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Abstract of the Dissertation

Higher order rectifiability via Reifenberg theorems for

sets and measures

by

Silvia Ghinassi

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

We say a measure is C1,α d-rectifiable if there is a countable union of C1,α d-surfaces

whose complement has measure zero. We provide sufficient conditions for a Radon measure

in Rn to be C1,α d-rectifiable, with α ∈ (0, 1]. The conditions involve a Bishop-Jones type

square function and all statements are quantitative in that the C1,α constants depend on

such a function. Along the way we also give sufficient conditions for C1,α parametrizations

for one-sided Reifenberg flat sets in terms of the same square function. Key tools for the

proof come from Guy David and Tatiana Toro’s Reifenberg parametrizations of sets with

holes in the Hölder and Lipschitz categories. Finally we provide a rich collection of examples

and observations on C1,α functions and C1,α rectifiable sets.
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Chapter 1

Introduction

1.1 Background

Recall that a set E in Rn is Lipschitz image d-rectifiable – countably d-rectifiable in

Federer’s terminology – if there exist countably many Lipschitz maps fi : Rd → Rn such

that Hd(E \
⋃
i fi(Rd)) = Hd

E(Rn \
⋃
i fi(Rd)) = 0, where Hd denotes the d-dimensional

Hausdorff measure. In this paper, we investigate sets that can be covered by images of more

regular maps (see Section 1.2 for the statements of the main results and Section 1.4 for

motivations).

We say that a set E in Rn is C1,α d-rectifiable if there exist countably many continuously

differentiable Lipschitz maps fi : Rd → Rn with α-Hölder derivatives such that

Hd
E

(
Rn \

⋃
i

fi(Rd)

)
= 0. (1.1.1)

For Lipschitz image rectifiability, we could replace the class of Lipschitz images with

bi-Lipschitz images, C1 images, Lipschitz graphs, or C1 graphs without changing the class of

rectifiable sets; see Theorem 3.2.29 in [Fed69] and [Dav91] for proofs of these equivalences.

From now on we will refer to Lipschitz image rectifiability simply as rectifiability.

On the other hand, rectifiability of order C1,α does not imply rectifiability of order C1,α′
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for any 0 ≤ α < α′ ≤ 1. More generally, Ck−1,1 rectifiability is equivalent to Ck rectifiability

(Proposition 3.2 in [AS94]), while there are Ck,s rectifiable sets that are not Cm,t rectifiable,

whenever k,m ≥ 1 and k + s < m + t (Proposition 3.3 in [AS94]). For completeness, we

include the proofs of these results in the Appendix, as Propositions 5.1.1 and 5.1.2.

Classical rectifiability of sets has been widely studied and characterized, see [Mat95]

for an exposition. However, a quantitative theory of rectifiability was only developed in the

late 1980s to study connections between rectifiable sets and boundedness of singular integral

operators. Peter Jones in [Jon90] gives a quantitative control on the length of a rectifiable

curve in terms of a sum of β numbers. These numbers capture, at a given scale and location,

how far a set is from being a line. Jones’ proof was generalized to 1-dimensional objects in

Rn by K. Okikiolu in [Oki92] and in Hilbert spaces by R. Schul in [Sch07].

In [DT12] G. David and T. Toro prove that one-sided Reifenberg flat sets admit a

bi-Hölder parametrization, which is a refinement of Reifenberg’s original proof in [Rei60].

Moreover, if one also assumes square summability of the β’s the parametrization is actually

bi-Lipschitz (see also [Tor95]). To better understand this, consider a variation of the usual

snowflake. Start with the unit segment [0, 1], and let this be step 0. At each step i we create

an angle of αi by adding to each segment of length 2−i+1 an isosceles triangle in the center,

with base 2−i+1/3 and height 2−i+1αi/6 (since the αi’s are small we can use a first order

approximation). Then the resulting curve is rectifiable (i.e. has finite length) if and only if∑
i α

2
i <∞ (see Exercise 10.16 in [BP17]).

Consider now a smoothened version of the snowflake where we stop after a finite number

of iterations. This set is clearly C1,α rectifiable. Our goal is to prove a quantitative bound

on the Hölder constants in term of the quantity
∑

i α
2
i /2
−2αi < ∞. For a general one-sided

Reifenberg flat set E, this means that we can find a parametrization of E via a C1,α map.

The proofs of the parametrization results (Sections 3 and 4) follow the steps of the proof in

the paper [DT12]. However detailed knowledge of their paper will not be assumed. Instead

specific references will be given for those interested in the proofs of the cited results.
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1.2 Outline of the dissertation and main results

Throughout the manuscript, we will prove three different versions of the main theorem

on parametrizations. For convenience we will now state only two of them, Theorems A and

B. We state the more technical Theorem 3.1.4 and Theorem 3.1.6 in Section 3 after a few

more definitions. Then we state Theorems I and II which are our rectifiability results. Let

us recall the definition of β numbers.

Definition 1.2.1. Let E ⊆ Rn, x ∈ Rn, and r > 0. Let d be a fixed integer, 0 < d < n.

Define

βE,d∞ (x, r) =
1

r
inf
P

{
sup

y∈E∩B(x,r)

dist(y, P )

}
, (1.2.1)

if E ∩ B(x, r) 6= ∅, where the infimum is taken over all d-planes P , and βE∞(x, r) = 0 if

E ∩B(x, r) = ∅. If E is measurable, define

βE,d1 (x, r) = inf
P

{
1

rd

∫
y∈E∩B(x,r)

dist(y, P )

r
dHd(y)

}
, (1.2.2)

for x ∈ Rn and r > 0, where the infimum is taken over all d-planes P .

Remark 1.2.2. In the future we will write βE∞(x, r) for βE,d∞ (x, r), and βE1 (x, r) for βE,d1 (x, r),

omitting the dependence on d, to avoid a too cumbersome notation, as there will not be any

chance for confusion.

Next, we need to define what is meant by one-sided Reifenberg flat.

Definition 1.2.3. Let E ⊆ Rn closed and let ε > 0. Let d be a fixed integer, 0 < d < n.

Define E to be (ε, d)-Reifenberg flat if the following condition holds.

For x ∈ E, 0 < r ≤ 10 there is a d-plane P (x, r) such that

dist(y, P (x, r)) ≤ εr, ∀y ∈ E ∩B(x, r), (1.2.3)

dist(y, E) ≤ εr, ∀y ∈ P (x, r) ∩B(x, r).

3



Definition 1.2.4. Let x ∈ Rn and r > 0. If E,F ⊆ Rn both meet B(x, r) define normalized

Hausdorff distances to be the quantities

dx,r(E,F ) =
1

r
max

{
sup

y∈E∩B(x,r)

dist(y, F ), sup
y∈F∩B(x,r)

dist(y, E)

}
. (1.2.4)

Definition 1.2.5. Let E ⊆ Rn closed and let ε > 0. Define E to be one-sided (ε, d)-

Reifenberg flat if the following conditions (1)-(2) hold.

(1) For x ∈ E, 0 < r ≤ 10 there is a d-plane P (x, r) such that

dist(y, P (x, r)) ≤ εr, y ∈ E ∩B(x, r).

(2) Moreover we require some compatibility between the P (x, r)’s:

dx,10−k(P (x, 10−k), P (x, 10−k+1)) ≤ ε, ∀x ∈ E, ∀k ≥ 0, (1.2.5)

dx,10−k+2(P (x, 10−k), P (y, 10−k)) ≤ ε, ∀x, y ∈ E, |x− y| ≤ 10−k+2, ∀k ≥ 0.

Remark 1.2.6. We will simply write (one-sided) Reifenberg flat for (one-sided) (ε, d)-

Reifenberg flat, as ε and d will stay fixed, throughout the paper.

Remark 1.2.7. It is important to observe that the sets in Definition 1.2.3 are not allowed

to have any holes, meaning that E must be simply connected, while the sets in Definition

1.2.5 are allowed holes of any size. The compatibility conditions is (2) are automatically

satisfied by Reifenberg flat sets without holes.

Before we state our main results, let us recall some theorems of G. David and T. Toro

[DT12].

Theorem 1.2.8 (G. David, T. Toro, Proposition 8.1 [DT12]). Let ε > 0 small enough and

let E ⊆ B(0, 1), where B(0, 1) denotes the unit ball in Rn. Assume E is one-sided Reifenberg
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flat . Then there exists a map f : Σ0 → Rn, where Σ0 is a d-plane in Rn, such that E ⊂ f(Σ0)

and f is bi-Hölder.

Remark 1.2.9. We can get the map f in Theorem 1.2.8 to be bi-Hölder with any exponent

strictly smaller than 1, by choosing ε accordingly small.

Set rk = 10−k.

Theorem 1.2.10 (G. David, T. Toro, Corollary 12.6 [DT12]). Let E be as in Theorem 1.2.8

and moreover assume that

∞∑
k=0

βE∞(x, rk)
2 ≤M, for all x ∈ E. (1.2.6)

Then f : Σ0 → Rn is bi-Lipschitz, and E ⊂ f(Σ0). Moreover the Lipschitz constants depend

only on n, d, and M .

Moreover,

Theorem 1.2.11 (G. David, T. Toro, Corollary 13.1 [DT12]). Let E measurable be as in

Theorem 1.2.8 and moreover assume that

∞∑
k=0

βE1 (x, rk)
2 ≤M, for all x ∈ E. (1.2.7)

Then f : Σ0 → Σ is bi-Lipschitz. Moreover the Lipschitz constants depend only on n, d, and

M .

We are now ready to state our theorems.

Theorem A. Let E ⊆ B(0, 1) be a one-sided Reifenberg flat set and α ∈ (0, 1). Also assume

that there exists M > 0 such that

∞∑
k=0

βE∞(x, rk)
2

r2α
k

≤M, for all x ∈ E. (1.2.8)
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Then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable,

and both f and its inverse are C1,α maps. In particular, f is continuously differentiable.

Moreover the Hölder constants depend only on n, d, and M .

When α = 1, if we replace rk in the left hand side of (1.2.8) by rkη(rk), where η(rk)
2

satisfies the Dini condition, then we obtain that f and its inverse are C1,1 maps.

Remark 1.2.13. The case α = 0 was studied in [DT12], see Theorem 1.2.10. Notice that

they obtain a Lipschitz parametrization, that is C0,1 and not a C1 parametrization. For the

case α = 1 we need a small perturbation of our hypothesis for the proof to extend to this

case and obtain a C1,1 parametrization. (see Theorem 3.1.6).

We say that a function ω satisfies the Dini condition if
∑∞

k=1 ω(rk) < ∞. A possible

choice for η in Theorem A is η(rk) = 1
log(1/rk)γ

= 1
log(10)γ

1
kγ

, for γ > 1
2
.

Even without assuming a higher regularity on our set E, such as Ahlfors regularity, we

can prove a better sufficient condition involving the possibly smaller β1 numbers.

Theorem B. Let E ⊆ B(0, 1) be a measurable one-sided Reifenberg flat set and α ∈ (0, 1).

Also assume that there exists M > 0 such that

∞∑
k=0

βE1 (x, rk)
2

r2α
k

≤M, for all x ∈ E. (1.2.9)

Then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable,

and both f and its inverse are C1,α maps. In particular, f is continuously differentiable.

Moreover the Hölder constants depend only on n, d, and M .

When α = 1, if we replace rk in the left hand side of (1.2.9) by rkη(rk), where η(rk)
2

satisfies the Dini condition, then we obtain that f and its inverse are C1,1 maps.

Before stating the other results, let us recall the definition of density of a measure.

