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Abstract of the Dissertation

Extensions of the Mass Angular Momentum Inequality in Mathematical Relativity

by

Benjamin David Sokolowsky

Doctor of Philosophy

in

Mathematics

Stony Brook University

2019

Inequalities between mass, angular momentum, and charge are motivated by the cosmic censor-

ship conjecture in mathematical relativity. In this dissertation we provide several generalizations

which expand the class of data sets in which such inequalities are known to hold.

First, we expand the mass angular momentum inequality to manifolds with minimal surface

boundary. In particular we establish a precise mass lower bound for an asymptotically flat Rie-

mannian 3-manifold with nonnegative scalar curvature and minimal surface boundary, in terms of

angular momentum and charge. This result does not require the restrictive assumptions of sim-

ple connectivity and completeness, which are undesirable from both a mathematical and physical

perspective.

Second, we lay out an approach to strengthening the mass angular momentum inequality to the

so-called Penrose inequality with angular momentum and charge. Specifically a lower bound for the

ADM mass is established in terms of angular momentum, charge, and horizon area in the context of

maximal, axisymmetric initial data for the Einstein-Maxwell equations which satisfy the weak energy

condition. If, on the horizon, the given data agree to a certain extent with the associated model

Kerr-Newman data, then the inequality reduces to the Penrose inequality with angular momentum

and charge. In addition, a rigidity statement is also proven whereby equality is achieved if and only

if the data set arises from the canonical slice of a Kerr-Newman spacetime.

Finally, we extend a result of Chruściel concerning the existence of Brill coordinates. These

coordinates are generally assumed to exist in proofs of the mass angular momentum inequality;

thus we can remove this assumption in many cases. We consider simply connected, axisymmetric

initial data sets with finitely many asymptotically flat or asymptotically cylindrical ends. Finally

we show the extent to which Brill and similar coordinates are unique. A better understanding of

these coordinate systems should aid future efforts at proving the Penrose inequality with angular

momentum and charge.
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Chapter 1

Introduction and Results

Consider a simply connected, asymptotically flat initial data set (M, g, k, E,B) for the Einstein-

Maxwell equations. Here M is a Riemannian 3-manifold with metric g, k is a symmetric 2-tensor

representing the second fundamental form of the embedding into spacetime, and (E,B) represents

the electromagnetic field. The non-electromagnetic matter energy and momentum densities are given

by

16πµem = R+ (Trg k)2 − |k|2g − 2(|E|2g + |B|2g), 8πJem = divg(k − (Trg k)g) + 2E ×B, (1.0.1)

where R is the scalar curvature and E×B represents the cross product. It will be assumed that the

weak energy condition µem ≥ 0 holds, the data are maximal Trg k = 0, and that there is no charged

matter,

divg E = divg B = 0. (1.0.2)

In addition, the data are taken to be axisymmetric in that the isometry group of (M, g) admits a

subgroup isomorphic to U(1), such that all other quantities defining the data are invariant under

this U(1) action. The Killing field generator will be denoted by η. In particular, the following Lie

derivatives vanish

Lηg = Lηk = LηE = LηB = 0. (1.0.3)

Heuristic arguments of Penrose [54] may also be used to obtain a conjectured lower bound for

the ADM mass m of a spacetime in terms of total angular momentum J and charge Q, namely

m2 ≥ Q2 +
√
Q4 + 4J 2

2
, (1.0.4)

Furthermore, similar heuristic arguments of Penrose [54] suggest the stronger inequality

m ≥
√
A

16π
+
Q2

2
+
π(Q4 + 4J 2)

A
whenever A ≥ 4π

√
Q4 + 4J 2, (1.0.5)

where A is the event horizon cross-sectional area. The total angular momentum and charges take

the form

J =
1

8π

∫
S∞

(kij − (Trg k)gij)ν
iηj , Qe =

1

4π

∫
S∞

Eiν
i, Qb =

1

4π

∫
S∞

Biν
i, (1.0.6)
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with Q2 = Q2
e +Q2

b . Finally the ADM mass is defined by

m =
1

16π

∫
S∞

(gij,i − gii,j)νj . (1.0.7)

In these formulas S∞ represents the limit as r →∞ for coordinate spheres Sr in the asymptotic

end, and ν is the unit outer normal. The above definitions are valid for any asympotitaly flat ends

in a manifold. An end is asymptotically flat if it is diffeomorphic to R3 \ B(R) and has Cartesian

coordinates in which the above data satisfy

gij = δij + o`(r
− 1

2 ), ∂gij ∈ L2(Mend), kij = O`−1(r−λ), µem, J
i
em, Jem(η) ∈ L1(Mend),

(1.0.8)

Ei = O`−1(r−λ), Bi = O`−1(r−λ), λ >
3

2
, (1.0.9)

for some ` ≥ 5.1

Inequality (1.0.5) was proposed as a check on the final state conjecture and weak cosmic cen-

sorship, in that a counterexample would essentially disprove at least one of these grand conjectures.

Details concerning the physical motivation for the most general form of the Penrose inequality are

provided in [29]. Furthermore an independent motivation for inequality (1.0.5), based on Bekenstein’s

entropy bound [3], has been given in [42].

The purpose of this dissertation is to expand the scope in which Equations (1.0.4) and (1.0.5)

are known to hold. In Chapter 2 we investigate Equation (1.0.4) in the case where M has a minimal

surface boundary. Through the combined work of several authors [13, 15, 17, 22, 23, 48, 57], inequality

(1.0.4) has been established when the manifold (M, g) is simply connected, complete, and contains

another end which is either asymptotically flat or asymptotically cylindrical. The proof follows a

two step procedure, the first of which is to obtain an initial lower bound for the mass in terms a

renormalized harmonic map energy. The second consists of minimizing this energy, and showing that

the unique global minimizer is the singular harmonic map associated with extreme Kerr-Newman

data.

Simple connectivity is used to introduce a specialized coordinate system called Brill coordinates.

Brill coordinates are global coordinates (ρ, z, φ) on R3 less a finite set of points in which the metric

takes the form

g = e−2U+2α(dρ2 + dz2) + ρ2e−2U (dφ+Aρdρ+Azdz)
2. (1.0.10)

All functions are independent of φ and these coordinates are generally thought of as cylindrical

coordinates, with standard coordinate ranges ρ ∈ [0,∞), φ ∈ [0, 2π) and z ∈ (−∞,∞). The existence

of Brill coordinates allows for a simple bulk integral expression of the mass. The scalar curvature in

such a coordinate system is given by [7]

2e−2U+2αR = 8∆U − 4∆ρ,zα− 4|∇U |2 − ρ2e−2α (∂zAρ − ∂ρAz)2 , (1.0.11)

where ∆ is the Laplacian with respect to the flat metric on R3 and ∆ρ,z = ∂2
ρ + ∂2

z . This form of the

scalar curvature will be used repeatedly.

1Here f = ok(r−`) means that if s ≤ k and ∂i1 , ∂i2 , ..., ∂is are coordinate vector fields, then ∂i1∂i2∂isf =
o(r−`−s). We will use slightly different versions of this notations throughout the text, and will include the
relevant footnote when the meaning is not obvious
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Completeness and the asymptotics of the other end also play an important role in that they pre-

vent the appearance of boundary terms in the formula for the mass. Furthermore, simple connectivity

is used in the second step to ensure the existence of a twist potential to efficiently encode angular

momentum and construct the harmonic map energy. Thus, these hypotheses play fundamental roles

in the proof and whether they can be removed has been unclear.

The arguments motivating inequality (1.0.4) require no such hypotheses, and for this reason

it has been conjectured that these assumptions are unnecessary. They are also unnatural as the

positive mass theorem itself does not require such restrictions. In particular, it is important to

allow the initial data to have minimal surface boundary, as these may be interpreted as cross-

sections of the event horizon. Furthermore, significant generalizations of the positive mass theorem,

including the positive mass theorem with charge [34] and the Penrose inequality (with charge) [49],

require a minimal surface boundary to be meaningful. Additionally, from a physical perspective it

is undesirable to necessitate the presence of a secondary asymptotic end, as this typically represents

the interior of a black hole. Indeed, from the point of view of an outside observer, it is not possible

to know the structure of spacetime contained within the event horizon. As for simple connectivity,

although topological censorship [31] implies that this is an appropriate assumption for initial data

within the domain of outer communication, it says nothing about the fundamental group of the

interior black hole region. In fact, it suggests that all nontrivial topology is contained within the

black hole, and therefore the combined assumptions of simple connectivity, completeness, and the

existence of a secondary asymptotically flat end are not physically justified.

We establish (1.0.4) in generality without the unwanted hypotheses discussed above, for a single

black hole. We also obtain a mass lower bound in the multi-black hole case consistent with the lower

bound proved under the more restrictive hypotheses in [17, 48]. The main theorem of Chapter 2 is

the following:

Theorem 1.0.1. Let (M, g, k, E,B) be an axisymmetric, maximal initial data set for the Einstein-

Maxwell equations with one asymptotically flat end, minimal surface boundary, and satisfying µem ≥
0 in addition to Jem(η) = divg E = divg B = 0. If either

(i) the outermost minimal surface has a single component, or

(ii) the boundary ∂M has one component and M is simply connected,

then

m2 >
Q2 +

√
Q4 + 4J 2

2
. (1.0.12)

The first point to note is that there is a strict inequality in (1.0.12). This is to be expected since

from the heuristic physical arguments leading to (1.0.4), equality should only be achieved if the initial

data agree with the canonical slice of an extreme Kerr-Newman spacetime. However the extreme

Kerr-Newman data do not possess a compact minimal surface, but rather have a cylindrical end,

and therefore do not satisfy the hypotheses of Theorem 1.0.1. The minimal surface boundary, which

could consist of many components, together with the asymptotically flat end guarantee the existence

of an outermost minimal surface [30], and the assumption that it has one component is analogous to

the case of the Penrose inequality treated by Huisken and Ilmanen [40]. In order to treat (1.0.12) in

the presence of a multicomponent outermost minimal surface it is most likely that new ideas will be
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needed, as was the case for the multiple black hole version of the Penrose inequality established by

Bray [4]. It is interesting to note that unlike the Penrose inequality, (1.0.12) continues to hold if the

boundary ∂M is merely a single component minimal surface but not necessarily outer minimizing.

In fact under the assumption treated in (ii), one can drop the hypothesis on the outermost minimal

surface and replace it with simple connectivity of M to obtain the same conclusion.

The proof of Theorem 1.0.1 is based on a doubling procedure in so-called pseudospherical coordi-

nates, where the data are reflected across the outermost minimal surface. The doubled pseudospher-

ical coordinates yield precisely a Brill coordinate system discussed above. This doubling requires

axisymmetry of the outermost minimal surface, a fact that was proven by Bryden. Since it does

not appear in the literature, Bryden’s proof is included here, see Proposition 2.2.1. This result is

of independent interest as it may be applied elsewhere, for example to extensions of the Penrose

inequality that include contributions from angular momentum.

We are able to extend Theorem 1.0.1 to allow for certain types of multiple black holes by including

a mixture of boundary components and extra asymptotically flat as well as asymptotically cylindrical

ends (see [48]). However, as in the case of a complete, simply connected initial data set, the presence

of multiple black holes does not immediately yield an explicit expression for the mass lower bound

[17, 48]. Rather, the lower bound is given in terms of the reduced harmonic energy of a Weinstein

stationary solution [61] to the Einstein-Maxwell equations having the same angular momentum and

charge for each black hole. This harmonic energy is denoted by F , and is a function of the angular

momenta and charge. It is conjectured that the resulting inequality coincides with the expression

(1.0.12) in which J and Q are the sums of the angular momenta and charge from the different

horizon components.

Theorem 1.0.2. Let (M, g, k, E,B) be an axisymmetric, maximal, asymptotically flat initial data

set for the Einstein-Maxwell equations having a minimal surface boundary and a finite number of

additional ends each of which is asymptotically flat or asymptotically cylindrical. Assume further

that µem ≥ 0 in addition to Jem(η) = divg E = divg B = 0. If either

(i) at most one component of the outermost minimal surface encloses components of the boundary

∂M or nonsimply connected domains, or

(ii) the boundary ∂M has one component and M is simply connected,

then

m ≥ F(J1, . . . ,JN , Q1
e, . . . , Q

N
e , Q

1
b , . . . , Q

N
b ) (1.0.13)

where N is the combined number of additional ends and components of ∂M and Ji, Qie, Qib represent

the angular momentum and charge associated with each of these ends and boundary components.

In Chapter 3 we lay out an approach to prove Equation (1.0.5) which is successful in a special

case. In order to prove Penrose type inequalities it is customary to replace A in the maximal case

with the area of the outermost minimal surface. Therefore, the manifold (M, g) will be taken to

have a boundary consisting of a single component minimal surface. Note that simple connectivity

then implies that the boundary must be topologically a 2-sphere, regardless of whether this surface

is stable. Moreover, the auxiliary inequality of (1.0.5) is not needed in the single black hole case,

since when the minimal surface is stable the area-angular momentum-charge inequality is known to

be automatically satisfied [24, 25, 21].

4



The Penrose inequality without angular momentum and charge was established in the time-

symmetric case through the groundbreaking work of Bray [4] and Huisken-Ilmanen [40]. As shown

in [62], the addition of charge to this inequality requires the additional assumption of the area-

charge inequality in the multiple black hole case. This version of the Penrose inequality was then

established in [49, 51] by generalizing Bray’s conformal flow. However including horizon area together

with angular momentum is quite difficult, and there appear to be only two results in the literature

to date in this direction [1, 2], and the approach taken in those articles is based on inverse mean

curvature flow. In contrast, the present paper focuses on the techniques used to establish the mass-

angular momentum inequalities, namely minimizing renormalized harmonic energies. We refer the

reader to the excellent survey [52] for a more detailed account concerning the status of the Penrose

inequality.

The results presented here rely on the existence of Weyl coordinates, cylindrical type coordinates

associated with the study of stationary axisymmetric black holes. The coordinates play an important

role by helping to reduce the Einstein equations to the study of a harmonic map. Details describing

this coordinate system for the present situation are discussed. It has been shown in [19] that such a

coordinate system can be derived from pseudospherical coordinates, and exist for a general class of

asymptotically flat initial data sets. In these coordinates the metric is again in the form of Equation

(1.0.10). The minimal surface horizon is identified with the interval (−m0,m0) on the z-axis. The

constant m0 > 0 is uniquely determined by the geometry of the initial data, and 2m0 will be referred

to as the horizon rod length. The functions U and α exhibit singular behavior at the horizon and may

be modeled by the corresponding functions U0, α0 arising from the Schwarzschild solution having

mass m0. We may then write U = U0 + U and α = α0 + α, where the remainders U and α are now

uniformly bounded and possess bounded first derivatives even at the horizon. These ‘renormalized’

functions measure the deviation from the Schwarzschild solution. An important combination of these

two which appears in the horizon area formula is β := α− 2U . Our main result may then be stated

as follows.

Theorem 1.0.3. Let (M, g, k, E,B) be a simply connected, axisymmetric, maximal, asymptotically

flat initial data set for the Einstein-Maxwell equations with minimal surface boundary, having non-

negative energy density µem ≥ 0, no charged matter, and satisfying the compatibility condition for

the existence of a twist potential Jem(η) = 0. Let Ak and βk denote the horizon area and Weyl

coordinate function for the unique Kerr-Newman black hole sharing the same angular momentum,

charge, and horizon rod length as the initial data set. Then

m ≥

√
Ak
16π

+
Q2

2
+
π(Q4 + 4J 2)

Ak
+

1

4

∫ m0

−m0

(β(0, z)− βk(0, z))dz, (1.0.14)

and equality occurs if and only if the initial data agree with that of the corresponding Kerr-Newman

spacetime.

