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Abstract of the Dissertation

Monge-Ampère equation on the complement of a divisor
&

On the Chern-Yamabe flow

by

Fangyu Zou

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

In this dissertation we discuss two seperate topics. In the first part we
consider the complex Monge-Ampère equation on complete Kähler manifolds
with cusp singularity along a divisor when the right hand side F has rather
weak regularity. We prove a compactness result on the solutions to the ε-
perturbed equations of the Monge-Ampère equation when the right hand
side F is in some weighted W 1,p0 space for p0 > 2n where n is the complex
dimension. As an application we show that there exists a classical W 3,p0

solution for complex Monge-Ampére equation when F is in the weighted
W 1,p0 . The key ingredient lies in using the de Giorgi-Nash-Moser theory to
derive the uniform estimates of the gradient ∇ϕε and the Laplacian ∆ϕε in
terms of the weighted W 1,p0 norm of F .

In the second part we consider the Chern-Yamabe problem of finding
constant Chern scalar curvature metrics in the conformal classes. We pro-
pose a flow to study the Chern-Yamabe problem and discuss the long time
existence of the flow. In the balanced case we show that the Chern-Yamabe
problem is the Euler-Lagrange equation of some functional. The mono-
tonicity of the functional along the flow is derived. We also show that the
functional is not bounded from below.
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Part I

Monge-Ampère equation on the
complement of a divisor

1 A brief review of canonical metrics for compact
Kähler manifolds

In this section we collect the basic notations of Kähler geometry and briefly
review the develop of canonical metrics on the compact Kähler manifolds.

1.1 Kähler manifolds

We begin with Riemannian manifolds. Suppose M is a smooth manifold.
A Riemannian metric g on M is a positive definite bilinear form on the
tangent bundle TM . Under the local coordinates (x1, · · · , xn), the metric g
is locally represented by a smooth matrix valued function {gij}, where the
matrix with entry gij = g( ∂

∂xi
, ∂
∂xj

) is positive definite. The pair (M, g) is
called a Riemannian manifold. Recall that the Riemannian manifold (M, g)
endows a unique connection which is torsion free and compatible with the
Riemannian metric g, namely, the Levi-Civita connection. Let ∇ denote the
Levi-Civita connection of g.

Almost complex structure

An almost complex structure on M is an endomorphism J : TM → TM
such that J2 = −id. It is clear that for a Riemannian manifold to endow
an almost complex structure, it has to be even dimensional. An almost
complex structure is called integrable if there is a set of coordinate charts
on M with holomorphic transition functions such that J corresponds to the
induced complex multiplication on TM ⊗ C. An almost complex structure
is not always integrable. An integrable almost complex structure is also
called a complex structure. In fact, we have the following theorem due to
Newlander-Nirenberg [35].

Theorem 1.1. An almost complex structure is integrable if and only if the
Nijenhuis tensor NJ : TM × TM → TM

NJ(u, v) := [u, v] + J [Ju, v] + J [u, Jv]− [Ju, Jv] (1.1)

vanishes identically.
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Given a Riemannian manifold (M, g) with an almost complex structure
J , we say that the almost complex structure J is compatible with the Rie-
mannian metric g, if for any tangent vectors u, v ∈ TM

g(u, v) = g(Ju, Jv). (1.2)

Now we are ready to define the Kähler manifolds.

Definition 1.2. A Kähler manifold (M, g, J) is a Riemannian manifold
(M, g) with a compatible almost complex structure J such that ∇J = 0.

Notice that ∇J = 0 implies that NJ = 0 and thus the almost complex
structure J is integrable, hence is a complex structure.

Kähler form

On a Kähler manifold (M, g, J), we can define

ωg(·, ·) = g(J ·, ·). (1.3)

One can derive easily that ωg is in fact a 2-form on M . We usually call
ωg the Kähler form of g. Since g and J are both parallel with respect to
the Levi-Civita connection ∇, it follows that ∇ωg = 0, and thus dωg = 0.
In other words, M admits a symplectic form ωg such that the almost com-
plex structure J is compatible with ωg. Conversely, we have the following
proposition.

Proposition 1.3. If (M, g) admits an integrable almost complex structure
J which is compatible with the metric g, then ∇J = 0 if and only if dωg = 0.

Proof. The proof of this proposition is purely computational. We refer the
interested readers to [38].

Curvatures

On a Kähler manifold (M, g, J) with dimension dimCM = n, it is more
convenient to work in local holomorphic coordinates zi = xi +

√
−1yi for

i = 1, 2, · · · , n. Besides the obvious basis { ∂
∂x1

, · · · , ∂
∂xn ,

∂
∂y1

, · · · , ∂
∂yn } and

{dx1, · · · , dxn, dy1, · · · , dyn} of the complexified tangent bundle TM ⊗ C
and the complexified cotangent bundle T ∗M × C, we have

∂

∂zi
=

1

2
(
∂

∂xi
−
√
−1

∂

∂yi
),

∂

∂z̄i
=

1

2
(
∂

∂xi
+
√
−1

∂

∂yi
), (1.4)
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for i = 1, 2, · · · , n of TM⊗C corresponding to the ±
√
−1-eigenspaces T 1,0M

and T 0,1M of the complex structure J and similarly

dzi = dxi +
√
−1dyi, dz̄i = dxi −

√
−1dyi, (1.5)

for i = 1, 2, · · · , n of T ∗M ⊗ C.
We extend the metric g C-linearly to the complexified tangent bundle

TM ⊗ C. Then we have g(u, v) = 0 for u, v ∈ T 1,0M or u, v ∈ T 0,1M . In
the local holomorphic coordinates, the metric g is therefore written as

g = gij̄(dz
i ⊗ dz̄j + dz̄i ⊗ dzj). (1.6)

where gij̄ = g( ∂
∂zi
, ∂
∂z̄j

) and gij̄ = gjī. Thus, the Kähler form ωg can be
written as

ωg = gij̄dz
i ∧ dz̄j . (1.7)

The Kähler condition dωg = 0 is then equivalent to

∂gip̄
∂zj

=
∂gjp̄
∂zi

(1.8)

for any i, j, p = 1, 2, · · · , n.
Further more, we can extend the Levi-Civita connection ∇ C-linearly to

Γ(TM ⊗ C). We write the Christoffel symbols as

∇ ∂

∂zj
= (Γkijdz

i + Γkījdz̄
i)⊗ ∂

∂zk
+ (Γk̄ijdz

i + Γk̄ījdz̄
i)⊗ ∂

∂z̄k
, (1.9)

∇ ∂

∂z̄j
= (Γkij̄dz

i + Γkīj̄dz̄
i)⊗ ∂

∂zk
+ (Γk̄ij̄dz

i + Γk̄īj̄dz̄
i)⊗ ∂

∂z̄k
. (1.10)

The Kähler condition ∇J = 0 then implies that all Christoffel symbols

vanishes except Γkij and Γk̄
īj̄

= Γkij . In fact, we can compute easily that

∂

∂zi
gjp̄ = g(∇ ∂

∂zi

∂

∂zj
,
∂

∂z̄p
) = Γkijgkp̄. (1.11)

It follows that

Γkij = gkp̄
∂gjp̄
∂zi

. (1.12)

Given the Levi-Civita connection, the Riemannian curvature tensor Rm ∈
Γ(Λ2T ∗M ⊗ End(TM)) is defined as

Rm(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w. (1.13)

3



Similarly, we extent Rm C-linearly to Γ(Λ2T ∗M ⊗ End(TM ⊗ C)). In the
local holomorphic coordinates,

Rm = dzi ∧ dz̄j ⊗ (Rlij̄kdz
k ⊗ ∂

∂zl
+Rl̄ij̄k̄dz̄

k ⊗ ∂

∂z̄l
) (1.14)

where Rl
ij̄k

= − ∂
∂z̄j

Γjik and Rl̄
ij̄k̄

= −Rl
jīk

. The Ricci tensor Ric ∈ Γ(T ∗M ⊗
T ∗M) evaluating on X,Y ∈ TM is defined as the trace of Rm(·, X)Y ∈
End(TM). Under the local holomorphic coordinates,

Ric = Rij̄(dz
i ⊗ dz̄j + dz̄i ⊗ dzj) (1.15)

where Rij̄ = Rl
lj̄i

.
We can define the associated Ricci form

(Ricωg)(·, ·) = Ric(J ·, ·). (1.16)

Under the local holomorphic coordinates,

Ricωg = Rij̄dz
i ∧ dz̄j . (1.17)

Since

Rij̄ = − ∂

∂z̄j
Γlil = − ∂

∂z̄j
(glp̄

∂glp̄
∂zi

) = − ∂2

∂zi∂z̄j
log det g, (1.18)

there is a global simple formula for the Ricci form

Ricωg = −
√
−1∂∂̄ log det g, (1.19)

It is also written as
Ricωg = −

√
−1∂∂̄ logωng (1.20)

since ωng = det(gij̄)
√
−1dzi∧dz̄1∧· · ·∧

√
−1dzn∧dz̄n. As a consequence, with

fixed complex structure J , given another Kähler metric g′, the associated
Kähler form is given by

Ricωg′ = −
√
−1∂∂̄ log det g′. (1.21)

Hence,

Ricωg′ − Ricωg = −
√
−1∂∂̄ log

det g′

det g
(1.22)

where log det g′

det g is in fact a global function on M . Therefore, Ricωg,Ricωg′

necessarily belongs to the same cohomology class in H1,1(M,C)∩H2(M,R),
which is in fact 2π multiple of the first Chern class of (M,J) denoted as
2πc1(M).
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∂∂̄-Lemma

A big advantage of Kähler manifolds is that the Christoffel symbols and the
Ricci form have very neat formulas. Another big advantage of being Kähler
is that we have the following ∂∂̄-lemma.

Lemma 1.4 (∂∂̄-lemma). Let (M, g, J) be a closed Kähler manifold. Let
α, α′ ∈ H1,1(M,C) are in the same cohomology class. Then there exists a
function F ∈ C∞(M,C) such that α′ = α+

√
−1∂∂̄F .

Recall that on a complex manifold (M,J), the space of complex valued
k-forms on M naturally splits as Ωk(M) =

⊕
p+q=k Ωp,q(M), where locally

Ωp,q(M) has basis dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq for i1 < i2 < · · · < ip
and j1 < j2 < · · · < jq. We have differential operators ∂̄ : Ωp,q(M) →
Ωp,q+1(M) and ∂ : Ωp,q(M) → Ωp+1,q(M) defined as the projection of the
exterior differential operator d on Ωp,q+1(M) and Ωp+1,q(M) components
respectively. In fact, ∂∂̄-lemma is also valid for (p, q)-forms with appropriate
modifications and the proof requires some ideas from Hodge theory. Since
we are only interested in (1, 1)-forms on M where the Kähler form lies, in
this simple case we provide a quick proof of the ∂∂̄-lemma as below.

Proof. By assumptions there is a 1-form β on M such that α′ − α = dβ.
Write β = β1,0 + β0,1. Then

dβ = ∂β + ∂̄β = ∂β1,0 + ∂β0,1 + ∂̄β1,0 + ∂̄β0,1. (1.23)

Since dβ = α′ − α ∈ H1,1(M,C), it follows that ∂β1,0 = 0 = ∂̄β0,1. The
lemma can be proved if we show that ∂β0,1 = ∂∂̄f and ∂̄β1,0 = ∂∂̄g for some
functions f, g ∈ C∞(M,C). It suffices to show that for any ∂̄-closed (0, 1)
form, say β0,1, there exists some function f ∈ C∞(M,C) such that β0,1− ∂̄f
is ∂-closed. Consider the formal adjoint operator ∂̄∗ : Ω0,1(M)→ Ω0(M) of
∂̄: for any θ = θj̄dz̄

j ,

∂̄∗θ = −gij̄θj̄,i (1.24)

where θj̄,i is the (i, j̄) entry of ∇θ. Set f ∈ C∞(M) be the solution to the
equation

∂̄∗∂̄f = ∂̄∗β0,1. (1.25)

Note that on Kähler manifold we have that ∂̄∗∂̄ = 1
2∆g where ∆g is the

usual Laplacian operator with respect to the metric g of M . Moreover, the
integral of ∂̄∗β0,1 over M is zero by integration by parts. Therefore, the
existence of the solution f is guaranteed. Let η0,1 = α0,1 − ∂̄f . Then we
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have ∂̄η0,1 = 0 and ∂̄∗η0,1 = 0. It is left to show that ∂η0,1 = 0. Write
η0,1 = ηj̄dz̄

j . We have

0 =

∫
M
〈∂∂̄∗η0,1, η0,1〉gdVolg =

∫
M
−gij̄gkl̄ηj̄,ikηl̄dVolg

=

∫
M
gij̄gkl̄ηj̄,kiηl̄dVolg =

∫
M
|∂η0,1|dVolg .

(1.26)

Hence, ∂η0,1 = 0. This finished the proof.

In particular, if we have [α] = [α′] ∈ H1,1(M,C) ∩ H2(M,R), then we
have α′ − α =

√
−1∂∂̄F for some F ∈ C∞(M,R).

1.2 Calabi conjecture and Kähler-Einstein problem

In the end of last subsection we showed that for every Kähler metric, its
Ricci form lies in 2π multiple of the first Chern class 2πc1(M). In the
1950’s, E. Calabi first raised the question whether each representative in
the cohomology class 2πc1(M) could be realized as the Ricci form of some
Kähler metric. This question is known as the Calabi conjecture. It was a
widely open problem for more than two decades until it was solved by S.-T.
Yau through PDE theory in 1976.

We now show how we can represent the Calabi conjecture into a problem
of solving some complex Monge-Ampère equation. Let (M, g, J) be a closed
Kähler manifold and ω is the associated Kähler form. Let α ∈ 2πc1(M).
Calabi’s problem is to look for a Kähler metric whose Ricci form is the
given α. We might restrict ourselves in the fixed cohomology class [ω],
which consists of all the Kähler metrics cohomologous to ω,

H = {ωϕ | ωϕ = ω +
√
−1∂∂̄ϕ > 0, ϕ ∈ C∞(M,R)}. (1.27)

Since α and Ricω lies in the same cohomology class 2πc1(M), by the ∂∂̄-
lemma, there exists some function F ∈ C∞(M,R) such that α = Ricω +√
−1∂∂̄F . If α is the Ricci form of some Kähler metric ωϕ = ω+

√
−1∂∂̄ϕ >

0, then the above equation can be written as

−
√
−1∂∂̄ logωnϕ = −

√
−1∂∂̄ logωn +

√
−1∂∂̄F (1.28)

which is equivalent to

log
ωnϕ
ωn
− F ≡ C (1.29)

6



for some constant C. By taking exponential on both sides, we have that

(ω +
√
−1∂∂̄ϕ)n = ωnϕ = eF+Cωn. (1.30)

By integrating both sides on M , one can determine that the constant

C = log

∫
M eFωn∫
M ωn

. (1.31)

Without of loss of generality, we can always assume that F ∈ C∞(M,R)
satisfying that

∫
M eFωn =

∫
M ωn. Thus, the Calabi conjecture is equivalent

to solve the following equation

(ω +
√
−1∂∂̄ϕ)n = eFωn. (1.32)

Under the local holomorphic coordinates, let ϕij̄ = ∂2ϕ
∂zi∂z̄j

, the above equa-
tion is written as

det(gij̄ + ϕij̄) = eF det(gij̄) (1.33)

which is a complex Monge-Ampère equation.
In 1976, S.-T. Yau solved the Calabi conjecture by solving the complex

Monge-Ampère equation using the continuity method. The continuity path
he worked on is

det(gij̄ + ϕij̄) = etF+Ct det(gij̄), t ∈ [0, 1] (1.34)

where the constant Ct is chosen to make the normalization condition∫
M
etF+Ctωn =

∫
M
ωn (1.35)

hold. Set

I = {t ∈ [0, 1] | Equation (1.35) with parameter t has a smooth

solution ϕt with ω +
√
−1∂∂̄ϕt > 0.}

(1.36)

It is clear that 0 ∈ I hence I is not empty. The goal is to show that 1 ∈ I
by showing that I is both open and closed in [0, 1].

The openness is done by Implicit Function Theorem. Suppose t0 ∈ I
and ϕt0 is the solution of (1.35) with t = t0. Set

Φ(t, ϕ) = log
det(gij̄ + ϕij̄)

det(gij̄)
− tF − Ct (1.37)

7



as a nonlinear map Φ : [0, 1] × C2,α
(M) → C

0,α
(M) where C

2,α
(M) (resp.

C
0,α

(M)) is the C2,α(M) (resp. C0,α(M)) space with normalization

C
2,α

(M) = {ϕ ∈ C2,α(M) |
∫
M
ϕωn = 0}. (1.38)

It is easy to see that ϕ is a solution to (1.35) for t if and only if Φ(t, ϕ) = 0.

The partial derivative DϕΦ(t0, ϕt0) : C
2,α

(M)→ C
0,α

(M) is then given by

DϕΦ(t0, ϕt0)(φ) = ∆t0φ (1.39)

where ∆t0 is the Laplacian operator of the metric ωϕt0 = ω+
√
−1∂∂̄ϕt0 . On

closed manifold M , it is an invertible linear map from C
2,α

(M) to C
0,α

(M).
By the Implicit Function Theorem it sufficiently implies the openness of I.

The closedness is done by proving a list of a priori estimates on ϕ, among
which the C2 estimate plays a crucial role. In the holomorphic orthonormal
frame of the metric g, Yau developed a delicate inequality

∆ϕ(e−Cϕ(n+ ∆ϕ)) ≥ e−Cϕ
[1

2

∑
i 6=j

Rīijj̄
(ϕīi − ϕjj̄)2

(1 + ϕīi)(1 + ϕjj̄)

+ t∆F + (n+ ∆ϕ)(−C∆ϕϕ)
]
.

