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Abstract of the Dissertation

The Charged Penrose Inequality for Manifolds with Cylindrical Ends and Related Inequalities

by

Jaroslaw Jaracz

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

We prove the charged Penrose inequality for time symmetric initial data sets with finitely
many asymptotically cylindrical ends. We do so by employing a doubling argument modeled
after Weinstein and Yamada [50] and then applying the ordinary charged Penrose inequality
due to Khuri, Weinstein, and Yamada [37]. We establish the appropriate rigidity result
by using weak inverse mean curvature flow (IMCF) [28] which shows that equality holds
if and only if our initial data is Reissner-Nordström. The techniques employed allow for
a quick proof of the positive mass theorem with charge for manifolds with asymptotically
cylindrical ends, giving a completely different proof of the same result found in [1]. Motivated
by Bekenstein bounds [8–10] we then prove three theorems relating mass, size, charge, and
angular momentum for bodies which we have published in [30]. The proofs of these three
theorems are based on the generalized Jang equation proposed by Khuri and Bray [13,14].
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1 Introduction

The study of inequalities involving physical quantities has become one of the most active
areas of mathematical general relativity. These inequalities are proposed based on physical
intuition, and then it is up to the mathematicians to verify them. Verification of these
inequalities provides further proof of the validity of general relativity, while the fact that
some inequality does not hold can provide direction for new research. The two most famous
such inequalities are the positive mass theorem and the Penrose inequality. Less famous,
though equally important, are Bekenstein bounds. The goal of this dissertation is to study
these inequalities.

We begin with a discussion of the Penrose inequality. Conjectured by Penrose [42] in the
early 1970’s using a heuristic argument based on the establishment viewpoint of gravitational
collapse and the assumption of cosmic censorship, it relates the mass m to the surface area
A of a black hole. Defining the area radius ρ by A = 4πρ2, the Penrose inequality takes the
form

m ≥ 1

2
ρ. (1)

The Riemannian Penrose inequlaity is a special case, where the mass m is the ADM mass
of an asymptotically flat 3-manifold having non-negative scalar curvature and A is the area
of the outermost minimal surface (with possibly multiple components). It was proven in the
late 1990’s by Huisken and Ilmanen using weak inverse mean curvature flow (IMCF) with
the area A being that of the largest connected component of the outermost minimal surface
[28], and in full generality by Bray using a novel conformal flow of metrics [12].

In the case that the outermost minimal surface has a single boundary component, in-
equality (1) can be extended to include charge yielding

m ≥ 1

2

(
ρ+

q2

ρ

)
(2)

where q is the total charge enclosed by the minimal surface. One might then conjecture
that (2) holds when the outermost minimal surface has multiple components. However, a
time symmetric, asymptotically flat counter example was constructed in [50], by gluing two
copies of the Majumdar-Papapetrou initial data sets. It is important to point out that this
does not provide a counter example to cosmic censorship. As pointed out by Jang [29], (2)
is equivalent to two inequalities,

m−
√
m2 − q2 ≤ ρ ≤ m+

√
m2 − q2 (3)

and only the upper bound follows from Penrose’s heuristic arguments. The counter example
violates the lower bound. In [37] it was proven that the upper bound always holds and that
the full charged Penrose inequality holds under the additional assumption ρ ≥ |q|.

In the time symmetric case, the usual geometry associated with the Penrose inequality
is that of a manifold with boundary, where the boundary is a compact outermost minimal
surface. The typical examples of such geometry are the canonical slices of the Schwarzchild
and ordinary Reissner-Nordström spacetimes. However, there is a second fundamental type
of geometry which arises naturally and is exemplified by the canonical slice of the extreme
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Reissner-Nordström spacetime. This slice is a complete manifold without boundary which
possesses a region where the metric approaches a product metric on R × S2. In the limit,
the S2 cross-sections have a well-defined area and vanishing mean curvature.

Hence the idea is that such “asymptotically cylindrical ends” should be able to replace
minimal boundary components in the ordinary and charged Penrose inequalities. This is
indeed the case and is our first theorem.

Theorem 1 Let (M, g,E,B) be a time symmetric initial data set with a single strongly
asymptotically flat end of ADM mass m, with generalized boundary consisting of finitely
many asymptotically cylindrical ends and a minimal surface boundary, with generalized area
radius ρ. Assume the data satisfies the charged dominant energy condition, the Maxwell
constraints without charged matter, and has electric and magnetic charges qe and qb (with
total squared charge q2). Finally, suppose that the generalized boundary is outerminimizing,
which means that any surface S enclosing the generalized boundary satisfies |S| > 4πρ2.
Then the upper bound in (3) holds. Moreover, if ρ ≥ |q| then (2) holds. Equality holds
in both cases if and only if the initial data is given by the canonical slice of the (possibly
extreme) Reissner-Nordström spacetime with E = (qe/r

2)νr and B = (qb/r
2)νr where νr is

the outward unit normal to spheres of radius r in standard coordinates.

For the definitions of relevant terms, see Section 2. Sections 4 through 10 deal with the
proof.

The positive mass theorem states that

m ≥ 0 (4)

where m is the ADM mass of a (particular) end in an asymptotically flat manifold. This can
be extended to the positive mass theorem with charge

m ≥ |q|. (5)

These were proven in [44], [45], and [22] in the case of asymptotically flat manifolds satisfying
the charged dominant energy condition. It was observed that the methods used to prove
Theorem 1 could be used to prove a version of the positive mass theorem with charge in the
time symmetric case.

Theorem 2 Let (M, g,E,B) be a time symmetric initial data set for the Einstein-Maxwell
equations with a single asymptotically flat end and with a generalized boundary consisting of
finitely many asymptotically cylindrical ends and a minimal surface boundary. Then

m ≥ |q|. (6)

This result was established in [1] using spinorial techniques. Our proof uses completely
different methods and has a better chance of generalizing to the non-time symmetric setting.
Since the proof relies on the techniques developed for the proof of Theorem 1, it is much
shorter and is confined to Section 11.

The remainder of this work deals with the so-called Bekenstein bounds. These results
have already been published by the author and Marcus Khuri in [30]. The only thing to keep
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in mind is that in the entirety of this work we use the convention that the speed of light c
and the gravitational constant G are set to c = G = 1. In contrast, these constant were kept
in the above mentioned papaer.

In [8] Bekenstein utilized heuristic arguments involving black holes to derive an upper
bound for the entropy of macroscopic bodies in terms of the total energy and radius of the
smallest sphere that encloses the object. This inequality was later generalized [9, 26, 27, 51]
to include contributions from the angular momentum J and charge q of the body√

(mR)2 − J 2 − q2

2
≥ ~

2πkb
S, (7)

where kb denotes Boltzmann’s constant , S is entropy, m is total mass/energy, R is the radius
described above, and ~ is the reduced Planck’s constant. Although the original inequality [8]
without angular momentum and charge has received much attention [10,11,49], the enhanced
relation (7) has not been properly investigated. An important initial step in that direction
was taken by Dain [17] who studied the inequality

m2 ≥ q4

4R2
+
J 2

R2
, (8)

which is implied by (7) since entropy is always nonnegative. He was able to establish (8)
within the context of electromagnetism, and also in general relativity for bodies with zero
angular momentum contained in asymptotically flat, maximal initial data which are void of
black holes. In this result m is given by the ADM mass. The idea is that a proof of (8) lends
indirect evidence for the full Bekenstein bound (7). Later on Dain’s result was extended to
include a contribution from angular momentum [3], again in the setting of asymptotically
flat, maximal initial data. The inequality produced in [3] is not quite in the form of (8),
and it is not clear if one implies the other. Both results [3,17] are based on monotonicity of
the Hawking mass along IMCF, which is valid in the maximal case assuming the dominant
energy condition holds.

We establish a Bekenstein-like inequality closely related to (8) without the hypothesis of
maximality for the initial data, and thereby generalize the works [3,17]. Our approach relies
on a coupling of the IMCF with an embellished version of the Jang equation [13,14], which
is inspired by the proof of the positive mass theorem [44]. This yields the following:

Theorem 3 Let (M, g, k, E,B) be a complete, axisymmetric, asymptotically flat initial data
set for the Einstein-Maxwell equations, satisfying the charged dominant energy condition
µEM ≥ |JEM | and without apparent horizons. Suppose that Ω ⊂ M is a body outside of
which there is no charge density or momentum density in the direction of axisymmetry. If
the Jang/IMCF system of equations admits a solution then

m ≥ q2

2R
+
J 2

2RR2
c

. (9)

For all relevant definitions and the proof see Section 12.
In addition, the techniques used to prove the above theorem naturally lend themselves

to establish a version of the Penrose inequality [39] with angular momentum and charge
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for general axisymmetric initial data without the maximal assumption. A similar result
in the maximal case was recently given in [2]. Recall that Penrose [42] proposed a sharp
inequality bounding the total energy of a black hole spacetime from below in terms of the
horizon area. It serves a necessary condition for the cosmic censorship conjecture. Thus, a
counterexample would disprove cosmic censorship while verification of the Penrose inequality
only lends credence to the conjecture’s validity. In [12, 28] the Penrose inequality has been
proven in the maximal case. Moreover, generalizations including angular momentum and
charge have been proposed [39] motivated by Penrose’s original heuristic arguments. The
full Penrose inequality may then be stated as follows

m2 ≥

(√
A

16π
+

√
π

A
q2

)2

+
4πJ 2

A
=

1

4

(
ρ+

q2

ρ

)2

+
J 2

ρ2
, (10)

where A is the minimum area required to enclose the outermost apparent horizon in an
axisymmetric initial data set satisfying the relevant energy condition. This comes with a
rigidity statement asserting that equality holds if and only if the initial data arise from an
embedding into the Kerr spacetime. We also note that the Bekenstein bound (7), when
applied to black holes, implies the Penrose inequality (10). To see this, simply recall that
for a black hole with event horizon area Ae the radius and entropy are given by

R =

√
Ae
4π
, S =

kbAe
4l2p

, (11)

where lp =
√
~ is the Planck length. Inequality (10) has been established in the maximal

case without the angular momentum term in a series of papers [18, 35–37]. However, there
has been very little to no progress on including angular momentum. The only result known
to the author in this direction is [2]. Here we will establish a version of (10) valid in the
general nonmaximal setting, assuming the existence of solutions to a canonical coupling of
the Jang equation to IMCF; such solutions are known to exist in spherical symmetry.

Theorem 4 Let (M, g, k, E,B) be an axisymmetric, asymptotically flat initial data set for
the Einstein-Maxwell equations, satisfying the charged dominant energy condition µEM ≥
|JEM | and with outermost apparent horizon boundary having one component. Suppose further
that there is no charge density or momentum density in the direction of axisymmetry. If the
Jang/IMCF system of equations admits a proper solution then

m2 ≥

(√
|∂M |
16π

+

√
π

|∂M |
q2

)2

+
J 2

4R2
c

. (12)

For all relevant definitions and the proof see Section 13.
Lastly, the methods used to study the Penrose inequality above lead to new inequalities

for bodies involving size, angular momentum, mass, and charge. In this vein, our final result
is

Theorem 5 Consider two concentric bodies Ω1 ⊂ Ω2, each having the topology of a 3-
dimensional ball, inside an axisymmetric asymptotically flat initial data set (M, g, k, E,B).
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Assume the outer region is untrapped, the annular region Ω2 \Ω1 has no charge and momen-
tum density in the Killing direction, and the initial data are void of apparent horizons. If
the Jang/IMCF system of equations admits a proper solution then

1

2
R2 ≥

4π

3
R3

1 min
Ω̃1

(µEM − |JEM |) +
q2

2R1

1−

√
R1

R2

+
1

2

J 2

R1R2
ac

. (13)

We can then turn this inequality around in order to obtain a black hole existence result.
Recall that Thorne’s hoop conjecture [48] roughly states that if enough matter/energy is
condensed in an appropriately small region, then gravitational collapse will ensue. Mathe-
matically this assertion may be translated into a heuristic inequality

Mass(Ω) > C · Size(Ω), (14)

which if satisfied for a body Ω, then implies that Ω must be contained within an apparent
horizon; here C is a universal constant. One of the primary difficulties in establishing such
a result is finding a proper notion of quasi-local mass to use in the left-hand side of (14).
We see that if we have an initial data set which does not satisfy (13), then the data must
contain an apparent horizon.

This shows that mass is not the only quantity which can appear on the left hand side
of (14). Angular momentum and charge also naturally arise on the left-hand side, and thus
provide extra means to satisfy (14). This will be rigorously proven in spherical symmetry,
and motivation will be given to indicate why the result should hold in generality. Related
results concerning black hole existence due to concentration of angular momentum or charge
have been given in [32,33,38], using different methods. See also [5, 6].
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2 Definitions and Standard Formulas

2.1 Initial Data Sets

An initial data set for the Einstein-Maxwell equations consists of a quintuple (M, g, k, E,B)
where M is a smooth 3-manifold, g is a Riemannian metric, k is a symmetric 2-tensor (the
extrinsic curvature) and E and B are vector fields representing the electromagnetic field.
This initial data set satisfies the constraint equations

16πµ = R + (Trgk)2 − |k|2

8πJ = div(k − (Trgk)g)
(1)

where µ and J are the energy and momentum densities of the matter fields. It is often useful
to subtract off the contributions to these quantities arising from the electromagnetic field,
and refer to these quantities as µEM and JEM which yields

16πµEM = 16πµ− 2(|E|2 + |B|2)

8πJEM = 8πJ + 2(E ×B).
(2)

In the time-symmetric case (k = 0) we will write our initial data sets as (M, g,E,B).
This represents a metric which is not changing with “time”. In this case, the constraint
equations simplify to

16πµ = R (3)

and
16πµEM = R− 2(|E|2 + |B|2). (4)

2.2 Energy Conditions and the Maxwell Constraint

Based on observations and physical principles, initial data sets are assumed to satisfy what
are called energy conditions. Two common such conditions are the following:

Definition 1 An initial data set is said to satisfy the dominant energy condition (DEC) if

µ ≥ |J |. (5)

If the data is time symmetric, this is equivalent to

R ≥ 0. (6)

Definition 2 An initial data set is said to satisfy the charged dominant energy condition
(CDEC) if

µEM ≥ |JEM | (7)

If the data is time symmetric, then it satisfies the CDEC if

R ≥ 2(|E|2 + |B|2). (8)
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Notice that the CDEC in the time symmetric case is a weaker condition then the full
CDEC. The latter only implies

R ≥ 2(|E|2 + |B|2 + |E ×B|). (9)

The physical interpretations of the DEC and CDEC are most apparent in the time-symmetric
case. They say, respectively, that the matter and non-electromagnetic matter densities are
non-negative, in compliance with everyday experience.

