 3

4
\B 3

16
) \N2r. Furthermore, infz′∈Vz d(Dz′ ,Σ) > 0.

For z ∈ (B2−1\B2−2)\N2r, it is obvious that one can do the same thing as above.

As a result, we get an open cover ∪
z∈(B2−1\B2−2 )\N

r
2
Vz of (B2−1 \B2−2) \N r

2 .

Since (B2−1 \B2−2) \N r
2 is compact, we can find a finite subcover ∪ziVzi . Let

C(r) = mini infz∈Vzi d(Dzi , σ). This finishes the proof.

2.5 Convexity

Given a tangent cone (A∞,Σ, µ), suppose W is a symmetric open subset of
(B \ B2−3) \ Σ. We say a non-zero holomorphic section s of E∞ over W is
homogeneous of degree d if

∇∂rs = dr−1s.

Since s is holomorphic, this is equivalent to ∇J∂rs =
√
−1dr−1s. If s(z) 6= 0 for

some z ∈W , then s(z) is an eigenvector of the holonomy of the connection A∞
(as defined in Section 2.3), and in particular we have

d ∈ ((rank E∞)!)−1Z.

Lemma 2.44. Given a holomorphic section s of E over W with
∫
W
|s|2 < ∞,

we have an orthogonal decomposition

s =
∑
d∈Γ

sd,

where each sd is homogeneous of degree d, and the convergence is understood as
in L2(W ) and C∞loc(W ).

Proof. First of all suppose (E , A) is the direct sum of simple HYM cones (Ej , Aj),
then on W we can naturally write s =

∑
sj , where sj is a holomorphic section

of Ej |W . Clearly, this is an L2 orthogonal decomposition. Therefore, without
loss of generality we may assume A is a simple HYM cone. Suppose E = π∗E
and H = |z|2µπ∗H. Then locally choose a small open set U ⊂ CPn−1 such
that E|U is free and admits a trivialization by holomorphic sections sj(j =

1, · · · ,m := rank(E)). On π−1(U) ∩W , we can write s =
∑m
j=1 fj(z)π

∗sj for

some holomorphic functions fj on π−1(U) ∩W . We can perform Taylor series
expansion and write fj =

∑
fj,e, where each fj,e is homogeneous of degree e

under the C∗ action. So on π−1(U) ∩W we have an expansion s =
∑
sd into

direct sum of homogeneous sections, which is L2 orthogonal over π−1(V ) for
any V ⊂ U ∩ π(W ). In particular, such an expansion is independent of the
choice of the local trivialization {sj}. This implies each sd is indeed a global
holomorphic section on W .

Proposition 2.45. Suppose s ∈ H0(W, E∞) with
∫
W
|s|2 <∞, then

(

∫
W∩(B2−1\B2−2 )

|s|2)2 ≤
∫
W∩(B2−2\B2−3 )

|s|2 ·
∫
W∩(B\B2−1 )

|s|2.

Furthermore, if s is non-zero and the equality holds, then s must be homoge-
neous.
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Proof. Write s =
∑
d sd where sd is a homogeneous section of E∞ over W of

degree d ∈ ((rank E∞)!)−1Z. Then we have∫
W∩(B\B2−1 )

|s|2 =
∑
d

∫
W∩(B\B2−1 )

|sd|2,

and ∫
W∩(B2−1\B2−2 )

|s|2 =
∑
d

2−2d−2n

∫
W∩(B\B2−1 )

|sd|2,

and ∫
W∩(B2−2\B2−3 )

|s|2 =
∑
d

2−4d−4n

∫
W∩(B\B2−1 )

|sd|2.

Now the conclusion follows from the general Cauchy-Schwartz inequality.

Now given a saturated subsheaf F ⊂ E , we denote by πF : E → F the point-
wise orthogonal projection with respect to the admissible Hermitian-Einstein
metric H and let π⊥F = Id− πF . Note πF is only defined away from Sing(E/F).
In the following we shall work under the following hypothesis, and in our later
application this hypothesis will always be verified.

** Given any subsequence {ji}, by passing to a further subsequence, {Aji}i
converges to a tangent cone (A∞,Σ, µ), and the corresponding pull-backs
of πF under the map z 7→ 2−jiz converges locally smoothly to a projection
map π∞ on E∞ away from Σ. Furthermore, π∞ is exactly the orthogo-
nal projection onto a HYM cone direct summand F∞ ⊂ E∞ (away from
Sing(E∞/F∞)).

Given any fixed r ∈ (0, r0], for any smooth section σ of E over (B2−j−1 \
B2−j−2) \ 2−jErj , let

‖σ‖rj = 2jn(

∫
(B2−j−1\B2−j−2 )\2−jErj

|σ|2)
1
2 . (2.21)

Proposition 2.46. Given any r ∈ (0, r0] and λ /∈ ((rankE)!)−1Z, there exists
j0 = j0(r, λ) such that for all j ≥ j0, if s ∈ H0(Bj−1, E) satisfies

‖π⊥Fs‖rj > 2−λ‖π⊥Fs‖rj−1,

then
‖π⊥Fs‖rj+1 ≥ 2−λ‖π⊥Fs‖rj .

Proof. Otherwise, there exists a sequence of holomorphic sections sji ∈ H0(Bji−1, E)
so that

‖π⊥Fsji‖rji = 1,

and
‖π⊥Fsji‖rji−1 < 2λ,

but
‖π⊥Fsji‖rji+1 < 2−λ.

By passing to a subsequence, we can assume {Aji}i converges to a tangent
cone (A∞,Σ, µ), and the statements in (∗∗) hold. By passing to a further
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subsequence, we may assume {Erji−1}i, {Erji}i and {Erji+1}i converge to W r
0 ,W

r
1

and W r
2 respectively, which are all symmetric. We then denote

W r := 2W r
0 ∪W r

1 ∪ 2−1W r
2 .

Let σji = (2−ji)∗π⊥Fsji . Then we have∫
(B\B2−3 )\Σrji

|σji |2 < 1 + 2λ + 2−λ,

and
((2−ji)∗π⊥F ) ◦ ∂̄Ajiσji = 0

over (B \ B2−3) \ Σrji . Hence σji is a holomorphic section of F⊥ji = (2−ji)∗F⊥

over (B \B2−3) \ Σrji with uniformly bounded L2 norm. Since we have smooth

convergence of (2−ji)∗πF locally away from Σ, by standard elliptic theory, af-
ter passing to a subsequence, we can assume {σji}i converges to σ∞ locally
smoothly over (B \B2−3) \W r. Then σ∞ is a holomorphic section of F⊥∞ over
(B \B2−3) \W r satisfying∫

(B\B2−1 )\2W r
0

|σ∞|2 ≤ 2λ,

and ∫
(B2−1\B2−2 )\W r

1

|σ∞|2 ≤ 1,

and ∫
(B2−2\B2−3 )\2−1W r

2

|σ∞|2 ≤ 2−λ.

Let V r1 := W r
0 ∪W r

1 ∪W r
2 and V r = 2V r1 ∪ V r1 ∪ 2−1V r1 . By Theorem 2.33 (II),

we have
m(V r1 \W r

l ) = m(W r
l \ V r1 ) = 0

for l = 0, 1, 2. Then we have∫
(B\B2−1 )\2V r1

|σ∞|2 ≤ 2λ,

and ∫
(B2−1\B2−2 )\V r1

|σ∞|2 ≤ 1,

and ∫
(B2−2\B2−3 )\2−1V r1

|σ∞|2 ≤ 2−λ.

Claim 2.47.
∫

(B2−1\B2−2 )\V r1
|σ∞|2 = 1.

Given this claim, by applying Proposition 2.45 to σ∞ over (B\B2−3)\V r, we
know σ∞ is a nonzero homogeneous section of E∞ of degree λ over (B\B2−3)\V r.
This contradicts with our hypothesis that λ /∈ ((rank E)!)−1Z.
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Proof of Claim 2.47. By assumption we know N
r
2 ⊂ Σrji ∩ Σrji−1 ∩ Σrji+1 for i

large, so N
r
2 ⊂ V r1 . Then we have

‖σji‖L∞((B2−1\B2−2 )\V r1 ) ≤ ‖σji‖L∞((B2−1\B2−2 )\N
r
2 )
.

It suffices to prove that there exists C = C(r) independent of i such that for all
i large

‖σji‖L∞((B2−1\B2−2 )\N
r
2 )
≤ C. (2.22)

By Theorem 2.33 (III), there exists a constant C ′ = C ′(r) > 0 so that for

any z ∈ (B2−1 \B2−2) \N r
2 , there exists a flat holomorphic disk so that Dz ⊂

B 3
4
\B 3

16
with Dz ∩Σ = ∅ and ∂Dz ⊂ (B 3

4
\B 3

16
) \N2r and d(Dz,Σ) ≥ C ′ > 0.

Since Aji converges to A∞ locally smoothly over (B \ {0}) \ Σ, there exists a
constant C1 = C1(r) so that for any z ∈ B 3

4
\B 3

16
with d(z,Σ) ≥ C ′

|FAji |(z) ≤ C1 <∞, |∂̄Aji (2
−ji)∗πF | ≤ C1 <∞. (2.23)

Then Claim 2.47 follows from the following

Lemma 2.48. |σji(z)| ≤ C2 ·(‖σji‖L∞(∂Dz) +1) where C2 = C2(r) is a constant
independent of i.

Indeed, given this, we have

‖σji‖L∞((B2−1\B2−2 )\N
r
2 )
≤ C · (‖σji‖L∞((B 3

4
\B 3

16
)\N2r) + 1). (2.24)

By Theorem 2.33 (II), we have

d((B \B2−3) \N r
2 ,Σ) > 0

which implies {Aji}i converge toA∞ uniformly over a neighborhood of (B \B2−3) \N r
2 .

By Theorem 2.33 (II) again, we have

lim inf
i

d(B \B2−3) \N2r,Σrji) > 0,

which implies that (B 3
4
\B 3

16
)\N2r lies in the interior of (B \B2−3) \ Σrji for ji

large. Now Equation (2.22) follows from standard elliptic interior estimate and
Equation (2.23).

Proof of Lemma 2.48. Let ∇ := AF⊥ji
|Dz which has curvature form

F∇ = (FAji − (∂̄Aji (2
−ji)∗πF )∗ ∧ ∂̄Aji (2

−ji)∗πF )|Dz .

Since σji |Dz is a holomorphic section of F⊥ji |Dz , we have

∆Dz log(|σji |Dz |2 + 1) ≥ −|F∇| ≥ −2C1 (2.25)

where the second inequality follows from 2.24. For the first inequality, we first
identify Dz with {t ∈ C : |t| < δz} where δz is the radius of Dz and by a direct
calculation, we have

∆ log(|σ|2 + 1) =
< σ,∇∂̄t∇∂tσ >
|σ|2 + 1

+
|∇∂tσ|2

|σ|2 + 1
− < ∇∂tσ, σ >< σ,∇∂tσ >

(|σ|2 + 1)2
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The difference of the last two terms is non-negative by Cauchy-Schwartz in-
equality, and for the first term we have

< σ,∇∂̄t∇∂tσ >
|σ|2 + 1

=
< σ,F∇( ∂∂t̄ ,

∂
∂t )σ >

|σ|2 + 1
≥ −|F∇|.

As a result, we get

∆Dz (log(|σji |Dz |2 + 1) + 2C1|t|2) ≥ 0

Now the conclusion follows from the maximal principle.

Corollary 2.49. Given a local section s of E near the origin, the following is
a well-defined number in ((rank E)!)−1Z ∪ {∞}

drF (s) := lim
j→∞

log ‖π⊥Fs‖rj
−j log 2

for any r ∈ (0, r0].

Proposition 2.50. Given a local section s of E near the origin, if drF (s) is finite

for some r ∈ (0, r0], then { (2−ji )∗π⊥F s

‖π⊥F s‖rji
}i converges to a non-trivial homogeneous

section σ∞ of degree drF (s) of F⊥∞ over (B2−1 \ B2−2) \ Σ, which extends to a
holomorphic section of F⊥∞ defined over B2−1 \B2−2 .

Proof. If drF (s) < ∞, by passing to a subsequence, it follows from the proof

of Proposition 2.46 that {σji := (2−ji )∗π⊥s
‖π⊥s‖rji

}i converges to a nontrivial homoge-

neous holomorphic section σ∞ of degree drF (s) over (B\B2−3)\V r. Furthermore,
we also have

‖σji‖L∞((B2−1\B2−2 )\N
r
2 )
≤ C(‖σji‖L∞(B 3

4
\B 3

16
)\N2r) + 1). (2.26)

for some C = C(r). By definition, we know drF (s) is decreasing when r → 0.

Hence we have d
r
2

F (s) < ∞ which implies { (2−ji )∗π⊥s

‖s‖
r
2
ji

} converges to a homoge-

neous section σ′∞. Then by Equation (2.26), we can assume {σji}i converges
to a nontrivial homogeneous holomorphic section of F⊥∞ over (B \ B2−3) \ V r

2

which is a multiple of σ′∞. By repeating this process for 2−lr inductively on
l ∈ Z≥0 and passing to a subsequence, we can assume {σji}i converges to a
nontrivial homogeneous holmorphic section σ∞ of F⊥∞ over (B2−1 \ B2−2) \ Σ.
Now it remains to show that σ∞ extends to be a holomorphic section of F⊥∞
over B2−1 \ B̄2−2 . Since B2−1 is a precompact Stein open set in B, we can find
a finite resolution of (F⊥∞)∗ over B2−1 as

On1 → On2 → (F⊥∞)∗ → 0.

By taking the dual of the above exact sequence, we have the following exact
sequence over B2−1

0→ F⊥∞ → On2 → On1 .

Then we can view σ∞ as a holomorphic section of On2 over (B2−1 \B2−2) \ Σ.
Since Σ has Hausdorff codimension 4, σ∞ extends to be a holomorphic section
of On2 over B2−1 \B2−2 (see Lemma 3 in [33]). This finishes the proof.
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Remark 2.51. When F = 0, one can repeat the argument above and show that
for any nonzero holomorphic section s of E defined in a neighborhood of 0, the
following is well-defined

d(s) :=
1

2
lim
r→0

log
∫
Br
|s|2

log r
− n ∈ (k!)−1Z ∪ {+∞}, (2.27)

where k = rank(E). Furthermore, when d(s) < ∞, the normalized rescaled
sequence given by s will converge to a nontrivial homogeneous section on any
tangent cone E∞ with degree equal to d(s) after passing to a subsequence.

3 Homogeneous Case

3.1 Uniqueness of tangent cone connections

In this section, we will prove Theorem 1.1.

3.1.1 Semistable Case

Assume E is semistable and fix a Seshadri filtration for E as

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · Em = E .

So

GrHNS(E) '
m⊕
p=1

Ep/Ep−1

Denote Ei = π∗E i. Theorem 1.1 follow from

Theorem 3.1. (E∞, A∞) is isomorphic to the natural Hermitian-Yang-Mills
cone connection on ψ∗π

∗(GrHNS(E))∗∗. Moreover, Sing(π∗(GrHNS(E))) ⊂ Σ.