(1.40)

Taking C such that C ≥ − infM infi 6=j Rīijj̄+1, one can find constants C1, C2

and C3 such that

∆ϕ(e−Cϕ(n+∆ϕ)) ≥ C1(e−Cϕ(n+∆ϕ))
n
n−1−C2(e−Cϕ(n+∆ϕ))−C3 (1.41)

where the constant C1 depends on supM |ϕ| and C3 depends on supM |∆F |.
Once C0 estimate is obtained, the C2 estimate can be easily deducted from
(1.41) by maximum principle. To get the higher order estimates, Yau showed
a C3 estimate in terms of the C2 estimate, which was first introduced by
E. Calabi. Soon after him, it was showed that the C2,α estimate could be
derived by the a priori interior C2,α estimates of Monge-Ampère equations
on domains known as the Evans-Krylov theory [22, 29, 30], which can be
used to replace the C3 estimate and simplify Yau’s original proof. All the
higher order estimates can be derived via elliptic theory of linear equation
by taking differentiation of equation (1.35).

Calabi also proposed the question of finding “canonical metrics” inside
a fixed Kähler class. A particular type of “canonical metrics” is the Kähler-
Einstein metric. If the Kähler class is proportional to the first Chern class,

8



it is natural to ask whether we could find a metric ωϕ in the Kähler class
such that

Ricωϕ = λωϕ (1.42)

for some constant λ. This problem is called the Kähler-Einstein problem.

Definition 1.5. Suppose M is a closed Kähler manifold and c1(M) is its
first Chern class. We say that c1(M) > 0 ( resp. c1(M) < 0) if there exists
a representative α ∈ c1(M) such that α is positive definite ( resp. negative
definite).

By scaling the metric ωϕ one can assume that the constant λ is ei-
ther −1, 0 or 1. In all three cases it requires that the Chern class is def-
inite: c1(M) < 0, c1(M) = 0 and c1(M) > 0, respectively. Note that
Ricω ∈ 2πc1(M) = λ[ω]. By the ∂∂̄-lemma, there exists some function
Fω ∈ C∞(M,R) such that

Ricω = λω +
√
−1∂∂̄Fω. (1.43)

It then follows that

Ricωϕ = Ricω +
√
−1∂∂̄(λϕ− Fω) (1.44)

which is equivalent to the following Monge-Ampère equation

det(gij̄ + ϕij̄) = eFω−λϕ det(gij̄). (1.45)

The case λ = 0 is already settled by Yau in his resolution of the Calabi
conjecture. Such Kähler manifolds with vanishing first Chern class are thus
called Calabi-Yau manifolds. The case λ = −1 is solved independently by
Yau [41] and Aubin [2] in the late 1970s. It can be solved in a similar way
to Yau’s resolution of the Calabi conjecture via the continuity method on
a suitable continuity path. In this case Yau’s C2 estimate still holds and
moreover the C0 estimate of the solution can be easily obtained via the
maximum principle. The case λ = 1, i.e., the Kähler-Einstein problem on
Fano manifolds, however, turns out to be quite subtle.

In fact, there are many obstructions for the existence of Kähler-Einstein
metrics when c1(M) > 0. Let Aut(M) denote the group of biholomorphisms
on the complex manifold (M,J). In 1957, Matsushima [34] found that if
there exists a Kähler-Einstein metric in the class 2πc1(M) > 0, then Aut(M)
is reductive. Therefore, Kähler manifolds with c1(M) > 0 and non-reductive
Aut(M), for instance, CP2 blowing up with one point, does not possess a
Kähler-Einstein metric.

9



In 1983, Futaki [23] discovered another obstruction known as Futaki
invariant. Choose ω ∈ 2πc1(M) > 0. Let hω ∈ C∞(M,R) such that Ricω−
ω =
√
−1∂∂̄hω. The Futaki invariant is defined as fM : η(M)→ C,

fM (X) =

∫
M
X(hω)ωn, (1.46)

where η(M) is the Lie algebra of Aut(M) that consists of all holomorphic
vector fields on M . Futaki showed that fM is actually independent of the
choice of ω. Moreover, if there exists a Kähler-Einstein metric in the class
2πc1(M) > 0, then fM ≡ 0. In [23], Futaki also constructed an example of
3-dimensional manifold with c1(M) > 0 and Aut(M) reductive but fM 6= 0,
hence does not possess a Kähler-Einstein metric.

It is proved by Donaldson-Uhlenbeck-Yau [40, 20] that the existence of
Hermitian-Yang-Mills connection is equivalent to the stability of underlying
holomorphic line bundle. Inspired by this result, in the late 1980s Yau
proposed that the existence of Kähler-Einstein metrics for Fano manifolds
should be correspondent to certain stability of the underlying manifold in
the geometric invariant theory. This stability condition is later defined more
precisely by Tian [37] and Donaldson [21] known as K-stability. This results
in the following famous conjecture.

Conjecture 1.6. (Yau-Tian-Donaldson, [21]) A Fano manifold V admits
a Kähler-Einstein metric if and only if (V,K−1

V ) is K-stable.

This conjecture is only fully settled recently by Chen-Donaldson-Sun [13,
14, 15] in 2013.

1.3 Extremal and cscK metrics

It is worth mentioning more general canonical metrics introduced by Calabi
besides the Kähler-Einstein metrics. Calabi introduced the L2-norm of the
scalar curvature as a functional on the metrics called the Calabi functional

Ca(ϕ) =

∫
M
R2
ϕω

n
ϕ (1.47)

where Rϕ = trωϕ Ric(ωϕ) is the scalar curvature of ωϕ. Calabi proposed to
look for special metrics in the space H which are the critical points of the
Calabi functional. Such metrics are called extremal metrics.
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By Calabi’s computation, we have the first variation of the Calabi func-
tional

δψCa(ϕ) =

∫
M

2(δψRϕ)Rϕω
n
ϕ +R2

ϕδψ(ωnϕ)

=

∫
M

(gαp̄gβq̄Rϕ,p̄q̄αβ)ψωnϕ.

(1.48)

Therefore, the Euler-Lagrange equation for the Calabi functional is

gαp̄gβq̄Rϕ,p̄q̄αβ = 0. (1.49)

Pairing with Rϕ and integrate by parts, we obtain equivalently that ϕ must
satisfy

Rϕ,p̄q̄ = 0. (1.50)

for all p, q ∈ {1, 2, · · · , n}. We define the (1, 0)-vector field on M given by

∇1,0Rϕ = gip̄ϕ
∂Rϕ
∂z̄p

∂

∂zi
.

Then (1.50) is equivalent to that ∇0,1Rϕ is a holomorphic vector field on
M . A metric ωϕ is a extremal metric if and only if the vector field ∇1,0Rϕ
is holomorphic. In particular, if ∇1,0Rϕ = 0, we have that Rϕ = R is a
constant. Indeed, the constant is a topological invariant

R =

∫
M Rϕω

n
ϕ∫

M ωnϕ
=

2πc1(M) · [ω0]n−1/(n− 1)!

[ω0]n/n!
. (1.51)

Such a metric is then called a constant-scalar-curvature Kähler (cscK) met-
ric.

The existence problem of extremal/cscK metrics can be viewed as a
generalization of the Kähler-Einstein problem in the sense that if we work
in the cohomology class 2πc1(M) > 0, then cscK are equivalent to Kähler-
Einstein. It is straightforward that Kähler-Einstein metrics are also cscK.
To see the inverse, notice that ω is cscK if and only if that Ric(ω) is harmonic
with respect to ω. Since the harmonic form in 2πc1(M) > 0 is unique by
Hodge theory, it follows that Ric(ω) = ω is Kähler-Einstein. (The form ω is
harmonic with respect to itself.)

There are also obstructions for the extremal/cscK metrics similar to the
Kähler-Einstein case. In particular, Futaki’s invariant can be generalized to
the cscK case by setting fM : η(M)→ R,

fM (X) =

∫
M
X(uω)ωn, (1.52)
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where uω ∈ C∞(M,R) is the solution to the equation ∆ωuω = Rω−R. The
definition only depends on the cohomology class [ω] ∈ H1,1(M,R), and if
there exists a cscK metric then necessarily fM ≡ 0.

The K-stability by Donaldson and Tian is indeed an obstruction for the
more general cscK metrics. To this end we have the following more general
conjecture.

Conjecture 1.7. (Yau-Tian-Donaldson, [21]) A smooth polarized manifold
(V,L) admits a cscK metric in the class c1(L) if and only if it is K-stable.

The space of Kähler metric H can be endowed with a L2 Riemannian
metric given by

〈ψ1, ψ2〉ϕ =

∫
M
ψ1ψ2ω

n
ϕ (1.53)

for any ψ1, ψ2 ∈ TϕH = C∞(M,R). It is proved by X. X. Chen [16] that
any Kähler metrics ϕ1, ϕ2 ∈ H can be joint by a unique C1,1 geodesic under
the above L2 metric.

Mabuchi [33] introduced a functionalMω0 overH called K-energy, which
has the cscK metrics as its critical point. The K-energy is defined using its
derivative: for any ψ ∈ TϕH,

δψMω0(ϕ) = −
∫
M
ψ(Rϕ −R)ωnϕ. (1.54)

It is proved by Berman & Berndtsson [4] that the K-energy is convex along
the geodesics in H. Therefore, the existence of critical points for K-energy
would be expected to imply that the properness of K-energy with respect to
some geodesic distance. In [8], X. X. Chen made the following conjecture.

Conjecture 1.8. There exists a cscK metric in a Kähler class [ω0] if and
only if the K-energy Mω0 is proper.

This conjecture is recently fully affirmatively solved by a series of work.
The direction that the existence of cscK implies the properness of K-energy
is estabished by Berman-Darvas-Lu [5] very recently. To tackle the existence
problem, it is proposed by X. X. Chen to consider the following continuity
path

t(Rϕ −R) = (1− t)(trϕ ω0 − n). (1.55)

It is straightforward that when t = 0 then ϕ = 0 is a solution. The openness
is done by Chen [9] (for t > 0) and by Chen-Pǎun-Zeng [18] (for t = 0).
To obtain the closedness it is expected to obtain a priori estimates for the
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path (1.55). In this stage one can consider the the more general coupled
equations:

det(gij̄ + ϕij̄) = eF det gij̄ , (1.56)

∆ϕF = −f + trϕ η (1.57)

where f is a given smooth function and η is a smooth real closed (1, 1) form
on M . Note that (1.56), (1.57) combined gives that

Rϕ = f + trϕ(Ric(ω0)− η). (1.58)

The path (1.55) is equivalent to equation (1.58) with choice

f = R− 1− t
t

n, η = Ric(ω0)− 1− t
t

ω0.

In a series of recent deep work of Chen-Cheng [10, 11, 12], the authors proves
the following a priori estimates:

Theorem 1.9 (Chen-Cheng). Let ϕ be a smooth solution to (1.56), (1.57)
normalized to be supM ϕ = 0. Then for any p <∞, there exists a constant
C, depending only on the background metric (M, g), ‖f‖0, maxM |η|ω0, p
and the upper bound of

∫
M eFFωn0 such that ‖ϕ‖W 4,p ≤ C, ‖F‖W 2,p ≤ C.

While f and η has higher regularity, it is easy to obtain higher regularity
for ϕ by bootstrapping. In the same work the authors show that when the K-

energy is proper, then the entropy term
∫
M eFFωn0 =

∫
M log(

ωnϕ
ωn0

)ωnϕ is indeed

bounded from above. This closes the gap of the closedness argument and
hence assures the existence of cscK metrics when assuming the properness
of the K-energy.

2 Motivation and main results

With the great progress for Kähler geometry for compact Kähler manifolds,
there is also a large amount of interest to study the canonical metrics on
complete, non-compact Kähler manifolds. We are primarily interested in
quasiprojective manifolds. These manifolds are complements of a divisor of
a projective manifold.

Let (M,ω0) be a compact Kähler manifold of complex dimension n. Let
D be an effective divisor in M with only simple normal crossings, namely,
D =

∑N
j=1Dj where the irreducible components Di are smooth and intersect

transversely. Let [Dj ] be the associated line bundle to Dj , endowed with a
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smooth hermitian metric | · |j . Let sj ∈ O([Dj ]) be a holomorphic defining
section such that Dj is the zero locus of sj and let ρj = − log(|sj |2j ). Up to

scaling | · |j , one can assume that |sj |2j ≤ e−1 so that ρj ≥ 1 out of Dj . Let

ρ =
∏N
j=1 ρj . Note that

√
−1∂∂̄ρj extends to a smooth real (1, 1)-form on

the whole M which lies in the class 2πc1([Dj ]). For λ > 0 sufficiently large,
set

ω = λω0 +
√
−1∂∂̄ log ρ = λω0 +

N∑
j=1

√
−1∂∂̄ log ρj . (2.1)

Then ω defines a genuine Kähler form on M = M\D, with the properties
that it is complete, has finite volume and has cusp singularity along D.
Indeed, it is asymptotically hyperbolic near the divisor D. Such a metric is
usually called metric of Poincarè type or Carlson-Griffiths type.

It is proved by Tian-Yau [39] and R. Kobayashi [28] in the 1980’s that if
KM + D is ample, one can deform such a Poincaré type metric into a neg-
atively curved complete Kähler-Einstein metric on the complement M\D.
These Kähler-Einstein metrics is also of Poincaré type and have cusp singu-
larities along the divisor D.

It is then natural to consider the same existence problem of cscK metrics
over such manifolds. Motivated by Chen-Cheng’s work of a priori estimates
on the cscK metrics over the compact Kähler manifolds, one would hope
that such a priori estimates can also hold on these manifolds. Note that the
cscK problem can be equivalently written as the following coupled equations:

(ω +
√
−1∂∂̄ϕ)n = eFωn, (2.2)

∆ϕF = trϕ Ric−R (2.3)

where Ric is the Ricci curvature of ω and R is the average of the total scalar
curvature which is a topogical constant.

The analogous problem of finding a Kähler metric on M with prescribed
volume form which is equivalently to solve the following Monge-Ampère
equation

(ω +
√
−1∂∂̄ϕ)n = eFωn on M = M\D (2.4)

for some suitable function F . was studied by H. Auray [3, Theorem 4] that
there exists a solution ϕ ∈ C∞loc(M) bounded at any order to the Monge-
Ampème equation (2.4) on M = M\D, when F ∈ C∞loc(M) is of O(e−νu) at
any order for some ν > 0, and

∫
M eFωn =

∫
M ωn. Auvray’s result requires

that F decays in the exponential order for all its derivatives when approach-
ing to the divisor (the infinity). Moreover, the C2 estimate essentially uses
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Yau’s C2 estimate for compact manifold, which requires F is at least C2

and the bounded on supM |∆F |.
In order to control the metric ωϕ through the scalar curvature, it is to

natural to study the Monge-Ampére equation (2.4) when the right hand side
F has rather weaker regularity less than C2. Indeed, for compact Kähler
manifolds, X. X. Chen and W. Y. He proved that when the right hand side
is in W 1,p0 for p0 > 2n where n is the complex dimension, then one can
derive a priori C0 bound for ∆ϕ and W 3,p0 bound for ϕ.

The first part of our dissertation is devoted to a non-compact version of
their result on the complement of a divisor. Define

I(F, p0) :=

∫
M

(|F |p0 + |∇F |p0)ρ
p0−2
2n−2ωn. (2.5)

Our main theorem states as follows.

Theorem 2.1 (Main theorem). Let M be a compact Kähler manifold of
complex dimension n and D be an divisor on M with only simple normal
crossings. Let M = M\D endowed with some Poincaré type Kähler metric
ω constructed as above. For any function F ∈W 1,p0

loc (M) satisfying
∫
M (eF −

1)ωn = 0 and I(F, p0) <∞ for some p0 > 2n, the Monge-Amperé equation
(2.4) has a classical solution ϕ in W 3,p0(M).

We sketch the idea of proof. Following Auvray’s proof of the smooth
case, we first consider the ε-perturbed equation of (2.4):

(ω +
√
−1∂∂̄ϕε)

n = eF+εϕεωn, (2.6)

for ε ∈ (0, 1]. For any fixed ε > 0, by a simple scaling ω̃ = εω, ϕ̃ = εϕε, the
equation (2.6) can be normalized to

(ω̃ +
√
−1∂∂̄ϕ̃)n = eF+ϕ̃ω̃n. (2.7)

The equation (2.7) has been well studied by Cheng-Yau [19], R. Kobayashi
[28] and Tian-Yau [39] to derive Kähler-Einstein metrics with negative cur-
vature on (M,ω) when KM + D is assumed ample. Yet the existence of
solution to (2.7) actually does not necessarily need the additional assump-
tion of the ampleness of KM +D. We thus obtain the existence of solutions
ϕε to (2.6) and a priori estimates of ϕε depending on ε. Then we will
show that the family {ϕε} is compact in W 3,p0 by securing a uniform W 3,p0

estimate for the family. Lastly, we use Arzellà-Ascoli theorem to take a
converging subsequence which converges to a W 3,p0 solution to (2.4).
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In order to get the W 3,p0 estimate, we need to first get the C2 estimate.
When the right hand side F has rather weak regularity, the C2 estimate
can not be obtained by a similar Yau’s argument. Instead, we follow the
strategy of Chen-He [17] to obtain the uniform C1 and C2 estimates (the
C1 estimate is needed to derive the C2 estimate) by integration method. To
be specific, we prove the following theorems. While deriving these theorem
we could temporarily assume that the right hand side F is smooth with
compact support.