Finally we have:

Definition 3 The time-symmetric initial data set (M, g,E,B) is said to satisfy the Maxwell
constraint without charged matter if divg E = divg B = 0 everywhere on M .

Physically this means that the initial data set does not contain any charged matter in the
interior.

2.3 SAF Ends, the ADM Mass, and Charges at Infinity

A manifold is said to have a strongly asymptotically flat (SAF) end if there is an open region
diffeomorphic to the complement of a closed ball in R3, and in the coordinates given by this
diffeomorphism the following fall off conditions hold:

|∂n(gij − δij)| = O(|x|−n−1), |∂nkij| = O(|x|−n−2), |∂nEi| = O(|x|−n−2),

|∂nBi| = O(|x|−n−2), n = 0, 1, 2 as |x| → ∞.
We denote the diffeomorphism by Ψ : Ω → Ω̃ = {x : |x| > r0} for some r0. We also require
that the scalar curvature R satisfies R ∈ L1(Ω). Given such an end, we can compute its
ADM mass which is given by

m = lim
r→∞

1

16π

∫
Sr

(gij,i − gii,j)νjdS (10)

where Sr are coordinate spheres of Euclidean radius r in Ω and νj is the outward unit normal
[4]. It is well known that with the above fall-off conditions this quantity is a geometric
invariant of the given end [7]. Also, the above fall off conditions mean that the electric and
magnetic charges measured at infinity given by

qe = lim
r→∞

1

4π

∫
Sr

Ejν
jdS, qb = lim

r→∞

1

4π

∫
Sr

Bjν
jdS (11)

are well defined. We define the squared total charge by

q2 = q2
e + q2

b . (12)

Given an asymptotically flat end we can add a point at ∞ and conformally compactify.
Then we can define:

Definition 4 Suppose we have two smooth compact surfaces S1 and S2. We say that S2

encloses S1 (with respect to the chosen end) if any smooth curve which passes through ∞
and intersects S1 also intersects S2.
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2.4 Schwarzchild and Reissner-Nordström Slices

The canonical (exterior) slice of the Schwarzchild spacetime is the manifold with boundary
[2m,∞)× S2 with the metric (

1− 2m

r

)−1

dr2 + r2dσ2 (13)

where dσ2 denotes the standard metric on the unit sphere. As is well known, the Schwarzchild
slice is SAF with ADM mass m and the boundary surface r = 2m is an outermost minimal
surface with area 16πm2. Here, outermost means that it is not enclosed by any other compact
minimal surface.

Similarly for m > |q|, the canonical (exterior) slice of the Reissner-Nordström spacetime
is the manifold [m+

√
m2 − q2,∞)× S2 with the metric(

1− 2m

r
+
q2

r2

)−1

dr2 + r2dσ2 (14)

where m is again the ADM mass and q2 is the squared total charge as defined above. As
can be checked, the boundary surface r = m+

√
m2 − q2 is an outermost minimal surface.

However, when m = |q| something interesting occurs. If we choose any point with r-
coordinate larger than m, then the distance to the “surface” r = m is actually infinite.
Hence, the resulting manifold is a complete manifold without boundary, which does not
contain any compact minimal surfaces. Using a change of coordinates, the metric can be
put into the form

(e−t/m +m)2

m2
dt2 + (e−t/m +m)2dσ2. (15)

with t ∈ R. Letting t → ∞ (which corresponds to r → m in the original coordinates) the
metric approaches

dt2 +m2dσ2. (16)

This is called extreme Reissner-Nordström and serves as the motivation for asymptotically
cylindrical ends in the next subsection.

In addition, we will denote the outward unit normal to spheres of constant r in these
coordinates by νr.

2.5 Asymptotically Cylindrical Ends

Motivated by extreme Reissner-Nordström, we say a region Λ in our initial data set is
an asymptotically cylindrical (AC) end if it is diffeomorphic to [0,∞) × N where N is a
compact, closed, orientable 2-manifold and if there exists a product metric g̃ = dt2 +h, with
h a Riemannian metric on N , such that in the coordinates given by the diffeomorphism

|∂n(gij − g̃ij)| = O (1/t) , n = 0, 1, 2 as t→∞.

We denote the coordinates on Λ by (t, ω). In addition, we require that if there are vector
fields E and B defined on our cylindrical end, then there exist vector fields Ẽ and B̃, with
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components independent of t, satisfying

|∂n(Ei − Ẽi)| = O(1/t), |∂n(Bi − B̃i)| = O(1/t), for n = 0, 1 as t→∞.

Apriori, the manifold N can be arbitrary. However, for the duration of this work, we will let
N = S2, the two-sphere. The justification for this can be found in Section 3.

We refer to the surfaces NT = {(t, ω) : t = T} as cross-sections. With the above
asymptotics, the areas of the cross-sections approach a limiting value, A = limT→∞ |NT |.
For brevity, we will refer to this limit value as the area of the end. We also define the area
radius of the particular cylindrical end by the formula A = 4πρ2. In addition, the mean
curvatures of the cross-sections tend to 0 as t → ∞. As t increases, we say that we are
moving down the cylindrical end.

Obviously, there are many different choices of cylindrical coordinates on a given end.
However, if we consider the areas of the cross-sections in each such coordinate system, we
see that they converge to the same value.

We can also define the intuitive notion of what it means for a surface to enclose a cylin-
drical end. As before, we can conformally compactify a given SAF end by adding a point at
∞.

Definition 5 We say that a smooth compact surface S encloses a given AC end (with respect
to a given SAF end) if any smooth curve which passes through ∞ and has unbounded t-
coordinate in the AC coordinates intersects S.

2.6 Apparent Horizons and Minimal Surfaces

A black hole is an object which can only be detected by knowing the full long-term evolution
of the initial data set, which is generally a difficult problem. So, we focus on questions which
can be answered in terms of initial data alone. Given an orientable surface S ⊂ M in our
initial data set, we can compute what are called the null expansions

θ± = H ± TrSk

where H is the mean curvature of S and TrSk is the trace of k restricted to S with respect
to the metric induced on S. The null expansions quantify what happens to a shell of light
emitted outwards and inwards from S. If θ± < 0 then both shells of light are getting smaller
indicating the presence of a strong gravitational field. A surface satisfying θ± = 0 is called
an apparent horizon and conforms with the expected behavior at the surface of a black hole.
As the above formula shows, in the time symmetric case apparent horizons coincide with
minimal surfaces. See [39] for an introduction.

2.7 The Generalized Boundary and the Outer-minimizing Condi-
tion

Suppose our initial data has an apparent horizon boundary (or a minimal surface in the
time-symmetric case) ∂M with finitely many connected components and area |∂M |. Also
suppose our initial data has finitely many cylindrical ends. Each such end has some area Ai.
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Definition 6 The union of ∂M and the cylindrical ends is referred to as the generalized
boundary. We define the area of the generalized boundary to be A = |∂M | +

∑n
i=1 Ai where

Ai is the area of each end. We also define the area radius of the generalized boundary by the
equation A = 4πρ2.

Definition 7 A surface S ⊂ M is said to enclose the generalized boundary if it encloses
∂M (in the sense of Section 2.2) and each of the AC ends (in the sense of Section 2.4).

Definition 8 The generalized boundary is said to be outerminimizing if for any S which
encloses the generalized boundary |S| > A.

We explain the motivation behind Definition 8. As is well known [21], the Penrose
inequality can be violated if the minimal surface taken to be the boundary of the initial
data is not outermost. Briefly, there can be a large minimal surface hidden behind a small
one leading into an asymptotically flat end with small mass. The area of this large minimal
surface then violates the Penrose inequality.

Similarly, we could hide an AC end with large area behind a small minimal surface
and violate the Penrose inequality. Hence, we need some condition which is analogous to
the outermost minimal boundary condition in the ordinary Penrose and charged Penrose
inequalities. Noting that an outermost minimal surface is strictly outerminimizing (meaning
any surface enclosing it has larger area), we see that requiring our initial data to satisfy
Definition 8 is quite natural.

2.8 Weighted Hölder Spaces

First we will define weighted Hölder spaces on a manifold with finitely many SAF ends.
Denote each of the SAF ends by Ωl and make a choice of asymptotically Euclidean coordi-
nates on each. This means each Ωl is difeomorphic to Ω̃l = {x : |x| > rl}. Consider the
set K = M \ ∪lΩl. Define a smooth function σ ≥ 1 by σ ≡ 1 on K, and such that suffi-
ciently far in each Ωl we have σ = r, the Euclidean radial coordinate in each of the chosen
asymptotically Euclidean coordinates. This σ is called the weight function.

We would like to use the definition given in [50]. There, Ck,α
−β is the set of functions φ

on M whose k-th order derivatives are Hölder continuous and for which the norm ‖φ‖Ck,α−β
defined below is finite:

‖φ‖Ck−β =
k∑
i=0

∥∥σβ+iDiφ
∥∥
C0 (17)

[
Dkφ

]
α,−β = sup

x∈M
0<dist(x,y)<ρ

σ(x, y)β+α+k
|P x
yD

kφ(y)−Dkφ(x)|
dist(x, y)α

(18)

‖φ‖Ck,α−β = ‖φ‖Ck−β +
[
Dkφ

]
α,−β . (19)

Here Diφ is the tensor of i-th order derivatives of φ, ρ is the injectivity radius of M ,
σ(x, y) = max {σ(x), σ(y)}, and P x

y is parallel translation along the shortest geodesic from y
to x. Notice that if M has cylindrical ends, then σ = 1 (sufficiently far down) in these ends.
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This definition is very nice because it is invariantly defined, not depending on any choice
of coordinates. However, it is not quite right in the case of a manifold with boundary since
for points getting closer to the boundary the injectivity radius tends to 0. Instead we use
the usual definition of Hölder spaces which uses a finite open cover and a partition of unity.

Let Λi be the i-th cylindrical end. The compact cross-section Ni can be covered by finitely
many open sets {Bj

i } diffeomorphic to Euclidean coordinate balls {B̃j
i }. Therefore, using

AC coordinates, we have that {V j
i } where V j

i = Bj
i × (0,∞) is an open cover of the region

{ti > 0}. We also have a diffeomorphism Fij : V j
i → Ṽ j

i = B̃j
i × (0,∞). Let Λ̃i = {ti > 1}

in the AC coordinates. Then K1 = K \ ∪iΛ̃i is a compact set which can be covered by
finitely many open sets {Um} diffeomorphic to Euclidean balls and half balls Ũm Denote the
diffeomorphisms by Gm. Finally, let Ψl : Ωl → Ω̃l be the SAF diffeomorphisms.

The collection of sets {Ωl}∪{V j
i }∪{Um} is a finite open cover of M which has a partition

of unity subordinate to this open cover. We write the elements of this partition of unity as
ψl, θij, and χm depending on which sets they have their support.

Now (χmφ) ◦G−1 is a function on Ũm and thus we can compute its ordinary Ck,α norm
[23]. We can do the same for (θijφ) ◦ F−1

ij .

Given a function f defined on Ω̃ = {x : |x| > r0} ⊂ R3 and a weight function (which we
continue to denote by σ) we can compute

‖f‖Ck,α−β (Ω̃) =

(
k∑
i=0

sup
γ=k

sup
x∈Ω̃

σi+β(x)|Dγf(x)|

)
(20)

+ sup
γ=k

sup
x,y∈Ω̃

0<|x−y|<1

σ(x, y)β+α+k |Dγf(x)−Dγf(y)

|x− y|α
(21)

Therefore, we finally define

‖φ‖Ck,α−β (M) =
∑
l

‖(ψlφ) ◦Ψ−1
l ‖Ck,α−β (Ω̃l)

+
∑
i,j

‖(θijφ) ◦ F−1
ij ‖Ck,α(Ṽ ji )

+
∑
m

‖(χmφ) ◦G−1‖Ck,α(Ũm) (22)

Even though the norm depends on the choice of open cover, the class of functions having
finite Hölder norm is invariant. Given a Riemannian manifold with boundary we fix the
choice of open cover and partition of unity once and for all. Furthermore, when in later
sections we will double our manifolds, we will implicitly use this fixed choice of open cover
on the original manifold to choose the natural open cover on the doubled manifold.

Remark 1 In the literature when dealing with Riemannian manifolds with boundary, most
authors simply say the Hölder norms are defined in the “usual” way, without giving a full
definition seemingly to avoid the straightforward but lengthy exposition we have given.

We will also need a different class of functions with appropriate weights in the cylindrical
ends. Given a cylindrical end and a fixed coordinate system, recall we define Λ = {(t, ω) :
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t ≥ 0}. If we have finitely many such ends we can define Λi for each such end, with a
corresponding ti. We define the set K2 = M \ ∪iΛi. Now let µ ≥ 1 be a smooth function
such that µ ≡ 1 in K2 and such that sufficiently far down each AC end µ = eδti . Now let
Ck,α
−β,δ be the set of functions φ on M whose k-th order derivatives are Hölder continuous and

for which the norm ‖φ‖Ck,α−β,δ defined below is finite:

‖φ‖Ck,α−β,δ = ‖µφ‖Ck,α−β .

We also define certain important closed subsets of these Banach spaces. Define

C̃k,α
−β =

{
φ ∈ Ck,α

−β : ∂τφ|∂M = 0
}

and similarly

C̃k,α
−β,δ =

{
φ ∈ Ck,α

−β,δ : ∂τφ|∂M = 0
}

where ∂τ denotes the normal derivative. Being closed subsets of Banach spaces, these are
Banach spaces themselves.

2.9 Some Standard Formulas

We recall some basic formulas. Given a smooth function f : M → R defined on a Riemannian
manifold we define the Laplace-Beltrami operator on f in local coordinates with respect to
the metric g by

∆gf =
1√
|g|
∂i

(√
|g|gij∂jf

)
(23)

where |g| = det(gij).
Given a smooth vector field V we define its divergence by the local coordinate expression

divg V =
1√
|g|
∂i

(√
|g|V i

)
. (24)

Thus ∆gf = divg∇gf where ∇gf is the gradient of f .
Given (M, g) we can define a new conformal metric by ḡ = u4g where u : M → R, u > 0.

Then the scalar curvature R̄ with respect to this conformal metric is given by

R̄ = u−4(R− u−1∆gu). (25)

Also, given a surface S ⊂ M with mean curvature H, its mean curvature in the conformal
metric, denoted H̄, is given by

1

2
Hu+ ∂τu =

1

2
H̄u3 (26)

where ∂τ is the normal derivative computed with respect to the unit normal os S.

12



2.10 A Remark on Notation

In the sequel, we will find ourselves computing quantities and objects with respect to sev-
eral different metrics. To denote this dependence we will use a subscript as for example
∆gf, ∇gf, |X|g, etc. In some places we might also use different expressions for the met-
ric, as for example g(·, ·) = 〈·, ·〉g and we might drop the g-subscript when no confusion is
possible.