By tensoring with O(k) for k large, we may assume the following for each
p ≥ 1

• Ep and Ep/Ep−1 are globally generated;

• The following sequence is exact

0→ H0(CPn−1, Ep−1)→ H0(CPn−1, Ep)→ H0(CPn−1, Ep/Ep−1)→ 0.

Denote HGp := {π∗s : s ∈ H0(CPn−1, Ep)}. Then we have a filtration

0 ⊂ HG1 ⊂ HG2 ⊂ · · ·HGm = HG.

Denote np := dimCHGp/HGp−1. For p ≥ 0, let πp be the pointwise orthogonal
projection given by Ep ⊂ E with respect to the unknown metric H and

π⊥p = Id− πp.

Note πp and π⊥p are both defined away from Sing(E/Ep). Fix a basis {σp,l|1 ≤
p ≤ m, 1 ≤ l ≤ np} of HG so that {σp,l|1 ≤ l ≤ np, 1 ≤ p ≤ q} form a basis for
HGq for any 1 ≤ q ≤ m. For each (p, l), we denote

σjp,l := (2−j)∗(π⊥p−1σp,l).
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We view these as smooth sections of E defined on B \ Sing(E/Ep).
Fix any r ∈ (0, r0], where r0 is given in Theorem 2.33. Denote

M j
p = sup

1≤l≤np
‖π⊥p−1σp,l‖rj

where ‖ · ‖rj is defined as in Equation (6.9) for p ≥ 2 and

M j
1 = sup

l
‖σj1,l‖L2(B).

By Theorem 2.10, for any ε > 0 we can find a Hermitian metric Hε on E such
that |

√
−1ΛωFSFAε − µId|L∞(CPn−1) < ε with µ = µ(E). Let Hε = |z|2µπ∗Hε.

Then |F(Hε,∂̄E)| = O(r−2), so F(Hε,∂̄E )
∈ L2(B∗). Furthermore, for all r ∈ (0, 1],

we have
r2 sup

∂Br

|Λω0FHε | < ε.

Lemma 3.2. For any s = π∗s, where s ∈ H0(CPn−1, E), we have d(s) = µ.

Proof. By definition, there is a constant C(ε) > 0 such that for all r ∈ (0, 1)

C(ε)−1r2n+2µ ≤
∫
Br

|s|2Hε ≤ C(ε)r2n+2µ.

Applying Lemma 2.20 with δ = 1, we see (2.15) holds with H ′ = Hε, so

lim sup
z→0

| log TrHεH(z)|+ | log TrHHε(z)|
− log |z|

≤ C0ε,

where C0 is a constant independent of ε. Then we get

d(s) ∈ [µ− C0ε, µ+ C0ε]

for all ε > 0. By letting ε go to 0, we obtain d(s) = µ.

Now suppose (A∞,Σ, µ) is a tangent cone of A given by the limit of a
subsequence {Aji}i. We shall prove the following statements by induction on
p ≥ 1. Theorem 3.1 is a direct corollary of these statements.

(a)p. There is a simple HYM cone direct summand Sp of E∞ which is isomorphic
to (Ep/Ep−1)∗∗ so that Sp ⊥ Sk for any k < p (We take S0 = 0 here);

(b)p. Sing(Ep/Ep−1) ∪ Sing(E/Ep) ⊂ Σ, and over (B2−2 \ B2−1) \ Σ, {πjip }i con-
verges locally smoothly to the limit projection π∞p : E∞ → E∞ given by

⊕k≤rSk ⊂ E∞. Here πjip = (2−ji)∗πp. We also denote by (E∞p )⊥ the HYM
cone direct summand of E∞ so that

E∞ = ⊕k≤pSk ⊕ (E∞p )⊥.

(c)p. If p < m then dEp(σp+1,l) = µ(E) for any 1 ≤ l ≤ np+1. Here dEp is
well-defined due to (b)p.

33



When p = 1, by Remark 2.51 and Lemma 3.2, after passing to further subse-

quence we may assume { σ
ji
1,l

M
ji
1

}i converges to a holomorphic homogeneous section

of degree µ(E) away from Σ for any 1 ≤ l ≤ n1 and at least one of the limits is
non-zero.

By assumption we have the following exact sequence of coherent sheaves

0→ R1 → O⊕n1
φ1−→ E1 → 0.

where

φ1(z)(a1, · · · , an1) =

n1∑
l=1

alσ1,l(z).

Away from Sing(E/E1), E1 can be viewed as a vector sub-bundle of E . For
z /∈ Σ ∪ Sing(E/E1), we define a vector bundle homomorphism

φ∞1 : O⊕n1 → E∞

by

φ∞1 (z)(a1, · · · , an1
) = lim

i→∞
(M ji

1 )
−1

n1∑
l=1

alσ
j1
1,l(z).

If (a1, · · · , an1) is in the fiber of (R1)z, then by definition, we have
∑n1

l=1 alσ1,l(z) =

0, hence
∑n1

l=1 alσ
ji
1,l(z) = 0, which implies φ∞1 (z)(a1, · · · , an1

) = 0 and φ∞1 de-
scends to a homomorphism away from Σ

ψ1 : E1 ' On1/R1 → E∞

which satisfies ψ1(z)(σ1,l(z)) = σ∞1,l(z). Let S1 be the minimal simple HYM
cone direct summand of E∞ which contains the image of ψ1. Note S1 is locally
free away from Σ. Since d(σ∞1,l) = µ(S1), ψ1 descends to be a nontrivial map

defined over CPn−1 \ (π(Σ) ∪ Sing(E/E1))

ψ
1

: E1 → S1,

where µ(E1) = µ(E) = µ(S1). By Lemma 3 in [33], ψ
1

extends to a sheaf

homomorphism over the whole CPn−1. So it has to be an isomorphism by
Corollary 2.5 and 2.6, and the minimality of S1. This proves (a)1.

For (b)1, since S1 is locally free away from Σ and ψ1 maps E1 isomorphically
onto S1, we know in particular E1 must be locally free away from Σ, and ψ1 is
a vector bundle isomorphism away from Σ. By construction the bundle map ψ1

then factors through the bundle map E1 → Im(E1) ⊂ E . Hence on B \ Σ, the
map E1 → E must be a injective vector bundle map, and so E/E1 is locally free.
This implies Sing(E/E1) ⊂ Σ.

Given any z /∈ Σ, choose a local orthonormal frame {et|1 ≤ t ≤ rank(E1)}
for S1 near z. Then we can write et =

∑
l a
t
l(z)σ

∞
1,l(z) for each t, hence

{ejit =
∑
l a
t
l

σ
ji
1,l

M
ji
1

: 1 ≤ t ≤ rank(S1)} is an approximately orthonormal frame

of (2−ji)∗(E1) near z which converges to {et} smoothly. In particular, {πji1 }i
converges smoothly to π∞1 given by S1 ⊂ E∞.
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It remains to prove (c)1. By the proof of Lemma 3.2, for any ε > 0, there
exists a smooth Hermitian metric on Hε on E so that

|ΛωFSF(Hε,∂̄E) − µ(E)Id|L∞ ≤ ε

and
Cε|z|2εHε ≤ H ≤ C−1

ε |z|−2εHε,

where Hε = |z|2µ(E)π∗Hε, and Cε > 0. Let π
⊥Hε
1 σ2,l denote the orthogonal

projection of σ2,l to E1 by using Hε. Then we have away from Σ

|π⊥1 σ2,l| ≤ |π
⊥Hε
1 σ2,l| ≤ C−1

ε |z|−2ε|π⊥Hε1 σ2,l|Hε .

Similarly

Cε|z|2ε|π
⊥Hε
1 σ2,l|Hε ≤ |π⊥1 σ2,l|.

As a result, we have

dεE1(σ2,l)− ε ≤ dE1(σ2,l) ≤ dεE1(σ2,l) + ε,

where

dεE1(σ2,l) = lim
i→∞

log
∫

(B
2−ji−1\B2−ji−2 )\2−jiErji

|π⊥Hε1 σ2,l|Hε
−2ji log 2

− n.

Since Hε = |z|2µ(E)π∗Hε, we have π
⊥Hε
1 = π∗(π

⊥Hε
1 ). Using the fact that

σ2,l = π∗σ2,l, it is easy to see

dεE1(σ2,l) = µ(E)

Then we have
µ(E)− ε ≤ dE1(σ2,l) ≤ µ(E) + ε

for any ε > 0. By letting ε→ 0, we have dE1(σ2,l) = µ(E).

Now we perform the induction argument and suppose we have established
the statements

(a)1, (b)1, (c)1, · · · , (a)p−1, (b)p−1, (c)p−1.

By (c)p−1, we have dEp−1
(σp,l) = µ(E) for any l. By Proposition 2.49, after

passing to subsequence, { σ
ji
p,l

M
ji
p

}i converges to homogeneous sections σ∞p,l of E∞
with degree µ(E) over (B2−1 \ B2−2) \ Σ for each l and at least one of them
is non-zero. By assumption, we have the following exact sequence of coherent
sheaves on B2−1 \B2−2 ,

0→ Rp → O⊕np
φp−→ Ep/Ep−1 → 0

where φp(a1, · · · , anp) =
∑
l alσp,l. By (b)p−1 we know E/Ep−1 is locally free

away from Σ. For any z /∈ Σ ∪ Sing(Ep/Ep−1), we define

φ∞p : O⊕np → E∞
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by letting

φ∞p (z)(a1, · · · , anp) = lim
i→∞

∑
l alσ

ji
p,l(z)

M ji
p

=
∑
l

alσ
∞
p,l(z).

If φp(z)(
∑
l alσp,l) = 0 in Ep/Ep−1, then by definition, we have

∑
l alσp,l ∈ Ep−1,

so
∑
l alσ

ji
p,l = 0. Hence away from Σ ∪ Sing(Ep/Ep−1), φ∞p induces a nontrivial

map
ψp : Ep/Ep−1 → E∞

which satisfies ψp(φp(σp,l(z))) = σ∞p,l(z) for z /∈ Σ ∪ Sing(Ep/Ep−1). Let Sp be
the minimal simple HYM cone summand containing the image of ψp. By (b)p−1

and using the definition, we have

Sp ⊂ (E∞p−1)⊥

away from Σ. Since σ∞p,l are all homogeneous sections of degree equal to µ(E),

ψp descends to a nontrivial holomorphic map over CPn−1 \ (π(Σ)∪Sing(E/Ep))
as

ψ
p

: Ep/Ep−1 → Sp

where µ(Sp) = µ(E) = µ(Sp). Then ψ
p

extends to be a nontrivial holomorphic

map defined over CPn−1 and induces the following isomorphism

ψ
p

: (Ep/Ep−1)∗∗ → Sp.

This proves (a)p.
By (b)p−1, away from Σ, E/Ep−1 is locally free away from Σ. Since Ep/Ep−1 is

saturated in E/Ep−1, we know Ep/Ep−1 is reflexive away from Σ by Proposition
5.22 in [25]. Then away from Σ, ψp is an isomorphism between Ep/Ep−1 and Sp.
Since Sp is locally free away from Σ, we know Ep/Ep−1 is also locally free away
from Σ, and ψp is a vector bundle isomorphism. As in the case p = 1, since
the map ψp factors through the natural map Ep/Ep−1 → E/Ep−1, it follows that
away from Σ, Ep/Ep−1 is a sub-bundle of E/Ep−1, and hence Ep is a sub-bundle
of E . This is equivalent to saying that E/Ep is locally free away from Σ.

For any z /∈ Σ, we can choose {e′t|1 ≤ t ≤ rank(Sp)} to be an orthonormal
frame for Sp near z. Then we can write e′t =

∑
l a
t
p,lσ
∞
p,l for each t near z and

thus {
∑
l a
t
p,l

σ
ji
p,l

M
ji
p

|1 ≤ t ≤ rank(Sp)} is an approximately orthonormal frame

for (2−ji)∗(Ep) ∩ ((2−ji)∗(Ep−1))⊥ near z which smoothly converge to {e′t : 1 ≤
t ≤ rank(Sp)}. In particular, we have {πjip − πjip−1}i converges to π∞p given

by Sp ⊂ E∞. Combining this with (b)p−1, we have {πjip }i converges to the
projection determined by ⊕1≤l≤pSl ⊂ E∞. This proves (b)p.

Finally (c)p follows line by line by replacing E1 with Ep in the proof (c)1. So
we have established (a)p, (b)p, (c)p. This finishes the proof.

3.1.2 General Case

Now we assume E is a general holomorphic vector bundle over CPn−1. Let

0 = E0 ⊂ E1 ⊂ · · · Em = E
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be the Harder-Narasimhan filtration of E , with µp = µ(Ep/Ep−1) strictly de-
creasing in p, and choose a filtration

Ep−1 = Ep,0 ⊂ Ep,1 ⊂ · · · Ep,qp = Ep

so that
0 = Ep,1/Ep−1 ⊂ · · · Ep,qp/Ep−1 = Ep/Ep−1

is a Seshadri filtration of Ep/Ep−1. By tensoring E with O(k) for k large, we
may assume the following for all p and q,

• Ep and Ep,q are generated by its global sections;

• we have a short exact sequence

0→ H0(CPn−1, Ep,q−1)→ H0(CPn−1, Ep,q)→ H0(CPn−1, Ep,q/Ep,q−1)→ 0.

For p = 1, · · · ,m, we define

HGp := {s = π∗s|s ∈ H0(CPn−1, Ep)}

and
HGp,q := {s = π∗s|s ∈ H0(CPn−1, Ep,q)}.

Then we have a filtration

0 ⊂ HG1,1 ⊂ · · ·HG1,q1 = HG1 ⊂ · · · ⊂ HGm = HG.

Now we can repeat the proof in Section 3.1 for the semistable case here. The only
difference in the proof is the calculation of the degree. Suppose limi→∞Aji =
(A∞,Σ, µ) and the rescaled projections {(2−ji)∗πp,q}i given by the orthogonal
projection πp,q : E → Ep,q converges to a projection map π∞p,q so that π∞p,q
determines a direct HYM cone summand of E∞. Unlike the semistable case, the
construction of a family of comparison metrics become a lot more involved. To
state the proposition for the existence of a family of comparison metrics, we set
up a few notations first.

Let Σ ⊂ CPn−1 be the subset where the Harder-Narasimhan filtration is not
given by sub-bundles. It is of complex codimension at least 2. We will use the
following notations

• Σ = π−1(Σ), where π : B∗ → CPn−1;

• Σr = Σ ∩ S(r) where S(r) = {x ∈ B∗ : |x| = r};

• Σs = {x ∈ CPn−1|d(x,Σ) ≤ s}, where the distance is measured by the
fixed Fubini-Study metric on CPn−1;

• Σs = π−1(Σs);

• Σsr = {x ∈ S2n−1(r)|d(x,Σr) < s}, where the distance is measured with
respect to the round metric on S2n−1(r).

Proposition 3.3. For any 0 < ε << 1, there exists a smooth Hermitian metric
Hε on E|B∗ satisfying the following

(i). |F(Hε,∂̄E)| ∈ L1+δ(B∗) for some δ > 0;
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(ii). supr∈(0,1] r
1−2n

∫
S2n−1(r)

r2|Λω0
F(Hε,∂̄E)| ≤ ε;

(iii). |z|2|Λω0F(Hε,∂̄E)(z)| ≤ ε for z /∈ Σ10−4

;

(iv). For any s ∈ HGi \HGi−1,

lim
r→0

1

2

log
∫
B∗r\Σ10−3 |z|ε|s|2Hε

log r
− n = µi +

ε

2
.

