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Abstract of the Dissertation

Monge-Ampeére equation on the complement of a divisor
&

On the Chern-Yamabe flow
by
Fangyu Zou
Doctor of Philosophy
in
Mathematics
Stony Brook University
2019

In this dissertation we discuss two seperate topics. In the first part we
consider the complex Monge-Ampere equation on complete Kahler manifolds
with cusp singularity along a divisor when the right hand side F' has rather
weak regularity. We prove a compactness result on the solutions to the e-
perturbed equations of the Monge-Ampere equation when the right hand
side F is in some weighted W1P0 space for pg > 2n where n is the complex
dimension. As an application we show that there exists a classical W30
solution for complex Monge-Ampére equation when F' is in the weighted
Whro, The key ingredient lies in using the de Giorgi-Nash-Moser theory to
derive the uniform estimates of the gradient V. and the Laplacian Ay, in
terms of the weighted W10 norm of F.

In the second part we consider the Chern-Yamabe problem of finding
constant Chern scalar curvature metrics in the conformal classes. We pro-
pose a flow to study the Chern-Yamabe problem and discuss the long time
existence of the flow. In the balanced case we show that the Chern-Yamabe
problem is the Euler-Lagrange equation of some functional. The mono-
tonicity of the functional along the flow is derived. We also show that the
functional is not bounded from below.
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Part I
Monge-Ampere equation on the
complement of a divisor

1 A brief review of canonical metrics for compact
Kahler manifolds

In this section we collect the basic notations of Kahler geometry and briefly
review the develop of canonical metrics on the compact Kéhler manifolds.

1.1 Kahler manifolds

We begin with Riemannian manifolds. Suppose M is a smooth manifold.
A Riemannian metric g on M is a positive definite bilinear form on the
tangent bundle 7M. Under the local coordinates (z!,--- ,z"), the metric g
is locally represented by a smooth matrix valued function {g;;}, where the
matrix with entry g;; = g(a?ci, %) is positive definite. The pair (M, g) is
called a Riemannian manifold. Recall that the Riemannian manifold (M, g)
endows a unique connection which is torsion free and compatible with the
Riemannian metric g, namely, the Levi-Civita connection. Let V denote the

Levi-Civita connection of g.

Almost complex structure

An almost complex structure on M is an endomorphism J : TM — TM
such that J? = —id. It is clear that for a Riemannian manifold to endow
an almost complex structure, it has to be even dimensional. An almost
complex structure is called integrable if there is a set of coordinate charts
on M with holomorphic transition functions such that J corresponds to the
induced complex multiplication on TM ® C. An almost complex structure
is not always integrable. An integrable almost complex structure is also
called a complex structure. In fact, we have the following theorem due to
Newlander-Nirenberg [35].

Theorem 1.1. An almost complex structure is integrable if and only if the
Nijenhuis tensor Ny : TM x TM — TM

Nj(u,v) == [u,v] + J[Ju,v] + J[u, Jv] — [Ju, Jv] (1.1)

vanishes identically.



Given a Riemannian manifold (M, ¢) with an almost complex structure
J, we say that the almost complex structure J is compatible with the Rie-
mannian metric g, if for any tangent vectors u,v € TM

9(u,v) = g(Ju, Jv). (1:2)
Now we are ready to define the Kéhler manifolds.

Definition 1.2. A Kaihler manifold (M,g,J) is a Riemannian manifold
(M, g) with a compatible almost complex structure J such that V.J = 0.

Notice that VJ = 0 implies that N; = 0 and thus the almost complex
structure J is integrable, hence is a complex structure.

Kahler form

On a Kéhler manifold (M, g, J), we can define

wg('v') :g(J-,-). (1'3)

One can derive easily that w, is in fact a 2-form on M. We usually call
wgy the Kahler form of g. Since g and J are both parallel with respect to
the Levi-Civita connection V, it follows that Vw, = 0, and thus dwy = 0.
In other words, M admits a symplectic form w, such that the almost com-
plex structure J is compatible with w,. Conversely, we have the following
proposition.

Proposition 1.3. If (M, g) admits an integrable almost complex structure
J which is compatible with the metric g, then VJ = 0 if and only if dwy = 0.

Proof. The proof of this proposition is purely computational. We refer the
interested readers to [38]. O

Curvatures

On a Kéhler manifold (M, g,J) with dimension dim¢ M = n, it is more
convenient to work in local holomorphic coordinates z' = ' + /—1y° for
1=1,2,---  n. Besides the obvious basis {6%1,--- ,%, %,~-- ,%} and
{dxt, - da™ dy',--- ,dy™} of the complexified tangent bundle TM ®@ C
and the complexified cotangent bundle T*M x C, we have

0 1,0 — 0 0 1,0 — 0
0zt 5(8501 B _18y")’ ozt 5(8331 + _18yi)’

(1.4)



fori =1,2,---,n of TM®C corresponding to the 4+/—1-eigenspaces 710 M
and T%' M of the complex structure J and similarly

dz' = da’ +/=1dy', dz' = da’ — v/ ~1dy’, (1.5)

fori=1,2,--- ,nof T"M ® C.

We extend the metric g C-linearly to the complexified tangent bundle
TM ® C. Then we have g(u,v) = 0 for u,v € T*OM or u,v € T®' M. In
the local holomorphic coordinates, the metric g is therefore written as

g= gz-;(dzi ® dZ +dz' @ d). (1.6)

where g;; = 9(62“ %) and g;; = g;;- Thus, the Kihler form w, can be

written as ' ‘
wy = g;;dz" N dZ. (1.7)

The Kahler condition dwy; = 0 is then equivalent to

9gip _ 99jp
023 02 (18)

for any i,5,p=1,2,--- ,n.
Further more, we can extend the Levi-Civita connection V C-linearly to
I'(TM ® C). We write the Christoffel symbols as

0 kdy k 15 9 k g E i

Vo = fda" +I5dz") © o7 + (=" + T5d2) © o= (1.9)
9 k . k 3=i 0 k 5. % i 0

Vg = Uda! + I5dz") @ o7 + (Ud=" + I55d2Y) © . (1.10)

The Kéhler condition VJ = 0 then implies that all Christoffel symbols

vanishes except F,’fj and I‘% = Ffj In fact, we can compute easily that

0 o 0
92197 =9V 2. 5.7 ) = Tisthp (1.11)
It follows that 5
k. — k%9 1.12

Given the Levi-Civita connection, the Riemannian curvature tensor Rm €
[(A2T + M ® End(T'M)) is defined as

Rm(u,v)w = V,Vyw — V,Vyw — Vi, . (1.13)



Similarly, we extent Rm C-linearly to I'(A?T*M ® End(TM ® C)). In the
local holomorphic coordinates,

T*M) evaluating on X,Y € T'M is defined as the trace of Rm(-, X)Y €
End(TM). Under the local holomorphic coordinates,

. ) 0 - 0
_ 1 k =k
Rm = dz' A dZ’ ® (Rzgkdz & @ + R'Lﬁl_cdz & ﬁ) (114)
where R%k = - I/, and RZ}E = _Ré‘%k;' The Ricci tensor Ric € T(T*M ®

Ric = R;;(d2" @ d&’ + dz' @ d2’) (1.15)

where R;; = Rfﬁ.
We can define the associated Ricci form

(Ricw,)(-, ) = Ric(J-, ). (1.16)

Under the local holomorphic coordinates,

Ricwy = Ry;dz" A d#. (1.17)
Since
a 1 8 l—agl’ 62
R = T = ——(¢"P==2) = ——— _logdet 1.18
g 97J il 7 (g B ) 0207 ogdet g, ( )

there is a global simple formula for the Ricci form
Ricw, = —v/—18dlog det g, (1.19)

It is also written as B

Ricwy = —v/—190log wy (1.20)
since wy = det(g;;)vV/—1dz' Adz'A- - -AV/=1dz" AdZ". As a consequence, with
fixed complex structure .J, given another Kahler metric ¢/, the associated
Kahler form is given by

Ricwy = —v/—100logdet ¢ (1.21)

Hence,
det ¢’

det g

Ricwy — Ricwy = —v/—190log (1.22)

where log (}izttgg/ is in fact a global function on M. Therefore, Ricwgy, Ricwgy

necessarily belongs to the same cohomology class in H!(M,C)N H?(M,R),
which is in fact 27 multiple of the first Chern class of (M, J) denoted as
2rer (M).




d0-Lemma

A big advantage of Kahler manifolds is that the Christoffel symbols and the
Ricci form have very neat formulas. Another big advantage of being Kéahler
is that we have the following d0-lemma.

Lemma 1.4 (00-lemma). Let (M,g,J) be a closed Kdhler manifold. Let
a,a’ € HYY (M, C) are in the same cohomology class. Then there exists a
function F € C*°(M,C) such that o/ = o+ /—100F.

Recall that on a complex manifold (M, J), the space of complex valued
k-forms on M naturally splits as QF (M) = D, 1 g=r (M), where locally
QP9(M) has basis dzt A - Adz? Adz9t A -+ AdZPe for iy < g < --- <y
and j; < jo < -+ < jg. We have differential operators 0 : QP4(M) —
QPatL(M) and 9 : QP4(M) — QPTLI(M) defined as the projection of the
exterior differential operator d on QP9+1(M) and QP19(M) components
respectively. In fact, 9-lemma is also valid for (p, ¢)-forms with appropriate
modifications and the proof requires some ideas from Hodge theory. Since
we are only interested in (1, 1)-forms on M where the Kéhler form lies, in
this simple case we provide a quick proof of the 0-lemma as below.

Proof. By assumptions there is a 1-form 8 on M such that o/ — a = dg.
Write 8 = 819 4+ g%, Then

dB = 09p + 0B = 9" + 9% + 9B + 9% (1.23)

Since df = o/ —a € HY'(M,C), it follows that 9810 = 0 = 9B%!. The
lemma can be proved if we show that 93%! = 00 f and 98" = 9dg for some
functions f,g € C*°(M,C). It suffices to show that for any d-closed (0, 1)
form, say %!, there exists some function f € C*°(M, C) such that 8% —Jf
is 0-closed. Consider the formal adjoint operator 9* : Q%(M) — QO(M) of
0: for any 0 = doéj,

00 = —g"6; (1.24)
where 65 ; is the (i, ) entry of V6. Set f € C*(M) be the solution to the
equation

o*of = o*potL. (1.25)

Note that on Kihler manifold we have that 9*0 = %Ag where A, is the
usual Laplacian operator with respect to the metric g of M. Moreover, the
integral of 0*B%! over M is zero by integration by parts. Therefore, the
existence of the solution f is guaranteed. Let n®! = a®! — 9f. Then we



have On®! = 0 and 0*n®' = 0. It is left to show that on®! = 0. Write
not = n;dzj. We have

0= /M<05*n0’1,77°’1>gd Vol, = /M —g" gFn; smpd Volg

= / 9" g*"; mpd Voly = / jon™!
M M

Hence, On%! = 0. This finished the proof. O

(1.26)

d Vol .

In particular, if we have [a] = [o/] € HYY(M,C) N H?(M,R), then we
have o/ — a = /—100F for some F € C*®°(M,R).

1.2 Calabi conjecture and Kahler-Einstein problem

In the end of last subsection we showed that for every Kéahler metric, its
Ricci form lies in 27 multiple of the first Chern class 2mci(M). In the
1950’s, E. Calabi first raised the question whether each representative in
the cohomology class 2mwc; (M) could be realized as the Ricci form of some
Kahler metric. This question is known as the Calabi conjecture. It was a
widely open problem for more than two decades until it was solved by S.-T.
Yau through PDE theory in 1976.

We now show how we can represent the Calabi conjecture into a problem
of solving some complex Monge-Ampere equation. Let (M, g, J) be a closed
Kahler manifold and w is the associated Kahler form. Let a € 2mei(M).
Calabi’s problem is to look for a Kahler metric whose Ricci form is the
given a. We might restrict ourselves in the fixed cohomology class [w],
which consists of all the Kéhler metrics cohomologous to w,

H={w, | wy, =w+ V=100 >0, ¢ € C°(M,R)}. (1.27)

Since o and Ricw lies in the same cohomology class 27c; (M), by the 90-
lemma, there exists some function ' € C*°(M,R) such that o = Ricw +
Vv —100F. If « is the Ricci form of some Kéhler metric w, = w++/—199¢ >
0, then the above equation can be written as

—V/—=100logw] = —V—199logw" + v/—100F (1.28)

which is equivalent to
n

Yo p=
log 2 ~F=C (1.29)



for some constant C. By taking exponential on both sides, we have that
(w+ V=100p)" = wlk = ", (1.30)
By integrating both sides on M, one can determine that the constant
Sy e
Jarw™

Without of loss of generality, we can always assume that F' € C*°(M,R)
satisfying that [ M efum = i) W Thus, the Calabi conjecture is equivalent
to solve the following equation

C =log (1.31)

(w+V=190p)" = ef'w™. (1.32)

the above equa-

Under the local holomorphic coordinates, let ¢;; = %,

tion is written as
det(g;; + ¢i3) = e’ det(g,5) (1.33)

which is a complex Monge-Ampeére equation.

In 1976, S.-T. Yau solved the Calabi conjecture by solving the complex
Monge-Ampere equation using the continuity method. The continuity path
he worked on is

det(g;; + ;) = etFHCe det(g;3), t € [0,1] (1.34)

where the constant C; is chosen to make the normalization condition

/ etF+th”:/ w" (1.35)
M M
hold. Set

I ={te€0,1] | Equation (1.35) with parameter ¢ has a smooth

_ 1.36
solution ¢; with w + v —199¢; > 0.} (1.36)

It is clear that 0 € I hence [ is not empty. The goal is to show that 1 € I
by showing that I is both open and closed in [0, 1].

The openness is done by Implicit Function Theorem. Suppose ty € I
and ¢y, is the solution of (1.35) with ¢ = ¢y. Set

det(g;; + ¢i;)

D(t,p) =1lo
(1) det(g:)

—tF — C (1.37)



as a nonlinear map & : [0,1] x 62’Q(M) — 60’Q(M) where 62’Q(M) (resp.
60’Q(M)) is the C%(M) (resp. C%(M)) space with normalization

(M) = {p € C2*(M) | / o = 0} (1.38)
M

It is easy to see that ¢ is a solution to (1.35) for ¢ if and only if ®(¢,¢) = 0.
The partial derivative D, ®(to, ¢1,) : 62’Q(M) — 6O’Q(M) is then given by

Dy®(to, p1y)(¢) = Ased (1.39)

where Ay, is the Laplacian operator of the metric wy, = w++/ —100¢py,. On

closed manifold M, it is an invertible linear map from 62’Q(M ) to éo’a(M ).
By the Implicit Function Theorem it sufficiently implies the openness of I.