The hypotheses of this theorem are in agreement with those expected for the conjectured Penrose

inequality with angular momentum and charge, except for one missing statement. Namely, in the

above result the minimal surface boundary is not required to be outerminimizing, meaning it is not

required to have the property that every surface which encloses it has area greater than or equal to

A = |∂M |. Theorem 1.0.3 holds under more general circumstances than those for which the Penrose

5



inequality can be valid, and so the resulting inequality (1.0.14) must differ from (1.0.5). Indeed, the

most apparent difference arises from the presence of the horizon rod integral involving the functions

β and βk, which does not appear in the Penrose inequality. This integral measures the discrepancy

between the initial data and the model Kerr-Newman solution at the horizon. It is unknown at

this time whether this horizon integral is nonnegative under the current hypotheses. One may

speculate that nonnegativity is not necessarily guaranteed unless the boundary is outerminimizing.

Another difference between (1.0.14) and the conjectured inequality is the presence of the Kerr-

Newman horizon area Ak instead of A, although the algebraic structure of this part of the inequality is

the same. Despite these differences, one may achieve the desired Penrose inequality under additional

assumptions. In particular, if we assume that the initial data is appropriately similar to the model

Kerr-Newman solution at the horizon then the conjectured inequality follows.

Corollary 1.0.4. Under the hypotheses of Theorem 1.0.3, assume further that A ≥ Ak and β is

constant on the horizon rod, then

m ≥

√
Ak
16π

+
Q2

2
+
π(Q4 + 4J 2)

Ak
, (1.0.15)

and equality occurs if and only if the initial data agree with that of the corresponding Kerr-Newman

spacetime. In particular, if A = Ak then the Penrose inequality with angular momentum and charge

holds.

This type of result may be considered a generalization of that of Gibbons and Holzegel in [35],

who established the Penrose inequality without contributions from angular momentum and charge by

utilizing the advantages of Weyl coordinates. In that paper they also had a more stringent condition

than that of Corollary 1.0.4, concerning the agreement between the initial data and associated

Schwarzschild solution on the horizon. Another related result is that of Chrusciel and Nguyen [19]

who utilize pseudospherical coordinates, and obtain a mass lower bound in terms of the horizon rod

length.

Finally in Chapter 4 we expand the scope of manifolds for which the previously mentioned Brill

coordinates are known to exist. In particular we show that they exist for a large class of manifolds

with both asymptotically flat and asymptotically cylindrical ends.

In [13] Chruściel establishes the existence of a Brill coordinate system for axisymmetric, simply

connected initial data sets (M3, g) with one or many asymptotically flat ends. We amend Chruściel’s

arguments to show the existence of a Brill coordinate system when asymptotically cylindrical ends

are allowed. We show the following.

Theorem 1.0.5. Let (M, g) be of asymptotic order k, for k ≥ 7, with n ends characterized by

(hi, fi, `i). Then there exists a global coordinate system (ρ, z, φ) for M in which g takes the form of

Equation (1.0.10). The coordinates are defined for (ρ, z) ∈ (R+×R)\{(0, ai)}Ni=2, and φ ∈ [0, 2π). If

we define r =
√
ρ2 + z2, ri =

√
ρ2 − (z − ai)2, and θi = arctan( ρ

z−ai ), then the metric components

satisfy

Az = ok−3(r−`1−1); Aρ = ρok−3(r−`1−2); U = ok−3(r−`1); α = ok−4(r−`1) as r →∞. (1.0.16)

6



For each ai representing an asymptotically flat end, the metric components satisfy,

U = 2 log ri + Ci + ok−4(r`ii ); α = ok−4(r`ii ), as ri → 0, (1.0.17)

and for each ai representing an asymptotically cylindrical end, the components satisfy,

U = log ri − log hi(θi)− log
fi(θi)

sin θi
+ ok−4(r`ii ); α = log

fi(θi)

sin θi
+ ok−4(r`ii ), as ri → 0.2 (1.0.18)

A precise definition of an asymptotically cylindrical end is giving in Chapter 4. We conclude

with some immediate applications of the above existence theorem.

2In [13] the case ` = 1
2 is explicitly treated, as this is the most important case for the ADM mass. However

as stated in [13], only minor modifications show that the arguments are valid for any ` ∈ (0, 1)

7



Chapter 2

The Mass Angular Momentum Charge

Inequality for Manifolds with

Boundary

2.1 The Doubling Procedure in Pseudospherical Coor-

dinates

Consider the setting of case (ii) in Theorem 1.0.1 where (M, g) is axisymmetric, asymptotically

flat, and simply connected with a single component minimal surface boundary. It follows from

[19, Theorem 2.2] that M is diffeomorphic to R3 \ Bm1/2(0), and there exists a global system of

cylindrical-type coordinates (ρ, z, φ) on this domain such that the metric takes the form of Equation

(1.0.10). The isothermal part of Equation (1.0.10) is the metric on the orbit space M/U(1), and the

remaining part arises from the dual 1-form ρ2e−2U (dφ+Aρdρ+Azdz) to the Killing field. With the

standard transformation ρ = r sin θ, z = r cos θ producing spherical-type coordinates (r, θ, φ) with

ranges m1/2 ≤ r < ∞, 0 ≤ θ ≤ π, and 0 ≤ φ < 2π, the fall-off of the metric coefficients in the

asymptotically flat end is given by

U = o`−3(r−
1
2 ), α = o`−4(r−

1
2 ), Aρ = ρo`−3(r−

5
2 ), Az = o`−3(r−

3
2 ). (2.1.1)

Furthermore α = 0 on the axis ρ = 0, and all coefficients are independent of φ. Note also that

the value m1 > 0 is uniquely determined, and the existence of pseudospherical coordinates does not

require the boundary ∂M to be minimal. The mean curvature of a coordinate sphere Sr is

H =
2/r + ∂r(α− 2U)√
e−2U+2α + ρ2e−2UA2

r

(2.1.2)

where Ar = sin θAρ + cos θAz, so the assumption of a minimal boundary ∂M = Sm1/2 is equivalent

to

∂r

(
U − 1

2
α

)
=

2

m1
. (2.1.3)

8



A particularly advantageous feature of the metric structure (1.0.10) is the simple expression

obtained for the scalar curvature [23]

2e−2U+2αR = 8∆U − 4∆ρ,zα− 4|∇U |2 − ρ2e−2α (Aρ,z −Az,ρ)2 , (2.1.4)

where ∆ is the Laplacian on R3 with respect to the flat metric δ = dρ2+dz2+ρ2dφ2 and ∆ρ,z = ∂2
ρ+∂2

z .

Moreover the constraint equation (1.0.1), and the assumptions of a maximal slice Tr k = 0 and

nonnegative energy density µem ≥ 0 imply that

R =16πµem + |k|2 + 2
(
|E|2 + |B|2

)
≥2

e6U−2α

ρ4
|∇v + χ∇ψ − ψ∇χ|2 + 2

e4U−2α

ρ2

(
|∇χ|2 + |∇ψ|2

)
,

(2.1.5)

where v, χ, and ψ are potential functions for angular momentum, electric charge, and magnetic

charge respectively. More precisely, the divergence free property of the electric and magnetic fields

combined with Cartan’s magic formula shows that the 1-forms ιη ? E and ιη ? B are closed, where ι

and ? denote interior product and the Hodge star operation. Hence simple connectivity yields global

potentials satisfying

dχ = ιη ? E, dψ = ιη ? B. (2.1.6)

Furthermore, as shown in [48] the 1-form 2?(k(η)∧η)−χdψ+ψdχ is closed exactly when Jem(η) = 0.

Therefore under the hypotheses of Theorem 1.0.1 there exists a global twist potential satisfying

dv = 2 ? (k(η) ∧ η)− χdψ + ψdχ. (2.1.7)

The inequality in (2.1.5) then follows in a straightforward way from (2.1.6) and (2.1.7). Moreover, if

ω = dv + χdψ − ψdχ then asymptotics [48] for the potentials are expressed by

|ω| = ρ2O(r−λ), |∇χ|+ |∇ψ| = ρO(r−λ) as r →∞, (2.1.8)

|ω| = O(ρ2), |∇χ|+ |∇ψ| = O(ρ) as ρ→ 0 in R3 \Bm1/2(0). (2.1.9)

In addition, since |η| = 0 on the z-axis all the potential functions are constant there, and the

difference of these constants associated with the two connected components I+ = {ρ = 0, z > m1/2}
and I− = {ρ = 0, z < −m1/2} of the axis yield the angular momentum and charges

J =
1

4

(
v|I− − v|I+

)
, Qe =

1

2

(
χ|I− − χ|I+

)
, Qb =

1

2

(
ψ|I− − ψ|I+

)
. (2.1.10)

Typically a mass lower bound in terms of a harmonic map energy is obtained by integrating

(2.1.4) over M and applying a version of (2.1.5). This works well when (M, g) is complete, however

here the presence of a boundary leads to boundary terms which are not desirable when minimizing

the harmonic map energy. Therefore we seek to double the manifold across its boundary, and show

that the same strategy may be carried out on the doubled manifold with two ends. The primary

difficulty arises from the lack of regularity across the doubling surface. Nevertheless we show that

the minimal surface hypothesis is sufficient for the argument to go through.

Consider the conformal map f : Bm1/2 \ {0} → R3 \Bm1/2 given by spherical inversion

f(r̃, θ̃, φ̃) =

((m1

2

)2 1

r̃
, θ̃, φ̃

)
, (2.1.11)
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which is expressed in cylindrical coordinates as

ρ =
(m1

2

)2 ρ̃

r̃2
, z =

(m1

2

)2 z̃

r̃2
, φ = φ̃. (2.1.12)

Pulling back the metric to Bm1/2 \ {0} yields

g̃ := f∗g = e−2Ũ+2α̃(dρ̃2 + dz̃2) + ρ̃2e−2Ũ (dφ̃+ Ãρdρ̃+ Ãzdz̃)
2, (2.1.13)

where

Ũ = 2 log r̃ + 2 log(2/m1) + U ◦ f, α̃ = α ◦ f, (2.1.14)

Ãρ = r̃−4

(
2

m1

)2 [
(z̃2 − ρ̃2)Aρ − 2ρ̃Az

]
, Ãz = r̃−4

(
2

m1

)2 [
(ρ̃2 − z̃2)Az − 2z̃Aρ

]
. (2.1.15)

This leads to a metric and potentials globally defined on the complement of the origin

ḡ =

{
g on R3 \Bm1/2,

g̃ on Bm1/2 \ {0}.
(2.1.16)

Similarly, the potentials may also be extended to the ball by setting ṽ = v ◦ f , χ̃ = χ ◦ f , ψ̃ = ψ ◦ f
in Bm1/2 \ {0}, and the corresponding functions defined on R3 \ {0} will be denoted v̄, χ̄, and ψ̄.

These functions and the metric ḡ are C0,1 and smooth away from the reflection sphere Sm1/2.

The form of the metric (2.1.13) guarantees that the scalar curvature of ḡ satisfies the equation

(2.1.4) on all of R3 \ {0}. Moreover it also satisfies the lower bound in (2.1.5). To see this observe

that

|∇χ|2 ◦ f = (∂ρχ)2 ◦ f + (∂zχ)2 ◦ f =

(
2

m1

)4

r̃4
[
(∂ρ̃χ̃)2 + (∂z̃χ̃)2

]
=

(
2

m1

)4

r̃4|∇̃χ̃|2, (2.1.17)

and similarly

|∇v + χ∇ψ − ψ∇χ|2 ◦ f =

(
2

m1

)4

r̃4|∇̃ṽ + χ̃∇̃ψ̃ − ψ̃∇̃χ̃|2. (2.1.18)

Combining this with (2.1.5), (2.1.12), and (2.1.14) shows that in Bm1/2 \ {0}

R̃ =R ◦ f

≥2
e6U◦f−2α◦f

(ρ ◦ f)4
|∇v + χ∇ψ − ψ∇χ|2 ◦ f + 2

e4U◦f−2α◦f

(ρ ◦ f)2

(
|∇χ|2 ◦ f + |∇ψ|2 ◦ f

)
=2

e6Ũ−2α̃

ρ̃4
|∇̃ṽ + χ̃∇̃ψ̃ − ψ̃∇̃χ̃|2 + 2

e4Ũ−2α̃

ρ̃2

(
|∇̃χ̃|2 + |∇̃ψ̃|2

)
.

(2.1.19)

It follows that the scalar curvature of the doubled metric ḡ satisfies the desired lower bound on

R3 \ {0} away from the sphere Sm1/2. Although the metric is not sufficiently regular across this

sphere to have a pointwise defined scalar curvature on this surface, the fact that it is a minimal

surface with respect to both inner and outer domains guarantees that R̄ satisfies the inequality

distributionally. Furthermore the minimal surface property allows for the fundamental mass lower

bound in terms of scalar curvature, despite the lack of metric regularity.
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In order to establish the mass lower bound it is necessary to note that the doubled manifold

(M̄, ḡ), where M̄ = R3 \ {0}, possesses two asymptotically flat ends. Indeed, at the additional end

near the origin the metric coefficients and potentials satisfy the asymptotics

Ū = 2 log r + C + o1(r
1
2 ), ᾱ = o1(r

1
2 ), Āρ = ρo1(r−

5
2 ), Āz = o1(r−

3
2 ), (2.1.20)

|ω̄| = ρ2O(rλ−6), |∇χ̄|+ |∇ψ̄| = ρO(rλ−4) as r → 0, (2.1.21)

for some constant C. Here and in what follows, unless stated otherwise, the tilde notation will be

removed from coordinates within the domain Bm1/2 \ {0}.

Lemma 2.1.1. The doubled manifold (M̄, ḡ) possesses two asymptotically flat ends, and the mass

is given by

m =
1

32π

∫
R3

(
2e−2Ū+2ᾱ R̄+ 4|∇Ū |2 + ρ2e−2ᾱ(Āρ,z − Āz,ρ)2

)
dx, (2.1.22)

where dx is the Euclidean volume element.

Proof. Although the metric ḡ is only Lipschitz across Sm1/2, the fact that this sphere is a minimal

surface guarantees that a particular combination of coefficients has improved regularity, namely

Ū − 1
2 ᾱ ∈ C

1,1. Moreover, this is all that is needed to establish (2.1.22).

First observe that in light of (2.1.3)

lim
r→m1

2

+
∂r

(
Ū − 1

2
ᾱ

)
=

2

m1
. (2.1.23)

It suffices then to show that the limit from inside Bm1/2 yields the same value. For emphasis we will

use the tilde notation to perform this computation. By (2.1.14)

∂r̃Ũ =
2

r̃
+ ∂rU

∂r

∂r̃
=

2

r̃
−
(m1

2

)2 1

r̃2
∂rU. (2.1.24)

Therefore (2.1.3) implies

∂r̃Ũ |r̃=m1
2

=
4

m1
− ∂rU |r=m1

2
=

2

m1
− 1

2
∂rα|r=m1

2
. (2.1.25)

On the other hand

∂r̃α̃ = −
(m1

2

)2 1

r̃2
∂rα, (2.1.26)

and therefore the desired conclusion follows

lim
r→m1

2

−
∂r

(
Ū − 1

2
ᾱ

)
=

2

m1
. (2.1.27)

We will now show that (2.1.22) holds. According to [13]

m = lim
r→∞

1

4π

(∫
Sr

∂r

(
Ū − 1

2
ᾱ

)
+

1

2

∫
Wr

ᾱ

ρ

)
, (2.1.28)
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where Wr = {ρ = r,−r < z < r} is the wall of the cylinder or radius r. Next observe that (2.1.23)

and (2.1.27) yield∫
Sr

∂r

(
Ū − 1

2
ᾱ

)
=

∫
Br\Bm1/2

∆

(
Ū − 1

2
ᾱ

)
dx+ lim

r→m1
2

+

∫
Sr

∂r

(
Ū − 1

2
ᾱ

)
=

∫
Br\Bm1/2

∆

(
Ū − 1

2
ᾱ

)
dx+ lim

r→m1
2

−

∫
Sr

∂r

(
Ū − 1

2
ᾱ

)
=

∫
Br\Bm1/2

∆

(
Ū − 1

2
ᾱ

)
dx+

∫
Bm1/2

∆

(
Ū − 1

2
ᾱ

)
dx,

(2.1.29)

since the asymptotics (2.1.20) show that

lim
r→0

∫
Sr

∂r

(
Ū − 1

2
ᾱ

)
= 0. (2.1.30)

Moreover, since ᾱ is continuous across Sm1/2, vanishes away from the origin on the z-axis, and

satisfies (2.1.20)

lim
r→∞

∫
Wr

ᾱ

ρ
=

∫
R3

1

ρ
∂ρᾱdx. (2.1.31)

Finally, since (2.1.4) holds globally on M̄ we have

∆

(
Ū − 1

2
ᾱ

)
+

1

2ρ
∂ρᾱ = ∆Ū − 1

2
∆ρ,zᾱ =

1

4
e−2Ū+2ᾱR̄+

1

2
|∇Ū |2 +

1

8
ρ2e−2ᾱ

(
Āρ,z − Āz,ρ

)2
. (2.1.32)

The desired mass formula (2.1.22) now follows by combining (2.1.28), (2.1.29), (2.1.31), and (2.1.32).