Constants appearing in the various theorems might be different, but we usually use the
same letter C for all of them. This can be justified by taking the maximum of all the
constants that have appeared so far and denoting this maximum by C. Sometimes we might
use different symbols C1, C2, etc. when we want to stress that the constants are different,
or for convenience.

13



3 The Topology of Asymptotically Cylindrical Ends

In the definition of asymptotically cylindrical ends there is no apriori restriction on the
topology of the cross-sections. However, it is well known [19,20] that an outermost minimal
surface in an asymptotically flat initial data set consists of finitely many S2 components
(this result depends chiefly on the theorems found in [40]). Therefore, it is expected that
if an asymptotically cylindrical end can be observed from the asymptotically flat end, the
cross-sections should be spheres. We have not been able to establish this fully. However, in
the case of an asymptotically cylindrical end obeying the CDEC we have:

Theorem 6 An asymptotically cylindrical end in a time symmetric initial data set satisfying
the CDEC has cross-sections which must be either two-spheres S2 or two-tori T2. If the end
encloses non-zero charge the cross sections must be S2. Furthermore, if the cross-sections
are T2, they must be a flat torus in the limit.

Proof: Notice that as we go down the cylindrical end, the scalar curvature R approaches
2K, where K is the Gaussian curvature of the cross section. Furthermore, we have R ≥
2(|E|2 + |B|2). Letting ST be a cross section and q2 the enclosed charged, we have

q2 =

(
1

4π

∫
NT

Eiν
i

)2

+

(
1

4π

∫
NT

Biν
i

)2

≤
(

1

4π

∫
NT

|Eiνi|
)2

+

(
1

4π

∫
NT

|Biν
i|
)2

≤
(

1

4π

∫
NT

|E|
)2

+

(
1

4π

∫
NT

|B|
)2

≤ |NT |
32π2

∫
NT

2
(
|E|2 + |B|2

)
≤ |NT |

32π2

∫
NT

R.

Rearranging and taking the limit T →∞ we obtain by the Gauss-Bonnet theorem

4πq2 ≤ lim
T→∞

|NT |
8π

∫
NT

R =
A

8π

∫
N

2K = A(1− G) (27)

where A is the area of the end and G is the genus of the cross section. Hence, G ≤ 1 meaning
the cross sections must be either S2 or T2 , and if q2 6= 0 we must have G = 0. If G = 1 then
K ≡ 0 and hence the torus is flat. �

We expect it to be possible to eliminate the special case of the flat torus at some point in
the future, as was done similarly in [19, 20]. Hence for the purposes of this work we assume
that all cylindrical ends have S2 cross-sections.
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4 Sketch of the Proof of Theorem 1

The main idea of the proof is to use Theorem 1.1 and Corollary 1.2 in [37] due to Khuri,
Weinstein, and Yamada. For brevity we will refer to Theorem 1.1 and Corollary 1.2 as the
KWY theorem. However, our initial data set currently does not satisfy all the hypotheses
of this theorem. Specifically, it does not have a minimal surface boundary with area A.

We remedy this by doubling across the AC ends. Specifically, we go sufficiently far down
the ends and take what we call a collar neighborhood in each end. We then chop off the ends
beyond these collars, and obtain transitions to the corresponding cylindrical metrics in each
collar, giving us a manifold which we denote by M+. So, for each cylindrical end we have a
new boundary component labeled by S+

i . Now, we take a second copy of M+ denoted M−.
We identify the boundary components S+

i and S+
i giving us a smooth Riemannian manifold,

since the metric near each of these components is the appropriate cylindrical metric. We
denote this smooth manifold by M̂ , and its metric by ĝ. Outside of the collars, the metric
is the same as our original metric, and so M̂ is a manifold with two SAF ends. The image
under the gluing of the S±i is now the fixed point set of an isometry with respect to ĝ metric,
and is therefore a minimal surface.

We can’t directly push forward our electromagnetic fields to M̂ since the resulting vector
field won’t be continuous. However, it is also obvious we don’t need them to be defined
on the entire manifold. We push them forward only to M̂+ (the image of M+ under the
gluing), so that they are defined exterior to the outermost minimal surface with respect to
that end. Unfortunately, these vector fields are no longer divergence free in the transition
region, and so no longer satisfy the assumptions of the KWY theorem. We then perturb the
electromagnetic fields to restore the divergence constraint. This perturbation changes the
charge, so we then check that the further down the AC ends we perform the chopping, the
closer this new charge is to the old one.

In addition, our initial data no longer satisfies the CDEC. We restore it by a conformal
change of the ĝ metric where the conformal factor u satisfies an appropriate elliptic equation.
We then check that the resulting ADM mass can be made arbitrarily close to the original
mass by chopping further and further down the AC ends. Now we will have an outermost
minimal surface exterior to the fixed point set of our isometry, and we will be able to apply
the KWY theorem.

Finally, we establish the rigidity result by employing weak IMCF. By the arguments of
[37] if equality holds the generalized boundary must consist of either an S2 outermost minimal
surface (in which case the data is Reissner-Nordström) or a single AC end. In the latter case,
we prove that there exists a smooth IMCF which provides a diffeomorphism between our
original data and the canonical slice of the extreme Reissner-Nordström spacetime.

Before all of this however, we show that we can conformally deform our data to satisfy
the strict CDEC, with mass, charge, and generalized boundary area arbitrarily close to their
original values. This is done in order to prove certain technical propositions. We then prove
the charged Penrose inequality for this deformed data and then let the mass, charge, and area
approach their original values, establishing the charged Penrose inequality for the original
data.
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5 The Initial Conformal Deformation

For technical reasons, we want our initial data to satisfy the strict CDEC where

R > 2
(
|E|2 + |B|2

)
. (28)

In order to do so, we will conformally deform our initial data set to one with mass, charge,
and generalized boundary area ε-close to our original data.

Suppose we have our data set (M, g,E,B) and consider the conformal metric ḡ = u4g.
The formula (25) suggests we solve the elliptic problem

∆gu−
1

8
Ru+

1

8
(R + ε%)u−3 = 0 on M

∂τu = 0 on ∂M, u→ 1 as r →∞.
(29)

By r → ∞ we mean as the points move into both the SAF and AC ends. The function
% is some smooth non-negative function which vanishes sufficiently fast as we move into the
SAF and AC ends, and ε > 0 is some small real number. It is easy to check that if we use u
as the conformal factor the resulting scalar curvature satisfies R̄ = (R + ε%)u−8.

Now, define new vector fields by Ē = u−6E and B̄ = u−6B. If E and B are divergence
free, then so are Ē and B̄ as shown by the following computation:

divḡ(Ē) =
1√
|ḡ|
∂i(
√
|ḡ|Ēi) =

u−6√
|g|
∂i(
√
|g|Ei) = u−6 divg(E) = 0 (30)

and similarly for B̄. Furthermore

R̄ = (R + ε%)u−8 ≥ 2u−8(|E|2g + |B|2g) + u−8ε% > 2(|Ē|2ḡ + |B̄|2ḡ) (31)

and so this deformed data satisfies the strict CDEC. What remains to be verified is that we
can find such a conformal factor u which is close to 1 in an appropriate sense, and so that
the resulting quantities m̄, q̄, and Ā are close to the originals.

Since we are looking for a small deformation of 1 we will write u = 1 + φ for some small
function. Then the above elliptic problem becomes

∆gφ−
1

8
R(1 + φ) +

R

8(1 + φ)3
+

ε%

8(1 + φ)3
= 0 on M

∂τφ = 0 on ∂M, φ→ 0 as r →∞
(32)

and after a bit of rearrangement we can write (32) as

∆gφ−
R

8

(
4φ+ 6φ2 + 4φ3 + φ4

(1 + φ)3

)
+

ε%

8(1 + φ)3
= 0. (33)

We will find a solution in the appropriate Hölder space by using the implicit function theorem
for Banach spaces.
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Proposition 7 The operator

L = ∆g −
1

2
R : C̃2,α

−2/3,δ → C0,α
−8/3,δ (34)

is an isomorphism for all δ ∈ R+ \D where D is some discrete set.

Proof: As we go down each cylindrical end, L approaches the translation invariant operator
L0 = ∂2

t + ∆N + 1
2
R0 where ∆N is the Laplacian on the cross section with respect to the

metric h and R0 is a function independent of t. Using theorem 2.3.12 in [41] we obtain that
L is a Fredholm operator for all δ except those in a certain discrete set. We require δ > 0
since we want our functions to decay quickly as we go down the cylindrical ends.

We show that L is injective. Define MT = M \{(ti, ω) : ti > T} (which is M with the AC
ends having the ti-coordinate greater than T in each of the cylindrical ends chopped off).
Suppose ∆gφ− 1

2
Rφ = 0 and consider

0 =

∫
M

φ

(
∆gφ−

1

2
Rφ

)
dV = lim

T→∞

∫
MT

φ

(
∆gφ−

1

2
Rφ

)
dV

= lim
T→∞

−
∫
MT

(
|∇φ|2g +

1

2
Rφ2

)
dV +

∫
∂M

φ(∂τφ)dS +

∫
∂MT \∂M

φ(∂τφ)dS

= −
∫
M

(
|∇φ|2g +

1

2
Rφ2

)
dV

(35)

where we integrated by parts. We also used the fact that ∂τφ = 0 on ∂M and |φ| → 0 in
the cylindrical ends. Since R ≥ 0 we conclude φ ≡ 0 and thus L is injective.

To prove surjectivity we define an L2 inner product on C0,α
−8/3,δ using the formula

〈F,G〉 =

∫
M

FG dV (36)

and the associated norm ‖F‖L2 = 〈F, F 〉1/2. Notice this is well defined by the fall-off
conditions in the SAF and AC ends. Since L is Fredholm, Im(L) is closed and L is formally
self-adjoint. By Proposition 2.3.16 in [41] (or showing it directly) we have Im(L) = ker(L)⊥ =
{0}⊥ = C0,α

−8/3,δ which proves surjectivity. �

Next consider defining an operator

F(ε, φ) = ∆gφ−
1

8
R(1 + φ) +

R

8(1 + φ)3
+

ε%

8(1 + φ)3
(37)

on R × C̃2,α
−2/3,δ. The problem is that if φ = −1 in some region then the output of this

operator does not lie in any (nice) Banach space. However, if we restrict ourselves to some
neighborhood of 0 in C̃2,α

−2/3,δ then the output will lie in the appropriate Banach space.

Specifically, if we let V = {φ ∈ C̃2,α
−2/3,δ : ‖φ‖C̃2,α

−2/3,δ
< 1/2} then examining the operator

in the form (33) we have F : R × V → C0,α
−8/3,δ. We can now apply the implicit function

theorem.
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Proposition 8 The elliptic problem 32 has a solution ε-close to 0 in C̃2,α
−2/3,δ for all δ ∈

R+ \D, where D is a discrete set.

Proof: Consider R × V and the operator F : R × V → C0,α
−8/3,δ. Notice that F(0, 0) = 0

and the linearization of the operator is dF(0, 0) = ∆g − 1
2
R = L is an isomorphism by

Proposition 7. The claim now follows by the implicit function theorem for Banach spaces
and by choosing sufficiently small ε, we can ensure ‖φ‖C2,α

−2/3
< ε. �

To prove the regularity of our solution we quote the following result.

Proposition 9 Assume u ∈ H1 solves

Lu+B(x, u,∇u) = f (38)

where L is a second order, linear elliptic differential operator and B(x, u, p) is a smooth
function of its arguments satisfying

|B(x, u, p)| ≤ C|p|2. (39)

Given 0 ≤ α < 1, k + α > 0, s > −1, if u ∈ Ck,α and f ∈ Cs
∗ then u ∈ Cs+2

∗ .

This is Proposition 12B.1 in chapter 14 of [47]. For the definition of Cs
∗ (the so-called

Zygmund space) see Section 8 of Chapter 13 of the same reference. There it is also pointed
out that if k ≥ 0 and α > 0 then Ck,α = Ck+α

∗ .

Proposition 10 The solution of Proposition 8 is smooth for all sufficiently small ε.

Proof: We rewrite (32) in the form (38) to find

B = −1

8
R +

R

8(1 + φ)3
+

ε%

8(1 + φ)3
. (40)

However, this does not satisfy (39), since for φ close to −1 the terms blows up. We remedy
this by the following trick. Take a smooth, real valued, nondecreasing function ζ : R → R
such that ζ(x) = x for −1/2 ≤ x ≤ 1/2, ζ(x) = −3/4 for x ≤ −3/4, and ζ(x) = 3/4 for
x ≥ 3/4.

Now, instead of considering the problem (32), we consider

∆gφ−
1

8
R(1 + φ) +

R

8(1 + ζ(φ))3
+

ε%

8(1 + ζ(φ))3
. (41)

For sufficiently small ε the solution given by Proposition 8 is a solution of (41), which we
can rewrite in the form (38) with f = 0 and

B = −1

8
R +

R

8(1 + ζ(φ))3
+

ε%

8(1 + ζ(φ))3
. (42)

which is now smooth and satisfies (39). Applying Proposition 9 and bootstrapping we are
done. �

We will also need the following lemma.
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Lemma 1 Suppose that φ ∈ C0,α
−2/3(Ω) and ∆gφ ∈ C0,α

−3 (Ω)∩L1(Ω). Then there is a constant
C such that

‖φ‖C2,α
−1
≤ C

(
‖∆gφ‖C0,α

−3 ∩L1 + ‖φ‖C2,α
−2/3

)
. (43)

Proof: This is Lemma 6 of [50]. �

Remark 2 We point out that the domain in this lemma is Ω, the SAF region of our man-
ifold, rather than all of M . The purpose of this proposition is to obtain an estimate on the
deformed ADM mass, which is a property of the SAF end alone. Therefore, we only need
this estimate in Ω.

We can now prove the following:

Proposition 11 Let (M, g,E,B) be an initial data set satisfying the CDEC and the Maxwell
constraints without charged matter, having ADM mass m, total charge q2 and generalized
boundary area A. Then for any sufficiently small ε > 0 there exists a conformal deformation
of this data such that the data set satisfies the same hypotheses, the strict charged dominant
energy condition with mass m̄, total charge q̄2 and generalized boundary area Ā such that
q2 = q̄2 and there exists a constant C > 0 such that |m̄−m|, |Ā− A| < Cε.

Proof: We consider the solution given by Proposition 8. Define u = 1 + φ, ḡ = u4g,
Ē = u−6E and B̄ = u−6B. As discussed earlier, these vector fields are divergence free and
the resulting data set satisfies the strict CDEC. Since ∂τu = ∂τφ = 0 and the boundary is
minimal, by the formula for the mean curvature under a conformal change (26) the boundary
remains minimal.