Theorem 2.2. Suppose that F ∈ C∞c (M) satisfies I(F, p0) < ∞ for some
p0 > 2n, and ϕε is a solution to the ε-perturbed equation (2.6). Then there
exists a constant C independent of ε such that

|∇ϕε| ≤ C, ∀ε ∈ (0, 1]. (2.8)

Theorem 2.3. Suppose that F ∈ C∞c (M) satisfies I(F, p0) < ∞ for some
p0 > 2n, and ϕε is a solution to the ε-perturbed equation (2.6). Then there
exists a constant C independent of ε such that

|∆ϕε| ≤ C, ∀ε ∈ (0, 1]. (2.9)

Different from the compact case considered in [17], there are two main
issues when carrying out the integration techniques in our setting. First,
we need to deal with the boundary terms when we do integration by parts.
Second, the usual Sobolev inequality fails in our context as the injective
radius of the Kähler manifold with Poincaré type metric is zero. A gener-
alized Stokes theorem by Gaffeny to complete non-compact manifolds [24]
deals with the first issue, which allows us to perform integration by parts the
same way as the compact case. For the second issue, we adopt a weighted
Sobolev inequality from [3] and show that the similar analysis can be carried
out successfully in our context.

The arrangement of this dissertation is as follows: In section 3 we con-
struct the Poincaré type metric on the complement of a divisor as the ref-
erence metric. We briefly states the properties of the reference metric and
construct the system of quasi-coordinates near the divisor and set up the
analytic ingredients for the proof of our main theorems. This part is mainly
cited from [3]. The section 4 is devoted to the proof of main theorems. In
subsection 5.1 we cite a proof of the C0 estimate from [3] with little modi-
fication. The main estimates are in subsection 4.2 and 4.3 where we prove
the C1 and C2 estimates following the idea of Chen-He [17], followed by the
W 3,p0 estimate. The proof of the main result Theorem 2.1 is presented in
the end of this section.
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3 Kähler manifolds with Poincaré type metrics

Let M be a closed Kähler manifold and D be an effective divisor over M
with only simple normal crossings. In this section we construct a Poincaré
type metric on the complement M = M\D as the reference metric. We
describe the basic properties of the reference metric and construct the sys-
tem of quasi-coordinates near the divisor. In this section we also develop
the analytic ingredients for the proof of our main results. It includes an un-
weighted Poincaré inequality and a weighted Sobolev inequality. This part
is mainly cited from [3]. Throughout this section and the following sections,
we denote by dµ the volume form of ω.

3.1 Poincaré type metrics

Let (M,ω0) be a compact Kähler manifold with dimCM = n. Let D be
an effective divisor with simple normal crossings, namely, D =

∑N
j=1Dj

decomposes into smooth irreducible components. For each j, let sj be a
holomorphic defining section of Dj . Let ρj = − log(|sj |2). We can assume
that ρj ≥ 1 out of Dj by scaling. Note that

√
−1∂∂̄ρj extends to a smooth

real (1, 1)-form on the whole M , whose class is 2πc1([Dj ]). Let ρ =
∏N
j=1 ρj .

Set

ω = λω0 −
√
−1∂∂̄ log ρ = λω0 −

N∑
j=1

√
−1∂∂̄ log(− log |sj |2) (3.1)

for some positive constant λ.

Lemma 3.1. For λ > 0 sufficiently large, ω defines a Kähler metric on
M = M\D.

Proof. By a simple computation we have

−
√
−1∂∂̄log ρj =

√
−1∂ρj ∧ ∂̄ρj

ρ2
j

−
√
−1∂∂̄ρj
ρj

. (3.2)

The first term in the right hand side is a positive (1, 1)-form. Note that√
−1∂∂̄ρj extends to a smooth real (1, 1)-form on the whole M which lies in

2πc1([Dj ]). For each j, there is some positive λj > 0 such that
√
−1∂∂̄ρj ≤

λjω0 on M . Note that ρj ≥ 1. Hence, λjω0 +
√
−1∂∂̄log ρj > 0 on M\Dj .

Let λ =
∑

j λj , then

ω = λω0 −
√
−1∂∂̄log ρ =

∑
j

(λjω0 −
√
−1∂∂̄log ρj) > 0 (3.3)
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on M = M\D.

Let ∆r be the disc in C of radius r and let ∆∗r = ∆r − {0}. A simple
model for the Poincaré type of metrics is the punctured disc ∆∗κ with the
Poincaré metric

−
√
−1∂∂̄log(− log |z|2) =

√
−1dz ∧ dz̄
|z|2 log2 |z|2

(3.4)

for some small positive κ < e−1. For higher dimensions, our local model is
given by the punctured polydisc (∆∗κ)k ×∆n−k

1 with the model metric

ωmdl =
k∑
j=1

√
−1dzj ∧ dz̄j

|zj | log2 |zj |2
+

n∑
j=k+1

√
−1dzj ∧ dz̄j . (3.5)

The model metric is simply the product metric of the Poincarè metric on
(∆∗κ)k and the Euclidean metric on ∆n−k

1 .
Indeed, the asymptotics of the reference metric near D can be compared

with the local model. Let x ∈ D1 ∩ · · · ∩ Dk − Dk+1 ∪ · · · ∪ DN . The
simple normal crossing assumption allows us to take a coordinate polydisc
U = ∆k

κ ×∆n−k
1 centered at x such that

U ∩Dj = {z ∈ U : zj = 0} (1 ≤ j ≤ k),

U\D = (∆∗κ)k ×∆n−k
1 .

(3.6)

Lemma 3.2. In the coordinates (z1, . . . , zk, zk+1, . . . , zn), we have

ω =
k∑
j=1

√
−1dzj ∧ dz̄j

|zj |2 log2 |zj |2
+
(
λω0 −

N∑
j=k+1

√
−1∂∂̄log ρj

)
+O(ρ−1

1 + · · ·+ ρ−1
k ).

(3.7)
In particular, ω is quasi-isometric to ωmdl on U\D, i.e., there exists some
constant C > 0 such that

C−1ωmdl ≤ ω ≤ Cωmdl. (3.8)

Proof. For any index j in {1, · · · , k}, there is some smooth function f though
D such that |sj |2 = ef |zj |2. Hence, ρj = − log |zj |2 − f ∼ − log |zj |2. A
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simple computation shows that

−
√
−1∂∂̄log ρj =

√
−1dzj ∧ dz̄j

|zj |2ρ2
j

−
√
−1∂∂̄f

ρj

+

√
−1(zjdzj ∧ ∂̄f + z̄j∂f ∧ dz̄j + |zj |2∂f ∧ ∂̄f)

|zj |2ρ2
j

=

√
−1dzj ∧ dz̄j

|zj |2 log2 |zj |2
+O(ρ−1

j ).

(3.9)

Sum up the above equality for j = 1, · · · , k, we obtain (3.7). Note that
λω0 −

∑N
j=k+1

√
−1∂∂̄log ρj is smooth though D. It is quasi-isometric to

the Euclidean metric when restricted to ∆n−k
1 , while it is dominated by the

Poincarè metric on (∆∗κ)k when restricted on (∆∗κ)k. Hence, ω is quasi-
isometric to the model metric ωmdl.

Lemma 3.3. Let ω be the Poincarè type metric constructed as above. Then
(1) The Kähler manifold (M,ω) is complete, it has finite volume and its

injectivity radius goes to 0 as the points approach to the divisor.
(2) There is some constant B > 0 such that

inf
M

inf
i 6=j

Rīijj̄ ≥ −B, sup
M
|R| ≤ B, and sup

M
ρ−1|∇ρ| ≤ B

where Rīijj̄ and R are the holomorphic sectional curvature and scalar cur-
vature, respectively.

Proof. The assertion (1) is clear from the properties of the local model. We
only need to consider the assertion (2) near the divisor D. Since D can
be covered by finitely many local coordinate chart, it suffices to show the
inequalities hold in each coordinate chart. Let U = ∆k

κ × ∆n−k
1 with the

properties (3.6). The metric ω has the asymptotics in U\D which is quasi-
isometric to the model metric ωmdl on (∆∗κ)k×∆n−k

1 . Note that the Poincarè
metric on (∆∗κ)k has constant holomorphic sectional curvature −1, while the
Euclidean metric on ∆n−k

1 has constant sectional curvature 0. Hence, the
holomorphic sectional curvature of ω on U\D is bounded from below and
the scalar curvature bounded on U\D.

To see the last inequality, let us assume without loss of the generality
that (U\D,ω) is the local model ((∆∗κ)k ×∆n−k

1 , ωmdl). Note that

ρ−1|∇ρ| = |∇ log ρ| ≤
k∑
j=1

|∇ log ρj |+
N∑

j=k+1

|∇ log ρj |. (3.10)
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For each j in {k + 1, · · · , N}, |∇ log ρj | is bounded because ρj is smooth
across D. For each j in {1, · · · , k}, ρj = − log |zj |2 + f ∼ − log |zj |2 for
some function f smooth across D. We have

|∇ log ρj | ≤ ρ−1
j (|∇ log |zj |2|+ |∇f |) = ρ−1

j (− log |zj |2 + |∇f |) = O(1)
(3.11)

as zj → 0. Hence, |∇ log ρj | is also bounded when j ∈ {1, · · · , k}.
Since we can cover the divisor D by finitely many local coordinate charts,

the constant B in assertion (2) can be taken independent of the choice of
local coordinate charts.

3.2 Quasi-coordinates

The usual coordinate system is not convenient to use near the divisor because
that the injectivity radius goes to zero when points become closer and closer
to the divisor. To overcome this issue, it was first by Cheng-Yau [19], then
followed by Tian-Yau [39] and R. Kobayashi [28], to use the so-called quasi-
coordinates to study the complete Kähler manifolds with Poincaré metrics.
Given a point x ∈ D, we can take some open neighborhood U ⊂ M of x,
such that U\D is biholomorphic to (∆∗κ)k ×∆n−k

1 for some k. Hence, U\D
has a branched covering which is a smooth open manifold. The idea of quasi-
coordinates is to use the local coordinates on the branched covering instead
of the local coordinates of U\D. A good reference of the quasi-coordinates
for Kähler manifolds with Poincaré metrics can be found in [28, Section 2].

Definition 3.4. Let V be an open set in Cn and (z1, · · · , zn) be the Eu-
clidean coordinates on V . A holomorphic map Ψ from V into a complex
manifold M of dimension n is called a quasi-coordinate map iff it is of
maximal rank everywhere in V . The pair (V ; z1, · · · , zn; Ψ) is called a local
quasi-coordinate of M .

We now state how to construct the quasi-coordinates near the divisor
explicitly. We begin with the punctured disc ∆∗κ with the model Poincaré
metric

ωmdl =

√
−1dz ∧ dz̄
|z|2 log2 |z|2

. (3.12)

The map
exp : C→ ∆∗1, w 7→ exp(w)

is the universal covering map of the punctured disc. Yet to cover the image,
we only need to restrict the map on the banded region {w ∈ C : −π <
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Imw ≤ π}. Now we define a family of holomorphic maps {ψ̃δ} parametrized
by a real parameter δ ∈ (0, 1), which is given by

ψ̃δ(w) : ∆3/4 → C, w 7→ δ−1(w + 1)/(w − 1). (3.13)

which maps the disc ∆3/4 onto the ball of radius 24
7δ centered at (−25

7δ , 0).
Each map is a biholomorphism from the disc ∆3/4 to its image. The union

of the images
⋃
δ∈(0,1) ψ̃δ(∆3/4) covers the banded region {w ∈ C : −π <

Imw ≤ π, Rew < −K} for some K > 0 sufficient large. Under the expo-
nential map, the image of the above banded region covers a small punctured
disc ∆∗κ with κ = exp(−K) > 0 a small constant.

Let ψδ = exp ◦ψ̃δ. Then ψδ is a holomorphic map which has maximal
rank everywhere on ∆3/4. By the discussion above, there exists some con-
stant κ > 0 sufficiently small, such that

∆∗κ ⊂
⋃

δ∈(0,1)

ψδ(∆3/4). (3.14)

It is easy to check the following properties of the map ψδ.

• The pullback of the model metric ωmdl is

ψ∗δωmdl =

√
−1dw ∧ dw̄

(1− |w|2)2
(3.15)

which is independent of δ and C∞-quasi-isometric to the Euclidean
metric on the disc ∆3/4.

• The pullback of the function − log |z|2 is

ψ∗δ (− log |z|2) = 2δ−1 Re

(
1 + ω

1− ω

)
= O(δ−1) as δ → 0. (3.16)

Now let us come back to our manifold. Given a point x ∈ D, we can
take some open neighborhood U of x such that under the local coordinates
(z1, · · · , zn), U ∩ Dj = {z ∈ U : zj = 0} for 1 ≤ j ≤ k and U\D =
(∆∗κ)k ×∆n−k

1 . Let δ = (δ1, . . . , δk) ∈ (0, 1)k be a multi-index. Define

Πδ =
k∏
j=1

δj . (3.17)
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Define the following map

Ψδ : ∆k
3/4 ×∆n−k

1 → (∆∗κ)k ×∆n−k
1 ,

(w1, . . . , wn) 7→
(
ψδ1(w1), . . . , ψδk(wk), wk+1, . . . , wm

) (3.18)

where each ψδj is defined as previous. For each multi-index δ ∈ (0, 1)k,

the map Ψδ is a holomorphic map from ∆k
3/4 × ∆n−k

1 to U\D which is of

maximal rank everywhere in ∆k
3/4 ×∆n−k

1 . Thus, the triple

(∆k
3/4 ×∆n−k

1 ;w1, · · · , wn; Ψδ)

is a local quasi-coordinate for U\D.
Similar to the punctured disc case, we have the following properties of

the map Ψδ.

• U\D is covered by
⋃
δ∈(0,1)k Ψδ(∆

k
3/4 ×∆n−k

1 ).

• The pullback of the model metric ωmdl on (∆∗κ)k ×∆n−k
1 is

Ψ∗δωmdl =

k∑
j=1

√
−1dwj ∧ dw̄j

(1− |wj |2)2
+

n∑
j=k+1

√
−1dwj ∧ dw̄j (3.19)

which is independent of the multi-index δ and C∞-quasi-isometric to
the Euclidean metric on ∆k

3/4×∆n−k
1 . Since the Poincarè type metric

ω on U\D is quasi-isometric to the model metric ωmdl, the pullback
Ψ∗δω is quasi-isometric to the Euclidean metric on ∆k

3/4 ×∆n−k
1 .

• For j ∈ {1, · · · , k}, ρj ∼ − log |zj |2 under the local coordinates, hence,
Ψ∗δρj = O((δj)−1). For j ∈ {k + 1, · · · , N}, ρj is smooth across D,
hence, Ψ∗δρj is bounded. It follows that

Ψ∗δρ =

N∏
j=1

Ψ∗δρj = O(

k∏
j=1

(δj)−1) = O(Π−1
δ ) as Πδ → 0. (3.20)

We can cover an open neighborhood of the divisor D by the local quasi-
coordinate charts constructed above, and cover the complement of the neigh-
borhood by a finite number of unit balls in Cn. Note that the latter are
automatically local quasi-coordinate charts. Thus, this gives a local quasi-
coordinate system to our manifold (M,ω).

The quasi-coordinate system can be used to define the Hölder norms and
Hölder spaces which are useful for the Schauder estimate on (M,ω).
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Definition 3.5. Given a local quasi-coordinate system {(Vα,Ψα) : α ∈ A}
for (M,ω), for any non-negative integer k and real number λ ∈ (0, 1), define

‖u‖k,λ := sup
α∈A
‖u ◦Ψα‖Ck,λ(Vα) (3.21)

where ‖·‖Ck,λ(Vα) is the usual Hölder norm on Vα ⊂ Cn. The Hölder space

Ck,λ(M) is defined as

Ck,λ(M) := {u ∈ Ckloc(M) : ‖u‖k,λ <∞}.

The Hödler space Ck,λ(M) is a Banach space with the norm ‖·‖k,λ.
The definition of the norm ‖·‖k,λ depends on the choice of the local quasi-
coordinate system. However, given two local quasi-coordinate systems and
the associated Ck,λ norms, one can show that they are indeed equivalent.

3.3 Poincaré inequality

Lemma 3.6 (Auvray, [3, Lemma 1.10]). There exists a constant CP > 0
such that for all u ∈ H1(M,ω), we have∫

M
|u− ū|2dµ ≤ CP

∫
M
|du|2dµ (3.22)

where ū = 1
V ol(M)

∫
M udµ.