Lemma 2.1.1 relates the mass to an energy functional with the help of (2.1.5) and (2.1.19).

Namely together they imply

m ≥ I(Ψ), (2.1.33)

where Ψ = (Ū , v̄, χ̄, ψ̄) and

I(Ψ) =
1

8π

∫
R3

(
|∇Ū |2 +

e4Ū

ρ4
|∇v̄ + χ̄∇ψ̄ − ψ̄∇χ̄|2 +

e2Ū

ρ2

(
|∇χ̄|2 + |∇ψ̄|2

))
dx. (2.1.34)

The functional I may be interpreted as the reduced harmonic energy [48] for maps Ψ : R3\{0} → H2
C

into the complex hyperbolic plane. Note that the asymptotics (2.1.1), (2.1.8), (2.1.20), and (2.1.21)

guarantee that I(Ψ) is finite precisely when λ > 3
2 .

Proof of Theorem 1.0.1 (ii). Since the map Ψ is smooth away from the sphere Sm1/2, Lipschitz across

this surface, and satisfies the asymptotics (2.1.1), (2.1.8), (2.1.9), (2.1.20), (2.1.21), the gap bound

of Schoen and Zhou [57] applies to yield

I(Ψ)− I(Ψ0) ≥ C
(∫

R3

dist6
H2

C
(Ψ,Ψ0)dx

) 1
3

, (2.1.35)
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where Ψ0 is the renormalized harmonic map associated with the extreme Kerr-Newman black hole

possessing the same angular momentum and charge as Ψ, and distHC denotes distance in the complex

hyperbolic plane. In particular, together with (2.1.33) we obtain

m ≥ I(Ψ0). (2.1.36)

The desired inequality (1.0.12) now follows since

I(Ψ0)2 =
Q2 +

√
Q4 + 4J 2

2
. (2.1.37)

Consider now the case in which equality holds in (1.0.12). This implies, with the help of (2.1.33),

(2.1.35), and (2.1.37), that Ψ = Ψ0 and in particular U = U0. However this is a contradiction

since the asymptotics (2.1.20) show that U = 2 log r + O(1) as r → 0, whereas the corresponding

asymptotics for the extreme Kerr-Newman map are given by U0 = log r+O(1). This difference arises

from the fact that Ψ arises from an asymptotically flat geometry near the origin, while the extreme

Kerr-Newman initial data possess instead an asymptotically cylindrical end in this location.

2.2 The Outermost Minimal Surface in Axisymmetry

Let (M, g) be as in case (i) in Theorem 1.0.1. Since this manifold is asymptotically flat and possesses

a minimal surface boundary, there exists a unique outermost minimal surface [30, 40] which is a

compact embedded smooth hypersurface Σ. The term outermost refers to the fact that there are

no other minimal surfaces homologous to Σ which lie outside it with respect to the asymptotic end.

The set M \Σ consists of one unbounded component, and perhaps several bounded components the

union of which will be denoted by Ω, so that ∂Ω = Σ. Each component of the outermost minimal

surface must be a topological 2-sphere [33], since Σ is outer area minimizing in that it has the

least area among all surfaces which enclose it. Furthermore, according to [40, Lemma 4.1] M \ Σ is

diffeomorphic to the complement of a finite number of open 3-balls in R3 with disjoint closure. Here

we show that the property of axisymmetry for the ambient manifold descends to Σ.

Proposition 2.2.1. If (M, g) is axisymmetric then the outermost minimal surface is also axisym-

metric.

Proof. Suppose that the outermost minimal surface Σ is not axisymmetric. Let ϕt denote the flow

of the axisymmetric Killing field η, so that ∂tϕt = η ◦ ϕt. Lack of axisymmetry implies that η is

not tangential to Σ at all points. Therefore there exists a nonzero t0 ∼ 0 such that a domain within

ϕt0(Σ) lies outside of Σ. Note that ϕt is a flow by isometries so ϕt0(Σ) is a minimal surface, and it

is still an embedded 2-sphere.

Let S denote the compact set which is the union of all compact immersed minimal surfaces

within M , and define the trapped region T to be the union of S with all the bounded components

of M \ S. The trapped region is compact and its topological boundary is comprised of embedded

smooth minimal 2-spheres [40, Lemma 4.1]. In fact the outermost minimal surface arises as the

boundary ∂T . In light of this, and the fact that a portion of ϕt0(Σ) lies outside Σ, it follows that

Σ 6= ∂T contradicting the uniqueness of the outermost minimal surface.
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Proof of Theorem 1.0.1 (i). Assume that the outermost minimal surface Σ has a single component.

From the discussion above we then have that M0 = M \ Ω is diffeomorphic to the complement of a

3-ball in R3. Proposition 2.2.1 guarantees that ∂M0 is axisymmetric, and hence M0 is axisymmetric.

It follows that (M0, g, k, E,B) satisfies the hypotheses of Theorem 1.0.1 (ii), and has the same

mass, angular momentum, and charge as the original data. Part (ii) may now be applied to obtain

(1.0.12).

2.3 Multiple Black Holes

Consider the setting of case (ii) in Theorem 1.0.2 where (M, g) is axisymmetric, asymptotically

flat, simply connected, with a single component minimal surface boundary, and a finite number n

of additional ends each of which is asymptotically flat or asymptotically cylindrical; see [48] for a

definition of asymptotically cylindrical ends. The additional ends may be interpreted physically as

individual black holes. A version of pseudospherical coordinates exists for this situation, where each

additional end is represented by a puncture on the z-axis and again the boundary component is

identified with a coordinate sphere.

Proposition 2.3.1. Under the hypotheses of Theorem 1.0.2 (ii), M is diffeomorphic to
(
R3 \Bm1/2(0)

)
\

∪ni=1{pi} and there exists a global system of cylindrical-type coordinates (ρ, z, φ) such that g takes the

form (1.0.10) with α = 0 whenever ρ = 0. Each puncture pi represents an additional end in which

the metric coefficients have the asymptotics (2.1.20) in the asymptotically flat case, or

U = log ri +O1(1), α = o1(r
1
2
i ), Aρ = ρo1(r

− 5
2

i ), Az = o1(r
− 3

2
i ), (2.3.1)

in the asymptotically cylindrical case. Here ri denotes the Euclidean distance to the puncture pi.

Proof. The proof is nearly identical to that of [19, Theorem 2.2], and thus we only give an outline.

Since M is simply connected the single boundary component ∂M must topological be a 2-sphere

by [38, Lemma 4.9]. The boundary may then be filled in with a 3-ball, and the metric extended to

this domain to obtain a complete, axisymmetric, simply connected Riemannian manifold (M̂, ĝ) with

n+ 1 asymptotic ends. According to [13, 46] M is diffeomorphic to R3 \∪ni=1{pi} with the punctures

pi lying on the ẑ-axis of a global system of Brill coordinates (ρ̂, ẑ, φ) in which ĝ has the structure

(1.0.10). The orbit space M/U(1) is identified with the ρ̂ẑ-half plane, and may be doubled across

the axis so that (ρ̂, ẑ) parameterize R2 minus the axis punctures. Within this plane the projection of

∂M is given by a smooth closed curve γ which intersects the ẑ-axis at two points, and bounds a disc.

Using the Riemann mapping theorem, a conformal transformation of the plane may now be applied

which maps γ to a circle centered at the origin of radius m1/2. The new coordinates obtained from

this map are the desired pseudospherical coordinates (ρ, z, φ). Although the punctures may move

under this transformation, they will remain on the axis since the mapping is axisymmetric. Lastly,

the conformal property of the map preserves the metric structure (1.0.10).

Simple connectivity of M yields potentials v, χ, and ψ satisfying (2.1.6), (2.1.7) as well as the

asymptotics (2.1.8), (2.1.21) in the asymptotically flat ends. In asymptotically cylindrical ends [48]

|ω| = ρ2O(rλ−5
i ), |∇χ|+ |∇ψ| = ρO(rλ−3

i ) as ri → 0. (2.3.2)
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Figure 2.1: Doubling with additional ends

The punctures {pi}ni=1 and ball Bm1/2 break up the z-axis into a sequence of connected component

intervals {Ij}n+2
j=1 on which each of the potentials is constant; this is sometimes referred to as a ‘rod

structure’. As in (2.1.10), the difference of two such constants associated to the intervals surrounding

a puncture yields the angular momentum or charge associated to the black hole represented by the

puncture. Following Section 2.1 we may double the manifold and potentials across the sphere Sm1/2

to obtain a manifold (M̄, ḡ) and functions v̄, χ̄, ψ̄. The only difference that occurs concerns the

number of asymptotic ends. Previously the new manifold had two asymptotically flat ends, however

now M̄ has 2n + 2 asymptotic ends. In Figure 2.1 a diagram of the doubling rod structure in the

orbit space is shown, where a single additional end occurs below the circle of radius m1/2 at point

p1. After doubling, this end is reflected inside the circle to point p̄1 which represents another end of

the same asymptotic type. As before the origin also becomes an asymptotically flat end, associated

with the designated asymptotically flat end at infinity. Notice, as is shown in the diagram, that

the potential constants on the axis also reflect inside in such a way that they are smooth across the

sphere Sm1/2 and so that the angular momentum and charge of each end inside the Bm1/2 has the

same value with opposite sign as that associated with the corresponding puncture outside the ball.

Therefore the total angular momentum and total charge of M̄ , computed by adding all the individual

contributions of each end, agrees with the total angular momentum and total charge of M .

The presence of additional asymptotically flat and cylindrical ends does not affect the proof of
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Lemma 2.1.1, as well as scalar curvature lower bounds (2.1.5) and (2.1.19). It follows that as before

m ≥ I(Ψ). (2.3.3)

Proof of Theorem 1.0.2. Consider case (ii). It remains to show that the renormalized energy may

be minimized by a harmonic map

I(Ψ) ≥ I(Ψ1). (2.3.4)

Here Ψ1 is the unique renormalized harmonic map from R3 \ {z-axis} → H2
C, having the same

potential constants as Ψ. Such solutions have been constructed in [48], and the corresponding gap

bound (2.1.35) was established there as well. Thus, by setting I(Ψ1) = F we obtain the desired

result.

Consider now case (i). As in the proof of Theorem 1.0.1 (i) let M0 denote the region exterior to

the outermost minimal surface Σ, with respect to the designated asymptotically flat end. Then M0

is diffeomorphic to the complement of a finite number of open 3-balls and a finite number of points in

R3, where the point punctures represent asymptotically cylindrical ends and the boundary of the 3-

balls are the components of Σ. By assumption, at most one component Σ1 of the outermost minimal

surface encloses components of the boundary ∂M or nonsimply connected domains. If Σ1 = ∅ then

M is simply connected and has no boundary, and therefore this theorem follows from [48]. If Σ1 6= ∅
let M1 denote the region of M outside of Σ1. The hypotheses then imply that M1 has a single

component minimal surface boundary, is simply connected, and has a finite number of additional

asymptotically flat and cylindrical ends. By Proposition 2.2.1 ∂M1 = Σ1 is axisymmetric, so that

M1 itself is axisymmetric. The initial data (M1, g, k, E,B) now satisfy the hypotheses of Theorem

1.0.2 (ii), and (1.0.13) follows.
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Chapter 3

An Approach to the Penrose

Inequality with Charge and Angular

Momentum

3.1 The Mass Formula and Reduced Harmonic Energy

An initial data set (M, g, k, E,B) as in Theorem 1.0.3 admits a global set of Weyl coordinates [19]

(ρ, z, φ) in which the metric takes the form (1.0.10) and the scalar curvature is of the form (1.0.11).

Since there is a single black hole, or rather one minimal surface boundary component, the z-axis

is broken up into three intervals or ‘rods’ (−∞,−m0), (−m0,m0), (m0,∞) in which the two semi-

infinite rods are the axis and the finite rod represents the horizon boundary ∂M . The value m0 > 0 is

uniquely determined by the geometry of the initial data. Let U0 and α0 denote the metric coefficients

in Weyl coordinates for the Schwarzschild solution having this same rod structure; note that m0 is

then the mass of this Schwarzschild spacetime. If r+ =
√
ρ2 + (z −m0)2 and r− =

√
ρ2 + (z +m0)2

denote the Euclidean distances to the poles p+ = (0,m0) and p− = (0,−m0) in the ρz-plane, then

U0 =
1

2
log

r− + r+ − 2m0

r+ + r− + 2m0
, α0 =

1

2
log

(r− + r+)2 − 4m2
0

4r−r+
. (3.1.1)

These functions blow-up on the horizon but are finite along the axis. In particular

U0 = −m0

r
+O

(
1

r2

)
, α0 = O

(
1

r2

)
as r :=

√
ρ2 + z2 →∞, (3.1.2)

U0 =
1

2
log

(
z −m0

z +m0

)
+O(ρ2), α0 = O(ρ2) as ρ→ 0 and |z| ≥ m0 + ε, (3.1.3)

U0 = log ρ+O(1), α0 = log ρ+O(1) as ρ→ 0 and |z| ≤ m0 − ε, (3.1.4)

where ε > 0. These Schwarzschild coefficients play the role of singular part for the metric coefficients

of (1.0.10). That is, we may write U = U0 + U and α = α0 + α where U and α remain bounded. In

fact, this decomposition has the following regularity properties which are proved in Section 3.5 and

rely on the minimal surface condition at the boundary.
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Lemma 3.1.1. Under the assumptions of Theorem 1.0.3 the renormalized functions U and α are

smooth away from the horizon rod, and have continuous first derivatives everywhere except possibly

at the poles p± where they are bounded. At infinity U = O1(r−1/2−ε) and α = O1(r−1/2−ε) for some

ε > 0.

Let us now use this decomposition of the metric coefficients to compute the ADM mass. Recall

from [19] that if S∞ represents the limit as r →∞ for coordinate spheres Sr then the mass is given

by

m =
1

8π

∫
S∞

[
∂r(2U − α) +

α

r

]
dσ. (3.1.5)

The boundary terms at infinity in this formula arise from integrating the scalar curvature formula

(1.0.11). Observe that∫
R3

∆ρ,zαdx =

∫
R2

+

2πρ∆ρ,zαdρdz

= lim
ε→0

∫
ρ=ε

2π(α− ρ∂ρα)dz + lim
r→∞

∫
∂D+

r

2π(ρ∂rα− α sin θ)ds

= lim
ε→0

∫
ρ=ε

2π(α− ρ∂ρα)dz +

∫
S∞

(
∂rα−

α

r

)
dσ.

