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Abstract of the Dissertation

Rotationally Symmetric Kähler Metrics with Extremal Condition

by

Selin Taşkent

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

In this thesis, we study rotationally symmetric extremal Kähler metrics
on Cn (n ≥ 2) and C2\{0}. We provide a complete list of solutions of the
extremal equation in an implicit manner. We give necessary and sufficient
conditions for adding a point smoothly to the origin in Cn. As an applica-
tion, we prove that there does not exist any rotationally symmetric complete
extremal Kähler metrics on Cn with positive bisectional curvature. We show
that certain solutions on Cn correspond to extremal Kähler metrics with
orbifold singularities, and metrics on CPn with singular set CPn−1. We also
show that certain solutions on C2\{0} can be completed to give new families
of cscK and strictly extremal Kähler metrics on complex line bundles over
CP1.
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1 Introduction

1.1 U(n) invariant Kähler metrics on Cn\{0}

Let u(s) : (0,∞)→ R be a smooth function where s = |z|2 = |z1|2 + |z2|2 +
· · ·+ |zn|2. Then, the real (1, 1)-form

ω = i∂∂u = i
n∑

j,k=1

(δjku
′(s) + u′′(s)zjzk)dz

j ∧ dzk (1)

gives a positive definite Kähler metric on Cn\{0} if and only if

u′(s) > 0, u′(s) + su′′(s) > 0. (2)

We introduce the function g(s) = su′(s) and reformulate (2) as

g(s) > 0, g′(s) > 0. (3)

We note that the function g : (0,∞) → R satisfying (3) is positive and
strictly increasing. Therefore, lim

s→0+
g(s) = A and lim

s→∞
g(s) = B always make

sense. We also see that 0 ≤ A < B ≤ +∞.

Let us write the metric (1) in the form

g =

(
1

s
g(s)δjk +

1

s2
(sg′(s)− g(s))zjzk

)
dzj ⊗ dzk

=

(
g(s)

(
1

s
δjk −

1

s2
zjzk

)
+ sg′(s)

(
1

s2
zjzk

))
dzj ⊗ dzk (4)

We will view CPn−1 as the quotient (Cn\{0})/C∗ as well as the quotient
S2n−1(1)/S1. Let π1 and π2 denote the corresponding projection maps onto
CPn−1, respectively.

The real part of the standard Hermitian product on Cn induces the Rie-
mannian metric on S2n−1(1). The standard Fubini-Study metric gFS on
CPn−1 is induced by the Riemannian submersion π2 : S2n−1(1)→ CPn−1.

The metric (4) can be expressed as in [FIK03] by

g = g(s)(gS2n−1 − η ⊗ η) + sg′(s)

(
1

4s2
ds⊗ ds+ η ⊗ η

)
(5)

= g(s)π∗1gFS + sg′(s)gcyl.
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Here η gives the 1-form dθ when restricted to each complex line through the
origin.

Let us introduce the new parameter r =
√
s and write

sg′(s)gcyl = g′(s)(dr ⊗ dr + r2dθ ⊗ dθ)

on a complex line through the origin. Note that straight lines through the
origin coincide with minimal geodesics of the U(n)-invariant metric g. It
follows that geodesic distance from z = 0 to z is given by

r̃ = dist(0, z) =
1

2

∫ s

0

√
g′(s)

s
ds. (6)

where s = |z|2. We note that g′(s)dr ⊗ dr = dr̃ ⊗ dr̃.
We also note that a metric g on Cn given by (4) is complete if and only

if

∫ ∞
0

√
g′(s)

s
ds =∞.

1.2 Positive Bisectional Curvature Case

In [Kle77], Klembeck computed the components of the curvature tensor with
respect to the orthonormal frame {e1 = 1√

g′
∂z1, e2 = 1√

u′(s)
∂z2, . . . , en =

1√
u′(s)

∂zn} at a fixed point (z1, 0, . . . , 0).

The nonzero terms are denoted by A,B,C and are given as follows. (2 ≤
i 6= j ≤ n)

A = R1111 = − 1

g′

(
sg′′

g′

)′
B = R1i1i =

u′′

(u′)2
− g′′

u′g′

C = Riiii = 2Riijj = − 2u′′

(u′)2

Theorem 1.1 (Wu-Zheng [WZ11]) Let g be a complete U(n) invariant
Kähler metric on Cn (n ≥ 2). Then g has positive bisectional curvature if
and only if A, B, C are positive functions of s on [0,∞).
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Definition 1.2 We denote by Mn the set of all complete U(n) invariant
Kähler metrics on Cn with positive bisectional curvature.

In [Kle77], Klembeck constructed an explicit example of a metric inMn.
In [Cao96, Cao97], Cao came up with two examples of Kähler Ricci soliton
metrics in Mn. In their paper [WZ11] Wu and Zheng characterized Mn via
a function ξ = ξ(s) and illustrated that the set Mn is actually quite large.

Definition 1.3 (Wu-Zheng [WZ11]) The smooth function ξ : [0,∞) →
R is defined by

ξ(s) = −s(log g′(s))′. (7)

Thus, we have g′(s) = g′(0) exp

(
−
∫ s

0

ξ(s)

s
ds

)
.

Theorem 1.4 (Characterization of Mn by the function ξ, Wu-Zheng [WZ11])
The metric given by (4) is a complete Kähler metric with positive bisectional
curvature on Cn if and only if ξ defined by (7) satisfies

ξ(0) = 0, ξ′ > 0, ξ < 1. (8)

If we let Ξ be the space of all ξ ∈ C∞[0,∞) satisfying (8), then Ξ is the
space of all diffeomorphisms [0,∞) → [0, b), (0 < b ≤ 1). The space Ξ is in
one-to-one corresponence with Mn/R+.

We will see later that no metric in Mn satisfies the extremal condition.

1.3 Extremal Condition

Definition 1.5 We say that a Kähler metric satisfies the extremal condition
if its scalar curvature R satisfies the Euler equation R,αβ = 0.

For the rotation invariant Kähler metrics on Cn\{0}, Calabi [Cal82] re-
duced the equation R,αβ = 0 to a nonlinear ODE sg′(s) = F (g(s)) as follows.
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Let us denote by G = (gjk) the matrix of the Kähler metric. Then, as
given in [HL18], we have

detG = (u′(s))n−1(u′(s) + su′′(s)) (9)

gjk = ev(u′(s))n−2[(u′(s) + su′′(s))δjk − u′′(s)zkzj] (10)

where v = − log detG.

Moreover, by direct computation we have

∂∂v = −
n∑

j,k=1

(δjkv
′(s) + v′′(s)zjzk)dzj ∧ dzk. (11)

We combine (10) and (11) to obtain

R =
n∑

j,k=1

gjk
∂2v

∂zj∂zk

= s1−nev[sn(u′(s))n−1v′(s)]′.

We substitute the expression for detG given in (9) into this equation to get

R(s) =
s1−n[sn(u′)n−1v′]′

(u′)n−1(u′ + su′′)
(12)

=
nv′ + s(n− 1)(u′)−1u′′v′ + sv′′

u′ + su′′

=
v′
(
(n−1)(u′+su′′)

u′
+ u′

u′

)
+ sv′′

u′ + su′′

= (n− 1)
v′

u′
+
sv′ + s2v′′

su′ + s2u′′
.

We note that if we substitute s = et in (12), we obtain Equation (3.9) in
[Cal82].

The condition that the components of the tangent vector fields gαβ ∂R
∂zβ

∂zα
be holomorphic is equivalent to the Euler equation R,αβ = 0 (see [Cal82]).
This equation can be expressed in the rotationally symmetric case as follows
[Cal82]:

gαβ
∂R

∂zβ
= gαβR′(s)zβ = zα

R′(s)

u′ + su′′

4



where, in the last equality, we have used (9) and (10). The Euler equation is

now equivalent to ∂
∂zβ

(
zα

R′

u′+su′′

)
= 0, β = 1, . . . , n; and since R′

u′+su′′
is real

valued, we obtain the equation

R′

u′ + su′′
= constant.

For convenience, we will set this constant to be −(n + 2)(n + 1)c4, as in
[Cal82]. We can make use of the variable change s = et to integrate the
differential equation and obtain

R = −(n+ 2)(n+ 1)c4g(s)− (n+ 1)nc3 (13)

Replacing R in (13) by its expression in term of u, v, and their derivatives,
and integrating once more, we obtain Equation (3.12) in Calabi’s article
[Cal82]:

gn−1g′

c4gn+2 + c3gn+1 + gn + c1g + c0
=

1

s
. (14)

The Euler equation R,αβ = 0 has been reduced to an ODE sg′(s) =
F (g(s)) where

F (g) =
c4g

n+2 + c3g
n+1 + gn + c1g + c0
gn−1

. (15)

After simplification of rational expression in (15) (if necessary) we will denote
the polynomial in the numerator by H(g). If we write lim

s→0+
g(s) = A and

lim
s→+∞

g(s) = B ≤ ∞, then we see from Lemma 4.3, that H(A) = 0 and

H > 0 on (A,B). Moreover, H(B) = 0 whenever B <∞.