Let S be an embedded hypersurface in M . If dSg is the induced volume form in the g
metric, then the induced volume form in ḡ is given by dSḡ = u4dSg. Since in the AC ends
φ ∼ e−δt we see these ends remain AC with respect to ḡ with the same area. Since |φ| < ε
we have

(1− 5ε)|∂M |g ≤ (1− ε)4|∂M |g ≤ |∂M |ḡ ≤ (1 + ε)4|∂M |g ≤ (1 + 5ε)|∂M |g (44)

for sufficiently small ε, and so |Ā− A| ≤ 5|∂M |gε.
Noticing that if ν is the unit normal to a surface then ν̄ = u−2ν, and using equations

(11) we compute

q̄e = lim
r→∞

1

4π

∫
Sr

Ēj ν̄
jdSḡ = lim

r→∞

1

4π

∫
Sr

(u−2)Ej(u
−2)νj(u4)dS = lim

r→∞

1

4π

∫
Sr

Ejν
jdS = qe

and similarly for q̄b. Hence, the charges remain the same.
Finally, by (33) we have ∆gφ ∈ C0,α

−3 ∩L1(Ω)→ 0 as ε→ 0. Hence by Lemma 1 we have

φ ∈ C2,α
−1 (Ω) → 0 as ε → 0. Using formula (10) it is then easy to show |m̄ −m| ≤ Cε for

some constant. �

Notice that we did not make any mention of the generalized boundary being outer-
minimizing. This is because this condition is not necessarily preserved by the conformal
deformation. However, for any surface S enclosing the generalized boundary it will be true
that

|S|ḡ ≥ (1− 5ε)|S|g > (1− 5ε)A (45)

for all sufficiently small ε which will be enough to establish the charged Penrose inequality.
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6 The Gluing

We index our n cylindrical ends by i with 1 ≤ i ≤ n. Each end has the topology of [0,∞)×S2.
On each particular AC end we fix a choice of cylindrical coordinates.

Start with the i = 1 AC end. Denote by g̃1 the product metric on R×S2 which is the limit
of g. Now, using these cylindrical coordinates we consider M1 = M \ {(t1, ω) : t1 > T}; that
is, our manifold with the cylindrical end chopped off beyond t1 = T in the fixed cylindrical
coordinates. We also consider the region Σ1(T ) = {(t1, ω) : T − 3 ≤ t1 ≤ T}.

Now, we consider a smooth cut-off function χ1(t1) defined in Σ1(T ) such that χ1 ≡ 1 for
T − 3 ≤ t1 ≤ T − 2, decreasing for T − 2 < t1 < T − 1 and χ1 ≡ 0 for T − 1 ≤ t1 ≤ T .
Next, we define χ2(t1) = 1 − χ1(t1). Finally, we define a new metric g1 on Σ1(T ) by
g1 = χ1g + χ2g̃1. So, the metric is the product metric for T − 1 ≤ t1 ≤ T and our original
metric for T − 3 ≤ t ≤ T − 2. We extend g1 to the rest of M1 by letting g1 = g for points in
M1 \ Σ1(T ). Furthermore, notice that as T →∞, g1 approaches g̃1 uniformly in the region
T − 2 ≤ t1 ≤ T − 1. We denote the cross section {t1 = T} by S1.

We proceed inductively. Given Mi as obtained above, we perform the same procedure
on the i + 1-th AC end. For each AC end we use the same parameter T so we don’t have
to worry about keeping track of n individual parameters representing how far down each
cylindrical end we’ve performed the chopping. Thus, we obtain the manifold Mn with a
metric which we denote by gn, and whose boundary consists of ∂M ∪ (∪ni=1Si).

Now, we take two copies of Mn which we denote by M+ and M−. We denote the surfaces
Si in each of these sets by S+

i and S−i , respectively. We also denote the sets Σi(T ) in each
M± by Σ±i (T ). We glue M+ and M− by identifying the points of S+

i and S−i via the identity
map for 1 ≤ i ≤ n to obtain a doubled manifold which we denote by M̂ .

Definition 9 Consider the gluing map G : M+ tM− → M̂ . For the i-th AC end we define
the sets

Σi(T ) = {(ti, ω) : T − 3 ≤ ti ≤ T}, Γi(δ) = {(ti, ω) : δ ≤ ti ≤ T}. (46)

Using natural identifications, we can consider these as subsets of M± and denote them by
Σi(T )±, Γi(δ)

±. We also define

Σ̂±i (T ) = G(Σ±i (T )), Γ̂±i (δ) = G(Γ±i (δ)) (47)

Σ̂±(T ) = ∪iΣ̂±i (T ), Γ̂±(δ) = ∪iΓ̂±i (δ) (48)

Σ̂(T ) = Σ̂+(T ) ∪ Σ̂−(T ), Γ̂(δ) = Γ̂+(δ) ∪ Γ̂−(δ). (49)

Furthermore, given some general set P ⊂ M we similarly define corresponding sets P± ⊂
M±, P̂± = G(P±), P̂ = P̂+ ∪ P̂−.

We write F = ∪ni=1Ŝ
±
i (with F standing for fixed point set). Since the metrics g± agree

on and are cylindrical near each S±i , M̂ is a smooth Riemannian manifold with a metric
which we denote by ĝ. It has two SAF ends. Since we can identify both M̂± with the same
subset of M , there is a natural correspondence between the points of M̂+ and M̂−. This
allows us to define the following map which is clearly an isometry with respect to the ĝ
metric:
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Definition 10 Consider the sets M̂± ⊂ M̂ . Given a point x+ ∈ M̂+ and the corresponding
point x− ∈ M̂− define the inversion map I : M̂ → M̂ by I(x±) = x∓.

It is easy to see that F is the fixed point set of this isometry. As a result, being totally
geodesic, it is a minimal surface. Hence, if we choose one of the SAF ends, which for
definiteness we will say is the end contained in M̂+, there will be an outermost minimal
surface with respect to this end, which we will denote by S. We would now like to apply the
KWY theorem to the region in M̂+ exterior to this minimal surface. However, currently our
region does not necessarily satisfy all of the hypotheses of the theorem. We restore each of
these hypotheses in turn.
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7 The Divergence Constraint

So far, the manifold M̂ does not satisfy the assumptions of the KWY theorem. In fact, as of
yet we have not defined any electromagnetic fields on our manifold. Considering the natural
identification of M̂+ and M̂− with subsets of M , we could pushforward E and B to M̂ .
However, these vector fields would not be continuous across F .

However, a bit of thought suggests that we do not need the vector fields defined on the
entirety of M̂ . The point of the doubling is to obtain a minimal surface and a resulting
outermost minimal surface with respect to a chosen SAF end to which we can apply the
KWY theorem. Therefore, we only need the electomagnetic fields to satisfy the Maxwell
constraint without charged matter outside of this minimal surface, and so it is enough to
push forward the electromagnetic fields only to some chosen half of M̂ .

Therefore, consider M̂+ ⊂ M̂ . Using the natural identification of M̂+ with a subset of
M we pushforward the fields E and B to vector fields Ê and B̂ on one half of M̂ . The
problem is that these vector fields are not necessarily divergence free on Γ̂+(T − 2). They
are divergence free on M̂+ \ Γ̂+(T − 2) since there the ĝ and g metrics agree.

The method of proof follows [50]. The idea is to solve Poisson’s equation with Dirichlet
boundary condition to obtain functions such that E ′ = Ê − ∇ϕE, B′ = B̂ − ∇ϕB are
divergence free with respect to ĝ. Then we check that the resulting solution is small in an
appropriate sense so that the resulting charge is close to the original. The corresponding
proof given in [50] has a small gap which we fill appropriately. We begin with the following
two propositions.

Proposition 12 Let 0 < β < 1, ν > 2, let h ∈ C0,α
−ν satisfy h ≥ 0, and let φ ∈ C̃2,α

−β . There
is a constant C independent of T such that for all sufficiently large T

||φ||C2,α
−β
≤ C

(
||φ||C0

−β
+ ||(∆ĝ − h)φ||C0,α

−β−2

)
. (50)

Proof: The proof is almost the same as that of Proposition 1 in [50]. The idea is to consider
compact K1, K2 with K1 ( K2 such that M̂ \K1 consists of the two SAF ends, Ωi for i = 1, 2.
In each of these ends we can use local estimates and the scaling of annuli to obtain estimates

||φ||C2,α
−β (Ωi)

≤ C
(
||φ||C0

−β(Ω′i)
+ ||(∆ĝ − h)φ||C0,α

−β−2(Ω′i)

)
. (51)

where the Ω′i are the two ends of M̂ \K2 (so that Ωi ⊂ Ω′i).
Now, away from the boundary, the compact set K2 can be covered by finitely many

geodesic balls Bĝ
qi

(ρ) of radius ρ > 0 so that the elliptic constant of ĝ when computed
in geodesic normal coordinates on a geodesic ball Bĝ

qi
(2ρ) is uniformly bounded above and

below. The number of such balls increases as we increase T , but because the metric in each of
the necks converges to the cylindrical metrics, ρ and the bounds can be chosen independent
of T . This yields local elliptic estimates

||φ||C2,α
−β (Bĝqi (ρ)) ≤ C

(
||φ||C0

−β(Bĝqi (2ρ)) + ||(∆ĝ − h)φ||C0,α
−β−2(Bĝqi (2ρ))

)
. (52)

Near the boundary, we make local elliptic estimates using Lemma 6.29 and the interpolation
inequality Lemma 6.35 of [23] (c.f proof of Lemma 6.5 in the same reference) and the fact
that ∂τ |∂M̂φ = 0. Putting all of these estimates together yields (50). �
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Proposition 13 Consider M̂+. Let 0 < β < 1, ν > 2, let h ∈ C0,α
−ν satisfy h ≥ 0, and let

φ ∈ C2,α
−β (M̂+) satisfy φ|∂M̂+ = 0. There is a constant C independent of T such that for all

sufficiently large T

||φ||C2,α
−β
≤ C

(
||φ||C0

−β
+ ||(∆ĝ − h)φ||C0,α

−β−2

)
. (53)

Proof: The proof is the same as that of Proposition 12, except that for the estimates near
the boundary we use Lemma 6.5 of [23]. �

Proposition 14 For each T large enough, there exists a unique solution ϕ ∈ C2,α
−1 (M̂+) of

the problem:
∆ĝϕ = f, ϕ|∂M̂+ = 0 (54)

on M̂+, where f = divĝ Ê. Furthermore,

||ϕ||C2,α
−1 (Ω̂+) ≤ ε̃(T ) (55)

where limT→∞ ε̃(T ) = 0.

Remark 3 The gap in [50] occurs here. The authors claim the existence of a C2,α
−1 solution

by referring the reader to [15] and then use Proposition 13 to obtain the bound on the solution.
However, both [15] and Proposition 13 apply in the case 0 < β < 1. We will solve the problem
with β = 2/3 and then apply Lemma 1 to obtain the C2,α

−1 bound.

Proof: The existence of a unique solution ϕ ∈ C2,α
−2/3 follows from [15]. The smallness of the

solution in C2,α
−2/3 will follow from Proposition 12 once we obtain a C0

−2/3 estimate. To do this,
first we will establish an unweighted supremum bound by using the maximum principle. We
will make use of the existence of a bounded subharmonic function Ψ on M̂+ which satisfies
∆ĝΨ > C > 0 on Γ̂+(T − 2), and which is supported in Σ̂+(T ) with C independent of T for
all T large enough. The existence of this function is established in Proposition 15.

Notice that ‖f‖C0,α
−8/3

= ε(T ) → 0 as T → ∞. Let P = supM̂+ |Ψ | (In fact P = 1 as

shown in Proposition 15). Then, by the above properties of Ψ the function ϕ + ε(T )C−1Ψ
satisfies ∆ĝ(ϕ + ε(T )C−1Ψ) ≥ 0. Since ϕ vanishes on ∂M̂+ and at ∞, by the maximum
principle we have ϕ+ ε(T )C−1Ψ ≤ ε(T )C−1P , or ϕ ≤ 2ε(T )C−1P . Similarly, by considering
the superharmonic function ϕ−ε(T )C−1Ψ we obtain ϕ ≥ −2ε(T )C−1P , so that supM̂+ |ϕ| ≤
2ε(T )C−1P .

To obtain the wighted estimate, we take the SAF region Ω̂+ and solve the problem

∆ĝv = 0, v = 1 on ∂Ω̂+, v → 0 at∞. (56)

There is some constant C2 such that 0 < v < C2σ
−1. Then the functions ±ϕ+ 2ε(T )C−1Pv

are harmonic in Ω̂+, tend to 0 at infinity, and are non-negative on ∂Ω. By the maximum
principle, ±ϕ+2ε(T )C−1Pv ≥ 0 on Ω, and so |ϕ| ≤ 2ε(T )C−1Pv ≤ 2ε(T )C−1PC2σ

−1 which
yields σ|ϕ| ≤ C3ε(T ). This implies ‖ϕ‖C0

−2/3
≤ C3ε(T ).

By Proposition 13 we have

‖ϕ‖C2,α
−2/3
≤ C

(
C3ε(T ) + ‖f‖C0,α

−8/3

)
≤ C4ε(T ) (57)
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and by Lemma 1
‖ϕ‖C2,α

−1
(Ω̂+) ≤ CC4ε(T ) = ε̃(T ). (58)

�

Remark 4 By elliptic regularity, the solution of Proposition 14 is smooth on M̂+.

We now establish the existence of the subharmonic function Ψ used in the previous
proposition.

Proposition 15 For all T large enough there exists a bounded subharmonic function Ψ on
M̂+ and supported in Σ̂+(T ) such that ∆ĝΨ > C > 0 on Γ̂+(T − 2) and supM̂+ |Ψ | = 1 with
C independent of T .

Proof:Pick one of the AC ends (for convenience we will omit the index i from the notation).
Consider the region of M̂+ which corresponds to T − 4 ≤ t ≤ T . Define the function s(t)
(defined for t ∈ R) by

s(t) =

{
0, t ≤ 0

e−1/t, t > 0
.

Next, define the smooth function

b(t) =
s(t− (T − 3))

s(t− (T − 3)) + s((T − 2)− t)
(59)

which is 0 for T − 4 ≤ t ≤ T − 3, increasing on T − 3 < t < T − 2 and identically 1 for
T − 2 ≤ t ≤ T . Now, consider the function k(t) = eγ(t−T ). Finally, consider b(t)k(t) for
T − 4 ≤ t ≤ T . This function is identically 0 for T − 4 ≤ t ≤ T − 3 and so we can extend it
to be 0 on the rest of M̂+. We claim that for sufficiently large γ and T this is a subharmonic
function.