(3.1.6)

Here D+
r is the half disk of radius r, and ρ = r sin θ and z = r cos θ. Furthermore∫

R3

∆Udx =

∫
S∞

∂rUdσ − lim
ε→0

∫
ρ=ε

2πρ∂ρUdz, (3.1.7)

and since U0 = O1(r−1) as r →∞ with U0 harmonic∫
R3

|∇U |2dx =

∫
R3

|∇(U0 + U)|2dx

=

∫
R3

(
|∇U |2 +∇(U0 + 2U) · ∇U0

)
dx

=

∫
R3

|∇U |2dx− lim
ε→0

∫
ρ=ε

(U0 + 2U)∂ρU0dσ +

∫
S∞

(U0 + 2U)∂rU0dσ

=

∫
R3

|∇U |2dx− lim
ε→0

∫
ρ=ε

2πρ(U0 + 2U)∂ρU0dz.

(3.1.8)

Therefore by integrating the scalar curvature formula, and putting all these computations together,

we find that

8πm =

∫
R3

[
|∇U |2 +

1

2
e−2U+2αR+

1

4
ρ2e−2α(∂zAρ − ∂ρAz)2

]
dx

+ lim
ε→0

∫
ρ=ε

[
4πρ∂ρU + 2π(α− ρ∂ρα)− 2πρ(U0 + 2U)∂ρU0

]
dz.

(3.1.9)

Consider now the boundary integrals in (3.1.9). Computations show that

lim
ε→0

∫
ρ=ε

ρ∂ρUdz = lim
ε→0

∫
ρ=ε

ε∂ρU0(ε, z)dz = 2m0, (3.1.10)
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and

lim
ε→0

∫
ρ=ε

[
α− ρ∂ρα− ρ(U0 + 2U)∂ρU0

]
dz = lim

ε→0

∫
ρ=ε
|z|<m0

(
α0 + α− ρ∂ρα0 − U0 − 2U

)
dz

=

∫ m0

−m0

(α− 2U)(0, z)dz.

(3.1.11)

Furthermore, simple connectedness and the divergence free condition for the electric and magnetic

fields gives rise to electromagnetic potentials [48, Section 2]

dψ = F (η, ·), dχ = ?F (η, ·), (3.1.12)

where F is the field strength tensor and ? denotes the Hodge star operation. Similarly the compati-

bility condition Jem(η) = 0 guarantees the existence of a charged twist potential

dv = k(η)× η − χdψ + ψdχ. (3.1.13)

Since the initial data are maximal, nonnegativity of the energy density µem ≥ 0 implies the following

lower bound [48, Section 2] for scalar curvature

R ≥ |k|2g + 2(|E|2g + |B|2g) ≥ 2
e6U−2α

ρ4
|∇v + χ∇ψ − ψ∇χ|2 + 2

e4U−2α

ρ2
(|∇χ|2 + |∇ψ|2). (3.1.14)

Putting all this together yields the mass lower bound

m ≥ 1

8π

∫
R3

(
|∇U |2 +

e4U

ρ4
|∇v + χ∇ψ − ψ∇χ|2 +

e2U

ρ2
(|∇χ|2 + |∇ψ|2)

)
dx

+
1

4

∫ m0

−m0

(α(0, z)− 2U(0, z))dz +m0.

(3.1.15)

Related formulas were obtained in [13, 19] and [35] in different settings.

The volume integral on the right-hand side of (3.1.15) is directly related to the harmonic energy

of maps between R3 \ Γ → H2
C, where Γ = {ρ = 0, |z| > m0} is the axis. More precisely, let

Ψ̃ = (u, v, χ, ψ) : R3 \ Γ→ H2
C and consider the harmonic energy of this map on a bounded domain

Ω ⊂ R3 \ Γ:

EΩ(Ψ̃) =

∫
Ω
|∇u|2 + e4u|∇v + χ∇ψ − ψ∇χ|2 + e2u

(
|∇χ|2 + |∇ψ|2

)
dx. (3.1.16)

Set u = U − log ρ, then the reduced energy IΩ of the renormalized map Ψ = (U, v, χ, ψ) is related

to the harmonic energy of Ψ̃ by

IΩ(Ψ) = EΩ(Ψ̃) +

∫
∂Ω

(2U + U0 − log ρ)∂ν(log ρ− U0)dσ, (3.1.17)

where ν denotes the unit outer normal to the boundary ∂Ω and

IΩ(Ψ) =

∫
Ω
|∇U |2 +

e4U

ρ4
|∇v + χ∇ψ − ψ∇χ|2 +

e2U

ρ2

(
|∇χ|2 + |∇ψ|2

)
dx. (3.1.18)
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Observe that the volume integral of (3.1.15) is exactly the reduced energy on R3, which will be

denoted by I(Ψ). The relation (3.1.17) is established through an integration by parts, using the fact

that log ρ and U0 are harmonic on R3 \ Γ. Namely

IΩ(Ψ) =

∫
Ω

(
|∇(u− U0 + log ρ)|2 + e4u|∇v + χ∇ψ − ψ∇χ|2 + e2u(|∇χ|2 + |∇ψ|2)

)
dx

=

∫
Ω
|∇u|2 +∇(2u− U0 + log ρ) · ∇(log ρ− U0)dx

+

∫
Ω
e4u|∇v + χ∇ψ − ψ∇χ|2 + e2u(|∇χ|2 + |∇ψ|2)dx

=

∫
Ω

(
|∇u|2 + e4u|∇v + χ∇ψ − ψ∇χ|2 + e2u(|∇χ|2 + |∇ψ|2)

)
dx

+

∫
∂Ω

(2u− U0 + log ρ)∂ν(log ρ− U0)dσ

=EΩ(Ψ̃) +

∫
∂Ω

(2U + U0 − log ρ)∂ν(log ρ− U0)dσ.

(3.1.19)

The functional I may be considered a regularization of E since the infinite term
∫
|∇(log ρ − U0)|2

has been removed, and since the two functionals differ only by a boundary term they must have the

same critical points.

Let Ψ̃k = (uk, vk, χk, ψk) denote the harmonic map associated with the Kerr-Newman solution,

and let Ψk be the corresponding renormalized map where uk = Uk−log ρ = Uk+U0−log ρ. It follows

that Ψk is a critical point of I. As will be shown in Section 3.3, Ψk realizes the global minimum for

I.

Theorem 3.1.2. Suppose that Ψ = (U, v, χ, ψ) is smooth and satisfies the asymptotics (3.2.4)-

(3.2.14). If v|Γ = vk|Γ, χ|Γ = χk|Γ, and ψ|Γ = ψk|Γ then there exists a constant C > 0 such

that

I(Ψ)− I(Ψk) ≥ C
(∫

R3

dist6
H2

C
(Ψ,Ψk)dx

) 1
3

. (3.1.20)

3.2 Asymptotics in Weyl Coordinates

In order to minimize the functional I(Ψ) it is necessary to choose the appropriate asymptotics for the

map Ψ. The asymptotics will be guided by the principle of having a finite reduced energy, however

the convexity minimization argument of the next section will in general require stronger asymptotics

than that which is optimal for integrability. It will be useful to first record the asymptotics of the

Schwarzschild metric coefficients near the poles, namely a computation shows that

eU0 = O(r
1/2
+ ) as r+ → 0 and z ≥ m0, eU0 = O(ρr

−1/2
+ ) as r+ → 0 and z ≤ m0, (3.2.1)

eU0 = O(ρr
−1/2
− ) as r− → 0 and z ≥ −m0, eU0 = O(r

1/2
− ) as r− → 0 and z ≤ −m0, (3.2.2)

eU0−α0 = O(r
1/2
± ) as r± → 0. (3.2.3)

According to Lemma 3.1.1 we have

U ∈ C0,1(R3), U = O1(r−1/2−ε) as r →∞, (3.2.4)
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which is enough to guarantee that the first term of I(Ψ) is finite. Consider now the potential terms

and set ω = dv + χdψ − ψdχ. In order to achieve integrability at infinity and near the axes away

from the poles we will require, for λ > 3
2 , the following asymptotics

|ω| = ρ2O(r−λ), |∇χ|+ |∇ψ| = ρO(r−λ) as r →∞, (3.2.5)

|ω| = O(ρ2), |∇χ|+ |∇ψ| = O(ρ) as ρ→ 0 and |z| > m0, (3.2.6)

|χ|, |ψ| = const + ρ2O(r−λ) as r →∞, (3.2.7)

|χ|, |ψ| = const +O(ρ2) as ρ→ 0 and |z| > m0, (3.2.8)

from which it follows that

|∇v| = ρO(r−λ+1) as r →∞, |∇v| = O(ρ) as ρ→ 0 and |z| > m0. (3.2.9)

It remains to prescribe asymptotics near the poles and in a neighborhood of the horizon rod. By

(3.2.1), e4U = O(r2
+) or e4U = O(ρ4r−2

+ ) near p+ if z ≥ m0 or z ≤ m0 respectively. It follows that

the second term in I(Ψ) is integrable near p+ if

|ω| = ρ2O(r
−3/2
+ ) for z ≥ m0, |ω| = O(r

1/2
+ ) for z ≤ m0. (3.2.10)

Similarly, near p− we will impose

|ω| = O(r
1/2
− ) for z ≥ −m0, |ω| = ρ2O(r

−3/2
− ) for z ≤ −m0. (3.2.11)

Analogous considerations lead to the condition near p+

|∇χ|+ |∇ψ| = ρO(r−1
+ ) for z ≥ m0, |∇χ|+ |∇ψ| = O(1) for z ≤ m0, (3.2.12)

and near p−

|∇χ|+ |∇ψ| = O(1) for z ≥ −m0, |∇χ|+ |∇ψ| = ρO(r−1
− ) for z ≤ −m0. (3.2.13)

Next observe that since eU = O(ρ) near the interior of the horizon rod, if

|ω| = |∇χ| = |∇ψ| = O(1) as ρ→ 0 and |z| < m0, (3.2.14)

then the last two terms of the reduced energy are integrable in this region.

Lastly we record additional asymptotics that follow from above and will be needed in the following

section. Assuming that the value of the potentials on the axes agree with those of the potentials

for the Kerr-Newman map Ψk, we may integrate on lines perpendicular to the axes and near p± to

obtain

|v − vk|+ |χ− χk|+ |ψ − ψk| = O(ρ2r−1
± ) as r± → 0 and |z| ≥ m0. (3.2.15)

For |z| ≤ m0, integrating on horizontal lines will not yield such an estimate since the two sets

of potentials do not necessarily agree on the horizon rod. Thus, we integrate along radial lines

emanating from the poles p± to find

|v − vk|+ |χ− χk|+ |ψ − ψk| = O(r±) as r± → 0 and |z| ≤ m0. (3.2.16)
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3.3 Minimizing the Functional

In this section it will be shown that the renormalized Kerr-Newman harmonic map Ψk is the global

minimizer of the functional I, among competitors Ψ satisfying the asymptotics of Section 3.2. This is

based on the convexity of harmonic energy E for nonpositively curved target spaces under geodesic de-

formations. Such a strategy has been used successfully in connection with mass-angular momentum-

charge inequalities in [17, 48, 57], where the minimizer arises from extreme black holes. Here we will

extend this method to the setting of nondegenerate black holes. The difficulty arises from the fact

that the convexity property does not pass directly from E to I since the energy is applied to singular

maps. To get around this problem a cut-and-paste procedure is employed in which the regularized

map Ψ is approximated by maps Ψδ,ε which agree with Ψk on certain domains. More precisely, let

δ, ε > 0 be small parameters and set Ωδ,ε = {δ < r±; r < 2/δ; ρ > ε} and Aδ,ε = B2/δ \ Ωδ,ε, where

B2/δ is the coordinate ball of radius 2/δ. Then Ψδ,ε = (U δ,ε, vδ,ε, χδ,ε, ψδ,ε) will be constructed so

that

supp(U δ,ε − Uk) ⊂ B2/δ, supp(vδ,ε − vk, χδ,ε − χk, ψδ,ε − ψk) ⊂ Ωδ,ε. (3.3.1)

If Ψ̃t
δ,ε, t ∈ [0, 1] is a geodesic in H2

C connecting Ψ̃1
δ,ε = Ψ̃δ,ε and Ψ̃0

δ,ε = Ψ̃k, then Ψ̃t
δ,ε ≡ Ψk

outside B2/δ and vtδ,ε = vk, χ
t
δ,ε = χk, and ψtδ,ε = ψk on a neighborhood of Aδ,ε. We then have that

U
t
δ,ε = Uk + t(U δ,ε − Uk) on this domain. The fact that this expression is linear in t, together with

convexity of the harmonic energy produces

d2

dt2
I(Ψt

δ,ε) ≥ 2

∫
R3

|∇distH2
C
(Ψδ,ε,Ψk)|2dx. (3.3.2)

Furthermore, since Ψk is a critical point it follows that

d

dt
I(Ψt

δ,ε)|t=0 = 0. (3.3.3)

The gap bound of Theorem 3.1.2 is then obtained by integrating (3.3.2), applying a Sobolev inequal-

ity, and taking the limit as δ, ε → 0. Each of these steps will now be justified. Repeated use of

the asymptotics in Section 3.2 will be made, sometimes implicitly without reference to a particular

equation.

The following cut-off functions are needed to construct the approximations Ψδ,ε. Namely

ϕδ =


0 if r± ≤ δ,
|∇ϕδ| ≤ 2

δ if δ < r± < 2δ,

1 if r± ≥ 2δ,

(3.3.4)

ϕ1
δ =


1 if r ≤ 1

δ ,

|∇ϕ1
δ | ≤ 2δ if 1

δ < r < 2
δ ,

0 if r ≥ 2
δ ,

(3.3.5)

φε =


0 if ρ ≤ ε,
log(ρ/ε)

log(
√
ε/ε)

if ε < ρ <
√
ε,

1 if ρ ≥
√
ε.

(3.3.6)
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The first step deals with neighborhoods of the poles p±. Let Fδ(Ψ) = (U, vδ, χδ, ψδ) where

(vδ, χδ, ψδ) = (vk, χk, ψk) + ϕδ(v − vk, χ− χk, ψ − ψk), (3.3.7)

so that the potentials of Fδ(Ψ) and Ψk agree on Bδ(p+) ∪Bδ(p−).

Lemma 3.3.1. Suppose that Ψ ≡ Ψk outside B2/δ, then limδ→0 I(Fδ(Ψ)) = I(Ψ).

Proof. Write

I(Fδ(Ψ)) =
∑
±

[
Ir±<δ(Fδ(Ψ)) + Iδ<r±<2δ(Fδ(Ψ))

]
+ Ir±>2δ(Fδ(Ψ)), (3.3.8)

where r± > 2δ denotes the complement of B2δ(p+) ∪ B2δ(p−). Then according to the dominated

convergence theorem (DCT)

Ir±≥2δ(Fδ(Ψ)) = Ir±≥2δ(Ψ)→ I(Ψ). (3.3.9)

Furthermore since the potentials of Fδ(Ψ) and Ψk agree on r± < δ, and eU ≤ ceUk as |U | and |Uk|
are bounded near p±, the second and third integrands of Ir±<δ(Fδ(Ψ)) converge to zero in light of

the finite reduced energy of Ψk. The first integrand involving |∇U | also tends to zero since this

function remains bounded.

Now consider

Iδ<r±<2δ(Fδ(Ψ)) =

∫
δ<r±<2δ

|∇U |2︸ ︷︷ ︸
I1

+

∫
δ<r±<2δ

e4U

ρ4
|ωδ|2︸ ︷︷ ︸

I2

+

∫
δ<r±<2δ

e2U

ρ2
(|∇χδ|2 + |∇ψδ|2)︸ ︷︷ ︸
I3

, (3.3.10)

and note that I1 → 0 by the DCT. Next compute

ωδ =ϕδω + (1− ϕδ)ωk + (v − vk)∇ϕδ + (χkψ − ψkχ)∇ϕδ
+ ϕδ(1− ϕδ)[(ψ − ψk)∇(χ− χk)− (χ− χk)∇(ψ − ψk)],

(3.3.11)

and use properties of the cut-off function to find

I2 ≤C
∫
δ<r±<2δ

(
e4U

ρ4
|ω|2 +

e4Uk

ρ4
|ωk|2 +

e4U

r2
±ρ

4
|v − vk|2 +

e4U

r2
±ρ

4
|χkψ − ψkχ|2

)
+ C

∫
δ<r±<2δ

e4U

ρ4

(
|ψ − ψk|2|∇(χ− χk)|2 + |χ− χk|2|∇(ψ − ψk)|2

)
.