(v). Away from Σ10−3

, we have

Hε =
∑
p′

π∗Hε(|z|µ(Ep′/Ep′−1)(πp′−πε,p′−1)·, |z|µ(Ep′/Ep′−1)(πp′−πε,p′−1)·)

where πε,p′ is the pointwise orthogonal projection given by Ep′ ⊂ E with
respect to the metric π∗Hε.

We will leave the proof of this proposition to Section 3.2. For our purpose, we
will include π−1(Sing(E)) in Theorem 3.5 and run the whole cut-off argument.
Assuming Proposition 3.3, we have

Proposition 3.4. We have the following

(a). for any s ∈ HGp,q+1 \HGp,q, dEp,q (s) ≤ µ(Ep,q+1/Ep,q);

(b). for any s ∈ HGp,1 \HGp−1, dEp−1
(s) ≤ µ(Ep,1/Ep−1).

Proof. The proof for (a) and (b) are the same. We only prove (a) here.
For any 0 < ε ≤ 1, let Hε be the metric given in Proposition 3.3. Let

g = log TrHHε, and f(z) = |z|2|Λω0F(Hε,∂̄E)(z)|. As in Section 2.3, we have on
B∗,

∆g ≥ −|z|−2f(z),

So by items (i), (ii), (iii) in Proposition 3.3, Lemma 2.20, and item (2) in Lemma
2.18 (replacing |z|/2 by |z|/A for some big but fixed A), we see that there is a

constant C independent of ε such that for any z /∈ Σ10−3

,

g(z) ≤ C − ε log |z|.

In other words, we have
H ≥ e−C |z|εHε.

for any z /∈ Σ10−3

. Furthermore, away from Σ10−3

, we have

Hε =
∑
p′

π∗Hε(|z|µ(Ep′/Ep′−1)(πp′ − πε,p′−1)·, |z|µ(Ep′/Ep′−1)(πp′ − πε,p′−1)·)

where πε,p′ is the pointwise orthogonal projection given by Ep′ ⊂ E with respect
to the metric π∗Hε. Similar to the proof of (c)1 in the semistable case, we have

dEp,q (s) ≤ lim
i→∞

log(22jin
∫

(B
2−ji−1\B2−ji−2 )\(Σ10−3∪2−jiErji

)
|z|ε|(πεp,q)⊥s|2Hε)

−2ji log 2
(3.1)
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where πεp,q denotes the pointwise projection given by Ep,q ⊂ E with respect to

the metric Hε. However, over (B2−ji−1 \B2−ji−2) \ (Σ10−3 ∪ 2−jiErji), we have

(πεp,q)
⊥s = (πε,(p,q))

⊥s

where πε,(p,q) denotes the pointwise projection given by Ep,q ⊂ E with respect
to the metric π∗Hε. Then we have

|(πεp,q)⊥s|2Hε = |z|2µ(Ep/Ep−1)|(πε,(p,q))⊥s|2π∗Hε .

By plugging this into Equation (3.1), we have

dEp,q (s) ≤ lim
ji

log(22jin
∫

(B
2−ji−1\B2−ji−2 )\(Σ10−3∪2−jiErji

)
|z|2µ(Ep/Ep−1)+ε|(πε,(p,q))⊥s|2π∗Hε

−2ji log 2

= µ(Ep,q+1/Ep,q) +
ε

2
.

By letting ε→ 0, we have

dEp,q (s) ≤ µ(Ep,q+1/Ep,q).

This finishes the proof.

Given this, we can finish the proof of Theorem 1.1 by repeating what we
did in the semistable case by replacing the Harder-Narasimhan filtration with a
Harder-Narasimhan-Seshadri filtration. Then the induction is on (p, q) instead
of p. For the base case, we can achieve (a)1,1 and (b)1,1 exactly the same as the
semistable case by replacing E1 with E1,1. For (c)1,1, otherwise, assume for some
s ∈ HG1,2 (without loss of generality we assume q1 ≥ 2), dE1,1(s) < µ(E1,2/E1,2).
As (a)1,1, we get a nontrivial map as

ψ
1,2

: (E1,2/E1,1)∗∗ → S1,2

where S1,2 is polystable with µ(S1,2) < µ(E1,2/E1,1) = µ((E1,2/E1,1)∗∗). This
is impossile by Proposition 7.11 in [25]. When doing induction, we can achieve
(a)p,q and (b)p,q exactly in the same way as the semistable case as well. For
(c)p,q, this is done exactly the same as (c)1,1 above. This finishes the proof.

3.2 Construction of comparison metrics

Before starting the proof of Proposition 3.3, we need a lemma concerning the
existence of a good cut-off function.

Lemma 3.5. For any fixed N >> 1 , there exists R(N) ∈ (0, 10−7) which is
decreasing with respect to N , and a constant C = C(N) > 0 so that for any
R ∈ (0, R(N)], there exists a smooth function χR : B∗ → [0, 1] such that the
following holds on B∗

• χR|ΣRrr ≡ 1;

• χR|S2n−1(r)\Σ200Rr
r

≡ 0;

• |∇χR| ≤ CR−1
r ;
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• |∇2χR| ≤ CR−2
r , where Rr = RrN .

Proof. Let φ : R→ [0, 1] be a smooth function so that
∫
R φ(t)dt = 1, Supp(φ) =

{t ∈ R : |t| ≤ 2} and φ is equal to 1 near 0. Define ψr : S2n−1(r) → R by
setting ψr = 1 for x ∈ Σ100Rr

r and ψr = 0 for x ∈ S2n−1(r) \ Σ100Rr
r . Define

fr : S2n−1(r)→ [0, 1] by

fr(x) = c(r)

∫
S2n−1(r)

ψr(y)φRr (dS2n−1(r)(x, y))dVolS2n−1(r)(y)

where r = |x|, φRr (t) = φ( t
Rr

) and c(r) is a constant independent of x given by

c(r)−1 =

∫
S2n−1(r)

φRr (dS2n−1(r)(x, y))dVolS2n−1(r)(y).

Since φRr (dS2n−1(r)(x, y)) ≡ 1 if dS2n−1(r)(x, y) is small, we know fr is indeed

smooth. It is also direct to see fr = 0 on S2n−1(r)\Σ150Rr
r , fr = 1 on Σ50Rr

r , and
furthermore |∇fr| ≤ CR−1

r and |∇2fr| ≤ CR−2
r for some constant C = C(N).

We define a smooth function χR : B∗ → [0, 1] by

χR(x) =

∫
R
ft(tx) · 1

Rr
φ(

1

Rr
(r − t))dt

where x = rx. Now we verify χR satisfies the desired properties for 0 < R ≤
R(N), where

R(N) = min{1

2
[(

4

3
)

1
N−1 − 1],

1

2
(1− 50−

1
N−1 )}.

The choice of R(N) comes from the discussion below.

• If x ∈ S2n−1(r) \ Σ200Rr
r , then tx ∈ S2n−1(t) \ Σ

200 tRrr
t . If | r−tRr

| ≤ 2, i.e.,

(1−2Rrr )r ≤ t ≤ (1+2Rrr )r, then Σ150Rt
t ⊂ Σ

200(1+2Rrr )−N+1Rt
t ⊂ Σ

200tRrr
t

for 0 < R ≤ 1
2 [( 4

3 )
1

N−1 − 1], thus tx ∈ S2n−1(t) \ Σ150Rt
t . This implies

ft(tx) = 0, thus by definition χR(x) = 0. So we have

χR(x)|S2n−1(r)\Σ200Rr
r

≡ 0;

• For x ∈ ΣRrr , if | r−tRr
| ≤ 2, i.e., (1 − 2Rrr )r ≤ t ≤ (1 + 2Rrr )r, then

Σ
tRrr
t ⊂ Σ

(1−2Rrr )−N+1Rt
t ⊂ Σ50Rt

t for 0 < R ≤ 1
2 (1 − 50−

1
N−1 ), thus

tx ∈ Σ50Rt
t . This implies ft(tx) = 1, thus by definition χR(x) = 1. So we

have
χR|ΣRrr ≡ 1;

• Denote by ∂r the unit radial vector field and r−1∂θ any unit vector field
tangential to the sphere S2n−1(r). Then

|r−1∂θχR| = |
∫
R
r−1∂θ(ft(tx)) · 1

Rr
φ(

1

Rr
(r − t))dt|

≤ C
∫
R
R−1
t

1

Rr
φ(

1

Rr
(r − t))dt

≤ C
∫
|r−t|≤2Rr

R−1
t R−1

r dt

≤ CR−1
r
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and

|∂rχR| =
∫
R
ft(tx) · ∂r(

1

Rr
φ(

1

Rr
(r − t)))dt

≤ C
∫
|r−t|≤2Rr

R−2
r dt

≤ CR−1
r .

So |∇χR| ≤ CR−1
r ;

• Similarly one can show |∇2χR| ≤ CR−2
r .

This finishes the proof.

Now we finish the proof of Proposition 3.3.

Proof of Proposition 3.3. Let K be the constant given by Proposition 2.13. For
any 0 < ε′ << 1, let Hε′ be the metric on E satisfying the properties listed in
Proposition 2.13 with δ = 10−4, i.e.,

(1). supi
∫
CPn−1 |βi|

2
ωFS ≤ ε

′;

(2). supi
∫
CPn−1 |ΛωFS ∂̄Eβi| ≤ ε

′;

(3).
∫
CPn−1 |

√
−1ΛωFSF(Hε′ ,∂̄S) − ψHε′ | ≤ ε′;

(4). |ΛωFSF(Hε′ ,∂̄E)|L∞ ≤ K;

(5). |
√
−1ΛωFSF(Hε′ ,∂̄S) − ψHε′ |(z) ≤ ε′ for z /∈ Σ10−4

;

(6). supi |βi(z)|ωFS ≤ ε
′ for z /∈ Σ10−4

;

(7). supi |ΛωFS∂Eβi(z)| ≤ ε
′ for z /∈ Σ10−4

.

Fix N >> µ1, and let R(N) be given by Lemma 3.5. Let R ∈ (0, R(N)]
be determined later. Denote Hε′ = π∗Hε′ , and apply Lemma 2.15 with g =∑m
i=1 fi(πi − πi−1) where

fi = (1− χR)|z|µi + χR

and χR is given by Lemma 3.5. Since µi is strictly decreasing, supi≤j
fi
fj
≤

1. In the following, we will estimate Ti for i = 0, 1, 2 given by Lemma 2.15
separately and we also use A . B to denote A ≤ CB for some constant C =
C(n,m,N,K, µ1). For simplicity we introduce one more notation (see Figure
1)

• Σ′ =
⋃
r∈(0,1) Σ200Rr

r , Σ′′ =
⋃
r∈(0,1) ΣRrr .

(A). For T0 = F(Hε′ ,g·∂̄S) = F(Hε′ ,∂̄S) −
∑
i ∂∂̄ log(f2

i )(πi − πi−1). Since fi =
(1− χR)|z|µi + χR, we have
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•B∗ \ Σ10−4
Σ′

Σ′′

Σ

Figure 1: The cut-off

(a). For z /∈ Σ′,

T0 = π∗F(Hε′ ,∂̄S) −
∑
i

µi∂∂̄ log |z|2(πi − πi−1),

Λω0T0 =
π∗(ΛωFSF(Hε′ ,∂̄S) +

√
−1ψHε′ )

r2

As a result, we have

|Λω0
T0| .

|
√
−1ΛωFSF(Hε′ ,∂̄S) − ψHε′ |

r2
,

and

|T0|ω0
.
|F(Hε′ ,∂̄E)|ωFS + supi |βi|

2
ωFS + 1

r2
.

(b). Similarly, for z ∈ Σ′, using the fact that µi is strictly decreasing, we
have

|T0|ω0
.
|F(Hε′ ,∂̄E)|ωFS + supi |βi|

2
ωFS +R−2

r r−2µ1

r2
,

and

|Λω0T0| .
K + supi |βi|

2
ωFS +R−2

r r−2µ1

r2
.
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Combining (a) and (b), and using Items (1) and (3) above, we get

sup
r∈(0,1]

r−(2n−1)

∫
S2n−1(r)

r2|Λω0
T0|

.
∫
CPn−1

|
√
−1ΛωFSF(Hε′ ,∂̄S) − ψHε′ |

+ sup
r∈(0,1]

r−(2n−1)

∫
Σ′∩S2n−1(r)

(K + sup
i
|β
i
|2ωFS +R−2

r r−2µ1)

.ε′ +R2,

where the last step we used Lemma 3.5 and the fact that Σ has complex
codimension at least two. By Proposition 2.17 we have

|T0|ω0
∈ L1+δ(B∗)

for some δ > 0. Also, for z /∈ Σ10−4

, by Item (5) above,

r2|Λω0
T0| ≤ |ΛωFSF(Hε′ ,∂̄S) +

√
−1ψHε′ | ≤ ε′.

(B). For T1 = −(g · ∂̄S)(gβg−1)∗ + (g · ∂̄S)∗(gβg−1), we have

(g · ∂̄S)(gβg−1)∗ =
∑
i<j

fi
fj

(πj − πj−1)(∂̄Sβ
∗)(πi − πi−1)

− 2
∑
i<j

∂̄(
fi
fj

) ∧ (πj − πj−1)(∂Eπi)(πi − πi−1).

Plugging in fi = (1− χR)|z|µi + χR, we have

(a). If z /∈ Σ′, then fi
fj

= |z|µi−µj where µi > µj . As a result,

|Λω0
(g·∂̄S)(gβg−1)∗| .

supi |βi|
2
ωFS + supi |ΛωFS∂Eβi|+ r1+µ′ supi |βi|ωFS

r2

and

|(g · ∂̄S)(gβg−1)∗|ω0 .
supi |βi|

2
ωFS + supi |∂Eβi|ωFS + r1+µ′ supi |βi|ωFS

r2

.
2 supi |βi|

2
ωFS + |F(Hε′ ,∂̄E)|ωFS + r1+µ′ supi |βi|ωFS

r2
,

where the second inequality follows from Equation (2.7). Here µ′ =
min{i < j : µi − µj}.

(b). If z ∈ Σ′, using |∂̄ fifj | . R−1
r r−µ1−1, we get

|Λω0
(g·∂̄S)(gβg−1)∗| .

supi |βi|
2
ωFS + supi |ΛωFS∂Eβi|ωFS +R−2

r r−2µ1

r2

and

|(g · ∂̄S)(gβg−1)∗|ω0
.

supi |βi|
2
ωFS + supi |∂Eβi|ωFS +R−2

r r−2µ1

r2

.
2 supi |βi|

2
ωFS + |F(H,∂̄E)|ωFS +R−2

r r−2µ1

r2
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Now combining the estimates in (a) and (b), and using Items (1) and (2),
we have

sup
r∈(0,1]

r−(2n−1)

∫
S2n−1(r)

r2|ΛωFST1|

.
∫
CPn−1

sup
i
|β
i
|2ωFS + sup

i
|ΛωFS∂Eβi|ωFS + r−(2n−1)

∫
Σ′
R−2
r r−2µ1

≤ ε′ +R2.