Recall that in local coordinates the Laplace-Beltrami operator takes the form

∆ĝf =
1√
|ĝ|
∂i

(√
|ĝ|ĝij∂jf

)
(60)

and if our function is only a function of t then

∆ĝf =
1√
|ĝ|
∂i

(√
|ĝ|ĝit∂tf

)
= gtt∂2

t f + ∂i(g
it)∂tf +

∂i(
√
|ĝ|)√
|ĝ|

git∂tf. (61)

Also, we have by the well known property of the Laplace-Beltrami operator:

∆ĝ(bk) = b∆ĝk + k∆ĝb+ 2ĝ(∇b,∇k). (62)

Since both k and b are nondecreasing functions of t, the term ĝ(∇b,∇k) is nonnegative.
Next, consider

∆ĝk =

(
gttγ2 + ∂i(g

it)γ +
∂i(
√
|ĝ|)√
|ĝ|

gitγ

)
eγ(t−T ). (63)
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Due to the cylindrical geometry, we have gtt → 1, git → 0 for i 6= t, and ∂ig
it, ∂t(

√
|ĝ|)/

√
|ĝ| →

0 as T → ∞. Hence, there will be some T0 and γ0 such that for all T > T0 and all γ > γ0,
∆ĝk > 0 for T − 4 ≤ t ≤ T . Finally, let us look at the term

∆ĝb = gtt∂2
t b+ ∂i(g

it)∂tb+
∂i(
√
|ĝ|)√
|ĝ|

git∂tb. (64)

Let us examine how this term behaves as we take t → T − 3+. We see that for the leading
terms we have

∂2
t b ≈ C2

e−1/(t−T−3)

(t− (T − 3))4
(65)

and

∂tb ≈ C3
e−1/(t−(T−3))

(t− (T − 3)2
(66)

where C2, C3 > 0. And so, near t = T − 3 we will have ∆ĝb ≥ 0. More specifically, there will
be some ε (independent of T ) such that ∆ĝb ≥ 0 on [T − 3, T − 3 + ε]. On [T − 3 + ε, T ] we
can write

b∆ĝk + k∆ĝb =

(
bgttγ2 + ∂i(g

it)(bγ + ∂tb) +
∂i(
√
|ĝ|)√
|ĝ|

git(bγ + ∂tb) + gtt∂2
t b

)
eγ(t−T ) (67)

Thus, since b(t) ≥ b(T − 3 + ε) > 0 on [T − 3 + ε, T ], we see that for sufficiently large
γ, b∆ĝk + k∆ĝb > 0, and so there will be some constant C such that b∆ĝk + k∆ĝb > C

on Γ̂+(T − 2). Notice that for sufficiently large T we can choose a fixed sufficiently large
γ so that the constant C becomes independent of T . We construct such functions in each
of the cylindrical ends, and then take their sum, defining it to be Ψ , which is thus the
required bounded subharmonic function. Notice |Ψ | ≤ 1 and the constant C can be chosen
independently of T for all sufficiently large T . �

Define E ′ = E−∇ĝϕ, which is now a smooth, divergence free vector field on M̂+. Using
formula 11 we compute the accompanying charge

|qe,T − qe| =
∣∣∣∣ limr→∞

1

4π

∫
Sr

(∇ĝϕ)jν
jdS

∣∣∣∣ ≤ Cε̃(T ) (68)

for some constant C independent of T . We similarly obtain the vector field B′ and conclude
that |qb,T − qb| ≤ Cε̃(T ). Therefore, if we denote the total squared charge by q2

T , we see that
limT→∞ q

2
T = q2.
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8 The CDEC Constraint

We look for a conformal deformation ḡ = u4ĝ on M̂ such that the scalar curvature R̄ of
this metric satisfies the charged dominant energy condition. However, recall the vector fields
E ′, B′ are only defined on M̂+. The simplest way around this is the following. Recall that
by Proposition 11, we can assume that our original data set satisfies the strict charged
dominant energy condition. Given the vector fields E ′, B′ we define Ē = u−6E ′, B̄ = u−6B′

which are defined and divergence free on M̂+. In order to restore the charged dominant
energy condition on M̂+ we want

R̄ ≥ 2(|Ē|2ḡ + |B̄|2ḡ) = 2u−8
(
|E ′|2ĝ + |B′|2ĝ

)
. (69)

We begin with the following Lemma, whose importance will soon become apparent. Recall
the inversion map defined previously by I(x±) = x∓.

Lemma 2 For each T there exists a function ζ ≥ 0 on M̂ which satisfies

(i) R̂ + ζ ≥ 2
(
|E ′|2ĝ + |B′|2ĝ

)
on M̂+

(ii) ζ is smooth and ζ(x) = ζ(I(x))

(iii) 4R̂ + 3ζ > 0

(iv) ‖ζ‖C0,α
−8/3
→ 0 as T →∞.

Proof: We can write (i) as

R̂ + ζ ≥ 2
(
|E ′|2ĝ + |B′|2ĝ

)
= 2

(
|Ê|2ĝ + |B̂|2ĝ

)
+ 4〈Ê,∇ϕE〉+ 4〈B̂,∇ϕB〉+ |∇ϕE|2 + |∇ϕB|2

or [
R̂− 2

(
|Ê|2ĝ + |B̂|2ĝ

)]
+ ζ −

(
4〈Ê,∇ϕE〉+ 4〈B̂,∇ϕB〉+ |∇ϕE|2 + |∇ϕB|2

)
≥ 0

.
On M̂+ outside of Γ̂+(T − 2) the first term is positive by the strict CDEC. In Γ̂+(T − 2)

it satisfies R̂ − 2
(
|Ê|2ĝ + |B̂|2ĝ

)
≥ −ε(T ) for some ε(T ) > 0 such that ε(T )→ 0 as T →∞.

Therefore, we look for a smooth function such that

ζ ≥ |4〈Ê,∇ϕE〉+ 4〈B̂, ϕB〉+ |∇ϕE|2 + |∇ϕB|2| (70)

everywhere on M̂+ and

ζ ≥ 2ε(T ) + |4〈Ê,∇ϕE〉+ 4〈B̂, ϕB〉+ |∇ϕE|2 + |∇ϕB|2| (71)

on Γ̂+(T − 2). We require 2ε(T ) in order for (iii) to hold. Obviously we can find such
a function satisfying (ii) and (iv) follows since ‖ϕE‖C2,α

−1
, ‖ϕB‖C2,α

−1
→ 0 as T → ∞ so we

can choose ζ to fall-off rapidly at infinity. In fact, since E,B are O(1/|x|2) we can obtain
‖ζ‖C0,α

−4
→ 0 as T →∞. �
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Remark 5 The purpose of section 2.3 was to achieve condition (iii) in the above lemma. It
plays an important role in the next proposition.

With ζ in hand we seek to solve the problem R̄ = (R̂ + ζ)u−8, ∂τu = 0 which by using
(25) can be written as

∆ĝu−
1

8

(
R̂u− R̂ + ζ

u3

)
= 0

∂τu = 0 on ∂M̂.

(72)

Proposition 16 Let

h =
1

2
R̂ +

3

8
ζ. (73)

Then there is a constant C independent of T , for T large enough, such that if φ ∈ C̃2,α
−2/3

then
||φ||C2,α

−2/3
≤ C||(∆ĝ − h)φ||C0,α

−8/3
. (74)

Remark 6 This is a slight generalization of Proposition 3 in [50] and follows the same proof.

Proof: In order not to encumber notation we will treat the case of a single AC end. The
generalization to finitely many AC ends is then clear.

Suppose to the contrary. Then there is a sequence Tj →∞ and φj ∈ C̃2,α
−2/3 satisfying

||φj||C2,α
−2/3

= 1 ∀j, ||(∆ĝ − h)φ||C0,α
−8/3
→ 0 as j →∞. (75)

By Proposition 12 we have

||φj||C2,α
−2/3
≤ C

(
||φj||C0

−2/3
+ ||(∆ĝ − h)φj||C0,α

−8/3

)
(76)

with C independent of j. In view of (75) we must have that there exists some ε > 0 such
that

ε ≤ ||φj||C0
−2/3
≤ 1 (77)

for all j. We now consider two cases:
(i) There is a τ > 0 such that for any δ > 0 we have

lim sup
j
||φj||C0(Γ̂(δ)) ≥ τ (78)

(ii) For every τ > 0 there exists a δ > 0 such that

lim sup
j
||φj||C0(Γ̂(δ)) < τ (79)

Note that Γ̂(δ) is the union of the two necks cut at δ.
Case (i): We take the AC coordinates on our end. For each positive integer j large enough

take δj = j. Then there is a ij large enough such that Tij > j and there exists a pij ∈ Γ̂(j)
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with |φij(pij)| ≥ τ/2. Without loss of generality, we can assume that pij ∈ Γ̂+(j). Passing
to a subsequence we can assume that ij = j. In the obvious way for an end doubled at T

we can consider the t-coordinate on Γ̂(0) as lying in [0, 2T ]. That is, t ∈ [0, T ] corresponds
to Γ̂+(0) and [T, 2T ] corresponds to Γ̂−(0).

Let sj = t(pj) be the t-coordinate of the point pj. Notice that for fixed k and j > k we
have {sj − k/2 ≤ t ≤ sj − k/2} ⊂ {j/2 ≤ t ≤ 2Tj − j/2}. So in each of these regions the
coefficients of the operator

T = ∆ĝ − h (80)

converge uniformly to those of

T0 = ∆0 −
1

2
R0 (81)

where ∆0 is the Laplace-Beltrami operator and R0 the scalar curvature with respect to the
cylindrical metric. Notice that R0 ≥ 0, R0 is independent of t, and R0(ω) > 0 for some
ω ∈ S2.

Consider the set Λk = {−k/2 ≤ t ≤ k/2}× S2. For each j we can consider the functions
φj as a functions on Λk translated appropriately so that the point pj now has 0 coordinate.
For each k the sequence φj is a bounded sequence on Λk. Since the embedding C2,α′(Λk) ↪→
C2,α(Λk) is compact for 0 ≤ α′ < α there is a function φ0 on R × S2 and a subsequence,
which we continue to denote by φj, converging to φ0 on each Λk. Furthermore, there is a
point p0 in the t = 0 cross section of Λ so that |φ0(p0)| ≥ τ/2, so φ0 is not identically zero.

By our previous comments, we can consider (∆ĝ − h)φj as functions on Λk, translated
in the same fashion as each corresponding φj. We can similarly translate the operator T so
that its coefficients converge uniformly to the coefficients of T0 for each fixed k. By a slight
abuse of notation we write T φj → T0φ0 in C0(Λk). Since we have that T φj → 0 in C0,α(Λk)
by (75) we conclude that φ0 is a non-trivial solution of the linear equation T0φ0 = 0. But
then φ0 must exhibit exponential growth (either for t→∞ or t→ −∞), contradicting (77).

Case (ii): First, we take the region Ω with its AF coordinates. Hence there is some r0

such that for s ≥ r0 > 0 we have the region E(s) = {r > s}. Define B(s) = M \ E(s), and
also define D(δ) = {(t, ω) : t > δ}. Notice with this definition D(δ1) ⊃ D(δ2) if δ1 < δ2.
Finally, define Aδ = B(r0) \D(δ + 1). We now have the following lemma:

Lemma 3 Suppose φj satisfies (75) and (ii). Then for each δ > 0 there holds ||φj||C1,α(Aδ) →
0 as j →∞.

Proof: To be precise, Aδ ⊂ M , while the functions φj are functions on M̂ . However, by

the natural identification, we can consider the functions as defined on Aδ ⊂ M̂+ (at least for
sufficiently large j).

Suppose the lemma is false and let jk be a subsequence which converges to φ0 in C1,α′(Aδ)
for α′ < α. Then φ0 is not identically equal to 0 and since h > 0 on Aδ we have

lim
k

∫
Aδ

hφ2
jk

=

∫
Aδ

hφ2
0 ≥

∫
Aδ

1

2
Rφ2

0 > 0. (82)

This was why we needed to ensure that our data satisfied the strict CDEC.
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We will now show that

lim sup
j

∫
Aδ

hφ2
j = 0 (83)

yielding a contradiction. Without loss of generality, by passing to a subsequence we may
assume that ∫

Aδ

hφ2
j → lim sup

j

∫
Aδ

hφ2
j . (84)

If χ is any smooth cut-off function with compact support in M̂+, with 0 ≤ χ ≤ 1 and χ = 1
in Aδ then∫

Aδ

hφ2
j ≤

∫
M̂+

χ2(|∇φj|2ĝ + hφ2
j) = −

∫
M̂+

χ2φj(∆ĝ − h)φj − 2

∫
M̂+

χφj ĝ(∇χ,∇φj). (85)

We will choose a sequence of cutoffs χk such that the right hand side tends to 0 yielding a
contradiction. By (ii), for each integer k we can choose δk > δ such that |φj| < 1/k on Γ̂(δk)
for all j sufficiently large. Now we can choose χk supported on B(k) \D(δk + 2) with :

supp∇χk ⊂ [B(k) \ B(r0)] ∪ [D(δk + 1) \D(δk + 2)] (86)

satisfying

|∇χk|ĝ ≤ C/k on B(k) \ B(r0) (87)

|∇χk|ĝ ≤ C on D(δk + 1) \D(δk + 2) (88)

By (75) we can choose jk > jk1 so that(∫
R3\B(r0)

σ−10/3

)
‖(∆ĝ − h)φjk‖C0,α

−8/3
≤ 1

k
. (89)

It then follows that

−
∫
M+

χ2
kφjk(∆ĝ − h)φjk <

1

k
(90)

and

−
∫
M+

χkφjk ĝ(∇χk,∇φjk) ≤ C

∫
D(δk+1)\D(δk+2)

|φjk |+ Ck−1

∫
B(k)\B(r0)

σ−7/3 (91)

≤ Ck−1 + Ck−1

∫ k

r0

dr

r1/3
(92)

≤ C(k−1 + k−1/3). (93)

This completes the proof of the lemma. �
Now choose δ > 0 such that

lim sup
j
‖φj‖C0(Γ̂(δ)) < ε (94)

where ε is defined by (77). Chop off the cylindrical end for t > δ+1 obtaining an S2 boundary
component. Define a new manifold (M∗, g∗) by gluing in a solid ball at this boundary and
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smoothly extending the metric ĝ to obtain g∗. The glued in region will be denoted by
D̄(δ + 1) ⊂M∗. Then extend the potential function h smoothly to D̄(δ + 1) so that h∗ ≥ 0
(again, this can be done because h > 0). Let χ be a smooth cut off function with 0 ≤ χ ≤ 1
with χ = 1 outside D(δ) and χ = 0 on D̄(δ + 1). Taking the values of φj from M+ we can
consider χφj as a function on M∗, and find

(∆g∗ − h∗)χφj = (∆ĝ − h)χφj = χ(∆ĝ − h)φj + 2ĝ(∇χ,∇φj) + φj∆ĝχ. (95)

Therefore we can estimate:

‖(∆g∗ − h∗)χφj‖C0,α
−8/3,δ

(M∗) ≤ C
(
‖(∆ĝ − h)φj‖C0,α

−8/3
+ ‖φj‖C1,α(Aδ)

)
→ 0 (96)

by (75) and Lemma 3. It follows by Theorem 2 part (b) in [50] applied to (M∗, g∗) that

‖χφj‖C2,α
−2/3

(M∗) → 0. (97)

Hence we obtain
‖φj‖C0

−2/3
(M+\Γ+(δ)) → 0 (98)

and similarly
‖φj‖C0

−2/3
(M−\Γ−(δ)) → 0 (99)

so it follows that
‖φj‖C0

−2/3
(M̂\Γ̂(δ)) → 0. (100)

Combining this with (94) we conclude that

lim sup
j
‖φj‖C0

−2/3
(M̂) < ε (101)

in contradiction to (77). This completes the proof of Proposition 16. �

Proposition 17 There exists a unique solution u = 1 + ψ to (72) such that ‖ψ‖C̃2,α
−2/3
→ 0

as T →∞.