Proof. Start, for simplicity, by the case where D is smooth. We cover it in
M with open sets of coordinates Uj , j = 1, . . . , s, of the form ∆3/4 ×∆n−1

1 ,
so that D ∩ Uj = {|z| = 0}. Consider a neighbourhood U of D such that

U ⊂
⋃M
j=1 Uj . Let v ∈ C∞c

(
U\D

)
such that v|∂U ≡ 0. We are first seeing

that there exists c > 0 such that for all j,∫
Uj\D

|v|2dµ ≤ c
∫
Uj\D

|dv|2dµ. (3.23)

We can assume, up to modifying c, that ω restricted to Uj\D writes as

ω =
√
−1dz∧dz̄

|z|2 log2 |z|2 + ds2 where ds2 the Euclidean metric on ∆n−1
1 . Now change

the coordinates by setting t = log(log2 |z|2) ∈ (A,∞) and θ = arg z ∈ S1.
Then the metric ω becomes dt2 + e−2tdθ2 + ds2, and the volume form is
e−tdtdθds. Thus,∫

Uj\D
|v|2dµ =

∫
S1×∆n−1

1

dθds

∫ +∞

A
|v|2e−tdt (3.24)
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and ∫
Uj\D

|dv|2dµ =

∫
S1×∆n−1

1

dθds

∫ +∞

A
|dv|2e−tdt (3.25)

Note that

|dv|2 = (∂tv)2 + e2t(∂θv)2 + |d∆m−1
1

v|2ds2 ≥ (∂tv)2. (3.26)

To obtain (3.23), it suffices to show that∫ +∞

A
v2e−tdt ≤ c

∫ +∞

A
(∂tv)2e−tdt for all (θ, s). (3.27)

Set w(t) = e−t. Let ′ stands for ∂t, then we have (v2w)′ = 2vv′w+v2w′ =
2vv′w− v2w, hence by integrating with fixed θ and s, 0 = 2

∫ +∞
A vv′e−tdt−∫ +∞

A v2e−tdt because v ≡ 0 on {t = A} and for t big enough. We rewrite
this as:∫ +∞

A
v2e−tdt = 2

∫ +∞

A
vv′e−tdt ≤ 2

(∫ +∞

A
v2e−tdt

)1
2
(∫ +∞

A
v′2e−tdt

)1
2

(3.28)
by Cauchy-Schwartz, hence∫ +∞

A
v2e−tdt ≤ 4

∫ +∞

A
v′2e−tdt. (3.29)

This ends the first point of demonstration. We then have that for any
v ∈ C∞c

(
U\D

)
∫
U\D
|v|2dµ ≤

s∑
j=1

∫
Uj\D

|v|2dµ ≤ c
s∑
j=1

∫
Uj\D

|dv|2dµ ≤ cs
∫
U\D
|dv|2dµ.

(3.30)
Now seek a contradiction, and take a sequence of functions fj ∈ C∞c (M)

violating the theorem; we thus can consider that

• for all j,
∫
M fjdµ = 0 and

∫
M f2

j dµ = 1;

• limj→∞
∫
M |dfj |

2dµ = 0.

Observe that (fj) is bounded in H1(M,ω), hence up to an extraction con-
verges weakly in H1(M,ω) to a function f ∈ H1(M,ω). In particular,
‖df‖L2 = 0, that is to say f is constant, since the dfj tend to 0 in L2.
Now finally, by weak L2 convergence,

∫
M fdµ = limj→∞

∫
M fjdµ = 0, hence

f ≡ 0.
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Take ε > 0 small, such that 3ε2 < (cs)−1 say, and a domain V ⊂⊂ M
wide enough so that U c ⊂⊂ V and there exists a smooth cut-off function
χ equal to 1 on U c, 0 on V c, and such that 0 ≤ χ ≤ 1 and |dχ| ≤ ε. For
all j set uj = (1 − χ)fj and vj = χfj so that uj ∈ C∞c

(
U\D

)
, (uj)|∂U ≡ 0,

vj ∈ C∞c (V ) and fj = uj + vj . Thus for all j,∫
M
f2
j dµ ≤ 2

(∫
M
u2
jdµ+

∫
M
v2
jdµ

)
= 2
(∫

U\D
u2
jdµ+

∫
V
v2
jdµ

)
.

Now on the one hand, (vj) converges weakly to 0 in H1
(
V , g

)
— just see

that for all test function ϕ (resp. test 1-form α) on V , χϕ is again a test
function (resp. χα a test 1-form and (dχ, α)g a test function) — and since
V is compact with boundary, we can assume (forgetting another extraction)
that (vj) strongly converges to 0 in L2, necessarily to 0.

On the other hand, according to the beginning of this demonstration,
for all j we have∫

U\D
u2
jdµ ≤ cs

∫
U\D
|duj |2dµ

= cs

(∫
U\D

χ2|dfj |2dµ+

∫
U\D

f2
j |dχ|2dµ+ 2

∫
U\D

fjχ(dfj , dχ)ωdµ

)
.

In the latter line, the first integral is bounded above by
∫
M |dfj |

2dµ which
tends to 0; the second one by ε2

∫
M f2

j dµ = ε2, and the third by the square

root of the first two. It thus follows that
∫
M f2

j dµ ≤ 2csε2 < 1 when j is big
enough, a contradiction, hence the theorem for C∞c (M) functions, and then
for H1(M,ω) functions by density.

Now let us consider the case where D admits crossings. If we have
an inequality for smooth functions with a compact support near D like
(3.30), the end of the argument will apply unchanged. To get this inequality
though, cover D with polydiscs of coordinates κPk = ∆k

κ × ∆n−k such
that D is given in those by {z1 · · · zk = 0}. One point is that to get the
desired inequality with U an open set relatively compact in the union of
our polydiscs, it is enough to show such an inequality for functions v ∈
C∞c

(
κPk\D

)
with v ≡ 0 on {|z1| = ak} ∩ · · · ∩ {|zk| = ak}. But this we can

do assuming ω is the product metric
∑k

j=1

√
−1dzj∧dz̄j

|zj |2 log2 |zj |2 +ds2, i.e. dt21 + · · ·+
dt2k+e−2t1dθ2

1 +· · ·+e−2tkdθ2
k+ds2 where tj = log(log2 |zj |2) ∈ (Ak,∞), θj =

arg zj ∈ S1, j = 1, . . . , k. Finally, express (t1, . . . , tk) in polar coordinates
(r, ϕ1, . . . , ϕk−1), ϕ1, ..., ϕk−1 ∈ (0, π/2), r ∈ (r(ϕ1, . . . , ϕk−1),∞), and do
the same integration by parts as above with ′ standing for ∂r in order to
conclude.
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3.4 Weighted Sobolev inequality

The usual Sobolev inequality fails on (M,ω) because the volume form is
degenerate near the infinity (the divisor D). In this section we introduce a
weighted Sobolev inequality from [3]. But ahead of that let us first present a
useful lemma which connects the integration on M with integration on the
quasi-coordinate charts. Let rPk = ∆k

r×∆n−k
1 and let rP∗k = (∆∗r)

k×∆n−k
1 .

Let dµmdl be the volume form of the model metric ωmdl on κP∗k = (∆∗κ)k ×
∆n−k

1 . Let dµ0 be the standard Euclidean volume on Cn.

Lemma 3.7. There exists a sequence of multi-indices {δl = (δ1
l , · · · , δkl ) :

l = 1, 2, · · · } and a constant c > 0, such that for any f ∈ L1
loc(κP∗k , dµmdl)

we have

c−1
∞∑
l=1

Πδl

∫
3
4
Pk
|Ψ∗δlf |dµ0 ≤

∫
κP∗k
|f |dµmdl ≤ c

∞∑
l=1

Πδl

∫
1
2
Pk
|Ψ∗δlf |dµ0

(3.31)

where Πδl is defined as (3.17) and Ψδl is the quasi-coordinate map con-
structed as (3.18) for each multi-index δl.

Proof. The proof is technical. We shall begin with the simplest case k = 1,
namely, κP∗k = ∆∗κ ×∆n−1

1 . Then Πδl = δ−1
l . Let

B = {z ∈ C | −π < Im z < π, −∞ < Re z < log κ}.

The exponential map exp : w → exp(w) is a biholomorphism from B to ∆∗κ
minus the positive real line. We can thus pullback the integral over κP∗1 to
B ×∆n−1

1 ⊂ Cn by change of variables. Note that

exp∗ ωmdl =

√
−1dw1 ∧ dw̄1

(2 Rew1)2
+

n∑
j=1

√
−1dwj ∧ dw̄j . (3.32)

Let f̂(w1, w2, · · · , wn) = f(exp(w1), w2, · · · , wn). Then∫
κP∗1
|f |dµmdl =

∫
B×∆n−1

1

|f̂ |
(2 Rew1)2

dµ0. (3.33)

On the other hand, note that Φ∗δf = ψ̃∗δ f̂ where ψ̃δ is holomorphic map
ψ̃δ(w) = δ−1 1+w

1−w from ∆r to Cn. Let ∼ denotes that two quantities are
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mutually bounded each other by constant factors independent of δ. By
change of variables, it follows that∫

rP1

|Φ∗δf |dµ0 ∼
∫
ψ̃δ(∆r)×∆n−1

1

|f̂ |
δ2
dµ0. (3.34)

Let ηr = (1 + r2)/(1 − r2) and ζr = 2r/(1 − r2). Note that ψδ(∆r) is the
ball centered at (−δ−1ηr, 0) ∈ R2 with radius δ−1ζr. Let Br,δ be the open
square centered at (−δ−1ηr, 0) with side length 2δ−1ζr and B′r,δ be the open

square centered at (−δ−1ηr, 0) with side length
√

2δ−1ζr. Let

Bδ,r = {z ∈ Br,δ | −π < Im z < π}, B′δ,r = {z ∈ B′r,δ | −π < Im z < π}.

Then we have B′r,δ ⊂ ψ̃δ(∆r) ⊂ Br,δ. Over the square Br,δ, Rew ∼ δ−1 and∫
Bδ,r×∆n−1

1

|f̂ |dµ0 ∼ δ−1

∫
Bδ,r×∆n−1

1

|f̂ |dµ0, (3.35)∫
B′δ,r×∆n−1

1

|f̂ |dµ0 ∼ δ−1

∫
B′δ,r×∆n−1

1

|f̂ |dµ0. (3.36)

It then follows that there exist constant Cr and C ′r depending only on r such
that ∫

Bδ,r×∆n−1
1

|f̂ |
(2 Rew1)2

dµ0 ≥ Crδ−1

∫
∆r×∆n−1

1

|Φ∗δf |dµ0. (3.37)

∫
B′δ,r×∆n−1

1

|f̂ |
(2 Rew1)2

dµ0 ≤ C ′rδ−1

∫
∆r×∆n−1

1

|Φ∗δf |dµ0. (3.38)

Now pick a sequence {δl, l = 1, 2, · · · } such that δ1 = − log κ, δl+1 = 2δl.
For r ≥ 1/2, it is easy to check that B ⊆

⋃∞
l=1 B′r,δl ⊆

⋃∞
l=1 Br,δl . Moreover,

each Br,δl intersects with other squares in the sequence {Br,δl | l = 1, 2, · · · }
at most a fixed number of times Nr depending on r only. Thus, we have∫

B×∆n−1
1

|f̂ |
(2 Rew1)2

dµ0 ≤
∞∑
l=1

∫
Br,δl×∆n−1

1

|f̂ |
(2 Rew1)2

dµ0

≤ C ′r
∞∑
l=1

δ−1
l

∫
∆r×∆n−1

1

|Φ∗δlf |dµ0

(3.39)
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and

Nr

∫
B×∆n−1

1

|f̂ |
(2 Rew1)2

dµ0 ≥
∞∑
l=1

∫
Br,δl×∆n−1

1

|f̂ |
(2 Rew1)2

dµ0

≥ Cr
∞∑
l=1

δ−1
l

∫
∆r×∆n−1

1

|Φ∗δlf |dµ0.

(3.40)

It follows that

N−1
r Cr

∞∑
l=1

δ−1
l

∫
rP1

|Φ∗δlf |dµ0 ≤
∫
κP∗1
|f |dµmdl ≤ C ′r

∞∑
l=1

δ−1
l

∫
rP1

|Φ∗δlf |dµ0.

(3.41)

Taking r = 3/4 for the left inequality and r = 1/2 for the right inequality,
we then have (3.31) for some constant c. This proves the case k = 1. For
k ≥ 2, it can be done by induction on k.

Lemma 3.8. Suppose x ∈ D is on a normal crossing of codimension k.
Take a polydisc U centered at x such that U\D = κP∗k . There exist a
sequence of multi-indices {δl = (δ1

l , · · · , δkl ) : l = 1, 2, · · · } and a constant
c > 0, such that for any u ∈Wm,p

loc (U\D, dµ) we have

c−1
∞∑
l=1

‖Ψ∗δlu‖
p

Wm,p( 3
4
Pk)
≤
∫
U\D

m∑
j=0

|∇ju|pρdµ ≤ c

∞∑
l=1

‖Ψ∗δlu‖
p

Wm,p( 1
2
Pk)

.

(3.42)

Proof. By Lemma 3.7, there exists a sequence of multi-indices {δl = (δ1
l , · · · , δkl ) :

l = 1, 2, · · · } and a constant c′ > 0 such that
∫
U\D

∑m
j=0 |∇ju|pρdµ is mutu-

ally bounded with

(c′)−1
∞∑
l=1

Πδl

∫
3
4
Pk

m∑
j=0

|Ψ∗δl(∇
ju)|p(Ψ∗δlρ)dµ0 ≤

∫
U\D

m∑
j=0

|∇ju|pρdµ

≤ c′
∞∑
l=1

Πδl

∫
1
2
Pk

m∑
j=0

|Ψ∗δl(∇
ju)|p(Ψ∗δlρ)dµ0. (3.43)

Note that Ψ∗δlρ is mutually bounded with Π−1
δl

uniformly. Moreover, the
metric ω is quasi-isometric to the model metric ωmdl on U\D = κP∗k . The
pullback of ωmdl under Ψδl is invariant of the multi-index δl and is C∞-
quasi-isometric to the Euclidean metric on Cn. Thus,

∑m
j=0 |Ψ∗δl(∇

ju)|p is
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mutually bounded with
∑m

j=0 |∇g0(Ψ∗δlu)|pg0 where g0 is the Euclidean metric
on Cn and∇g0 is the covariant derivative with respect to g0. Thus, we obtain
the inequality (3.42).

Now we prove the following weighted Sobolev inequality on (M,ω).

Lemma 3.9 (Auvray, [3, Lemma 4.4]). For any function u ∈ W 1,p
loc (M),

there exists a positive constant Cp = C(p,M, ω) such that for any q ≥ p
with 1/p ≤ 1/(2n) + 1/q we have(∫

M
|u|qρdµ

)1/q

≤ Cp
(∫

M
(|v|p + |∇v|p) ρdµ

)1/p

. (3.44)

Proof. We can cover an open neighborhood of D by a finite number of
polydiscs {U1, · · · , Us} and cover the complement of the neighborhood by a
finite number of unit balls {B1, · · · ,Bt} in Cn.

On each Bj , since it is away from the divisor, ρ is bounded on Bj , hence,
by the usual Sobolev inequality in bounded domain of Cn there exists a
constant C ′p depending on p such that for any p > 0 with 1/p ≤ 1/(2n)+1/q(∫

Bj
|u|qρdµ

)1/q

≤ C ′p

(∫
Bj

(|v|p + |∇v|p) ρdµ

)1/p

, j = 1, 2, · · · , s.

On each Uj\D, we can cover it by quasi-coordinate charts
⋃
δ Ψδ(∆

kj
3/4×

∆
n−kj
1 ). For the each pullback Ψ∗δu on the polydisc ∆

kj
3/4 ×∆

n−kj
1 we have

the standard Sobolev inequality

‖Ψ∗δu‖Lq( 3
4
Pkj ) ≤ C

′
p‖Ψ∗δu‖W 1,p( 3

4
Pkj ), ∀δ, j = 1, 2, · · · , t

for any q > 0 with 1/p ≤ 1/(2n) + 1/q. For each j, by Lemma 3.8, there
exist a sequence of multi-indices {δl : l = 1, 2, · · · } and a positive constant
cj , so that∫

Uj\D
|u|qρdµ ≤ cj

∞∑
l=1

‖Ψ∗δlu‖
q

Lq( 3
4
Pk)
≤ cjC ′qp

∞∑
l=1

‖Ψ∗δlu‖
q

W 1,p( 3
4
Pk)

≤ cjC
′q
p

( ∞∑
l=1

‖Ψ∗δlu‖
p

W 1,p( 3
4
Pk)

)q/p
(since q ≥ p)

≤ c
1+q/p
j C ′qp

(∫
Uj\D

(|u|p + |∇u|p)ρdµ

)q/p
.

(3.45)

29



Therefore,(∫
Uj\D

|u|qρdµ

)1/q

≤ c
1/p+1/q
j C ′p

(∫
Uj\D

(|v|p + |∇v|p)ρdµ

)1/p

≤ c
2/p
j C ′p

(∫
Uj\D

(|v|p + |∇v|p)ρdV

)1/p

.

(3.46)

It follows that(∫
M
|u|qρdµ

)1/q
≤

s∑
j=1

(∫
Bj
|u|qρdµ

)1/q
+

t∑
j=1

(∫
Uj\D

|u|qρdµ
)1/q

≤
s∑
j=1

C ′p

(∫
Bj

(|v|p + |∇v|p)ρdµ
)1/p

+

t∑
j=1

c
2/p
j C ′p

(∫
Uj\D

(|v|p + |∇v|p)ρdµ
)1/p

≤ (s+
t∑

j=1

c
2/p
j )C ′p

(∫
M

(|v|p + |∇v|p)ρdµ
)1/p

.

(3.47)

The proof is finished by taking Cp = (s+
∑t

j=1 c
2/p
j )C ′p.

As a corollary of Lemma 3.9, we show that the C0 norm of F is controlled
as long as I(F, p0) <∞ for some p0 > 2n.

Corollary 3.10. Suppose F ∈ W 1,p0
loc (M) satisfies I(F, p0) < ∞ for some

p0 > 2n. Then these exists some positive constants C = C(I(F, p0), p0, n, ω)
and such that ‖F‖C0 ≤ C.

Proof. Note that ∫
M

(|F |p0 + |∇F |p0)ρdµ ≤ I(F, p0)

since p0 > 2n and ρ ≥ 1. Moreover, 1/p0 ≤ 1/q + 1/2n for any q ≥ p0. It
follows from Lemma 3.9 that(∫

M
|F |qρdµ

)1/q
≤ Cp0

(∫
M

(|F |p0 + |∇F |p0)ρdµ
)1/p0

≤ Cp0I(F, p0)1/p0 .