Similar to the estimate for T0, by Proposition 2.17, we have

|T1| ∈ L1+δ(B∗).

Also, for z /∈ Σ10−4

, by Items (6) and (7),

r2|Λω0
T1| ≤ sup

i
|β
i
|2ωFS + sup

i
|ΛωFS∂Eβi|+ sup

i
r1+µ′ |β

i
|ωFS . ε′.

(C). For T2 = −gβg−1 ∧ (gβg−1)∗ − (gβg−1)∗ ∧ gβg−1, we have

|T2|ω0
≤ 2|gβg−1|2ω0

. (sup
i<j
| fi
fj
|2) sup

i
|βi|2ω0

.
supi |βi|

2
ωFS

r2
. (3.2)

Here, the second inequality follows from

gβg−1 = −
∑
i,j,k

fi
fj

(πi − πi−1)(πk − πk−1)∂̄Eπk(πj − πj−1)

= −
∑
i,j

fi
fj

(πi − πi−1)∂̄Eπi(πj − πj−1)

= −
∑
i<j

fi
fj

(πi − πi−1)∂̄Eπi(πj − πj−1)

The last equality follows from ∂̄Eπi · πi = 0 (πi’s are all weakly holomor-
phic). As a result, we have

sup
r∈(0,1]

r−(2n−1)

∫
S2n−1(r)

r2|Λω0
T2| . ε′

and
|T2|ω0

∈ L1+δ(B∗)

for some δ > 0 as |T0| and |T1|. Also, for z /∈ Σ10−4

, r2|Λω0T2| ≤ ε′.

Now combining (A), (B), (C), we have

sup
r∈(0,1]

r−(2n−1)

∫
S2n−1(r)

r2|Λω0
F(Hε′ ,g·∂̄E)| . ε′ +R2,

and for z /∈ Σ10−4

,
r2|Λω0

F(Hε′,g·∂̄E )
| . ε′.
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Since |F(Hε′ ,g·∂̄E)| ≤ |T0|+ |T1|+ |T2|, we have |F(Hε′ ,g·∂̄E)| ∈ L1+δ(B∗) for some

δ > 0. For any 0 < ε << 1, choose ε′ and R small so that ε′ +R2 << ε and let

Hε = Hε′(g·, g·) =
∑
i

(1− χR)|z|2µiHε′((πi − πi−1)·, (πi − πi−1)·) + χRHε′ .

The calculation above shows that Hε satisfies (i), (ii) and (iii). It suffices to
verify that Hε satisfies (iv). For any s ∈ HGi\HGi−1, we have (πi−πi−1)s 6= 0,
so ∫

B∗r\Σ10−3
|z|ε|s|2Hε

=

∫
B∗r\Σ10−3

∑
j≤i

|z|ε+2µjHε′((πj − πj−1)s, (πj − πj−1)s)

=
∑
j≤i

ajr
ε+2µi+2n

where ai 6= 0. Thus by taking limit r → 0, we have

lim
r→0

1

2

log
∫
B∗r\Σ10−3 |z|ε|s|2Hε

log r
− n = µi +

ε

2
.

This finishes the proof.

3.3 Uniqueness of bubbling set with multiplicities

3.3.1 Chern-Simons transgression

In this section, we will collect some well-known results about the Chern-Simons
transgression. Fix ∆ to be smoothly isomorphic to {z ∈ C2 : |z| ≤ 1} and
let E be a complex vector bundle of rank m ≥ 2 over ∆ with a preferred
smooth trivialization over ∂∆ (indeed E is always abstractly trivial). Then any
connection A defined on E|∂∆ can be viewed as a smooth one form and the
Chern-Simons form is defined as

CS(A) = Tr(dA ∧A+
2

3
A ∧A ∧A).

Given two such connections A and B, we also define the relative Chern-Simons
transgression form as

CS(A,B) := Tr(dBa ∧ a+
2

3
a ∧ a ∧ a+ 2a ∧ FB).

Note CS(A) = CS(A, 0). Given a smooth isomorphism g : E|∂∆ → E|∂∆, we
define the (complex) gauge transform of a connection A on E|∂∆ as

g ·A = gAg−1 − dg · g−1.

Lemma 3.6. The following holds

(a). if A extends to a smooth connection of E over the whole ∆, then∫
∂∆

CS(A) =

∫
∆

Tr(FA ∧ FA);
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(b).
∫
∂∆

CS(A,B) =
∫
∂∆

CS(A)−
∫
∂∆

CS(B);

(c). For any g as above, CS(g ·A, g ·B) = CS(A,B). In particular the relative
Chern-Simons transgression does not depend on the choice of the common
trivialization of E|∂∆;

(d). deg(g) :=
∫
∂∆

CS(g ·A,A) ∈ 8π2Z is independent of A and it only depends
on the isotopy class of g. Moroever, deg(g1g2) = deg(g1) + deg(g2);

(e). If g extends to be an isomorphism of E over ∆, then deg(g) = 0.

Proof. (a) follows from the fact that

d(CS(A)) = Tr(FA ∧ FA).

(b) also follows from a direct calculation

CS(A) = CS(B) + CS(A,B) + dTr(a ∧B).

For (c) we write g ·A−g ·B = g(A−B)g−1. Denote a = A−B and g ·a = gag−1.
Then we have

CS(g ·A, g ·B) = Tr(dg·Bg · a ∧ g · a+
2

3
g · a ∧ g · a ∧ g · a+ 2g · a ∧ Fg·B)

= Tr(g(dBa ∧ a+
2

3
a ∧ a ∧ a+ 2a ∧ FB)g−1)

= CS(A,B).

For (d), by (b) and (c), we have∫
∂∆

CS(A, g ·A)− CS(B, g ·B) =

∫
∂∆

CS(A)− CS(g ·A)− CS(B) + CS(g ·B)

=

∫
∂∆

CS(A,B)− CS(g ·A, g ·B)

=

∫
∂∆

CS(A,B)− CS(A,B)

= 0.

.

To see deg(g) ∈ 8π2Z, we take the trivial connection A0 on E over ∆, so
CS(A0) = 0. Then we take another copy of A0 and glue these two together
along ∂∆ using g to form a connection A1 on a bundle over S4. Then we have

deg(g) = CS(g ·A0, A0) = CS(g ·A0)− CS(A0) =

∫
S4

Tr(FA1
∧ FA1

) ∈ 8π2Z.

Also we have

deg(g1g2) =

∫
∂∆

CS(A, g1g2A)

=

∫
∂∆

CS(A, g1A) +

∫
∂∆

CS(g1A, g1g2A)

=

∫
∂∆

CS(A, g1A) +

∫
∂∆

CS(A, g2A)

= deg(g1) + deg(g2).

.

(e) follows by using the same gluing argument.
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3.3.2 Uniqueness of bubbling set with multiplicities

Now we will finish the proof of uniqueness of bubbling sets with multiplicities.
By Theorem 1.1, given any analytic tangent cone (E∞, A∞,Σ, µ),we know that
the connection A∞ is given by the admissible Hermitian-Yang-Mills connection
on (GrHNS(E))∗∗. More specifically, write

(GrHNS(E))∗∗ = ⊕lQl,

where each Q
l

is a stable reflexive sheave on CPn−1. Let S denote the set where

(GrHNS(E))∗∗ is not locally free and µl denote the slope of Q
l
. Then Theorem

1.1 tells us that away from π−1(S), we have

(E∞, A∞, H∞) = (π∗(GrHNS(E))∗∗,
⊕
l

(π∗Al+µl∂ log |z|2Idπ∗Q
l
),
⊕
l

|z|2µlπ∗H l)

where (Al, H l) is the (unique) admissible Hermitian-Yang-Mills connection over
Q
l
. In particular

Sing(A∞) = π−1(S).

In the following, we denote
A := ⊕lAl

and
a∞ := ⊕lµl∂ log |z|2Idπ∗Q

l
.

Let (A∞,Σ, µ) be an analytic tangent cone associated to a subsequence
{ji} ⊂ {i}. Let H ′ be a fixed smooth Hermitian metric on E and let A′ be
the Chern connection of (H ′, ∂̄E). Denote H ′ = π∗H ′. Following the convention
in Section 2.3, there exits a unitary isomorphism P outside Σ

P : (E , H ′)→ (π∗(GrHNS(E))∗∗, H∞)

and a sequence of unitary isomorphisms {gi} of (E , H ′) so that {gi · Aji}i con-
verge to P ∗A∞ smoothly outside Σ. Here Aji denotes the Chern connection

associated to (H ′, fi ◦ ∂̄π∗E ◦ f−1
i ) where fi = (H ′−1(2−ji)∗H)

1
2 . We fix a

Harder-Narasimhan-Seshadri filtration for E as

0 ⊂ E1 ⊂ · · · Em = E .

Let Q′
l

be the orthogonal complement of E l−1 in E l with respect to H ′. By

doing orthogonal projection, we can identify E smoothly with ⊕lQ′l away from

Sing(GrHNS(E)) ⊂ Σ
ρ : E → GrHNS(E).

We also denote ρ = π∗ρ. Let ι : GrHNS(E) ↪→ (GrHNS(E))∗∗ be the natural
inclusion map.

Now we will follow the discussion in [36]. Let Σalg denote the proper analytic
subvarierty in CPn−1 where GrHNS(E) is not locally free. Define

T := (GrHNS(E))∗∗/GrHNS(E)

which is a torsion sheaf over CPn−1. Then we have

Σalg = supp(T ) ∪ S.
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By Proposition 2.3 in [36], on the complement of S, Σalg has pure complex

codimension 2. Then we define Σalgb as the union of irreducible codimension

2 components in Σalg. For each irreducible component Σk of Σalgb , we can

associate an algebraic multiplicity malg
k to Σk by letting

malg
k := h0(∆, T |∆)

where ∆ is a holomorphic transverse slice at a generic point of Σk. We write

Σalgb =
∑
k

malg
k Σk

where Σk = π−1(Σk).

Given an irreducible component Σk of Σanb ∪ Σalgb , it has been shown how
to calculate the algebraic multiplicity in [36]. More specifically, choose a class
[∆] in H4(CPn−1,Q) whose intersection product with Σk is nonzero and [∆] can
be represented as a codimension 2 subvarierty ∆ of CPn−1 which intersects Σk
transversally and positively at points {z1, · · · , zN}. Now we have the following
(see Equation (4.5) in [36]),

Nmalg
k = ([∆] · [Σk])malg

k =

∫
∪Nl=1∆∩Bσ(zl)

1

8π2
{tr(FA′ ∧ FA′)− tr(Fτ∗A ∧ Fτ∗A)}

−
∫
∪Nl=1∆∩∂(Bσ(zl))

1

8π2
CS(A′, τ∗A)

(3.3)
where τ = ι ◦ ρ. In [36], the result is only stated for an irreducible component

of Σalgb but the calculation obviously holds for any codimension 2 subvarierty

(indeed, if Σk is not a component of Σalgb , then malg
k = 0). By choosing σ

small, for each ∆l, we can choose a holomorphic lifting ∆l in B2−1 \B2−2 . Then
Equation (3.3) can be rewritten as

Nmalg
k =

∫
∪Nl=1∆l

1

8π2
{tr(Fπ∗A′ ∧ Fπ∗A′)− tr(Fπ∗A ∧ Fπ∗A)}

−
∫
∪Nl=1∂∆l

1

8π2
CS(π∗A′, τ∗(π∗A)).

(3.4)

where τ = π∗τ .

Corollary 3.7.

Nmalg
k = Nman

k − lim
ji

∫
∪Nl=1∂∆l

1

8π2
CS(Aji , τ

∗A∞).
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Proof. By Lemma 2.29 and Equation (3.4), using Lemma 3.6 we get

Nman
k = lim

i→∞

∫
∪Nl=1∆l

1

8π2
{tr(FAji ∧ FAji )− tr(FA∞ ∧ FA∞)}

= Nmalg
k − lim

i→∞

1

8π2

∫
∪Nl=1∂∆l

CS(π∗A′, τ∗(π∗A)) + CS(Aji , π
∗A′) + CS(π∗A,A∞)

= Nmalg
k − lim

i→∞

1

8π2

∫
∪Nl=1∂∆l

CS(Aji , τ
∗(π∗A)) + CS(τ∗(π∗A), τ∗A∞)

= Nmalg
k − lim

i→∞

1

8π2

∫
UNl=1∂∆l

CS(Aji , τ
∗A∞).

Now the second part of Theorem 1.1 follows from the following Proposition
combined with Corollary 3.7.

Proposition 3.8. For all 1 ≤ l ≤ N , we have

lim
i→∞

∫
∂∆l

CS(Aji , τ
∗A∞) = 0.

Proof. First, we have∫
∂∆l

CS(Aji , τ
∗A∞) =

∫
∂∆l

CS(gi ·Aji , gi · (P−1τ)∗P ∗A∞)

=

∫
∂∆l

CS(gi ·Aji , gi · (P−1τ)−1 · P ∗A∞)

We claim for i large, on E|∂∆l
, we have

deg(P−1τ) = deg(gi).

Given this claim, by Lemma 3.6, we have∫
∂∆l

CS(Aji , τ
∗A∞) =

∫
∂∆l

CS(gi ·Aji , P ∗A∞)

which goes to 0 since {gi ·Aji}i converge to P ∗A∞ smoothly away from Σ.
Now we prove the Claim. The key point is that in our proof of Theorem

1.1 (see Section 3.1.1), the homogeneous map ψl we constructed to identify
π∗(E l/E l−1)∗∗ with π∗Q

l
is given by (away from Σ)

ψl = P lim
i→∞

(πil − πil−1)(gifi(πl − πl−1))

ai

Here πil denotes the orthogonal projection from E to (gifi)(π
∗E l) with respect to

the metricH ′, πl denote the orthogonal projection from E to π∗E l with respect to
H ′ and ai is suitable normalizing constant (see the proof in Section 3.1.1). Since
the map between E l/E l−1 and (E l/E l−1)∗∗ which induces an isomorphism of
(El/El−1)∗∗ is unique up to rescaling, we can assume τ =

⊕
l ψl by re-normalizing

ai. Write

hi :=
(πil − πil−1)(gifi(πl − πl−1))

ai
,
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then it is easy to see that hi is smoothly homotopic to gifi away from Σ. Indeed,
consider for t ∈ [0, 1] the family

Ft =
(πil − πil−1)(gifi(πl − πl−1)) + t

∑
l1,l2<l

(πil1 − π
i
l1−1)(gifi(πl2 − πl2−1))

(1− t)tai + t

is a family of complex gauge transformations satisfying F0 = hi and F1 = gifi.
Now since fi is defined over B \ {0}, we know by Lemma 3.6 that deg(fi) = 0
on E|∂∆l

. So for i large, we have

deg(P−1τ) = deg( lim
i→∞

gifi)

= lim
i→∞

deg gi.

This finishes the proof of the claim.