Proposition 16 will be key here. We follow the procedure and notation outlined in [50].
We will look for solutions in the spaces C̃k,α

−β (M̂), defined earlier. We look for a conformal
perturbation u = 1 + ψ, in which case (72) takes the form

∆ĝψ −
1

8

(
R̂ψ − R̂ + ζ

(1 + ψ)3

)
− 1

8
R̂ = 0. (102)

Therefore we define an operator N : C̃2,α
−2/3 → C0,α

−8/3 by

N (ψ) = ∆ĝψ −
1

8

(
R̂ψ − R̂ + ζ

(1 + ψ)3

)
− 1

8
R̂ (103)
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Computing the Frechet derivative at ψ = 0 we obtain

dN = ∆ĝ −
1

8

(
4R̂ + 3ζ

)
= ∆ĝ − h : C̃2,α

−2/3 → C0,α
−8/3. (104)

By our choice of ζ, 4R̂ + 3ζ > 0, and so by the Fredholm alternative, this operator is
invertible, that is there exists dN−1 : C0,α

−8/3 → C̃2,α
−2/3. By Proposition 16 this operator is

uniformly bounded, that is, there exists a constant C independent of T such that

||dN−1x||C̃2,α
−2/3
≤ C||x||C0,α

−8/3
. (105)

We define the quadratic part of N by

Q(ψ) ≡ N (ψ)−N (0)− dN (ψ) (106)

and a subsequent calculation shows

Q(ψ) =
R̂ + ζ

8

(
6 + 8ψ + 3ψ2

(1 + ψ)3

)
ψ2. (107)

Hence, there exists some η0 such that for ||ψ||C̃2,α
−2/3

< η < η0

||Q(ψ)||C0,α
−8/3
≤ Cη2 (108)

||Q(ψ1)−Q(ψ2)||C0,α
−8/3
≤ 2Cη||ψ1 − ψ2||C̃2,α

−2/3
(109)

where C > 0 is some constant. The key to notice is that for all ζ with ‖ζ‖C0,α
−8/3

< C1 we can

choose C to be independent of ζ.
Next, notice

||N (0)||C0,α
−8/3

=

∣∣∣∣∣∣∣∣ζ8
∣∣∣∣∣∣∣∣
C0,α
−8/3

≤ ε(T ) (110)

where ε(T )→ 0 as T →∞.
Now choose 0 < λ < 1 and η > 0 such that

η <
λ

2C2

and T large enough so that

ε(T ) < Cη2.

Notice that the larger we take T , the smaller ε(T ) becomes, and hence the smaller we can
choose η.

Now, consider the operator

F (ψ) ≡ −dN−1 (N (0) +Q(ψ)) (111)
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and notice

||F (ψ)||C̃2,α
−2/3
≤ C

(
||N (0)||C0,α

−8/3
+ ||Q(ψ)||C0,α

−8/3

)
≤ C(ε(T ) + Cη2) ≤ 2C2η2 <

2C2λ

2C2
η < η

while

||F (ψ1)− F (ψ2)||C̄2,α
−2/3
≤ C||Q(ψ1)−Q(ψ2)||C0,α

−8/3

≤ 2C2η||ψ1 − ψ2||C̃2,α
−2/3

< λ||ψ1 − ψ2||C̃2,α
−2/3

.

Therefore, F is a contraction mapping of the ball of radius η to itself, and hence possesses
a unique fixed point, which we continue to denote by ψ. Since

F (ψ) = ψ = −dN−1(N (0) +Q(ψ)) (112)

then operating by dN and rearranging

dN (ψ) +N (0) +Q(ψ) = N (ψ) = 0 (113)

and so u = 1 + ψ is precisely the conformal factor we were looking for. Furthermore
||ψ||C̃2,α

−2/3
< η → 0 as T →∞. �

Corollary 1 The conformal factor u satisfies u(x) = u(I(x)).

Proof: Define ũ(x) = u(I(x)). Since R̂(x) = R̂(I(x)) and ζ(x) = ζ(I(x)), ũ satisfies (72).
Since the solution u was obtained using the contraction mapping principle, it is unique, and
so ũ = u. �

Proposition 18 The conformal factor u is smooth.

Proof: The proof is the same as that of Proposition 10. �

Corollary 2 The surface F ⊂ M̂ is a minimal surface of (M̂, ḡ) where ḡ = u4ĝ.

Proof: The map I is an isometry of (M̂, ḡ) and F is its fixed point set. �

To finish our proof, we need to obtain a bound on ‖φ‖C2,α
−1

in order to have m̄ close to m.

As remarked earlier, we only need this in the SAF region Ω. Notice

∆ĝψ =
1

8
R̂ψ − R̂ + ζ

8(1 + ψ)3
+

1

8
R̂. (114)

Consider the right hand side as a function on Ω. We first show that the right hand side
tends to 0 in C0,α

−3 (Ω) ∩ L1(Ω) as T →∞. We rewrite the right hand side as

1

8
R̂ψ − ζ

8(1 + ψ)3
+
R̂

8

(1 + ψ)3 − 1

(1 + ψ)3
=

1

8
R̂ψ − ζ

8(1 + ψ)3
+
R̂

8

3ψ + 3ψ2 + ψ3

(1 + ψ)3
. (115)
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We use the fact that if fi ∈ C0,α
−βi , i = 1, 2 and β1 + β2 > 3, then

‖f1f2‖C0,α
−3 ∩L1 = ‖f1f2‖C0,α

−3
+ ‖f1f2‖L1 ≤ C‖f1‖C0,α

−β1
‖f2‖C0,α

−β2
(116)

and so if one of the terms on the right-hand side is bounded and the other tends to 0, the
left-hand side tends to 0 as well. By our previous remarks, we have that ζ ∈ C0,α

−4 with

‖ζ‖C0,α
−4
→ 0 as T → ∞, while the other two terms are of the form fψ with f ∈ C0,α

−3

bounded, and ‖ψ‖C0,α
−2/3
→ 0. We conclude that

‖∆ĝψ‖C0,α
−3 ∩L1 → 0. (117)

Therefore, we apply Lemma 1 to conclude

‖ψ‖C2,α
−1
→ 0 as T →∞. (118)
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9 Proof of Theorem 1: Part 1

Consider the manifold (M̂, ḡ) and notice that F∪∂M̂+ is a minimal surface. Therefore, with
respect to our chosen asymptotically flat end (that is, the end on which Ē and B̄ are defined)
there is some outermost minimal surface which we denote by ST , to show the dependence
on T . Now, we consider the areas of this surface measured in the ḡ, ĝ and g metrics. We
will also write mT and |qT | to show the dependence of the mass and charge on T .

Of course, as we increase T and move down the cylindrical ends, the surface ST changes.
However, as we do so, ĝ → g, and ḡ → ĝ since ψ → 0. Hence, we obtain an inequality of the
form

(1+5ε(T ))|ST |g ≥ |ST |ḡ = 4πρ2
T ≥ (1−5ε(T ))|ST |g > (1−5ε(T ))A = 4π(1−5ε(T ))ρ2. (119)

where ε(T )→∞ as T →∞.
On the other hand, the mass and charge of our chosen end satisfy

|mT −m| < ε(T ) (120)

and
||qT | − |q|| < ε(T ) (121)

by (10) and (118).
If we denote limT→∞ ρT = ρ̄ (which exists, after potentially passing to a subsequence) we

have by Corollary 1.2 of [37] that

ρT ≤ mT +
√
m2
T − q2

T (122)

and now, taking the limit and noting ρ ≤ ρ̄ we obtain

ρ ≤ ρ̄ ≤ m+
√
m2 − q2 (123)

proving the upper bound in (3).
As for (2), suppose ρ ≥ |q|. Take any 0 < λ < 1 and instead of taking our initial data set

(M, g,E,B) consider (M, g, λE, λB) which has charge λ|q|. Therefore ρ > λ|q| (if |q| = 0
this is trivially tue). In that case, eventually the ρT satisfy ρT > λ|qT | and thus by Theorem
1.1 of [37] the solutions satisfy

mT ≥
1

2

(
ρT +

λ2q2
T

ρT

)
. (124)

Taking the limit, we obtain

m ≥ 1

2

(
ρ̄+

λ2q2

ρ̄

)
≥ 1

2

(
ρ+

λ2q2

ρ

)
(125)

where the last inequality follows from ρ̄ ≥ ρ > λ|q|. Since this holds for arbitrary λ, taking
the limit λ→ 1 we are done.

34



Therefore we have proven our theorem in the case that our initial data satisfies the strict
charged dominant energy condition and the outer-minimizing generalized boundary condi-
tion. For the case where the data merely satisfies the charged dominant energy condition,
we apply Proposition 11 to obtain a data set satisfying the strict charged dominant energy
condition with mass mε and the same charge |q|, with mε → m as ε→ 0. By (45) we have
that any surface S enclosing the generalized boundary satisfies |S| > 4πρε where ρε → ρ as
ε→ 0. Therefore the data satisfies

ρε ≤ mε +
√
m2
ε − q2 (126)

for all ε and taking the limit ε→ 0 we have obtained

ρ ≤ m+
√
m2 − q2. (127)

For the full Penrose inequality assume ρ ≥ |q| and choose any λ with 0 < λ < 1. Then
for all sufficiently small ε we have ρε ≥ λ|q| and so

mε ≥
1

2

(
ρε +

λ2q2

ρε

)
(128)

and taking the limit ε→ 0 we obtain

m ≥ 1

2

(
ρ+

λ2q2

ρ

)
(129)

and finally letting λ→ 1 we obtain the full charged Penrose inequality. �

The case of equality is treated in the next section.
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10 Proof of Theorem 1: The Case of Equality

First we remark that equality in the upper bound in (3) is equivalent to equality in (2). Next
we apply the argument of Section 7 of [37] to conclude that if equality occurs, our initial
data must have either a single boundary component or a single asymptotically cylindrical
end. The case of a single boundary component is treated in [18]. Thus, we are left with
the case of a single asymptotically cylindrical end. We will use the same strategy as in [18],
which depends on the existence of a solution to the IMCF.

Proposition 19 Suppose our initial data set has a single AC end. Then there exists a
solution of the IMCF on all of M .

Proof: Let (t, ω) ∈ [0,∞)×S2 be coordinates on the AC end (recall that by our convention
t→∞ corresponds to moving down the AC end). Take any cross section Sn with n ∈ N. By
Theorem 3.1 in [28], there exists a solution un on Ωn = M \ En which satisfies the gradient
estimate

|∇un(x)| ≤ sup
∂En∩Br(x)

H+ +
C

r
a.e. x ∈ Ωn (130)

for each 0 < r ≤ σ(x). Here, H+ = max(0, H), En = {(t, ω) : t > n}, σ(x) is a positive,
continuous function of x, and C is a constant depending only on the dimension of M .

Consider this sequence of solutions. We have un = 0 for x ∈ En = {(t, ω) : t > n} and so
in order to obtain convergence, we need to normalize the functions. This is easy to do. Pick
any point x0 ∈ M . Now, define new functions ũn(x) = un(x) − un(x0) so that all of these
functions agree at the point x0 and ∇un = ∇ũn. For simplicity we will subsequently drop
the tilde and refer to these normalized functions as un.

As mentioned before, σ(x) is a continuous function (for its full definition we refer the
reader to [28]), so around every x we can find an open neighborhood Bx diffeomorphic to a
ball such that for all y ∈ Bx we have σ(y) ≥ 1

2
σ(x). Notice that as we take cross sections

further down the cylindrical end, H+ tends to 0. Thus, for every Bx we can find a constant
Kx such that |∇un(y)| ≤ Kx for a.e y ∈ Bx, so the family {un} is equicontinuous in Bx.

Now, take any point x and take a finite length smooth curve with trace I of length L
joining it to x0. For each z ∈ I we have open neighborhoods with constants Kz as above.
By compactness, we can take a finite subcover, and then take a maximum of the constants
to obtain that |un(x)| ≤ KL for all n. Then, similarly we can obtain |un(y)| ≤ Dx for all
y ∈ Bx where Dx is some constant depending on Bx.

By the Arzela-Ascoli theorem, the sequence {un} has a subsequence which converges
uniformly on compact subsets to a function u. By Theorem 2.1 in [28], u is a solution of the
weak IMCF. �

Denote Si,τ = {x : ui(x) = τ} and Sτ = {x : u(x) = τ}. By the remarks following
Theorem 2.1 in [28] (which themselves depend on the Regularity Theorem 1.3.ii in this same
paper) we have that

Si,τ → Sτ locally in C1,α. (131)

Furthermore, the flow has no jump discontinuities, since those only occur when the flow
surfaces touch a minimal surface. We could have then added this surface to the boundary,
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or if it enclosed the cylindrical end, we could have used it as the boundary. Either way,
equality would be impossible.

The key property of weak IMCF is the monotonicity of the charged Hawking mass. The
charged Hawking mass is defined by

MCH(S) =

√
|S|
16π

(
1 +

4πq2

|S|
− 1

16π

∫
S

H2

)
. (132)

If we denote the surfaces of the IMCF by Sτ then the charged Hawking mass satisfies the
well known property

d

dτ
MCH(Sτ ) = −1

2

√
π

|Sτ |
q2 +

√
|Sτ |
16π

(
1

2
− 1

4
χ(Sτ )

)
+

1

16π

√
|Sτ |
16π

∫
Sτ

(
2
|∇SτH|2

H2
+ |II|2 − 1

2
H2 +R

) (133)

which holds in the appropriate weak sense. Here II denotes the (weak) second fundamental
form [28], [18].