The closedness is done by proving a list of a priori estimates on ¢, among
which the C? estimate plays a crucial role. In the holomorphic orthonormal
frame of the metric g, Yau developed a delicate inequality

- 7l (053 = #53)
Ap(e™ P (n+ Ap)) 2 0[S 37 Ry T P
[2 = Lt eal+es) (1.40)

FAF + (n+ A@(-CAW)] .

Taking C' such that C' > —infy inf;2; R;;;5+1, one can find constants Cy, Cs
and ('3 such that

Ap(eP(n+Agp)) > Ci(e P (n+Ap))mT—Cole“P(n+Ap))~Cs (1.41)

where the constant C7 depends on sup,; |¢| and C3 depends on sup,; |AF]|.
Once C? estimate is obtained, the C? estimate can be easily deducted from
(1.41) by maximum principle. To get the higher order estimates, Yau showed
a C3 estimate in terms of the C? estimate, which was first introduced by
E. Calabi. Soon after him, it was showed that the C?® estimate could be
derived by the a priori interior C%® estimates of Monge-Ampeére equations
on domains known as the Evans-Krylov theory [22, 29, 30], which can be
used to replace the C? estimate and simplify Yau’s original proof. All the
higher order estimates can be derived via elliptic theory of linear equation
by taking differentiation of equation (1.35).

Calabi also proposed the question of finding “canonical metrics” inside
a fixed Kéhler class. A particular type of “canonical metrics” is the Kahler-
Einstein metric. If the Kéhler class is proportional to the first Chern class,



it is natural to ask whether we could find a metric w, in the Kahler class
such that
Ricw, = Awy, (1.42)

for some constant A. This problem is called the Kahler-Einstein problem.

Definition 1.5. Suppose M is a closed Kdihler manifold and ci(M) is its
first Chern class. We say that ci(M) > 0 (resp. c1(M) < 0) if there exists

a representative a € ¢ (M) such that « is positive definite (resp. negative
definite).

By scaling the metric w, one can assume that the constant A is ei-
ther —1,0 or 1. In all three cases it requires that the Chern class is def-
inite: (M) < 0, c1(M) = 0 and ¢1(M) > 0, respectively. Note that
Ricw € 2mci(M) = Aw]. By the d9-lemma, there exists some function
F, € C>*(M,R) such that

Ricw = Aw + V—100F,,. (1.43)
It then follows that
Ricw, = Ricw + vV=199(\p — F,) (1.44)
which is equivalent to the following Monge-Ampere equation
det(g;; + ¢i;) = efu=e det(g;;)- (1.45)

The case A = 0 is already settled by Yau in his resolution of the Calabi
conjecture. Such Kéhler manifolds with vanishing first Chern class are thus
called Calabi-Yau manifolds. The case A = —1 is solved independently by
Yau [41] and Aubin [2] in the late 1970s. It can be solved in a similar way
to Yau’s resolution of the Calabi conjecture via the continuity method on
a suitable continuity path. In this case Yau’s C? estimate still holds and
moreover the C¥ estimate of the solution can be easily obtained via the
maximum principle. The case A = 1, i.e., the Kéahler-Einstein problem on
Fano manifolds, however, turns out to be quite subtle.

In fact, there are many obstructions for the existence of Kéahler-Einstein
metrics when ¢; (M) > 0. Let Aut(M) denote the group of biholomorphisms
on the complex manifold (M, J). In 1957, Matsushima [34] found that if
there exists a Kéhler-Einstein metric in the class 2meq (M) > 0, then Aut(M)
is reductive. Therefore, Kéhler manifolds with ¢; (M) > 0 and non-reductive
Aut(M), for instance, CP? blowing up with one point, does not possess a
Kahler-Einstein metric.



In 1983, Futaki [23] discovered another obstruction known as Futaki
invariant. Choose w € 2mei (M) > 0. Let hy, € C°°(M,R) such that Ricw —
w = y/—100h,,. The Futaki invariant is defined as fas : n(M) — C,

fu(X) = /MX(hw)w”, (1.46)

where (M) is the Lie algebra of Aut(M) that consists of all holomorphic
vector fields on M. Futaki showed that fas is actually independent of the
choice of w. Moreover, if there exists a Kéahler-Einstein metric in the class
2wc1 (M) > 0, then fyr = 0. In [23], Futaki also constructed an example of
3-dimensional manifold with ¢ (M) > 0 and Aut(M) reductive but fys # 0,
hence does not possess a Kéhler-Einstein metric.

It is proved by Donaldson-Uhlenbeck-Yau [40, 20] that the existence of
Hermitian-Yang-Mills connection is equivalent to the stability of underlying
holomorphic line bundle. Inspired by this result, in the late 1980s Yau
proposed that the existence of Kahler-Einstein metrics for Fano manifolds
should be correspondent to certain stability of the underlying manifold in
the geometric invariant theory. This stability condition is later defined more
precisely by Tian [37] and Donaldson [21] known as K-stability. This results
in the following famous conjecture.

Conjecture 1.6. (Yau-Tian-Donaldson, [21]) A Fano manifold V' admits
a Kdhler-Einstein metric if and only if (V, K‘;l) is K-stable.

This conjecture is only fully settled recently by Chen-Donaldson-Sun [13,
14, 15] in 2013.
1.3 Extremal and cscK metrics

It is worth mentioning more general canonical metrics introduced by Calabi
besides the Kihler-Einstein metrics. Calabi introduced the L2-norm of the
scalar curvature as a functional on the metrics called the Calabi functional

Ca(p) = /M Riwg (1.47)
where R, = tr,,, Ric(wy) is the scalar curvature of w,. Calabi proposed to

look for special metrics in the space H which are the critical points of the
Calabi functional. Such metrics are called extremal metrics.

10



By Calabi’s computation, we have the first variation of the Calabi func-
tional

dypCalp) = /M 2(6y Ryp) Rpwy, + Ri(%(cuﬁ)

(1.48)
= /M(gap 9" Ry i) P
Therefore, the Fuler-Lagrange equation for the Calabi functional is
9°P9" Ry, 0 = 0. (1.49)

Pairing with R, and integrate by parts, we obtain equivalently that ¢ must
satisfy

for all p,q € {1,2,--- ,n}. We define the (1,0)-vector field on M given by
~OR, O
1,0 % P
VR, =gPile ©
VIR = 9555 g

Then (1.50) is equivalent to that V'R, is a holomorphic vector field on
M. A metric w, is a extremal metric if and only if the vector field VLORSD
is holomorphic. In particular, if VLOR@ = 0, we have that R, = R is a
constant. Indeed, the constant is a topological invariant

Jar Bowlp _ 2mer (M) - [wo]" ! /(n — 1)!

R= [ N . (1.51)

Such a metric is then called a constant-scalar-curvature Kéahler (cscK) met-
ric.

The existence problem of extremal/cscK metrics can be viewed as a
generalization of the Kéhler-Einstein problem in the sense that if we work
in the cohomology class 2we1 (M) > 0, then cscK are equivalent to Kéahler-
Einstein. It is straightforward that Kéahler-Einstein metrics are also cscK.
To see the inverse, notice that w is cscK if and only if that Ric(w) is harmonic
with respect to w. Since the harmonic form in 2we; (M) > 0 is unique by
Hodge theory, it follows that Ric(w) = w is Kéhler-Einstein. (The form w is
harmonic with respect to itself.)

There are also obstructions for the extremal/cscK metrics similar to the
Kahler-Einstein case. In particular, Futaki’s invariant can be generalized to
the cscK case by setting fas : n(M) — R,

fu(X) = /MX(uw)w", (1.52)

11



where u,, € C°°(M,R) is the solution to the equation A u, = R, — R. The
definition only depends on the cohomology class [w] € H'(M,R), and if
there exists a cscK metric then necessarily fy; = 0.

The K-stability by Donaldson and Tian is indeed an obstruction for the
more general cscK metrics. To this end we have the following more general
conjecture.

Conjecture 1.7. (Yau-Tian-Donaldson, [21]) A smooth polarized manifold
(V,L) admits a cscK metric in the class c1(L) if and only if it is K-stable.

The space of Kihler metric H can be endowed with a L? Riemannian
metric given by

(vl = [ vl (1.53)

for any 11,1 € T,H = C°(M,R). It is proved by X. X. Chen [16] that
any Kihler metrics o1, ¢o € H can be joint by a unique C! geodesic under
the above L? metric.

Mabuchi [33] introduced a functional M,,, over H called K-energy, which
has the cscK metrics as its critical point. The K-energy is defined using its
derivative: for any ¢ € T, H,

Oy Mg () = = /M (R, — R)wy. (1.54)

It is proved by Berman & Berndtsson [4] that the K-energy is convex along
the geodesics in ‘H. Therefore, the existence of critical points for K-energy
would be expected to imply that the properness of K-energy with respect to
some geodesic distance. In [8], X. X. Chen made the following conjecture.

Conjecture 1.8. There exists a cscK metric in a Kdhler class [wo] if and
only if the K-energy My, is proper.

This conjecture is recently fully affirmatively solved by a series of work.
The direction that the existence of cscK implies the properness of K-energy
is estabished by Berman-Darvas-Lu [5] very recently. To tackle the existence
problem, it is proposed by X. X. Chen to consider the following continuity
path

t(Ry — R) = (1 —t)(try wo — n). (1.55)

It is straightforward that when ¢ = 0 then ¢ = 0 is a solution. The openness
is done by Chen [9] (for ¢ > 0) and by Chen-Paun-Zeng [18] (for ¢ = 0).
To obtain the closedness it is expected to obtain a priori estimates for the
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path (1.55). In this stage one can consider the the more general coupled
equations:

det(g;; + ¢i;) = el det Gijs (1.56)
ApF = —f+4tryn (1.57)

where f is a given smooth function and 7 is a smooth real closed (1, 1) form
on M. Note that (1.56), (1.57) combined gives that

R, = f + try(Ric(wg) —n). (1.58)
The path (1.55) is equivalent to equation (1.58) with choice

1—-1¢ 1—-¢
f:E—Tn, n:RiC(wg)—Two.

In a series of recent deep work of Chen-Cheng [10, 11, 12], the authors proves
the following a priori estimates:

Theorem 1.9 (Chen-Cheng). Let ¢ be a smooth solution to (1.56), (1.57)
normalized to be supy; @ = 0. Then for any p < oo, there exists a constant
C, depending only on the background metric (M,g), ||fllo, maxas 1wy, P
and the upper bound of [,, e Fwf such that ||¢llyar < C, [|F|lwze < C.

While f and n has higher regularity, it is easy to obtain higher regularity
for ¢ by bootstrapping. In the same work the authors show that when the K-

energy is proper, then the entropy term [,, e Fwij = [}, log(i—oﬁ)wg is indeed
bounded from above. This closes the gap of the closedness argument and
hence assures the existence of cscK metrics when assuming the properness

of the K-energy.

2 Motivation and main results

With the great progress for Kahler geometry for compact Kéhler manifolds,
there is also a large amount of interest to study the canonical metrics on
complete, non-compact Kéhler manifolds. We are primarily interested in
quasiprojective manifolds. These manifolds are complements of a divisor of
a projective manifold.

Let (M ,wp) be a compact Kéhler manifold of complex dimension n. Let
D be an effective divisor in M with only simple normal crossings, namely,
D = Z;V: 1 Dj where the irreducible components D; are smooth and intersect
transversely. Let [D;] be the associated line bundle to D;, endowed with a
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smooth hermitian metric |- |;. Let s; € O([D;]) be a holomorphic defining
section such that D, is the zero locus of s; and let p; = — log(|sj\]2). Up to
scaling | - |, one can assume that |sj|§ < e ! so that p; > 1 out of D;. Let

p = vazl pj. Note that /—199p; extends to a smooth real (1,1)-form on

the whole M which lies in the class 2me; ([D;]). For A > 0 sufficiently large,
set

N
W= )\w0+\/—18510gp:)\w0—|—zx/—16510gpj. (2.1)

j=1

Then w defines a genuine Kihler form on M = M\ D, with the properties
that it is complete, has finite volume and has cusp singularity along D.
Indeed, it is asymptotically hyperbolic near the divisor D. Such a metric is
usually called metric of Poincarée type or Carlson-Griffiths type.

It is proved by Tian-Yau [39] and R. Kobayashi [28] in the 1980’s that if
K57+ D is ample, one can deform such a Poincaré type metric into a neg-
atively curved complete Kihler-Einstein metric on the complement M\D.
These Kahler-Einstein metrics is also of Poincaré type and have cusp singu-
larities along the divisor D.

It is then natural to consider the same existence problem of cscK metrics
over such manifolds. Motivated by Chen-Cheng’s work of a priori estimates
on the cscK metrics over the compact Kéhler manifolds, one would hope
that such a priori estimates can also hold on these manifolds. Note that the
cscK problem can be equivalently written as the following coupled equations:

(w+V=190p)" = el'w (2.2)
Ay F = tr,Ric—R (2.3)
where Ric is the Ricci curvature of w and R is the average of the total scalar
curvature which is a topogical constant.
The analogous problem of finding a Kéhler metric on M with prescribed
volume form which is equivalently to solve the following Monge-Ampere
equation

(w4 V=100p)" = eF'w™ on M = M\D (2.4)

for some suitable function F'. was studied by H. Auray [3, Theorem 4] that
there exists a solution ¢ € C7. (M) bounded at any order to the Monge-
Ampeme equation (2.4) on M = M\D, when F € C2(M) is of O(e™"") at
any order for some v > 0, and [ M eFun = J y W' Auvray’s result requires
that F decays in the exponential order for all its derivatives when approach-
ing to the divisor (the infinity). Moreover, the C? estimate essentially uses
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Yau’s C? estimate for compact manifold, which requires F is at least C?
and the bounded on sup,, |AF|.