1.4 k-twisted (Projective) Line Bundles and Orbifolds

Calabi, in his paper [Cal82], described k-twisted projective line bundles

CP1 ↪→ Fnk
π
� CPn−1 for any k = 1, 2, . . . , n ≥ 2, as follows.

We cover CPn−1 by n coordinate domains Uλ = {[z1 : · · · : zn] : zλ 6= 0}
(1 ≤ λ ≤ n). On each Uλ, we have a holomorphic coordinate system (λz

α) =(
zα
zλ

)
, (1 ≤ α ≤ n, α 6= λ). We introduce a projective holomorphic fiber
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coordinate yλ ∈ C∪{∞} and trivialization π−1(Uλ) ' Uλ×CP1 (1 ≤ λ ≤ n)
on Fnk . Here, the transition relation on the fiber coordinate in π−1(Uλ ∩ Uµ)
is given by

([z1 : · · · : zn], yµ) =

(
[z1 : · · · : zn],

(
zµ
zλ

)
yλ

)
We have two distinguished sections s0, s∞ : CPn−1 → Fnk with images

denoted by S0 and S∞, respectively. Here s0 is the zero section given by
yλ = 0, and s∞ is the infinity section given by yλ =∞ (1 ≤ λ ≤ n).

We note that the complement Fnk \S∞ gives us the line bundleOCPn−1(−k),
whereas Fnk \S0 gives OCPn−1(k). Throughout the thesis, we will denote the
zero sections of the line bundles OCPn−1(−k) and OCPn−1(k) by S0 and S∞,
respectively. We will write F̊nk for the complement Fnk \{S0 ∪ S∞}. We have
a k : 1 map

p : Cn\{0} → F̊nk (16)

which assigns to any point (z1, . . . , zn) with zλ 6= 0, the point in F̊nk ∩π−1(Uλ)
with coordinates

((
zα
zλ

)
; (zλ)

k
)

, (1 ≤ α ≤ n, α 6= λ).

The map p induces a biholomorphism

p̃ : Cn\{0}/Zk → F̊nk . (17)

Thus, OCPn−1(−k) is obtained by gluing a CPn−1 smoothly into (Cn\{0})/Zk
at z = 0. Similarly, we obtain OCPn−1(k) if we glue a CPn−1 smoothly into
(Cn\{0})/Zk at z =∞.

The map p̃ : Cn\{0}/Zk → OCPn−1(−k)\S0 can be written as

p̃(z1, . . . , zn) = ([z1 : · · · : zn]; (z0, . . . , zn)⊗k),

where (z0, . . . , zn)⊗k denotes the generator of the fiber of OCPn−1(−k) →
CPn−1 over the point [z1 : · · · : zn]. (See Apostolov-Rollin, [AR17] for more
details).

We will denote by Gk the compact space obtained from Fnk by contracting
its zero section S0 to a point. When k ≥ 2, we have Gk = CPn/Zk, and it
has an orbifold singularity at z = 0 modeled on Cn/Zk. When k = 1, Gk is
simply CPn.

6



1.5 Closing Conditions

Suppose that we have a U(n)-invariant Kähler metric g on Cn\{0} that
satisfies the extremal condition sg′(s) = F (g(s)) where F (g) is given by
(15), n ≥ 2.

If we have a U(n)-invariant Kähler metric g on Cn\{0} given by (5), it
induces a metric on F̊nk via the map p̃. We will denote the induced metric
on F̊nk by g as well.

In [Cal82], Calabi imposed certain asymptotic conditions on Kähler po-
tential u(s) as s → 0+ and s → ∞. These conditions are necessary and
sufficient for the metric g on F̊nk to be extandable by continuity to a smooth
metric on all of Fnk .

Cao [Cao96] used the map p̃ to produce U(n)-invariant, complete gradient
Kähler-Ricci soliton (GKRS ) metrics on line bundles over CPn−1. Feldman-
Ilmanen-Knopf [FIK03] generalized this approach by producing U(n)-invariant
GKRS metrics on (Cn\{0})/Zk, where they allowed new boundary behavior
at z = 0 and |z| =∞. These behaviors are listed as follows.

1. Metric is completed at z = 0 by adding a smooth point.

2. Metric is completed at z = 0 by adding an orbifold point.

3. Metric is completed at z = 0 by adding a smooth or singular CPn−1.

4. Metric is complete as |z| → 0.

a. Metric is completed at z =∞ by adding a smooth or singular CPn−1.

b. Metric is complete as |z| → ∞.

We note that 1.a. gives CPn (with k = 1), and 1.b. gives Cn.

The boundary conditions 2.a. correspond to Gk. Conditions 3.b. give
F̊nk ∪ S0 = OCPn−1(−k), and conditions 4.a. give F̊nk ∪ S∞ = OCPn−1(k).
Calabi’s compact k-twisted CP1-bundle Fnk is obtained via 3.a..

A U(n) invariant Kähler metric on F̊nk induced by the map (17) cannot
be completed by adding a CPn−1 at z = 0 and a smooth or orbifold point at
z =∞. This follows since g(s) is a strictly increasing function of s.

7



In [LeB88], LeBrun explicitly constructed a scalar-flat Kähler ALE met-
ric on OCP1(−k) for k = 1, 2, . . . For k = 1 and k = 2, these are the Burns
and the Eguchi-Hanson [EH79] metrics, respectively. He–Li [HL18] gave a
complete list of U(n)-invariant cscK metrics on Cn, C2\{0} and C3\{0}.
In this work, we give a list of U(n)-invariant Kähler metrics with extremal
condition on Cn and C2\{0}. We will use the generalized approach intro-
duced by Feldman–Ilmanen–Knopf in [FIK03] to find examples of complete
U(n)-invariant Kähler metrics with constant scalar curvature or extremal
condition on Gk, OCP1(k) and OCP1(−k). We will also obtain a complete
metric on C2\{0} with both ends left open.

We refer the reader to LeBrun’s article [LeB16] for a Bianchi IX approach
to the same problem where the general solution is displayed explicitly.1

Adding a CPn−1 smoothly to (Cn\{0})/Zk corresponds to a simple zero of
F [Cal82]. In what follows, we explain this correspondence as it is presented
in [FIK03].

If the sign of F ′ at the simple root is positive (resp. negative), it means
we are adding CPn−1 at z = 0 (resp. |z| =∞). This can be seen as follows.
Let lim

s→0+
g(s) = A, lim

s→∞
g(s) = B (0 < A < B ≤ ∞). By Lemma 4.4, we

have H(A) = 0 and H > 0 on (A,B). If A > 0 is a simple root of F , then it
is a simple root of H. In this case, we have H ′(A) > 0, implying F ′(A) > 0.
Similarly, if B <∞ is a simple root, we have F ′(B) < 0. Therefore, the sign
of F ′ at a simple root determines whether CPn−1 is added at z = 0 or at
|z| =∞.

Let us assume

F (A) = 0, A > 0, F ′(A) = θ > 0. (18)

For convenience, we will switch to a new parameter t = log s, −∞ < t <∞,
as in [FIK03]. We will obtain a specific form for g(s) in a neighborhood of
s = 0.

We write the ODE sg′(s) = F (g(s)) in the form φ′(t) = F (φ(t)), where
φ(t) := g(s). We have φ′(t) = sg′(s) > 0, hence t = t(φ) is a smooth
strictly increasing function of φ. We have a diffeomorphism ψ = Φ(φ), given

1I am deeply indebted to Claude LeBrun who shared his invaluable insight on the
subject.
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by Φ(φ) := eθt(φ). The ODE φ′(t) = F (φ(t)) is conjugate to the equation
ψ′(t) = θψ(t), so φ(t) has the form

φ(t) = A+ eθtG0(e
θt)

as t → −∞. Here G0 is a smooth function on (−ε, ε) with G0(0) > 0
[Cal82, Cao96, FIK03].

Let us switch back to the parameter s = et. We have seen that (18)
implies

g(s) = A+ sθG0(s
θ) (19)

where G0 is given as above. Since F ′(A) = θ > 0, we are adding CPn−1 at
z = 0. It follows from (5) and (17) that each complex line through the origin
has a cone angle 2πθ/k.

Remark 1.6 When we have lim
s→0+

g(s) = A > 0, F (A) = 0, F ′(A) > 0, equa-

tion (19) implies that geodesic distance to z = 0 is finite, i.e.
1

2

∫ s0

0

√
g′(s)

s
ds <

∞.