4 Examples

In this section, we will prove Corollary 1.3. We first state a lemma to con-
struct reflexive sheaves in general. Suppose {f1, · · · fk} is a regular sequence of
holomorphic function over an open subset U ⊂ Cn i.e.

CodimC(Zero(f1, · · · fk)) = n− k.

Denote u := (f1, · · · fk) ∈ O⊕k. Consider the coherent sheaf E given by the
following exact sequence

0→ O u−→ O⊕k → E → 0.

Lemma 4.1. E is a reflexive sheaf over U for k ≥ 3.

Proof. Indeed, since CodimC(Zero(f1, · · · fk)) = n− k, by Lemma on Page 688
in [17], the following Koszul complex given by u is exact over U

0→ O ∧u−−→ O⊕k ∧u−−→ ∧2O⊕k ∧u−−→ ∧3O⊕k · · · ∧u−−→ I → 0

where I is the ideal sheaf generated by {f1, · · · fk}. By exactness of the above
sequence and the definition of E , we have the following exact sequence

0→ E → ∧2O⊕k → ∧3O⊕k

which implies E is reflexive by Proposition 5.22 in [25].

Now we discuss a class of local examples. Over CP2 we denote by Ek the
locally free rank 2 sheaf defined by the exact sequence

0→ OCP2
fk−→ OCP2(1)⊕OCP2(1)⊕OCP2(k)→ Ek → 0

where fk = (z1, z2, z
k
3 ). Let Ek = ψ∗π

∗Ek.
It is easy to see c1(Ek) = k+ 2. By using the criteria given by Lemma 1.2.5

in [29], we can easily get the following

• If k = 1, then Ek is stable;
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• If k = 2, then Ek is semistable, and a Seshadri filtration is given by

0→ OCP2(k)→ Ek → I[0:0:1] ⊗OCP2(2)→ 0,

where I[0:0:1] is the ideal sheaf of the point [0 : 0 : 1], and the first map is
induced by the inclusion OCP2(k) ↪→ OCP2(1)⊕OCP2(1)⊕OCP2(k).

• If k > 2, then Ek is unstable and the Harder-Narasimhan filtration is given
by

0→ OCP2(k)→ Ek → I[0:0:1] ⊗OCP2(2)→ 0.

When k ≥ 2, we have

GrHNS(Ek) = OCP2(k)⊕ (I[0:0:1] ⊗OCP2(2)),

so
ψ∗π

∗(GrHNS(Ek))∗∗ = O⊕2
C3 ,

and the algebraic bubbling set

Σalgb = {0} × Cz3 ⊂ C3

with multiplicity 1.
Now supposeA is an admissible Hermitian-Yang-Mills connection on Ek|B(k ≥

2), and let (A∞,Σ, µ) be the unique analytic tangent cone of A at 0, then by
Theorem 1.1, we know A∞ is the trivial flat connection on O⊕2

C3 , and the bub-
bling set is Σb, µ = [Σb]. In particular, the analytic tangent cones, as defined
in this paper, are all the same for all k ≥ 2.

Remark 4.2. It is interesting to see how we can interpret the integer k here in
terms of the admissible Hermitian-Yang-Mills connections on Ek.

Finally, to prove Corollary 1.3, we consider a global example. On CP3, we
let E be given as follows

0→ OCP3
σ−→ OCP3(2)⊕OCP3(1)⊕OCP3(2)→ E → 0.

where σ = (z2
1 , z2, z3z4).

Lemma 4.3. E is a rank 2 stable reflexive sheaf with singular set given by
{[0, 0, 0, 1], [0, 0, 1, 0]}.

Proof. It is obvious that E is locally free away from {[0, 0, 0, 1], [0, 0, 1, 0]}. Near
[0, 0, 0, 1], since [0, 0, 0, 1] is an isolated common zero of {z2

1 , z2, z3z4}, by Lemma
4.1, we know E is reflexive near [0, 0, 0, 1]. Similarly, E is also reflexive at
[0, 0, 1, 0]. Since H0(CPn−1, E ⊗ OCP3(−3)) = 0, E is stable.

By Theorem 2 in [4], choosing any smooth Kähler metric ω on CP3, there
exists an admissible Hermitian-Yang-Mills connection A on E with singularities
at p0 = [0, 0, 0, 1] and p1 = [0, 0, 1, 0]. We will apply our Theorem 1.1 to study
the local behavior of A near p0 and p1. Locally around p0, E is isomorphic to
E2 (as defined as above). The same is true at p1 by symmetry. So we see E
provides an example in Corollary 1.3. Strictly speaking, the underlying metric
ω here is not flat, but as we pointed out in the beginning of Section 2, this does
not cause technical difficulties.
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5 General point singularities

In general, the point singularity of reflexive sheaves can be nonhomogeneous,
i.e. not necessarily modelled on the pull-back of vector bundles on projective
spaces (see Example 1 in Section 5.2). In this section, we will first give some
general discussion about possible candidates for the algebraic data as in the
homogeneous case and later will introduce an algebraic construction, called
Hecke Transform (see section 6.1), to construct some optimal algebraic tangent
cone for reflexive sheaves at any singular point (not necessarily isolated), which
is unique in a suitable sense.

5.1 Proof of Theorem 1.4

Going back to the general setting in the introduction, we let A be an admissible
Hermtian-Yang-Mills connection on B with vanishing Einstein constant, and
with an isolated singularity at 0. Let E be the corresponding reflexive sheaf. In
this section, we shall use the following notations

• p : B̂ → B denotes the blow-up of B at 0. We can identify B̂ naturally
with an open neighborhood of the zero section in the total space of the
line bundle O(−1)→ CPn−1;

• i : p−1(0) ' CPn−1 → B̂ denotes the obvious inclusion map;

• φ : B̂ → CPn−1 denotes the restriction of the projection map O(−1) →
CPn−1;

Definition 5.1. An algebraic tangent cone of E at 0 is a coherent sheaf on
CPn−1 which is given by the restriction of a reflexives sheaf F on B̂, such that
F|B̂\p−1(0) is isomorphic to p∗(E|B\{0}).

For the convenience of reader we digress to discuss the notion of restriction
of reflexive coherent analytic sheaves. The corresponding theory in the category
of algebraic geometry is well-known. By definition for a coherent sheaf F on a
complex manifold X and a smooth divisor D, the restriction F|D is given by
the pull-back of F under the inclusion map i : D → X.

Lemma 5.2. If F is reflexive then F|D is torsion free.

Proof. It suffices to prove the stalk of F|D at any point p is torsion free. For
this purpose we can work in the local holomorphic coordinates z1, z2, · · · , zn
centered p and assume D is locally given by {z1 = 0}. Since F is reflexive we
can find a local short exact sequence in a neighborhood U of p of the form

0→ F → On1

U

φ−→ On2

U .

This can be achieved, for example, by first choosing a locally free resolution
of F∗ and then taking dual. Suppose s ∈ (F|D)p is a non-zero torsion. Then
there is a local holomorphic function f = f(z2, · · · , zn) such that f · s = 0.
By definition we can write s = [η] for an element η of Fp with η /∈ z1 · Fp.
Then f · s = 0 implies that there is a nonzero element λ ∈ Fp such that
fη = z1λ. Using the above short exact sequence we can view both η and λ as
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elements of (On1

X )p, which implies that η = z1η
′ for some η′ in (On1

X )p. Since
φ(η) = φ(z1η

′) = z1φ(η′) = 0, we know φ(η′) = 0 i.e. η′ ∈ Fp which contradicts
with η /∈ z1Fp. This finishes the proof.

Remark 5.3. Using this we can give an alternative description of F|D, as the
subsheaf of On1

D generated by the restriction of local holomorphic sections of
F , viewed as sections of On1

X . Indeed, if we denote the latter sheaf by F ′, then
there is an obvious surjective homomorphism ψ from F|D to F ′. Notice since the
quotient On1

X /F is torsion free, we know F is locally free outside a codimension
two complex analytic subvariety of X and the map F → On1

X realizes F as a
sub-bundle of the trivial bundle. So outside a divisor in D the restriction F|D is
locally free and ψ is an isomorphism. Thus the kernel of ψ is necessarily torsion
and the above Lemma implies it has to be zero. This description is often helpful
when dealing with explicit examples. For example, if F is the reflexive sheaf on
C3 defined as the kernel of the map OC3 → OC3 given by (z1, z2, z3), and D is
the divisor z1 = 0, then F|D is isomorphic to OC2 ⊕ I0, where I0 is the ideal
sheaf of the origin in C2.

Remark 5.4. Lemma 5.2 is not true if F is only torsion-free. For example, it is
easy to see that for the ideal sheaf I0 of the origin in C2, the restriction to a
line C through the origin indeed has torsion.

Lemma 5.2 implies that an algebraic tangent cone is always torsion free. But
it is far from unique. For instance, one way to obtain an algebraic tangent cone
is by first taking (p∗E∗)∗, and then restrict to p−1(0). We will show how to
calculate this algebraic tangent cone by examples in Section 5.2.

From now on we assume that there is an algebraic tangent cone Ê which is
locally free (i.e. defines a holomorphic vector bundle) on CPn−1. Denote by Ê
the reflexive sheaf on B̂ that restricts to Ê on p−1(0) and is isomorphic to the

pull-back of E outside p−1(0). It is clear that Ê itself is also locally free.

Proposition 5.5. For k large, the natural map

r : H0(B̂, Ê ⊗ φ∗O(k))→ H0(CPn−1, Ê ⊗ O(k))

is surjective.

Proof. This follows from a version of Ohsawa-Takegoshi extension theorem [28].

Fix the Kähler metric ω := p∗ω0 + φ∗ωFS on B̂. Notice

Ê ⊗ φ∗O(k0) = Ê ⊗KB̂ ⊗ φ
∗(O(k0 + n− 1)).

Fix a metric h0 on Ê ⊗KB̂ and the metric hk0
on φ∗(O(k0 +n−1)) given by the

pull-back of the standard Hermitian metric on O(k0 +n−1)→ CPn−1. Now we

consider the metric on Ê ⊗ φ∗O(k0) given by h = e−K|z|
2

h0 ⊗ hk0 . By choosing
K and k0 large, we can make the curvature operator Θh ≥ 0 in the Nakano
sense. Then the claim follows from Theorem 4 in [28]. More precisely, using the
notation in [28], we take the plurisubharmonic function to be ψ = p∗(log |z|2),
and take X to be the pre-image under φ of a hyperplane in Cn−1. Then the
conlusion follows if we choose k ≥ k0.

Now we fix k large given by the above Proposition, replace Ê by Ê ⊗φ∗O(k),

and assume r : H0(B̂, Ê) → H0(CPn−1, Ê) is surjective. We may assume Ê is
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globally generated on CPn−1. Notice since E is reflexive, there is a natural map
φ∗ : H0(B̂, Ê)→ H0(B, E). Denote by HG the image of φ∗.

Proposition 5.6. Suppose Ê is a semistable vector bundle on CPn−1, then for
any s ∈ HG \ {0}, we have d(s) = µ(Ê).

Lemma 5.7. There exists a constant C > 0 such that for any ε > 0 there is a
smooth Hermitian metric Hε on E over B∗ with the following properties

(1).
∫
B∗
|F(Hε,∂̄E)|2 <∞;

(2). |z|2|Λω0F(Hε,∂̄E)(z)| ≤ ε+ C|z| for all z ∈ B∗;

(3). For all s ∈ HG \ {0},

1

2
lim
r→0

log
∫
B∗r
|s|2Hε

log r
− n = µ(Ê).

Assuming this, as in the proof of Lemma 3.2 we obtain that

C|z|εHε ≤ H ≤ C|z|−εHε, (5.1)

and Proposition 5.6 follows easily.

Proof of Lemma 5.7. As in Section 3.1.1, for any ε > 0 we can find a Hermitian
metric Hε on Ê such that |

√
−1ΛωFSFAε − µId|L∞ < ε with µ = µ(Ê). Pulling

back to B̂ by the map φ, we get a Hermitian metric H ′ε on E ′ := φ∗(Ê). Now by

our assumption we know that Ê is also a vector bundle and it is isomorphic to
E ′ as smooth complex vector bundles. Fixing any smooth isomorphism between
these two which restricts to the natural identity map on Ê over the exceptional
divisor CPn−1, we may then view H ′ε naturally as a Hermitian metric on Ê too.
Through this isomorphism we write β = ∂̄Ê−∂̄E′ , then the tangential component
of the restriction of β to CPn−1 is zero. A direct computation shows

• |β|π∗ω0
≤ C;

• |∂E′β|π∗ω0 ≤ C|z|−1.

So
|F(H′ε,∂̄Ê) − F(H′ε,∂̄E′ )

|π∗ω0
≤ C|z|−1.

Now let Hε = |z|2µH ′ε and using the map p we obtain a corresponding Hermitian
metric on E|B∗ , which we still denote by Hε. Then it is clear that (1) and (2)
hold. (3) follows from the fact that there exists C independent of r so that

C−1r2n−1+2µ ≤ lim sup
r→0

∫
∂Br

|s|2Hε ≤ Cr
2n−1+2µ.

Now we prove Theorem 1.4. The idea is similar to that has been previously
used in Section 3.1.1. Let (E∞, A∞) be a tangent cone of A at 0. We can

build a homogeneous homomorphism τ : π∗Ê → E∞ as follows. Fix a subspace
V of H0(B̂, Ê) such that r : V → H0(CPn−1, Ê) is an isomorphism and we
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identify V with a subspace of H0(B, E) using the map φ∗. Choose a basis

si of H0(CPn−1, Ê) and correspondingly a basis σi of V . By Proposition 5.6
and by passing to a subsequence we may assume σi converges to homogeneous
holomorphic sections σi,∞ of E∞. Let Mj = supi ‖σi‖j , and let σ′i,∞ be the limit

of 1
Mj
σi. Then σ′i,∞ is either zero or homogeneous of degree µ and there is at

least one i such that σ′i,∞ is non-zero.

For any x ∈ B∗, and any η on the fiber π∗Ê |x, we may write η =
∑
i aiπ

∗si(π(x)).
Then we define τ(η) to be

∑
i aiσ

′
i,∞(x). To see this is well-defined suppose a

section s =
∑
i aisi ∈ H0(CPn−1, Ê) vanishes at π(x), then we need to show the

corresponding limit section
∑
i aiσ

′
i,∞ vanishes at x. This follows from (5.1):

let σ =
∑
i aiσi, it is clear that |σ(x)|Hε ≤ C|x|µ+1, hence

|σ(x)|H ≤ C|x|µ+1−ε/2.

On the other hand since d(σi) = µ for all i we have

Mj ≥ C2−j(µ+ε/2).

If we have chosen a priori that ε is sufficiently small then we know the corre-
sponding limit of 1

Mj
|σ(2−jx)| is zero.

Now it is easy to see τ is indeed a non-trivial homogeneous homomorphism.
As before using the stability of Ê one can conclude that E∞ is a simple HYM
cone with holonomy e−2π

√
−1µ, and τ induces an isomorphism between Ê and

E∞. This finishes the proof of Theorem 1.4.

5.2 General discussion

Let E be a reflexive sheaf defined over the n-dimensional ball B ⊂ Cn with a
(not necessarily isolated) singularity at 0.