Definition 1.2.15. Let 0 ≤ s < ∞ and let µ be a measure on Rn. The upper and lower

6



s-densities of µ at x are defined by

θ∗s(µ, x) = lim sup
r→0

µ(B(x, r))

rs
(1.2.10)

θs∗(µ, x) = lim inf
r→0

µ(B(x, r))

rs
.

If they agree, their common value is called the s-density of µ at x and denoted by

θs(µ, x) = θ∗s(µ, x) = θs∗(µ, x). (1.2.11)

If E ⊆ Rn, we define the upper and lower s-densities of E at x as θ∗s(E, x) = θ∗s(Hs E, x)

and θs∗(E, x) = θs∗(Hs E, x), respectively.

We are now ready to state the theorems regarding rectifiability.

Theorem I. Let E ⊆ Rn such that 0 < θd∗(E, x) <∞, for Hd a.e. x ∈ E and let α ∈ (0, 1).

Assume that for almost every x ∈ E,

JE∞,α(x) =
∞∑
k=0

βE∞(x, rk)
2

r2α
k

<∞. (1.2.12)

Then E is (countably) C1,α d-rectifiable.

When α = 1, if we replace rk in the left hand side of (1.2.12) by rkη(rk), where η(rk)
2

satisfies the Dini condition, then we obtain that E is C2 rectifiable.

Remark 1.2.16. For the second part of the statement recall that C1,1 rectifiability coincides

with C2 rectifiability (see Proposition 5.1.1).

Remark 1.2.17. In Theorem I, we will use the assumptions on the upper density in order

to prove that E is rectifiable, using a Theorem of J. Azzam and X. Tolsa from [AT15]. We

will need rectifiability in order to obtain (local) flatness. Note that, in this case, we cannot

weaken the assumptions on the density to be θd∗(E, x) > 0 and θd∗(E, x) < ∞ to obtain

7



rectifiability, as in [ENV16], because we will use that θd∗(E, x) <∞ to compare βE∞ with βE2

in order to apply the aforementioned theorem of J. Azzam and X. Tolsa. See the proof of

Theorem I for details.

We can also state a version of Theorem I for rectifiability of measures. If µ is a Radon

measure, define

βµp (x, r) = inf
P

{
1

rd

∫
y∈B(x,r)

(
dist(y, P )

r

)p
dµ(y)

}1/p

, (1.2.13)

for x ∈ Rn and r > 0, where the infimum is taken over all d-planes P . Moreover, define

Jµp,α(x) =
∞∑
k=0

βµp (x, rk)
2

r2α
k

. (1.2.14)

Theorem II. Let µ be a Radon measure on Rn such that 0 < θd∗(µ, x) and θd∗(µ, x) < ∞

for µ-a.e. x and let α ∈ (0, 1). Assume that for µ-a.e. x ∈ Rn,

Jµ2,α(x) <∞. (1.2.15)

Then µ is (countably) C1,α d-rectifiable.

When α = 1, if we replace rk in the left hand side of (1.2.15) by rkη(rk), where η(rk)
2

satisfies the Dini condition, then we obtain that µ is C2 rectifiable.

Remark 1.2.18. The density assumptions in Theorem II are weaker than the ones in The-

orem I, as we will use Theorem 2.2.1 by N. Edelen, A. Naber and D. Valtorta instead of

Theorem 2.1.1 by J. Azzam and X. Tolsa.

Note that the assumption Jµ2,α(x) < ∞ implies Jµ1,α(x) < ∞ (see Lemma 2.2.3), which

is the condition we will need to apply Theorem B, and also that
∫ 1

0
βµ,2(x, r)2 dr

r
<∞ which

is going to be used to apply a result by N. Edelen, A. Naber and D. Valtorta, [ENV16] (see

Remark 2.2.2 for a more detailed discussion). Also in this case we will use the finiteness of

8



the upper density in Lemma 2.2.3, however, we do not need to assume that as it also follows

from Theorem 2.2.1.

1.3 Structure of the manuscript

Because of the technical nature of the proofs of Theorems A and B, in Section 2 we first

prove Theorems I and II using Theorems A and B. After that, in Section 3 we introduce

the main tools for the proof and after we state the more technical Theorems 3.1.4 and 3.1.6.

Then we construct a parametrization for our set E using a so-called coherent collection of

balls and planes (CCBP) to then conclude by proving Theorems 3.1.4 and 3.1.6. In Section

4 we provide proofs of Theorems A and B stated above. Finally, in Section 5 we include

the a few examples, including the one from [AS94], together with some remarks on the main

Theorems.

1.4 Motivation and related work

Peter Jones [Jon90] proved that, given a collection of points in the plane, we can join

them with a curve whose length is proportional to a sum of squares of β numbers (plus the

diameter). In particular, the length is independent of the number of points. This was the

starting point of a series of results seeking to characterize, in a quantitative way, which sets

are rectifiable. The motivation came from harmonic analysis, more specifically, the study

of singular integral operators. It became clear that the classical notion of rectifiability does

not capture quantititave aspects of the operators (such as boundedness) and a quantitative

notion of rectifiability was needed. A theory of uniform rectifiability was developed and

it turned out that uniformly rectifiable sets are the natural framework for the study of L2

boundedness of singular integral operators with an odd kernel (see [DS93, DS91, Tol14]).

The theory is developed for sets of any dimension, but a necessary condition for a set to be

9



uniformly rectifiable is that it is d-Ahlfors regular, where d ∈ N. That is, the d-dimensional

Hausdorff measure of a ball is comparable to its radius to the d-th power.

Peter Jones’ Traveling Salesman Theorem works only for 1-dimensional sets, but does

not assume any regularity. Several attempts have been made to prove similar analogues for

sets (or measures) of dimension more than 1. In [Paj96] a version for 2-dimensional sets is

proved. Menger curvature was also introduced to attempt to characterize rectifiability (see,

among others, [Lég99, LW11, LW09, KS13, BK12, Kol10, Meu18, Goe18]). Other approaches

can be found in [Mer16, Del08, San17]). J. Azzam and R. Schul [AS18] prove a higher dimen-

sional version of the Traveling Salesman Theorem, that is, they estimate the d-dimensional

Hausdorff measure of a set using a sum of β numbers with no assumptions of Ahlfors regu-

larity. Using this, together with [DT12], M. Villa [Vil17] proves a characterization of tangent

points of a Jordan curve in term of β numbers.

We say that a Radon measure µ on Rn is d-rectifiable if there exist countably many

Lipschitz maps fi : Rd → Rn such that

µ

(
Rn \

⋃
i

fi(Rd)

)
= 0.

Note that a set E is d-rectifiable if and only if Hd
E is a d-rectifiable measure.

For measures which are absolutely continuous with respect to the Hausdorff measure, the

above definition coincides which Lipschitz graphs rectifiability. That is, if we require the sets

to be almost covered by Lipschitz graphs instead of images, we get an equivalent definition.

J. Garnett, R. Kilip, and R. Schul [GKS10] proved that this is not true for general measures,

even if we require the doubling condition (that is, the measure of balls is quantitatively

comparable if we double the radius). They exhibit a doubling measure supported in R2,

singular with respect to Hausdorff measure, which is Lipschitz image rectifiable but is not

Lipschitz graph rectifiable.

D. Preiss, X. Tolsa, and T. Toro [PTT09] fully describe the Hölder regularity of doubling

10



measures in Rn for measures supported on any (integer) dimension. M. Badger and V.

Vellis [BV17] extended part of the work to lower order rectifiable measures. They prove

that the support of a Radon measure can be parametrized by a (1/s)-Hölder map, under

assumptions on the s-dimensional lower density. M. Badger, L. Naples and V. Vellis [BNV18]

establish sufficient conditions that ensure a set of points is contained in the image of a (1/s)-

Hölder continuous map. M. Badger and R. Schul [BS15, BS17] characterize 1-dimensional

(Lipschitz) rectifiable measures in terms of positivity of the lower density and finiteness of

a Bishop-Jones type square function. H. Martikainen and T. Orponen [MO18] later proved

that the density hypothesis above is necessary.

Recently, N. Edelen, A. Naber, and D. Valtorta [ENV16] proved that, for an n-dimensional

Radon measure with positive upper density and finite lower density, finiteness of a Bishop-

Jones type function involving β2 numbers implies rectifiability. The same authors [ENV18]

study effective Reifenberg theorems for measures in a Hilbert or Banach space. J. Azzam and

X. Tolsa [Tol15, AT15] characterized rectifiability of n-dimensional Radon measures using

the same Bishop-Jones type function under the assumption that the upper density is posi-

tive and finite. Note that the density condition in [ENV16] is less restrictive (see [Tol17]).

X. Tolsa [Tol17] obtains an alternative proof of the result in [ENV16] using the techniques

from [Tol15, AT15]. For a survey on generalized rectifiability of measures, including classical

results and recent advances, see [Bad18].

S. Kolasiński [Kol17] provides a sufficient condition in terms of averaged discrete cur-

vatures, similar to integral Menger curvatures, for a Radon measure with positive lower

density and finite upper density to be C1,α rectifiable. Moreover, sharpness of the order of

rectifiability of the result is obtained using the aforementioned example from [AS94]. This

result is very similar in flavor to the result we prove in this paper. In fact, if the measure is

Ahlfors regular, G. Lerman and T. Whitehouse [LW11, LW09] proved that Menger curvature

and a Bishop-Jones type square function involving L2 β numbers are comparable on balls.

However, for measures which are not Ahlfors regular, the two quantities are not known to
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be comparable.

Given such distinctions it is natural to investigate different types of rectifiability (e.g.,

Lipschitz image and Lipschitz graph rectifiability, C2 and C1,α rectifiability). There has been

some progress in this direction concerning rectifiability of sets (by e.g. [AS94]) but the tools

involved rely heavily on the Euclidean structure of Hd and give qualitative conditions. J.

R. Dorronsoro [Dor85a, Dor85b] obtains a characterization for potential spaces and Besov

spaces in terms of coefficients which are analogous to higher order versions of Peter Jones’s β

numbers. Several recent works concerning connections between rectifiability and β numbers

seem to have been inspired by these results. There has been a great deal of interest in de-

veloping tools which allow further generalizations to rectifiability of measures which provide

quantitative results. Using the techniques from [DT12] we develop such tools with the use

of β numbers and obtain results for C1,α rectifiability.

E. R. Reifenberg [Rei60] proves that a “flat” set (what is today known as “Reifenberg

flat” set) can be parametrized by a Hölder map. In [DKT01], G. David, C. Kenig, and

T. Toro prove that a C1,α parametrization for Reifenberg flat sets (without holes) with

vanishing constants can be achieved under a pointwise condition on the β’s (their conditions

are stronger than our conditions).

Among the results involving Menger curvature, in [KS13], S. Kolasiński and M. Szumańska

prove that C1,α regularity, with appropriate α’s, implies finiteness of functionals closely re-

lated to Menger curvature. In [BK12], S. Blatt and S. Kolasiński prove that a compact

C1 manifold has finite integral Menger curvatures (a higher dimensional version of Menger

curvature) if and only if it can be locally represented by the graph of some Sobolev type

map.

In [Kol15], a bound on Menger curvature together with other regularity assumptions

leads to a pointwise bound on β numbers: this is the same bound which appears in [DKT01].

If in addition the set is fine, which among other things implies Reifenberg flatness allowing

for small holes (that is, at scale r holes are of the size of βE∞(x, r)), then the same conclusion
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as in [DKT01] holds, that is, the set can be parametrized by a C1,α map.

It is interesting to note that in [DKT01] Reifenberg flatness, which does not allow for

any holes, is used. On the other hand, in [Kol15] they allow small holes, that is, of size

bounded by β. In contrast, we only require the set to be one-sided Reifenberg flat, which

does not impose any restrictions on the size of the holes.