(3.3.12)

The first and second terms converge to zero by the DCT and finite reduced energies of Ψ and Ψk.

The third term may be estimated with the help of (3.2.15) and (3.2.16), namely∫
δ<r±<2δ

e4U

r2
±ρ

4
|v − vk|2 ≤

∫
δ<r±<2δ

Cr−2 → 0, (3.3.13)

and similar considerations apply for the fourth term. For the fifth term employ (3.2.12), (3.2.13),

(3.2.15), and (3.2.16) to find∫
δ<r±<2δ

e4U

ρ4
|ψ − ψk|2|∇(χ− χk)|2 ≤

∫
δ<r±<2δ

C → 0, (3.3.14)

and similarly for the sixth term. This shows that I2 → 0. Lastly, analogous reasoning yields

I3 → 0.
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Consider now the asymptotically flat end and set

F1
δ (Ψ) = Ψk + ϕ1

δ(Ψ−Ψk), (3.3.15)

so that F1
δ (Ψ) = Ψk on R3 \B2/δ. Then as is shown in [48, Lemma 4.2]

lim
δ→0
I(F1

δ (Ψ)) = I(Ψ). (3.3.16)

Next we treat the cylindrical regions around the axis and horizon rod, and will make use of the

domains

Cδ,ε = {ρ < ε; δ < r±; r < 2/δ}, (3.3.17)

W1
δ,ε = {ε < ρ <

√
ε; δ < r±; r ≤ 2/δ; |z| > m}, (3.3.18)

W2
δ,ε = {ε < ρ <

√
ε; δ < r±; |z| < m}. (3.3.19)

Let Gε(Ψ) = (U, vε, χε, ψε) where

(vε, χε, ψε) = (vk, χk, ψk) + φε(v − vk, χ− χk, ψ − ψk), (3.3.20)

so that the potentials of Gε(Ψ) and Ψk agree on ρ < ε.

Lemma 3.3.2. Fix δ > 0. Assume that the potentials of Ψ and Ψk agree on Bδ(p+) ∪Bδ(p−), and

Ψ ≡ Ψk outside B2/δ, then limε→0 I(Gε(Ψ)) = I(Ψ).

Proof. Write

I(Gε(Ψ)) = ICδ,ε(Gε(Ψ)) + IW1
δ,ε

(Gε(Ψ)) + IW2
δ,ε

(Gε(Ψ)) + IR3\(Cδ,ε∪W1
δ,ε∪W

2
δ,ε)

(Gε(Ψ)). (3.3.21)

Since the potentials of Ψ and Ψk agree on Bδ(p±), the DCT and finite reduced energy imply that

IR3\(Cδ,ε∪W1
δ,ε∪W

2
δ,ε)

(Gε(Ψ))→ I(Ψ). (3.3.22)

Furthermore since the potentials of Gε(Ψ) and Ψk agree on Cδ,ε, and eU ≤ ceUk on this region, the

second and third integrands of ICδ,ε(Gε(Ψ)) converge to zero in light of the finite reduced energy of

Ψk. The first integrand involving |∇U | also tends to zero since this function remains bounded.

The domainW1
δ,ε concerns a neighborhood of the axis of rotation, and therefore IW1

δ,ε
(Gε(Ψ))→ 0

according to Lemma 4.4 of [48]. Now consider

IW2
δ,ε

(Gε(Ψ)) =

∫
W2
δ,ε

|∇U |2︸ ︷︷ ︸
I1

+

∫
W2
δ,ε

e4U

ρ4
|ωε|2︸ ︷︷ ︸

I2

+

∫
W2
δ,ε

e2U

ρ2
(|∇χε|2 + |∇ψε|2)︸ ︷︷ ︸

I3

, (3.3.23)

and notice that I1 → 0 since |∇U | remains bounded. Next observe that

ωε =φεω + (1− φε)ωk + (v − vk)∇φε + (χkψ − ψkχ)∇φε
+ φε(1− φε)[(ψ − ψk)∇(χ− χk)− (χ− χk)∇(ψ − ψk)].

(3.3.24)
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The asymptotics of the cut-off function then yield

I2 ≤C
∫
W2
δ,ε

(
e4U

ρ4
|ω|2 +

e4Uk

ρ4
|ωk|2 + (log ε)−2ρ−2|v − vk|2 + (log ε)−2ρ−2|χkψ − ψkχ|2

)
+ C

∫
W2
δ,ε

(
|ψ − ψk|2|∇(χ− χk)|2 + |χ− χk|2|∇(ψ − ψk)|2

)
.

(3.3.25)

The first two terms converge to zero by the finite reduced energies. Furthermore according to (3.2.14),

|v − vk| = O(1) and thus∫
W2
δ,ε

(log ε)−2|v − vk|2 ≤ C
∫
W2
δ,ε

(log ε)−2ρ−2 = O
(
(log ε)−1

)
→ 0. (3.3.26)

Analogous considerations may be used to treat the fourth term. Lastly, since |ψ−ψk| and |∇(χ−χk)|
remain bounded the fifth term tends to zero, and similarly for the sixth.

We are now in a position to construct the appropriate approximation to Ψ via the cut and paste

operations by composition

Ψδ,ε = Gε
(
Fδ
(
F1
δ (Ψ)

))
. (3.3.27)

Then according to (3.3.16) and Lemmas 3.3.1 and 3.3.2,

lim
δ→0

lim
ε→0
I(Ψδ,ε) = I(Ψ). (3.3.28)

Proof of Theorem 3.1.2. As in the introduction to this section let Ψ̃t
δ,ε be the geodesic deformation

connecting Ψ̃k to Ψ̃δ,ε. Due to the properties of the approximation the first component of the

geodesic is U
t
δ,ε = Uk + t(U δ,ε−Uk) on Aδ,ε, and in particular distH2

C
(Ψδ,ε,Ψk) = |U δ,ε−Uk| on this

domain. These two observations, together with the asymptotics near the poles p± show that one

may differentiate under the integral sign to directly compute the second variation and find

d2

dt2
IAδ,ε(Ψ

t
δ,ε) ≥

∫
Aδ,ε

2|∇(U δ,ε − Uk)|2 =

∫
Aδ,ε

2|∇ distH2
C
(Ψδ,ε,Ψk)|2. (3.3.29)

On the domain Ωδ,ε, the relation (3.1.17) between reduced and harmonic energies may be used. Due

to the linearity of U
t
δ,ε in t, the boundary term of (3.1.17) vanishes when computing the second

variation so that

d2

dt2
IΩδ,ε(Ψ

t
δ,ε) =

d2

dt2
EΩδ,ε(Ψ̃

t
δ,ε) ≥

∫
Ωδ,ε

2|∇ distH2
C
(Ψδ,ε,Ψk)|2, (3.3.30)

where the inequality is obtained from the convexity of harmonic energy [57]. Since Ωδ,ε and Aδ,ε are

complementary in B2/δ, and the geodesic deformation is constant outside of this large ball, it follows

that (3.3.2) holds.

Next, let δ̄ < δ and ε̄ < ε, and observe that since Ψk is a critical point

d

dt
IΩδ̄,ε̄(Ψ

t
δ,ε)|t=0 = −

∑
±

∫
∂Bδ̄(p±)

2(U δ,ε − Uk)∂νUk −
∫
∂Cδ̄,ε̄

2(U δ,ε − Uk)∂νUk, (3.3.31)
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where ν is the unit normal pointing towards infinity. In addition, using the constancy of the potentials

and linearity of U
t
δ,ε on Aδ̄,ε̄ we find that

d

dt
IAδ̄,ε̄(Ψ

t
δ,ε)|t=0 =

∫
Aδ̄,ε̄

2∇Uk · ∇(U δ,ε − Uk) + 4(U δ,ε − Uk)
e4Uk

ρ4
|ωk|2

+

∫
Aδ̄,ε̄

2(U δ,ε − Uk)
e2Uk

ρ2

(
|∇χk|2 + |∇ψk|2

)
.

(3.3.32)

Since |U | + |∇U | is uniformly bounded, (3.3.31) tends to zero as ε̄ → 0 followed by δ̄ → 0, and the

same holds for (3.3.32) since it may be estimated by the reduced energy of Ψk on Aδ̄,ε̄.
We may now integrate (3.3.2) two times and use a Sobolev inequality to obtain the inequality

(3.1.20) of Theorem 3.1.2 with Ψ replaced by Ψδ,ε. In light of (3.3.28), the desired result follows by

taking the limits as ε→ 0 and then δ → 0.

3.4 Proof of the Main Results

We first show that under the assumptions of Theorem 1.0.3 the potentials and quantities arising

from Weyl coordinates satisfy the asymptotics stated in Section 3.2. Lemma 3.1.1 guarantees that

U behaves in a manner consistent with (3.2.4). Next, as is shown in [48]

e6U−2α

ρ4
|∇v + χ∇ψ − ψ∇χ|2 ≤ |k|2g. (3.4.1)

Consider a domain near the poles p± with |z| ≥ m0, then using (3.2.1)-(3.2.3) we find that

|∇v + χ∇ψ − ψ∇χ| = O(ρ2e−2Ue−U+α) = O(ρ2r
−3/2
± ), (3.4.2)

since |k|g remains bounded. Similarly if |z| ≤ m0

|∇v + χ∇ψ − ψ∇χ| = O(ρ2e−2Ue−U+α) = O(r
1/2
± ), (3.4.3)

which confirms (3.2.10) and (3.2.11). Near the horizon rod away from the poles, that is |z| < m0,

the asymptotics (3.1.4) imply

|∇v + χ∇ψ − ψ∇χ| = O(ρ2e−2Ue−U+α) = O(1), (3.4.4)

confirming part of (3.2.14).

For the electromagnetic potentials recall that from [48],

e4U−2α

ρ2

(
|∇χ|2 + |∇ψ|2

)
≤ |E|2g + |B|2g. (3.4.5)

Again the right-hand side is bounded near the poles, so for |z| ≥ m0 we have

|∇χ|+ |∇ψ| = O(ρe−Ue−U+α) = O(ρr−1
± ), (3.4.6)
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and for |z| ≤ m0

|∇χ|+ |∇ψ| = O(ρe−Ue−U+α) = O(1). (3.4.7)

This shows that (3.2.12) and (3.2.13) hold. Analogously, near the horizon rod with |z| < m0

|∇χ|+ |∇ψ| = O(1), (3.4.8)

which fulfills (3.2.14). Furthermore the asymptotics in a neighborhood of the axis, (3.2.6) and (3.2.8),

may be obtained in similar fashion. Lastly, (3.2.5) and (3.2.7) follow from asymptotic flatness.

We are now in a position to establish Theorem 1.0.3. As shown above, the map Ψ arising from the

initial data satisfies the hypotheses of Theorem 3.1.2. Therefore, together with (3.1.15) the following

lower bound for the mass is achieved

m ≥ 1

8π
I(Ψk) +

1

4

∫ m0

−m0

(α(0, z)− 2U(0, z))dz +m0. (3.4.9)

Let mk and Ak denote the mass and horizon area of the Kerr-Newman solution associated with the

map Ψk. Then since the Kerr-Newman solution is known to saturate the Penrose inequality

mk =

√
Ak
16π

+
Q2

2
+
π(Q4 + 4J 2)

Ak

=
1

8π
I(Ψk) +

1

4

∫ m0

−m0

(αk(0, z)− 2Uk(0, z))dz +m0.

(3.4.10)

It follows that

m ≥

√
Ak
16π

+
Q2

2
+
π(Q4 + 4J 2)

Ak
+

1

4

∫ m0

−m0

(β(0, z)− βk(0, z))dz, (3.4.11)

which is the desired inequality. In the case that this inequality is saturated we must have Ψ = Ψk by

Theorem 3.1.2. Several other quantities arising from the derivation of (3.1.15) vanish, from which

it may be shown that the initial data (M, g, k, E,B) agrees with that of the canonical slice of the

Kerr-Newman spacetime; details are given in [48, Section 2].

We will now establish Corollary 1.0.4. If β is constant on the horizon rod then

e
1

2m0

∫m0
−m0

β(0,z)dz
=

1

2m0

∫ m0

−m0

eβ(0,z)dz =
A

16πm2
0

. (3.4.12)

The same equality holds for β, A replaced by βk, Ak since βk is also constant on the horizon.

Therefore if we assume that A ≥ Ak, then∫ m0

−m0

β(0, z)dz ≥
∫ m0

−m0

βk(0, z)dz, (3.4.13)

which together with (3.4.11) yields the desired inequality. The case of equality here is treated as

above.
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3.5 Weyl Coordinates

Here we prove Lemma 3.1.1. In [19] the existence of Weyl coordinates was established by first

constructing so called pseudospherical coordinates (ρs, zs, φ), in which the initial data boundary ∂M

is represented by a semi-circle of radius m0
2 about the origin in the ρszs-plane. This contrasts with

Weyl coordinates in which the boundary takes the form of an interval on the z-axis in the orbit

space. Pseudospherical coordinates are valid on the planar region C+ \ Dm0/2 = {ρs + izs | ρs >
0, rs > m0/2}, where r2

s = ρ2
s + z2

s . In these coordinates the metric takes the standard ‘Brill’ form

g = e−2Us+2αs(dρ2
s + dz2

s ) + ρ2
se
−2Us(dφ+Aρsdρs +Azsdzs)

2. (3.5.1)

This structure for the metric is preserved under any coordinate change of the plane which yields

a conformal transformation, and Weyl coordinates are a particular example of this. The metric

coefficients are axisymmetric, smooth up to the boundary in C+ \Dm0/2 with αs = 0 on the zs-axis,

and satisfy the fall-off

Us = O1(r−1/2−ε
s ), αs = O1(r−1/2−ε

s ), Aρs = O1(r−3/2−ε
s ), Azs = O1(r−3/2−ε

s ). (3.5.2)

Weyl coordinates (ρ, z, φ) are constructed from pseudospherical coordinates as follows. Define

complex coordinates ζs = ρs + izs and ζ = ρ + iz and consider the holomorphic diffeomorphism

f : C+ \Dm0/2 → C+ given by

ζ = f(ζs) = ζs −
m2

0

4ζs
⇒ ρ =

ρs(r
2
s −

m2
0

4 )

r2
s

, z =
zs(r

2
s +

m2
0

4 )

r2
s

. (3.5.3)

Observe that
∂ζ

∂ζs
= 1 +

m2
0

4ζ2
s

, (3.5.4)

which is smooth up to the boundary of C+ \Dm0/2 and is nonzero except at the points ζs = ±m0
2 i.

Thus by the inverse function theorem, the inverse transformation is holomorphic and has bounded

derivatives away from the poles ζ = ±m0i of the horizon. Near these points we have∣∣∣∣ ∂ζ∂ζs
∣∣∣∣ ≥ C−1|ζs ∓

m0

2
i| ⇒

∣∣∣∣∂ζs∂ζ
∣∣∣∣ ≤ C

|ζs ∓ m0
2 i|

. (3.5.5)

In particular, all first derivatives of the real and imaginary parts admit the bound∣∣∣∣∂ρs∂ρ
∣∣∣∣+

∣∣∣∣∂ρs∂z
∣∣∣∣+

∣∣∣∣∂zs∂ρ
∣∣∣∣+

∣∣∣∣∂zs∂z
∣∣∣∣ ≤ C

|ζs ∓ m0
2 i|

(3.5.6)

near the poles.