In order to control the metric w, through the scalar curvature, it is to
natural to study the Monge-Ampére equation (2.4) when the right hand side
F has rather weaker regularity less than C?. Indeed, for compact Kihler
manifolds, X. X. Chen and W. Y. He proved that when the right hand side
is in W1Po for py > 2n where n is the complex dimension, then one can
derive a priori C° bound for Ay and W3P° bound for ¢.

The first part of our dissertation is devoted to a non-compact version of
their result on the complement of a divisor. Define

—2
I(F,po) = / (IFI 4+ [VEP) o5 en, (2.5)
M

Our main theorem states as follows.

Theorem 2.1 (Main theorem). Let M be a compact Kdihler manifold of
complex dimension n and D be an divisor on M with only simple normal
crossings. Let M = M\D endowed with some Poincaré type Kdihler metric
w constructed as above. For any function F € I/Vli)fo(M) satisfying fM(eF—
Dw™ =0 and Z(F,po) < oo for some py > 2n, the Monge-Amperé equation
(2.4) has a classical solution ¢ in W3P0(M).

We sketch the idea of proof. Following Auvray’s proof of the smooth
case, we first consider the e-perturbed equation of (2.4):

(w4 V=100, )" = el Teveym, (2.6)

for € € (0,1]. For any fixed £ > 0, by a simple scaling @ = cw, p = e, the
equation (2.6) can be normalized to

(@ +V=100p)" = e tegm, (2.7)

The equation (2.7) has been well studied by Cheng-Yau [19], R. Kobayashi
[28] and Tian-Yau [39] to derive Kéhler-Einstein metrics with negative cur-
vature on (M,w) when K37 + D is assumed ample. Yet the existence of
solution to (2.7) actually does not necessarily need the additional assump-
tion of the ampleness of K47+ D. We thus obtain the existence of solutions
ve to (2.6) and a priori estimates of ¢. depending on £. Then we will
show that the family {,.} is compact in W3P0 by securing a uniform W?3Po
estimate for the family. Lastly, we use Arzella-Ascoli theorem to take a
converging subsequence which converges to a W3P0 solution to (2.4).
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In order to get the W3P0 estimate, we need to first get the C? estimate.
When the right hand side F has rather weak regularity, the C? estimate
can not be obtained by a similar Yau’s argument. Instead, we follow the
strategy of Chen-He [17] to obtain the uniform C! and C? estimates (the
C! estimate is needed to derive the C? estimate) by integration method. To
be specific, we prove the following theorems. While deriving these theorem
we could temporarily assume that the right hand side F' is smooth with
compact support.

Theorem 2.2. Suppose that F € C°(M) satisfies Z(F,po) < oo for some
po > 2n, and @. is a solution to the e-perturbed equation (2.6). Then there
exists a constant C' independent of € such that

V| < C, Ve € (0,1]. (2.8)

Theorem 2.3. Suppose that F' € C°(M) satisfies Z(F,po) < oo for some
po > 2n, and . is a solution to the e-perturbed equation (2.6). Then there
exists a constant C' independent of € such that

|Ap.| < C, Ve € (0,1]. (2.9)

Different from the compact case considered in [17], there are two main
issues when carrying out the integration techniques in our setting. First,
we need to deal with the boundary terms when we do integration by parts.
Second, the usual Sobolev inequality fails in our context as the injective
radius of the K&hler manifold with Poincaré type metric is zero. A gener-
alized Stokes theorem by Gaffeny to complete non-compact manifolds [24]
deals with the first issue, which allows us to perform integration by parts the
same way as the compact case. For the second issue, we adopt a weighted
Sobolev inequality from [3] and show that the similar analysis can be carried
out successfully in our context.

The arrangement of this dissertation is as follows: In section 3 we con-
struct the Poincaré type metric on the complement of a divisor as the ref-
erence metric. We briefly states the properties of the reference metric and
construct the system of quasi-coordinates near the divisor and set up the
analytic ingredients for the proof of our main theorems. This part is mainly
cited from [3]. The section 4 is devoted to the proof of main theorems. In
subsection 5.1 we cite a proof of the C? estimate from [3] with little modi-
fication. The main estimates are in subsection 4.2 and 4.3 where we prove
the C! and C? estimates following the idea of Chen-He [17], followed by the
W30 estimate. The proof of the main result Theorem 2.1 is presented in
the end of this section.
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3 Kahler manifolds with Poincaré type metrics

Let M be a closed Kihler manifold and D be an effective divisor over M
with only simple normal crossings. In this section we construct a Poincaré
type metric on the complement M = M\D as the reference metric. We
describe the basic properties of the reference metric and construct the sys-
tem of quasi-coordinates near the divisor. In this section we also develop
the analytic ingredients for the proof of our main results. It includes an un-
weighted Poincaré inequality and a weighted Sobolev inequality. This part
is mainly cited from [3]. Throughout this section and the following sections,
we denote by du the volume form of w.

3.1 Poincaré type metrics

Let (M,wp) be a compact Kihler manifold with dim¢ M = n. Let D be
an effective divisor with simple normal crossings, namely, D = Z;V: 1 D;
decomposes into smooth irreducible components. For each j, let s; be a
holomorphic defining section of D;. Let p; = —log(|s;|?). We can assume
that p; > 1 out of D; by scaling. Note that \/—7165;)]' extends to a smooth
real (1, 1)-form on the whole M, whose class is 2meq ([D;]). Let p = vazl ;-
Set

N
w=Awg — V—190log p = \wy — Z V=199 log(—log |s;|*) (3.1)

Jj=1
for some positive constant .

Lemma 3.1. For A > 0 sufficiently large, w defines a Kdhler metric on
M = M\D.

Proof. By a simple computation we have

_ /—100: A dp. /—1600.
—/—100log pj = 8% N 9p; — ?apj.

p] p]

(3.2)

The first term in the right hand side is a positive (1,1)-form. Note that
v/ —100p; extends to a smooth real (1, 1)-form on the whole M which lies in
2mey ([Dy]). For each j, there is some positive A; > 0 such that \/—100p; <

Ajwo on M. Note that p; > 1. Hence, \jwy + v/—100log p; >0 on M\D;.
Let A =}, A;, then

w = Awg — vV—190log p = Z()\jwo —/—190log p;) > 0 (3.3)

J
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on M = M\D. O

Let A, be the disc in C of radius r and let AY = A, — {0}. A simple
model for the Poincaré type of metrics is the punctured disc A} with the
Poincaré metric

vV—=1ldz NdZz

|2[2 log? [

—v/—100log(—log |2|*) = (3.4)

for some small positive k < e~!. For higher dimensions, our local model is
given by the punctured polydisc (A*)* x AT~* with the model metric

k i i n
V—1dz? N dZ? , .
Wmdl = E VoL E V—=1dz? N dZ. (3.5)
j=

2 2
< eilog? [P A

The model metric is simply the product metric of the Poincare metric on
(A%)* and the Euclidean metric on AT,

Indeed, the asymptotics of the reference metric near D can be compared
with the local model. Let © € Dy N---N Dy — Dy U--- U Dy. The
simple normal crossing assumption allows us to take a coordinate polydisc
U = AF x A" centered at 2 such that

UNDj={zcU:2 =0} (1<j<k), (3.6)
U\D = (A% x A7F, ’

Lemma 3.2. In the coordinates (z',..., 2%, 21 ... 2"), we have

N
V—1dz) N dZ -
g : : ()\wo — g v —100log ,Oj) + O(,ol_1 + ,0,;1).

157121062 |2712
< |27P log? |+1] s
(3.7)
In particular, w is quasi-isometric to wy,g on U\D, i.e., there exists some
constant C > 0 such that
C_lwmdl < w < Cwmdl- (3.8)

Proof. For any index jin {1,--- , k}, there is some smooth function f though
D such that |sj|2 = e/|27|2. Hence, p; = —log|2’|> — f ~ —log|2|>. A
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simple computation shows that

V=ldz NdZ /=190f

—v/—=100log p; = .
HCA PP 0
V=1(ZdzI NOf + Z0f NdZ + |2 20f AOFf)
+ Sier (3.9)
J

_ V—1dz7 A dZ 00
210?272

Sum up the above equality for j = 1,---  k, we obtain (3.7). Note that

Awg — Z;V:k 41 v/—100log pj is smooth though D. It is quasi-isometric to

the Euclidean metric when restricted to A’f*k , while it is dominated by the

Poincaré metric on (A*)* when restricted on (A*)*. Hence, w is quasi-

isometric to the model metric w,,q;. ]

Lemma 3.3. Let w be the Poincaré type metric constructed as above. Then
(1) The Kdhler manifold (M,w) is complete, it has finite volume and its
injectivity radius goes to 0 as the points approach to the divisor.
(2) There is some constant B > 0 such that

infinf R;5 > —B, sup|R| < B, and supp |Vp| < B

M i#j M M

where Ry;5 and R are the holomorphic sectional curvature and scalar cur-
vature, respectively.

Proof. The assertion (1) is clear from the properties of the local model. We
only need to consider the assertion (2) near the divisor D. Since D can
be covered by finitely many local coordinate chart, it suffices to show the
inequalities hold in each coordinate chart. Let U = AF x A" with the
properties (3.6). The metric w has the asymptotics in U\ D which is quasi-
isometric to the model metric w,,,g on (A%)* x A?‘k. Note that the Poincare
metric on (A*)* has constant holomorphic sectional curvature —1, while the
Euclidean metric on A’f‘k has constant sectional curvature 0. Hence, the
holomorphic sectional curvature of w on U\D is bounded from below and
the scalar curvature bounded on U\D.

To see the last inequality, let us assume without loss of the generality
that (U\D,w) is the local model ((A%)* x AT™* w,.4). Note that

k N
p Vol = [Viogp| <Y [Viegpj|+ Y [Viegp;l. (3.10)
=1 =kt
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For each j in {k +1,---,N}, |[Vlogp;| is bounded because p; is smooth
across D. For each j in {1,--- ,k}, pj = —log|z/|> + f ~ —log|z7|? for
some function f smooth across D. We have

Vlog ps| < p; ' (IVlog |27[2| + [V £) = p; (= log |72 + [V £]) = O(1)
(3.11)
as 2/ — 0. Hence, |V log pj| is also bounded when j € {1,--- , k}.
Since we can cover the divisor D by finitely many local coordinate charts,
the constant B in assertion (2) can be taken independent of the choice of
local coordinate charts. O

3.2 Quasi-coordinates

The usual coordinate system is not convenient to use near the divisor because
that the injectivity radius goes to zero when points become closer and closer
to the divisor. To overcome this issue, it was first by Cheng-Yau [19], then
followed by Tian-Yau [39] and R. Kobayashi [28], to use the so-called quasi-
coordinates to study the complete Kahler manifolds with Poincaré metrics.
Given a point € D, we can take some open neighborhood U ¢ M of z,
such that U\D is biholomorphic to (A%)* x A" for some k. Hence, U\D
has a branched covering which is a smooth open manifold. The idea of quasi-
coordinates is to use the local coordinates on the branched covering instead
of the local coordinates of U\D. A good reference of the quasi-coordinates
for Kéhler manifolds with Poincaré metrics can be found in [28, Section 2].

Definition 3.4. Let V' be an open set in C" and (z1,--- ,2,) be the Eu-
clidean coordinates on V. A holomorphic map ¥ from V into a complex
manifold M of dimension n is called a quasi-coordinate map iff it is of
mazimal rank everywhere in V. The pair (V;z1, -+, zn; V) is called a local
quasi-coordinate of M.

We now state how to construct the quasi-coordinates near the divisor
explicitly. We begin with the punctured disc A with the model Poincaré

metric
_ v—=1dz NdZz

Wmdl — (3.12)

|22 log? |2

The map
exp: C — A], w— exp(w)

is the universal covering map of the punctured disc. Yet to cover the image,
we only need to restrict the map on the banded region {w € C : —7 <
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Imw < 7}. Now we define a family of holomorphic maps {1;5} parametrized
by a real parameter ¢ € (0, 1), which is given by

Ps(w) : Ay = C, w6 Hw+1)/(w - 1). (3.13)

which maps the disc Ag/, onto the ball of radius % centered at (—22,0).
Each map is a biholomorphism from the disc Az, to its image. The union
of the images Uée(o,l) 1;5(A3/4) covers the banded region {w € C : —7m <
Imw <7, Rew < —K} for some K > 0 sufficient large. Under the expo-
nential map, the image of the above banded region covers a small punctured
disc A}, with kK = exp(—K) > 0 a small constant.

Let 95 = expot)s. Then s is a holomorphic map which has maximal
rank everywhere on Ag/,. By the discussion above, there exists some con-
stant £ > 0 sufficiently small, such that

Arc | vs(Asp). (3.14)
6€(0,1)

It is easy to check the following properties of the map 5.

e The pullback of the model metric wy,q is

N V—=1ldw A dw
Vs Wmdl = NSSTEEE (3.15)

which is independent of § and C°°-quasi-isometric to the Euclidean
metric on the disc Ag 4.

e The pullback of the function — log |2|? is

1
Yi(—log|z|?) = 267! Re <14__Z> =0 ) as§—0. (3.16)

Now let us come back to our manifold. Given a point x € D, we can
take some open neighborhood U of z such that under the local coordinates

(21,55 y2n), UNDj = {z € U : 27 =0} for 1 < j < k and U\D =
(A5)E 5 AR Let 6 = (6,...,6%) € (0,1)* be a multi-index. Define

k
s =[] & (3.17)
j=1
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Define the following map

Uy AR, x AMF 5 (AF x AR
4 3/4 1 (A%) 1 (3.18)
(w1, ..., wp) (1/)51 (w1), ... sk (W), Wi, ... ,wm)

where each 15, is defined as previous. For each multi-index § € (0, l)k,
the map ¥s is a holomorphic map from A'g /1 % A’f_k to U\D which is of

maximal rank everywhere in A’g /4 % A’ffk . Thus, the triple
(A5, x AT wy, - wp; )

is a local quasi-coordinate for U\D.
Similar to the punctured disc case, we have the following properties of
the map Us.

e U\D is covered by U5€(071)k \I/(;(A’;/4 X A?_k)'

e The pullback of the model metric w,,g on (AX)F x A?_k is

ko ldwi A dwd n : ,
Vi wma = Z m n .Z V_ldw! Ad@@ (3.19)
Jj=1 j=k+1
which is independent of the multi-index § and C'**°-quasi-isometric to
the Euclidean metric on Aéf /4% A?_k . Since the Poincare type metric
w on U\D is quasi-isometric to the model metric wy,q;, the pullback
Pjw is quasi-isometric to the Euclidean metric on A% /4 % AR,

e Forje {l,---,k}, pj ~ —log|z7|> under the local coordinates, hence,
Up; = O((67)"1). For j € {k+1,---,N}, p; is smooth across D,
hence, ¥}p; is bounded. It follows that

N k
Uip =[] Wsp; = O(JJ(6)") = O(I; ") as s — 0. (3.20)

Jj=1 Jj=1

We can cover an open neighborhood of the divisor D by the local quasi-
coordinate charts constructed above, and cover the complement of the neigh-
borhood by a finite number of unit balls in C”. Note that the latter are
automatically local quasi-coordinate charts. Thus, this gives a local quasi-
coordinate system to our manifold (M, w).