Definition 5.8. We say 0 is a homogeneous singularity of E if there is a re-
flexive sheaf E over CPn−1 such that ι∗UE is isomorphic to ι∗U ι∗π

∗E for some
neighborhood U of 0. Here ι : B∗ ↪→ B and ιU : U ↪→ B denote the inclusion
maps.

We briefly recall the notion of Fitting invariants, following [15]. Choose a
finitely generated free presentation of the stalk E0

F φ−→ G → E0 → 0,

we define the j-th Fitting ideal Fittj(E , 0) of E at 0 to be the ideal of O0 given
by the image of the O0-module homomorphism

Λb−jφ : (Λb−jG)∗ ⊗ (Λb−jF)→ O0,

where b = rank(G). If we identify F with O⊕a0 and G with O⊕b0 , and represent
φ by a O0-valued matrix, then Fittj(E , 0) is the ideal of O0 generated by all the
(b−j)×(b−j) minors of the matrix. We make the convention that Fittj(E , 0) =
O0 if j ≥ b. It is not hard to show (see for example [15], Chapter 20) that for all
j, Fittj(E , 0) is a well-defined invariant of the stalk E0, i.e. it does not depend
on the choice of the particular presentation.

The following is pointed out to us by Professor Jason Starr.
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Proposition 5.9. If E is homogeneous at 0 then all the corresponding Fitting
ideals Fittj(E , 0) must be homogeneous ideals of O0.

Remark 5.10. Here we say an ideal I of O0 is homogeneous if it is generated by
homogeneous polynomials; it is not hard to see that for a homogeneous ideal
I, if a function f belongs to I, then all the homogeneous components in the
Taylor expansion of f at 0 also belong to I.

Proof. Since the claimed property only depends on the local structure of E near
0, we may assume without loss of generality that on B \ {0}, E is isomorphic
to π∗E for some reflexive sheaf E on CPn−1. Let l0 be the smallest l such
that H0(CPn−1, E(l)) 6= 0, and choose l1 such that the maps H0(CPn−1, E ⊗
O(l))⊗H0(CPn−1,O(1))→ H0(CPn−1, E⊗O(l+1)) are surjective for all l ≥ l1.
Choosing a basis of H0(CPn−1, E ⊗O(l)) for all l ∈ [l0, l1] we obtain a surjective
homomorphism

φ : F :=
⊕

l0≤l≤l1

O(−l)⊕nl → E ,

where nl = dimH0(CPn−1, E ⊗ O(l)). Pulling-back to B \ {0} and pushing
forward to B, we obtain the corresponding map

φ : F '
⊕

l0≤l≤l1

O⊕nlB → E

We claim φ is surjective at 0. To see this we first notice that by definition φ
is surjective on B \ {0}, so the sheaf E/Im(φ) is a torsion sheaf supported at
the origin, hence there is an m ≥ 1 such that Im(φ) contains Im0 E , where I0 is
the ideal sheaf of 0. Similar to the proof of Lemma 2.44 (notice we did not use
the HYM condition there), we know any local section s of E can be written as
a Taylor series s =

∑
j≥l0 π

∗sj , where sj is a holomorphic section of E ⊗ O(j),
and we have used the natural identification π∗(O(−1)) ' OB\{0}. Now by our
choice of l1 and m it follows that π∗sj is a section of Im(φ) for j ≤ l1 +m, and∑
j≥l1+m π

∗sj defines a germ of a section Im(φ) in a neighborhood of 0. This
proves the claim.

Applying similar discussion again, we get a locally free presentation of E

G
ψ
−→ F

φ
−→ E → 0,

where G is also given by a direct sum of line bundles on CPn−1, and the map
ψ is then represented by a matrix of homogeneous polynomials. Hence it also
induces a corresponding locally free presentation of E

G ψ−→ F φ−→ E → 0.

Then the conclusion follows directly.

Using Proposition 5.9, one can easily find explicit examples of reflexive
sheaves with non-homogeneous singularities. Now we consider the case n = 3.
Let Ef be given by the short exact sequence

0→ OB
f−→ O⊕3

B → Ef → 0, (5.2)
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where f = (f1, f2, f3) is a triple of holomorphic functions defined over B. We
assume 0 is an isolated common zero of f . Then Ef is a rank two reflexive
sheaf in a neighborhood of 0, by the Remark after Example 1.1.13 on Page
77, [29]. Ef has an isolated singularity at 0 and it follows from definition that
Fitt2(Ef , 0) is the ideal of O0 generated by f1, f2, f3. So if f1, f2, f3 do not
generate a homogeneous ideal then the corresponding Ef is not homogeneous.

As mentioned before, one possible algebraic tangent cone is given by (p∗E∗f )∗⊗
OD, which we denote by Êf . We will show that Êf can be explicitly calculated
under suitable assumption on f .

Lemma 5.11. Ef ∼= E∗f in a neighborhood of 0.

Proof. This is actually true for any rank 2 reflexive sheaf F over B where B
is the unit ball centered at 0 in Cn. Indeed, we know det(F) is a holomorphic
line bundle over B which has to be trivial. Let Θ be a global trivialization of
det(F) over B. Then one can naturally define an isomorphism outside Sing(F)

F∗ → F , v 7−→ ivΘ

where iv denotes the contraction with v. By usingHom(F∗,F) andHom(F ,F∗)
are both reflexive, we know that the map above can be extended to be an iso-
morphism between F∗ and F .

Using Lemma 5.11 and the fact that the pull-back functor is right-exact (See
for example Page 7 in [16]), we obtain

OB̂
p∗f−−→ O⊕3

B̂
→ p∗E∗f → 0.

Taking dual we get

0→ (p∗E∗f )∗ → O⊕3

B̂

(p∗f)∗−−−−→ OB̂ .

Given f = (f1, f2, f3), we define a new triple f̂ = (f̂1, f̂2, f̂3) as follows. Let
gi be the homogeneous part of fi which has the lowest degree in the Taylor
expansion of fi at 0 and let d be the smallest degree among the degrees of
g1, g2, g3. Then we define f̂i = gi if the degree of gi is d and f̂i = 0 otherwise.
Denote by D = CP2 the exceptional divisor of the map p : B̂ → B, and [D] the

corresponding line bundle on B̂. Then we can naturally view p∗fi, i = 1, 2, 3 as
a holomorphic section of O(−dD).

Lemma 5.12. Suppose the common zero set of (f̂1, f̂2, f̂3) consists of finitely

many points in D, then Êf ⊗O(d) lies in the following exact sequence

0→ Êf → O⊕3
CP2

(f̂1,f̂2,f̂3)−−−−−−→ OCP2(d)→ 0

Proof. By definition Ê∗f is given by the kernel of the map p∗f : O⊕3

B̂
→ OB̂ .

We work over a local chart U with coordinate {z1, w2, · · · , wn} of B̂ so that
the map p is given by (z1, w2, · · · , wn) 7→ (z1, z1w2, · · · , z1wn) and using the
assumption, it follows from the assumption directly that (z−d1 f1, z

−d
1 f2, z

−d
1 f3)

forms a regular sequence over U since the set of their common zeros consists
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of isolated points. Indeed, by assumption, the only possible zeros over U must
satisfy z1 = 0 which implies f̂1 = f̂2 = f̂3 = 0. By our assumption, we know
that it consists of finitely many points. Then it follows that Ê∗f is generated by

the sections z−d1 (f2,−f1, 0), z−d1 (f3, 0,−f1), and z−d1 (0, f3,−f2). By Remark

5.3 we know Ê∗f ⊂ O
⊕3
U∩{z1=0} is generated by z−d1 (f̂2,−f̂1, 0), z−d1 (f̂3, 0,−f̂1),

and z−d1 (0, f̂3,−f̂2). From this the conclusion follows easily.

Corollary 5.13. Suppose the common zero set of (f̂1, f̂2, f̂3) is empty in D, Êf
is always stable.

Proof. Indeed, since slope stability is preserved under taking dual, it suffices to
shows that (Êf )∗ is stable. We first assume d = 2k for some k ∈ Z+. By Lemma

5.12, we know c1((Êf )∗ ⊗ O(−k)) = 0 and (Êf )∗ ⊗ O(−k) lies in the following
exact sequence

0→ OCP2(−3k)→ (OCP2(−k))⊕3 → (Êf )∗ ⊗O(−k)→ 0.

In particular, H0(CP2, (Êf )∗ ⊗ O(−k)) = 0 and the stability follows (see page

84 in [29]). When k is odd, the slope stability can be proved similarly.

We finish this section with two examples.

Example 1. f = (z2
1 − z1z2z3, z

2
2 − z3

3 , z
2
3 − z3

1). The ideal Fitt(Ef , 0)
is not homogeneous, for otherwise the polynomials z2

1 , z
2
2 and z2

3 must
belong to the ideal generated by f1, f2, f3, and it is easy to see this is
impossible. Since f here satisfies the assumption in Corollary 5.13, the
algebraic tangent cone Êf defined above is a stable bundle on CP2. So our
Theorem 1.4 applies here, yielding that any admissible Hermitian-Yang-
Mills connection on the germ of Ef at 0 has a unique tangent cone which

is a simple HYM cone defined by the Hermitian-Einstein metric on Êf .

Example 2. Let E → CP3 be given by the following exact sequence

0→ OCP3
s−→ OCP3(3)⊕3 → E → 0 (5.3)

where s = (z0z
2
1 − z1z2z3, z0z

2
2 − z3

3 , z0z
2
3 − z3

1) ∈ H0(CP3,O(3)⊕3). We
know by Bezout’s theorem Sing(E) = {Z ∈ CP3 : s(Z) = 0} which consists
of 27 points (counted with multiplicities). Since c1(E(−5)) = −1 and
H0(CP3, E(−5)) = 0, E is a stable reflexive sheaf.

So by Theorem 2.3 we know E admits an admissible Hermitian-Einstein
metric. It is easy to see that Sing(E) = {Z1, Z2, · · · , Z13}, where Z1 =
[1 : 0 : 0 : 0] is a zero of s with multiplicity 8, and locally around Z1 the
sheaf E is modeled exactly by Example 1; Z2 = [0 : 0 : 1 : 0] is also a zero
of s with multiplicity 8, whose local model is more complicated; all the
other Zi’s are simple zeroes of s locally around which E is homogeneous
and is isomorphic to the pull-back of the tangent bundle of CP2. So using
our results in this paper we know the tangent cones of the admissible
Hermitian-Yang-Mills connection at Zi for i 6= 2.
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6 Optimal algebraic tangent cone

6.1 Hecke transform of reflexives sheaves

6.1.1 The case of sub-bundles

Let M be a complex manifold and D be a smooth hypersurface in M . Let
E be a holomorphic vector bundle on M and denote E := E|D. Let F be a
sub-bundle of E. Let Q denote the quotient bundle E/F and p : E → Q the
natural projection map. Then we have the following short exact sequence of
vector bundles on D

0→ F → E
p
−→ Q→ 0. (6.1)

We will describe below a construction, called the Hecke transform along F , that
yields another vector bundle E′ on M , which is isomorphic to E on M \D, such
that the restriction E′ := E′|D fits into an extension of the form

0→ Q⊗ND → E′ → F → 0, (6.2)

where ND is the normal bundle of D in M . In the next section we shall re-
interpret it in terms of more complex-analytic language, which makes the con-
struction more natural and generalizes to the case of coherent sheaves.

To start the construction, we choose an open cover {Uα} of a neighborhood
U of D, such that E|Uα admits a trivialization given by holomorphic sections
eα,1, · · · , eα,r, and such that if we denote ejα := eα|Vα where Vα := Uα∩D, then
eα,1, · · · , eα,s give a holomorphic trivialization of F |Vα , and p(eα,s+1), · · · , p(eα,r)
give a holomorphic trivialization of Q|Vα . We may also assume that the divisor
line bundle [D] has a local trivialization tα on each Uα. Choose a defining sec-
tion s of [D] so that we can write s = sαtα over each Uα with sα vanishing on
D with exactly order one.

On the intersection Uαβ := Uα ∩Uβ , we can write the transition function of
E as

Φαβ =

[
fαβ gαβ
hαβ qαβ .

]
Denote Vαβ := Uαβ ∩D. Then the fact that F is a sub-bundle of E implies that
hαβ |Vαβ = 0, and gαβ |Vαβ defines the extension class in Ext1(Q,F ) correspond-
ing to the short exact sequence (6.1).

Now define a new holomorphic basis of E|Uα\D by setting e′α,j = eα,j for
j ≤ s and e′α,j = sαeα,j for j ≥ s+ 1. Then with respect to the new basis, the
new transition matrix becomes

Φ′αβ =

[
fαβ gαβsα

hαβs
−1
β qαβsαs

−1
β

]
.

Now the entries of this matrix extend to be well-defined holomorphic func-
tions across Vαβ . Hence it defines a holomorphic vector bundle on M , which
is our desired E′. Moreover, since sαs

−1
β is the transition function of the line

bundle [D], by adjunction formula, we see that by restricting to D, the right
bottom component of Φ′αβ gives the transition matrix for Q ⊗ N−1

D . It is also
clear that the whole matrix restricting to D is now a lower triangular matrix,
so it is obvious that the exact sequence (6.2) holds.
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One can check by definition that there is a well-defined vector bundle iso-
morphism from E′ to E on M \D, since by construction locally a holomorphic
section of E′ is a holomorphic section of E such that when restricting to D it
belongs to F . One can also check that the isomorphism class of E′ does not
depend on the choices made. It is also clear from the construction in the next
subsection.

Remark 6.1. When dimM = 1, D = {x}, F is a subspace of E|x. In this
case the above construction is usually referred to as the “elementary modifica-
tion” or “Hecke modification” in the literature, and this justifies our choice of
terminology.

6.1.2 General Case

Now we move on to the general case of coherent sheaves, using a more complex-
algebraic language (which is kindly pointed out to us by Richard Thomas). We
again suppose M is a smooth complex manifold and D is a smooth hypersurface.
Let ι : D →M be the natural inclusion map, and E be a reflexive sheaf on M .
By lemma 5.2, we know that E := ι∗E is a torsion-free coherent sheaf on D.

Let F be a subsheaf of E and Q be the quotient sheaf. Denote p : E → ι∗(Q)
to be the map given by the composition of the natural surjective map E → ι∗E
with the natural map ι∗E → ι∗Q.

Lemma 6.2. p is a surjective sheaf homomorphism.

Proof. It suffices to show the map ι∗E → ι∗Q is surjective. By definition we
have the following exact sequence

0→ F → E → Q → 0.

Since ι : D ↪→ M is obviously Stein, namely, the pre-image of a Stein open set
is Stein, the higher direct image Ri(ι∗F) vanishes for i ≥ 1. In particular, the
following is exact

0→ ι∗F → ι∗E → ι∗(Q)→ 0.

Definition 6.3. We define the Hecke transform E ′ of E along F to be the kernel
of the map p.

By definition, E ′ lies in the following short exact sequence

0→ E ′ → E → ι∗Q → 0. (6.3)

In particular E ′ is a subsheaf of E which is isomorphic to E over M \ D. In
particular, it must be torsion-free. It is easy to check by definition that when
E is locally free over M and Q is locally free over D, this agrees with the
construction in the previous subsection.