A similar discussion follows when we have

F (B) = 0, B > 0, F ′(B) = −θ < 0. (20)

Let us assume g(s) solves sg′(s) = F (g(s)), with lim
s→∞

g(s) = B and (20) is

satisfied. Then we have

g(s) = B + s−θG∞(s−θ) (21)

where G∞ is smooth on (−ε, ε) and G∞(0) < 0.

For the proof of the following Lemma, see [FIK03].

Lemma 1.7 (Calabi [Cal82]) Let n ≥ 2.

1. When θ = k in (19), the induced Kähler metric is smooth on a neigh-
borhood of the zero section in OCPn−1(−k).

2. When θ = −k in (21), the induced Kähler metric is smooth on a neigh-
borhood of the zero section in OCPn−1(k).

Remark 1.8 In Section 2 Lemma 2.5, we will see that a solution of sg′(s) =
F (g(s)) on Cn\{0} gives a smooth metric on Cn if and only if F (0) = 0. In
this case, we say that we are adding a smooth point at z = 0.

9



2 U(n) invariant Kähler Metrics with Extremal

Condition on Cn

2.1 List of Solutions on Cn and Related Results

Lemma 2.1 Let u ∈ C∞(0,∞) be the potential of a rotation invariant
Kähler metric on Cn\{0} that satisfies the extremal condition. Then, the
metric extends smoothly to Cn if and only if u ∈ C2[0,∞) and lim

s→0+
u′(s) is

positive.

Proof: If we assume u ∈ C2[0,∞), then we have lim
s→0+

g(s) = lim
s→0+

su′(s) =

0, and lim
s→0+

sg′(s) = 0. It follows from Equation (14) that c0 = c1 = 0.

Equation (14) can be written as

u′′ = c4s(u
′)3 + c3(u

′)2. (22)

Differentiating (22), we obtain u ∈ C∞[0,∞). This implies that the hypoth-
esis of Monn’s smoothness result2 (see Proposition 4.1 below) for the corre-
sponding radial function u(z1, . . . , zn) is satisfied for all k ≥ 0. Together with
the condition lim

s→0+
u′(s) > 0, we conclude that the metric extends smoothly

to Cn.

The converse is clear. �

He-Li [HL18] gave a complete list of rotation invariant constant-scalar-
curvature Kähler (cscK ) metrics on Cn.

Theorem 2.2 ([HL18], Theorem 1.1) Suppose n ≥ 2 is an integer.

1. The rotation invariant Kähler metric ω with zero constant scalar cur-
vature on Cn must be a multiple of the standard Euclidean metric.

2. The rotation invariant Kähler metric ω with constant scalar curvature
n(n+ 1) on Cn must be of the form

ω = i

∑n
j=1 dzj ∧ dzj∑n
j=1 |zj|2 + a

− i
(
∑n

j=1 zjdzj) ∧ (
∑n

j=1 zjdzj)

(
∑n

j=1 |zj|2 + a)2

2One has to make a parameter change r =
√
s, and use Proposition 4.2.

10



where a > 0 is a constant.

3. There does not exist rotation invariant Kähler metric with negative
constant scalar curvature on Cn.

We solve the equation sg′(s) = F (g(s)) to give a complete list of rotation
invariant metrics on Cn with extremal condition.

Theorem 2.3 Let n ≥ 2 and u : [0,∞)→ R be a smooth function such that
u(|z1|2 + |z2|2 + · · · + |zn|2) = u(s) is the potential of a Kähler metric with
R,αβ = 0 on Cn (n ≥ 2). Then, one of the following is true:

1. ω is a cscK metric.

2. There exist constants β, c with β > 0 such that g(s) = su′(s) is the
smooth strictly increasing function ranging from 0 to β on (0,+∞)
uniquely determined by

log(g(s))− log(β − g(s))− β 1

g(s)− β
= log s+ c.

3. There exist constants γ, β, c with γ < 0 < β such that g(s) = su′(s) is
the smooth strictly increasing function ranging from 0 to β on (0,+∞)
uniquely determined by

log(g(s))+
βγ

β(β − γ)
log(β−g(s))+

βγ

γ(γ − β)
log(g(s)−γ) = log(s)+c.

4. There exist constants γ, β, c with 0 < β < γ such that g(s) is the smooth
strictly increasing function ranging from 0 to β on (0,∞) determined
by

log(g(s))+
βγ

β(β − γ)
log(β−g(s))+

βγ

γ(γ − β)
log(γ−g(s)) = log(s)+c.

11



Proof: From the proof of Lemma 2.1, if u is the potential of a smooth
metric on Cn, then we have lims→0+ g(s) = 0 and the constants c0 and c1 in
equation (14) vanish. Equation (14) becomes

g′

c4g3 + c3g2 + g
=

1

s
. (23)

In this case, the polynomial H(x) in Lemma 4.3 is given by c4x
3 + c3x

2 + x,
and unless c3 = c4 = 0, we have B < ∞ for degree reasons. By the same
lemma, H(A) = 0 and H > 0 on (A,B), and all roots are real. We have
A = lim

s→0+
g(s) = 0.

Case (1) c4 = 0
We see from equation (13) that ω is a cscK metric.

Case (2) c4 6= 0 and the polynomial H(x) = c4x
3 + c3x

2 + x has roots α, β, β with
α < β
It follows from Lemma 4.3 that α = A = 0. Since H(x) > 0 in (α, β), we
have c4 > 0, and the equation (23) can be written as

g′β2

{
1

β2

1

g(s)
− 1

β2

1

g(s)− β
+

1

β

1

(g(s)− β)2

}
=

1

s
.

There exists a constant c such that

log(g(s))− log(β − g(s))− β

g(s)− β
= log s+ c. (24)

Since H(x) = c4x
3 + c3x

2 + x = c4x(x− β)2, we have c4β
2 = 1.

On the other hand, Lemma 4.4 implies that there exists a unique smooth
strictly increasing function g(s) = su′, g : (0,∞)→ (0, β) satisfying (24).

Case (3) c4 6= 0 and the polynomial H(x) = c4x
3 + c3x

2 + x has roots α, α, β with
α < β
It follows from Lemma 4.3 that α = A = 0, but this polynomial cannot have
a double root at 0.
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Case (4) c4 6= 0 and the polynomial H(x) = c4x
3 + c3x

2 + x has distinct roots
γ < β < α = 0
It follows from Lemma 4.3 that B < ∞, and H(x) must have at least two
distinct nonnegative roots. So we do not get a solution from here.

Case (5) c4 6= 0 and the polynomial H(x) = c4x
3 + c3x

2 + x has distinct roots
γ < α = 0 < β

By Lemma 4.3 we have A = α = 0, B = β, and H(x) > 0 on (0, β). Then
c4 < 0, c4βγ = 1, and the equation (23) can be written as

g′
{

1

g(s)
+

βγ

β(β − γ)

1

g(s)− β
+

βγ

γ(γ − β)

1

g(s)− γ

}
=

1

s
. (25)

There exists a constant c such that

log(g(s)) +
βγ

β(β − γ)
log(β − g(s)) +

βγ

γ(γ − β)
log(g(s)− γ) = log s+ c.

It follows from Lemma 4.4 that there exists a unique smooth strictly increas-
ing function g(s) : (0,∞)→ (0, β).

Case (6) c4 6= 0 and the polynomial H(x) = c4x
3 + c3x

2 + x has distinct roots
α = 0 < β < γ
It follows from Lemma 4.3 that A = α = 0, B = β and c4 > 0. As in the
previous case, Equation (23) can be rewritten as Equation (25). Integrating
both sides of (25) we get

log(g(s)) +
βγ

β(β − γ)
log(β − g(s)) +

βγ

γ(γ − β)
log(γ − g(s)) = log s+ c.

If we let h(t) : (0, β)→ R be the function

log(t) +
βγ

β(β − γ)
log(β − t) +

βγ

γ(γ − β)
log(γ − t)

we see that lim
t→0+

h(t) = −∞, lim
t→β−

h(t) =∞, and h′(t) > 0 on (0, β). Lemma

4.4 guarantees the unique existence of a smooth g(s) : (0,∞) → (0, β) with
the desired properties.

13
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Remark 2.4 We note that, in the above proof, in order to obtain the implicit
solutions given by (1)–(4) of Theorem 2.3, we have not used the full strength
of u(s) being in C∞[0,∞). In the proof, we have only used u(s) ∈ C∞(0,∞),
lim
s→0+

g(s) = 0, and c0 = c1 = 0. A careful inspection of the implicit solutions

(1)–(4) shows that lim
s→0+

u′(s) is finite and positive, hence, equation (22) im-

plies that u(s) is in C∞[0,∞). It follows from Lemma 2.1 that such metrics
can be smoothly extended to the origin.

The following lemma tells us when a rotation invariant Kähler metric
with extremal condition on Cn\{0} can be smoothly extended to Cn, n ≥ 2.