The quasi-coordinate system can be used to define the Holder norms and
Holder spaces which are useful for the Schauder estimate on (M, w).
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Definition 3.5. Given a local quasi-coordinate system {(V,, ¥,) : o € A}
for (M,w), for any non-negative integer k and real number A € (0,1), define

[ullkx == supluo Wallora(y,) (3.21)
acA

where ||-|[craqy,) is the usual Holder norm on Vo, C C". The Hélder space
CFMNM) is defined as

CPAM) :={u € CF (M) : |Jullxr < oo}

The Hédler space C*A(M) is a Banach space with the norm |||k .
The definition of the norm ||||s,» depends on the choice of the local quasi-
coordinate system. However, given two local quasi-coordinate systems and
the associated C** norms, one can show that they are indeed equivalent.

3.3 Poincaré inequality

Lemma 3.6 (Auvray, [3, Lemma 1.10]). There exists a constant Cp > 0
such that for all u € H'(M,w), we have

/ lu — a|*dp < Cp/ |du|du (3.22)
M M

where 4 = W Jos udpe.

Proof. Start, for simplicity, by the case where D is smooth. We cover it in
M with open sets of coordinates Uy, j = 1,...,s, of the form Ag/, X A’f‘l,
so that D NU; = {|z| = 0}. Consider a neighbourhood U of D such that
UcC U;‘il Uj. Let v € C3°(U\D) such that v|gy = 0. We are first seeing
that there exists ¢ > 0 such that for all j,

/ lv2dp < c/
U;\D U\

J

|dv|*dp. (3.23)
D

We can assume, up to modifying ¢, that w restricted to U;\D writes as
_ v—1dzNdZ

2|2 log? | |2
the coordinates by setting t = log(log? |2|?) € (A,00) and 0 = argz € S'.
Then the metric w becomes dt? + e~2tdh? + ds?, and the volume form is
e tdtdfds. Thus,

+oo
/ |U\2du:/ d@ds/ lv|?e~tdt (3.24)
U;\D S1xAT! A

J

+ ds? where ds? the Euclidean metric on A’f‘l. Now change
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and

—+00
/ |dv|?dp = / dds / |dv|?etdt (3.25)
U;\D SixAn—! A

Note that
|dv|? = (0yv)? + €2 (dpv)? + |dA{n—w|3sg > (9v)2. (3.26)
To obtain (3.23), it suffices to show that
+oo +oo
/ vietdt < c/ (Dpv)?etdt for all (6, s). (3.27)
A A

Set w(t) = e~t. Let’ stands for d;, then we have (vw)’ = 2vv'w+v?w' =
20v'w — v?w, hence by integrating with fixed # and s, 0 = 2 f:{oo v'etdt —
[ v?e~tdt because v = 0 on {t = A} and for t big enough. We rewrite

this as:
+00 +00 +00 1 400 1
/ vie tdt = 2/ wo'e tdt < 2(/ UQe_tdt> 2 (/ U'Qe_tdt) 2
A A A A
(3.28)
by Cauchy-Schwartz, hence
+o0 +oo
/ vie ldt < 4/ v?etdt. (3.29)
A A

This ends the first point of demonstration. We then have that for any
ve CX(U\D)

lv2dp < / lv2dp < ¢ / |dv|?dp < cs/ |dv|?dp.
/U\D ; U;\D ]Z; U;\D U\D

(3.30)
Now seek a contradiction, and take a sequence of functions f; € Cg°(M)
violating the theorem; we thus can consider that

o for all j, fM fijdp =0 and fM fj2d,u =1;

o limj,o0 [, df;|2dp = 0.
Observe that (f;) is bounded in H'(M,w), hence up to an extraction con-
verges weakly in H'(M,w) to a function f € H'(M,w). In particular,
ldfllL2 = 0, that is to say f is constant, since the df; tend to 0 in LZ.

Now finally, by weak L? convergence, [y, fdu = lim; o [,, fidp = 0, hence
f=o.
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Take € > 0 small, such that 3% < (es)~! say, and a domain V CcC M
wide enough so that U¢ CC V and there exists a smooth cut-off function
x equal to 1 on U¢ 0 on V¢ and such that 0 < xy < 1 and |dx| < e. For
all j set u; = (1 —x)f; and v; = xf; so that u; € C(U\D), (u;)jo0 = 0,
vj € C(V) and fj = uj + vj. Thus for all j,

/ f2d,u<2 / 2du+/ U?du) :2(/ u?du%—/ v?d,u).
M U\D 1%

Now on the one hand, (v;) converges weakly to 0 in H 1 (V, g) — just see
that for all test function ¢ (resp. test 1-form a) on V, x¢ is again a test
function (resp. xa a test 1-form and (dy, a)y a test function) — and since
V is compact with boundary, we can assume (forgetting another extraction)
that (v;) strongly converges to 0 in L2, necessarily to 0.

On the other hand, according to the beginning of this demonstration,
for all 5 we have

/ u?du < cs/ |du;|*dp

U\D U\D

s ( [ ctrfans [ glapasz [ fjx<dfj,dx>wdu> .
U\D U\D U\D

In the latter line, the first integral is bounded above by [}, |df;|?dp which
tends to 0; the second one by &2 fM ijdu = ¢2, and the third by the square
root of the first two. It thus follows that [, ijdu < 2cse? < 1 when j is big
enough, a contradiction, hence the theorem for C°(M) functions, and then
for H'(M,w) functions by density.

Now let us consider the case where D admits crossings. If we have
an inequality for smooth functions with a compact support near D like
(3.30), the end of the argument will apply unchanged. To get this inequality
though, cover D with polydiscs of coordinates kP = Aﬁ x A"k such
that D is given in those by {z'---2* = 0}. One point is that to get the
desired inequality with U an open set relatively compact in the union of
our polydiscs, it is enough to show such an inequality for functions v €
C(kPp\D) with v =0 on {|z'| = ax} N---N{|2*| = a;}. But this we can
do assuming w is the product metric 3% VoLdEAD | 62 e dti 4+

J=1 1272 log® \27\2 ,
dti—i—‘eﬂtld@%—i-- -+e 2 df? +ds? where t/ = log(log? |27]2) € (Ay,0), 0; =
argz) € S', j = 1,..., k. Finally, express (t1,...,t;) in polar coordinates
(7", Ply-- ey Sokfl)v D1y ooy Ph—1 € (0,71'/2), re (T(Sola s 7§0k71)7 00)7 and do
the same integration by parts as above with ’ standing for 9, in order to
conclude. O
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3.4 Weighted Sobolev inequality

The usual Sobolev inequality fails on (M,w) because the volume form is
degenerate near the infinity (the divisor D). In this section we introduce a
weighted Sobolev inequality from [3]. But ahead of that let us first present a
useful lemma which connects the integration on M with integration on the
quasi-coordinate charts. Let 1Py, = AF x AT and let #P; = (A%)* x AT,
Let dptmq be the volume form of the model metric wy,q on KP} = (A”,;)k X
A?ik. Let dug be the standard Euclidean volume on C™.

Lemma 3.7. There exists a sequence of multi-indices {6 = (0}, ,0F) :
l=1,2,---} and a constant ¢ > 0, such that for any f € LL (kP ditmar)
we have

oo
¢t E H(;l/
3
=1 1P

(W5, flduo < / | fldpmar < ¢ Hél/l W5, flduo
kP, =1 5Pk
(3.31)

k

where Il5, is defined as (3.17) and Vs, is the quasi-coordinate map con-
structed as (3.18) for each multi-index J;.

Proof. The proof is technical. We shall begin with the simplest case k = 1,
namely, kP, = Ay X A’ffl. Then IIs5, = 5;1. Let

B={zeC|-n<Imz<m, —oo<Rez<logk}.

The exponential map exp : w — exp(w) is a biholomorphism from B to A}
minus the positive real line. We can thus pullback the integral over P to
B x AT™' C C" by change of variables. Note that

. V—1dw; A dw = _
eXP* Windl = (2Relwl)2 L+ V= Tdw; A da;. (3.32)
j=1

Let f('lU1,’lU2, o 7wn) = f(exp(w1)7w27 T 7w7l)' Then

_ 1
/HPT | fldpmar = /BXA?_1 (2Rew1)2d“0' (3.33)

On the other hand, note that ®3f = 1;;; f where 15 is holomorphic map
Ys(w) = 67112 from A, to C". Let ~ denotes that two quantities are
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mutually bounded each other by constant factors independent of §. By
change of variables, it follows that

[ wssidun ~ [ LIPT (3.34)
Py Ds(A)x At 02

Let n, = (1+7%)/(1 —r?) and ¢, = 2r/(1 — r?). Note that ¥5(A,) is the
ball centered at (—6~!7,,0) € R? with radius 6 '¢,. Let B, s be the open
square centered at (—d~1'n,, 0) with side length 26~1¢, and Béﬁ be the open

square centered at (—6~'7,,0) with side length v/2671¢,. Let
Bs, ={2€ B,5| -7 <Imz <7}, By, ={2€ B 5| -7 <Imz <7}

Then we have B:ﬂﬁ C 1/?5(AT) C B,s5. Over the square B, 5, Rew ~ §~! and

[ fdmens [l (3.5)

Bsr x AT Bs,» x AT

/ | fldao ~ 67 / | lduo. (3.36)
By, X A7 By, <AL

It then follows that there exist constant C, and C/. depending only on r such
that

/]
> 067! o flduo. 3.37
/B(;TXA” 1 (2Rew)? ATXA?_J o1 (3:37)
/ /] Mgy <ol / 103 | dpo. (3.38)
B, xapt (2Rewr)? Apx AT
Now pick a sequence {d0;,l = 1,2,---} such that 01 = —log/-i di11 = 20;.

For r > 1/2, it is easy to check that B C |J;2, B! s © C U2, Bys,- Moreover,
each B, s, intersects with other squares in the sequence {B,5, |l =1,2,---}
at most a fixed number of times N, depending on r only. Thus, we have

i / /|
< ——d
/BXAT{ 1 (2Rew1 Ho Z By s x AL (2Rewq)? +o
(3.39)

<y ot / 3 fldpo
T;l Apx AP &

1
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(3.40)

1

It follows that

NS [ s < [ fldia < >0 [ 15 fld,
=1 rP1 KPY =1 rP1
(3.41)

Taking r = 3/4 for the left inequality and r = 1/2 for the right inequality,
we then have (3.31) for some constant c¢. This proves the case k = 1. For
k > 2, it can be done by induction on k. O

Lemma 3.8. Suppose ©x € D is on a normal crossing of codimension k.
Take a polydisc U centered at x such that U\D = kPj. There exist a
sequence of multi-indices {& = (6}, ,0F) : 1 =1,2,---} and a constant
¢ >0, such that for any w € W,"P(U\D, dp) we have

= Zu%uuwm o< Z VP < czu%uuwm( o
(3.42)

Proof. By Lemma 3.7, there exists a sequence of multi-indices {6, = (6}, -+, F) :
1=1,2,---} and a constant ¢ > 0 such that fU\D >0 |VIulPpdp is mutu-
ally bounded with

lzﬂal/ ZI% (VIu)[P (W5 p)dpo < / ZIV’UI”pdu

4kj0

<czn& [ PP e, (34)

QkJO

Note that \Ifgl p is mutually bounded with H(}ll uniformly. Moreover, the
metric w is quasi-isometric to the model metric wy,q on U\D = kP;. The
pullback of wy,s under ¥y, is invariant of the multi-index §; and is C*°-
quasi-isometric to the Euclidean metric on C". Thus, > 7 \xpgl(vf u)|P is
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mutually bounded with 377 |V, (¥ u)[g, where go is the Euclidean metric
on C" and V is the covariant derivative with respect to go. Thus, we obtain
the inequality (3.42). O

Now we prove the following weighted Sobolev inequality on (M, w).

Lemma 3.9 (Auvray, [3, Lemma 4.4]). For any function u € I/Vl})f(M),
there exists a positive constant C, = C(p, M,w) such that for any ¢ > p
with 1/p < 1/(2n) + 1/q we have

</M Wpd”) s C </M ([of? + Vo) pdu>1/p. (3.44)

Proof. We can cover an open neighborhood of D by a finite number of
polydiscs {Uy,--- ,Us} and cover the complement of the neighborhood by a
finite number of unit balls {B;,--- ,B;} in C".

On each Bj, since it is away from the divisor, p is bounded on B;, hence,
by the usual Sobolev inequality in bounded domain of C" there exists a
constant C;, depending on p such that for any p > 0 with 1/p < 1/(2n)+1/q

(/B yu\quﬂ> " c (/B

J

1/p
(Jol? + V'U’p)pdu> L ji=1,2,--,s.

i
On each U;\D, we can cover it by quasi-coordinate charts | J; \Il(;(Al;’/' 4 X

A?ik]’ ). For the each pullback ¥5u on the polydisc AL

374 X A?ikj we have
the standard Sobolev inequality

H\IIEuHLq(%%) < C;H\IIEUHWLP(%%), Vo, j=1,2,---,1

for any ¢ > 0 with 1/p < 1/(2n) + 1/q. For each j, by Lemma 3.8, there
exist a sequence of multi-indices {¢; : { = 1,2,---} and a positive constant
¢j, so that

J.