The lemma follows by letting q →∞.
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3.5 The ε-perturbed equations

The ε-perturbed equation (2.6) can be normalized into the Monge-Ampère
equation (2.7). The latter has been well studied by Tian-Yau [39] and K.
Kobayashi [28]. The existence and uniqueness of the solution of (2.7) can
be done by the continuity method in the quasi-coordinates. To summarize,
the theorem of Tian-Yau and Kobayashi is the following:

Theorem 3.11 (Tian-Yau, Kobayashi). Let M be a compact Kähler mani-
fold and D be an effective divisor on M with only simple normal crossings.
Let M = M − D and ω be of Kähler metric on M of Poincaré type. For
any F ∈ Ck,λ(M) for some k ≥ 3, there exists a solution ϕ ∈ Ck+2,λ(M) to
the following equation

(ω +
√
−1∂∂̄ϕ)n = eF+ϕωn.

In particular, if KM + [D] is ample, then there exists a (unique) Kähler-
Einstein metric of curvature −1 equivalent to ω.

We temporarily assume that F ∈ C∞c (M), as we will show that F can
be approximated by smooth functions with compact support if F lies in the
weighted Sobolev space with I(F, p0) <∞ for some p0 > 2n. The existence
of the solution to the ε-perturbed equation (2.6) can be derived from the
theorem of Tian-Yau and Kobayashi. We summarize it in the following
lemma.

Lemma 3.12. Let M be a compact Kähler manifold and D be an effective
divisor on M with only simple normal crossings. Let M = M −D and ω be
of Kähler metric on M of Poincaré type. For any F ∈ C∞c (M), there exists
a solution ϕε ∈

⋂
k,λC

k,λ(M) to the equation

(ω +
√
−1∂∂̄ϕε)

n = eF+εϕεωn

for any ε ∈ (0, 1].

Our goal is to show that {ϕε} is compact in the usual W 3,p0(M). It
amounts to show some uniform estimates on the gradient and Laplacian of
ϕε in terms of the integral bound I(F, p0). In particular, this precludes the
use of maximum principle in the Yau’s classical Laplacian estimate, as it
requires to use the C2 norm of F . We will take the Chen-He’s integration
method to obtain the estimate. In order to deal with the boundary terms
in the integration by parts, we need the following Gaffney-Stokes theorem.
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Lemma 3.13 (Gaffney-Stokes, [24]). Let (M, g) be an orientable complete
Riemannnian manifold whose Riemannian tensor is of class C2. Let η be an
(n−1)-form of class C1 such that both η and dη are in L1. Then

∫
M dη = 0.

Lemma 3.13 states a Stokes theorem for complete manifolds under suit-
able conditions.

4 Proof of the main theorem

In this section we present the proof of the main theorem 2.1.

4.1 Uniform C0 estimate

The first step of deriving the uniform W 3,p0 estimate is to derive the uni-
form C0 estimate. This part has been done by Auvray in [3]. For readers’
convenience we cite the proof here. In what follows let ω′ = ω +

√
−1∂∂̄ϕε

and ∇′, ∆′ and dµ′ be the covariant derivative, Laplacian and volume form
of the Kähler metric ω′. The constant C may vary from line to line, but
always only depends on I(F, p0), p0, ω and n.

Proposition 4.1. Let ϕε be the solution for the ε-perturbed equation (2.6).
There exists a constant C = C(‖F‖C0 , n, ω) independent of ε such that
‖ϕε‖L2 ≤ C.

Proof. Let Tε = (ω′)n−1 + (ω′)n−2 ∧ ω + · · · + ωn−1. Then ωn − (ω′)n =
−
√
−1∂∂̄ϕε ∧ Tε. It follows that∫

M
ϕε(1− eF+εϕε)dµ =

∫
M
ϕε(ω

n− (ω′)n) = −
∫
M
ϕε
√
−1∂∂̄ϕε∧Tε. (4.1)

Note that

ϕε
√
−1∂∂̄ϕε ∧ Tε =

1

2

√
−1∂∂̄(ϕ2

εTε)−
√
−1∂ϕε ∧ ∂̄ϕε ∧ Tε (4.2)

and by Gaffney-Stokes (Lemma 3.13) we have
∫
M

√
−1∂∂̄(ϕ2

εTε) = 0. It
follows that ∫

M
ϕε(1− eF+εϕε)dµ =

∫
M

√
−1∂ϕε ∧ ∂̄ϕε ∧ Tε. (4.3)

Note that
√
−1∂ϕε ∧ ∂̄ϕε ∧ Tε ≥

√
−1∂ϕε ∧ ∂̄ϕε ∧ ωn−1. Moreover,

ϕε(1− eF+εϕε) = ϕε(1− eF ) + eFϕε(1− eεϕε) ≤ ϕε(1− eF )
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since 1− eεϕε has the opposite sign of ϕε. It follows that∫
M
|∇ϕε|2dµ =

∫
M

√
−1∂ϕε ∧ ∂̄ϕε ∧ ωn−1 ≤

∫
M
ϕε(1− eF )dµ. (4.4)

Let ψε = ϕε − ϕ̄ε where ϕ̄ε = 1
Vol(M)

∫
M ϕεdµ is the average of ϕε over M .

Note that
∫
M (eF − 1)dµ = 0. It follows that∫

M
|∇ψε|2dµ =

∫
M
ψε(1− eF )dµ. (4.5)

By the unweighted Poincaré inequality (Lemma 3.6) and Cauchy-Schwartz
inequality, it then follows that

‖ψε‖L2 ≤ CP ‖1− eF ‖L2 ≤ C. (4.6)

Now we estimate the average ϕ̄ε. To get an upper bound, first notice
that ∫

M
eF+εϕεdµ =

∫
M

(ω +
√
−1∂∂̄ϕε)

n = Vol(M). (4.7)

By Jensen’s inequality, it follows that
∫
M εϕεe

Fdµ ≤ 0. Hence,

0 ≥
∫
M
ϕεe

Fdµ =

∫
M
ϕε(e

F − 1)dµ+ Vol(M)ϕ̄ε. (4.8)

It follows that

ϕ̄ε ≤
1

Vol(M)

∫
M
ϕε(1− eF )dµ

=
1

Vol(M)

∫
M
ψε(1− eF )dµ ≤

Cp‖1− eF ‖2L2

Vol(M)
≤ C.

(4.9)

On the other hand, to get a lower bound, notice that

Vol(M) =

∫
M
eFdµ =

∫
M
e−εϕεdµ′. (4.10)

By Jensen’s inequality it implies that
∫
M ϕεdµ

′ ≥ 0. It follows that

Vol(M)ϕ̄ε ≥
∫
M
ϕε(dµ− dµ′) =

∫
M
ψε(1− eF+εϕε)dµ

≥ −‖1− eF+εϕε‖L2‖ψε‖L2 .

(4.11)
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For each ε ∈ (0, 1], by applying the maximum principle to the perturbed
equation (ω +

√
−1∂∂̄ϕε)

n = eF+εϕεωn, it follows that ‖εϕε‖C0 ≤ ‖F‖C0 .
Hence,

‖1− eF+εϕε‖L2 ≤ (1 + e2‖F‖C0 ) Vol(M)1/2. (4.12)

It then follows that

ϕ̄ε ≥ −Vol(M)−1/2(1 + e2‖F‖C0 )‖ψε‖L2 ≥ −C. (4.13)

It then follows from (4.6), (4.9) and (4.13) to obtain that ‖ϕε‖L2 ≤ C where
the constant C depends only on ‖F‖C0 , n and ω.

Proposition 4.2. Suppose F ∈ C∞c (M) with I(F, p0) < ∞ for some p0 >
2n. Let ϕε be the solution for the ε-perturbed equation (2.6). There exists a
constant C = C(I(F, p0), p0, n, ω) independent of ε such that ‖ϕε‖C0 ≤ C.

Proof. Step 1. For p ≥ 2, by a direct computation we have∫
M
|ϕε|p−2ϕε(1− eF+εϕε)dµ =

∫
M
|ϕε|p−2ϕε(ω

n − (ω′)n)

=

∫
M
|ϕε|p−2ϕε

√
−1∂∂̄ϕε ∧ Tε

=
1

p

∫
M

√
−1∂∂̄(|ϕε|p−1ϕεTε)− (p− 1)

∫
M
|ϕε|p−2

√
−1∂ϕε ∧ ∂̄ϕε ∧ Tε.

(4.14)
By Gaffney-Stokes (Lemma 3.13), we have

∫
M

√
−1∂∂̄(|ϕε|p−1ϕεTε) = 0.

Moreover, ϕε(1− eF+εϕε) ≤ ϕε(1− eF ) and∫
M
|ϕε|p−2

√
−1∂ϕε ∧ ∂̄ϕε ∧ Tε =

4

p2

∫
M

√
−1∂(|ϕε|p/2) ∧ ∂̄(|ϕε|p/2) ∧ Tε

≥ 4

p2

∫
M

√
−1∂(|ϕε|p/2) ∧ ∂̄(|ϕε|p/2) ∧ ωn−1 =

4

p2

∫
M
|∇|ϕε|p/2|2dµ.

(4.15)
It follows that∫

M

∣∣∇|ϕε|p/2∣∣2dµ ≤ p2

4(p− 1)

∫
M
|ϕε|p−2ϕε(1− eF )dµ. (4.16)

Step 2. Let γ = 2n/(2n − 1). Note that 1 = 1/(2n) + 1/γ. By the
weighted Sobolev inequality (Lemma 3.9),

( ∫
M

(
|ϕε|pρ−1

)γ
ρdµ

) 1
γ ≤ C

( ∫
M

∣∣∇(|ϕε|pρ−1)
∣∣ρdµ+

∫
M
|ϕε|pdµ

)
. (4.17)
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Note that ρ−1|∇ρ| is bounded on M . An easy computation yields∫
M

∣∣∇(|ϕε|pρ−1)
∣∣ρdµ ≤ ∫

M

∣∣∇|ϕε|p∣∣dµ+

∫
M
|ϕε|p(ρ−1|∇ρ|)dµ

=

∫
M

2|ϕε|p/2|∇|ϕε|p/2|dµ+

∫
M
|ϕε|p(ρ−1|∇ρ|)dµ

≤
∫
M
|∇|ϕε|

p
2 |2dµ+ C

∫
M
|ϕε|pdµ.

(4.18)

By the unweighted Poincaré inequality Lemma 3.6 (with a mean term) to
|ϕε|p/2, we have∫

M
|ϕε|pdµ ≤ CP

∫
M

∣∣∇|ϕε|p/2∣∣2dµ+ Vol(M)−1
( ∫

M
|ϕε|p/2dµ

)2
(4.19)

Combining (4.16), (4.17), (4.18) and (4.19) we get( ∫
M
|ϕε|γpρ−

1
2n−1dµ

)1/γ ≤ Cp∫
M
|ϕε|p−1|eF − 1|dµ+ C

( ∫
M
|ϕε|p/2dµ

)2
.

(4.20)
Let dµ̃ denote the measure ρ−1/(2n−1)dµ. Note that |eF − 1| ≤ C|F | for
constant C depending on ‖F‖C0 . We have( ∫

M
|ϕε|γpdµ̃

)1/γ ≤ Cp∫
M
|ϕε|p−1|F |ρ

1
2n−1dµ̃+ C

( ∫
M
|ϕε|p/2ρ

1
2n−1dµ̃

)2
.

(4.21)
Let q0 > 0 such that 1/p0 + 1/q0 = 1. By Hölder inequality,∫

M
|ϕε|p−1|F |ρ

1
2n−1dµ̃ ≤

( ∫
M
|F |p0ρ

p0
2n−1dµ̃

) 1
p0

( ∫
M
|ϕε|(p−1)q0dµ̃

) 1
q0

≤ (I(F, p0))1/p0
( ∫

M
|ϕε|(p−1)q0dµ̃

)1/q0
≤ C‖ϕε‖pLpq0 (dµ̃).

(4.22)

Let 1/p1 + 1/(2q1) = 1 and n/(2n− 1) < q1 < 2n/(2n− 1), then p1 < 2n.
By Hölder inequality,( ∫

M
|ϕε|p/2ρ

1
2n−1dµ

)2 ≤ ( ∫
M
ρ

p1
2n−1dµ

)1/p1( ∫
M
|ϕε|pq1dµ

)1/q1 (4.23)

Since p1 < 2n, we have∫
M
ρ

p1
2n−1dµ̃ =

∫
M
ρ
p1−1
2n−1dµ <∞.
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Hence, ( ∫
M
|ϕε|p/2ρ

1
2n−1dµ

)2 ≤ C‖ϕε‖pLpq1 (dµ̃). (4.24)

It then follows that

‖ϕε‖pLγp(dµ̃) ≤ Cp‖ϕε‖
p
Lpq0 (dµ̃) + C‖ϕε‖pLpq1 (dµ̃) (4.25)

with q0, q1 < 2n/(2n− 1). Take q2 = max(q0, q1). Then q2 < γ and

‖ϕε‖Lγp(dµ̃) ≤ C1/pp1/p‖ϕε‖Lpp2 (dµ̃). (4.26)

Hence, by standard iteration process we have

‖ϕε‖C0 ≤ C‖ϕε‖L2(dµ̃) ≤ C‖ϕε‖L2(dµ) ≤ C. (4.27)

4.2 Uniform C1 estimate

In this section we prove the C1 estimate Theorem 2.2. In what follows let
ω′ = ω+

√
−1∂∂̄ϕε and∇′, ∆′ and dµ′ be the covariant derivative, Laplacian

and volume form of the Kähler metric ω′. The constant C may vary from
line to line, but always only depends on I(F, p0), p0, ω and n.

Proof. Step 1. Let A(t) be a one-variable smooth real function which will be
determined later. Following a similar computation in [17, equation (3.11)],
we have the following inequality

∆′
(
e−A(ϕε)|∇ϕε|2

)
≥ e−A(ϕε)|∇ϕε|2

(
−A′′|∇′ϕε|2ω′ + (A′ − inf

i 6=j
Rīijj̄) trω′ ω

)
+ (2A′ −B)e−A(ϕε)|∇′ϕε|2ω′ −

(
(n+ 2)A′ + 2ε

)
e−A(ϕε)|∇ϕε|2

+ e−A(ϕε)(∆ϕε − n+ trω′ ω)− 2eA(ϕε)|∇F ||∇ϕε|.

(4.28)

Let B > 0 be a positive constant such that infi 6=j Rīijj̄ ≥ −B. Let C0 =
1 + ‖ϕε‖C0 . Choose

A(t) = (B + 2)t− t2

2C0
. (4.29)

Then

B + 1 ≤ A′(ϕε) = B + 2− ϕε
C0
≤ B + 3, A′′(ϕε) = − 1

C0
.
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It is easy to see that

trω′ ω ≥ (exp(F + εϕε) trω ω
′)1/(n−1). (4.30)

By (4.30), we compute

−A′′|∇′ϕε|2ω′ + (A′ − inf
i 6=j

Rīijj̄) trω′ ω

≥ 1

C0
|∇′ϕε|2ω′ + (exp(F + εϕε) trω ω

′)1/(n−1)

≥ n(n− 1)−
n−1
n C

− 1
n

0

(
exp(F + εϕε)(trω ω

′)|∇′ϕε|2ω′
) 1
n

≥ C|∇ϕε|2/n

(4.31)

for some C depending on ||F ||C0 , ||ϕε||C0 and n. Take (4.31) into (4.28) and
drop the the nonnegative terms (2A′ −B)e−A(ϕε)|∇′ϕε|2ω′ and e−A(ϕε)trg′g,
and take the equality n+ ∆ϕε = trωω

′ into account, we have

∆′
(
e−A(ϕε)|∇ϕε|2

)
≥ Ce−A(ϕε)|∇ϕε|2+ 2

n − ((n+ 2)A′ + 2)e−A(ϕε)|∇ϕε|2

+ e−A(ϕε)(trωω
′ − 2n)− 2e−A(ϕε)|∇F ||∇ϕε|.

(4.32)
We can interpolate |∇ϕε|2 by |∇ϕε|2+2/n and constants, i.e., there exists
some sufficiently small positive constant ε and sufficiently large constant
C(ε) depending on ε such that

|∇ϕε|2 ≤ ε|∇ϕε|2+ 2
n + C(ε). (4.33)

Let u = exp(−A(ϕε))|∇ϕε|2. Note that exp(−A(ϕε)) is uniformly bounded.
By (4.32) and (4.33) we have

∆′u ≥ Cu1+ 1
n − C + C trω ω

′ − C|∇F |u1/2. (4.34)

Step 2. We will do an integration scheme to obtain the uniform C1

bound from (4.34). We multiplying (4.34) by up for p > 0 and take integral
with respect to the volume form dµ′ to obtain

−
∫
M
pup−1|∇′u|2ω′dµ′ +

∫
M
∇′(up∇′u)dµ′ =

∫
M
up∆′udµ′

≥
∫
M
up(Cu1+ 1

n − C)dµ′ + C

∫
M
up(trω ω

′)dµ′ − C
∫
M
|∇F |up+

1
2dµ′

(4.35)
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By Lemma 3.13 (Gaffney-Stokes),∫
M
∇′(up∇′u)dµ′ = 0.