Lemma 2.5 (Adding a smooth point at z = 0) Let g : (0,∞)→ (A,B)
(0 ≤ A < B ≤ ∞) be a positive, strictly increasing solution of sg′ = F (g).
Then the following are equivalent.

1. g induces a smooth metric on Cn.

2. lim
s→0+

g(s) = 0.

3. F (0) = 0.

Proof: See Section 2.3. �

Corollary 2.6 There does not exist a rotation invariant extremal Kähler
metric with negative scalar curvature on Cn.

Proof: See Section 2.3. �

Theorem 2.2 and Theorem 2.3 together give a complete list of U(n) in-
variant extremal Kähler metrics on Cn. We note that for these metrics,
lim
s→0+

g(s) = 0 and lim
s→+∞

g(s) = B ≤ ∞. It follows from Remark 1.6 that, if

B < ∞ is a simple root of F (g), then the induced metric is incomplete as
|z| → ∞.
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We can easily check that in Theorem 2.2 and Theorem 2.3 there are only
two cases where B is not a simple root of F . The first case is (1) of Theorem
2.2. In this case, we have B =∞, and the metric is a multiple of the standard
Euclidean metric which is complete. The second case is (2) of Theorem 2.3.
We will compute the geodesic distance as |z| → ∞, and see that this metric
is complete as well.

Example 2.7 (A complete U(n) invariant extremal Kähler metric on Cn)
We will see that (2) of Theorem 2.3 induces complete metrics on Cn. In this
case, the ODE is given by sg′(s) = F (g(s)) where

F (g) = c4g
3 + c3g

2 + g = c4g(g − β)2.

Here we have A = lim
s→0+

g(s) = 0, B = lim
s→+∞

g(s) = β <∞, and c4 = 1
β2 > 0.

We will show that geodesic distance from a point z0 to |z| =∞ is infinite,
i.e. ∫ ∞

s0

√
g′(s)

s
ds =

∫ ∞
s0

√
F (g(s))

s
ds =∞.

There exists a d1 > 0 such that on (s0,∞) we have√
F (g(s)) =

1

β
|g − β|√g > d1(β − g)

and ∫ ∞
s0

√
F (g(s))

s
ds > d1

∫ ∞
s0

β − g
s

ds.

The solution g(s) is given by Equation (24) as follows.

log(g(s))− log(β − g(s)) +
β

β − g(s)
= log s+ c

The term log(g(s)) is bounded on (s0,∞). We can choose s0 large enough so
that log(β − g(s)) < 0 and log s− log(g(s)) + c > 0 on (s0,∞). In this case,
Equation (24) implies β

β−g(s) < log s+ c1. Therefore∫ ∞
s0

√
g′(s)

s
ds > d1

∫ ∞
s0

β − g(s)

s
ds > β d1

∫ ∞
s0

ds

s(log s+ c1)
=∞.

The metric is complete on Cn.

Proposition 2.8 There is no metric in Mn that satisfies the extremal con-
dition.
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Proof: We have seen that we have only two types of complete U(n) in-
variant extremal Kähler metrics on Cn. The first type is given by (1) of
Theorem 2.2, namely a scalar multiple of the standard Euclidean metric on
Cn. Metrics of this type clearly do not have positive bisectional curvature.

The second type is given by (2) of Theorem 2.3. We will see that bi-
sectional curvature is not positive in this case either. We will compute the
ξ function for this metric, and show that it does not satisfy the properties
given in Theorem 1.4.

By definition we have ξ = −s(log(g′(s)))′. We recall that the ODE
sg′(s) = F (g(s)) is given by

sg′(s) =
1

β2
g(s)(g(s)− β)2.

We compute

(log(g′))′ = −1

s
+

(g(s)− β)2

β2s
− 2g(s)(β − g(s))

β2s
.

Then we have

ξ(s) = 1− 1

β2
(g(s)− β)2 +

2

β2
g(s)(β − g(s))

= − 1

β2
g(3g − 4β)

ξ(s) is a polynomial in g restricted to the interval (0, β) 3 g. We see that
dξ

ds
=

dξ

dg

dg

ds
is not positive on (0,∞) 3 s. Therefore ξ fails to satisfy the

necessary and sufficient conditions in Theorem 1.4. The metric in Case (2)
of Theorem 2.3 does not have positive bisectional curvature.

�

2.2 Examples of Extremal Kähler Metrics with Singu-
larities

Dabkowski–Lock [DL16] gave a Kähler conformal compactification of Le-
Brun’s negative mass metric on OCP1(−k) to obtain a Kähler orbifold metric
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on ÔCP1(−k). The positive line bundle OCPn−1(k), k = 1, 2, . . . is obtained
by gluing a CPn−1 to (Cn\{0})/Zk at |z| = ∞. If we compactify OCPn−1(k)
by adding a singular point at z = 0, we obtain the orbifold Gk. We note
that the singular point z = 0 is modeled on Cn/Zk. Here, we show that Case
(3) of Theorem 2.3 gives a strictly extremal metric on the orbifold space Gk

(n ≥ 2).

Example 2.9 (Strictly extremal metrics on Gk, n ≥ 2) Let us consider
Case (3) of Theorem 2.3. Since c4 6= 0, it follows from Equation (13) that this
is a strictly extremal metric on Cn. From the proof of Theorem 2.3 we have
the ODE sg′(s) = F (g(s)) where F (g) = c4g

3 + c3g
2 + g = c4 g(g−β)(g−γ).

Here, we have γ < 0 < β, lim
s→0+

g(s) = 0, lim
s→+∞

g(s) = β, and c4 = 1
βγ

.

A U(n) invariant Kähler metric on Cn induces a smooth orbifold metric
on Gk\S∞ via the k : 1 map p given by (16). Here, S∞ stands for the zero
section of OCPn−1(k). It follows from Lemma 1.7 that the induced metric can
be extended smoothly to S∞ if and only if F (β) = 0 and F ′(β) = −k.

We clearly have F (β) = 0. We compute F ′(β) = β−γ
γ

. For every positive

integer k, there exist γ, β (γ < 0 < β) that satisfy F ′(β) = −k. Namely, let
β = |γ|(k − 1).

Dabkowski-Lock [DL16] explicitly constructed a family of extremal Kähler
edge cone metrics on (CP2,CP1) with cone angles 2πθ, θ ≥ 0. Here, we give
examples of strictly extremal metrics on (CPn,CPn−1) with cone angles 2πθ,
0 < θ < 1, n ≥ 2.

Example 2.10 (Strictly extremal metrics on (CPn,CPn−1) with cone
angles 2πθ, 0 < θ < 1) Let us consider Case (4) of Theorem 2.3. Since
c4 6= 0, it follows from Equation (13) that this is a strictly extremal metric
on Cn. From the proof of Theorem 2.3 we have the ODE sg′(s) = F (g(s))
where F (g) = c4g

3 + c3g
2 + g = c4 g(g− β)(g− γ). Here, we have 0 < β < γ,

lim
s→0+

g(s) = 0, lim
s→+∞

g(s) = β, and c4 = 1
βγ

.

As in the previous example we compute F (β) = 0 and F ′(β) = β−γ
γ

= −θ.
The inequality 0 < β < γ implies that 0 < θ < 1. Therefore, these are
strictly extremal metrics on (CPn,CPn−1) with cone angle 2πθ, 0 < θ < 1,
along CPn−1 attached at |z| =∞.
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2.3 Proofs

In this section we give the proofs of Lemma 2.5 and Corollary 2.6.

Proof: [Proof of Lemma 2.5]

(1) ⇒ (2) Let us assume we have a smooth U(n) invariant metric on Cn.

Then we have u(s) ∈ C∞[0,∞). This implies lim
s→0+

g(s) = lim
s→0+

su′(s) = 0.

(2) ⇒ (1) lim
s→0+

g(s) = 0 implies that the constants c0 and c1 in equation

(14) vanish. This can be seen as follows. Assume lim
s→0+

g(s) = A = 0 and

c0 6= 0. The condition c0 6= 0 implies

F (g) =
c4g

n+2 + c3g
n+1 + gn + c1g + c0
gn−1

=
H(g)

gn−1

and H(0) = c0 6= 0. This contradicts (1) of Lemma 4.3 which requires
H(A) = 0. So we must have c0 = 0.

Now let us assume lim
s→0+

g(s) = 0, c0 = 0, and c1 6= 0. Then

F (g) =
c4g

n+1 + c3g
n + gn−1 + c1

gn−2
=
H(g)

gn−2

and H(0) = c1 6= 0, which contradicts (1) of Lemma 4.3 again. Therefore
lim
s→0+

g(s) = 0 implies c0 = c1 = 0.

It follows from Remark 2.4 that, since we have lim
s→0+

g(s) = 0 and c0 =

c1 = 0, the metric smoothly extends to the origin.