J

o0 o
Il < 5 3Gl 4 < O SIS0,
=1 =1

IN

o0 a/p
;O (ZH\I/gluH%/Lp(iPk)) (since ¢ > p)  (3.45)
=1

1+q/
a0

J

IN

a/p
(Jul” + !VUIp)pdu) :
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Therefore,

1/q
( / qudu>
U;\D

1/p
OMP+WVUVMMM>

1/p+1
S cj/p /‘1611/7 (/
vi\p 3.46)
1/p (3.
2
<oy (/ (P + |Vv|p)pdv> .
U;\D
It follows that
s t 1/q
/ \Uqudu "< Z / IUqudu +Z (/ [ulpdpe)
1/p
< Zc’( / (o + [VoPypan) "+ 30 ey | (e 9ol
7j=1 U;
i 1/p
Z NC( [ o+ 1900 i) .
B (3.47)
The proof is finished by taking C, = (s + ZJ 1 j/p)C’z’,. O

As a corollary of Lemma 3.9, we show that the C° norm of F is controlled
as long as Z(F,py) < oo for some py > 2n.

Corollary 3.10. Suppose F' € W ’po( ) satisfies Z(F,pg) < oo for some
po > 2n. Then these exists some positive constants C = C(Z(F,po), po,n,w)
and such that ||F||co < C.

Proof. Note that
/ (IFIP® + [V F|™)pdu < Z(F, po)
M

since pg > 2n and p > 1. Moreover, 1/py < 1/q + 1/2n for any q¢ > po. It
follows from Lemma 3.9 that

1/q 1/po
(/ Flipdp) " < Cp0</ (1FP + [V FP)pdy) ™ < CopT(F,po) /7.
M M

The lemma follows by letting ¢ — oo. O
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3.5 The e-perturbed equations

The e-perturbed equation (2.6) can be normalized into the Monge-Ampeére
equation (2.7). The latter has been well studied by Tian-Yau [39] and K.
Kobayashi [28]. The existence and uniqueness of the solution of (2.7) can
be done by the continuity method in the quasi-coordinates. To summarize,
the theorem of Tian-Yau and Kobayashi is the following:

Theorem 3.11 (Tian-Yau, Kobayashi). Let M be a compact Kdhler mani-
fold and D be an effective divisor on M with only simple normal crossings.
Let M = M — D and w be of Kdhler metric on M of Poincaré type. For
any F € C*A(M) for some k > 3, there exists a solution ¢ € C¥T2A(M) to
the following equation

(w4 V=19dp)" = el teun,

In particular, if Kg; + [D] is ample, then there exists a (unique) Kdhler-
Einstein metric of curvature —1 equivalent to w.

We temporarily assume that F' € C°(M), as we will show that F' can
be approximated by smooth functions with compact support if F' lies in the
weighted Sobolev space with Z(F, pg) < oo for some py > 2n. The existence
of the solution to the e-perturbed equation (2.6) can be derived from the
theorem of Tian-Yau and Kobayashi. We summarize it in the following
lemma.

Lemma 3.12. Let M be a compact Kdihler manifold and D be an effective
divisor on M with only simple normal crossings. Let M = M — D and w be
of Kdhler metric on M of Poincaré type. For any F € C°(M), there exists
a solution @ € [, CFA(M) to the equation

(w4 V=100 )™ = el Tee=n
for any € € (0,1].

Our goal is to show that {p.} is compact in the usual W3Po(M). Tt
amounts to show some uniform estimates on the gradient and Laplacian of
©e in terms of the integral bound Z(F, pg). In particular, this precludes the
use of maximum principle in the Yau’s classical Laplacian estimate, as it
requires to use the C2 norm of F. We will take the Chen-He’s integration
method to obtain the estimate. In order to deal with the boundary terms
in the integration by parts, we need the following Gaffney-Stokes theorem.
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Lemma 3.13 (Gaffney-Stokes, [24]). Let (M, g) be an orientable complete
Riemannnian manifold whose Riemannian tensor is of class C%. Letn be an
(n—1)-form of class C* such that both 1) and dn are in L*. Then [,,dn = 0.

Lemma 3.13 states a Stokes theorem for complete manifolds under suit-
able conditions.

4 Proof of the main theorem

In this section we present the proof of the main theorem 2.1.

4.1 Uniform C° estimate

The first step of deriving the uniform W?3P0 estimate is to derive the uni-
form C° estimate. This part has been done by Auvray in [3]. For readers’
convenience we cite the proof here. In what follows let w’ = w + ﬁ@é@a
and V', A" and dy/ be the covariant derivative, Laplacian and volume form
of the Kéhler metric w’. The constant C' may vary from line to line, but
always only depends on Z(F, pg), pp, w and n.

Proposition 4.1. Let p. be the solution for the e-perturbed equation (2.6).
There exists a constant C = C(||F||co,n,w) independent of € such that
[ellz2 < C.

Proof. Let T, = W) P4+ (W) 2Aw+ - +w Ll Then w" — (W) =
—v/—100p. ANT;. Tt follows that

/ o (1—efTeee)dy = / (W — (W) = —/ 0/ =100 NT.. (4.1)
M M M
Note that
_ 1 _ _
0/ —1000. NT. = 5\/—168(¢§T5) — V=10, N dpe AT (4.2)

and by Gaffney-Stokes (Lemma 3.13) we have [,,v/—199(p2T:) = 0. It
follows that

/ @ (1 — ef'ePe)dy = / V=10 A Op: A T.. (4.3)
M M

Note that /=19, A 0pe AT. > /—10¢. A Op. A w"™ 1. Moreover,

906(1 - €F+8%) = 906(1 - eF) + ngos(l - 66%) < 906(1 - eF)
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since 1 — e®¥= has the opposite sign of .. It follows that
/ Ve |?dp = / V—=19p. A dp. AL < / 0(1—eNdp.  (4.4)
M M M

Let 9. = . — ¢ where ¢, = W fM wedy is the average of . over M.
Note that [,,(ef" — 1)du = 0. It follows that

[ 190Pau= [ v eMan (45)
M M

By the unweighted Poincaré inequality (Lemma 3.6) and Cauchy-Schwartz
inequality, it then follows that

[¥ell e < Cpl|1 — €2 < C. (4.6)

Now we estimate the average @.. To get an upper bound, first notice
that

/ el reeedy = / (w +V—=100¢.)"™ = Vol(M). (4.7)
M M
By Jensen’s inequality, it follows that | M cp.efdp < 0. Hence,
0> / w.efdy = / o (el = 1)dp + Vol(M) ... (4.8)
M M

It follows that

1
5o o 1—eF)d
Pe = Vol(M)/M%( e )dp

4.
= Vol(M) Sy ¢ P="~Noarny =
On the other hand, to get a lower bound, notice that
Vol(M) = / eldy = / e Pedy’. (4.10)
M M
By Jensen’s inequality it implies that | o Pedp > 0. Tt follows that
VolM)g. = [ el dyl) = [ welt = ey
M M (4.11)

> — |1 — " 2 |le 2.
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For each ¢ € (0,1], by applying the maximum principle to the perturbed
equation (w + v/—190p. )" = efF¢=u" it follows that |lepe||co < ||F||co-
Hence,

11— eF+eee| 2 < (1 + 2IFllcoy Vol (ar)H/2. (4.12)

It then follows that
7o > —Vol(M)~V/2(1 4 2P leo) [y | 1 > —C. (4.13)

It then follows from (4.6), (4.9) and (4.13) to obtain that ||¢:||r2 < C where
the constant C' depends only on || F'||co, n and w. O

Proposition 4.2. Suppose F' € C°(M) with Z(F,py) < oo for some py >
2n. Let @. be the solution for the e-perturbed equation (2.6). There exists a
constant C' = C(Z(F,po), po,n,w) independent of € such that ||¢z||co < C.

Proof. Step 1. For p > 2, by a direct computation we have

/ pelP 2o (1 — e T )dp = / |pelP 2o (W™ — (w')™)
M M
:/ | P20/ —100p: AT

M

1 3 - — —
- p/ ﬁaa(‘@s’p l‘PsTe> - (p — 1)/ ‘Wa’p Zﬁa@a Adp. AT
M M

(4.14)
By Gatffney-Stokes (Lemma 3.13), we have [, v/—189(|p:[P"1p-T.) = 0.
Moreover, @.(1 — ef+e%<) < (1 —el") and

_ 4 _
/ |pelP 2V =10z A Ope AT = 2/ V=10(| ") A D(|:lP?) AT
M b Jm
4 — P/2\ A § p/2 1o 2 p/2|2
> — | V=10(@elP ) ANO([pelP7Z) AT = — [ [V]pelPE T d .
b"Jm T Jm

(4.15)
It follows that

2
Ve: P2 %d gp/ P20 (1 — eF)dp. 4.16
| A9l Pin < s [ e o= e @)

Step 2. Let v = 2n/(2n — 1). Note that 1 = 1/(2n) + 1/v. By the
weighted Sobolev inequality (Lemma 3.9),

—1\7Y % -1 P
(/M (leelPp™") pdp) SC(/MIV(I%IPP )!pdﬂ+/Mlsoal dp). (4.17)
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Note that p~!|Vp| is bounded on M. An easy computation yields
| 19U o< [ [VleaPldat [ o (o7 Vol
— [ 2ol P9 lecpdu+ [ oo Vol (418)
M M
S/ !VIwelg\QdquC/ |pelPdp.
M M

By the unweighted Poincaré inequality Lemma 3.6 (with a mean term) to
l<|P/2, we have

/ |pe|Pdp < CP/ |V | e [P/ P dps + Vol (M / e |P2dp)®  (4.19)

Combining (4.16), (4.17), (4.18) and (4.19) we get
([ Jemommdn) " < Cp [ o el — tidu+ O [ o)’
M M M
(4.20)

Let dji denote the measure p~'/"=1dy. Note that |ef” — 1| < C|F| for
constant C' depending on || F'||co. We have

~\1 _ I 19
([ torrdn)'™ <o [ fodr FIomTdn+ C( [ o omTdn)’
M M M
(4.21)
Let go > 0 such that 1/py + 1/go = 1. By Hélder inequality,

- S Po L
/M|(p€’p 1|F|p2n—ld[u,§ (/M‘F’pop?ﬂldu p / ‘90 |p lqod/J/)
< (I(F,po))l/po(/ e | (P~ Daogz) /0 (4.22)
M
< CH(:DEH;LL)pqo(dﬂ)-

Let 1/p1 +1/(2¢1) =1 and n/(2n—1) < ¢1 < 2n/(2n — 1), then p; < 2n.
By Holder inequality,

(/ o P2 pz1dpn)® < (/ p?leldu)l/pl(/ o P dp) T (4.23)
M M M

Since p; < 2n, we have

Pl p1—1
/ p2n—1 dﬂ = / p2n—1 d,u < Q.
M M

35



Hence,
_1 2
([ Vel 2075 d0)* < Cllgellpm (4.24)

It then follows that

19T mazy < CPNCENT a0 gy + ClloeLoa (g (4.25)
with go,q1 < 2n/(2n — 1). Take g2 = max(qo, q1). Then ¢ < v and
9l Lway < CPP P || 0el| Lovz (agy - (4.26)
Hence, by standard iteration process we have
leellco < Cliwellpzay < Clieellz2(ap < C- (4.27)

O]

4.2 Uniform C! estimate

In this section we prove the C! estimate Theorem 2.2. In what follows let
W' = w4v/—100¢. and V', A’ and dy’ be the covariant derivative, Laplacian
and volume form of the Kahler metric «’. The constant C' may vary from
line to line, but always only depends on Z(F, py), po, w and n.

Proof. Step 1. Let A(t) be a one-variable smooth real function which will be
determined later. Following a similar computation in [17, equation (3.11)],
we have the following inequality

A/ (e‘A(@E)|V<pE\2)
> AT 2~ AVl + (A ~ inf Ryg) tr w)

(4.28)
+ (24" = B)e 2|V 2 — ((n+ 2)A’ +2¢) e )|V |?
+ e A% (Ap. — n + try w) — 24P |V ||V, |.
Let B > 0 be a positive constant such that inf;z; R;;;; > —B. Let Cyp =
1+ ||¢ellco. Choose
42
Alt B+2)t — — 4.29
()= (B+2t - 55 (4:29)
Then
1
Br1<Alp)=B+2- 22 <B13, Ap)=——.
Co CO
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It is easy to see that
try w > (exp(F + ep.) try, )Y/ (1), (4.30)
By (4.30), we compute
— A"V |2, + (A — 125 Ry5) try w

1
> V|2 + F + epe) try, )/ (1)

3=

ne1 1
>n(n— 1)77100 n (exp(F + epe) (try, w')]V’gog\i/)
> C|Vep[7m

for some C' depending on ||F||co, ||¢e||co and n. Take (4.31) into (4.28) and
drop the the nonnegative terms (24’ — B)e~4(#<)|V'(.|2, and e~ A¥<)tr g,
and take the equality n + Ap. = tr w’ into account, we have

A (746N Tp.[2) 2 Cem AT [PHE — ((n+2) 4" + 2)e” 44|V, ?