Hence, ∫
M

(
pup−1|∇′u|2ω′ + Cup(trω ω

′)
)
dµ′

≤ C
∫
M
|∇F |up+

1
2dµ′ −

∫
M
up(Cu1+ 1

n − C)dµ′
(4.36)

Note that we have the following pointwise inequality

|∇′u|2ω′ + (trω ω
′) ≥ 2

√
(trω ω′)|∇′u|2ω′ ≥ 2|∇ϕε|. (4.37)

In addition,
dµ′ = exp(F + εϕε)dµ

is equivalent to dµ. Hence, we have

C
√
p

∫
M
up−

1
2 |∇u|dµ ≤ C

∫
M
|∇F |up+

1
2dµ−

∫
M
up(Cu1+ 1

n −C)dµ. (4.38)

It follows from (4.38) that∫
M
|∇up+

1
2 |dµ ≤ C√p

∫
M
|∇F |up+

1
2dµ−C√p

∫
M
up(u1+ 1

n −C)dµ. (4.39)

Step 3. Let us rewrite (4.39) as follows by taking a shift on p: for p > 1/2
we have∫

M
|∇up|dµ ≤ C√p

∫
M
|∇F |updµ− C√p

∫
M
up−

1
2 (u1+ 1

n − C)dµ (4.40)

Note that∫
M
|∇(upρ−1)|ρdµ =

∫
M
|∇up|dµ+

∫
M
ρ−1|∇ρ||u|pdµ

≤
∫
M
|∇up|dµ+ C

∫
M
|u|pdµ.

(4.41)

as ρ−1|∇ρ| is bounded on M by Lemma 3.3. Let γ = 2n/(2n − 1). By the
weighted Sobolev inequality (Lemma 3.9), we have(∫

M
|upρ−1|γρdµ

)1/γ

≤ C
(∫

M
|∇(upρ−1)|ρdµ+

∫
M
|upρ−1|ρdµ

)
. (4.42)
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By (4.40), (4.41) and (4.42), we have(∫
M
|upρ−1|γρdµ

)1/γ

≤ C√p
∫
M
up|∇F |dµ− C√p

∫
M
up−

1
2 (u1+ 1

n − C
√
u− C)dµ.

(4.43)

Notice that for p > 1/2 the function f(t) = tp−
1
2 (t1+ 1

n−C
√
t−C) is bounded

from below on R. Therefore,(∫
M
|upρ−1|γρdµ

)1/γ
≤ C√p

(∫
M
up|∇F |dµ+ 1

)
. (4.44)

Let dµ̃ = ρ−1/(2n−1)dµ. Then (4.44) can be written as(∫
M
|u|pγdµ̃

)1/γ
≤ C√p

(∫
M
|u|p|∇F |ρ

1
2n−1dµ̃+ 1

)
. (4.45)

Let q0 be that 1/p0 + 1/q0 = 1. From Hölder inequality we have∫
M
|u|p|∇F |ρ

1
2n−1dµ̃ ≤

(∫
M
|u|pq0dµ̃

)1/q0(∫
M
|∇F |p0ρ

p0
2n−1dµ̃

)1/p0
.

(4.46)
Note that ∫

M
|∇F |p0ρ

p0
2n−1dµ̃ =

∫
M
|∇F |p0ρ

p0−1
2n−1dµ = I(F, p0). (4.47)

From (4.45), (4.46) and (4.47), we get

‖u‖pLγp(dµ̃) ≤ C
√
p
(
‖u‖pLq0p(dµ̃) + 1

)
. (4.48)

Let β = q−1
0 γ, then β > 1. Take a sequence {p`} with p` = q−1

0 β`−1 for
` ≥ 1. Then by (4.48) we get

‖u‖p`
Lq0p`+1 (dµ̃)

≤ C√p`
(
‖u‖p`Lq0p` (dµ̃) + 1

)
. (4.49)

We may assume that C
√
p` ≥ 1. Let

B` = max
(
‖u‖Lp0p` (dµ̃), 1

)
.

Then
B`+1 ≤ (2C)1/p`p

2/p`
` B`. (4.50)
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By iteration we have

B` ≤
( `−1∏
j=1

(2C)1/pjp
2/pj
j

)
B1. (4.51)

It is easy to check that

log
( ∞∏
j=1

(2C)1/pjp
2/pj
j

)
≤
∞∑
j=0

p0β
−j (2j log β − 2 log p0 + log(2C)) <∞.

Let k →∞, it follows that

‖u‖C0 ≤ CB1 = C ·max
(
‖u‖L1(dµ̃), 1

)
. (4.52)

To get a bound of ‖u‖L1(dµ̃), notice that dµ̃ = ρ−1/(2n−1)dµ ≤ dµ, hence, we
have

‖u‖L1(dµ̃) =

∫
M

exp(−A(ϕε))|∇ϕε|2dµ̃ ≤ C
∫
M
|∇ϕε|2dµ

≤ −C
∫
M
ϕε(∆ϕε + n− n)dµ

≤ C||ϕε||C0

∫
M

(∆ϕε + n)dµ− Cn
∫
M
ϕεdµ

≤ 2nC‖ϕε‖C0 .

(4.53)

From (4.52) and (4.53) and that ‖ϕε‖ is uniformly bounded, we have

‖∇ϕε‖C0 ≤ C

for some constant C depends only on I(F, p0), p0, ω and n.

4.3 Uniform C2 estimate

In this section we prove the C2 estimate Theorem 2.3. In what follows let
ω′ = ω+

√
−1∂∂̄ϕε and∇′, ∆′ and dµ′ be the covariant derivative, Laplacian

and volume form of the Kähler metric ω′. The constant C may vary from
line to line, but always only depends on I(F, p0), p0, ω and n.

Proof. Step 1. By the same computations as in [41], we obtain in the or-
thonormal frame of background metric ω,

∆′(e−βϕε(n+ ∆ϕε)) ≥ e−Cϕε
[1

2

∑
i 6=j

Rīijj̄(ω)

(
(ϕε)īi − (ϕε)jj̄

)2
(1 + (ϕε)īi)(1 + (ϕε)jj̄)

+ ∆F + ε∆ϕε + (n+ ∆ϕε)(−β∆′ϕε)
]
.

(4.54)
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Choose
β ≥ − inf

M
inf
i 6=`

Rīijj̄ + 1.

It follows that

∆′(e−βϕε(n+∆ϕε)) ≥ e−βϕε
[
(n+∆ϕ) trω′ ω+(ε−2nβ)(n+∆ϕε)+∆F−nε

]
.

(4.55)
Let

w = e−βϕε(n+ ∆ϕε).

Note that
trω′ ω ≥ (exp(F + εϕε) trω ω

′)1/(n−1)

and trω ω
′ = n+ ∆ϕε. It follows that

∆′w ≥ Cw
n
n−1 − C + e−βϕε∆F. (4.56)

Step 2. We compute, for p > 0,∫
M
|∇wp|2dV ≤

∫
M

(trωω
′)|∇′wp|2ω′e−(F+εϕε)dµ′

=

∫
M
e(β−ε)ϕε−Fw|∇′wp|2ω′dµ′

≤ C
∫
M
w|∇′wp|2ω′dµ′.

(4.57)

Take integration by parts∫
M
w|∇′wp|2ω′dµ′ = −

p

2

∫
M
w2p∆′wdµ′ +

p

2

∫
M
∇′(w2p∇′w)dµ′. (4.58)

By Lemma 3.13 (Gaffney-Stokes), the integral∫
M
∇′(w2p∇′w)dµ′ = 0. (4.59)

Combining (4.57), (4.58) and (4.59), we have∫
M
|∇wp|2dµ ≤ C

2
p

∫
w2p(−∆′w)dµ′

=
C

2
p

∫
M
w2p(−∆′w)eF+εϕεdµ

≤ Cp
∫
M
w2p(−∆′w)dµ

(4.60)
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By (4.53), we have∫
M
|∇wp|2dµ ≤ −Cp

∫
M
w2p(Cw

n
n−1 − C)dµ− Cp

∫
M
w2pe−βϕε∆Fdµ

≤ −Cp
∫
M
w2p(Cw

n
n−1 − C)dµ+ Cp

∫
M

2e−βϕεwp|∇wp||∇F |dµ

+ Cp

∫
M
βe−βϕεw2p|∇ϕε||∇F |dµ

≤ −Cp
∫
M
w2p(w

n
n−1 − C)dµ+ Cp

∫
M
wp|∇wp||∇F |dµ

+ Cp

∫
M
w2p|∇F |dµ

(4.61)
By Hölder inequality,

Cp

∫
M
|∇wp|wp|∇F |dµ ≤ 1

2

∫
M
|∇wp|2dµ+

C2p2

2

∫
M
w2p|∇F |2dµ (4.62)

and ∫
M
w2p|∇F |dµ ≤ 1

2

∫
M
w2p(|∇F |2 + 1)dµ. (4.63)

Combine (4.61), (4.62) and (4.63), we have∫
M
|∇wp|2dµ ≤ −Cp

∫
M
w2p(w

n
n−1 − C)dµ+ Cp2

∫
M
w2p|∇F |2dµ. (4.64)

Step 3. As ρ−1|∇ρ| is bounded on M , we have∫
M
|∇(wpρ−

1
2 )|2ρdµ ≤

∫
M

(
2|∇wp|2 +

1

2
(ρ−1|∇ρ|)2w2p

)
dµ

≤ 2

∫
M
|∇wp|dµ+ C

∫
M
w2pdµ.

(4.65)

Let γ′ = n/(n − 1). Note that 1/2 = 1/(2n) + 1/(2τ). By the weighted
Sobolev inequality (Lemma 3.9), we have(∫

M
|wpρ−

1
2 |2γ′ρdµ

) 1
2γ′ ≤ C

(∫
M
|∇(wpρ−

1
2 )|2ρdµ+

∫
M
w2pdµ

) 1
2
. (4.66)

Combining (4.64), (4.65) and (4.66), we get(∫
M
|wpρ−

1
2 |2γ′ρdµ

) 1
γ′ ≤ −Cp

∫
M
w2p(w

n
n−1 −C)dµ+Cp2

∫
M
w2p|∇F |2dµ.

(4.67)
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Note that for p > 0 the function f(t) = t2p(tn/(n−1) − C) is bounded from
below. Hence, ∫

M
w2p(w

n
n−1 − C)dν ≥ −C. (4.68)

Let dν = ρ−1/(n−1)dµ, we can rewrite∫
M
|wpρ−

1
2 |2γ′ρdµ =

∫
M
|w|2γ′pdν. (4.69)

It follows that(∫
M
|w|2γ′pdν

) 1
γ′ ≤ Cp+ Cp2

∫
M
w2p|∇F |2ρ

1
n−1dν (4.70)

Let q′0 be that 1/q0 + 2/p0 = 1. By Hölder inequality we have∫
M
w2p|∇F |ρ

1
n−1dν =

(∫
M
w2pq0dν

) 1
q0

(∫
M
|∇F |p0ρ

p0
2n−2dν

) 2
p0 . (4.71)

Notice that ∫
M
|∇F |p0ρ

p0
2n−2dν =

∫
M
|∇F |p0ρ

p0−2
2n−2dµ = I(F, p0). (4.72)

Hence, by (4.70), (4.71) and (4.72), it follows that

‖w‖p
L2γ′p(dν)

≤ Cp2(‖w‖p
L2q′0p(dν)

+ 1) (4.73)

By a similar iteration argument as in the end of Section 4.2, it follows that

‖w‖C0 ≤ C‖w‖L1(dν). (4.74)

To obtain the bound for ‖w‖L1(dν), notice that dν = ρ−1/(n−1)dµ, it follows
that

‖w‖L1(dν) ≤
∫
M
e−βϕε(n+ ∆ϕε)dµ ≤ C

∫
M

(n+ ∆ϕε)dµ ≤ C. (4.75)

Therefore, we have
‖∆ϕε‖C0 ≤ C

for some constant C depending only on I(F, q0), q0, ω and n.
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4.4 Hölder estimate of the second order

In Yau’s original resolution of the Calabi conjecture, the C3 estimate is
needed to obtain higher order regularity from Schauder theory. For Monge-
Amperè equations, such C3 estimates date back to Calabi’s seminal third
order estimates [7]. Later on Evans [22] and Krylov [29, 30] proved that
Hölder estimates of second order hold for fully nonlinear concave uniform
elliptic operators. All the results are originally stated for the right hand
side F with second derivatives or higher. The Hölder estimates of second
order derivatives has also been studied for uniform elliptic operators when
the right hand side has weaker regularity. These estimates can be localized.
In particular, for Monge-Ampére equation, B locki proved that the Hölder
esitmates hold when F is Lipschitz and the Laplacian of the Kähler potential
is bounded [6]. Chen-He extended Blocki’s result to the case when F is only
in W 1,p0 for some p0 > 2n [17]. We cite Chen-He’s result in the following
lemma. The readers are referred to their paper for the detail of the proof.

Lemma 4.3 (Chen-He, [17, Lemma 4.1]). Let v be a C4-psh function in an
open Ω ⊂ Cn such that

det(vij̄) = F.

Assume that there are some positive constants Λ and K such that

0 < Λ−1 ≤ ∆v ≤ Λ, ‖v‖L∞ ≤ K and ‖v‖W 1,p0 (Ω) ≤ K.

Then for any Ω′ ⊂⊂ Ω, there exists some λ = λ(Ω,Ω′,Λ,K) with 0 < λ < 1
such that

‖v‖C2,λ(Ω′) ≤ C(Ω,Ω′,Λ,K).

We can cover (M,ω) by a quasi-coordinate system and apply the Hölder
estimate in each quasi-coordinate chart. In particular, we have

Proposition 4.4. Let F ∈ C∞c (M, g) such that I(F, p0) < ∞ for some
p0 > 2n. Let ϕε be the solution of perturbed equation (2.6). Then there
exists some λ = λ(I(F, p0), p0, ω, n) such that

‖ϕε‖2,λ ≤ C(I(F, p0), p0, ω, n) (4.76)

where ‖·‖2,λ is the (2, λ)-Hölder norm defined in (3.21) by the quasi-coordinates.

Proof. We can cover a neighborhood of the divisor D by a finite number
of polydiscs U ’s and cover the complement of the neighborhood by a finite
number of open sets V ’s. For each V we can take some V ′ ⊂⊂ V such that

M\
⋃
U ⊂

⋃
V ′.
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On each V with some local coordinates, we can find a local potential Q0

such that gij̄ = (Q0)ij̄ . Then the perturbed equation (2.6) can be written
as

det(ϑij̄) = f,

with ϑ = Q0 +ϕε and f = exp(F + εϕε) det(gij̄). The uniform estimates on
‖∇ϕε‖C0 and ‖∆ϕε‖C0 and the boundedness of I(F, p0) imply that

0 ≤ Λ−1 ≤ ∆ϑ ≤ Λ, ‖ϑ‖L∞(V ) < K and ‖f‖W 1,p0 (V ) ≤ K

for some positive constants Λ and K. Then by Lemma 4.3, these exists some
constant λ′ and C ′ depending on V such that

‖ϑ‖C2,λ′ (V ′) ≤ C
′. (4.77)

For each U , we can assume that U\D = (∆∗κ)k ×∆n−k
1 for some k < n

and κ > 0 sufficient small. The set U\D can be covered by a family of
quasi-coordinate charts

U\D ⊂
⋃

δ∈(0,1)k

Ψδ(
1

2
Pk) ⊂

⋃
δ∈(0,1)k

Ψδ(
3

4
Pk)

where rPk = ∆k
r × ∆n−k

1 and Ψδ : 3
4Pk → U\D is the quasi-coordinate

map constructed in Section 3.2, for each multi-index δ. Under the quasi-
coordinates, suppose the metric is written as g̃ij̄ , the potential ϕ̃ε and the

right hand side F̃ on the polydisc 3
4Pk ⊂ Cn. Note that in the quasi-

coordinates the pullback metric g̃ is quasi-isometric to the Euclidean metric
g0 on Cn:

0 < C−1g0 ≤ g̃ ≤ Cg0

for some positive constant C independent of the multi-index δ. We can
find some local potential Q̃0 on 3

4Pk such that g̃ij̄ = (Q̃0)ij̄ . Then in the
quasi-coordinates the perturbed equation (2.6) can be rewritten as

det(ϑ̃ij̄) = f̃ (4.78)

where ϑ̃ = Q̃0 + ϕ̃ε and f̃ = exp(F̃ + εϕ̃ε) det(g̃ij̄). The uniform estimates
on ‖∇ϕε‖C0 and ‖∆ϕε‖C0 readily imply that there exist constants Λ and K
such that

0 < Λ−1 ≤ ∆ϑ̃ ≤ Λ, ‖ϑ̃‖L∞( 3
4
Pk) ≤ K and ‖f‖L∞( 3

4
Pk) ≤ K.
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We now show that f ∈ W 1,p0(3
4Pk) and ‖f‖W 1,p0 ( 3

4
Pk) ≤ K. It suffices to

show that ‖∇g0F̃‖Lp( 3
4
Pk) ≤ K. By Lemma 3.7, we have∫

3
4
Pk
|∇g0F̃ |p0g0dµ0 ≤ C

∫
3
4
Pk

(Ψ∗δρ)−1Ψ∗δ(|∇F |p0ρ)dµ0

≤ C
∫
U\D
|∇F |p0ρdµ ≤ I(F, p0).