(2) ⇒ (3) Let us assume lim
s→0+

g(s) = 0. We have already seen that this

implies c0 = c1 = 0. It follows from the definition of F that F (0) = 0.

(3) ⇒ (2) F (0) = 0 implies c0 = c1 = 0. This can be seen from the
definition of F (n ≥ 2) and the limit

lim
x→0

c1x+ c0
xn−1

= lim
x→0

(F (x)− c4x3 − c3x2 − x) = 0.

Now, we will show that c0 = c1 = 0 implies lim
s→0+

g(s) = 0.
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Let us assume lim
s→0+

g(s) = A > 0. We will arrive at a contradiction. If

c0 = c1 = 0, equation (14) becomes sg′ = c4g
3 + c3g

2 + g = H(g).

We have the following cases:

• c4 = c3 = 0
In this case H(g) = g and H(A) 6= 0 for A > 0. This contradicts (1) of
Lemma 4.3.

• c4 = 0, c3 6= 0

We have H(g) = g(c3g + 1). Since A > 0 and H(A) vanishes by (1) of
Lemma 4.3, we have B = ∞. But this contradicts (2) of Lemma 4.3
for degree reasons.

• c4 6= 0

It follows from (2) of Lemma 4.3 that B <∞. We have

H(g) = c4g
3 + c3g

2 + g = c4g(g − A)(g −B)

and H > 0 on (A,B), (0 < A < B < ∞). This implies c4 < 0, which
contradicts c4 = 1

AB
> 0.

Therefore, if c0 = c1 = 0, we have lim
s→0+

g(s) = A = 0. �

Proof: [Proof of Corollary 2.6] The ODE is given by sg′(s) = F (g(s))
where F (g) = c4g

3 + c3g
2 + g.

When c4 = 0, the metric is cscK, and it follows from Theorem 2.2 that
we cannot have R < 0.

Lemma 4.3 implies that, if we have c4 6= 0, then lim
s→+∞

g(s) = B <∞ for

degree reasons.

The scalar curvature R(s) is given by

R = −(n+ 2)(n+ 1)c4g(s)− (n+ 1)nc3.

The condition R < 0 gives −nc3 ≤ (n + 2)c4g(s). Let us check (2)–(4) of
Theorem 2.3 to see this is impossible.
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Case (2) We have F (g) = c4g(g−β)2 where β = lim
s→+∞

g(s), c4 = 1
β2 , and c3 = − 2

β
.

Then, R < 0 implies n 2
β
≤ (n+ 2) 1

β2 g(s), which contradicts lim
s→0+

g(s) = 0.

Case (3) We have F (g) = c4g(g−β)(g− γ) where γ < 0 < β, lim
s→+∞

g(s) = β, c4 =

1
βγ

, and c3 = −β+γ
βγ

. Inequality R < 0 implies nβ+γ
βγ
≤ (n + 2) 1

βγ
g(s). Since

βγ < 0, we have g(s) ≤ n+2
n
g(s) ≤ β + γ. This contradicts lim

s→+∞
g(s) = β.

Case (4) We have F (g) = c4g(g−β)(g− γ) where 0 < β < γ, lim
s→+∞

g(s) = β, c4 =

1
βγ

, and c3 = −β+γ
βγ

. Inequalities R < 0 and βγ > 0 imply n
n+2

(β+ γ) ≤ g(s).

This contradicts lim
s→0+

g(s) = 0.

�

3 U(2) Invariant Kähler Metrics with Extremal

Condition on C2\{0}

3.1 List of Solutions on C2\{0}

In this section, we solve the ordinary differential equation (14) for dimension
n = 2. The solutions with constant scalar curvature were given in [HL18].

Theorem 3.1 (He-Li [HL18], Theorem 1.2 ) Let u : (0,+∞)→ R be a
smooth function such that u(|z1|2 + |z2|2) is the potential of a Kähler metric
with constant scalar curvature R = 0 on C2\{0}. Then one of the following
is true:

(1) There exist constants a, b with a > 0 such that

u(s) = as+ b

(2) There exist constants a, b, c with a > 0, b > 0 such that

u(s) = as+ b log s+ c
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(3) There exist constants α, β, c with α 6= 0, β > 0, α < β such that g(s) =
su′(s) is the smooth strictly increasing function on (0,+∞) ranging
from β to +∞ determined by

β

β − α
log(g(s)− β)− α

β − α
log(g(s)− α) = log s+ c

(4) There exist constants α, c with α > 0 such that g(s) = su′(s) is the
smooth strictly increasing function ranging from α to +∞ on (0,+∞)
determined by

log(g(s)− α)− α

g(s)− α
= log s+ c

Theorem 3.2 (He-Li [HL18], Theorem 1.3 ) Let u : (0,+∞)→ R be a
smooth function such that u(|z1|2 + |z2|2) is the potential of a Kähler metric
with constant scalar curvature R = 6 on C2\{0} and g(s) = su′(s). Then
one of the following is true:

(1) There exist constants a, c with a > 0 such that

u(s) = log(s+ a) + c

(2) There exist constants a, k with a > 0, 0 < k < 1 such that

g(s) =
1

2
(k + 1)− ka

sk + a

(3) There exist constants α, β, γ, c with α 6= 0, β > 0, α < β < γ, α+β+γ =
1 such that g(s) = su′(s) is the smooth strictly increasing function
ranging from β to γ on (0,+∞) determined by

− α(γ − β) log(g(s)− α) + β(γ − α) log(g(s)− β)

− γ(β − α) log(γ − g(s)) = (β − α)(γ − β)(γ − α) log s+ c.

(4) There exist constants α, β, γ with 0 < β < α, α + 2β = 1 such that
g(s) = su′(s) is the smooth strictly increasing function ranging from β
to α on (0,+∞) determined by

α log(g(s)− β)− α log(α− g(s)) +
β(β − α)

g(s)− β
= (β − α)2 log s+ c
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Proposition 3.3 Let u : (0,∞) ←→ R be a smooth function such that
u(|z1|2 + |z2|2) is the potential of a Kähler metric satisfying the extremal
condition on C2\{0} and g(s) = su′(s). Then one of the following is true.

1. Metric can be extended smoothly to C2.

2. Metric is cscK with a singularity at the origin.

3. There exist constants α, β, c with 0 < α < β such that g(s) is the
smooth strictly increasing function from α to β on (0,∞) determined
by

β(β + 2α)

(α− β)2

{
log(g(s)− α)− log(β − g(s))− β − α

g(s)− β

}
= log s+ c.

(26)

4. There exist constants α, β, γ, c with γ < − αβ
α+β

< 0 < α < β such that

g(s) is the smooth strictly increasing function ranging from α to β on
(0,+∞) determined by

(αβ + αγ + βγ)

{
log(g(s)− α)

(α− β)(α− γ)
+

log(β − g(s))

(β − α)(β − γ)
+

log |g(s)− γ|
(γ − α)(γ − β)

}
= log s+ c.

(27)

5. There exist constants α, β, γ, c with 0 < α < β < γ such that g(s) is
the smooth strictly increasing function ranging from α to β on (0,+∞)
determined by equation (27).

6. There exist constants α, β, c with 0 < α < β such that g(s) is the smooth
strictly increasing function ranging from α to β on (0,+∞) determined
by

((α + β)2 + 2αβ)

{
α + β

(β − α)3
log(g(s)− α)− α

(α− β)2
1

g(s)− α
−

(28)

α + β

(β − α)3
log(β − g(s))− β

(α− β)2
1

g(s)− β

}
= log s+ c.
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7. There exist constants α, β, γ, c with 0 < α < β < γ such that g(s) is
the smooth strictly increasing function ranging from α to β on (0,+∞)
determined by

(α2 + 2αβ + 2αγ + βγ)

{
γ

(γ − α)(γ − β)
log(γ − g(s))− (29)

α

(α− γ)(α− β)

1

g(s)− α
+

−α2 + βγ

(α− γ)(α− β)
log(g(s)− α)+

β

(β − γ)(β − α)2
log |β − g(s)|

}
= log s+ c.

8. There exist constants α, β, γ, c with α < − α2+βγ
2(β+γ)

< 0 < β < γ such

that g(s) is the smooth strictly increasing function ranging from β to γ
on (0,+∞) determined by equation (29).

9. There exist constants α, β, γ, c with α < −β2+2βγ
2β+γ

< 0 < β < γ such

that g(s) is the smooth strictly increasing function ranging from β to γ
on (0,+∞) determined by

(β2 + 2βα + 2βγ + αγ)

{
α

(α− β)(α− γ)
log(g(s)− α) (30)

− β

(β − α)(β − γ)

1

g(s)− β
+

−β2 + αγ

(β − α)(β − γ)
log(g(s)− β)

+
γ

(γ − α)(γ − β)2
log(γ − g(s))

}
= log s+ c.