+ e AP (tr W' — 2n) — 27 A |V F| |V, |.
(4.32)
We can interpolate |[Ve.|? by |[Vee|>T2/" and constants, i.e., there exists
some sufficiently small positive constant € and sufficiently large constant
C(e) depending on ¢ such that

V|2 < |V |27 + Cle). (4.33)

Let u = exp(—A(p:))|Ve|?. Note that exp(—A(ge)) is uniformly bounded.
By (4.32) and (4.33) we have

1
Ay > Cuttn — C + Ctryw’ — C|VE[ul/2. (4.34)

Step 2. We will do an integration scheme to obtain the uniform C*
bound from (4.34). We multiplying (4.34) by u? for p > 0 and take integral
with respect to the volume form dy’ to obtain

—/ pup_1|V'u\Z/d,u'+/ V'(upV'u)d,u':/ uP A udy!
M M M

Z/ up(CuHrlz—C)d,u’—i—C/ up(trww/)d,u’—C/ |VF|up+%d,u’
M M M
(4.35)
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By Lemma 3.13 (Gaffney-Stokes),

/ V' (uPV'u)dy' = 0.
M

Hence,

/ (pup*1|V'u|i, + CuP(try, w’))du’

M ) 1 (4.36)

< C/ |VE|uPT2dy’ —/ uP (Cutn — C)dy/
M M

Note that we have the following pointwise inequality
IV'ul2 + (try w') > 24/ (tr, )| Vul?, > 2| V| (4.37)

In addition,
dp’ = exp(F + ep:)dp

is equivalent to du. Hence, we have
C\/f)/ up_%|Vu]d,u < C/ ]VF]upJ’édu—/ up(CuH% —C)dp. (4.38)
M M M

It follows from (4.38) that

/M ]Vuer%\du <C./p /M |VF|up+%du - C\/}?/M up(uH% —C)dpu. (4.39)

Step 3. Let us rewrite (4.39) as follows by taking a shift on p: for p > 1/2
we have

/ IV |dp < C\/ﬁ/ IV FluPdy — C\/ﬁ/ wP2 (Wl — C)dp (4.40)
M M M
Note that

|19 o= [ varlans [ o VplluPa
M M M

g/ \vupydp,+c/ ufPdy.
M M

as p~1|Vp| is bounded on M by Lemma 3.3. Let v = 2n/(2n — 1). By the
weighted Sobolev inequality (Lemma 3.9), we have

1/v
( / |up,o-1wpdu) <o [ 19t ipdu+ [t pdn). (442
M M M
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By (4.40), (4.41) and (4.42), we have

(/M Iupp’l\”pdu)l/

(4.43)
< C\/ﬁ/M uP|VF|dp — C\/f)/M up—é(upr% N

Notice that for p > 1/2 the function f(t) = 3 (251"'l —C+/t—C) is bounded
from below on R. Therefore,

1/
(/ |upp_1|7pd,u) k < C’\/f)(/ uP|VF|du + 1). (4.44)
M M
Let dii = p~Y/2=1dy. Then (4.44) can be written as

1/v 1
( / yu|mdg) < o\/i)( / yu|p|VF|pzn—1d,z+1). (4.45)
M M

Let go be that 1/py + 1/qo = 1. From Hoélder inequality we have

J S 1/ j2 1/
[ oo < ([ umap) ([ wEmpsta)
M M M

(4.46)
Note that
-1
[ ivEretan = [ wFRESa= T ). @an)
M M
From (4.45), (4.46) and (4.47), we get
1l gy < OVB(l oy + 1)- (4.48)

Let 8 = qaly, then 5 > 1. Take a sequence {p,} with p, = qalﬁg_l for
¢ > 1. Then by (4.48) we get

[ullFaoress gy < CvPe(lullFoore ) +1)- (4.49)
We may assume that C/p; > 1. Let
Bg = maXx (”uHLpoPe(dﬁ), 1)

Then
Byy < (20)V/Ppl/P B, (4.50)
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By iteration we have
/-1

By < (H(QC)l/pjpj/pj>Bl_ (4.51)
j=1
It is easy to check that
log (H(20)1/pjpj2~/pj) <> poB 7 (251og B — 2log po + log(2C)) < 0.
j=1 §=0
Let k — o0, it follows that
lullco < CBy = C - max (Hu||L1(dﬁ), 1). (4.52)

To get a bound of [|ul| 14z, notice that dji = p 1/ @n=1) g, < dp, hence, we
have

lulloan = | exp(-Al)VoePdi < C [ Vo

< —C'/ (Ap. +n —n)d
¥ (Ag )dp (4.53)
<Cllgdllen | (Age+md—Cn [ e
M M
< 2nC[¢e||co-
From (4.52) and (4.53) and that ||¢.|| is uniformly bounded, we have
[Veellgo < C
for some constant C' depends only on Z(F,pg), po, w and n. O

4.3 TUniform C? estimate

In this section we prove the C? estimate Theorem 2.3. In what follows let
W' = w4+v/—100¢. and V', A’ and dy’ be the covariant derivative, Laplacian
and volume form of the Kahler metric w’. The constant C' may vary from
line to line, but always only depends on Z(F, py), po, w and n.

Proof. Step 1. By the same computations as in [41], we obtain in the or-
thonormal frame of background metric w,

I (o=Boe (y, o Coe 1 o ((e)ii — (%)j})Z
Al(e™7%(n+ Ap:)) > ¥ [2 ;Ruﬂ( )(1 T (00)a) 1+ (@s)jj)
+AF +eAp. + (n+ A(ps)(—ﬁA’goa)] )
(4.54)
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Choose
B >— i]I\l/[f 125 R + 1.

It follows that

A(e7P?(n+Ap.)) > e P2 | (n4+Ap) try w+(s—2nﬁ)(n—|—A<p5)—|—AF—ns].

Let
w = e P (n+ Ap,).

Note that
tr w > (exp(F + epe) try, ')/ D

and tr, w’' =n + Ap.. It follows that

A'w > Cwi=1 — C + e PP AF.
Step 2. We compute, for p > 0,
/ |VwP|?dV < / (trow) | V'wP|2, e~ Fteee) gy
M M
:/ 6(6_5)‘P5_Fw|v’wp]i/du’
M
< C’/ w|V'wP |2, dy.
M

Take integration by parts

/ w|V'wP | dy’ = _p/ wQPA'wd,u’+p/ V' (w?PV'w)dy' .
M 2 S M

2
By Lemma 3.13 (Gaffney-Stokes), the integral

/ V' (w*V'w)dy' = 0.
M
Combining (4.57), (4.58) and (4.59), we have

/M VP Pdu < C;p/wzp(—A’w)du’

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)



By (4.53), we have

/ |VwP|?dp < —Cp/ w? (Cw™T — C)dp — Cp/ w?Pe PP AFdp
M M M

< —C’p/ w(CwiT —C’)du—i—C’p/ 2e PP |VwP ||V F|du
M M
+Cp/ Be P w |V, ||VF|du
M
< —op/ WP (T —C’)du—l—C’p/ WP | VP ||V Fldu
M M

+Cp/ w?P |V F|dp
M

(4.61)
By Holder inequality,

1 CZ 2
Cp/ ‘prwp’VF|d/J,§/ ]pr|2du+p/ w?|VFdy (4.62)
M 2 /m 2 Ju

and
1
/ w?P|VF|dp < / w?P(|VF|* + 1)dp. (4.63)
M 2 Jm

Combine (4.61), (4.62) and (4.63), we have

/ VP 2dp < —Cp/ w?P (it — C)du—i—CpQ/ w?P|VF|2dp. (4.64)
M M M

Step 3. As p~!|Vp| is bounded on M, we have
1
/ IV (w?p~2) Ppdp 3/ @IV + S (07 Vo)) *w™) du
M M 2
§2/ |pr|d,u—|—0/ w?Pdp.
M M

Let v/ = n/(n — 1). Note that 1/2 = 1/(2n) + 1/(27). By the weighted

Sobolev inequality (Lemma 3.9), we have

(4.65)

1
( / \wpp’%lzvlpd@ 7 SC( / IV (w?p=2) P pdp + / w2pdu)2- (4.66)
M M M

Combining (4.64), (4.65) and (4.66), we get
1
(/ ]wpp*%|27/pd/,t>7 < —Cp/ w2p(wn—1—C')du+Cp2/ w?P|V F|*dp.
M M M
(4.67)
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Note that for p > 0 the function f(t) = #**(*/(»~1) — () is bounded from
below. Hence,

/ w? (w1 — C)dv > —C. (4.68)
M

Let dv = p~ = Ddy, we can rewrite

/]wpp_§|2”’,pd,u:/ lw|?Pdy. (4.69)
M M

It follows that

1

( / WP ?d) 7 < Cp+ Cp? / WP VFRpiidy  (4.70)
M M

Let g be that 1/qo +2/pp = 1. By Hélder inequality we have

1 2
/ w2p|VF|pﬁdV = (/ w2pq°dl/> © (/ |VF|pO,O%dV) PO (471
M M M

Notice that
_Po_ po—2
/ |[VE|Ppr—2dy = / |IVE|Ppzn=2dy = I(F,py). (4.72)
M M
Hence, by (4.70), (4.71) and (4.72), it follows that
[0y < COP 01 + 1) (4.73)
By a similar iteration argument as in the end of Section 4.2, it follows that

[wllco < CllwllLr(aw)- (4.74)

To obtain the bound for [[w||;1(gy), notice that dv = p~ Y =Ddy, it follows
that

lwll z1(any < /M e PP (n+ Ap.)du < C/M(n +Ap)dp < C.  (4.75)

Therefore, we have
[Apellco < C

for some constant C' depending only on Z(F, qo), qo, w and n. ]
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4.4 Holder estimate of the second order

In Yau’s original resolution of the Calabi conjecture, the C® estimate is
needed to obtain higher order regularity from Schauder theory. For Monge-
Ampere equations, such C?3 estimates date back to Calabi’s seminal third
order estimates [7]. Later on Evans [22] and Krylov [29, 30] proved that
Holder estimates of second order hold for fully nonlinear concave uniform
elliptic operators. All the results are originally stated for the right hand
side F' with second derivatives or higher. The Holder estimates of second
order derivatives has also been studied for uniform elliptic operators when
the right hand side has weaker regularity. These estimates can be localized.
In particular, for Monge-Ampére equation, Blocki proved that the Holder
esitmates hold when F' is Lipschitz and the Laplacian of the Kéhler potential
is bounded [6]. Chen-He extended Blocki’s result to the case when F is only
in W1Po for some py > 2n [17]. We cite Chen-He’s result in the following
lemma. The readers are referred to their paper for the detail of the proof.

Lemma 4.3 (Chen-He, [17, Lemma 4.1]). Let v be a C*-psh function in an
open ) C C™ such that
det(v;;) = F.

Assume that there are some positive constants A and K such that
0<A ' <Av<A, |||z~ < K and [vllwieo ) < K.

Then for any ' CC Q, there exists some A = A\(Q, QA K) with0 < A < 1
such that
HUHCZ,)\(Q/) S O(Q, Q/, A, K)

We can cover (M,w) by a quasi-coordinate system and apply the Holder
estimate in each quasi-coordinate chart. In particular, we have

Proposition 4.4. Let ' € C>X(M,g) such that Z(F,py) < oo for some
po > 2n. Let ¢. be the solution of perturbed equation (2.6). Then there
exists some A = N(Z(F,po), po,w,n) such that

[¢ellzn < C(Z(F, po), po, w,m) (4.76)
where ||-||2,) is the (2, N)-Hélder norm defined in (3.21) by the quasi-coordinates.

Proof. We can cover a neighborhood of the divisor D by a finite number
of polydiscs U’s and cover the complement of the neighborhood by a finite
number of open sets V’s. For each V we can take some V' CC V such that

M\|JucJv.
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On each V' with some local coordinates, we can find a local potential Qg
such that g;; = (Qo);;- Then the perturbed equation (2.6) can be written
as

with ¥ = Qo + - and f = exp(F +ey.) det(g;;). The uniform estimates on
IVee|co and ||Ag:||co and the boundedness of Z(F, pg) imply that

0 <A™ <AD <A, [Py < K and [|Fllyrmog) < K

for some positive constants A and K. Then by Lemma 4.3, these exists some
constant \' and C’ depending on V such that

Hﬁ”czﬂ(vl) <. (4.77)

For each U, we can assume that U\D = (A%)F x AT7* for some k < n
and k > 0 sufficient small. The set U\D can be covered by a family of
quasi-coordinate charts

1 3
n\pc Ws(5Pr) C U Vs Pr)
5€(0,1)k 5e(0,1)k

where rP, = Aff X A’f‘k and Uy : %Pk — U\D is the quasi-coordinate
map constructed in Section 3.2, for each multi-index §. Under the quasi-
coordinates, suppose the metric is written as g,;, the potential ¢, and the
right hand side F on the polydisc %Pk C C"™. Note that in the quasi-
coordinates the pullback metric g is quasi-isometric to the Euclidean metric
go on C™:

0<C 9o <§<Cgo

for some positive constant C' independent of the multi-index §. We can
find some local potential @y on 3P such that gi; = (Qo);5. Then in the
quasi-coordinates the perturbed equation (2.6) can be rewritten as

det(J;5) = f (4.78)
where 9 = Qg + . and f = exp(F + e@.) det(g;;). The uniform estimates

on ||Vee|co and ||Ape||co readily imply that there exist constants A and K
such that

0< At <AJ <A, H@um(%m) < K and || fll =3, < K.

45



We now show that f € WLPo(3P;) and 1fllwiro(zp,) < K. It suffices to
- 4
show that [|[Vg [ p(3p,) < K. By Lemma 3.7, we have
4

| 1Pl < C [ (@50 WV Edne
1Pk 1Pk

(4.79)
<c / IV F[P pdpt < Z(F, po).
U\D

Hence,
HfHWl;Po(%pk) S K.

By Lemma 4.3, there exists A" and constant C” depending on U such that
||19||02,>\//(%,Pk)) < c”. (4.80)

Note that the constants \” and C” do not depend on the multi-index §. Since
there are only a finite number of U’s and V’s, we can take some common A
and C such that in either local coordinates for V'’s, or local quasi-coordinates
for U’s, the estimates of (4.77) and (4.80) both holds. Therefore, by taking
supreme over all the quasi-coordinate charts, we get

[¢ellzn < C. (4.81)

O]

To obtain W30 estimate, we localize the estimate in the quasi-coordinate
charts as what we did in the proof of Proposition 4.4. Under the quasi-
coordinates, suppose the metric is written as g,;, the potential ¢, and the

right hand side F on the polydisc %Pk C C". The perturbed equation (2.6)
is written under the quasi-coordinates as

det(G;5 + (@e)ij) = e 7% det(;5)- (4.82)

Let 9 be an arbitrary first order differential operator on the quasi-coordinate
chart %Pk. Once the Holder estimate of second order is proved, we compute
in the quasi-coordinate chart

N;03. = OF + e0g. + (57 — G )95 (4.83)

where the g, is the metric of (w++/ —185g0§) in the quasi-coordinates. Note
that we already have H@chZa(ng) and ||FHW1,p0(%Pk) bounded, hence the
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LPo norm of right hand side bounded. It then follows from LP theory, for
example see [27] Chapter 9, that

Ha‘PNEHWZpo(%'pk) <C. (4.84)

It follows that
H\I/z@snw&po(%pk) <C, V¥ (4.85)

By Lemma 3.7, we have

H‘PEH%&M(U\D) <c Z I, ||‘1’§[<Ps||€33,p0(%7>k)
14

< CPoc Z H5€ / ].d/l() (486)
] 3Pk
< C’pocz/ ldp < CPoc? Vol(M).
U\D

We can a neighborhood of D by a finite number of such U’s and cover the
complement of the neighborhood by a finite number of unit balls. Collect
the inequalities on each of them, we get the following proposition.