Proof of Theorem 1: The Case of Equality Assume equality holds in 2. We will use
our IMCF to obtain smooth coordinates which show that our initial data set is diffeomorphic
to extreme Reissner-Nordström. Take the u solving the weak IMCF which we constructed
earlier. We point out a few facts about the resulting flow. First, by the outer-minimizing
condition and (131) we have |Sτ | > A. It is also clear we have |Sτ | → A as we decrease τ .

Furthermore, our solution u only takes values τ ∈ (c,∞) where c is some finite real
number. Notice that this is to be expected. As we move down the AC end, the mean
curvature of the flow surfaces Sτ decreases, which means that the speed with which they
move increases, and so we foliate the infinite AC region in a finite amount of time. This
can be seen as follows. It is well [28] known that the surfaces satisfy the exponential growth
condition

|Sτ | = |Sτ0|eτ−τ0 (134)

and so if we take some surface with fixed τ0 we have that

|Sτ0|eτ−τ0 > A (135)

and so τ > ln(A/|Sτ0|) + τ0. Therefore by normalizing we can assume τ ∈ (0,∞).
As mentioned earlier, the surfaces of the flow are locally C1,α for all τ and so the mono-

tonicity formula holds. After normalizing, we have limτ→0+ |Sτ | = A. We also need to verify
that limτ→0+

∫
Sτ
H2 → 0. To do so, consider the surface Sτ with |Sτ | for fixed τ . Also

consider the surfaces Sn,τ . These are the surfaces of weak IMCF which start from the t = n
cross-section. Let τn be the parameter for which Sn,τn = {t = n} (this parameter is not 0
since we normalized our functions as above). We see that τn > 0. In Section 5 of [28] we
find the estimate

d

dτ

∫
Sτ

H2 ≤ 8π (136)
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and therefore we have∫
Sn,τ

H2 ≤ 8π(τ − τn) +

∫
Sn,τn

H2 ≤ 8πτ +

∫
Sn,τn

H2. (137)

Taking the limit n→∞ we find that ∫
Sτ

H2 ≤ 8πτ (138)

and finally taking the limit τ → 0+ we obtain the desired conclusion.
Next we argue that the flow is smooth for all τ . The argument is almost a verbatim

repetition of the argument in Section 8 of [28]. We repeat it merely for completeness. By the
charged dominant energy condition, (133) is greater than or equal to 0. To see this, notice
that by Hölder’s inequality and the charged dominant energy condition

16π2q2 =

(∫
Sτ

Ejν
j

)2

+

(∫
Sτ

Bjν
j

)2

≤
(∫

Sτ

|Ejνj|
)2

+

(∫
Sτ

|Bjν
j|
)2

≤
(∫

Sτ

|E|
)2

+

(∫
Sτ

|B|
)2

≤ |Sτ |
∫
Sτ

(|E|2 + |B|2) ≤ |Sτ |
2

∫
Sτ

R

(139)

which implies that

−1

2

√
π

|Sτ
|q2 +

1

16π

√
|Sτ |
16π

∫
Sτ

R ≥ 0 (140)

while |II|2 − (1/2)H2 is nonnegative (in the weak sense) [28].
Hence in order for equality to occur, (133) must equal 0 for almost every τ . By Lemma

5.1 in [28] we have H > 0 a.e. on on Sτ for a.e. τ , and so
∫
Sτ
|∇SτH|2 = 0 for a.e. τ and

therefore by (1.10) in [28] and lower semicontinuity∫
Sτ

|∇SτH|2 = 0 for all τ (141)

Therefore
HSτ (x) = H(τ) for a.e. x ∈ Sτ , for all τ ≥ 0 (142)

so that each Sτ has constant mean curvature. Since H is locally bounded and Sτ has locally
uniform C1 estimates, it follows by elliptic theory that each Sτ is smooth. Furthermore, the
flow does not jump at any τ since that would contradict the assumption that our initial data
set does not contain any compact minimal surfaces. Hence, H > 0 for τ > 0 which implies
H(τ) is locally uniformly positive for τ > 0.

By Lemma 2.4 of [28], for each s > 0 there is some maximal T such that the flow
(Sτ )s≤τ≤T is smooth. By the above regularity, Sτ has uniform space and time derivatives as
τ ↗ T and so the evolution can be smoothly continued past τ = T . Hence T =∞ and the
flow is smooth everywhere.

The next part follows from the arguments in [18] (see also [1,37]). Since the flow is smooth
and (133) vanishes we must have that equality holds everywhere in (139). In particular

R = 2(|E|2 + |B|2), Ejν
j = constant, Bjν

j = constant, E = e(τ)ν, B = b(τ)ν
(143)
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on each Sτ . Furthermore, since |II|2 − 1
2
H2 = (λ1 − λ2)2, we must have that λ1 = λ2 at

each point in Sτ (where λi are the principal curvatures). This then shows that |II|2 = 1
2
H2

is constant on each Sτ .
By equation (1.3) in [28]

∂τH = −∆Sτ (H
−1)− (|II|2 + Ric(ν, ν))H−1 (144)

which (since H > 0 and constant on each Sτ ) means

∂τH = (|II|2 + Ric(ν, ν))H−1 (145)

which then (since H and |II| only depend on τ) implies Ric(ν, ν) = constant on each Sτ .
Taking two traces of the Gauss equation and solving for Gaussian curvature K of Sτ we
obtain (c.f 5.5 in [18])

K =
1

2
R− Ric(ν, ν) +

1

2
H2 − 1

2
|II|2 (146)

which shows that the Gaussian curvature is constant on each Sτ . Therefore each Sτ is
isometric to a round sphere with metric r2(τ)dσ2 for the function r(τ) defined by the relation
4πr2(τ) = A(Sτ ) = Aeτ . By noting the fact that dτ = 2r−1dr and using the Gauss lemma,
the metric can be written in the form

g = H−2dτ 2 + g|Sτ =
4H−2

r2
dr2 + r2dσ2. (147)

Since MCH(Sτ ) = m for all τ we can solve for H2 to find

H2 =
4

r2

(
1− 2m

r
+
q2

r2

)
(148)

and combining with (147) we obtain the metric is Reissner-Nordström. Since it has a cylin-
drical end, it must be extreme, with m = |q|.

A simple calculation then shows that

E =
qe
r2
νr and B =

qb
r2
νr (149)

where νr is the outward unit normal to the coordinate spheres, completing the proof. �
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11 Proof of Theorem 2

The idea is to use the same methods as those in the proof of Theorem 1. However, we
no longer need to assume the electromagnetic fields are divergence free or that the gen-
eralized boundary is outer-minimizing. Begin with our initial data set (M, g,E,B) and
conformaly deform it by the same procedure as in section 5 to obtain an initial data set
satisfying the strict charged dominant energy condition. We denote this deformed data set
by (Mε, gε, Eε, Bε) which has ADM mass mε satisfying |mε −m| ≤ Cε and |qε| = |q|.

Since we don’t need the electro-magnetic fields to be divergence free, we don’t need to
apply any of the techniques found in section 7. Instead, we perform the gluing as in section
6 and restore the CDEC by solving the elliptic problem of section 8 (in fact, the function ζ
can now be chosen to be supported in Σ(T )).

The set F is a minimal surface, and so we can take the outermost minimal surface with
respect to the end M̂+. We then apply the ordinary positive mass theorem with charge
[22,34] to obtain

mε,T ≥ |q| (150)

and taking the limit T →∞ we obtain

mε ≥ |q|. (151)

Finally, taking the limit ε→ 0 we obtain

m ≥ |q|. (152)

�

This gives an alternate proof to the same result which was obtained in [1] using spinorial
methods. However, we remark that our techniques should readily generalize to the non-time
symmetric case.
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12 Proof of Theorem 3: Bekenstein Bounds

Consider an initial data set (M, g, k, E,B) satisfying the charged dominant energy condition
|µEM | ≥ |JEM |. A body Ω will be described as a connected open subset of M having compact
closure and smooth boundary ∂Ω. The total charge within the body is then given by

q2 =

(
1

4π

∫
Ω

divE

)2

+

(
1

4π

∫
Ω

divB

)2

, (153)

and it will always be presumed that there is no charged matter outside Ω. In order to char-
acterize the angular momentum of the body, the initial data will be assumed to be axisym-
metric. That is, there is a U(1) subgroup within the group of isometries of the Riemannian
manifold (M, g), and all relevant quantities are invariant under the U(1) action. Without
axisymmetry it is problematic to define quasi-local angular momentum [46]. Moreover, with
this hypothesis all angular momentum is contained within the matter fields, as gravitational
waves carry no angular momentum. Let η be the generator of the U(1) symmetry, then the
angular momentum of the body is

J =

∫
Ω

Jiη
i. (154)

The basic strategy to obtain Bekenstein type bounds (8) is to use monotonicity of the
Hawking mass along inverse mean curvature flow. This worked well in [2, 3, 17] because of
the maximal assumption Trgk = 0. More precisely, monotonicity of the Hawking mass relies
on nonnegativity of the scalar curvature, and this is achieved with the dominant energy
condition if the data are maximal. Here we do not assume that the data are maximal,
and thus this method breaks down. However, we may follow an approach similar to that
in the proof of the positive mass theorem [44], where the initial data are deformed by
(M, g, k) → (M, g) with gij = gij + u2fifj for some functions u > 0 and f . In [44] the
function u = 1 and f is chosen to solve the so called Jang equation, which is designed to
impart positivity properties to the scalar curvature R of g. In the present setting it is more
appropriate to utilize an embellished version of the Jang equation(

gij − u2f if j

1 + u2|∇f |2

)(
u∇ijf + uifj + ujfi√

1 + u2|∇f |2
− kij

)
= 0, (155)

where ∇ij are second covariant derivatives with respect to g and f i = gijfj. This equation
also yields desirable features for the scalar curvature which now takes the form

R = 16π(µ− J(w)) + |h− k|2g + 2|Q|2g − 2u−1 divg(uQ), (156)

where

hij =
u∇ijf + uifj + ujfi√

1 + u2|∇f |2
, wi =

ufi√
1 + u2|∇f |2

, Qi =
uf j√

1 + u2|∇f |2
(hij−kij). (157)

These formulas along with their geometric interpretations are explained in [13,14]. Observe
that the first term on the right-hand side of (156) is nonnegative if the dominant energy
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condition is satisfied, since |w| ≤ 1. Furthermore, all other terms are manifestly nonnegative
except possibly the divergence term. The deformed scalar curvature may then be described as
‘weakly’ nonnegative, since integrating it against u produces a nonnegative quantity modulo
boundary terms.

In order to optimize the positivity of R with regards to IMCF we choose u as follows.
Let {St}∞t=t0 be an IMCF in the deformed data (M, g), where t0 = 0 or −∞ depending on
whether the flow starts at a surface or a point. A weak version of the flow always exists [28]
in the asymptotically flat setting, although for the purposes of exposition we may assume

that the flow is smooth. Then set u =
√
|St|/16πH to be the product of the square root of

area and mean curvature for the flow surfaces. Consider now the Hawking mass of the flow
surfaces within the deformed data

MH(St) =

√
|St|
16π

(
1− 1

16π

∫
St

H2

)
. (158)

By the monotonicity formula for the ordinary Hawking mass [28], if t2 > t1 then

MH(St2)−MH(St1) ≥
1

16π

∫ t2

t1

√
|St|
16π

∫
St

R. (159)

The first two terms on the right-hand side in the expression (156) will provide lower bounds
for (159) involving the charge and angular momentum, while the divergence expression will
contribute to the Hawking energies.

Consider now the case when the flow starts from a point x0 within the body Ω on the
axis of rotation, so that the starting time is t0 = −∞. Observe that in (159) with t1 = −∞
and t2 =∞ several simplifications occur. Namely, since the Hawking mass of a point is zero
and the limit of Hawking masses as t → ∞ is no larger than the ADM mass, the left-hand
side of (159) may be replaced with the ADM mass m. Note that this total mass is a priori
with respect to the deformed metric g. However by placing the natural boundary conditions
at infinity for solutions of the Jang equation, namely f → 0 in the asymptotic end, the total
mass of g and g are equivalent [44]. Furthermore if the charged dominant energy condition
holds then µ − J(w) ≥ 1

8π
(|E|2 + |B|2), as it may be assumed without loss of generality in

axisymmetry that the electric and magnetic fields have no component in the Killing direction
so that E × B(w) = 0. In [18] a deformation of the electromagnetic field (E,B) → (E,B),
tailored to the Jang metric g, was given which preserves total charge as well as zero charge
density and has less energy density than the original field |E| ≥ |E|, |B| ≥ |B|. From this
a lower bound for the right-hand side of (159) is obtained in terms of the energy density of
(E,B), and since the surface integrals are computed with respect to g a relation with total
charge is produced as in [18]. In particular∫ ∞

−∞

√
|St|
16π

∫
St

(µ− J(w)) ≥ 1

8π

∫ ∞
t∗

√
|St|
16π

∫
St

(|E|2 + |B|2) ≥ q2

2Rt∗

, (160)

where Rt∗ =
√
|St∗ |/4π is the area radius of St∗ . The time t∗ may be chosen arbitrarily,

however in order to obtain the optimal inequality for the body, t∗ will denote the first
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(smallest) time such that the flow surface St∗ completely encloses Ω. Moreover since the
flow will change depending on the choice of its starting point x0, optimization requires that
we choose the x0 for which the area radius at t∗ is smallest. Such a starting point exists
within the body since Ω is compact. The radius R of Ω will then be defined as in [17] to be
this optimal area radius, and in (160) the radius Rt∗ may be replaced with R.