10. There exist constants α, β, γ, c with −γ(γ+2β)
2γ+β

< α < β < γ and αβγ 6= 0

such that g(s) is the smooth strictly increasing function ranging from
β to γ on (0,+∞) determined by

(γ2 + 2βγ + 2αγ + αβ)

{
α

(α− β)(α− γ)
log(g(s)− α) (31)

− γ

(γ − α)(γ − β)

1

g(s)− γ
+

−γ2 + αβ

(γ − α)(γ − β)
log(γ − g(s))

+
β

(β − α)(β − γ)2
log(g(s)− β)

}
= log s+ c.
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11. There exist constants α, β, γ, τ, c with −βγ+βτ+γτ
β+γ+τ

< α < β < γ < τ

and αβγτ 6= 0 such that g(s) is the smooth strictly increasing function
ranging from β to γ on (0,+∞) determined by

(αβ + αγ + ατ + βγ + βτ + γτ)

{
α

(α− β)(α− γ)(α− τ)
log(g(s)− α)

(32)

+
β

(β − α)(β − γ)(β − τ)
log |g(s)− β|+ γ

(γ − α)(γ − β)(γ − τ)
log |g(s)− γ|

+
τ

(τ − α)(τ − β)(τ − γ)
log |g(s)− τ |

}
= log s+ c.

12. There exist constants α, β, γ, τ, c with αβ+αγ+ατ+βγ+βτ+γτ < 0,
αβγτ 6= 0 such that g(s) is the smooth strictly increasing function
ranging from γ to τ on (0,+∞) determined by (32).

13. There exist constants α, β, a, b with 0 < α < β and a2 + 2a(α + β) +
b2 + αβ < 0 such that g(s) is the smooth strictly increasing function
ranging from α to β on (0,+∞) determined by

(a2 + 2a(α + β) + b2 + αβ)
{
c1 log(g(s)− α) + c2 log(β − g(s))+

(33)∫ β

α

−(c1 + c2)g(s) + 2(c1 + c2)a− c1α− c2β
g2(s)− 2ag(s) + a2 + b2

g′(s)ds
}

= log s,

where c1 = α
(α−β)(α2−2aα+a2+b2) and c2 = β

(β−α)(β2−2aβ+a2+b2) .

Proof: See Section 3.3. �

3.2 Examples of Extremal Kähler Metrics on Line Bun-
dles over CP1

The family of U(n) invariant extremal Kähler metrics fomulated in [Cal82]
can be used to write down non-compact, constant scalar curvature Kähler
metrics as in LeBrun [LeB88], Pedersen-Poon [PP91], and Simanca [Sim91]
(see also Abreu [Abr10]).
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Example 3.4 (Positive cscK metrics on OCP1(k), k ≥ 1) Let us consider
the positive cscK metric on C2\{0} given by the ODE

gg′

c3g3 + g2 + c1g + c0
=

1

s
(34)

where c3 6= 0, c0 6= 0. The polynomial H(x) = c3x
3 + x2 + c1x+ c0 has three

real roots, α, α, β, with 0 < α < β < ∞. It follows from Lemma 4.4 that
lims→0+ g(s) = α and lims→+∞ g(s) = β, and c3 = − 1

2α+β
. The ODE can be

written as

g′(s)(−2α− β)

{
α

α− β
1

(g − α)2
− β

(β − α)2
1

g − α
+

β

(β − α)2
1

g − β

}
=

1

s
.

Therefore, there exists a constant c such that

− α(2α + β)

β − α
1

g − α
+
β(2α + β)

(β − α)2
log(g−α)− β(2α + β)

(β − α)2
log(β−g) = log s+c

(35)
ODE (34) is of the form

sg′(s) = F (g(s)) (36)

where

F (g) =
c3g

3 + g2 + c1g + c0
g

=
c3(g − α)2(g − β)

g
.

We can obtain the positive line bundle OCP1(k), k > 0, by gluing a
CP1 to (C2\{0})/Zk at |z| = ∞. U(n) invariant Kähler metric on C2\{0}
determined by ODE (36) induces a metric on OCP1(k)\S∞. Here S∞ stands
for the zero section of OCP1(k). The induced metric can be extended by
continuity to a smooth metric onOCP1(k) if and only if F (β) = 0 and F ′(β) =
−k.

The condition F (β) = 0 is clearly satisfied. We compute F ′(β) = − (β−α)2
β2(β+2α)

.
We need to show that for every positive integer k there exist constants α, β,
0 < α < β which satisfy

(β − α)2

β2(β + 2α)
= k.

For simplicity, let us introduce new variables x = α > 0 and y = β − α > 0.
Then the above equation becomes

y2 − k(x+ y)2(y + 3x) = 0.
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For each positive integer k, this equation has solutions (x, y) with x > 0,
y > 0.

The function F (g) is strictly positive on (α, β). It follows from Calabi
[Cal82] that the Kähler metric extends smoothly to OCP1(k).

We need to show that the induced metric is complete on the total space
of OCP1(k).

The metric is complete if the improper integral that gives the geodesic
distance to z = 0 ∫ s0

0

√
g′(s)

s
ds =

∫ s0

0

√
F (g(s))

s
ds

is infinite.

Since lim
s→0+

g(s) = α > 0 and lim
s→∞

g(s) = β, β−g
(2α+β)g

is bounded on (0, s0).

There exists d1 > 0 such that

√
F (g) =

√(
− 1

2α + β

)
(g − α)2(g − β)

1

g
> d1(g − α).

Then, we have ∫ s0

0

√
g′(s)

s
ds > d1

∫ s0

0

g − α
s

ds.

If we choose s0 small enough, we have log(g−α) < 0 on (0, s0), and log(β−g)
is bounded. Therefore, Equation (35) implies

−α(2α + β)

β − α
1

g(s)− α
> log s+ c

g(s)− α
s

> − β − α
α(2α + β)

1

s(log s+ c)
.

Integrating both sides of this inequality on (0, s0) we see that the integral∫ s0

0

g(s)− α
s

ds

is infinite.
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Example 3.5 (Strictly extremal metrics on OCP1(−k), k ≥ 1) Let us con-
sider Case 10 of Proposition 3.3. Since c4 6= 0, it follows from Equation (13)
that this is a strictly extremal metric on C2\{0}. We can see from the proof
of Proposition 3.3 that the ODE is given by sg′(s) = F (g(s)) where

F (g) =
c4(g − α)(g − β)(g − γ)2

g
.

Here, we have α < β < γ, αβγ 6= 0, lim
s→0+

g(s) = β, lim
s→∞

g(s) = γ and

c4 =
1

αβ + 2αγ + 2βγ + γ2
> 0. We note that c4 > 0 implies −γ(γ+2β)

2γ+β
< α.

As in the proof of Proposition 3.3, we will rewrite the ODE as

g′(γ2 + 2βγ + 2αγ + αβ)

{
α

(α− β)(α− γ)

1

g(s)− α

+
γ

(γ − α)(γ − β)

1

(g(s)− γ)2
+

−γ2 + αβ

(γ − α)(γ − β)

1

g(s)− γ

+
β

(β − α)(β − γ)2
1

g(s)− β

}
=

1

s
.

Now recall that we can obtain the line bundle OCP1(−k), k = 1, 2, . . . , by
gluing a CP1 to (C2\{0})/Zk at z = 0. The U(2) invariant Kähler metric on
C2\{0} determined by sg′(s) = F (g(s)) induces a metric on OCP1(−k)\S0.
The induced metric can be extended by continuity to a smooth metric on
OCP1(−k) if and only if F (β) = 0 and F ′(β) = k. The condition F (β) = 0 is
clearly satisfied. We compute

F ′(β) =
(β − α)(γ − β)2

β(αβ + 2αγ + 2βγ + γ2)
.

We need to show that for every positive integer k, there exist constants α, β, γ
with

− γ(γ + 2β)

2γ + β
< α < β < γ, αβγ 6= 0, (37)

that satisfy
(β − α)(γ − β)2

β(αβ + 2αγ + 2βγ + γ2)
= k. (38)
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For simplicity, let γ = 2β. Then, Equations (37) and (38) give

− 8β

5
< α < β, αβ 6= 0,

β − α
5α + 8β

= k (39)

For each positive integer k, the pair (α, β) =
(
1−8k
1+5k

β, β
)

satisfies (39).

We need to show that the induced metric on OCP1(−k) is complete as
|z| → ∞, i.e. as g(s)→ γ. The metric is complete if the improper integral∫ ∞

s0

√
g′(s)

s
ds =

∫ ∞
s0

√
F (g(s))

s
ds

is infinite. Since lim
s→0+

g(s) = β and lim
s→+∞

g(s) = γ > 0, c4(g−α)(g−β)
g

is

bounded on (s0,∞). There exists d1 > 0 such that
√
F (g) > d1(γ − g).