In the last few years, C. Fefferman, A. Israel, and G.K. Luli [FIL16] have been inves-

tigating Whitney type extension problems for Ck maps, finding conditions to fit smooth

functions to data.

1.5 Further developments

It is interesting to ask whether there exist analogous necessary conditions for higher

order rectifiability. See Section 5 for some observations. The author believes similar results

for Ck,α regularity hold with an appropriate generalization of the Jones β numbers and of

Reifenberg flatness of higher order. By appropriate generalization we mean to use poly-

nomials instead of d-planes to approximate the set. This idea is not new, see for instance

[Dor85a, Dor85b] and, more recently, [Pra17], Section 2.2.
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Chapter 2

Proof of Theorems I and II on C1,α rectifiability

As mentioned in the introduction, we will start by using Theorems A and B to prove

Theorems I and II. The former will be then proved in the later sections.

2.1 A sufficient condition involving β∞ numbers

To prove Theorem I we need to recall a result from [AT15]. Recall the L2 version of β

numbers previously introduced: given x ∈ Rn and r > 0, and an integer 0 < d < n, let

βµ2 (B(x, r))2 = inf
P

1

rd

∫
B(x,r)

(
dist(y, P )

r

)2

d µ(y), (2.1.1)

where the infimum is taken over all d-planes P .

Theorem 2.1.1 (J. Azzam, J. Tolsa, Theorem 1.1, [AT15]). Let µ be a finite Borel measure

in Rn such that 0 < θd,∗(µ, x) <∞ for µ-a.e. x ∈ Rn. If

∫ 1

0

βµ,2(x, r)2dr

r
<∞ for µ-a.e. x ∈ Rn, (2.1.2)

then µ is d-rectifiable.

In this section we prove the following
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Theorem I. Let E ⊆ Rn such that 0 < θd∗(E, x) <∞, for Hd a.e. x ∈ E and let α ∈ (0, 1).

Assume that for almost every x ∈ E,

JE∞,α(x) =
∞∑
k=0

βE∞(x, rk)
2

r2α
k

<∞. (1.2.12)

Then E is (countably) C1,α d-rectifiable.

When α = 1, if we replace rk in the left hand side of (1.2.12) by rkη(rk), where η(rk)
2

satisfies the Dini condition, then we obtain that E is C2 rectifiable.

Before proceeding with the proof we want to note when different Jones’ square functions

are bounded by each other.

Remark 2.1.2. Let us formally state a fact well known by experts in the area and often

used in the literature. In the literature, some results prefer using continuous versions of

Jones’ functions, while others prefer discretized ones. In our statementes we use a discrete

version, as in [DT12], but we sometimes relate that to continuous versions, as in [AT15].

Let a(r) be positive for any r > 0 and suppose there exist constants c, C > 0 such that

ca(rk+1) ≤ a(r) ≤ Ca(rk) if rk+1 ≤ r ≤ rk. Then there exists a constant C0 > 0 such that

1

C0

∫ 1

0

a(r)
dr

r
≤

∞∑
k=0

a(rk) ≤ C0

∫ 1

0

a(r)
dr

r
. (2.1.3)

Let us record some of the comparisons between different Jones’ functions.

Lemma 2.1.3. Let E ⊆ Rn such that 0 < θ∗(E, x) <∞, for a.e. x ∈ E. Set µ = Hd E.

If for a.e. x ∈ E

JE∞(x) =
∞∑
k=0

βE∞(x, rk)
2 <∞. (2.1.4)

then ∫ 1

0

βµ,2(x, r)2dr

r
<∞ for µ-a.e. x ∈ Rn, (2.1.5)
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and hence E is rectifiable, that is, there exist countably many Lipschitz images Γi such that

Hd(E \
⋃
i Γi) = 0.

Proof. We want to prove that, for a.e. x ∈ E, there exists rx > 0 such that if r < rx, then

βµ,2(x, r) ≤ C(x)βE∞(x, r). (2.1.6)

It is enough to prove that, for a.e. x ∈ E, there exists rx > 0 such that if r < rx,

Hd(B ∩ E)

rd
≤ C(x). (2.1.7)

This follows immediately by the assumption θd∗(E, x) < ∞. The conclusion follows from

Theorem 2.1.1.

Remark 2.1.4. Note that a set E that satisfies the hypotheses of Theorem I satisfies the

hypotheses of Lemma 2.1.3, as JE∞(x) ≤ JE∞,α(x) <∞.

Let us restate, for convenience of the reader, a Sard-type theorem (Theorem 7.6 in

[Mat95]).

Theorem 2.1.5. If g : Rd → Rn is a Lipschitz map, then

Hd({g(x) | dimH(g′(x)Rd) < d}) = 0. (2.1.8)

Lemma 2.1.6. If f : Rd → Rn is a Lipschitz map and Γ = Im(f), then Γ = Γb ∪
⋃
q Aq,

where each Aq is one-sided Reifenberg flat and Hd(Γb) = 0.

Proof. By Theorem 3.2.39 in [Fed69] (Lipschitz and C1 rectifiability are equivalent notions for

measures absolutely continuous to Hausdorff measure), we know that there exists countably

many C1 maps gi : Rd → Rn such that Γ ⊆
⋃
i gi(Rd). To simplify notations, let g = gi, for

some i, for the time being. For Hd-almost every z ∈ Im(g), we know by Theorem 2.1.5 that
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rank(Dg(x)) = d where x is such that g(x) = z. Because g is a continuously differentiable

map, for any ε′ > 0, we know that there exists a small enough neighborhood Uz 3 x such

that rank(Dg(y)) = d and

|Dg(x)−Dg(y)| < ε′ (2.1.9)

for every y ∈ Uz. We want to prove that g(Uz) is one-sided Reifenberg flat. For any

x ∈ g(Uz) and r > 0 let Px,r be the unique tangent d-plane to g(Uz) at x (without loss of

generality we can assume the C1 images not to self-intersect, as they do only in a measure

zero set, that we can include in the bad set Γb). We need to check that dist(y, Px,r) ≤ εr,

for y ∈ g(Uz) ∩B(x, r) and

dx,10−k(Px,rk , Px,rk−1
) ≤ ε, x ∈ g(Uz), k ≥ 0, (2.1.10)

dx,10−k+2(Px,rk , Py,rk) ≤ ε, x, y ∈ g(Uz), |x− y| ≤ 10−k+2, k ≥ 0,

where we set rk = 10−k.

By choosing ε′ > 0 above small enough with respect to ε, all conditions are satisfied, as

the derivative varies smoothly and so do the planes Px,r’s.

Because the choices of gi and z are arbitrary we can repeat the same procedure for all

the maps. Note we can choose countably many zl and still obtain a cover for gi(Rd). We

then have a collection of neighborhoods U i
zl

so that each gi(U
i
zl

) is one-sided Reifenberg flat

and Γ ⊆
⋃
i,x gi(U

i
zl

) up to Hd measure zero Γb. Re-indexing the collection by Aq, we obtain

the desired result.

We are now ready to prove Theorem I.

Proof of Theorem I. By Lemma 2.1.3 there exists countably many Lipschitz images Γi such

that Hd(E \
⋃
i Γi) = 0. Let Ei,q = E ∩ (Γi)q, where we applied Lemma 2.1.6 to each Γi and
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obtained Aq = (Γi)q. Now, define

Ei,q,p = {x ∈ Ei,q | J∞,α(x) ≤ p} . (2.1.11)

By Lemma 2.1.6 each of the Ei,q,p satisfies the hypotheses of Theorem A and hence it can

be parametrized by a C1,α surface. Because E = Eb ∪
⋃
i,q,pEi,q,p, where Eb has Hd-measure

zero, Theorem I follows.

2.2 A sufficient condition involving β2 numbers

We can also state a version of Theorem I for rectifiability of measures. If µ is a Radon

measure, and 1 ≤ p <∞, define

βµp (x, r) = inf
P

{
1

rd

∫
y∈B(x,r)

(
dist(y, P )

r

)p
dµ(y)

}1/p

, (2.2.1)

for x ∈ Rn and r > 0, where the infimum is taken over all d-planes P . Moreover, define,

Jµp,α(x) =
∞∑
k=0

βµp (x, rk)
2

r2α
k

. (2.2.2)

To prove the theorem we will use the following theorem by N. Edelen, A. Naber and D.

Valtorta.

Theorem 2.2.1 (N. Edelen, A. Naber and D. Valtorta, [ENV16]). Let µ be a finite Borel

measure in Rn such that 0 < θd∗(µ, x) and θd∗(µ, x) <∞ for µ-a.e. x ∈ Rn. If

∫ 1

0

βµ,2(x, r)2dr

r
<∞ for µ-a.e. x ∈ Rn, (2.2.3)

then µ is d-rectifiable and θd∗(µ, x) <∞, for µ-a.e. x ∈ Rn.

Theorem II. Let µ be a Radon measure on Rn such that 0 < θd∗(µ, x) and θd∗(µ, x) < ∞

18



for µ-a.e. x and let α ∈ (0, 1). Assume that for µ-a.e. x ∈ Rn,

Jµ2,α(x) <∞. (1.2.15)

Then µ is (countably) C1,α d-rectifiable.

When α = 1, if we replace rk in the left hand side of (1.2.15) by rkη(rk), where η(rk)
2

satisfies the Dini condition, then we obtain that µ is C2 rectifiable.

Remark 2.2.2. Condition 1.2.15 is slightly stronger than what we actually need. In fact,

it implies that Jµ1,α(x) <∞ (see Lemma 2.2.3 below). We use the latter condition to apply

Theorem B. It also implies that
∫ 1

0
βµ,2(x, r)2 dr

r
< ∞, which is a necessary hypothesis for

applying Theorem 2.2.1. Notice that assuming only boundedness of the L1 Bishop-Jones

square function would not guarantee the set to be rectifiable (see [Tol17]).

As observed in the introduction, the density assumptions of Theorem 2.2.1 are weaker

than the ones in Theorem 2.1.1. Note again that, if µ is rectifiable then it has 0 < θd∗(µ, x)

µ-almost everywhere, so the following lemmas apply to µ in Theorem II. We will use the

fact that 0 < θd∗(µ, x) in order to be able to compare β numbers computed with respect to µ

and those computed using Hd and the fact that θd∗(µ, x) <∞ to compare L1 and L2 Jones

functions.

Lemma 2.2.3. Let µ be a Radon measure on Rn and let x such that θd∗(µ, x) < ∞ and

Jµ2,α(x) <∞. Then, Jµ1,α(x) <∞.

Proof. It is enough to prove there exists rx > 0 such that if r < rx,

βµ,1(x, r) ≤ C(x)βµ,2(x, r). (2.2.4)

By Hölder’s inequality we get

1

rd

∫
B(x,r)

d(y, P )

r
dµ(y) ≤

(
µ(B(x, r))

rd

) 1
2

(
1

rd

∫
B(x,r)

(
d(y, P )

r

)2

dµ(y)

) 1
2

. (2.2.5)
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Because θd∗(µ, x) <∞, we get µ(B(x,r))
rd

≤ C(x) and we are done.

We would like to proceed as in the proof of Theorem I. Because of our assumptions

(see Remark 2.2.2), it follows from Theorem 2.2.1 that µ is d-rectifiable, that is, there exist

countably many Lipschitz images Γi such that µ (E \ ∪iΓi) = 0.

Let E = suppµ ∩ {x ∈ Rn | Jµ2,α(x) < ∞}. From Lemma 2.1.6 we get that each

Ei,q = E ∩ (Γi)q is one-sided Reifenberg flat. To apply Theorem B we need to ensure that

the “Euclidean” β1 numbers (i.e. the β1 numbers computed with respect to the d-dimensional

Hausdorff measure) satisfy the hypothesis of Theorem B.