The relationship between U , α of Weyl coordinates and Us, αs of pseudospherical coordinates is

given by [19]

U(ρ, z) = Us(ρs, zs)− log
ρs
ρ
, α(ρ, z) = αs(ρs, zs) + log

|ζs|2 −
m2

0
4

|ζ2
s +

m2
0

4 |
. (3.5.7)
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Note that the second term on the right-hand side of both expressions depends only on the coordinate

transformation. For the Schwarzschild solution

Us,0(ρs, zs) = −2 log
2rs +m0

2rs
, αs,0(ρs, zs) = 0, (3.5.8)

and the expressions for the Schwarzschild data U0 and α0 in Weyl coordinates may then be obtained

from the above formulas. We may then write U = U0 + U and α = α0 + α where

U(ρ, z) := U(ρ, z)− U0(ρ, z) = Us(ρs, zs)− Us,0(ρs, zs), (3.5.9)

and

α(ρ, z) := α(ρ, z)− α0(ρ, z) = αs(ρs, zs). (3.5.10)

It immediately follows that U and α are uniformly bounded and satisfy the desired decay at infinity.

Furthermore since Us, Us,0, and αs are smooth, the regularity properties of U and α depend on the

coordinate transformation f−1, and the only possible issues arise at the poles.

Consider the partial derivative

∂U

∂ρ
=

(
∂Us
∂ρs
− ∂Us,0

∂ρs

)
∂ρs
∂ρ

+

(
∂Us
∂zs
− ∂Us,0

∂zs

)
∂zs
∂ρ

. (3.5.11)

Since the horizon is a minimal surface

∂

∂rs
(Us −

1

2
αs) =

2

m0
=
∂Us,0
∂rs

when rs =
m0

2
. (3.5.12)

In particular this holds at (ρs, zs) = (0,±m0/2). Moreover, since αs = 0 on the axis and ∂rs coincides

with ±∂zs there, we have (
∂Us
∂zs
− ∂Us,0

∂zs

)(
0,±m0

2

)
= 0. (3.5.13)

Next, use the fact that all functions are axisymmetric to find

∂Us
∂ρs

(
0,±m0

2

)
=
∂Us,0
∂ρs

(
0,±m0

2

)
= 0. (3.5.14)

Therefore the first derivatives of Us −Us,0 vanish at the poles. This, combined with the smoothness

of this function up to the boundary, shows that even though ∂ρρs and ∂ρzs may blow-up at these

points in a manner controlled by (3.5.6), the full expression (3.5.11) remains bounded. Similar

considerations may be used to treat the ∂zU and the derivatives of α.
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Chapter 4

Brill Coordinates for Initial Data with

Cylindrical Ends

4.1 Definition and Properties of Cylindrical Ends

The results of the previous chapters are proven for axisymmetric initial data sets on R3 with a global

Brill like coordinate system (ρ, z, φ). Thus it important to know when an axisymmetric initial data

set has such a representation. In [13] Chruściel establishes the existence of a Brill coordinate system

for axisymmetric, simply connected initial data sets (M3, g) with one or many asymptotically flat

ends. We use nearly the same definition of asymptotically flat as above, however we allow slightly

more general falloff.

gij − δij = ok(r
−`) (4.1.1)

as r →∞ for some ` > 0.

In this chapter we do not need the additional structure provided by k,B,E or the constraint

equations. We will refer to a coordinate system (xi) satisfying Equation (4.1.1) as an AF coordi-

nate system, and Mext as a submanifold of M in which equation (4.1.1) holds. An asymptotically

cylindrical end is defied analogously, and will be abbreviated AC.

Definition 4.1.1. An open submanifold Mext of a Riemannian 3 manifold (M, g) is said to be an

asymptotically cylindrical end of order k if there exists an ` ∈ (0, 1) and a diffeomorphism between

M and {r ∈ R; r > R} × S2 for some R > 0, such the metric g satisfies

||g − g||g = Ok(r
−`), 1 (4.1.2)

where

g = h2(
1

r2
dr2 + gs), (4.1.3)

h is a function on S2, and gs is a metric on S2. Further we assume that g admits a killing vector

η which is tangent to S2 and has periodic orbits.
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The hypothesis Lηg = 0, with η tangent to S2 implies Lη 1
r2dr

2=0, and hence

0 = Lη(
h2

r2
dr2) + Lη(s2h2gs) = η(h2)

1

r2
dr2 + s2η(h2)gs + s2h2Lηgs (4.1.4)

If we apply the 2-form η(h2) 1
r2dr

2 + s2η(h2)gs + s2h2Lηgs to (∂r, ∂r), the second and third term

give no contribution and thus η(h) = 0. Thus we also have Lηgs = 0, so η is a killing vector for

gs. Since η has periodic orbits, we can find global coordinates (θ, φ) on S2 such that η = ∂φ and

gs = a2(dθ2 + f(θ)2dφ2) for some positive constant a and some nonnegative function f . Thus

g = h(θ)2(
1

r2
dr2 + a2(dθ2 + f(θ)2dφ2)). (4.1.5)

Making the reparametrization r̃a = r we have 1
r2dr

2 = a2

r̃2 dr̃
2. We can factor out the a and write,

g = a2h(θ)2(
1

r̃2
dr̃2 + dθ2 + f(θ)2dφ2), (4.1.6)

at which point we can absorb the constant a into h. Note that under this transformation the

falloff becomes ||g − g|||g = ok(r̃
−`a). Using this information we formulate the following definition.

Definition 4.1.2. An AC end of order k is said to be characterized by (h, f, `) if there exists a

coordinate system (τ, θ, φ) for Mext such that

g = h(θ)2(
1

r2
dr2 + dθ2 + f(θ)2dφ2). (4.1.7)

and

||g − g||g = ok(r
−`) (4.1.8)

By the above discussion, every AC end is characterized by (h, f, `) for some functions h and f

and some ` ∈ (0, 1). We will use this form for g throughout the paper. In the above definition h

is any smooth positive function on S2 which is independent of φ, and f is a nonnegative function

for which dθ2 + f2dφ2 is a smooth metric on S2. In particular we must have h′(0) = h′(π) = 0,

f(0) = f(π) = 0, f ′(0) = 1 and f ′(π) = −1.

Our model space appears to differ from that which appears in much of the literature, however if

we make the coordinate change τ = log r we may write

g = h(θ)2(dτ2 + dθ2 + f(θ)2dφ2), (4.1.9)

so that g fits into the class of conformally cylindrical metrics considered in [18]. Further, in our

definition the asymptotics hold at r and τ go to infinity. This is done so that our definitions and

theorems will more closely resemble the corresponding results for AF ends. In the literature one

often defines asymptotics as τ approaches −∞. The two approaches are clearly equivalent. The

cylindrical metrics in this paper are modeled after the neck of the t = 0 slice of an extreme Kerr

black hole. For extreme Kerr we have h(θ)2 = m2(1 + cos2(θ)) and f(θ)2 = 4 sin2(θ)
(1+cos2(θ))2 , see [18].

1In this case we do not have explicit coordinate system. However if we let (θ, φ) be the standard coordinates
on S2 and (x, y, z) the Cartesian coordinates corresponding to the spherical coordinates (r, θ, φ), then f =
Ok(r−`) takes on the same meaning as in the AF case, with coordinate vector fields ∂x, ∂y, and ∂z.
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As we will be using the above definitions as hypotheses repeatedly throughout the paper, we

introduce the following definition for the sake of brevity

Definition 4.1.3. A Riemannian 3 manifold (M, g) is said to be of asymptotic order k characterized

by (hi, fi, `i), if it is the union of a compact set K and a finite number of ends Mi, i ∈ {1, ..., n},
where M1 is an asymptotically flat end of order k and Mi is either an asymptotically flat end of

order k or an asymptotically cylindrical end of order k characterized by (hi, fi, `i). Further (M, g) is

assumed to be simply connected and axisymmetric.

In practice one generally works with initial data sets that have at least one asymptotically flat

end. The arguments of this paper can be used to create Brill coordinates for initial data sets which

only have asymptotically cylindrical ends, however the statement of our main theorem is simpler if

we place an asymptotically flat end at infinity. This is the setting of Theorem 1.0.5.

The Theorem is proven as follows. As in [13], simple connectedness and axisymmetry imply that

the quotient M/U(1) is diffeomorphic to a half plane with a finite number of points along the axis

removed. We may double M/U(1) across its boundary to obtain a manifold N which is diffeomorphic

to R2 minus a finite number of points, where each removed point represents either an asymptotically

flat or asymptotically cylindrical end. In Section 2 we describe the natural induced metric, q, on N

and show that in each cylindrical end q is conformal to an asymptotically flat metric in a natural way.

In Section 3 we use the AF and AC character of the metric q to construct isothermal coordinates

(ρ, z) on N such that q takes the form q = e2u(dρ2 + dz2), and reflection across the z axis is an

isometry of q. We then pull back the coordinates to M and the relationship between q and g gives

us the representation in equation (1.0.10).

In the remaining sections of the paper, we complete the proof of Theorem 1.0.5 by analyzing the

falloff of the metric components, and then use this falloff to establish the positivity of ADM mass

for any AF end of M. In the final section we prove an estimate on η in AC ends which will be used

extensively in Section 2.

4.2 Analysis of Quotient Metric

For any axisymmetric manifold (M, g), there is a natural induced metric q on the quotient manifold

M/U(1). Given any local cross section N for M/U(1) and X,Y ∈ TpN , q is given by

q(X,Y ) = g(X,Y )− g(η,X)g(η, Y )

g(η, η)
. (4.2.1)

For p ∈ N we can also express g at p in terms of q and the one form η[. That is, for all

X,Y ∈ TpM

g(X,Y ) = q(PηX,PηY ) +
g(η,X)g(η, Y )

g(η, η)
, (4.2.2)

where Pη : TpM → TpN is the projection along η. Further if xA, A = 1, 2 are local coordinates

for N and hence M/U(1), we can propagate them off N by requiring LηxA = 0 and define the third

coordinate φ by, φ = 0 on N and Lηφ = 1. In these coordinates η = ∂φ and Pη(X
A∂A + Xφ∂φ) =

XA∂A so Equation (4.2.2) takes the form
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g = qABdx
AdxB + g(η, η)(dφ+ θAdx

A)2, (4.2.3)

Recall that our definition of axisymmetric presupposes that A is nonempty, and it is well known

that each component of A is a geodesic for M , thus A is often referred to as the axis of M . Further-

more, the quotient map π : M → M/U(1) maps A diffeomorphically to the boundary of M/U(1).

As stated in the introduction, we let N denote the doubling of M/U(1) across its boundary. In [1],

Chruściel shows the following:

Theorem 4.2.1. If (M, g) is of asymptotic order k, then the metric q and the one form θ are k

times differentiable on N . In particular q is smooth up to the boundary of M/U(1).

This fact is nontrivial because of the factor of 1
g(η,η) appearing in Equation (4.2.1). The proof

relies on and expression for the metric g in geodesic coordinates about A and not on the asymptotic

behavior of g, so Chruściel’s proof goes through unmodified in our case.

Before preceding we will introduce some notation. Throughout this section we will use capital

letters A, B, C... to denote x or z and lower case letters a, b, c... to denote x or y, while standard

indices i, j, k... will still mean any of x, y, and z.

In addition to knowing that the metric q is smooth on N, we must also know the asymptotic

behavior of q. In the AF case the following is shown in [13]:

Theorem 4.2.2. Let Mext be any AF end on a manifold (M, g) of asymptotic order k ≥ 3. Then

there exists an R ≥ 0 and AF coordinates (x, y, z) on Mext such that the plane {y = 0} ∩ {r ≥ R}
is transverse to η except at x = z = 0 where η vanishes. Furthermore the coordinates (x, z) form

asymptotically flat coordinates for Mext/U(1), i.e.

qAB − δAB = ok−3(r−`). (4.2.4)

We will prove that analogous statement for AC ends.

Theorem 4.2.3. Let Mext be any AC end on a manifold (M, g) of order k ≥ 7 characterized

by (h, f, `). Then there exists an R ≥ 0 and coordinates (x, y, z) on Mext such that the plane

{y = 0} ∩ {r ≥ R} is transverse to η except at x = 0 where η vanishes. Furthermore in the

coordinates (x, z), the metric q satisfies

qAB −
h(θ)2

r2
δAB = ok−3(r−`−2) where θ = arctan(

x

z
). (4.2.5)

To prove this theorem, we start by constructing nice Cartesian coordinates (x, y, z) for Mext.

Our construction is highly dependent on the following estimate for the killing vector η.

Proposition 4.2.4. Let ηi be a killing vector for an axisymmetric three manifold (M, g). Let Mext

be an AC end of M of orderk ≥ 7 characterized by (h, f, `). Then there exists Cartesian coordinates

(x, y, z) for Mext such that

g = h(θ)2(
1

r2
δ +

1

ρ4
(f(θ)2 − sin2 θ)(xdy − ydx)2) +Ok(r

−`−2)dxidxj , (4.2.6)
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ηi∂i = x∂y − y∂x + ok(r
1−`)∂i (4.2.7)

and

ηidx
i =

h(θ)2f(θ)2

ρ2
(xdy − ydx+ ok(r

1−`)dxi). (4.2.8)

The proof of this estimate is straightforward, but lengthy, and is given in Section 4.7. It is worth

noting that since f(0) = f(π) = 0 and f ′(0) = −f ′(π) = 1 we have c sin(θ) ≤ f(θ) ≤ C sin(θ) for some

positive constants c, C. Since sin(θ)
ρ = 1

r , this implies f(θ)
ρ = O(r−1). Thus in the above Cartesian

coordinates, all metric components of g are O(r−2). We will use ωij to denote the antisymmetric 3 by 3

matrix whose only nonzero entries are ω1
2 = −ω2

1 = −1. Using this we may write ηi = ωijx
j+O(r1−`).

Using Proposition 4.2.4, we can prove the following:

Proposition 4.2.5. Let Mext be any AC end on a manifold (M, g) of asymptotic order k ≥ 7

characterized by (h, f, `), then there exists a Cartesian coordinate system (x, y, z) on Mext such that,

g satisfies Equation (4.2.6),

ηx = −y + ok(r
1−`), ηy = x+ ok(r

1−`), and ηz = 0. (4.2.9)

Further ηi satisfies Equation (4.2.8), and if ψs represents the flow of η, we have

x ◦ ψπ = −x, y ◦ ψπ = −y, and z ◦ ψs = z. (4.2.10)

Proof. Let (x̂, ŷ, ẑ) be an arbitrary set of coordinates for Mext given by Proposition 4.2.4. Let η̂i be

the associated killing vector and ψs the flow of η̂i. As in [13], our estimate for η̂i implies that ψs is

given by

ψs(x̂
i) = (cos(s)x̂− sin(s)ŷ + f x̂(s, x̂i), sin(s)x̂+ cos(s)ŷ + f ŷ(s, x̂i), ẑ + f ẑ(s, x̂i)), (4.2.11)

where the f x̂
i

are error terms, each of order ok+1(r̂1−`). Using this we can construct the desired

coordinates on Mext. Define

x =
x̂− x̂ ◦ ψπ

2
, y =

ŷ − ŷ ◦ ψπ
2

, z =
1

2π

∫ 2π

0
ẑ ◦ ψsds. (4.2.12)

Simple calculations using the form of ψs lead to

xi = x̂i + ok+1(r̂1−`) (4.2.13)

and hence

∂xi

∂x̂j
= δij + ok(r̂

−`), (4.2.14)

where (xi) is used to represent the coordinates (x, y, z). Define r =
√
x2 + y2 + z2, and note that

Equation (4.2.13) implies
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r = r̂ + ok+1(r̂1−`) = r̂ + ok+1(r1−`). (4.2.15)

By the implicit function theorem, for R large enough, the xi form a coordinate system on Mext.

Further Equation (4.2.12) implies x ◦ ψπ = −x, y ◦ ψπ = −y, and z ◦ ψs = z for all s ∈ [0, 2π). It

remains to show that g satisfies Equation (4.2.6) and that ηi is of the desired form. Equation (4.2.14)

and the fact that the metric components are O(r−2) imply that

ĝij = gij + ok(r
−5
2 ), (4.2.16)

and hence g satisfies Equation (4.2.6).