Then we have ∫ ∞
s0

√
g′(s)

s
ds > d1

∫ ∞
s0

γ − g(s)

s
ds.

If we choose s0 large enough, we have log(γ−g) < 0 on (s0,∞), and log(g−α),
log(g − β) are bounded. Noting that −γ2 + αβ < 0, Equation (31) implies

γ

(γ − α)(γ − β)

1

γ − g(s)
<

1

γ2 + 2βγ + 2αγ + αβ
log s+ c1

γ − g(s)

s
>
c2 log s+ c3

s
, c2 > 0.

Integrating both sides of this inequality on (s0,∞), we see that the integral∫ ∞
s0

γ − g(s)

s
ds

is infinite.

3.3 Proofs

Proof: [Proof of Proposition 3.3] It follows from equation (14) that there
exists constants c0, c1, c3, c4 such that

gg′

c4g4 + c3g3 + g2 + c1g + c0
=

1

s
. (40)
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Case (1) c4 = 0.
We see from equation (13) that ω is a cscK metric. Classification of cscK
metrics on C2\0 is given by Theorem 1.2 in [HL18].

Case (2) c4 6= 0. c0 = c1 = 0 and lims→0+ g(s) = 0.
It follows from Remark that, in this case, the metric can be smoothly ex-
tended to the origin, hence Theorem 2.3 applies.

Case (3) c4 6= 0, c0 = c1 = 0 and lims→0+ g(s) = A > 0.
We haveH(x) = c4x

3+c3x
2+x and it follows from Lemma 4.3 thatH(A) = 0,

B < ∞, and H(x) > 0 in (A,B). In this case, the roots are given by
γ = 0 < α = A < β = B. But H(x) > 0 on (α, β), and this implies that
c4 = 1

αβ
< 0, which is a contradiction.

Case (4) c4 6= 0, c0 = 0, c1 6= 0, and the polynomial c4x
3 + c3x

2 + x+ c1 has roots
α, α, α.
It follows from Lemma 4.3 that B < ∞ for degree reasons, and this case is
impossible.

Case (5) c4 6= 0, c0 = 0, c1 6= 0, and the polynomial c4x
3 + c3x

2 + x+ c1 has roots
α, α, β with α < β.
It follows from Lemma 4.3 that B < ∞, α = A > 0, β = B, and H(x) > 0
on (α, β), which implies that c4 < 0.

Since H(x) = c4(x−α)2(x−β), we have 1 = c4(α
2 +2αβ), which contradicts

to 0 < α < β.

Case (6) c4 6= 0, c0 = 0, c1 6= 0, and the polynomial c4x
3 + c3x

2 + x+ c1 has roots
α, β, β with α < β.
We have α 6= 0, β 6= 0. The equation (40) can be written as

g′(s)

c4(α− β)2

{
1

g(s)− α
− 1

g(s)− β
+

β − α
(g(s)− β)2

}
=

1

s
.
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It follows from Lemma 4.3 that α = A β = B, and H(x) > 0 on (α, β).
Hence c4 = 1

β(β+2α)
> 0, and there exists a constant c such that

β(β + 2α)

(α− β)2

{
log(g(s)− α)− log(β − g(s))− β − α

g(s)− β

}
= log s+ c. (26)

On the other hand, Lemma 4.4 implies that there exists a unique smooth,
strictly increasing function g(s) = su′(s) ranging from α to β on (0,∞).

Case (7) c4 6= 0, c0 = 0, c1 6= 0, and the polynomial c4x
3 + c3x

2 + x + c1 has real
distict roots α, β, γ.
By Lemma 4.3 we have B < ∞ and H(x) > 0 on (A,B). It follows that all
roots are real, and if we let α = A, β = B, γ < α < β, then we have c4 < 0.
This gives us the inequality γ < − αβ

α+β
< 0 < α < β.

On the other hand, if we let α = A, β = B, α < β < γ, then we have c4 > 0.

We can write equation (40) as

g′(s)(αβ + αγ + βγ)

{
1

(α− β)(α− γ)

1

g(s)− α
+

1

(β − α)(β − γ)

1

g(s)− β
(41)

+
1

(γ − α)(γ − β)

1

g(s)− γ

}
=

1

s
.

There exists a constant c such that

(αβ + αγ + βγ)

{
log(g(s)− α)

(α− β)(α− γ)
+

log(β − g(s))

(β − α)(β − γ)
+

log |g(s)− γ|
(γ − α)(γ − β)

}
= log s+ c.

(27)

If we denote the left hand side of (27) by h(g(s)), then we see that lims→0+ h(g(s)) =
−∞, lims→+∞ h(g(s)) > 0, and d

ds
h(g(s)) > 0 on (0,∞). It follows from

Lemma 4.4 that there exists a unique smooth strictly increasing function
g(s) that solves the equation.

Case (8) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 +x2 + c1x+ c0 has at most
one real root.
By Lemma 4.3 B < ∞, and the equation (14) does not admit the required
solution.
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Case (9) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x + c0 has real
roots α, α, α, β with α < β.
It follows from Lemma 4.3 that B < ∞, and H(x) > 0 on (A,B). This im-
plies 0 < α = A < β = B, and c4 = 1

3α2+3αβ
< 0, which gives a contradiction.

Case (10) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x + c0 has real
roots α, β, β, β with α < β.
It follows from Lemma 4.3 that 0 < α = A < β = B, and c4 < 0, which gives
a contradiction.

Case (11) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x + c0 has no
real roots, and has complex roots a− ib, a− ib, a+ ib, a+ ib.
It follows from Lemma 4.3 that H(A) = 0, which is a contradiction.

Case (12) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x + c0 has real
roots α, α, β, β.
We have c4x

4 + c3x
3 + x2 + c1x+ c0 = c4(x− α)2(x− β)2 with αβ 6= 0. The

equation (40) can be written as

g′(s)((α + β)2 + 2αβ)

{
α + β

(β − α)3
1

g(s)− α
+

α

(α− β)2
1

(g(s)− α)2

− α + β

(β − α)3
1

g(s)− β
+

β

(α− β)2
1

(g(s)− β)2

}
=

1

s
.

We see from Lemma 4.3 that α = A > 0, β = B, and c4 > 0, where
c4 = 1

(α+β)2+2αβ
. We can integrate the above equation to obtain

((α + β)2 + 2αβ)

{
α + β

(β − α)3
log(g(s)− α)− α

(α− β)2
1

g(s)− α
− (28)

α + β

(β − α)3
log(β − g(s))− β

(α− β)2
1

g(s)− β

}
= log s+ c.

On the other hand, Lemma 4.4 implies that there exists a unique smooth
strictly increasing function g(s) ranging from α to β on (0,∞).

Case (13) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x+ c0 has three
distinct real roots α, α, β, γ with α < β < γ.
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It follows from Lemma 4.3 that we can either have α = A, β = B; or β = A,
γ = B.

Let us start with the case α = A, β = B. In this case we have c4x
4 + c3x

3 +
x2 + c1x+ c0 = c4(x− α)2(x− β)(x− γ). Then, c4 = 1

α2+2αβ+2αγ+βγ
and we

can see from Lemma 4.3 that α > 0, c4 > 0.

The equation (40) can be rewritten as

g′(s)(α2 + 2αβ + 2αγ + βγ)

{
γ

(γ − α)(γ − β)

1

g(s)− γ
+ (42)

α

(α− γ)(α− β)

1

(g(s)− α)2
+

−α2 + βγ

(α− γ)(α− β)

1

g(s)− α
+

β

(β − γ)(β − α)2
1

g(s)− β

}
=

1

s
.

There exists a constant c such that

(α2 + 2αβ + 2αγ + βγ)

{
γ

(γ − α)(γ − β)
log(γ − g(s))− (29)

α

(α− γ)(α− β)

1

g(s)− α
+

−α2 + βγ

(α− γ)(α− β)
log(g(s)− α)+

β

(β − γ)(β − α)2
log |β − g(s)|

}
= log s+ c.

Note that −α2 + βγ > 0. By Lemma 4.4, there exists a unique smooth func-
tion g(s) : (0,∞)→ (α, β) with g′(s) > 0 which solves the above equation.

On the other hand, if we assume β = A and γ = B, then it follows from
Lemma 4.3 that c4 = 1

α2+2αβ+2αγ+βγ
< 0, and 0 < β < γ.

Equivalently, we can write α < − α2+βγ
2(β+γ)

< 0 < β < γ. Note that for any
given 0 < β < γ, such α values exist.