Lemma 2.2.4. Let Ei,q be as above. There exists a countable collections of subsets Ei,q,N,m

such that for every x ∈ Ei,q,N,m there exist numbers Cx > 0 and rx > 0 such that for every

rk < rx we have ∑
k

rk<rx

β
Ei,q,N,m
1 (x, rk)

2

r2α
k

≤ Cx. (2.2.6)

Proof. By our assumptions on µ we know that for every x ∈ Ei,q there exist numbers Cx > 0

and rx > 0 such that for every rk < rx we have

∑
k

rk<rx

β
µ Ei,q
1 (x, r)2

r2α
k

≤ Cx. (2.2.7)

Define Ei,q,N,m by

Ei,q,N,m =

{
x ∈ Ei,q |

1

N
≤ µ(B(x, r) ∩ Ei,q)

rd
≤ N for r < 2−m

}
. (2.2.8)

In order to prove the statement it is enough to prove that each β
Ei,q,N,m
1 (x, r) is bounded

above by a constant multiple of β
µ Ei,q
1 (x, r). To obtain this, it is enough to prove that, for

some constant C, we have

Hd(Ei,q,N,m ∩B) ≤ CNµ(Ei,q ∩B). (2.2.9)
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This follows from Theorem 6.9(2) in [Mat95].

Finally, define

Ei,q,N,m,p = {x ∈ Ei,q,N,m | J1,α(x) ≤ p} . (2.2.10)

From the results above the following lemma follows immediately.

Lemma 2.2.5. Each Ei,q,N,m,p satisfies the hypotheses of Theorem B and hence it can be

parametrized by a C1,α surface.

Now, we have that E = Eb ∪
⋃
i,q,N,m,pEi,q,N,m,p, where Eb has Hd-measure zero, by

Lemma 2.1.6, the definition of rectifiability, and continuity from below. The lemma below

proves that Eb has also µ measure zero, so Theorem II follows.

Lemma 2.2.6. Let A ⊂ Rn and ν a Radon measure such that θd∗(ν, x) < ∞ for ν-a.e. x.

If Hd(A) = 0, then ν(A) = 0.

The lemma follows immediately from Theorem 6.9(1) in [Mat95].
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Chapter 3

The more technical result on parametrization

We now proceed to introduce the main tools for the proofs of Theorems A and B. In

this section, we will construct the map f and obtain distortion estimates for it. Section 4

will be dedicated to the proof of the main theorem.

3.1 More definitions and statement of the more tech-

nical result

Given a one-sided Reifenberg flat set, we now want to construct a so-called coherent

collection of balls and planes (CCBP) for E (for more details see the discussion after Theorem

12.1 in [DT12]).

Let E be as above and set rk = 10−k. Choose a maximal collection of points {xj,k} ⊂ E,

j ∈ Jk such that |xi,k − xj,k| ≥ rk, for i, j ∈ Jk, i 6= j. Let Bj,k be the ball centered at xj,k

with radius rk. For λ > 1, set

V λ
k =

⋃
j∈Jk

λBj,k. (3.1.1)

Because of our assumptions on the set E we can assume that the initial points {xj,0}

are close to a d-plane Σ0, that is dist(xj,0,Σ0) ≤ ε, for j ∈ J0. Moreover, for each k ≥ 0 and
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j ∈ Jk we assume that there exists a d plane Pj,k through xj,k such that

dxj,k,100rk(Pi,k, Pj,k) ≤ ε for k ≥ 0 and i, j ∈ Jk such that |xi,k − xj,k| ≤ 100rk, (3.1.2)

dxi,0,100(Pi,0,Σ0) ≤ ε for i ∈ J0, (3.1.3)

dxi,k,20rk(Pi,k, Pj,k+1) ≤ ε for k ≥ 0, i ∈ Jk and j ∈ Jk+1 s.t. |xi,k − xj,k+1| ≤ 2rk. (3.1.4)

Definition 3.1.1. A coherent collection of balls and planes for E is a pair (Bj,k, Pj,k) with

the properties above. We assume that ε > 0 is small enough, depending on d and n.

We will use this collection to construct the parametrization, as explained in the following

section. Recall Theorem 1.2.8:

Theorem 1.2.8 (G. David, T. Toro, Proposition 8.1 [DT12]). Let ε > 0 small enough and

let E ⊆ B(0, 1), where B(0, 1) denotes the unit ball in Rn. Assume E is one-sided Reifenberg

flat . Then we can construct a map f : Σ0 → Rn, where Σ0 is a d-plane in Rn, such that

E ⊂ f(Σ0) and f is bi-Hölder.

We now define the coefficients εk which differ from classic β numbers in that they take

into account neighbouring points at nearby scales. In section 4 the relationship between the

two will be made explicit.

Definition 3.1.2. For k ≥ 1 and y ∈ V 10
k define

εk(y) = sup{dxi,l,100rl(Pj,k, Pi,l) | j ∈ Jk, l ∈ {k − 1, k}, i ∈ Jl y ∈ 10Bj,k ∩ 11Bi,k} (3.1.5)

and εk(y) = 0, for y ∈ Rn \ V 10
k .

As in [DT12] f will be constructed as a limit. To construct the sequence we need a

partition of unity subordinate to {Bj,k}. Following the construction in Chapter 3 of [DT12],

we can obtain functions θj,k(y) and ψk(y) such that each θj,k is nonnegative and compactly
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supported in 10Bj,k, and ψk(y) = 0 on V 8
k . Moreover we have, for every y ∈ Rn,

ψk(y) +
∑
j∈Jk

θj,k(y) ≡ 1. (3.1.6)

Note that, because ψk(y) = 0 on V 8
k , this means that

∑
j∈Jk

θj,k(y) ≡ 1, for every y ∈ V 8
k . (3.1.7)

Finally we have that

|∇mθj,k(y)| ≤ Cm/r
m
k , |∇mψk(y)| ≤ Cm/r

m
k . (3.1.8)

Following [DT12], our plan is to define a map f on a d-plane Σ0. We define f : Rn → Rn

and later on we will only care about its values on Σ0. With a slight abuse of notation we

will still denote the restricted map to Σ0 as f . We define the sequence {fk : Rn → Rn}

inductively by

f0(y) = y and fk+1 = σk ◦ fk, (3.1.9)

where

σk(y) = ψk(y)y +
∑
j∈Jk

θj,k(y)πj,k(y). (3.1.10)

where πj,k denotes the orthogonal projection from Rn to Pj,k. In the future we denote by

π⊥j,k the projection onto the (n− d)-plane perpendicular to Pj,k (passing through the origin).

Next, we observe that the fk’s converge to a continuous map f . We include below the proof

of this fact from [DT12]. Note that

|σk(y)− y| ≤ 10rk for y ∈ Rn (3.1.11)

because
∑

j∈Jk θj,k(y) ≤ 1 and |πj,k(y) − y| ≤ 10rk when θj,k(y) 6= 0 (θj,k is compactly
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supported in 10Bj,k, so that means y ∈ 10Bj,k. This implies that

‖fk+1 − fk‖∞ ≤ 10rk (3.1.12)

so that the maps fk’s converge uniformly on Rn to a continuous map f .

Theorem 3.1.3 (G. David, T. Toro, Proposition 8.3 [DT12]). Let ε > 0 and E as above. If

we also assume that there exists M > 0 such that

∞∑
k=0

εk(fk(z))2 ≤M, for all z ∈ Σ0. (3.1.13)

then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is bi-Lipschitz. Moreover the Lipschitz

constants depend only on n, d, and M .

As mentioned before, we are interested in finding a condition on the εk’s to improve the

results on the map f . The theorems we want to prove are the following.

Theorem 3.1.4. Let E ⊆ B(0, 1) as above, with ε > 0 small enough, and α ∈ (0, 1). Also

assume that there exists M > 0 such that

∞∑
k=0

εk(fk(z))2

r2α
k

≤M, for all z ∈ Σ0. (3.1.14)

Then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable, and

both f and its inverse have α-Hölder directional derivatives. In particular, f is continuously

differentiable. Moreover the Hölder constants depend only on n, d, and M .

Remark 3.1.5. We will define f : Rn → Rn but we are only interested in its values on Σ0

and Σ = f(Σ0). The directional derivatives for the inverse are derivatives along directions

tangent to Σ.
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Theorem 3.1.6. Let E ⊆ B(0, 1) as above, with ε > 0 small enough and let η(rk)
2 satisfy

the Dini condition. Also assume that there exists M > 0 such that

∞∑
k=0

(
εk(fk(z))

rkη(rk)

)2

≤M, for all z ∈ Σ0. (3.1.15)

Then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable, and

both f and its inverse have Lipschitz directional derivatives. In particular, f is continuously

differentiable. Moreover the Lipschitz constants depend only on n, d, and M .

3.2 Estimates on the parametrization

We now want to collect estimates on the derivatives of the σk’s. Recall, by (3.1.10), we

defined σk(y) = ψk(y)y +
∑

j∈Jk θj,k(y)πj,k(y).

Remark 3.2.1. We set up some notation for the derivatives. Below D and D2 will denote

slightly different things depending on the map they are applied to.

• For the partition of unity θj,k, ψk : Rn → R, Dθj,k and Dψk denote the usual gradient,

that is an n-vector, that is, a n×1 matrix. D2θj,k and D2ψk denote the Hessian, which

is a n× n matrix.

• For vector valued maps g : Rn → Rn, such as f, fk, σk, πj,k, π
⊥
j,k, write g = (g1, . . . , gn),

where the gi are the coordinate functions. Then Dg = (Dg1, . . . , Dgn) which can be

looked at as an n × n matrix. Similarly, D2g = (D2g1, . . . , D2gn) is a 3-tensor, that

is a bilinear form Rn × Rn → Rn that acts on vector u, v ∈ Rn via D2g · u · v =

(D2g1 · u · v, . . . , D2gn · u · v).

In what follows | · | denote the standard Euclidean norm on RN , for the appropriate N (where

we have identified Mn×n with Rn2
).
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Remark 3.2.2. Note that while πj,k is an affine map, π⊥j,k is a linear map. Also note that

Dπj,k(y), the Jacobian of πj,k at y ∈ Rn, is the orthogonal projection onto the d-plane parallel

to Pj,k passing through the origin. Note that the Hessian D2πj,k(y) = 0, for all y ∈ Rn.

By differentiating (3.1.10), we get that for y ∈ V 10
k , we have

Dσk(y) = ψk(y)I +
∑
j∈Jk

θj,k(y)Dπj,k + yDψk(y) +
∑
j∈Jk

πj,k(y)Dθj,k(y). (3.2.1)

Note that if y /∈ V 10
k , then σk(y) = y and also Dσk(y) = I. Then we also have

D2σk(y) = 0.

Lemma 3.2.3. Let y ∈ V 10
k . We have

D2σk(y) = 2Dψk(y)I + 2
∑
j∈Jk

Dθj,k(y)Dπj,k + yD2ψk(y) +
∑
j∈Jk

πj,k(y)D2θj,k(y). (3.2.2)

Choose i = i(y) ∈ Jk such that y ∈ 10Bi,k and set

g(y) = 2Dψk(y)Dπ⊥i,k + (y − πi,k(y))D2ψk(y). (3.2.3)

Then ∣∣D2σk(y)− g(y)
∣∣ ≤ Cε/rk, (3.2.4)

where C > 0 is a constant.