Proposition 4.5. Let F' € C°(M,g) such that Z(F,py) < oo. Let ¢. be
the solution of perturbed equation (2.6). Then we have

[eellwspoary < C (4.87)

for some constant C depends only on Z(F,py), po, w and n.

4.5 Proof of Theorem 2.1

All the estimates are proved with the temporary assumption that F' is in
C2°(M). When F is only in the weighted Sobolev space with Z(F, pg) < oo,
we show that F' can be approximated by Cg° functions in the weighted
Sobolev spaces.

Lemma 4.6. Suppose F € I/Vli)’cpo (M) satisfies I(F,pg) < oo for some py >

2n. Then there is a sequence of Fy, € C° such that Z(F — Fy,po) — 0 as
k — 0. In particular, F}, — F in WHPo(M, g).

Proof. We can assume that F' is smooth. The Ricci curvature of (M, g) is
bounded from below. Let r = r(z) denote the distance function to some
fixed point. By a theorem of Yau ([36, Theorem 4.2]), there is a proper
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C*°(M) function d such that d > Cr and |Vd| < C, for some constant C. Let
X : [0,00) — R be a cut-off function such that: (i) x(t) =1fort <1, x(t) =0
for t > 2and 0 < x <1; (ii) [}/ (¢)| < 2. Let Fi(z) = x (d(x)/k) F(z). Then
F, € C*(M,g). It remains to show I(F — Fi,pp) — 0. To see this, note
that VFy, = x (d/k) VF + Fx' (d/k) Vd/k. Hence,

/ (IF = il + [VF = VR ™)pf=2dv
< / (1= X (@/R) [FI + (1 = x(d/ W)V F| + Ck~|F)" p5= av

po—2 _1 po—2
<C (|F[Po + |VE[Po)p2=2dV + Ck~L | |F|Pop2a=2dV
{d>k}

(4.88)
The RHS goes to 0 as kK — oo. O

Finally, we proof the main theorem.

Proof of theorem 2.1. Let F} be a sequence of smooth functions with com-
pact support such that Z(Fy — F,pp) — 0. In particular, we can assume
Z(Fk,po) < Z(F,pp) + 1 for any k. For each £ and k, there is a smooth
solution ., which solves the perturbed equation

(W + V=100 )" = et tevenyn (4.89)
such that (w + v/—189¢. ;) > 0. By Proposition 4.5 we have
1@ kllws.ro < C(Z(F, po), po, w, n). (4.90)

There is a subsequence of (¢ek) that converges to some ¢ € W3P (M, g)
such that w + v/—199¢ > 0 defines a W1P0 Kihler metric. O
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Part 11
On the Chern-Yamabe problem

1

5 Introducation to Chern-Yamabe problem

5.1 Chern scalar curvature

Let (X,w) be a compact complex manifold of complex dimension n > 2
endowed with a Hermitian metric w. Besides the usual Riemannian scalar
curvature which is scalar curvature with respect to the the Levi-Civita con-
nection, one can define the Chern scalar curvature of (X,w) to be the scalar
curvature with respect to the Chern connection associated to w. The Chern
scalar curvature can be succinctly expressed as

S (w) = — tr, 10D log w™, (5.1)

where w™ denotes the volume form. It is easy to see that under conformal
transformation the Chern scalar curvature changes as

SC (exp(2f/n)w) = exp(—2f/n) (SC(w) — AT f), (5.2)

where AS is the Chern Laplacian operator? with respect to w, which is
defined as B
AC f:=2tr, i00f. (5.3)

5.2 Chern-Yamabe problem

Inspired by the Yamabe problem for Riemannian manifolds, Angella-Calamai-
Spotti [1] proposed the Chern-Yamabe problem of finding metrics of con-
stant Chern scalar curvature in the given conformal classes. By the confor-
mal transformation formula of Chern scalar curvature, the Chern-Yamabe
problem is equivalent to find a pair (f, A\) € C*°(X;R) x R solving

—AS £+ 5% w) = Xexp(2f/n). (5.4)

In this way, the conformal metric exp(2f/n)w then has the constant Chern
scalar curvature equal to .

1 This is a joint work with Simone Calamai.
2We use the analysts’ convention of Laplacian operator.
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5.3 Normalization

Given a hermitian metric w, the torsion 1-form of w is defined as some 1-
form 6, such that dw™ ' = 6, Aw™ . The hermitian metric w is said to be
balanced if 0, = 0, equivalently, dw™ ' = 0. The hermitian metric w is said
to be Gauduchon if d*6,, = 0. From the definition one can easily see that
a balanced metric is automatically a Gauduchon metric. The reserve is not
necessarily true.

In [25], P. Gauduchon proved the following fundamental theorem.

Theorem 5.1 ([25, Théoreme 1]). Fiz a compact complex manifold X with
dimc X > 2. For every conformal class of hermitian metrics there exists a
unique Gauduchon metric w such that [, w"/n! = 1.

By a computation in [26, pages 502-503], the Chern Laplacian can be
decomposed as
AG S = Daf + (df, 6, (5.5)

where Ay is the Hodge’s Laplacian and 6, is the torsion 1-form of w. The
Gauduchon metrics have the advantage that if w is Gauduchon, then

/ AS fav, :/ Agf + f(d*6,)dV, = 0. (5.6)
M M

From this point, we would like to take the unique Gauduchon metric with
unit volume in each conformal class as the background metric. This is also
guaranteed by Gauduchon’s theorem that the Gauduchon metric always
exist in each conformal class. From now on we assume the background
metric w in the Chern-Yamabe problem is Gauduchon with unit volume
and let dp denote its volume form.

We can also normalize f so that

/ exp(2f/n)dp = 1. (5.7)
X

Then the constant \ is exactly the total Chern scalar curvature of the back-
ground metric

)\:/XSC(w) du:/X%rcl(X)/\[w]”_l/(n—l)!. (5.8)

where ¢;(X) is the first Chern class of the complex manifold (X, .J). (Note
that w has unit volume.) The constant A is uniquely determined by the con-
formal class (more precisely the unique Gauduchon metric in that conformal
class with unit volume). It is called the Gauduchon degree of the conformal
class.
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5.4 Dissertation work

When the Gauduchon degree A < 0, it has been proved in [1] that there exists
unique solution to (5.4) with normalization (5.7) via direct PDE method.
This result is reproved in [31] through a flow method. The positive case
A > 0 is still an open problem.

In [1, 31] two different flows were defined to approach the study of Hermi-
tian metrics with constant Chern scalar curvature. Here we define a different
flow, in Section 6, which has the advantage of preserving some quantities
and being monotone when the problem is known to be variational (when the
background is moreover balanced). Our first result is

Proposition 5.2. The Chern-Yamabe flow exists as long as the mazimum
of Chern scalar curvature stays bounded.

This result is not satisfactory as we need to assume the upper bound of
the Chern scalar curvature in order to obtain the long time existence. We
conjecture that

Conjecture 5.3. The Chern scalar curvature under the Chern-Yamabe flow
does not blow up in finite time.

If the background metric w is even balanced, then AS = Ay is sysmetric.
In this special case, the Chern Yamabe problem is variational. There exists a
functional F on space of smooth functions with the normalization condition
(5.7) such that the Chern-Yamabe equation is the Euler-Lagrange equation
of the functional. We show that the functional is decreasing along the flow.
Our second result regards with the boundedness of this functional.

Proposition 5.4. Suppose the background Gauduchon metric w is also bal-
anced. There is a functional F whose critical points are the conformal met-
rics with constant Chern scalar curvature. When the Gauduchon degree
A < 0, this functional F is bounded from below. When A > 0, F is un-
bounded from below.

Second variation of the functional is computed. We show that in some
examples the functional can possess saddle points.

Some additional property of the flow is presented under additional as-
sumptions in the end of this part.
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6 Chern-Yamabe Flow

Let f(x;t) be a family of C*° functions on X parametrized by a real param-
eter t. Let S(x;t) = SC€(exp(2f(x;t)/n)w). The Chern-Yamabe flow is the
flow f(z;t) defined by the following flow equation:

of _n

5 = 5 (A= 5) = Jexp(=2f/n) (AT f = SC(w) +Aexp(2f/m))  (6:1)

with some initial value fy satisfying the normalization constraint
/ exp(2fo/n)du = 1. (6.2)
X

Under the flow some quantities are preserved.

Lemma 6.1. Along the flow we have

1.
/ exp(2f/n)dpu = 1.
b's
2.
/ Sexp(2f/n)du = M.
X
Proof. 1. Let

o) = [ explaf/mydp.
By the initial data (6.2) and the flow equation (6.1), we have ¢(0) =1 and
= 2 / of

= /X (AS f—SCw)+A exp(2f/n)) du
= A(p(t) - 1).

It is straightforward to show that ¢(t) = 1.
2. It follows that

/ S exp(2f /n)dy = / (S€(w) — AC f)dp = A,
X X
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6.1 Evolution of the Chern scalar curvature

Under the Chern-Yamabe flow the Chern scalar curvature S(z;t) = S€(exp(2f /n)w)
evolves according to the following equation

oS
= = 5 exp(=2f/n) AT S + S(S - ) (6.3)
with initial value S(x;0) = S€(exp(2fo/n)w).
The following lemma gives a uniform lower bound of the Chern scalar
curvature.

Lemma 6.2. Let (So)min = mingex S(z;0). We have
S(z;t) > min{(S0)min, 0}, Vo € X.

Proof. Let Spin(t) = mingex S(x;t). Applying maximum principle to (6.3)
we obtain
Hence,
S(z;t) > Spmin(t) > (S0)min exp(—At), Vo € X.
0;

If (So)min > 0, then S(z;t) > 0; otherwise S(x;t) > (So)min. Hence,

S(z;t) > min{(So)min, 0}.
]

Remark 6.3. For Lemma 6.2, S(x,t) > (50)min €xp(—At) as long as the
flow exists. In particular, if the initial Chern scalar curvature is strictly
positive, then the positiveness is preserved along the flow.

We can always take a special initial fo so that the initial Chern scalar
curvature is strictly positive. Let h € C*°(X;R) such that

AL h = 8%(w) =\ with / exp(2h/n)du = 1.
X

We have SC(exp(2h/n)w) = Aexp(—2h/n) > 0. Hence, the Chern-Yamabe
flow with this specific initial f(x;0) = h(z) has the positive Chern scalar
curvature as long as the flow exists.
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6.2 Long time existence

In this section we show that the Chern-Yamabe flow exists as long as the
maximum of Chern scalar curvature stays bounded. The short time exis-
tence of the flow is straightforward as the principal symbol of the second-
order operator of the right-hand side of the Chern-Yamabe flow is strictly
positive definite. To obtain the long time existence, one needs to show the
a priori CF estimate

max (a5 )l cxx) < CulT) < o

for any T' < oo and any positive integer k. We use C(T') to denote a constant
depending on T'. The constants C'(T") may vary from line to line. We begin
with a C? estimate on the flow f(x;t).

Lemma 6.4 (C° estimate). Suppose that the Chern-Yamabe flow exists on
Qr = X x[0,T) for some T > 0. Then these exists some constant Co(T)
depending only on (X,w) and initial data fo such that

sup [ f(z;t)llco(x) < Co(T).
0<t<T
Proof. Let h € C*°(X;R) such that
AS h =8%w) -\ with / exp(2h/n)du = 1.
X

Such a function h exists because of (5.8). Similarly, by Lemma 6.1 there
exists some v(t) € C°(X x [0,T);R) such that

AS v = exp(2f/n) — 1. (6.4)
Differentiating (6.4) with respect to t, by the flow equation (6.1) we have
0
Av) = AS f — S (w) +Xexp(2f/n)

ot (B
= A f = (S%(w) =X) + Aexp(2f/n) — 1)
=ASfF—ASh+AASw.
Hence,

AL <g:—f—|—h—)\v> =0.
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We can normalize v(z;t) (by adding some function depending only on ¢ if
necessary) so that

g;)—erh—)\v:O (6.5)

with initial value v(x;0) = vo(x) for some v satisfying
AS vy = exp(2fo/n) — 1 and / vodp = 0.
X
Let w(z;t) = 0v/0t. Differentiating (6.5) with respect to ¢, we have

ow Of n C

—_— == - -2 A

5 5t 5 exp(—2f/n) A w+ Aw,
w(z;0) = fo(z) — h(x) + Avg(z).

Let wpaq(t) = maxgex w(z;t) and wpi, (t) = minge x w(z;t). By maximum

principle, we have

+ Aw = (6.6)

d
%wmax < )\wmax and awmzn > /\wmzn
It follows that
Winin (t) = Wmin(0) exp(At) and Wiz (t) < Winaez(0) exp(At).
Hence, we have

Hw(m;t)HCO(X) < Kexp(At) with K = max (|wmm(0)|, |wmax(0)|).

It then follows that

o(ait)] = fooe) + [ wlaioya

< Illoopy + [ ot Dlencarde < Iollngzy + 5 exph0),
By (6.5) we have f(z;t) = w(z;t) + h(z) — Av(x;t). Hence,
15 Bllen ey < 03 ) leogr) + Illongry + Mot Ollosey
< Kexp(3) + oy + 4 (Tonloopr) + 5 exp() )
< lhllcocxy + Allvollcocxy + 2K exp(At) := Co(T).

Since the functions h, vy and wy are uniquely determined by (X, w) and fj,
the constant Cy(T") only depends on (X,w) and fp. O

95



Lemma 6.5. Suppose the Chern-Yamabe flow exists on Qpr = X x [0,T)
for some T > 0. Moreover, suppose that

sup [|Sllcox) < C(T) < oo.
o<t<T

Then for any k € N there exists constant Cy(T') such that

sup [|.f(z;t)[[or(x) < Cr(T).
0<t<T

Proof. We first get the parabolic Hélder norm bound? for f. For any p > 1
and 0 <t < T,

17 lwerce) < Cp (15 )y + 188 £ )l o))
< ¢( sup I D)lloac) + sup 18(: t)lleoge) + I1S°@) oo )
0<t<T 0<t<T
< C(T).
By Sobolev embedding, there exists some o with 0 < a < 1,

sup || f(x;t)l|ca(x) < O(T).
0<t<T

Moreover, note that |0f/0t| = (n/2)|A — S| < C(T). Hence, we have

1fllcaxxjo) < C(T).
Let £ be any differential operator in x and t. A simple calculation shows
that
9
ot
By the interior Schauder estimate for parabolic equations (Theorem 4.9 in
[32]), for any 7,7" with 0 <7 <7/ < T, we have

(LF) = 5 exp(=2f /n) AS(L]) + S(LF) = =F exp(2f /n) (LS (w)).