Finally Equations (4.2.13) and (4.2.14) imply

η̂i =
∂x̂i

∂xj
ηj = (δij + ok(r

−`))(ωjl x̂
l + ok(r

1−`)) = ωil x̂
l + ok(r

1−`) = ωilx
l + ok(r

1−`) (4.2.17)

and hence η̂i = ηi+ok(r
1−`). Thus since η̂x = ŷ+ok(r̂

1−`), and η̂y = −x̂+ok(r̂
1−`), we conclude

ηx = y + ok(r
1−`), and ηy = −x+ ok(r

1−`). Since z ◦ ψs = z we must have ηz = 0, so ηi satisfies the

desired condition. The estimate for ηi follows from the estimate for ηi as in the proof of Proposition

4.2.4 given in Section 4.7.

Next we prove several additional properties of the coordinate system (x, y, z) which will allow us

to prove Theorem 4.2.3.

Lemma 4.2.6. Under the coordinate system (x, y, z) the metric g satisfies

∂gab
∂xc

(0, 0, z) = 0,
∂gzz
∂xa

(0, 0, z) = 0 and gaz(0, 0, z) = 0, (4.2.18)

where a, b, c ∈ {x, y}.

Proof. The fact that ψπ(x, y, z) = (−x,−y, z) implies dψπ(∂x) = −∂x, dψπ(∂y) = −∂y, and dψπ(∂z) =

∂z. Thus since ψπ is an isometry

g(∂a, ∂b)(0,y,z) = g(dψπ(∂a), dψπ(∂b))ψπ(0,y,z) = g(−∂a,−∂b)(0,−y,z) = gab(0,−y, z). (4.2.19)

Thus gab(0, y, z) is an even function of y so all odd order y derivatives vanish at x = y = 0, i.e.
∂2l+1gab
∂y2l+1 (0, 0, z) = 0 for all l ∈ N. Similarly gab(x, 0, z) = gab(−x, 0, z) so we have ∂2l+1gab

∂x2l+1 (0, 0, z) = 0

for all l ∈ N. When l = 1 we have the first desired equation ∂gab
∂xc (0, 0, z) = 0.

Similarly we can calculate

g(∂z, ∂z)(0,y,z) = g(dψπ(∂z), dψπ(∂z))ψπ(0,y,z) = g(∂z, ∂z)(0,−y,z) = gzz(0,−y, z). (4.2.20)

Thus ∂2l+1gzz
∂y2l+1 (0, 0, z) = 0 and in the same way ∂2l+1gzz

∂x2l+1 (0, 0, z) = 0 for all l ∈ N. When l = 1 we have

the second desired equation ∂gzz
∂xa (0, 0, z) = 0.

Finally we have
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g(∂a, ∂z)(0,y,z) = g(dψπ(∂a), dψπ(∂z))ψπ(0,y,z) = g(−∂a, ∂z)(0,−y,z) = −gaz(0,−y, z), (4.2.21)

so gaz(0,−y, z) is an odd function in y and hence gaz(0,−y, z) = 0 and ∂2lgaz
∂y2l (0, 0, z) = 0 for all

l ∈ N.

We now prove a few properties of ηi which will allow us to estimate ηi near A.

Lemma 4.2.7. Under the coordinate system (x, y, z), the killing vector ηi satisfies

ηi(0, 0, z) = 0, ∇iηz(0, 0, z) = ∇zηi(0, 0, z) = 0, (4.2.22)

and

∇i∇jηk(0, 0, z) = ∇i∇jηk(0, 0, z) == ∂a∂bη
c(0, 0, z) == ∂a∂bηc(0, 0, z) = 0 (4.2.23)

where a, b, c ∈ {x, y}. In addition we have {(0, 0, z)} = A ∩Mext.

Proof. Since ψπ(x, y, z) = (−x,−y, z), the fixed point set of ψπ is precisely {(0, 0, z)}. Since all

nontrivial orbits of ψ have period 2π, we conclude (0, 0, z) is a fixed point of ψs for all s. Thus

Mext ∩ A = {(0, 0, z)}, and ηi(0, 0, z) = 0.

Now since ηz(x, y, z) = 0 for all (x, y, z) we have ∂iη
z = 0. Thus ∇iηz(0, 0, z) = ∂iη

z(0, 0, z) +

Γzijη
j(0, 0, z) = 0. Since ηi is a killing vector ∇iηz = 0 implies ∇zηi = 0. Finally, the killing equations

imply that ∇i∇jηk = Rilijη
l, so since ηi(0, 0, z) = 0 we have ∇i∇jηk(0, 0, z) = 0. Lowering an index

we have ∇i∇jηk(0, 0, z) = 0. Finally we expand the second covariant derivative as

0 = ∇a∇bηc(0, 0, z) = (∂a∇bηc + Γcaj∇bηj − Γjab∇jη
c)(0, 0, z). (4.2.24)

Expanding the Christoffel symbols in terms of the metric and applying Equations (4.2.18) and

(4.2.22) we obtain

0 = ∂a∂bη
c(0, 0, z). (4.2.25)

and similarly for the lowered index version.

Define λij(z) = ∂ηi

∂xj
(0, 0, z) and λij(z) = gik(0, 0, z)λ

k
j . Since ηz = 0 and ηi(0, 0, z) = 0 we have

λzi = λiz = 0. Further note that Equation (4.2.7) implies λab (z) = ωab +ok−1(r−`). Finally the vanishing

of η on the axis implies λxx = λyy = 0. We can now establish the necessary estimates for η near the

axis.

Lemma 4.2.8. In the region Mext ∩ {(x, y, z) : z2 ≥ ρ2} the killing vector satisfies

ηa = λabx
b + ok−3(r−`−2)ρ3 (4.2.26)

and

ηa = λabx
b + ok−3(r−4)ρ3 (4.2.27)

In addition we may write

ηi =
f(θ)2h(θ)2

ρ2
(λibx

b + ok−3(r−`)ρ) (4.2.28)
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Proof. To estimate the value of ηa at the point (x, y, z) we consider the segment γ connecting

(0, 0, z) to (x, y, z). Let ∂ρ =
x∂x+y∂y

(x2+y2)1−` =
x∂x+y∂y

ρ denote the tangent vector along this segment.

From Equation (4.2.7) we have ∂3ηa

∂ρ3 = ok−3(r−`−2). Integrating once along γ we have ∂2ηa

∂ρ2 (x, y, z) =

ok−3(r−`−2)ρ+ ∂2ηa

∂ρ2 (0, 0, z) = ok−3(r−`−2)ρ where ∂2ηa

∂ρ2 (0, 0, z) vanishes by Lemma 4.2.7. Integrating

two more times along γ we have

∂ηa

∂ρ
(x, y, z) = ok−3(r−`−2)ρ2 +

∂ηa

∂ρ
(0, 0, z), (4.2.29)

and

ηa(x, y, z) = ok−3(r−`−2)ρ3 + ρ
∂ηa

∂ρ
(0, 0, z) + ηa(0, 0, z) = ok−3(r−`−2)ρ3 + ρ

∂ηa

∂ρ
(0, 0, z), (4.2.30)

where ηa(0, 0, z) = 0 by Lemma 4.2.7. Finally we note that by definition ρ∂η
a

∂ρ (0, 0, z) = λabx
b

and hence ηa = λabx
b + ok−3(r−`−2)ρ3 as desired.

We can follow the same procedure for estimating ηa, however we start from the fact that

ηa = Ok(r
−1) and hence ∂3ηa

∂ρ3 = Ok−3(r−4). Upon integrating three times we obtain ηa = λabx
b +

ok−3(r−4)ρ3

We know ηz = 0 in all of Mext, however we do require a precise estimate of ηz near the axis.

Lemma 4.2.9. In the region Mext ∩ {(x, y, z) : z2 ≥ ρ2} the killing vector satisfies

ηz = Ok−1(r−3)ρ2 +Ok−3(r−4)ρ3 (4.2.31)

Proof. Following the procedure of Lemma 4.2.8 we begin from the starting point ηz = Ok(r
−1). In

this case Equation (4.2.22) implies the first order terms vanish, so

ηz = ρ2∂
2ηz
∂ρ

+Ok−3(r−4)ρ3 (4.2.32)

Expanding the second covariant derivative yields 0 = ∇a∇bηz = ∂a∂bηz − 2Γcazλbc. Here the

Christoffel symbols are in general Ok−1(r−1), and hence ∂2
ρηz = Ok−1(r−3). Equation (4.2.31) follows.

We can now show that {(x, 0, z) : x ≥ 0} can be used as a global cross section for Mext/U(1) and

hence that we can use (x, z) as global coordinates for Mext/U(1).

Lemma 4.2.10. Given the coordinates (x, y, z), there exists an R > 0 such that ηi is transverse to

the submanifold N ext := {(x, 0, z) : x2 + z2 ≥ R2} except at x = 0.

Proof. We will require different estimates for ηi in the region x2 ≥ z2 and x2 ≤ z2. First, for x2 ≥ z2

we recall that ηi = ωijx
j + ok(r

1−`) where ωyx = 1, so if y = 0 we have ηy = x + ok(r
1−`). Since

x2 ≥ z2, we have x2 ≥ 1
2r

2, so x > ok(r
1−`) for large r. So there exists a R such that ηy > 0 in the

region {(x, 0, z) : x2 + z2 ≥ R, x2 ≥ z2}, and thus ηi is transverse in this region.
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Now suppose z2 ≥ x2, and thus z is comparable with r. By Lemma 4.2.8 we have ηy(x, 0, z) =

λyxx+ ok−3(r−`−2)x3. Since λyx = 1 + ok−1(r−`) we have the estimate

ηy(x, 0, z) = (1 + ok−1(r−`))x+ ok−3(r−`−2)x3 = (1 + ok−1(r−`))x. (4.2.33)

Thus by taking R large enough we can ensure ηy(x, 0, z) 6= 0 whenever x2 + z2 ≥ R. We conclude

there exists an R such that η is transverse in the region {(x, 0, z) : x2 + z2 ≥ R, x 6= 0}.

The above Lemma implies that Next := N ext ∩ {x ≥ 0} is a global cross section for Mext/U(1)

and that we can use (x, z) as global coordinates for Mext/U(1). We can now prove the main result

of the section.

Proof of Theorem 4.2.3. All that remains is to show q satisfies Equation (4.2.5) in the coordinates

(x, z). To show this we use our previously obtained estimates on the killing vector η, and Equation

(4.2.1), or equivalently qAB = gAB + ηAηB
g(η,η) .

From Equation (4.2.6) and the fact that y = 0 on Next we obtain gAB = h(θ)2

r2 δAB + ok−3(r−`−2).

When restricted to Next, r for the coordinates (x, y, z) agrees with r for the coordinates (x, z), thus we

need only show that ηAηB
g(η,η) = ok−3(r−`−2) throughout Next. This is done by considering two regions,

x ≥ z and x ≤ z, where will will show the stronger statement ηAηB
g(η,η) = ok−3(r−2`−2)

First suppose x ≥ z and recall that the estimates for η imply g(η, η) = h(θ)2f(θ)2

ρ2 (ρ2 + ok(r
2−`)),

thus in the plane y = 0, g(η, η) = h(θ)2f(θ)2

x2 (x2+ok(r
2−`)). Now since ηA = h(θ)2f(θ)2

ρ2 (ωAi x
i+ok(r

1−`)),

and h(θ)2f(θ)2

ρ2 = Ok(r
−2), in the plane y = 0 we have ηx = ok(r

−`−1) and ηz = ok(r
−`−1). Since

ρ2

h(θ)2f(θ)2 = Ok(r
2), we conclude

ηAηB
g(η, η)

=
ρ2

h(θ)2f(θ)2

ok(r
−`−2)

(x2 + ok(r3/2))
=

ok(r
−2`)

x2 + ok(r3/2)
. (4.2.34)

The fact that x ≥ 1
2r implies x2 +ok(r

2−`) = Ok(x
2) = Ok(r

2) so ηAηB
g(η,η) = O(r−2`−2). Our control

over the derivatives of the numerator and denominator imply ηAηB
g(η,η) = ok(r

−2`−2) as desired.

Now suppose x ≤ z. On Next the estimates in Lemma 4.2.8 are of the form ηa = λaxx +

ok−3(r−`−2)x3 and ηi = h(θ)2f(θ)2

ρ2 (λixx + ok−3(r−`)x). For the numerator of ηAηB
g(η,η) we recall that

λxx = ok−1(r−`) and λzx = 0 so ηx = ok−3(r−`−2)x and ηz = ok−3(r−`−2)x. Thus in any case ηAηB =

ok−3(r−2`−4)x2. For the denominator we have

ρ2

h(θ)2f(θ)2
g(η, η) =

ρ2

h(θ)2f(θ)2
ηaηa = (λaxx+ ok−3(r−`−2)x3)(λaxx+ ok−3(r−`)x). (4.2.35)

When a = y we have leading term (λyx)2x2 = (1 + ok−1(r−`))x2. All other terms for a = y and

a = x are ok−3(r−`)x2 and thus we have g(η, η) = h(θ)2f(θ)2

ρ2 (1 + ok−1(r−`))x2. Combining this with

our estimate for the numerator we have

ηAηB
g(η, η)

=
ρ2

h(θ)2f(θ)2

ok−3(r−2`−4)x2

(1 + ok−1(r−`))x2
= Ok(r

2)
ok−3(r−2`−4)

1 + ok−1(r−`)
= ok−3(r−2`−2) (4.2.36)

as desired.
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4.3 Isothermal Coordinates

In [13] the following theorem is proved concerning the existence of isothermal coordinates

Theorem 4.3.1. Let (N, q) be a 2 manifold with n AF ends Ni, each of order k − 3 which is

diffeomorphic to R2/{ai}Ni=2 such that each puncture represents an AF end. Further for 1 ≤ i ≤ n

let xAi be asymptotically flat coordinates in the ith end, and let r̃i denote the corresponding radial

function. Then there exists a unique function u such that e−2uq is flat throughout N , u = ok−4(r−`1 )

as r1 →∞, and

u = logCi + 2 log r̃i + ok−4(r̃−`i ) (4.3.1)

as r̃i →∞ for i ≥ 2 and some constants Ci. Furthermore this conformal factor compactifies each

of the asymptotically flat ends except N1 so that the metric e−2uq extends to a complete flat metric

on R2.

We will use this result to show the existence and uniqueness of the desired conformal factor when

cylindrical ends are allowed. For conciseness we first introduce the following definition:

Definition 4.3.2. An open submanifold Next of a Riemannian 2 manifold (N, q) is said to be an

asymptotically cylindrical end of order k if there exists a diffeomorphism between N and R \ B(R)

for some R > 0, such that in local coordinates (x, z) on Next obtained from R \ B(R) the metric q

satisfies

qAB −
h(θ)2

r2
δAB = ok−3(r−`−2), (4.3.2)

where h is a positive smooth function of θ = arctan(xz ).

The coordinates (x, z) will be called AC coordinates and Next will be referred to as an AC end

of N .