Proof. We obtain (3.2.2) by differentiating (3.2.1). For the last statement, recalling (3.1.7),

we have

g(y) = 2Dψk(y)Dπ⊥i,k + (y − πi,k(y))D2ψk(y) = (3.2.5)

= 2Dψk(y)[I −Dπi,k] + yD2ψk(y)− πi,k(y)D2ψk(y) =

= 2Dψk(y)I + 2
∑
j∈Jk

Dθj,k(y)Dπi,k + yD2ψk(y) +
∑
j∈Jk

πi,k(y)D2θj,k(y).
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Now, note that |D2θj,k(y)| ≤ C/r2
k. Moreover by (3.1.2), for all nonzero terms, we have

|Dπj,k −Dπi,k| ≤ Cε, because θj,k = 0 outside of 10Bj,k, so that y ∈ 10Bj,k and hence

|xi,k − xj,k| < 100rk for our choice of (i, k). Hence, we get

∣∣D2σk(y)− g(y)
∣∣ ≤ 2

∑
j∈Jk

|Dθj,k(y)| |Dπj,k −Dπi,k|+
∑
j∈Jk

∣∣D2θj,k(y)
∣∣ |πj,k(y)− πi,k(y)| ≤

(3.2.6)

≤ C/rk · Cε+ C/r2
k · Cεrk =

= Cε/rk,

where we used the fact that |πj,k(y)− πi,k(y)| ≤ Cεrk, by (3.1.2).

Corollary 3.2.4. If y ∈ V 8
k , and i as above,

D2σk(y) = 2
∑
j∈Jk

Dθj,k(y)Dπj,k +
∑
j∈Jk

πj,k(y)D2θj,k(y) (3.2.7)

and ∣∣D2σk(y)
∣∣ ≤ Cε/rk, (3.2.8)

where C > 0 is a constant.

Proof. Note that ψk(y) = 0 for y ∈ V 8
k . Then g(y) = 0 so the two statements follow

immediately from the previous lemma.

We now want to collect some more estimates. Let Σk be the image of Σ0 under fk, i.e.

Σk = fk(Σ0) = σk−1 ◦ · · · ◦ σ0(Σ0). First, we need to recall some results from [DT12]. The

main result is a local Lipschitz description of the Σk’s. For convenience we introduce the

following notation for boxes.

Definition 3.2.5 (Chapter 5, [DT12]). If x ∈ Rn, P is a d-plane through x and R > 0, we
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define the box D(x, P,R) by

D(x, P,R) =
{
z + w | z ∈ P ∩B(x,R) and w ∈ P⊥ ∩B(0, R)

}
. (3.2.9)

Recall that for a Lipschitz map A : P → P⊥ the graph of A over P is ΓA = {z +A(z) |

z ∈ P}.

Proposition 3.2.6. [Proposition 5.1 [DT12]] For all k ≥ 0 and j ∈ Jk, there is a Lipschitz

function Aj,k : Pj,k ∩ 49Bj,k → P⊥j,k of class C2, |Aj,k(xj,k)| ≤ Cεrk, with

|DAj,k(z)| ≤ Cε, z ∈ Pj,k ∩ 49Bj,k, (3.2.10)

such that around xi,j Σk coincides with the graph of Aj,k, that is

Σk ∩D(xj,k, Pj,k, 49rk) = ΓAj,k ∩D(xj,k, Pj,k, 49rk). (3.2.11)

Moreover, we have that

|σk(y)− y| ≤ Cεrk for y ∈ Σk (3.2.12)

and, if u ∈ Rn, |u| = 1,

∣∣Dσk(y)−Dπj,k − ψk(y)Dπ⊥j,k
∣∣ ≤ Cε for y ∈ Σk ∩ 45Bj,k. (3.2.13)

Proposition 3.2.6 provides a small Lipschitz graph (that, is a Lipschitz graph with a

small constant) description for the Σk around xj,k. Note that, away from xj,k, σk = id,

so that Σk stays the same so that it is not hard to get control there too. The proof of

Proposition 3.2.6 is quite long and involved, and proceeds by induction. For k = 0, Σ0 is

a plane, and because Pj,k and Pi,k+1 make small angles with each other, once we have a

Lipschitz description of Σk we can obtain one with a comparable constant for Σk+1. Using

Proposition 3.2.6 we can get estimates on the second derivatives of the σk’s.
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Proposition 3.2.7. For all k ≥ 0, j ∈ Jk, y ∈ Σk ∩ 45Bj,k, we have

∣∣D2σk(y)− 2Dψk(y)Dπ⊥j,k
∣∣ ≤ Cε/rk. (3.2.14)

Proof. Let j ∈ Jk and y ∈ Σk∩45Bj,k be given. If y /∈ V 10
k , then ψk(y) = 1 and D2σk(y) = 0,

so there is nothing to prove. So we may assume that y ∈ V 10
k and choose i ∈ Jk such that

|y − xi,k| ≤ 10rk. Recall that, by (3.2.4),

∣∣D2σk(y)− g(y)
∣∣ ≤ Cε/rk. (3.2.15)

We want to control

B = g(y)− 2Dψk(y)Dπ⊥j,k = (3.2.16)

= 2Dψk(y)[Dπ⊥i,k −Dπ⊥j,k] + [y − πi,k(y)]D2ψk(y)

In the construction of the coherent families of balls and planes, since y ∈ 45Bj,k ∩ 10Bi,k,

(3.1.2) says that

dxj,k,100rk(Pi,k, Pj,k) ≤ ε (3.2.17)

and so,

|Dπi,k −Dπj,k|+
∣∣Dπ⊥i,k −Dπ⊥j,k∣∣ ≤ Cε. (3.2.18)

Recalling also that |Dψk(y)| ≤ C/rk, we can bound the first two terms of B by Cε/rk. Next

[y − πi,k(y)]D2ψk(y) ≤ Cr−2
k |y − πi,k(y)| = (3.2.19)

= Cr−2
k dist(y, Pi,k) ≤

≤ Cr−2
k dist(y, Pj,k) + Cε/rk.
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By the results in Proposition 3.2.6, we also have

dist(y, Pj,k) ≤ |Aj,k(xj,k)|+ Cεrk ≤ Cεrk. (3.2.20)

Then, finally,

∣∣D2σk(y)− 2Dψk(y)Dπ⊥j,k
∣∣ ≤ ∣∣D2σk(y)− g(y)

∣∣+ |B| ≤ Cε/rk. (3.2.21)

In the next lemmas from [DT12] we want to check how much the mappings fk distort

lengths and distances. We are only concerned with directions parallel to the tangent planes

to Σk. Lemma 3.2.8 below is enough to obtain the original Hölder estimates in Theorem

1.2.8, but we need more precise estimates to obtain more quantitative results.

Lemma 3.2.8. [Lemma 7.1 [DT12]] Let k ≥ 0, σk : Σk → Σk+1 is a C2 diffeomorphism, and

for y ∈ Σk

Dσk(y) : TΣk(y)→ TΣk+1(σk(y)) is a (1 + Cε)-biLipschitz map. (3.2.22)

Moreover, for v ∈ TΣk(y)

|Dσk(y) · v − v| ≤ Cε|v|. (3.2.23)

Recall Definition 3.1.2,

εk(y) = sup{dxi,l,100rl(Pj,k, Pi,l) | j ∈ Jk, l ∈ {k − 1, k}, i ∈ Jl y ∈ 10Bj,k ∩ 11Bi,k} (3.2.24)

and εk(y) = 0, for y ∈ Rn \V 10
k . The numbers εk measure the angles between the planes Pj,k

and Pil and, while we know that εk(y) ≤ ε) by definition of CCBP we want to keep track of

the places where they are much smaller and improve the estimates obtained before.

The next lemma provides improved distortion estimates for the tangent derivatives of
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σk, which will be useful when estimating |f(x)− f(y)|.

Lemma 3.2.9. [Lemma 7.3 + 7.4 [DT12]] For k ≥ 1, y ∈ Σk ∩ V 8
k , choose i ∈ Jk such that

|y − xi,k| ≤ 10rk, and let u ∈ TyΣk, |u| = 1. Then for all j ∈ Jk such that y ∈ 10Bj,k,

|Dπi,k · [πj,k(y)− y]| ≤ Cεk(y)2rk, (3.2.25)

Angle(TΣk(y), Pi,k) ≤ Cεk(y), (3.2.26)

|Dπi,k ◦ [Dπj,k −Dπi,k] ◦Dπi,k| ≤ Cεk(y)2, (3.2.27)

and for every unit vector v ∈ TΣk(y),

||Dσk(y) · v| − 1| ≤ Cεk(y)2. (3.2.28)

Remark 3.2.10. Equation (3.2.27) is in fact (7.31) in the proof of Lemma 7.4 in [DT12].

We now want to obtain similar estimates on the second derivatives of the σk.

Lemma 3.2.11. For k ≥ 0, y ∈ Σk ∩ V 8
k , we have

∣∣D2σk(y)
∣∣ ≤ Cεk(y)/rk. (3.2.29)

Proof. Choose i ∈ Jk such that |y − xi,k| ≤ 10rk. Then

D2σk(y)(y) = 2
∑
j∈Jk

Dθj,k(y) [Dπj,k −Dπi,k] +
∑
j∈Jk

[πj,k(y)− πi,k(y)]D2θj,k(y) (3.2.30)

by (3.1.7). Now, when θj,k(y) 6= 0,

dxi,k,100rk(Pi,k, Pj,k) ≤ εk(y)rk, (3.2.31)

because y ∈ 10Bj,k ∩ 10Bi,k. Hence |πi,k(y) − πj,k(y)| ≤ Cεk(y)rk and |Dπj,k −Dπi,k| ≤
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Cεk(y). Moreover |Dθj,k(y)| ≤ C/rk and |D2θj,k(y)| ≤ C/r2
k, so that

∣∣D2σk(y)
∣∣ ≤ (C/rk)εk(y) + (C/r2

k)εk(y)rk ≤ Cεk(y)/rk. (3.2.32)

Recall now that by Lemma 3.2.8, Dσk is bijective. Following the same steps as above

we can improve the estimates on the inverses of the σk’s and obtain the following lemma.

Lemma 3.2.12. Let v be a unit vector in TΣk+1(z), and z ∈ Σk+1 ∩ V 8
k+1. Then

∣∣Dσ−1
k (y) · v − v

∣∣ ≤ Cεk(z)|v|, (3.2.33)

∣∣|Dσ−1
k (z) · v| − 1

∣∣ ≤ Cεk(z)2, (3.2.34)

and ∣∣D2σ−1
k (z)

∣∣ ≤ Cεk(z)/rk (3.2.35)

3.3 Proof of Theorems 3.1.4 and 3.1.6

Before proving Theorem 3.1.4 we need one more lemma.

Lemma 3.3.1. Suppose gj is a sequence of continuous functions on B(0, 1), that satisfy

|gj(x)− gj(y)| ≤ Aj|x− y| for some A > 1, (3.3.1)

and

|gk(x)− gk+1(x)| ≤ ak(x) for {ak(x)} s.t.
∞∑
k=j

ak(x) ≤ CB−j, for some B > 1. (3.3.2)

Then the limit g(x) = limj→∞ gj(x) is η-Hölder continuous, where η = logB
log(AB)

.
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The lemma is Lemma 2.8, Chapter 7 in [SS05]. For convenience of the reader, we report

the proof below.