Equation (40) can be rewritten as equation (42) as before, however, this time
we are looking for a smooth soution g(s) with values in (β, γ). Keeping this in
mind, we investigate (42) to obtain (29), and use Lemma 4.4 to conclude that
there exists a unique smooth strictly increasing function g : (0,∞)→ (β, γ)
satisfying (29).
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Case (14) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x+ c0 has three
distinct real roots α, β, β, γ with α < β < γ.
The equation (14) can be rewritten as

g′(s)(β2 + 2βα + 2βγ + αγ)

{
α

(α− β)(α− γ)

1

g(s)− α

+
β

(β − α)(β − γ)

1

(g(s)− β)2
+

−β2 + αγ

(β − α)(β − γ)

1

g(s)− β

+
γ

(γ − α)(γ − β)2
1

g(s)− γ

}
=

1

s
.

There exists a constant c such that

(β2 + 2βα + 2βγ + αγ)

{
α

(α− β)(α− γ)
log(g(s)− α) (30)

− β

(β − α)(β − γ)

1

g(s)− β
+

−β2 + αγ

(β − α)(β − γ)
log |g(s)− β|

+
γ

(γ − α)(γ − β)2
log(γ − g(s))

}
= log s+ c.

It follows from Lemma 4.3 that we have B < ∞ for degree reasons, so we
can choose either α = A, β = B; or β = A, γ = B. By Lemma 4.3 we have
H(x) > 0 on (A,B), which implies c4 < 0 in both cases. However, since
c4 = 1

β2+2βα+2βγ+αγ
and A > 0, we see that the former case is impossible,

leaving us with the choice β = A, γ = B. It follows from Lemma 4.4 that
there exists a unique smooth strictly increasing function g : (0,∞)→ (β, γ)
satisfying (30).

Case (15) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x+ c0 has three
distinct real roots α, β, γ, γ with α < β < γ.
It follows from Lemma 4.3 that we can have either α = A, β = B; or β = A,
γ = B. In the former case, Lemma 4.3 implies c4 = 1

αβ+2αγ+2βγ+γ2
< 0, which

contradicts with our choice 0 < α = A < β = B < γ.

Let us assume β = A, γ = B. Since H(x) > 0 on (β, γ), we have c4 > 0,

which implies that −γ(γ+2β)
2γ+β

< α. We have α 6= 0 as c0 6= 0. The equation
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(40) can be written as

g′(γ2 + 2βγ + 2αγ + αβ)

{
α

(α− β)(α− γ)

1

g(s)− α

+
γ

(γ − α)(γ − β)

1

(g(s)− γ)2
+

−γ2 + αβ

(γ − α)(γ − β)

1

g(s)− γ

+
β

(β − α)(β − γ)2
1

g(s)− β

}
=

1

s
.

There exists a constant c such that

(γ2 + 2βγ + 2αγ + αβ)

{
α

(α− β)(α− γ)
log(g(s)− α) (31)

− γ

(γ − α)(γ − β)

1

g(s)− γ
+

−γ2 + αβ

(γ − α)(γ − β)
log(γ − g(s))

+
β

(β − α)(β − γ)2
log(g(s)− β)

}
= log s+ c.

It follows from Lemma 4.4 that there exists a unique smooth strictly increas-
ing function g(s) : (0,∞)→ (β, γ) that solves equation (31).

Case (16) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x+ c0 has four
distinct real roots α, β, γ, τ with α < β < γ < τ , and αβγτ 6= 0.
Equation (40) can be rewritten as

g′(αβ + αγ + ατ + βγ + βτ + γτ)

{
α

(α− β)(α− γ)(α− τ)

1

g(s)− α

+
β

(β − α)(β − γ)(β − τ)

1

g(s)− β
+

γ

(γ − α)(γ − β)(γ − τ)

1

g(s)− γ

+
τ

(τ − α)(τ − β)(τ − γ)

1

g(s)− τ

}
=

1

s
.

34



There exists a constant c such that

(αβ + αγ + ατ + βγ + βτ + γτ)

{
α

(α− β)(α− γ)(α− τ)
log(g(s)− α)

(32)

+
β

(β − α)(β − γ)(β − τ)
log |g(s)− β|+ γ

(γ − α)(γ − β)(γ − τ)
log |g(s)− γ|

+
τ

(τ − α)(τ − β)(τ − γ)
log |g(s)− τ |

}
= log s+ c.

It follows from Lemma 4.3 that we have A > 0, B < ∞, and H(x) > 0 on
(A,B). This implies that we have three possibilities:

(i) α = A, β = B and c4 < 0.
In this case, all roots of the polynomial H(x) are positive which contra-
dicts with c4 < 0.

(ii) β = A, γ = B, and c4 > 0
By Lemma 4.4, there exists a unique smooth, strictly increasing func-
tion g(s) : (0,∞) → (β, γ) satisfying equation (32), whenever α >
−βγ+βτ+γτ

β+γ+τ
.

(iii) γ = A, β = τ , and c4 < 0.
By Lemma 4.4, there exists a unique smooth, strictly increasing func-
tion g(s) : (0,∞)→ (γ, τ) satisfying equation (32), whenever αβ+αγ+
ατ + βγ + βτ + γτ < 0.

Case (17) c4 6= 0, c0 6= 0, and the polynomial c4x
4 + c3x

3 + x2 + c1x+ c0 has four
distinct roots α, β, a+ ib, a− ib.
It follows from Lemma 4.3 that α = A, β = B, and c4 < 0. If we write
H(x) = c4(x − α)(x − β)(x2 + 2ax + a2 + b2), then c4 < 0 can be written
as a2 + 2a(α + β) + b2 + αβ < 0. This condition holds for those α, β, a, b
which satisfy b2 < α2 + αβ + β2 and −(α+ β)−

√
α2 + αβ + β2 − b2 < a <

−(α + β) +
√
α2 + αβ + β2 − b2.

The equation (40) can be rewritten as

(a2 + 2a(α + β) + b2 + αβ)g′
{
c1

c1
g(s)− α

+
c2

g(s)− β
+

−(c1 + c2)g(s) + 2(c1 + c2)a− c1α− c2β
g2(s)− 2ag(s) + a2 + b2

}
=

1

s
,
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where c1 = α
(α−β)(α2−2aα+a2+b2) and c2 = β

(β−α)(β2−2aβ+a2+b2) .

On the other hand, Lemma 4.4 implies that there exists a unique smooth,
strictly increasing function g(s) : (0,∞)→ (α, β) determined by

(a2 + 2a(α + β) + b2 + αβ) {c1 log(g(s)− α) + c2 log(β − g(s))+ (33)∫ β

α

−(c1 + c2)g(s) + 2(c1 + c2)a− c1α− c2β
g2(s)− 2ag(s) + a2 + b2

g′(s)ds

}
= log s.

Here we note that the integral in equation (33) is a proper integral, since the
denominator is never zero.

�

4 Technical Lemmas

Proposition 4.1 (Monn [Mon86], Proposition 2.1) Let B be an open
ball containing the origin in Cn. Let u be a radial function on B, and let
ũ(r) = u(r, 0, . . . , 0). Then u ∈ Ck(B) if and only if ũ ∈ Ck[0, 1], and
ũ(`)(0) = 0 for all ` ≤ k, ` odd.

Proposition 4.2 (Monn [Mon86], Proposition 4.1) The kth derivative
of two real-valued functions, f ◦ g, can be written as a sum of terms of the
form

f (λ)(g) · P (g′, g′′, . . . , gk+1−λ)

where P is a monomial of degree λ ≤ k and of weighted degree k.

The following lemma is useful for eliminating impossible cases as solutions
of the extremal equation sg′ = F (g).

Lemma 4.3 ([HL18], Lemma 6.2) Suppose H(x) is a polynomial of de-
gree m and the ordinary differential equation

gk(s)g′(s)

H(g(s))
=

1

s

admits a smooth solution g(s) on (0,∞) with g(s) > 0, g′(s) > 0. Denote by
A = lim

s→0+
g(s), B = lim

s→+∞
g(s). Then
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1. H(A) = 0 and H(x) > 0 for x ∈ (A,B).

2. If B = +∞, then degH ≤ k + 1. Moreover, A is the largest and
nonnegative real root of H(x), and H(x) is positive on (A,+∞).

3. If B < +∞, then H(B) = 0. Moreover, A and B are two successive
nonnegative real roots of the polynomial H(x), and H(x) is positive on
the interval (A,B)

Once the impossible cases are eliminated by the above lemma, we use the
following lemma to show the existence of solutions.

Lemma 4.4 ([HL18], Lemma 6.1) Let h : (A,B) → R be a smooth,
strictly increasing function with lim

t→A
h(t) = −∞, lim

t→B
h(t) = ∞. Then, for

any constant a > 0 and c, there exists a unique smooth, strictly increasing
function g : (0,∞)→ R such that

h(g(s)) = a log s+ c

and lim
s→0+

g(s) = A, lim
s→+∞

g(s) = B.
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