ILfllc2ra(x ) < Csen(ILFlcoxxrry) + I1£SC (W)l ca(xx(rr)))

where the constant Cs;, depends on 7, 7/, [|S]|co(x x (7)) and || flce (x x (r.1))-
It then follows by the standard bootstrapping argument to obtain that for
any 7 > 0, k € N and 0 < a < 1, there exists constant C'(k, «,7,T') such
that

[ fllewtaxx(rmyy < Clk, a, 7, T).

3See the definition in Chapter IV, [32].
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Together with the short time existence near ¢ = 0, we have

sup || f(@;0)[lcx(x) < Cr(T) < 0.
0<t<T

O]

With Lemma 6.2 in hand, we only need S(x;t) being upper bounded
from infinity to obtain the C* estimate of the flow. Therefore, we have the
following long time existence result.

Proposition 6.6. The Chern-Yamabe flow exists as long as the mazimum
of Chern scalar curvature stays bounded.

We therefore put forward the following conjecture to fully resolve the
long time existence of the flow.

Conjecture 6.7. Suppose the Chern-Yamabe flow exists on Qp = X x[0,T)
form some T > 0. Then there exists some constant C(T) depending on T
such that

S(z;t) < C(T), V(z,t) € Qr.

7 Balanced Case

7.1 The variational functional

When the background metric is balanced, we have that AS = Ay is sym-
metric. The partial differential equation (5.4) with normalization (5.7) is
the Euler-Lagrange equation for the following functional

F() = [ VirBan-+ [ 8°) fn (71)

with constraint

/ exp(2f/n)dp = 1. (7.2)
b's

To solve the partial differential equation (5.4) is then equivalent to find a
critical point of the functional (7.1) with constraint (7.2).
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7.2 Monotonicity along the Chern-Yamabe flow

Let F(t) = F(f(:;t)). We have the following lemma showing the monotonic-
ity of the F functional along the flow.

Lemma 7.1. p
—F() =- /X(S — M) exp(2f/n)dp.

Proof. First, by Lemma 6.1, we have

2 exp(2f/n)du = 0.

x Ot
Hence,
d _ [ of, C
GFO = [ G (Baf 5% du
0
= [ P aur + 89w -Aexplas/m)dn
X
= —/ (S — N2 exp(2f/n)du < 0.
X
The proof is finished. O

7.3 Regarding the lower bound of the functional

As the functional is decreasing along the flow, it would be nice if the func-
tional could be bounded from below. This is true when lambda < 0, but
not the case when A > 0 and the complex dimension n > 2.

Proposition 7.2. Suppose the Gauduchon degree A < 0, then there exists
some constants 0 < ¢ < 1/2 and C such that

F(f) > e /X dfdp— C (7.3)

for any f with the normalization [y, exp(2f/n)dp = 1.

Proof. Let h be the solution to Ah = S®—X. Note that [, fdu < 0 by
Jensen inequality. Hence,

F) =5 [ i+ [ SOV fdusn [ pa
1
> 5 [ larEdn— [ i (7.4)

> [ Jdrfdn-c
X
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Proposition 7.3. For (X,w) with complex dimension n > 2. Suppose the
Gauduchon degree A > 0, we have

inf {]—'(f) L f e C(X) with /Xexp(Qf/n)du _ 1} _ .

Proof. We will construct a family of Lipschitz functions { f,} parameterized
by a positive real number r, each of which satisfies the constraint (7.2),
yet lim, o F(f,) = —oo. Choose an arbitrary point p € X as the center.
The function f,(x) is defined as constants both inside the geodesic ball B, (p)
and outside the larger ball Bs,(p), while interpolated linearly on the annulus

Bar(p)/ B (p), namely,

Cr, x| <r
fr(z) = (logr—cr)(|x|/r—1)—|—cr, r<|z| <2r
logr, |z| > 2r

where |z| denotes the distance to the center of the geodesic ball and ¢, is
a constant depending on r. Choose the radius r sufficiently small, then the
geodesic ball B,.(0) is close to a Euclidean ball and logr < 0. The constant
¢ is determined so that

/ exp(2fr/n)dp = 1.
X

We claim "
¢ < —n?logr — §logC

for some dimensional constant C' = C(n). To see this,

1= / exp(2f,/n)du > / exp(2¢, /n)du = exp(2¢, /n) Vol(B,(p)).
X Br(p)

Hence,
e < —g log Vol(B,.(p)) = —g log(Cr*™) = —n2logr — glog C.

Now we show that lim,_,o F[f,] = —oc. First of all, we have

F(f,) = /X df, 2 dp + /X SC(w) frdy

- / df, 2dp + / SC(w) frdp (7.5)
Bar(p)\Br(p)

B2r(p)

-+ / SC(w) frdpu.
X\Ba,(p)
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By continuity there exists some rg > 0 such that
C A
S¥(w)dp < =,Vr < ry.
Bar(p) 2

Note that A = [, S¢(w) dpu, hence,

/ SC(w) dp > A,Vrgro.
X\ B2, (p) 2

Take r sufficiently small so that logr < 0. Then ¢, > 0 since

/ exp(2f,/n)dp = 1.
b's
It follows that
cr —logr)?
Fh) = (Tz)VOl (Bar()\B;(p))
A
+IS€(w) | coxyer VOl (Bar(p)) + 5 log r
A
< Clep —logr)*r" =2 + Crte, + 5 log r

A
=5 logr + O(r*"2logr).

When n > 2, we have lim, o 7" ~2logr = 0. The leading term for F(f,) is
%log r. Therefore, lim,_,o F(f,) = —oo. This finishes the proof. O

7.4 Second variation

Lemma 7.4. The second variation of F functional is given by

52 F (u,v) | = /

X

((du, dv)y, — % exp(2f/n)uv) du (7.7)

for any u and v in the tangent space of f, namely

/ exp(2f/n)udp =0 and / exp(2f/n)vdp = 0.
X X

Proof. Note that the unconstrained functional is

() = ;/X]df\idu+/XSC(w) fdu—’;i (/Xexp(Qf/n)du—l).

The second variation follows by simple calculation. O
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Given some specific direction v, we have the second variation at v as

B2 F(v) = /X <|dv|2 _ 27% exp(2 f/n)112> .

It’s interesting that the positivity of the second variation may have some
relation with the Rayleigh quotient, or the first principal eigenvalue of the
Laplacian operator A;. In the special case when the background Gauduchon
metric is itself a constant Chern-Scalar curvature metric, we have f = 0 is
a critical point.

If \y > 2\/n, then

SPF () > (M — 2)\/n)/ v2dp >0, Yo with / vdp =0
b'e X
shows that f = 0 is a local minimum.

If \y < 2)\/n, then we can take some non-zero eigenvector vy with
Jx vodp = 0 and

52 F (ug) < (A1 — 2)/n) / v2dp < 0.
X

Hence, f = 0 is a saddle point and unstable.

To construct concrete example for the above argument, one can consider
P! x P! with P! and P! both endowed with the standard Fubini-Study
metrics. For such family of complex manifolds, the background Fubini Study
metrics wy are constant Chern scalar curvature metrics; so we write down the
functional F with respect to the reference metric wy, and f = 0 represents
a constant scalar Chern curvature metric with F(0) = 0. By adjusting the
scaling parameter 6, it is not hard to adjust A\; and the total Chern scalar
curvature A such that —% + A < 0; this makes possible to find a sequence of
conformal factors fi that are arbitrarily close to f = 0, and with F(f) < 0.
Since the flow decreases the functional F, then the flow starting at fi will
not converge to f = 0. The conclusion we can draw is that saddle points are
possible and we should not expect only local minima in general. Together
with the fact, proved in Lemma 7.1, that the F functional always is not
bounded from below, the techniques for only minima is not enough.

7.5 Under additional assumptions

We have already shown in Lemma 7.3 that the functional F is unbounded
from below. So it is impossible to find a global minimum. Yet it is still

61



possible that the functional is bounded from below along the flow for some
specific initial value. In particular, if the flow finally converges to a solution,
one of the necessary conditions is that the functional is bounded under the
flow.
In this section we assume the flow exists on [0, 00) and
lim F(t) > C > —o0. (7.8)
t—o0
What can we say about the flow?
Since the functional is decreasing and bounded from below, we can find
a sequence of time slices {t;}, so that £F(t;) — 0. Let fr = f(tx) and
Sk = S(exp(2fx/n)w). Note that by Lemma 7.1,

%}"(t) =— /X(S — N2 exp(2f/n)dp = \* — /X S%exp(2f/n)dp.

On the other hand, by Lemma 6.2, we have S(x;t) > —C. Hence, we have

[ exvei/mdn =1,
X

/ SZ exp(2fx/n)dy — A* and Sy > —C, (7.9)
b's

|F(fr)l < C.

In this section we assume that there exists uniform upper bound for the
sequence {fi} in (7.9). We show that there exists a smooth solution to the
Chern-Yamabe equation 5.4. In what follows the constant C' may vary from
line to line.

Lemma 7.5. Suppose there is a sequence {fi} satisfying (7.9). Suppose
additionally there exists some constant Cy such that max,ex fr(x) < Co, Vk.
Then || fill gz < C.

Proof. First of all, we have

/ (S exp(2fr/n))?du < exp(QCo/n)/ S2 exp(2fi/n)dp < C.
X X

Note that Sg = exp(—2fx/n)(SC(w) —Afi), namely, Afy, = SC(w) =Sy exp(2fx/n).
Hence, we have [|Afg[|2(x) < C.

Claim. Let fr = fX frdp. There exists some constant C' > 0 such that
-C < fi <0.
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Proof of the Claim. First of all, since Vol(X) = 1, we have

exp(2f/n) = exp (/X(ka/n)du> < /Xexp(ka/n)du =1.

Hence, f, < 0.
For the other side, first note that
/X Sk exp(2fi/n) frdp
— [ -afe+ SC@Idn =27 (1) - [ (%@ N~ AR
* i y ) (7.10)
= 27() — [ Ahfi— Ao =27(5) — [ hAi— AT
X x
> 2F(fr) — Al o) 1A fll L2 (x) — Afe
>C = Ap.
On the other hand, since S > —C', we have
| Seexp(@fu/m) fudy
— [ (Se+ Cresp(2h/mifudn—C [ exp(@fi/n) i
X X (7.11)

< Cy exp(Co/n)/ Sk exp(fr/n)dp + CoC + C - %
X

< (Cy eXp(Co/n)</X 52 exp(2fk/n)d,u> i +C<C.

By (7.10) and (7.11), we obtain that fz > —C. This finishes the proof of
the Claim. ]

We continue our proof for the Lemma. By Poincare inequality, there
exists some constant C), so that

/ (fe = fr)?dp < Cp/ |V fr|?dp.
X X

On the other hand,

2 _ 1 2 ¢ 2
Jovsan= [ Cnnodn< g [ tans S [ @nan

63



Hence,
2 F 2 1 2 ng 2
/fkdu—fk S/ fkdﬂ+/(Afk) dp.
X 2 Jx 2 Jx
Hence,
[ sran<2m 4k [ andn (7.12)
X X

It then follows by Sobolev estimate that

Wl < C(Illzeen + 1AMkl 2 ) < C (1l + 1A Kl 20 ) < C-
This finishes the proof. O

Proposition 7.6. Suppose there is a sequence {fi} satisfying (7.9). Sup-
pose additionally there exists some constant Cy such that

< .
glé«%fk(x) < Co,Vk

Then there exists a function fo € C°°(X) which solves the differential equa-
tion (5.4).

Proof. By Lemma 7.5, we have || fi|g2(x) < C. Hence, by passing to a
subsequence if necessary, we have fr — fo weakly in H?(X) for some fa.
It follows that fi — foo strongly in L?(X) and Afy — Afs weakly in
L?(X). As a result of the strong convergence in L%(X), by passing to a
subsequence if necessary, we have fir — fo du-a.e.. Then by Egonov’s
theorem, for any § > 0, there exists a subset Q5 C X with Vol(X\Qs) < §,
such that fr — foo uniformly on Q5. We have

/Q (Afr — Sc(w))2 exp(—2fr/n)du

= /Q (Afr — SC(w))2 exp(—2foo/n)dp +/ (Afy — Sc(w)>2(€—2fk/n _ 6—2foo/n)d'u

Qs

> / (Afi = S9(w))? exp(—2fac/n)dp — Clle /M — e72/M|| 10 ).
Qs

Hence,

k—00

liminf/ (Afy, — SC(w))? exp(—2fx/n)du

Qs

> likminf/ (Afy, — SC(w))? exp(—2fno/n)dp
—00 Qs

> [ (Af = $5@)P exp(-2/n)dp
Qs
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Notice that
[ (@58 expl(-2gi/mdn = [ SEexp(zfi/mydn - 22, as b oc.
X X

Hence,

| (A = 80w) P exp(-2/m)du < X2
Qs
Let 6 — 0, we obtain that
/ (Ao — SC(w))2 exp(—2fae /m)dpt < N2 (7.13)
X

Note that fy — foo dp-a.e., and f < Cpy by assumption, we have fo < Cj
du-a.e.. Then by Dominance Convergence Theorem, we have

/ exp(2foo/n)dp:klim / exp(2fx/n)du = 1. (7.14)
X —0JX

By (7.13) and (7.14), we have

2

[ (87 = 89) trexp(2foc/m)) exp(-2foc/m)dp <0,

X
It follows that the equality holds and

Afoo — SC(w) +Xexp(2fao/n) = 0, du — a.e.. (7.15)

Since foo < Cp du-a.e., we have Afo, = S¢(w) —Aexp(2fs/n) € L=(X).
Hence, fo € W?P(X) for any p > 1. By Sobolev embedding theorem,
this implies that fo, € CY¥(X). Then Af,, € C1¥(X). By the standard

bootstrapping argument, we eventually have fo, € C°°(X). This finishes
the proof. O
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