Proof. First note that g(x) is the limit of the uniformly convergent series

g(x) = g1(x) +
∞∑
k=1

(gk+1(x)− gk(x)). (3.3.3)

Then

|g(x)− gj(x)| ≤
∞∑
k=j

|gk+1(x)− gk(x)| ≤
∞∑
k=j

ak(x) ≤ CB−j. (3.3.4)

By the triangle inequality we get

|g(x)− g(y)| ≤ |g(x)− gj(x)|+ |gj(x)− gj(y)|+ |g(y)− gj(y)| ≤ C(Aj|x− y|+B−j). (3.3.5)

Now, for fixed x 6= y we want to choose j so that the two terms on the right hand side are

comparable. We want to choose j such that

(AB)j|x− y| ≤ 1 and 1 ≤ (AB)j+1|x− y|. (3.3.6)

Let j = −blogAB |x−y|c. Then the two inequalitites are clearly satisfied. The first one gives

Aj|x− y| ≤ B−j and by raising the second one to the power η, recalling that (AB)η = B by

definition, we get that B−j ≤ |x− y|η. This gives

|g(x)− g(y)| ≤ C(Aj|x− y|+B−j) ≤ CB−j ≤ C|x− y|η, (3.3.7)

which is what we wanted to prove.

Theorem 3.1.4. Let E ⊆ B(0, 1) as above, with ε > 0 small enough, and α ∈ (0, 1). Also
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assume that there exists M > 0 such that

∞∑
k=0

εk(fk(z))2

r2α
k

≤M, for all z ∈ Σ0. (3.1.14)

Then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable, and

both f and its inverse have α-Hölder directional derivatives. In particular, f is continuously

differentiable. Moreover the Hölder constants depend only on n, d, and M .

Proof. Recall Σ0 is a d-plane, so for x, y ∈ Σ0 ∩ B(0, 1) we can connect them through the

curve γ(t) = tx+ (1− t)y on I = [0, 1]. We have that

Dfm(y)−Dfm(x) =

∫
I

D2fm(γ(t)) · γ′(t) dt. (3.3.8)

Now, set Ak = D2fk(γ(t)) · γ′(t) (note that A0 = 0), and let zk = fk(γ(t)). By the

definition of the fk’s we have

Ak+1 = D2fk+1(γ(t)) · γ′(t) = D2σk(zk) ·Dfk(γ(t)) ·Dfk(γ(t)) · γ′(t) +Dσk(zk) ·Ak. (3.3.9)

We want to estimate Am. In the proof of Proposition 8.1 in [DT12], equation (8.10)

says

|Dfm(γ(t)) · γ′(t)| ≤ C|γ′(t)|
∏

0≤k<m

[1 + Cεk(zk)
2]|. (3.3.10)

If 0 < x < 1 clearly (1 + x)2 ≤ 1 + 3x, so we have, by (3.2.28), (3.3.10), and Lemma 3.2.11,

|Am| ≤ |D2σm(zm) ·Dfm(γ(t)) ·Dfm(γ(t)) · γ(t)|+ |Dσm(zm) · Am−1| ≤ (3.3.11)

≤ Cεm(zm)/rm
∏

0≤k<m

[1 + Cεk(zk)
2]|γ′(t)|+ (1 + Cεm(zm)2)|Am−1| =

= bm + cm|Am−1|,

where we set bm = Cεm(zm)/rm
∏

0≤k<m[1 + Cεk(zk)
2]|γ′(t)| and cm = (1 + Cεm(zm)2). We
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want to iterate (3.3.11). Recalling that A0 = 0,

|Am| ≤ bm + cm|Am−1| ≤ (3.3.12)

≤ bm + cm(bm + cm−1|Am−2|) ≤

bm + bm−1cm + cmcm−1(bm−2 + cm−2|Am−2|) ≤

≤ · · · ≤

≤
m∑
k=0

(
bk

m∏
j=k+1

ck

)

=
m∑
k=0

εk(zk)/rk

k−1∏
i=0

(1 + Cεi(zi)
2)

m∏
j=k+1

(1 + Cεj(zj)
2)|γ′(t)|,

so that,

|Am| ≤ C
m∑
k=0

 ∏
0≤i≤m
i 6=k

[1 + Cεi(zi)
2]

 εk(zk)/rk|γ′(t)|. (3.3.13)

Notice that if
∑∞

k=0 εk(fk(z))2/rαk is finite then surely
∑∞

k=0 εk(fk(z))2 also is, so Theo-

rem 3.1.3 holds and in particular
∏

0≤i≤m
i6=k

[1 + Cεi(zi)
2] ≤ C(M) so

|Am| ≤ C
m∑
k=0

εk(zk)/rk|γ′(t)|. (3.3.14)

Then,

|Dfm(y)−Dfm(x)| ≤
∫
I

∣∣D2fm(γ(t))|γ′(t)|
∣∣ dt = (3.3.15)

=

∫
I

|Am| dt ≤

≤ C
m∑
k=0

εk(zk)/rk

∫
I

|γ′(t)| dt =

= C
m∑
k=0

εk(zk)/rk|x− y|.
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We now want to use Lemma 3.3.1. By Cauchy-Schwarz,

m∑
k=0

εk(zk)

rk
=

m∑
k=0

εk(zk)

rαk
rα−1
k ≤ (3.3.16)

≤

(
m∑
k=0

εk(zk)
2

r2α
k

m∑
k=0

r2α−2
k

) 1
2

≤

≤ C(M)

(
m∑
k=0

r2α−2
k

) 1
2

≤

≤ C(M)rα−1
m =

= C(M)(101−α)m.

Notice that in the last inequality we used the fact that α < 1. Let u ∈ Rn be a unit vector.

By (3.3.15) we have

|Dfm(y) · u−Dfm(x) · u| ≤ C(M)(101−α)m|x− y|. (3.3.17)

Moreover we have, by (3.2.23), because v = Dfm(x) · u ∈ TΣm(y),

|Dfm+1(x) · u−Dfm(x) · u| = |Dσm(fm(x))Dfm(x) · u−Dfm(x) · u| ≤ (3.3.18)

≤ Cεm(xm) |Dfm(x) · u| ≤ C(M)εm(xm).

Then we can apply Lemma 3.3.1, with gj = Dfj(x) · v, ak(x) = εk(xk), A = 101−α, and

B = 10α, since we know, by (3.1.14), that

∑
k≥j

εk(xk) =
∑
k≥j

εk(xk)

rαk
rαk ≤ (3.3.19)

≤

(∑
k≥j

εk(xk)
2

r2α
k

∑
k≥j

r2α
k

) 1
2

≤

≤ C(M)rαj
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Then η = log 10α

log(10)
= α and the lemma hence gives that Df · u is α-Hölder for every u ∈ Rn.

Now, we want to prove that, for x, y ∈ Σ ∩B(0, 1), and w ∈ TΣ(x),

∣∣Df−1(x) · w −Df−1(y) · w
∣∣ ≤ C(M)|x− y|α. (3.3.20)

Let xm, ym ∈ Σm, where m is such that rm+1 ≤ |x− y| ≤ rm, let xm = fm ◦ f−1(x) and

ym = fm ◦ f−1(y). By the results in [DT12] we know that both fm and f−1 are bi-Lipschitz

maps, so we have that 1
C
|x− y| ≤ |xm − ym| ≤ C|x− y|.

We want to show that, for every m ≥ 0 we have

∣∣Df−1
m (ym)−Df−1

m (xm)
∣∣ ≤ C

m∑
k=0

εk(zk)/rk|x− y| (3.3.21)

We may assume m ≥ 1 as the result is obvious for m = 0, given f0(x) = x. Then we can

proceed exactly as in the first part of the proof. Now, observe that each σk : Σk → Σk+1 is a

C2 diffeomorphism by Lemma 3.2.8, so we can define σ−1
k : Σk+1 → Σk and f−1

m : Σm → Σ0.

Recall that by Proposition 3.2.6, we know that Σm coincides with a small Lipschitz

graph in B(xj,m, 49rm). Then there is a C2 curve γ : I → Σm that goes from xm to ym with

length bounded above by (1 + Cε)|xm − ym| ≤ C|x− y|.

Write

Df−1
m (ym)−Df−1

m (xm) =

∫
I

D2f−1
m (γ(t)) · γ′(t) dt. (3.3.22)

By the the estimates (3.2.34) and (3.2.35), together with (8.22) in [DT12], which says

|Df−1
m (γ(t)) · γ′(t)| ≤ C|γ′(t)|

∏
0≤k<m

[1 + Cεk(zk)
2]. (3.3.23)

we can estimate D2f−1
m as in (3.3.9)-(3.3.14), to get

∣∣D2f−1
m (γ(t)) · γ′(t)

∣∣ ≤ C
m∑
k=0

εk(zk)/rk|γ′(t)|, (3.3.24)

38



where zk = fk ◦ f−1
m (γ(t)) and so

∣∣Df−1
m (ym)−Df−1

m (xm)
∣∣ ≤ ∫

I

∣∣D2f−1
m (γ(t))

∣∣ |γ′(t)| dt ≤ (3.3.25)

≤ C

m∑
k=0

εk(zk)/rk|xm − ym| ≤

≤ C

m∑
k=0

εk(zk)/rk|x− y|.

Let w ∈ TΣ(x). We want to apply Lemma 3.3.1 to the sequence gk(x) = Df−1
k (xk) · w.

We have

Df−1
k+1(xk+1) · w = Df−1

k (σ−1
k (xk+1)) ·Dσ−1

k (xk+1) ·Dfk(f−1(x)) ·Df−1(x) · w = (3.3.26)

= Df−1
k (xk) ·Dσ−1

k (xk+1) · vk

where we set vk = Dfk(f
−1(x))·Df−1(x)·w ∈ TΣk(xk) and we observed that xk = σ−1(xk+1).

Then

∣∣Df−1
m+1(xm+1) · w −Df−1

m (x) · w
∣∣ =

∣∣Df−1
m (xm) ·Dσ−1

m (xm+1) · vm −Df−1
m (xm) · vm

∣∣ ≤
(3.3.27)

≤ |Df−1
m (xm)||Dσ−1

m (xm+1) · vm − vm| ≤

≤ C(M)|Dσ−1
m (xm+1) · vm − vm| ≤

≤ C(M)εm(xm).

where we used (3.3.23) and (3.2.33). Then we can apply Lemma 3.3.1 exactly as before,

with ak(x) = εk(xk), A = 101−α, and B = 10α, and obtain

∣∣Df−1(y′)−Df−1(x′)
∣∣ ≤ C(M)|x′ − y′|α, (3.3.28)

where C(M) is a constant that depends on M but not on m.
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Theorem 3.1.6. Let E ⊆ B(0, 1) as above, with ε > 0 small enough and let η(rk)
2 satisfy

the Dini condition. Also assume that there exists M > 0 such that

∞∑
k=0

(
εk(fk(z))

rkη(rk)

)2

≤M, for all z ∈ Σ0. (3.1.15)

Then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable, and

both f and its inverse have Lipschitz directional derivatives. In particular, f is continuously

differentiable. Moreover the Lipschitz constants depend only on n, d, and M .

Proof. First observe that, if we prove

|Dfm(x)−Dfm(y)| ≤ C(M)|x− y| (3.3.29)

uniformly in m then the theorem follows immediately for Df .

Recall that, by definition, we have that

∞∑
k=1

η(rk)
2 <∞. (3.3.30)

In the same way as in the proof of Theorem 3.1.4, we get to (3.3.15), which is

|Dfm(x)−Dfm(y)| ≤ C
m∑
k=0

εk(zk)

rk
|x− y|. (3.3.31)

By Cauchy-Schwarz we have

m∑
k=0

εk(zk)

rk
=

m∑
k=0

εk(zk)

rkη(rk)
· η(rk) ≤ C

(
m∑
k=0

(
εk(zk)

rkη(rk)

)2 m∑
k=0

η(rk)
2

) 1
2

≤ C(M) · C, (3.3.32)

by (3.3.30) and by (3.1.15).

This concludes the proof for Df . The same computation, combined with (3.3.25) from

the proof of Theorem 3.1.4, shows that Df−1 is Lipschitz.
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Chapter 4

Proof of Theorems A and B on C1,α parametrization

We now relate the coefficients εk(y) and the β numbers in order to prove Theorems A

and B.