Lemma 6.4. E ′ is reflexive if F is saturated in E or equivalently Q is torsion-
free.
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Proof. By Equation (6.3), we have the following exact sequence

0→ (E ′)∗∗/E ′ → ι∗Q.

Since ID · ι∗Q = 0, we have ID · ((E ′)∗∗/E ′) = 0. Then we have

(E ′)∗∗/E ′ = ι∗ι
∗((E ′)∗∗/E ′)

and the following exact sequence

0→ ι∗((E ′)∗∗/E ′)→ ι∗ι∗Q = Q.

Since E ′ is torsion-free and locally free outside D, Supp((E ′)∗∗/E ′) has codimen-
sion 1 in D, which implies ι∗((E ′)∗∗/E ′) is a torsion sheaf. Since Q is torsion-
free, by the exact sequence above, we have ι∗((E ′)∗∗/E ′) = 0 which implies
(E ′)∗∗/E ′ = 0. This finishes the proof.

In our later applications we will always assume F is saturated in E .

Lemma 6.5. There exists the following exact sequence

0→ ID · E → E ′ → ι∗F → 0. (6.4)

Proof. By definition E ′ is exactly the pre-image of ι∗F under the natural map
E → ι∗E . So we have a natural surjective map E ′ → ι∗F . The kernel of this
map agrees with the kernel of the map E → ι∗E , which is exactly ID · E . This
finishes the proof.

Denote E ′ = ι∗E ′.

Proposition 6.6. There exists the following exact sequence

0→ Q⊗N ∗D → E
′ → F → 0,

where N ∗D ' ID/I2
D is the locally free sheaf associated to the co-normal bundle

of D.

Proof. Applying ι∗ to (6.4) we get the exact sequence

ι∗(ID · E)
ψ−→ E ′ → ι∗ι∗F = F → 0. (6.5)

It suffices to prove Ker(ψ) = Q ⊗ N ∗D. By definition, ψ comes from the map

ID · E → E ′ by tensoring with OD, so the kernel is given by ID · E ′/I2
D · E . Since

ID is locally free, we have the following exact sequence

0→ I2
D · E → ID · E ′ → ID ⊗ ι∗F → 0.

This implies that as OM -modules, we have

ID · E ′/I2
D · E = ID ⊗ ι∗F = ι∗(F ⊗N ∗D)

It is direct to check that the inclusion of Ker(ψ) in ι∗(ID · E) is given by the
natural map

ι∗F ⊗N ∗D → E ⊗N ∗D
under the natural identification ι∗(ID · E) = E ⊗ N ∗D. Hence we see the image
of ψ is given by

(E ⊗ N ∗D)/(F ⊗N ∗D) = Q⊗N ∗D.
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Now we will discuss some interesting properties of the Hecke transform. Let
E ′′ be the Hecke transform of E ′ along Q⊗N ∗D.

Lemma 6.7. The Hecke transform is an involution up to twisting by [D] in the
sense that E ′′ ∼= E(−[D]).

Proof. By definition and Proposition 6.6, E ′′ fits into the following exact se-
quence

0→ E ′′ → E ′ → ι∗(E ′/(Q⊗N ∗D)) = ι∗F → 0,

and the map E ′ → ι∗F agrees with the map in (6.4). By Lemma 6.5, E ′′ is
isomorphic to ID · E .

More generally, we can take a subsheaf of Q ⊗ N ∗D which has the form
(E1/F)⊗N ∗D, where E1 ⊂ ι∗E is a saturated subsheaf with F ⊂ E1. Let E ′′1 be
the Hecke transform of E ′ along (E1/F) ⊗ N ∗D and E ′1 be the Hecke transform
of E along E1. Then the following involution property holds.

Proposition 6.8. E ′′1 ' ID · E ′1.

Proof. We have the following commutative diagram

0 E ′′1 E ′ ι∗(E ′/((E1/F)⊗N ∗D)) 0

0 E ′′ = ID · E E ′ ι∗(E ′/(Q⊗N ∗D) 0

=

where the first row is by definition and the second row is by Lemma 6.7. This
implies the following exact sequence

0→ (ID · E)/E ′′1 → E ′/E ′′1 = ι∗(E ′/((E1/F)⊗N ∗D))→ ι∗(E ′/(Q⊗N ∗D)→ 0.

As a result, we have

(ID · E)/E ′′1 = ι∗(Q⊗N ∗D)/ι∗(E1/F ⊗N ∗D) = ι∗((E/E1)⊗N ∗D)

which implies the following exact sequence

0→ E ′′1 → ID · E → ι∗(E/E1 ⊗N ∗D)→ 0.

By definition, we also have

0→ E1 → E → ι∗(E/E1)→ 0.

Since ID is locally free, we have

0→ ID · E1 → ID · E → ι∗(E/E1)⊗ ID = ι∗(E/E1 ⊗N ∗D)→ 0.

This finishes the proof.

6.2 Proof of Theorem 1.5 I-III

We will apply the discussion above to our setting. Let E be a reflexive sheaf
over B. Recall in the introduction, we denote by A the space of all extensions
of E at 0 ∈ B and Φ : A → Z≥0 by Φ(Ê) = µ(E1) − µ(Em/Em−1) where

0 ⊂ E1 ⊂ · · · Em−1 ⊂ Em = Ê := Ê |D is the Harder-Narasimhan filtration of Ê
with respect to the O(1) polarization and µ(·) is the slope of the corresponding
sheaf.
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6.2.1 Proof of (I)

We begin with a simple observation.

Lemma 6.9. The image of the map Φ : A → Q≥0 is discrete. In particular, a
minimizer of Φ always exists.

Proof. By definition,

µi =

∫
D
c1(E i/E i−1) ∪ c1(O(1))n−2

rank(E i/E i−1)
∈ (rank(E)!)−1Z.

This implies for any extension Ê , Φ(Ê) ∈ (rank(E)!)−1Z≥0.

Now let Ê ∈ A. Let 0 ⊂ E1 ⊂ · · · Em = Ê be the Harder-Narasimhan
filtration of Ê . In the following, for each k < m we always denote by Êk to be
the Hecke transform of Ê along Ek and denote Êk = ι∗Êk. Given any sheaf F
over CPn−1, we also denote

F(j) := F ⊗O(j).

Lemma 6.10. Φ(Êk) ≤ max{µk+1 − µm,Φ(Ê)− 1, µk+1 − µk + 1, µ1 − µk} for
any k.

Proof. By Corollary 6.6, we have the following exact sequence

0→ (Ê/Ek)(1)→ Êk → Ek → 0. (6.6)

Let 0 ⊂ E ′1 ⊂ · · · E
′
m′ = Êk be the Harder-Narasimhan filtration of Êk. Denote

the slope of E ′i/E
′
i−1 by µ′i. By Equation (6.6), E ′1 fits into the following exact

sequence
0→ G1 → E

′
1 → G2 → 0.

where G1 is a subsheaf (Ê/Ek)(1) and G2 is a subsheaf of Ek. Since Ek+1/Ek is

the maximal destabilizing subsheaf of Ê/Ek, we have

µ(G1) ≤ µk+1 + 1

Similarly
µ(G2) ≤ µ1.

Then one has
µ′1 ≤ max{µk+1 + 1, µ1}. (6.7)

By taking the dual of Equation (6.6), one has the following exact sequence

0→ E∗k → (Ê
k
)∗ → (Ê/Ek)∗(−1).

Similarly (E ′m′/E
′
m′−1)∗ fits into the following exact sequence

0→ H1 → (E ′m′/E
′
m′−1)∗ → H2 → 0

where H1 is a subsheaf of E∗k and H2 is a subsheaf of (Ê/Ek)∗(−1). Similar to
the above, we have

µ(H1) ≤ −µk
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and
µ(H2) ≤ −µm − 1.

Then one has
−µ′m′ ≤ max{−µk,−µm − 1} (6.8)

Combining Equation (6.7) and (6.8), we get

µ′1 − µ′m′ ≤ max{µk+1 − µm, µ1 − µm − 1, µk+1 − µk + 1, µ1 − µk}

This finishes the proof.

Now we prove Theorem 1.1 (I). Since A is nonempty, we can fix an element
Ê ∈ A. If Φ(Ê) ≥ 1, we apply Lemma 6.10 to Ê with k = 1 and get

Φ(Ê1) ≤ max{µ2 − µm,Φ(Ê)− 1, µ2 − µ1 + 1} ≤ Φ(Ê)− 1.

If Φ(Ê1) ≥ 1, we repeat the same process for Ê1. After finitely many steps, we
can get Ê ′ ∈ A with 0 ≤ Φ(Ê ′) < 1. The following is also clear from Lemma
6.10.

Corollary 6.11. Suppose Ê ∈ A is optimal, then Êk is also optimal for all k.

Definition 6.12. We say two optimal extensions Ê and Ê ′ differ by a Hecke
transform of special type if Ê ′ is isomorphic Êk for some k.

6.2.2 Proof of (II)

Meromorphic extension of sections

The goal in this subsection is to prove the following proposition that will be
needed in our discussion later. Let sD ∈ H0(B̂, [D]) be a defining section of D
and let Ê be any reflexive sheaf over B̂.

Proposition 6.13. Given any s ∈ H0(B̂ \ D, Ê), there exists a k such that
s ⊗ skD extends to a holomorphic section of Ê(k[D]) over B̂. In other words, s

is a meromorphic section of Ê.

Remark 6.14. It is a key assumption here that [D] is an exceptional divisor, since
otherwise the statement is false. For example, if we consider D = {0} ⊂ ∆,
where ∆ = {|z| < 1} ⊂ C, and consider the trivial sheaf O, then we have
holomorphic functions on ∆ \ {0} with an essential singularity at 0 which can
not extend to be meromorphic functions on ∆.

Proof of the case n = 2. In this case D = CP1, and Ê is a locally free. Denote
B̂t := p−1(Bt) where Bt denote the ball of radius t ∈ (0, 1) centered at 0.

It suffices to construct the following exact sequence over B̂ 1
2

for k ∈ Z large
enough

0→ R→ On1 → Ê∗(−k[D])→ 0.

Indeed, given this exact sequence, by taking the double dual, we have

0→ Ê(k[D])→ On1 → R∗ → 0.

Then s⊗ skD|B̂ 1
2

∈ H0(B̂ 1
2
\D, Ê(k[D])) can be viewed as a section in H0(B̂ 1

2
\

D,On1). By Hartog’s theorem for holomorphic functions, we know H0(B̂ 1
2
\
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D,On1) = H0(B̂ 1
2
,On1). Then s ⊗ skD|B̂ 1

2

∈ H0(B̂ 1
2
,On1). By continuity, we

have s⊗ skD|B̂ 1
2

∈ H0(B̂ 1
2
, Ê(k[D])).

Now we fix a Kähler metric ω̂ on B̂. In order to construct the exact sequence
above, it is equivalent to constructing a set of global generators for Ê∗(−k[D])
over B̂ 1

2
for k large. This can done by the standard Hörmander technique, see for

example Theorem 5.1 in [8]. Indeed, we know B̂ 1
2

is weakly pseudo-convex, and

since [D]|D = O(−1) is negative, one can easily construct a hermitian metric h
on Ê∗(−k[D]) for k large, such that

√
−1Fhk ≥ Ckω̂ ⊗ Id.

Now the conclusion follows from standard L2 solution to the ∂̄-problem, using
singular weight.

Proof of the general case. Suppose n ≥ 3 and Ê is a reflexive sheaf defined B̂.

Let S = φ(Sing(Ê))∩ B̂ 3
4

and Ŝ = φ−1(S)∩ B̂ 3
4
. By replacing B̂ 3

4
with B̂ which

does not affect the argument, we can assume S is a closed subset in CPn−1 of
Hausdorff of codimension at least 4 and so is Ŝ in B̂. Furthermore, Sing(Ê) ⊂ Ŝ.

By Proposition 4 in [35], it suffices to prove that for any z ∈ CPn−1 \ S,
s|φ−1(z) is a meromorphic section of Ê |φ−1(z). Indeed, given this, by Proposition

4 in [35], we know s is a meromorphic section of Ê |B̂\Ŝ which is holomorphic

outside D. Then for some k, s ⊗ skD is a holomorphic section of Ê(k[D])|B̂\Ŝ .

Since Ŝ has Hausdorff codimension at least 4, s ⊗ skD further extends to be a

section in H0(B̂, Ê(k[D])) (see Lemma 3 in [33]). Now we show s|φ−1(z) is a

meromorphic section of Ê |φ−1(z) for any z ∈ CPn−1 \ S. Since S has Hausdorff
of codimension at least 4 in CPn−1, we can choose a complex line CP1 ⊂ CPn−1

which does not intersect S but contains z. Let B̂2 = φ−1(CP1). Then Ê |B̂2

is locally free. By the case n = 2 proved above, s|B̂2\(D∩B̂2) is a meromorphic

section of Ê over B̂2. In particular, s|φ−1(z) is a meromorphic section of Ê |φ−1(z).
This finishes the proof.

Uniqueness

We will prove (II) in this section. Suppose Ê and Ê ′ are two optimal extensions
of E at 0. We denote Ê = ι∗Ê and Ê ′ = ι∗Ê ′. Let

0 ⊂ E1 ⊂ · · · Em = Ê

and
0 ⊂ E ′1 ⊂ · · · E

′
m′ = Ê

′

be the Harder-Narasimhan filtrations of Ê and Ê
′

respectively. If we denote
µi := µ(E i/E i−1) and µ′i := µ(E ′i/E

′
i−1), then by assumption we have

µ1 − µm < 1, µ′1 − µ′m < 1,

and there exists a natural isomorphism ρ : Ê |B̂\D → Ê ′|B̂\D. By Proposition

6.13, ρ is a meromorphic section of Ê∗ ⊗ Ê ′. Suppose det ρ has a pole of order
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k ∈ Z along D. If we write k = d · rank(E) + k0 with 0 ≤ k0 < rank(E), then
by replacing Ê with Ê(d[D]), we may assume 0 ≤ k < rank(E) and det ρ has a
pole of order k0 so that 0 ≤ k0 < rank(E). In particular, ρ−1 can not vanish
along D. Denote ρ = ι∗ρ, ρ−1 = ι∗ρ−1. Then ρ and ρ−1 can be viewed as two
nontrivial holomorphic sections

ρ : Ê → Ê
′
(−l0), ρ−1 : Ê

′
→ Ê(−l′0),

for some l0, l
′
0 ∈ Z+. Let k be the smallest integer such that ρ|Ek+1

6= 0. Then ρ

descends to be a nontrivial holomorphic map ρ : Ê/Ek → Ê ′(−l0) which restrict

to be nonzero on Ek+1/Ek. Since E ′1(−l0) is the maximal destabilizing subsheaf

of Ê
′
(−l0), we have µ′1 − l0 ≥ µk+1. Similarly µ1 − l′0 ≥ µ′j for some j. Then we

have
2 > µ′1 − µ′j + µ1 − µk+1 ≥ l0 + l′0,

which implies exactly one of the following hold

(a). l0 = 0;

(b). l0 = 1.