(4.79)

Hence,
‖f‖W 1,p0 ( 3

4
Pk) ≤ K.

By Lemma 4.3, there exists λ′′ and constant C ′′ depending on U such that

‖ϑ̃‖C2,λ′′ ( 1
2
Pk) ≤ C

′′. (4.80)

Note that the constants λ′′ and C ′′ do not depend on the multi-index δ. Since
there are only a finite number of U ’s and V ’s, we can take some common λ
and C such that in either local coordinates for V ’s, or local quasi-coordinates
for U ’s, the estimates of (4.77) and (4.80) both holds. Therefore, by taking
supreme over all the quasi-coordinate charts, we get

‖ϕε‖2,λ ≤ C. (4.81)

To obtainW 3,p0 estimate, we localize the estimate in the quasi-coordinate
charts as what we did in the proof of Proposition 4.4. Under the quasi-
coordinates, suppose the metric is written as g̃ij̄ , the potential ϕ̃ε and the

right hand side F̃ on the polydisc 3
4Pk ⊂ Cn. The perturbed equation (2.6)

is written under the quasi-coordinates as

det(g̃ij̄ + (ϕ̃ε)ij̄) = eF+εϕ̃ε det(g̃ij̄). (4.82)

Let ∂ be an arbitrary first order differential operator on the quasi-coordinate
chart 3

4Pk. Once the Hölder estimate of second order is proved, we compute
in the quasi-coordinate chart

∆g̃∂ϕ̃ε = ∂F̃ + ε∂ϕ̃ε + (g̃ij̄ − g̃ij̄ϕε)∂g̃ij̄ (4.83)

where the g̃ϕε is the metric of (ω+
√
−1∂∂̄ϕε) in the quasi-coordinates. Note

that we already have ‖ϕ̃ε‖C2,α( 3
4
Pk) and ‖F̃‖W 1,p0 ( 3

4
Pk) bounded, hence the
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Lp0 norm of right hand side bounded. It then follows from Lp theory, for
example see [27] Chapter 9, that

‖∂ϕ̃ε‖W 2,p0 ( 1
2
Pk) ≤ C. (4.84)

It follows that
‖Ψ∗δϕε‖W 3,p0 ( 1

2
Pk) ≤ C, ∀δ (4.85)

By Lemma 3.7, we have

||ϕε||p0W 3,p0 (U\D)
≤ c

∑
`

Πδ`‖Ψ
∗
δ`
ϕε‖p0W 3,p0 ( 1

2
Pk)

≤ Cp0c
∑
`

Πδ`

∫
1
2
Pk

1dµ0

≤ Cp0c2

∫
U\D

1dµ ≤ Cp0c2 Vol(M).

(4.86)

We can a neighborhood of D by a finite number of such U ’s and cover the
complement of the neighborhood by a finite number of unit balls. Collect
the inequalities on each of them, we get the following proposition.

Proposition 4.5. Let F ∈ C∞c (M, g) such that I(F, p0) < ∞. Let ϕε be
the solution of perturbed equation (2.6). Then we have

‖ϕε‖W 3,p0 (M) ≤ C (4.87)

for some constant C depends only on I(F, p0), p0, ω and n.

4.5 Proof of Theorem 2.1

All the estimates are proved with the temporary assumption that F is in
C∞c (M). When F is only in the weighted Sobolev space with I(F, p0) <∞,
we show that F can be approximated by C∞c functions in the weighted
Sobolev spaces.

Lemma 4.6. Suppose F ∈ W 1,p0
loc (M) satisfies I(F, p0) <∞ for some p0 >

2n. Then there is a sequence of Fk ∈ C∞c such that I(F − Fk, p0) → 0 as
k → 0. In particular, Fk → F in W 1,p0(M, g).

Proof. We can assume that F is smooth. The Ricci curvature of (M, g) is
bounded from below. Let r = r(x) denote the distance function to some
fixed point. By a theorem of Yau ([36, Theorem 4.2]), there is a proper
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C∞(M) function d such that d ≥ Cr and |∇d| ≤ C, for some constant C. Let
χ : [0,∞)→ R be a cut-off function such that: (i) χ(t) ≡ 1 for t ≤ 1, χ(t) ≡ 0
for t ≥ 2 and 0 ≤ χ ≤ 1; (ii) |χ′(t)| < 2. Let Fk(x) = χ (d(x)/k)F (x). Then
Fk ∈ C∞c (M, g). It remains to show I(F − Fk, p0) → 0. To see this, note
that ∇Fk = χ (d/k)∇F + Fχ′ (d/k)∇d/k. Hence,∫

(|F − Fk|p0 + |∇F −∇Fk|p0)ρ
p0−2
2n−2dV

≤
∫

(1− χ (d/k)) |F |p0 +
(
(1− χ(d/k))|∇F |+ Ck−1|F |

)p0 ρ p0−2
2n−2dV

≤ C
∫
{d≥k}

(|F |p0 + |∇F |p0)ρ
p0−2
2n−2dV + Ck−1

∫
|F |p0ρ

p0−2
2n−2dV

(4.88)
The RHS goes to 0 as k →∞.

Finally, we proof the main theorem.

Proof of theorem 2.1. Let Fk be a sequence of smooth functions with com-
pact support such that I(Fk − F, p0) → 0. In particular, we can assume
I(Fk, p0) ≤ I(F, p0) + 1 for any k. For each ε and k, there is a smooth
solution ϕε,k which solves the perturbed equation

(ω +
√
−1∂∂̄ϕε,k)

n = eFk+εϕε,kωn (4.89)

such that (ω +
√
−1∂∂̄ϕε,k) > 0. By Proposition 4.5 we have

‖ϕε,k‖W 3,p0 ≤ C(I(F, p0), p0, ω, n). (4.90)

There is a subsequence of (ϕε,k) that converges to some ϕ ∈ W 3,p0(M, g)
such that ω +

√
−1∂∂̄ϕ > 0 defines a W 1,p0 Kähler metric.
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Part II

On the Chern-Yamabe problem
1

5 Introducation to Chern-Yamabe problem

5.1 Chern scalar curvature

Let (X,ω) be a compact complex manifold of complex dimension n ≥ 2
endowed with a Hermitian metric ω. Besides the usual Riemannian scalar
curvature which is scalar curvature with respect to the the Levi-Civita con-
nection, one can define the Chern scalar curvature of (X,ω) to be the scalar
curvature with respect to the Chern connection associated to ω. The Chern
scalar curvature can be succinctly expressed as

SC(ω) = − trω i∂∂̄ logωn, (5.1)

where ωn denotes the volume form. It is easy to see that under conformal
transformation the Chern scalar curvature changes as

SC
(

exp(2f/n)ω
)

= exp(−2f/n)
(
SC(ω)−∆C

ω f
)
, (5.2)

where ∆C
ω is the Chern Laplacian operator2 with respect to ω, which is

defined as
∆C
ω f := 2 trω i∂∂̄f. (5.3)

5.2 Chern-Yamabe problem

Inspired by the Yamabe problem for Riemannian manifolds, Angella-Calamai-
Spotti [1] proposed the Chern-Yamabe problem of finding metrics of con-
stant Chern scalar curvature in the given conformal classes. By the confor-
mal transformation formula of Chern scalar curvature, the Chern-Yamabe
problem is equivalent to find a pair (f, λ) ∈ C∞(X;R)× R solving

−∆C
ω f + SC(ω) = λ exp(2f/n). (5.4)

In this way, the conformal metric exp(2f/n)ω then has the constant Chern
scalar curvature equal to λ.

1This is a joint work with Simone Calamai.
2We use the analysts’ convention of Laplacian operator.
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5.3 Normalization

Given a hermitian metric ω, the torsion 1-form of ω is defined as some 1-
form θω such that dωn−1 = θω ∧ωn−1. The hermitian metric ω is said to be
balanced if θω = 0, equivalently, dωn−1 = 0. The hermitian metric ω is said
to be Gauduchon if d∗θω = 0. From the definition one can easily see that
a balanced metric is automatically a Gauduchon metric. The reserve is not
necessarily true.

In [25], P. Gauduchon proved the following fundamental theorem.

Theorem 5.1 ([25, Théoremè 1]). Fix a compact complex manifold X with
dimCX ≥ 2. For every conformal class of hermitian metrics there exists a
unique Gauduchon metric ω such that

∫
X ω

n/n! = 1.

By a computation in [26, pages 502-503], the Chern Laplacian can be
decomposed as

∆C
ω f = ∆df + 〈df, θω〉ω (5.5)

where ∆d is the Hodge’s Laplacian and θω is the torsion 1-form of ω. The
Gauduchon metrics have the advantage that if ω is Gauduchon, then∫

M
∆C
ω fdVω =

∫
M

∆df + f(d∗θω)dVω = 0. (5.6)

From this point, we would like to take the unique Gauduchon metric with
unit volume in each conformal class as the background metric. This is also
guaranteed by Gauduchon’s theorem that the Gauduchon metric always
exist in each conformal class. From now on we assume the background
metric ω in the Chern-Yamabe problem is Gauduchon with unit volume
and let dµ denote its volume form.

We can also normalize f so that∫
X

exp(2f/n)dµ = 1. (5.7)

Then the constant λ is exactly the total Chern scalar curvature of the back-
ground metric

λ =

∫
X

SC(ω) dµ =

∫
X

2πc1(X) ∧ [ω]n−1/(n− 1)!. (5.8)

where c1(X) is the first Chern class of the complex manifold (X, J). (Note
that ω has unit volume.) The constant λ is uniquely determined by the con-
formal class (more precisely the unique Gauduchon metric in that conformal
class with unit volume). It is called the Gauduchon degree of the conformal
class.
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5.4 Dissertation work

When the Gauduchon degree λ ≤ 0, it has been proved in [1] that there exists
unique solution to (5.4) with normalization (5.7) via direct PDE method.
This result is reproved in [31] through a flow method. The positive case
λ > 0 is still an open problem.

In [1, 31] two different flows were defined to approach the study of Hermi-
tian metrics with constant Chern scalar curvature. Here we define a different
flow, in Section 6, which has the advantage of preserving some quantities
and being monotone when the problem is known to be variational (when the
background is moreover balanced). Our first result is

Proposition 5.2. The Chern-Yamabe flow exists as long as the maximum
of Chern scalar curvature stays bounded.

This result is not satisfactory as we need to assume the upper bound of
the Chern scalar curvature in order to obtain the long time existence. We
conjecture that

Conjecture 5.3. The Chern scalar curvature under the Chern-Yamabe flow
does not blow up in finite time.

If the background metric ω is even balanced, then ∆C
ω = ∆d is sysmetric.

In this special case, the Chern Yamabe problem is variational. There exists a
functional F on space of smooth functions with the normalization condition
(5.7) such that the Chern-Yamabe equation is the Euler-Lagrange equation
of the functional. We show that the functional is decreasing along the flow.
Our second result regards with the boundedness of this functional.

Proposition 5.4. Suppose the background Gauduchon metric ω is also bal-
anced. There is a functional F whose critical points are the conformal met-
rics with constant Chern scalar curvature. When the Gauduchon degree
λ ≤ 0, this functional F is bounded from below. When λ > 0, F is un-
bounded from below.

Second variation of the functional is computed. We show that in some
examples the functional can possess saddle points.

Some additional property of the flow is presented under additional as-
sumptions in the end of this part.
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6 Chern-Yamabe Flow

Let f(x; t) be a family of C∞ functions on X parametrized by a real param-
eter t. Let S(x; t) = SC(exp(2f(x; t)/n)ω). The Chern-Yamabe flow is the
flow f(x; t) defined by the following flow equation:

∂f

∂t
=
n

2

(
λ− S

)
=
n

2
exp(−2f/n)

(
∆C
ω f − SC(ω) +λ exp(2f/n)

)
(6.1)

with some initial value f0 satisfying the normalization constraint∫
X

exp(2f0/n)dµ = 1. (6.2)

Under the flow some quantities are preserved.

Lemma 6.1. Along the flow we have

1. ∫
X

exp(2f/n)dµ ≡ 1.

2. ∫
X
S exp(2f/n)dµ ≡ λ.

Proof. 1. Let

φ(t) =

∫
X

exp(2f/n)dµ.

By the initial data (6.2) and the flow equation (6.1), we have φ(0) = 1 and

φ′(t) =
2

n

∫
X

exp(2f/n)
∂f

∂t
dµ

=

∫
X

(
∆C
ω f − SC(ω) +λ exp(2f/n)

)
dµ

= λ
(
φ(t)− 1

)
.

It is straightforward to show that φ(t) ≡ 1.
2. It follows that∫

X
S exp(2f/n)dµ =

∫
X

(SC(ω)−∆C
ω f)dµ ≡ λ.
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6.1 Evolution of the Chern scalar curvature

Under the Chern-Yamabe flow the Chern scalar curvature S(x; t) = SC(exp(2f/n)ω)
evolves according to the following equation

∂S

∂t
=
n

2
exp(−2f/n) ∆C

ω S + S(S − λ) (6.3)

with initial value S(x; 0) = SC(exp(2f0/n)ω).
The following lemma gives a uniform lower bound of the Chern scalar

curvature.

Lemma 6.2. Let (S0)min = minx∈X S(x; 0). We have

S(x; t) ≥ min{(S0)min, 0}, ∀x ∈ X.

Proof. Let Smin(t) = minx∈X S(x; t). Applying maximum principle to (6.3)
we obtain

Smin
′(t) ≥ Smin(Smin − λ) ≥ −λSmin.

Hence,
S(x; t) ≥ Smin(t) ≥ (S0)min exp(−λt), ∀x ∈ X.

If (S0)min ≥ 0, then S(x; t) ≥ 0; otherwise S(x; t) ≥ (S0)min. Hence,

S(x; t) ≥ min{(S0)min, 0}.

Remark 6.3. For Lemma 6.2, S(x, t) ≥ (S0)min exp(−λt) as long as the
flow exists. In particular, if the initial Chern scalar curvature is strictly
positive, then the positiveness is preserved along the flow.

We can always take a special initial f0 so that the initial Chern scalar
curvature is strictly positive. Let h ∈ C∞(X;R) such that

∆C
ω h = SC(ω)−λ with

∫
X

exp(2h/n)dµ = 1.

We have SC(exp(2h/n)ω) = λ exp(−2h/n) > 0. Hence, the Chern-Yamabe
flow with this specific initial f(x; 0) = h(x) has the positive Chern scalar
curvature as long as the flow exists.
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6.2 Long time existence

In this section we show that the Chern-Yamabe flow exists as long as the
maximum of Chern scalar curvature stays bounded. The short time exis-
tence of the flow is straightforward as the principal symbol of the second-
order operator of the right-hand side of the Chern-Yamabe flow is strictly
positive definite. To obtain the long time existence, one needs to show the
a priori Ck estimate

max
0≤t<T

‖f(x; t)‖Ck(X) ≤ Ck(T ) <∞

for any T <∞ and any positive integer k. We use C(T ) to denote a constant
depending on T . The constants C(T ) may vary from line to line. We begin
with a C0 estimate on the flow f(x; t).

Lemma 6.4 (C0 estimate). Suppose that the Chern-Yamabe flow exists on
ΩT = X × [0, T ) for some T > 0. Then these exists some constant C0(T )
depending only on (X,ω) and initial data f0 such that

sup
0≤t<T

‖f(x; t)‖C0(X) ≤ C0(T ).

Proof. Let h ∈ C∞(X;R) such that

∆C
ω h = SC(ω)−λ with

∫
X

exp(2h/n)dµ = 1.

Such a function h exists because of (5.8). Similarly, by Lemma 6.1 there
exists some v(t) ∈ C∞(X × [0, T );R) such that

∆C
ω v = exp(2f/n)− 1. (6.4)

Differentiating (6.4) with respect to t, by the flow equation (6.1) we have

∂

∂t

(
∆C
ω v
)

= ∆C
ω f − SC(ω) +λ exp(2f/n)

= ∆C
ω f − (SC(ω)−λ) + λ(exp(2f/n)− 1)

= ∆C
ω f −∆C

ω h+ λ∆C
ω v.

Hence,

∆C
ω

(
∂v

∂t
− f + h− λv

)
= 0.
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We can normalize v(x; t) (by adding some function depending only on t if
necessary) so that

∂v

∂t
− f + h− λv = 0 (6.5)

with initial value v(x; 0) = v0(x) for some v0 satisfying

∆C
ω v0 = exp(2f0/n)− 1 and

∫
X
v0dµ = 0.

Let w(x; t) = ∂v/∂t. Differentiating (6.5) with respect to t, we have
∂w

∂t
=
∂f

∂t
+ λw =

n

2
exp(−2f/n) ∆C

ω w + λw,

w(x; 0) = f0(x)− h(x) + λv0(x).
(6.6)

Let wmax(t) = maxx∈X w(x; t) and wmin(t) = minx∈X w(x; t). By maximum
principle, we have

d

dt
wmax ≤ λwmax and

d

dt
wmin ≥ λwmin.

It follows that

wmin(t) ≥ wmin(0) exp(λt) and wmax(t) ≤ wmax(0) exp(λt).

Hence, we have

‖w(x; t)‖C0(X) ≤ K exp(λt) with K = max
(
|wmin(0)|, |wmax(0)|

)
.

It then follows that

|v(x; t)| =
∣∣∣∣v0(x) +

∫ t

0
w(x; t)dt

∣∣∣∣
≤ ‖v0‖C0(X) +

∫ t

0
‖w(x; t)‖C0(X)dt ≤ ‖v0‖C0(X) +

K

λ
exp(λt).

By (6.5) we have f(x; t) = w(x; t) + h(x)− λv(x; t). Hence,

‖f(x; t)‖C0(X) ≤ ‖w(x; t)‖C0(X) + ‖h‖C0(X) + λ‖v(x; t)‖C0(X)

≤ K exp(λt) + ‖h‖C0(X) + λ

(
‖v0‖C0(X) +

K

λ
exp(λt)

)
≤ ‖h‖C0(X) + λ‖v0‖C0(X) + 2K exp(λt) := C0(T ).

Since the functions h, v0 and w0 are uniquely determined by (X,ω) and f0,
the constant C0(T ) only depends on (X,ω) and f0.
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Lemma 6.5. Suppose the Chern-Yamabe flow exists on ΩT = X × [0, T )
for some T > 0. Moreover, suppose that

sup
0≤t<T

‖S‖C0(X) ≤ C(T ) <∞.

Then for any k ∈ N there exists constant Ck(T ) such that

sup
0≤t<T

‖f(x; t)‖Ck(X) ≤ Ck(T ).