4.1 A sufficient condition involving β∞ numbers

Note that the sufficient conditions in Theorem 3.1.4 rely on the parametrization. We

proceed to remove such dependence and in order to do so, we use some results from [DT12].

Recall that

βE∞(x, rk) =
1

rk
inf
P

{
sup

y∈E∩B(x,rk)

dist(y, P )

}
, (4.1.1)

if E ∩ B(x, rk) 6= ∅, where the infimum is taken over all d-planes P , and βE∞(x, rk) = 0 if

E ∩B(x, rk) = ∅. Now recall Theorem 1.2.10:

Theorem 1.2.10. Let E be as in Theorem 1.2.8 and moreover assume that

∞∑
k=0

βE∞(x, rk)
2 ≤M, for all x ∈ E. (refe:dtbinfty)

Then f : Σ0 → Σ is bi-Lipschitz. Moreover the Lipschitz constants depend only on n, d, and

M .
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Let us define, as in Chapter 12 of [DT12], new coefficients γk(x) as follows

γk(x) = dx,rk(Pk+1(x), Pk(x)) + sup
y∈E∩B(x,35rk)

dx,rk(Pk(x), Pk(y)). (4.1.2)

Then define, for x ∈ E,

Ĵγ,α(x) =
∞∑
k=0

γk(x)2

r2α
k

. (4.1.3)

To prove Theorem 1.2.10 in [DT12], the following lemma is needed.

Proposition 4.1.1. [Corollary 12.5, [DT12]] If in addition to the hypotheses of Theorem

1.2.8 we have that

Ĵγ,0(x) ≤M, for all x ∈ E, (4.1.4)

then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is bi-Lipschitz. Moreover the Lipschitz

constants depend only on n, d, and M .

Following the proof of Corollary 12.5 in [DT12], it is easy to check that under the

assumption that Ĵγ,α is uniformly bounded, the sufficient conditions in Theorem 3.1.4 are

satisfied. More specifically, we have (see page 71 of [DT12]),

Lemma 4.1.2. Let z ∈ Σ0 and let x ∈ E such that

|x− f(z)| ≤ 2 dist(f(z), E). (4.1.5)

Then

εk(fk(z)) ≤ C(γk(x) + γk−1(x)). (4.1.6)

Using the lemma, the following result follows immediately.

Proposition 4.1.3. If in addition to the hypotheses of Theorem 1.2.8 we have that

Ĵγ,α(x) ≤M, for all x ∈ E, (4.1.7)
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then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable, and

both f and its inverse have α-Hölder directional derivatives. In particular, f is continuously

differentiable. Moreover the Hölder constants depend only on n, d, and M .

We want to replace Ĵγ,α with a more explicit Bishop-Jones type function involving β∞’s.

Define

JEα,∞(x) =
∞∑
k=0

βE∞(x, rk)
2

r2α
k

. (4.1.8)

Finally, we can state the following theorem, which is an improved version of Theorem 3.1.4.

Theorem A. Let E ⊆ B(0, 1) be a one-sided Reifenberg flat set and α ∈ (0, 1). Also assume

that there exists M > 0 such that

∞∑
k=0

βE∞(x, rk)
2

r2α
k

≤M, for all x ∈ E. (1.2.8)

Then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable,

and both f and its inverse are C1,α maps. In particular, f is continuously differentiable.

Moreover the Hölder constants depend only on n, d, and M .

When α = 1, if we replace rk in the left hand side of (1.2.8) by rkη(rk), where η(rk)
2

satisfies the Dini condition, then we obtain that f and its inverse are C1,1 maps.

The proof of Corollary 12.6 in [DT12], which we restated as Theorem 1.2.10, can be

used directly to prove the theorem above, which is obtained as corollary of Theorem 3.1.4

and Theorem 3.1.6.

4.2 A sufficient condition involving β1 numbers

We would now like to replace JEα,∞ with JEα,1 based on an L1 version of the β numbers.

Usually such coefficients are used when the Hausdorff measure restricted to the set E is

Ahlfors regular. We will not need to assume such regularity, after observing that Reifenberg
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flatness implies lower regularity. The following is Lemma 13.2 in [DT12]. Let E ⊂ Rn and

define

βE1 (x, r) = inf
P

{
1

rd

∫
y∈E∩B(x,r)

dist(y, P )

r
dHd(y)

}
, (4.2.1)

for x ∈ Rn and r > 0, where the infimum is taken over all d-planes P .

Lemma 4.2.1. [Lemma 13.2, [DT12]] Let E ⊆ B(0, 1) be a Reifenberg flat set. Then, for

x ∈ E and for small r > 0,

Hd(E ∩B(x, r)) ≥ (1− Cε)ωdrd, (4.2.2)

where ωd denotes the measure of the unit ball in Rd.

Remark 4.2.2. We denote by E the closure of E, and notice that the Reifenberg flatness

assumption implies that the set has no holes (otherwise the result would be clearly false).

Moreover, recall Theorem 1.2.11:

Theorem 1.2.11. Let E measurable be as in Theorem 1.2.8 and moreover assume that

∞∑
k=0

βE1 (x, rk)
2 ≤M, for all x ∈ E. (1.2.7)

Then f : Σ0 → Σ is bi-Lipschitz. Moreover the Lipschitz constants depend only on n, d, and

M .

The following lemma is implied by the proof of Corollary 13.1 in [DT12].

Lemma 4.2.3. By changing the net xj,k if necessary, we have that εk(xk) ≤ βE1 (z, rk−3),

where z ∈ E is chosen appropriately.

Using the lemma, the theorem below follows immediately from Theorem 3.1.4 and The-

orem 3.1.6.
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Theorem B. Let E ⊆ B(0, 1) be a measurable one-sided Reifenberg flat set and α ∈ (0, 1).

Also assume that there exists M > 0 such that

∞∑
k=0

βE1 (x, rk)
2

r2α
k

≤M, for all x ∈ E. (1.2.9)

Then the map f : Σ0 → Σ constructed in Theorem 1.2.8 is invertible and differentiable,

and both f and its inverse are C1,α maps. In particular, f is continuously differentiable.

Moreover the Hölder constants depend only on n, d, and M .

When α = 1, if we replace rk in the left hand side of (1.2.9) by rkη(rk), where η(rk)
2

satisfies the Dini condition, then we obtain that f and its inverse are C1,1 maps.
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Chapter 5

Remarks and complements

5.1 A C1,α function which is not C1,α+ε

As mentioned in the introduction, we now include some results with proof from Anzel-

lotti and Serapioni, [AS94].

Proposition 5.1.1. [G. Anzellotti, R. Serapioni, Proposition 3.2 [AS94]] A Ck−1,1 d-rectifiable

set is Ck d-rectifiable.

Proof. Let E be Ck−1,1 d-rectifiable. Up to a set of Hd measure zero, E is contained in a

countable union of images of Ck−1,1 functions. Let fj be such a function. By a Lusin type

theorem (see [Fed69], 3.1.15), fj coincides with gj ∈ Ck outside of a set of arbitrarily small

measure and so we are done.

Proposition 5.1.2. [G. Anzellotti, R. Serapioni, Proposition 3.3 and Appendix [AS94]] Let

k,m ≥ 1 and k+s < m+ t. Then there exist Ck,s rectifiable sets that are not Cm,t rectifiable.

Proof. Given 0 ≤ s < t ≤ 1, we construct a function f ∈ C1,s, f : [0, 1] → R which is not

C1,t rectifiable. By successive integrations one can obtain examples for the Ck,s case, k > 1.

Let f(x) =
∫ x

0
g(t) dt, where g is defined as follows.

Let

E =
∞⋂
n=0

En, (5.1.1)
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where En is the disjoint union of 2n intervals Inj of length ln. We define the En’s inductively:

E0 = [0, 1] and we obtain En+1 from En by removing from Inj the interval (ξn − 1
2
anln, ξn +

1
2
anln), where ξn is the center of Inj and an is a summable strictly decreasing sequence in

(0, 1) to be chosen. Then

|E| = lim
n→∞

|En| = lim
n→∞

(1− an) > 0 (5.1.2)

where | · | denotes the Lebesgue measure. Now set

g(x) =


0 x ∈ E

(dist(x,Ec))s x ∈ Ec.

(5.1.3)

Clearly g ∈ C0,s so that f ∈ C1,s. However, for any t > s, and any h ∈ C0,t we have

|{x ∈ [0, 1] | h(x) = g(x)}| = 0 (5.1.4)

so that f is not C1,t rectifiable. To prove (5.1.4), see the Appendix of [AS94]. However they

want to show that |{x ∈ [0, 1] | h(x) = f(x)}| = 0 for any h ∈ C1,t. Their proof contains

a small inconsequential error, which can be easily removed by showing (5.1.4) instead, and

the same proof applies.

5.2 Graph Rectifiability vs Image Rectifiability

The above example a priori shows that there exists a C1,α graph meets every C1,α+ε

graph in a set of measure zero. When we defined C1,α rectifiability we defined using C1,α

images. However in [AS94] they use C1,α embedded submanifolds, that is objects which are

locally the graphs of C1,α maps. It is worth noticing that for a set E the two notions are

equivalent.
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First, observe that, given the graph G of a C1,α function g which is not in C1,α+ε for any

ε > 0, we can parametrize it by γ(t) = (t, g(t)), which is a parametrization without critical

points (as x′(t) = 1 6= 0). If we try to reparametrize G by a C1,α+ε curve γ̃(t) = (x(t), y(t)),

then we would have that y(x−1(t)) = g(t) and it is elementary to show that it is impossible

unless we allow critical points, for any ε > 0.

Next we prove that in fact, for sets, in the C1,α category graph rectifiability an image

rectifiability are equivalent (as it is in the Lipschitz category, see [Dav91]).

Theorem 5.2.1. Let E ⊆ Rn and α ∈ (0, 1). Assume that E is C1,α image rectifiable, that

is, there exist countably many C1,α maps fi : Rd → Rn such that Hd(E\
⋃
i fi(Rd)) = 0. Then

E is C1,α graph rectifiable, that is there exists countably many C1,α functions hi : Rd → Rn−d

whose graphs Γi or rotations of those are such that Hd(E \
⋃
i Γi) = 0.

Proof. It is enough to show that the image of a C1,α map g : Rd → Rn can be covered by

countably many C1,α graphs. In fact, it is enough to show that almost every point of Im g

has a neighborhood which can be described a as a C1,α graph.

Let x0 ∈ Rd be such that Dg(x0) has full rank. Because g is continuously differentiable,

Im g has a tangent plane T ∼= Rd at y0 = g(x0) and there exists U ∈ Rd where g is invertible.

For simplicity we can assume the tangent plane to be T = {y ∈ Rn | yd+1 = · · · = yn = 0}.

Let π : Rn → T be the orthogonal projection onto T , and consider the map h = π ◦

g : U ⊆ Rd → T . By the chain rule, h is a C1,α map. Consider a neighborhood V 3 x0 such

that h−1 : V ∩ T → U is well defined (such a neighborhood exists by the inverse function

theorem). Because Dh has full rank in U , we get that D(h−1) is well defined and is α-Hölder

continuous as its entries can be smoothly expressed in terms of the entries of Dh which is

α-Hölder by construction.

Finally, let F = g ◦ h−1 : T ∩ V → Im g. First observe that F is C1,α by the chain rule

again. Next, observe that F = (π |T∩V )−1, hence it is the identity on the first d coordinates

of Rn (recall that T = {y ∈ Rn | yd+1 = · · · = yn = 0}). Then we can write F (x) = (x, f(x)),
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where f : T ∩V → Rn−d is defined by f = π⊥ ◦F . The map f is C1,α and, inside V , we have

that Im g = {(x, f(x)) | x ∈ T ∼= Rd} and this concludes the proof.