Within the scalar curvature formula (156) the second term on the right-hand side encodes
a contribution from angular momentum. In order to extract this contribution we first make
some observations. The metric g arises as the induced metric on the graph of the function
f [14], and the surfaces St may be interpreted as a flow within the graph. There is then
a natural projection of St into (M, g) which will be denoted St. Since the flow starts from
a point on the symmetry axis, each of the surfaces St, St is axisymmetric. As is shown in
the appendix under mild hypotheses, it then follows that h(η, ν) = 0 on St, where ν is the
unit normal to St. Therefore assuming that angular momentum density vanishes outside the
body and using Hölder’s inequality produces

(8π)2 J 2 =

(∫
St

k(η, ν)

)2

=

(∫
St

[k(η, ν)− h(η, ν)]

)2

≤
(∫

St

|k − h|g|η|
)2

≤
∫
St

|k − h|2g
∫
St

|η|2,
(161)

where we have also used the fact that g measures areas to be at least as large as does g.
This estimate is suited to give a lower bound for the ADM mass which may be expressed
properly with the ‘circumference’ radius

R−2
c =

√
|St∗|

∫ ∞
t∗

√
|St|∫

St
|η|2

. (162)

The radius Rc was used and studied in [2, 3], where it was shown that if the flow has
reasonably nice properties then this radius may be related to more traditional measures of
size for the body. In particular if the flow remains convex outside of Ω, as it is known to
be for large times |t| >> 0 or in spherical symmetry, then Rc ≤

√
5/2 maxSt∗ |η| which is

proportional to the circumference of the largest orbit within St∗ . Because it provides an
upper bound for Rc, when the flow is convex the circumference may be used in place of the
this radius in

1

16π

∫ ∞
0

√
|St|
16π

∫
St

|h− k|2g ≥
1

2

J 2

RR2
c

. (163)

It is now possible to combine (159), (160), and (163) to obtain the Bekenstein-type bound
of Theorem 3. �

Note that the proof above relies on the existence of a solution to the Jang equation
coupled to IMCF through the choice of the function u. Due to the fact that solutions to
the Jang equation tend to blow-up at apparent horizons [24], it will be assumed that the
initial data are devoid of these surfaces. Under this hypothesis, the desired solutions to the
Jang/IMCF system have been shown to always exist in spherical symmetry [13], and it is
reasonable to expect that existence continues to hold at least in a weak sense in axisymmetry.
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This theorem generalizes the results of [3,17] to the non-maximal setting. Although it is
in the spirit of the Bekenstein bound (8), these two inequalities are distinct in that one does
not directly imply the other. Nevertheless, as will be shown in the next section inequality
(9) does indirectly imply a lower bound for m2 which has the same structure as (8).
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13 Proof of Theorem 4: Penrose-like Inequalities

In this section we will adapt the techniques discussed in the previous section to establish a
version of the Penrose inequality with angular momentum and charge (10). This will then
yield an alternate version of the Bekenstein bound (9). Recall that an apparent horizon is
a surface S ⊂ M which has zero null expansion, that is, a shell of light emitted from the
surface is (infinitesimally) neither growing nor shrinking in area as it leaves the surface. These
surfaces indicate the presence of a strong gravitational field, and may be interpreted as quasi-
local versions of black hole event horizons from the initial data point of view. Mathematically
they are expressed by one of the two equations θ± := H ± TrSk = 0, where the signs +/−
indicate a future/past horizon. An apparent horizon is called outermost within an initial
data set if it is not enclosed by any other apparent horizon.

In contrast to the previous section, here we will work with an IMCF starting at a closed
axisymmetric surface S so that t0 = 0 is the starting time of the flow, and S will either be an
outermost apparent horizon or the boundary of a body ∂Ω. First consider the case in which
S = ∂Ω, and assume that the boundary of the body is completely untrapped H > |TrSk|.
This allows for the prescription of a Neumann type boundary condition for solutions of the
Jang equation (155)

u∂νf√
1 + u2|∇f |2

= H−1TrSk. (164)

It was shown in [13,31], in the context of spherical symmetry, that solutions of the Jang/IMCF
system exist satisfying this boundary condition. Moreover it was also shown that with (164)
the boundary integrals arising from the divergence expression associated with R in (159),
combine with the Hawking mass on the left-hand side of (159), to yield

m−MSH(S) ≥
∫ ∞

0

√
|St|
16π

∫
St

(
(µ− J(w)) +

1

16π
|h− k|2g

)
(165)

where the spacetime Hawking mass is given by

MSH(S) =

√
|S|
16π

(
1− 1

16π

∫
S

θ+θ−

)
. (166)

It should be pointed out that (165) depends on appropriate behavior of the IMCF. For
instance in the weak formulation of Huisken/Ilmanen [28], the flow may instantaneously
jump from the desired starting surface S to another surface S̃ enclosing it with less area. If
this occurs, then in inequality (165) the role of S should be replaced by S̃. Such ‘jumping’
behavior can be prevented by requiring that S be outer area minimizing in (M, g), in that
any surface which encloses S should have greater area. In order to achieve this property with
respect to the deformed data metric g, further geometric hypotheses on S with respect to the
original initial data may be required. For the purposes of the present work, which does not
seek to fully examine the analytical problem of solving the Jang/IMCF system in generality,
we will simply refer to solutions with these suitable properties as proper solutions. As
pointed out, it is known that proper solutions always exist under the hypothesis of spherical
symmetry and small perturbations thereof.
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As in the previous section, the two terms on the right-hand side of (165) yield contribu-
tions of angular momentum and charge. More precisely, applying (160) and (163) produces

m ≥MSH(S) +
q2

2R0

+
1

2

J 2

R0R2
c

(167)

where R0 is the area radius of S0 = S, and J , q denote the angular momentum and charge
contained within S. This inequality will lead to a Bekenstein bound for bodies in the presence
of a sufficiently strong gravitation field, as well as a version of the Penrose inequality.

The arguments above seem to rely on the assumption that S is untrapped, as otherwise
the boundary condition (164) would imply that u∂νf = ±∞. However for the Jang equation,
blow-up solutions are natural as first observed in the proof of the positive mass theorem [44].
Blow-up occurs at apparent horizons, and can be prescribed at outermost apparent horizons
as well [24]. Therefore in place of the boundary condition (164), at an outermost apparent
horizon S we will prescribe blow-up as the boundary condition. In this situation the graph of
the solution to Jang’s equation asymptotes to a cylinder over S, and the area of this surface
in the deformed metric and the original coincide |S| = |S|. Moreover, at an apparent horizon
θ+θ− = 0 so that MSH(S) =

√
|S|/16π.

Upon multiplying (167) by the first two terms on the right-hand side we find

m2 ≥
(
MSH(S) +

q2

2R0

)
m ≥

(
MSH(S) +

q2

2R0

)2

+MSH(S)
1

2

J 2

R0R2
c

. (168)

From this the desired inequality in Theorem 4 arises from the arguments above. �

This result is similar to the conjectured Penrose inequality (10) with the primary differ-
ence arising in the angular momentum term. Instead of area, this term involves the squared
radius defined in the previous section.

Furthermore (168) may be used to yield a Bekenstein bound. Suppose that S = ∂Ω is
the boundary of a body immersed in a strong gravitational field. By this we mean that
λ := 1− (|S|/16π) supS θ+θ− > 0, or rather that θ+θ− has sufficiently small positive part. In
particular surfaces S which are close to being an apparent horizon satisfy this property, as do
trapped surfaces. For surfaces S which satisfy this property, the spacetime Hawking energy
is bounded below by the product of λ and the area radius up to a universal constant. Let
λ0 > 0 be fixed and consider the class of bodies with boundaries experiencing a appropriately
strong gravitational field so that λ ≥ λ0. Then for bodies of this type a Bekenstein bound
follows immediately from (168)

m2 ≥ q4

4R2
0

+ λ0
J 2

4R2
c

. (169)

This inequality has the same structure as the Bekenstein inequality (8), although the radius
associated with the angular momentum term is more complicated than the area radius.
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14 Proof of Theorem 5: An Inequality For Extended

Bodies

Consider two concentric bodies Ω1 ⊂ Ω2, each having the topology of a 3-dimensional ball,
inside an axisymmetric asymptotically flat initial data set (M, g, k, E,B). The model astro-
nomical body in this context is a typical star, where there is a highly dense core and interior
(represented by Ω1) compared to the outermost layer or corona (represented by Ω2 \ Ω1)
with very little matter density. For simplicity of the model we will assume that the charge
density and momentum density in the Killing direction vanish in the annular region Ω2 \Ω1,
so that divE = divB = J(η) = 0. If there are no apparent horizons in the initial data, then
as discussed in Section ?? we may take a solution of the Jang/IMCF system of equations
with the flow emanating from a point x0 ∈ Ω1 on the axis of rotation. Let t1 and t2 be the
first times for which the flow completely encloses the boundaries ∂Ω1 and ∂Ω2, respectively.
From the arguments used to obtain (165), together with the fact that the Hawking energy
of a point is zero, we find that

MSH(St2) ≥
∫ t2

−∞

√
|St|
16π

∫
St

(
(µ− J(w)) +

1

16π
|h− k|2g

)
(170)

if the Jang solution f is prescribed to be zero (or more generally constant) on St2 . Note that
this boundary condition differs from (164) which is used to obtain (165). This is due to the
fact that the boundary integrals that arise from the divergence term in R have different signs
on the inner and outer boundaries [31]. In fact the boundary terms at the outer boundary
have an advantageous sign, and it is likely that this Dirichlet boundary condition used for
(170) is not needed.

Proceeding as in the previous sections, lower bounds for the right-hand side of (170)
may be extracted in terms of the total charge and angular momentum of Ω1. In addition, a
contribution from the nonelectromagnetic matter fields will also occur. To see this observe
that as in (160)

∫ t2

−∞

√
|St|
16π

∫
St

(µ− J(w)) ≥
∫ t1

−∞

√
|St|
16π

∫
St

(µEM − JEM(w)) +
1

8π

∫ t2

t1

√
|St|
16π

∫
St

(
|E|2 + |B|2

)
≥4π

3
R3

1 min
Ω̃1

(µEM − |JEM |) +
q2

2R1

1−

√
R1

R2

 ,

(171)

where Ω̃1 is the domain enclosed by St1 and R1, R2 are the area radii of St1 , St2 . Notice that
if the charged dominant energy condition is valid then the first term on the right in (171) is
nonnegative, and the second term also has this property since areas are nondecreasing in an
IMCF. Similarly, applying the arguments of (163) to the current setting produces

1

16π

∫ t2

−∞

√
|St|
16π

∫
St

|h− k|2g ≥
1

2

J 2

R1R2
ac

, (172)

47



where the circumference radius is with respect to the annular domain

R−2
ac =

√
|St1|

∫ t2

t1

√
|St|∫

St
|η|2

. (173)

Furthermore assuming that the outer surface St2 is untrapped, so that H > |TrSt2k|, im-

plies that the Hawking mass may be estimated above by the area radius MSH(St2) ≤ 1
2
R2.

Therefore combining (170), (171), and (172) yields

1

2
R2 ≥

4π

3
R3

1 min
Ω̃1

(µEM − |JEM |) +
q2

2R1

1−

√
R1

R2

+
1

2

J 2

R1R2
ac

. (174)

�

The geometric inequality (174) relates the size of the body Ω2 ⊃ Ω1 to its core nonelectro-
magnetic matter content, total charge, and total angular momentum. It may be interpreted
as stating that a material body of fixed size can only contain a certain fixed amount of
matter energy, charge, and angular momentum. The primary hypotheses which were used
to derive this inequality consist of the assumption that the outer region is untrapped, the
annular region Ω2 \ Ω1 has no charge and momentum density in the Killing direction, and
most importantly that the initial data are void of apparent horizons. This latter assumption
is used to obtain regular solutions of the Jang equation, and following [45] we may turn this
around to obtain a black hole existence result.

It is a basic folklore belief that if enough matter/energy is concentrated in a sufficiently
small region, then gravitational collapse must ensue. This is typically referred to as the hoop
conjecture or trapped surface conjecture [43,48], and is quite difficult to formulate precisely,
see the references in [38]. One of the most general results in this direction is due to Schoen
and Yau [45], who exploited the techniques developed in their proof of the positive mass
theorem [44] to prove the existence of apparent horizons whenever matter density is highly
concentrated. Their strategy was to show that the concentration hypothesis forces solutions
of the Jang equation to blow-up, and since blow-up can only occur at an apparent horizon
the existence of such a surface in the initial data is established.

In our case, if a body with the hypotheses above, minus any assumption on apparent
horizons, satisfies

1

2
R2 <

4π

3
R3

1 min
Ω̃1

(µEM − |JEM |) +
q2

2R1

1−

√
R1

R2

+
1

2

J 2

R1R2
ac

(175)

then an apparent horizon must be present within the initial data. The reasoning is that if
there were no apparent horizons, then we may apply the arguments above to conclude that
(174) holds, a contradiction.

This relies on the analysis of the Jang/IMCF system of equations, which has been es-
tablished rigorously in the case of spherical symmetry [13]. This conclusion concerning the
existence of an apparent horizon implies that the spacetime arising from the initial data
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contains a singularity, or more accurately is null geodesically incomplete by the Hawking-
Penrose singularity theorems [25], and assuming cosmic censorship it must therefore possess
a black hole. This result may be interpreted as stating that if a body of fixed size contains
sufficient amounts of nonelectromagnetic matter energy, charge, or angular momentum, then
it must collapse to form a black hole.

In addition, we would prefer to have a result that only depends on the initial data,
without having to solve the generalized Jang equation. Indeed, if the initial data is time
symmetric (175) simplifies to

1

2
R2 <

4π

3
R3

1 min
Ω1

(µEM) +
q2

2R1

(
1−

√
R1

R2

)
(176)

and so any data satisfying this inequality must contain a minimal surface.
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A Vanishing Extrinsic Curvature

Consider an axisymmetric closed surface S within an axisymmetric Riemannian 3-manifold
(M, g). If η is the generator for the axisymmetry and ν is the unit normal to S, then under
mild hypotheses h(η, ν) = 0 along S, where h is the tensor associated with the solution f
of Jang’s equation and is given in (157). Geometrically the tensor h represents the extrinsic
curvature of the graph of f in a static spacetime constructed from the metric g and function
u [14]. The vanishing of this particular component of h is used throughout the main body of
the paper in order to allow for angular momentum contributions to the various inequalities.
Here we will confirm this property of h.

In [16] it was shown that if M is asymptotically flat and simply connected then a global
cylindrical coordinate system exists, denoted by (ρ, z, φ) and referred to as Brill coordinates,
such that the metric takes the following form

g = e−2U+2α(dρ2 + dz2) + ρ2e−2U(dφ+ Adρ+Bdz)2 (177)

for some functions U , α, A, and B all depending only on (ρ, z). The Killing field is given
by η = ∂φ, and if U = α = A = B = 0 then g reduces to the typical expression of the
flat metric on Euclidean 3-space in cylindrical coordinates. For simplicity it will be assumed
that A = B = 0 so that η is perpendicular to the orbit space or ρz-half plane. Observe that
since u and f are axisymmetric, that is ∂φf = ∂φu = 0, it follows that

h(η, ν) =
u∇φνf√

1 + u2|∇f |2
= −

u
(
Γρφν∂ρf + Γzφν∂zf

)√
1 + u2|∇f |2

(178)

where the Γlij are Christoffel symbols. Since the surface is axisymmetric ∂φ is tangent to S,
and thus g(η, ν) = 0. A straightforward calculation then yields

Γρφν =
1

2
gρi∂νgφi = 0, Γzφν =

1

2
gzi∂νgφi = 0, (179)

and the desired conclusion follows.
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