Proof. We first get the parabolic Hölder norm bound3 for f . For any p ≥ 1
and 0 ≤ t < T ,

‖f(x; t)‖W 2,p(X) ≤ Cp
(
‖f(x; t)‖Lp(X) + ‖∆C

ω f(x; t)‖Lp(X)

)
≤ C

(
sup

0≤t<T
‖f(x; t)‖C0(X) + sup

0≤t<T
‖S(x; t)‖C0(X) + ‖SC(ω)‖C0(X)

)
≤ C(T ).

By Sobolev embedding, there exists some α with 0 < α < 1,

sup
0≤t<T

‖f(x; t)‖Cα(X) ≤ C(T ).

Moreover, note that |∂f/∂t| = (n/2)|λ− S| ≤ C(T ). Hence, we have

‖f‖Cα(X×[0,T )) ≤ C(T ).

Let L be any differential operator in x and t. A simple calculation shows
that

∂

∂t
(Lf)− n

2
exp(−2f/n) ∆C

ω (Lf) + S(Lf) = −n
2

exp(2f/n)(LSC(ω)).

By the interior Schauder estimate for parabolic equations (Theorem 4.9 in
[32]), for any τ, τ ′ with 0 ≤ τ < τ ′ < T , we have

‖Lf‖C2+α(X×(τ ′,T )) ≤ CSch(‖Lf‖C0(X×(τ,T )) + ‖L SC(ω)‖Cα(X×(τ,T )))

where the constant CSch depends on τ , τ ′, ‖S‖C0(X×(τ,T )) and ‖f‖Cα(X×(τ,T )).
It then follows by the standard bootstrapping argument to obtain that for
any τ > 0, k ∈ N and 0 < α < 1, there exists constant C(k, α, τ, T ) such
that

‖f‖Ck+α(X×(τ,T )) ≤ C(k, α, τ, T ).

3See the definition in Chapter IV, [32].
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Together with the short time existence near t = 0, we have

sup
0≤t<T

‖f(x; t)‖Ck(X) ≤ Ck(T ) <∞.

With Lemma 6.2 in hand, we only need S(x; t) being upper bounded
from infinity to obtain the Ck estimate of the flow. Therefore, we have the
following long time existence result.

Proposition 6.6. The Chern-Yamabe flow exists as long as the maximum
of Chern scalar curvature stays bounded.

We therefore put forward the following conjecture to fully resolve the
long time existence of the flow.

Conjecture 6.7. Suppose the Chern-Yamabe flow exists on ΩT = X×[0, T )
form some T > 0. Then there exists some constant C(T ) depending on T
such that

S(x; t) ≤ C(T ), ∀(x, t) ∈ ΩT .

7 Balanced Case

7.1 The variational functional

When the background metric is balanced, we have that ∆C
ω = ∆d is sym-

metric. The partial differential equation (5.4) with normalization (5.7) is
the Euler-Lagrange equation for the following functional

F(f) :=
1

2

∫
X
|df |2ωdµ+

∫
X

SC(ω) fdµ (7.1)

with constraint ∫
X

exp(2f/n)dµ = 1. (7.2)

To solve the partial differential equation (5.4) is then equivalent to find a
critical point of the functional (7.1) with constraint (7.2).

57



7.2 Monotonicity along the Chern-Yamabe flow

Let F(t) = F(f(·; t)). We have the following lemma showing the monotonic-
ity of the F functional along the flow.

Lemma 7.1.
d

dt
F(t) = −

∫
X

(S − λ)2 exp(2f/n)dµ.

Proof. First, by Lemma 6.1, we have∫
X

∂f

∂t
exp(2f/n)dµ = 0.

Hence,

d

dt
F(t) =

∫
X

∂f

∂t
(−∆df + SC(ω))dµ

=

∫
X

∂f

∂t
(−∆df + SC(ω)−λ exp(2f/n))dµ

= −
∫
X

(S − λ)2 exp(2f/n)dµ ≤ 0.

The proof is finished.

7.3 Regarding the lower bound of the functional

As the functional is decreasing along the flow, it would be nice if the func-
tional could be bounded from below. This is true when lambda ≤ 0, but
not the case when λ > 0 and the complex dimension n ≥ 2.

Proposition 7.2. Suppose the Gauduchon degree λ ≤ 0, then there exists
some constants 0 < c < 1/2 and C such that

F(f) ≥ c
∫
X
|df |2ωdµ− C (7.3)

for any f with the normalization
∫
M exp(2f/n)dµ = 1.

Proof. Let h be the solution to ∆h = SC−λ. Note that
∫
M fdµ ≤ 0 by

Jensen inequality. Hence,

F(f) =
1

2

∫
X
|df |2ωdµ+

∫
X

(SC−λ)fdµ+ λ

∫
X
fdµ

≥ 1

2

∫
X
|df |2ωdµ−

∫
X
|df |ω|dh|ωdµ

≥ c
∫
X
|df |2ωdµ− C.

(7.4)
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Proposition 7.3. For (X,ω) with complex dimension n ≥ 2. Suppose the
Gauduchon degree λ > 0, we have

inf

{
F(f) : f ∈ C∞(X) with

∫
X

exp(2f/n)dµ = 1

}
= −∞.

Proof. We will construct a family of Lipschitz functions {fr} parameterized
by a positive real number r, each of which satisfies the constraint (7.2),
yet limr→0F(fr) = −∞. Choose an arbitrary point p ∈ X as the center.
The function fr(x) is defined as constants both inside the geodesic ball Br(p)
and outside the larger ball B2r(p), while interpolated linearly on the annulus
B2r(p)/Br(p), namely,

fr(x) =


cr, |x| ≤ r
(log r − cr)

(
|x|/r − 1

)
+ cr, r ≤ |x| ≤ 2r

log r, |x| ≥ 2r

where |x| denotes the distance to the center of the geodesic ball and cr is
a constant depending on r. Choose the radius r sufficiently small, then the
geodesic ball Br(0) is close to a Euclidean ball and log r < 0. The constant
cr is determined so that ∫

X
exp(2fr/n)dµ = 1.

We claim
cr ≤ −n2 log r − n

2
logC

for some dimensional constant C = C(n). To see this,

1 =

∫
X

exp(2fr/n)dµ ≥
∫
Br(p)

exp(2cr/n)dµ = exp(2cr/n) Vol(Br(p)).

Hence,

cr ≤ −
n

2
log Vol(Br(p)) = −n

2
log(Cr2n) = −n2 log r − n

2
logC.

Now we show that limr→0F [fr] = −∞. First of all, we have

F(fr) =

∫
X
|dfr|2ωdµ+

∫
X

SC(ω) frdµ

=

∫
B2r(p)\Br(p)

|dfr|2ωdµ+

∫
B2r(p)

SC(ω) frdµ

+

∫
X\B2r(p)

SC(ω) frdµω.

(7.5)
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By continuity there exists some r0 > 0 such that∫
B2r(p)

SC(ω) dµ ≤ λ

2
,∀r ≤ r0.

Note that λ =
∫
X SC(ω) dµ, hence,∫

X\B2r(p)
SC(ω) dµ ≥ λ

2
, ∀r ≤ r0.

Take r sufficiently small so that log r < 0. Then cr > 0 since∫
X

exp(2fr/n)dµ = 1.

It follows that

F(fr) ≤
(cr − log r)2

r2
Vol

(
B2r(p)\Br(p)

)
+ ‖SC(ω)‖C0(X)cr Vol(B2r(p)) +

λ

2
log r

≤ C(cr − log r)2r2n−2 + Cr2ncr +
λ

2
log r

=
λ

2
log r +O(r2n−2 log r).

(7.6)

When n ≥ 2, we have limr→0 r
2n−2 log r = 0. The leading term for F(fr) is

λ
2 log r. Therefore, limr→0F(fr) = −∞. This finishes the proof.

7.4 Second variation

Lemma 7.4. The second variation of F functional is given by

δ2F(u, v) |f =

∫
X

(
(du, dv)ω −

2λ

n
exp(2f/n)uv

)
dµ (7.7)

for any u and v in the tangent space of f , namely∫
X

exp(2f/n)udµ = 0 and

∫
X

exp(2f/n)vdµ = 0.

Proof. Note that the unconstrained functional is

F̃(f) =
1

2

∫
X
|df |2ωdµ+

∫
X

SC(ω) fdµ− nλ

2

(∫
X

exp(2f/n)dµ− 1

)
.

The second variation follows by simple calculation.
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Given some specific direction v, we have the second variation at v as

δ2F(v) =

∫
X

(
|dv|2 − 2λ

n
exp(2f/n)v2

)
dµ.

It’s interesting that the positivity of the second variation may have some
relation with the Rayleigh quotient, or the first principal eigenvalue of the
Laplacian operator λ1. In the special case when the background Gauduchon
metric is itself a constant Chern-Scalar curvature metric, we have f = 0 is
a critical point.

If λ1 ≥ 2λ/n, then

δ2F(v) ≥ (λ1 − 2λ/n)

∫
X
v2dµ ≥ 0, ∀v with

∫
X
vdµ = 0

shows that f = 0 is a local minimum.
If λ1 < 2λ/n, then we can take some non-zero eigenvector v0 with∫

X v0dµ = 0 and

δ2F(v0) ≤ (λ1 − 2λ/n)

∫
X
v2

0dµ < 0.

Hence, f = 0 is a saddle point and unstable.
To construct concrete example for the above argument, one can consider

P1 × θP1 with P1 and P1 both endowed with the standard Fubini-Study
metrics. For such family of complex manifolds, the background Fubini Study
metrics ωθ are constant Chern scalar curvature metrics; so we write down the
functional F with respect to the reference metric ωθ, and f = 0 represents
a constant scalar Chern curvature metric with F(0) = 0. By adjusting the
scaling parameter θ, it is not hard to adjust λ1 and the total Chern scalar
curvature λ such that −λ1

2 +λ < 0; this makes possible to find a sequence of
conformal factors fk that are arbitrarily close to f = 0, and with F(fk) < 0.
Since the flow decreases the functional F , then the flow starting at fk will
not converge to f = 0. The conclusion we can draw is that saddle points are
possible and we should not expect only local minima in general. Together
with the fact, proved in Lemma 7.1, that the F functional always is not
bounded from below, the techniques for only minima is not enough.

7.5 Under additional assumptions

We have already shown in Lemma 7.3 that the functional F is unbounded
from below. So it is impossible to find a global minimum. Yet it is still
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possible that the functional is bounded from below along the flow for some
specific initial value. In particular, if the flow finally converges to a solution,
one of the necessary conditions is that the functional is bounded under the
flow.

In this section we assume the flow exists on [0,∞) and

lim
t→∞
F(t) ≥ C > −∞. (7.8)

What can we say about the flow?
Since the functional is decreasing and bounded from below, we can find

a sequence of time slices {tk}, so that d
dtF(tk) → 0. Let fk = f(tk) and

Sk = S
(

exp(2fk/n)ω
)
. Note that by Lemma 7.1,

d

dt
F(t) = −

∫
X

(S − λ)2 exp(2f/n)dµ = λ2 −
∫
X
S2 exp(2f/n)dµ.

On the other hand, by Lemma 6.2, we have S(x; t) > −C. Hence, we have

∫
X

exp(2fk/n)dµ = 1,∫
X
S2
k exp(2fk/n)dµ→ λ2 and Sk > −C,

|F(fk)| ≤ C.

(7.9)

In this section we assume that there exists uniform upper bound for the
sequence {fk} in (7.9). We show that there exists a smooth solution to the
Chern-Yamabe equation 5.4. In what follows the constant C may vary from
line to line.

Lemma 7.5. Suppose there is a sequence {fk} satisfying (7.9). Suppose
additionally there exists some constant C0 such that maxx∈X fk(x) ≤ C0,∀k.
Then ‖fk‖H2 ≤ C.

Proof. First of all, we have∫
X

(Sk exp(2fk/n))2dµ ≤ exp(2C0/n)

∫
X
S2
k exp(2fk/n)dµ ≤ C.

Note that Sk = exp(−2fk/n)(SC(ω)−∆fk), namely, ∆fk = SC(ω)−Sk exp(2fk/n).
Hence, we have ‖∆fk‖L2(X) ≤ C.

Claim. Let f̄k =
∫
X fkdµ. There exists some constant C > 0 such that

−C ≤ f̄k ≤ 0.

62



Proof of the Claim. First of all, since Vol(X) = 1, we have

exp(2f̄k/n) = exp
(∫

X
(2fk/n)dµ

)
≤
∫
X

exp(2fk/n)dµ = 1.

Hence, f̄k ≤ 0.
For the other side, first note that∫
X
Sk exp(2fk/n)fkdµ

=

∫
X

(−∆fk + SC(ω))fkdµ = 2F(fk)−
∫
X

(SC(ω)−λ)fk − λf̄k

= 2F(fk)−
∫
X

∆hfk − λf̄k = 2F(fk)−
∫
X
h∆fk − λf̄k

≥ 2F(fk)− ‖h‖L2(X)‖∆fk‖L2(X) − λf̄k
≥ C − λf̄k.

(7.10)

On the other hand, since Sk > −C, we have∫
X
Sk exp(2fk/n)fkdµ

=

∫
X

(Sk + C) exp(2fk/n)fkdµ− C
∫
X

exp(2fk/n)fkdµ

≤ C0 exp(C0/n)

∫
X
Sk exp(fk/n)dµ+ C0C + C · n

2e

≤ C0 exp(C0/n)
(∫

X
S2
k exp(2fk/n)dµ

)1/2
+ C ≤ C.

(7.11)

By (7.10) and (7.11), we obtain that f̄k ≥ −C. This finishes the proof of
the Claim.

We continue our proof for the Lemma. By Poincare inequality, there
exists some constant Cp so that∫

X
(fk − f̄k)2dµ ≤ Cp

∫
X
|∇fk|2dµ.

On the other hand,∫
X
|∇fk|2dµ =

∫
X

(−fk∆fk)dµ ≤
1

2Cp

∫
X
f2
kdµ+

Cp
2

∫
X

(∆fk)
2dµ.
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Hence, ∫
X
f2
kdµ− f̄k

2 ≤ 1

2

∫
X
f2
kdµ+

C2
p

2

∫
X

(∆fk)
2dµ.

Hence, ∫
X
f2
kdµ ≤ 2f̄k

2
+ C2

p

∫
X

(∆fk)
2dµ. (7.12)

It then follows by Sobolev estimate that

‖fk‖H2(X) ≤ C
(
‖fk‖L2(X) + ‖∆fk‖L2(X)

)
≤ C

(
|f̄k|+ ‖∆fk‖L2(X)

)
≤ C.

This finishes the proof.

Proposition 7.6. Suppose there is a sequence {fk} satisfying (7.9). Sup-
pose additionally there exists some constant C0 such that

max
x∈X

fk(x) ≤ C0,∀k.

Then there exists a function f∞ ∈ C∞(X) which solves the differential equa-
tion (5.4).

Proof. By Lemma 7.5, we have ‖fk‖H2(X) ≤ C. Hence, by passing to a
subsequence if necessary, we have fk ⇀ f∞ weakly in H2(X) for some f∞.
It follows that fk → f∞ strongly in L2(X) and ∆fk ⇀ ∆f∞ weakly in
L2(X). As a result of the strong convergence in L2(X), by passing to a
subsequence if necessary, we have fk → f∞ dµ-a.e.. Then by Egonov’s
theorem, for any δ > 0, there exists a subset Ωδ ⊂ X with Vol(X\Ωδ) < δ,
such that fk → f∞ uniformly on Ωδ. We have∫

Ωδ

(∆fk − SC(ω))2 exp(−2fk/n)dµ

=

∫
Ωδ

(∆fk − SC(ω))2 exp(−2f∞/n)dµ+

∫
Ωδ

(∆fk − SC(ω))2
(
e−2fk/n − e−2f∞/n

)
dµ

≥
∫

Ωδ

(∆fk − SC(ω))2 exp(−2f∞/n)dµ− C‖e−2fk/n − e−2f∞/n‖L∞(Ωδ).

Hence,

lim inf
k→∞

∫
Ωδ

(∆fk − SC(ω))2 exp(−2fk/n)dµ

≥ lim inf
k→∞

∫
Ωδ

(∆fk − SC(ω))2 exp(−2f∞/n)dµ

≥
∫

Ωδ

(∆f∞ − SC(ω))2 exp(−2f∞/n)dµ.
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Notice that∫
X

(∆fk−SC(ω))2 exp(−2fk/n)dµ =

∫
X
S2
k exp(2fk/n)dµ→ λ2, as k →∞.

Hence, ∫
Ωδ

(∆f∞ − SC(ω))2 exp(−2f∞/n)dµ ≤ λ2.

Let δ → 0, we obtain that∫
X

(∆f∞ − SC(ω))2 exp(−2f∞/n)dµ ≤ λ2. (7.13)

Note that fk → f∞ dµ-a.e., and fk ≤ C0 by assumption, we have f∞ ≤ C0

dµ-a.e.. Then by Dominance Convergence Theorem, we have∫
X

exp(2f∞/n)dµ = lim
k→∞

∫
X

exp(2fk/n)dµ = 1. (7.14)

By (7.13) and (7.14), we have∫
X

(
∆f∞ − SC(ω) +λ exp(2f∞/n)

)2
exp(−2f∞/n)dµ ≤ 0.

It follows that the equality holds and

∆f∞ − SC(ω) +λ exp(2f∞/n) = 0, dµ− a.e.. (7.15)

Since f∞ ≤ C0 dµ-a.e., we have ∆f∞ = SC(ω)−λ exp(2f∞/n) ∈ L∞(X).
Hence, f∞ ∈ W 2,p(X) for any p > 1. By Sobolev embedding theorem,
this implies that f∞ ∈ C1,α(X). Then ∆f∞ ∈ C1,α(X). By the standard
bootstrapping argument, we eventually have f∞ ∈ C∞(X). This finishes
the proof.
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