Suppose first (a) holds, then by assumption, ρ can be extended to be a holo-
morphic section across D and thus det(ρ) is also a holomorphic section of
det(Ê∗) ⊗ det(Ê ′) over B̂. However, by assumption we know det(ρ) has a pole
of order k0 ≥ 0. Then we must have k0 = 0, i.e. det(ρ)|D 6= 0 which implies
det(ρ)(z) 6= 0 for any z ∈ B̂ \ Sing(Ê) ∪ Sing(Ê ′). In particular, ρ is an isomor-
phism away from complex codimension two and hence must be an isomorphism.
Notice this already finishes the proof of Part (II) of Theorem 1.1 since under
the assumption of (II) we know (a) must hold.

Now suppose (b) holds, i.e. l0 = 1 and l′0 = 0. By assumption, ρ can be

viewed as a holomorphic map ρ : Ê → Ê ′([D]) with ρ : Ê → Ê
′
(−1) being

nonzero and ρ−1 : Ê ′ → Ê is a holomorphic map with ρ−1 : Ê
′
→ Ê being

nonzero. Then ρ−1 is a sheaf monomorphism since Ê ′ is reflexive and ker(ρ−1)
is supported on D. In the following, we do not distinguish between Ê ′ and the
image ρ−1(Ê ′) in Ê . Let D′ = Sing(Ê) ∪ Sing(Ê ′) ∪ Sing(Ê/Ek).

To finish the proof of (II), it suffices to prove

Claim 6.15. (Ê/Ê ′)|B̂\D′ ∼= ι∗(Ê/Ek)|B̂\D′ .

Indeed, given Claim 6.15, we have the following exact sequence outside D′

0→ Ê ′ → Ê → ι∗(Ê/Ek)→ 0.

By definition, we have Ê ′ = Êk outside D′ where Êk denotes the Hecke transform
of Ê along Ek. Since Ê ′ and Êk are both reflexive, they must be isomorphic.

Proof of Claim 6.15. First we prove that Ê/Ê ′ = ι∗ι
∗(Ê/Ê ′). To see this it suf-

fices to show that for any local section s of Ê , zns ∈ Ê ′. Here zn denotes the local
defining function for D after choosing a local coordinate. Indeed, by assumption,
znρ(s) is a local holomorphic section. We also know that ρ−1(znρ(s)) = zns,
which implies IDÊ ⊂ ρ−1(Ê ′). As a result, ι∗ι

∗(Ê/Ê ′) = Ê/Ê ′.
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So it suffices to prove ι∗(Ê/Ê ′) = Ê/Ek on D \D′. Since all these sheaves are
locally free away from D′ this boils down to showing ρ−1(Ê ′) = Ek on D \D′.

We first show Im(ρ−1) ⊂ Ek. If not, there exists a nontrivial map

ρ−1 : Ê
′
→ Ê/Ek

which implies µ′j ≤ µk+1 for some j. Meanwhile, by assumption, ρ descends to

be a nontrivial map as ρ : Ê/Ek → Ê
′
(−1) which implies µ′1 − 1 ≥ µk+1. Then

we have
µ′1 − µ′m′ ≥ µ′1 − µ′j ≥ 1

which is a contradiction. Now we prove that Im(ρ−1(z)) = Ek|z for z ∈ D \D′.
It suffices to prove

rank(ρ(z)) + rank(ρ−1(z)) ≥ rank(E)

for z ∈ D\D′. Now we fix z ∈ D\D′ and choose local coordinates (z1, · · · zn) so
that zn is the local defining function for D. After choosing a local trivialization
for both Ê and Ê ′ near z, we can view ρ and ρ−1 as a matrix. By doing Taylor
expansion, we can assume

ρ−1 = A0 +A1zn + · · ·

and
znρ = B0 +B1zn + · · ·

where Ai and Bi are matrices of holomorphic functions independent of zn. Since
ρ−1 ◦ (znρ) = znId, by comparing the coefficients in front of zn we get

A0B1 +A1B0 = Id,

which implies

rank(A0) + rank(B0) ≥ rank(A0B1) + rank(A1B0)

≥ rank(A0B1 +A1B0)

= rank(E).

By definition, we have

rank(ρ(z)) + rank(ρ−1(z)) = rank(A0) + rank(B0) ≥ rank(E).

This then finishes the proof.

6.2.3 Proof of (III)

Now we assume E is homogeneous i.e. E ' ψ∗π
∗E for reflexive E over CPn−1.

Let 0 = E0 ⊂ E1 · · · ⊂ Em = E be the Harder-Narasimhan filtration of E and
denote µk = µ(Ek/Ek−1). Note φ∗E ∈ A. Let j0 = 0 and define

jk+1 := max{s > jk : µ1 − µs − bµ1 − µjk+1c < 1, s ≤ m}

inductively for k ≥ 1. Let l be the largest integer so that jl is defined. Then we
define the partial Harder-Narasimhan filtration as

0 = Ej0 ⊂ Ej1 ⊂ Ej2 ⊂ · · · Ejl = E .
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Let nk = bµ1 − µjk+1c for 0 ≤ k ≤ l − 1 and define

G̃r(E) := ⊕li=1(Eji/Eji−1
)(ni−1).

Then to prove (IV), it suffices to show

Proposition 6.16. There exists an optimal extension Ê ∈ A so that Ê ∼= G̃r(E).

Proof. It suffices to prove the following by induction on k with 1 ≤ k ≤ l −
1. (The reason to write inductions in this way will be justified by the proof
naturally.)

(a)k there exists Êk ∈ A with Ê
k ∼= ⊕ki=1(Eji/Eji−1

)(ni−1)⊕ (E/Ejk)(nk);

(b)k there exists the following sheaf inclusions for 1 ≤ i ≤ k which are compat-
ible with the splittings in (a)k

– φ∗Ej1 ⊂ Ê
k;

– Let Êk1 := Êk, then we can define Êki+1 = Êki /φ∗((Eji/Eji−1
)(ni−1))

for 1 ≤ i ≤ k − 1 inductively and φ∗((Eji+1
/Eji)(ni)) ⊂ Ê

k
i+1 for

i = 1, · · · k − 1;

– Êkk /φ∗((Ejk/Ejk)(nk−1)) = φ∗((E/Ejk)(nk)).

For k = 1, we let Ê1,1 be the Hecke transform of φ∗E along Ej1 . By Proposition
6.6, we have the following exact sequence

0→ (E/Ej1)(1)→ Ê
1,1
→ Ej1 → 0.

By definition, there exists a natural sheaf inclusion φ∗Ej1 ⊂ Ê
1,1 which restricts

to be a map from Ej1 to Ê
1,1

that splits the exact sequence above i.e. Ê
1,1 ∼=

Ej1 ⊕ (E/Ej1)(1). Indeed, we know that φ∗Ej1 lies in the kernel of the surjective

map φ∗E → ι∗(E/Ej1) and thus we have a natural sheaf inclusion φ∗Ej1 ⊂ Ê
1,1 by

definition. (This is the key difference in the homogeneous case from the general
case where we have a natural inclusion φ∗(Ej1) ⊂ Ê1,2. ) The restriction map
splitting the exact sequence above is tautological. Moreover, by definition, we
have

0→ Ê1,1/φ∗(Ej1)→ φ∗(E/Ej1)→ ι∗(E/Ej1)→ 0

which implies Ê1,1/φ∗(Ej1) = φ∗(E/Ej1)(−[D]) = φ∗(E/Ej1(1)). (This is an-
other key difference in the homogeneous case from the general case. That is the
quotient sheaf Ê1,2/φ∗Ej1 is still homogeneous , i.e. it is pulled back from the

projective space. ) If n1 > 1, let Ê1,2 be the Hecke transform of Ê1,1 along Ej1 .
Similarly, we have

0→ (E/Ej1)(2)→ Ê
1,2
→ Ej1 → 0

and by definition, we have a sheaf inclusion φ∗Ej1 ⊂ Ê
1,2 which restricts to be

a map that splits the exact sequence above i.e. Ê
1,2 ∼= (E/Ej1)(2) ⊕ Ej1 . By

definition, we also have the following exact sequence

0→ Ê1,2/φ∗Ej1 → φ∗((E/Ej1)(1)→ ι∗((E/Ej1)(1))→ 0
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which implies Ê1,2/φ∗Ej1 = φ∗((E/Ej1)(2)). Then one can keep doing Hecke

transform for Ê1,2 along Ej1 if necessary and get Ê1 := Ê1,n1 ∈ A satisfying

(a)1 Ê
1 ∼= Ej1 ⊕ (E/Ej1)(n1);

(b)1 there exists a sheaf inclusion φ∗Ej1 ⊂ Ê
1 which is compatible with the

splitting above and Ê1/φ∗(Ej1) = φ∗(E/Ej1(n1)).

Namely, after we do Hecke transform along Ej1 , φ∗Ej1 will always be a saturated
subsheaf of the new sheaf which will give a splitting on the central fiber. And
the natural quotient sheaf is still homogeneous.

To make the argument more clear, we will explain how to do k = 2 briefly.
(Details can be found in the induction for the general case. ) Given (a)1

and (b)1, we can keep doing Hecke transform along φ∗Ej1 ⊕ φ∗(Ej2/Ej1(n1))

to get a new sheaf Ê2. And we have two sheaf inclusions φ∗Ej1 ⊂ Ê
2 and

φ∗(Ej2/Ej1(n1)) ⊂ Ê2/φ∗Ej1 which restricts to be maps that split the central
fiber as we want. Furthermore, we have

(Ê2/φ∗(Ej1))/φ∗(Ej2/Ej1(n1)) = φ∗(E/Ej2(n2))

where n2 is equal to the number of Hecke transforms along φ∗Ej1⊕φ
∗(Ej2/Ej1(n1))

to Ê2.
Now we do the induction in general. Suppose we have proved (a)k, (b)k, we

want to build the statements (a)k+1 and (b)k+1. First let Êk+1,1 to be the Heck
transform of Êk along ⊕ki=1(Eji/Eji−1

)(ni−1)⊕ (Ejk+1
/Ejk)(nk). By Proposition

6.6 we have the following exact sequence

0→ (E/Ejk+1
)(nk+1)→ Ê

k+1,1
→ ⊕ki=1(Eji/Eji−1

)(ni−1)⊕(Ejk+1
/Ejk)(nk)→ 0.

Then (b)k holds by replacing Êk with Êk+1,1 except the last one which needs
to be changed. More precisely, there exists the following sheaf inclusions for
1 ≤ i ≤ k which are compatible with the splittings in (a)k

• φ∗Ej1 ⊂ Ê
k+1,1;

• if we let Êk+1
1 := Êk+1,1 and define Êk+1

i+1 = Êk+1
i /φ∗((Eji/Eji−1

)(ni−1))

for 1 ≤ i ≤ k − 1 inductively, then φ∗((Eji+1
/Eji)(ni)) ⊂ Ê

k+1
i+1 for i =

1, · · · k − 1;

• φ∗((Ejk+1
/Ejk)(nk)) ⊂ Êk+1,1

k+1 and

Êk+1,1
k+1 /φ∗((Ejk+1/Ejk)(nk)) = φ∗(E/Ejk+1

(nk + 1)).

Indeed, by definition, we have

0→ Êk+1,1 → Êk → ι∗(⊕ki=1(Eji/Eji−1
)(ni−1)⊕ (Ejk+1

/Ejk)(nk))→ 0

Combining this with that Êk satisfies property (a)k and (b)k, we can easily get
the sheaf inclusions with required properties above. Now we have

Ê
k+1,1

= ⊕k+1
i=1 (Eji/Eji−1

)(ni−1)⊕ (E/Ejk+1
)(nk + 1).
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Indeed, the sheaf inclusion φ∗Ej1 ⊂ Ê
k+1,1 restricts to be a map that gives

a splitting Êk+1,1 = Ej1 ⊕ ι∗Êk+1
2 . For ι∗Êk+1

2 , the sheaf inclusion given by

φ∗((Ej2/Ej1)(n1)) ⊂ Êk+1
2 gives a splitting ι∗Êk+1

2 = (Ej2/Ej1)(n1) ⊕ ι∗Êk+1
3 .

Then one can keep doing this and finally get a splitting of Ê
k+1,1

as claimed
above.

Now one can repeat the process with Êk+1,1 to get Êk+1,2 by doing Hecke
transform along ⊕ki=1(Eji/Eji−1

)(ni−1)⊕ (Ejk+1
/Ejk)(nk) again if necessary and

finally get Êk+1 := Êk+1,nk+1 satisfying properties (a)k+1 and (b)k+1. This
finishes the proof.

Remark 6.17. When the Harder-Narasimhan filtration of E has length equal to
2, i.e.

0 = E0 ⊂ E1 ⊂ E2 = E ,

the same argument shows that there exists an optimal extension Ê so that
Ê = E1 ⊕ (E2/E1)(k) for some integer k with µ1 − 1 < µ2 − k ≤ µ1. In general,
one should not expect to get an optimal extension of which the restriction splits
as a direct sum of semistable torsion free sheaves by Theorem 1.1 (III) and
Corollary 6.11.

6.2.4 Examples

In this section, we apply Theorem 1.5 to study the example used in Section 4.

Example 1. Consider E → CP2 given by the following exact sequence

0→ O σ−→ O(1)⊕O(1)⊕O(k)→ E → 0,

where σ = (z1, z2, z
k
3 ). Let E = ψ∗π

∗E . Then we have

• if k = 1, E is stable;

• if k = 2, E is semistable;

• if k ≥ 3, E is unstable. The Harder-Narasimhan filtration of E (which
is the same as the Harder-Narasimhan-Seshadri filtration in this case) is
given by 0 ⊂ E1 ⊂ E2 = E where E1

∼= O(k) and E2/E1
∼= I[0:0:1](2).

By Theorem 1.1, when k ≤ 2, there exists a unique optimal extension given by
φ∗E (up to equivalence). When k ≥ 3, by Remark 6.17, there exists an optimal
extension Ê of which the restriction is given by O(2) ⊕ I[0,0,1](2). Then again

by Theorem 1.1, Ê is the unique one up to equivalence since O(2) ⊕ I[0,0,1](2)
is semistable.

The next is an example where there are two optimal extensions, for which
one of them has a locally free algebraic tangent cone while the other has an
essential point singularity.

Example 2. Consider a vector bundle E → CP3 given by the following

0→ O σ−→ O(1)⊕3 ⊕O(2)→ E → 0. (6.9)
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where σ = (z1, z2, z3, z
2
4). Let E := ψ∗π

∗E . Then Ê := φ∗E is an optimal
extension of E at 0 with Φ(Ê) = 1

2 . The Harder-Narasimhan filtration of Ê is
given by E1

∼= O(2) and E2 = E . Furthermore, E2/E1 fits into the following
exact sequence

0→ O σ′−→ O(1)⊕3 → E2/E1 → 0

where σ′ = (z1, z2, z3). In particular, E2/E1 is a stable reflexive sheaf with an
essential point singularity at [0, 0, 0, 1]. Let Ê1 be the Hecke transform of Ê along

E1 which is again an optimal extension. By Remark 6.17, Ê
1

= E1⊕ (E2/E1)(1).
In particular, Ê1 is an optimal extension of which the restriction splits as a
direct sum of stables sheaves which has an essential point singularity.
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