5.3 Necessary conditions

We also record some observations in the direction of the converses of our theorems and

those from [DT12].

Proposition 5.3.1. Let G be a Lipschitz graph in Rn. Then

∞∑
k=0

βG∞(x, rk)
2 ≤M, for all x ∈ G. (5.3.1)

Proof. This follows from the Main Lemma in [Tol15], Lemma 2.1.

Proposition 5.3.2. Let α, α′ ∈ (0, 1), α′ > α and let G be a C1,α′ graph in Rn. Then there

exists M > 0 such that

JG∞,α(x) =
∞∑
k=0

βG∞(x, rk)
2

rαk
≤M, for all x ∈ G. (5.3.2)

Proof. The proof follows the steps from Example 3.1 in [ENV16]. Let M be the graph of a

C1,α′ function f : Rd → Rn−d. By the Taylor expansion around (x0, f(x0)) we get

|f(x)− f(x0)−∇f(x0) · (x− x0)| ≤ C|x− x0|1+α′ . (5.3.3)

Because M is smooth we can choose the tangent plane at x0 as best approximating plane in

βG∞(x0, r), for r sufficiently small. Then we get

βG∞(x0, r)
2 ≤ Cr2α′ . (5.3.4)
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This clearly implies that
∞∑
k=0

βG∞(x, rk)
2

r2α
k

≤M (5.3.5)

as α′ − α > 0.

5.4 Sharpness of the result

The theorems are sharp in the following sense. Let s ∈ (0, 1) and ε ∈ (0, 1 − s). Let

f ∈ C1,s+ ε
2 such that f is purely C1,s+ε unrectifiable (such a function exists by Proposition

5.1.2). Then by Proposition 5.3.2 we know that for the graph of f , G we have JG∞,s(x) <∞.

That is that for every ε ∈ (0, 1− s) we have a function f which is purely C1,s+ε unrectifiable

and such that JG∞,s(x) <∞. This is the same conclusion as the second part of Theorem 1.1

in [Kol17].

5.5 How to produce Hölder functions

We outline another more flexible construction of a C1,α function. For a more extensive

discussion on how to generate Hölder functions, see B.6 in Appendix B by S. Semmes in

[Gro99]. We include the example as it is of different nature than the one discussed in

Proposition 5.1.2, and we can easily estimate its Jones function.

For the remainder of this section, let ∆m denote the collection of dyadic intervals of size

2−m, and let ∆ =
⋃∞
m=0 ∆m.

For J ∈ ∆, let hJ be the Haar wavelet, normalized so that
∫
J
|hJ(x)| dx = 1 and∫

J
hJ(x) dx = 0, that is

hJ(x) =


1
|J | x ∈ Jl

− 1
|J | x ∈ Jr,

(5.5.1)
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where Jl and Jr are the left and right half of J , respectively. Now define

ψI(x) =

∫ x

−∞
hI(t) dt (5.5.2)

and

gk(x) =
k∑
j=0

∑
J∈∆j

2−αjψJ(x), (5.5.3)

where α ∈ (0, 1). By Lemma 3.3.1, g(x) = limk→∞ gk(x) is a Cα function, and so

f(x) =

∫ x

0

g(t) dt (5.5.4)

is a C1,α function.

Observe that for the function f we can compute explicitly the β numbers. Note that,

because β∞(x, 2−j) ≤ Cαj by construction, we get that the Jones function for the graph of

f is

J∞,α′(x) ≤ C
∞∑
j=1

α2
j

2−2α′j
= C

∞∑
j=1

2−2(α−α′)j, (5.5.5)

which is in line with the discussion in Section 5.3.

Now, we want to prove that f is not C1,α+ε, for any ε > 0. In order to do so, we will

prove that g is not Cα+ε. Now, let I be an interval of size t = 2−m, and let K = 2k be a
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Figure 5.1: The function gk on [0, 1] for k = 10 and α = 1
2
.

constant to be fixed later and write

g(cI)− g(x) =
∞∑
j=0

∑
J∈∆j

2−jα[ψJ(cI)− ψJ(x)] = (5.5.6)

=
∑

j>m+k

∑
J∈∆j

2−jα[ψJ(cI)− ψJ(x)]+

+
∑

m−k≤j≤m+k

∑
J∈∆j

2−jα[ψJ(cI)− ψJ(x)]+

+
∑

j<m−k

∑
J∈∆j

2−jα[ψJ(cI)− ψJ(x)] =

= HF +MF + LF,

the high, medium and low frequencies, respectively.

Because of our normalization of the hJ ’s, we have that |ψJ | ≤ 1/2. For the innermost

sum, for any given y, at most one of the intervals J of a fixed size s is such that ψJ(y) 6= 0.
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Then we have

|HF | ≤
∑

j>m+k

2−jα|ψJ(cI)|+
∑

j>m+k

2−jα|ψJ(x)| ≤ (5.5.7)

≤
∑

j>m+k

2−jα ≤ 2−(m+k)α+1 =

= 2−mα−kα+1.

Now choose x so that |x− cI | ≤ 2−m−k.

Because of our definition of ψJ , we have that |ψ′J(x)| = 1/2−j, recalling that J ∈ ∆j, so

that |ψJ(cI)−ψJ(x)| ≤ 2−m/2−j = 2−m+j. Moreover, because of our choice of x only finitely

many terms of the innermost sum are nonzero, and so we have

|LF | ≤
∑

j<m−k

∑
J∈∆j

2−jα|ψJ(cI)− ψJ(x)| ≤ (5.5.8)

≤ 2
∑

j<m−k

2−jα2−m+j =

= 2−m+1
∑

j<m−k

2j(1−α) ≤

≤ 2−m+22(m−k)(1−α) =

= 2−mα−k(1−α)+2

Now, without loss of generality, we can assume I and x are both contained in [0, 1], as

g is periodically defined on the intervals [n, n + 1). Let I = [0, 2−n) and let x be such that

|x| < 2−m

2k+2 = 2−m−k−2. Then, noting that ψJ has positive slope both at x and cI for our

choices of x and I, so that there is no cancellation, we get that ψJ(cI)−ψJ(x) ≥ 1
4
. Finally,
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we get

|MF | =

∣∣∣∣∣∣
∑

m−k≤j≤m+k

∑
J∈∆j

2−jα[ψJ(cI)− ψJ(x)]

∣∣∣∣∣∣ ≥ (5.5.9)

≥ 1

4

∣∣∣∣∣ ∑
m−k≤j≤m+k

2−jα

∣∣∣∣∣ ≥
≥ 2−2+k+12−(m+k)α =

= 2−mα+k(1−α)−1.

This means that, for infinitely many choices of I and x, we have

|g(cI)− g(x)| ≥ |MF | − |HF | − |LF | ≥ (5.5.10)

≥ 2−mα+k(1−α)−1 − 2−mα−kα+1 − 2−mα−k(1−α)+2 =

=
(
2k(1−α)−1 − 2−kα+1 − 2−k(1−α)+2

)
2−mα =

=

(
1

2
K1−α − 2(K−α +Kα−1)

)
tα,

recalling that we set K = 2k, t = 2−m. By choosing K large enough with respect to α, for

instance by choosing k = 3
1−α we get

|g(cI)− g(x)| ≥ 2tα (5.5.11)

which concludes the proof.

A similar argument can be applied to many other intervals I. All we need is sufficiently

many consecutive generations where I is on the left side, to avoid cancellation.

Thus, on one hand g is a Cα function, and we just proved it is not Cα+ε for any ε > 0,

at a dense set of points, so that f as above is a C1,α function which is not C1,α+ε.

Lastly, let us mention an interesting representation for Hölder functions, which is a slight

modification of the procedure presented in section B.7 in the aforementioned Appendix by
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Figure 5.2: The function Et(gk) on [0, 1] for k = 10, t = 2−7 and α = 1
2
.

S. Semmes. The idea is similar to the one discussed in Section 3.3 (that is, Theorem 3.3.1).

Let ψ̃I(x) =
∫ x
−∞ h3I(t) dt, where 3I denotes the interval with the same center as I and

three times its size. Moreover define a partition of unity

φI(x) =
ψ̃I(x)∑
|J |=|I| ψ̃J(x)

. (5.5.12)

Clearly 0 ≤ φI(x) ≤ 1, it’s supported on 3I and it is 1
|3I| -Lipschitz. Moreover, for every

x ∈ R ∑
|I|=t

φI(x) = 1 (5.5.13)

Given G : R→ R, a α-Hölder function, define

Et(G)(x) =
∑
|I|=t

G(cI)φI(x), (5.5.14)

where the sum is over all dyadic intervals, t = 2−m, for some integer m, and cI denotes the

center of the interval I.
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Lemma 5.5.1 ((Lemma B.7.8 [Gro99])). There exists a constant C such that

sup
R
|G− Et(G)| ≤ CKtα, (5.5.15)

if G is α-Hölder with constant K.

Lemma 5.5.2 ((Lemma B.7.11 [Gro99])). There exists a constant C such that Et(G) is

CKtα−1-Lipschitz if G is α-Hölder with constant K.

Theorem 5.5.3. Let G : R → R. Then for every t > 0 there exists Gt such that ‖G −

Gt‖∞ ≤ Ktα and Gt is Ktα−1-Lipschitz if and only if G is α-Hölder continuous with constant

proportional to K.

Proof. One direction follows directly from the lemmas above. For the other direction, let

x, y ∈ R and set t = |x− y|.

|G(x)−G(y)| ≤ |G(x)−Gt(x)|+ |Gt(x)−Gt(y)|+ |Gt(y)−G(y)| ≤ (5.5.16)

≤ 2Ktα +Ktα−1|x− y| = 3Ktα.

5.6 Besov and Lipschitz spaces

The Theory of Function Spaces developed around the 1960’s as a self-contained branch

of Functional Analysis. Several function spaces have been introduced in order to measure

smoothness of functions and to fill in the gaps left by more classical function spaces. For an

extensive introduction, see [Tri10]. The choice of the C1,α modulus of continuity for higher

order rectifiable sets is rather natural, considering that in the literature Hölder and Lipschitz

functions play an important role when dealing with geometric measure theory. However

from a standpoint of function spaces the choice of such spaces might appear arbitrary. We

mentioned Besov spaces and potential spaces in the introduction as they are the framework
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for the work of Dorronsoro [Dor85a, Dor85b]. Another class of functions which are strictly

related to those are functions in Triebel-Lizorkin spaces F k
p,q.

Let us introduce one of these “finer” function spaces, the Lipschitz-Besov spaces (or

simply Besov spaces). There exist several different definitions and various characterizations

for these spaces. We will only consider one of the many definitions, the one used in [Dor85a].

For each positive integer k we define the k-th order Lp modulus of continuity of a function

f by

ωp,k(f, t) = sup
|h|≤t
‖∆k

hf‖p, (5.6.1)

for t > 0 and where ∆hf = f(x+ h)− f(x), x, h ∈ Rn.

Definition 5.6.1. For n ∈ N, 1 ≤ p, q ≤ ∞, s = k+α, k ∈ N and α ∈ (0, 1], define Bs
p,q(Rn)

to be the space of all functions such that

‖f‖Bsp,q =

(∫ ∞
0

(
ωp,k(f, t)

ts

)q
dt

t

)1/q

<∞. (5.6.2)

For p = q = ∞, and α ∈ (0, 1), the space Bs
p,q coincides with the classical Lipschitz

spaces Λs = Ck,α. However for α = 1, that is, for s = k integer, the space Bk
∞,∞ does not

coincide with Ck,1 (see [Ste70]). The latter is in fact strictly smaller than Bk
∞,∞.
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