Theorem 4.3.3. Let (N, q) be a 2 manifold with n AF or AC ends Ni, each of order k− 3. Further

suppose N is diffeomorphic to R2/{ai}Ni=2 such that each puncture represents an AF or AC end, and

N1 is an AF end at infinity. Further for 1 ≤ i ≤ n let xAi be AF or AC coordinates in the ith end, and

let r̃i denote the corresponding radial function. For each Ni which is AC, let hi denote the conformal

factor appearing in Equation (4.3.2). Then there exists a unique function u such that e−2uq is flat

throughout N , u = ok−4(r−`1 ) as r1 →∞, and for i ≥ 2 and some constants Ci,

u = logCi + 2 log r̃i + ok−4(r̃−`i ) (4.3.3)

if Ni is AF, while

u = logCi + log hi + log r̃i + ok−4(r̃−`i ) (4.3.4)

if Ni is AC. Furthermore this conformal factor compactifies each of the AF and AC ends except

N1 so that the metric e−2uq extends to a complete flat metric on R2.
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Proof. We first show existence. Let σ be a smooth positive function which is equal to
r2
i

h2
i

in each Ni

which is AC and equal to 1 in each Ni which is AF. Now consider the metric σq. Since σ = 1 on each

AF end, the coordinates xAi which are AF for q, are also AF for σq. Now if Ni is an AC end for q, and

xAi the corresponding AC coordinates, then qAB −
h2
i

r̃2
i
δAB = ok−3(r̃−`−2

i ) in Ni, so by construction

σqAB−δAB = ok−3(r−`). Thus xAi are AF coordinates for Ni in the metric σq. Hence the Riemannian

manifold (N, σq) satisfies the hypotheses of Theorem 4.3.1. Let û denote the conformal factor such

that σe−2ûq satisfies the conclusions of Theorem 4.3.1. Thus the conformal factor u := û− ` log σ is

such that e−2uq = σe−2ûq is flat and every end except N1 is compactified. Thus it remains to check

that u has the desired falloff. Since σ = 1 in each flat end, u = û in each such end, and by Theorem

4.3.1. Thus u = ok−4(r−`1 ) as r1 →∞, and for i ≥ 2,

u = logCi + 2 log r̃i + ok−4(r̃−`i ) (4.3.5)

if Ni is AF. If Ni is an AC end for q, then in Ni we have

u = û− ` log σ = û+ log hi − log r̃i = logCi + log hi + log r̃i + ok−4(r̃−`i ) (4.3.6)

as desired.

For uniqueness we will apply the uniqueness of Theorem 4.3.1. Explicitly, suppose e−2vq is flat

and v satisfies the falloff of Theorem 4.3.3. Let σ be as above and define v̂ = v + 1
2 log(σ). Then

we note that v̂ satisfies the conclusions of Theorem 4.3.1 when applied to the metric σq. By the

uniqueness of Theorem 4.3.1 we have v̂ = û and thus u = v as desired.

We can now apply this theorem to the doubled manifold N .

Theorem 4.3.4. Let (M, g) be of asymptotic order k with n ends. Let (N, q) be the doubling of

M/U(1) with the induced quotient metric and isometry ψ. Then there exists a global coordinate

system (ρ, z) for N under which q has the form q = e2u(dρ2 + dz2), and the isometry ψ is given by

reflection across the z axis. Further u satisfies the falloff given in Theorem 4.3.3.

Proof. Simple connectedness an axisymmetry of M imply that N is diffeomorphic to R2/{ai}ni=2.

Further Theorem 4.2.1 implies that q is smooth, while Theorems 4.2.2 and 4.2.3 imply that N is

AF at infinity and each puncture of N corresponds to either an AF or and AC end of (N, q). Thus

(N, q) satisfies the hypotheses of Theorem 4.3.3 and we can let u be the corresponding conformal

factor. Finally, we may consider e−2uq a metric on R2 because the conformal factor compactifies

each puncture.

We claim u is invariant under ψ. Since ψ is a diffeomorphism the pullback ψ∗(e−2uq) is a flat

metric on R2. This pullback is given by ψ∗(e−2uq) = e−2u◦ψψ∗q = e−2u◦ψq since ψ is an isometry of q.

We wish to apply the uniqueness of Theorem 4.3.3, so we must show u ◦ψ satisfies the desired falloff

in each end. Given an AC end N i, Theorem 4.2.3 implies that there exists AC coordinates (xi, zi) for

N i such that ψ(xi, zi) = (−xi, zi) for large r̃i. Thus in these coordinates, r̃i and θ̃i are invariant under

ψ. Hence u = logCi + log hi + log r̃i + ok−4(r̃−`i ) implies u ◦ ψ = logCi + log hi + log r̃i + ok−4(r̃−`i ).

Similarly Theorem 4.2.2 implies u ◦ ψ has the desired falloff in any AF end. By uniqueness we

conclude u ◦ ψ = u.

Now since ψ is an isometry for q, and u is invariant under ψ, ψ is also an isometry of e−2uq.

Since e−2uq is a flat metric on R2, there exists global coordinates (v, w) such that e−2uq = dv2 +dw2.
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Further, by a rigid translation we may assume the origin of this coordinate system lies on A, and

by a rotation assume that ∂w coincides with the tangent vector to A at the origin. Now clearly the

curve γ(t) = (0, t) is a geodesic for e−2uq. Since ψ is an isometry of e−2uq whose fixed point set is A,
we also have A is a geodesic for e−2uq. Thus by the uniqueness of geodesics A = {(0, v); z ∈ R}. Now

each geodesic γv(t) = (t, w) of e−2uq gets mapped by ψ to a geodesic on the other side of A whose

initial tangent vector is perpendicular to A. Thus we must have ψ(γw(t)) = (−t, w), and hence for

all (v, w) we have ψ(v, w) = (−v, w). For convenience we rename the coordinates (ρ, z) and have the

desired result.

We must prove a few more facts about our new coordinate system (ρ, z). In particular if we

define ri =
√
ρ2 + (z − ai)2 for i ≥ 2 as in Theorem 1.0.5, we would like to know the behavior of u

as ri → 0. The fact that e−2u compactifies the punctures implies that (xi, zi) := (xi
r̃2
i
, zi
r̃2
i
) can be used

as coordinates in a neighborhood of the ith puncture. Further e−2uq at the origin of this coordinate

system is δAB
C2
i

. Note that (ρ, z − ai) are orthogonal coordinates for e−2uq with the same origin as

(xi, zi). Further the line (0, zi) corresponds to the line (0, z−ai). Thus we must have ρ = xi
Ci

+O(r̃2
i )

and z = zi
Ci

+ ai +O(r̃2
i ). In particular ri = 1

Cir̃i
+Ok−4(r2

i ). This relationship along with the falloff

given in Theorem 4.3.4 imply

u = − logCi − 2 log ri + ok−4(r`i ) (4.3.7)

if Ni is AF, and

u = log hi − log ri + ok−4(r`i ) (4.3.8)

if Ni is AC.

In addition the relationship between (xi, zi) and (ρ, z−ai) implies a relationship between angular

coordinate θ̃i = arctan(xizi ) = arctan(xizi ) and the angular coordinate θi := arctan( ρ
z−ai ). In particular

we have

θi = θ̃i +Ok−4(ri). (4.3.9)

If i = 1, then the fact that u = ok−4(r−`1 ) implies that (ρ, z) are AF coordinates for M1 in the

metric q. Thus if we define r =
√
ρ2 + z2 as in Theorem 1.0.5 we have u = ok−4(r−`) as r →∞. In

the next section we use these fact about the falloff of u complete the construction of Brill coordinates.

4.4 Final Construction

We now have all of the tools to prove Theorem 1.0.5. The construction of Brill coordinates precedes

as in [13], and the falloff of the metric components is computed similarly.

Proof of Theorem 1.0.5. For 1 ≤ i ≤ n let (xi, yi, zi) be the AF or AC coordinates constructed in

Section 2. Then let N be a global cross section of M/U(1) such that in each end Mi, N ∩ Mi

agrees with the set (xi, 0, zi) : xi ≥ 0. We can do this because it was shown in Section 2 that the set

{(xi, 0, zi) : xi ≥ 0} is traverse to η.
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By Theorem 4.3.4 we have global coordinates (ρ, z) for M/U(1), and hence (ρ, z) are also co-

ordinates for N . We set φ = 0 on N and propagate the coordinates (p, z, φ) off N by requiring

Lηρ = Lηz = 0 and Lηφ = 1. Since N is a global cross section, every point p in M is given by

(ρ, z, φ) for some ρ ∈ [0,∞), z ∈ (−∞,∞) and φ ∈ [0, 2π) where (ρ, 0, z) is the unique point on N in

the same orbit as p. Thus (ρ, z, φ) forms a global coordinate system for M. Furthermore η = ∂φ and

and Pη(X
A∂A +Xφ∂φ) = XA∂A. Hence by Equation (4.2.3) the metric in these coordinates is given

by

g = qABdx
AdxB + g(η, η)(dφ+Aρdρ+Azdz)

2 (4.4.1)

where Aρ = ρ
ηρ

ρg(η,η) and Az = ηz
g(η,η) . Further all of these functions are independent of φ. To get

this into the form of Equation (1.0.10) we simply define U and α by e−2U = g(η,η)
ρ2 and α = u + U.

Then since qABdx
AdxB = e2u(dρ2 + dz2) we have

g = e−2U+2α(dρ2 + dz2) + ρ2e−2U (dφ+Aρdρ+Azdz)
2 (4.4.2)

As in the statement of the Theorem, we now define r =
√
ρ2 + z2 and r̂i =

√
ρ2 + (z − ai)2 for

i ≥ 2. It remains to calculate the falloff of the metric components. This is done for M1 and any

other AF end in [13]. Thus we will only treat the AC case.

Let Mi be an AC end of M, and let Ni := Mi ∩N . In Section 2 we obtained estimates for η in

the coordinates (xi, yi, zi). In particular we know that on Ni we have

ρ2e−2U = g(η, η) = hi(θ̃i)
2fi(θ̃i)

2(1 + ok−3(r̃−`i )). (4.4.3)

Using the relationship between (xi, zi) and (ρ, z) derived at the end of Section 3 this becomes

e−2U =
h(θ̃i)

2f(θ̃i)
2

ρ2
(1 + ok−3(r`i )), (4.4.4)

and thus

U = log ρ− log hi(θ̃i)− log fi(θ̃i) + ok−3(r`i ). (4.4.5)

Using the relationship between ρ, ri, and θi we may write this as

U = log ri − log hi(θ̃i)− log
fi(θ̃i)

sin θ̃i
+ ok−3(r`i ). (4.4.6)

Now using Equation (4.3.8) we can directly estimate α = u+ U as

α = − log
fi(θ̃i)

sin θ̃i
+ ok−4(r`i ). (4.4.7)

Functions in both U and α remain in terms of θ̃i, the angular coordinate for (xi, zi). To solve

this we use Equation (4.3.9) and the fact that all derivatives of fi and hi are bounded to obtain

fi(θ̃i) = fi(θi) + ok−4(r1−`), hi(θ̃i) = hi(θi) + ok−4(r`). (4.4.8)

Thus we in fact have
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U = log ri − log hi(θi)− log
fi(θi)

sin θi
+ ok−3(r`i ), α = − log

fi(θi)

sin θi
+ ok−4(r`i ). (4.4.9)

Finally in [13] it is shown that Az and Aρ are given in the slice y = 0 by Az = ηz
g(η,η) and

Aρ = ρ ηx
xg(η,η) .

and the proof of Theorem 1.0.5 is complete.

We will use in the following section that α = 0 in the z which follows from the fact that g is

assumed to have no conical singularities. The proof of this fact is given in [13]. As a consistency

check we simply note that limθi→0 log fi(θi)
sin θi

= 0, which is a necessary condition for α to vanish on

the axis.

4.5 Application to ADM Mass

The ADM mass of an asymptotically flat end with asymptotically flat coordinates, (x, y, z), is given

by

m := limR→∞
1

16π

∫
SR

(gij,j − gjj,i)dSi, (4.5.1)

where dSi = ∂ic(dx ∧ dy ∧ dz), and SR can be taken to be any piecewise differentiable surface

homologous to the coordinate sphere of radius R such that limR→∞ inf{r(p) : p ∈ SR} =∞.
In [13] it is shown that the positive mass theorem holds for asymptotically flat metrics of the

form (1.0.10) given certain falloff the for metric components. Here we modify the arguments for the

case when asymptotically cylindrical ends are present. In particular we prove the following:

Theorem 4.5.1. Let (M, g) be of asymptotic order k, with k ≥ 6, and n ≥ 2 ends. Further suppose

that the scalar curvature R(3) ≥ 0. Then the ADM mass mi of any asymptoticly flat end Mi satisfies

0 < mi ≤ ∞
with mi <∞ if and only if

R(3) ∈ L1(R3), DU, ρ(Aρ,z −Az,ρ) ∈ L2(R3) (4.5.2)

Proof. Assume without loss of generality that we are trying to determine the mass of M1. Let (ρ, z, φ)

be the Brill coordinates for M given by Theorem 1.0.5. As in [13] we can convert to standard

Cartesian coordinates by setting

x = ρ cosφ, y = ρ sinφ. (4.5.3)

The falloff of the metric components given by Theorem 1.0.5 then imply that (x, y, z) is an

asymptotically flat coordinate system for M1. Our Brill coordinate system has the same behavior of

that obtained in [13] except near the punctures, so the integral in Equation (4.5.1) can be computed

in an identical way with the exception of our application of Stokes’ Theorem.

We define CR to be the boundary of the solid cylinder

CR := {−R ≤ z ≤ R, 0 ≤ ρ ≤ R}. (4.5.4)

It is then shown in [13] that the mass integral of Equation (4.5.1) reduces to
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m = lim
R→∞

1

4π

∫
CR

∂i(U −
1

2
α)dSi +

1

8π

∫
WR

αdφdz, (4.5.5)

where

WR := {−R ≤ z ≤ R, ρ = R} (4.5.6)

represents the wall of the boundary cylinder CR. We will use B1/R(ai) to denote the coordinate

ball of radius 1/R about the ith puncture and S1/R(ai) to denote the corresponding boundary sphere.

Define

ĈR := CR\ ∪ni=2 B1/R(0, 0, ai) (4.5.7)

and note that, for large R, the boundary of ĈR is the union of CR and ∪ni=2S1/R(ai). The unit

outer normal of S1/R(ai) is −∂ri .Thus Stokes Theorem implies that∫
CR

∂i(U −
1

2
α)dSi = Σn

i=2

∫
S1/R(ai)

∂ri(U −
1

2
α)dAi +

∫
ĈR

∆δ(U −
1

2
α)dx3 (4.5.8)

where ∆δ denotes the Euclidean Laplacian, and dAi is the Euclidean area form on S1/R(ai). The

falloff of U − `α is given by Equation (1.0.17) or (1.0.18) depending on whether S1/R(ai) encloses an

AF end or an AC end. In either case, since ∂rifi(θi) = ∂rihi(θi) = 0, we have ∂riα = ok−5(r−`i ) and

∂riU = Ok−5(r−1
i ). Thus for large R, sup{|∂ri(U− 1

2α)(p)| : p ∈ S1/R(ai)} ≤ R. Since the coordinate

area of S1/R(ai) is 4π
R2 we can conclude limR→∞ |

∫
S1/R(ai)

∂ri(U − 1
2α)dAi| ≤ limR→∞C

4π
R2R = 0.

To estimate the second term in Equation (4.5.5), we recall that α is independent of φ and α = 0

along the z axis. Thus we can write

α(R, z) =

∫ R

0
∂ρα(ρ, z)dρ+ α(0, z) =

∫ R

0
∂ρα(ρ, z). (4.5.9)

Note that this equality is not necessarily true for the finite set of z values corresponding to

punctures. However that finite set not affect the second integral in Equation (4.5.5), and we have

1

2

∫
WR

αdφdz =
1

2

∫
CR
∂ραdρdφdz =

1

2

∫
CR

∂ρα

ρ
dx3. (4.5.10)

Combining this with Equation (4.5.8) we obtain

m = lim
R→∞

1

4π

∫
ĈR

∆δ(U −
1

2
α)dx3 +

1

8π

∫
CR

1

ρ
∂ραdx

3 (4.5.11)

Falloff for α implies

lim
R→0

∫
B1/R(ai)

1

ρ
∂ραdx

3 = 0, (4.5.12)

so we may write the whole limit as an integral over ĈR, i.e.

m = lim
R→∞

1

4π

∫
ĈR

∆δ(U −
1

2
α) +

1

2ρ
∂ραdx

3 (4.5.13)
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We now apply the formula for scalar curvature, R3 in Brill Coordinates. We have

R(3) = − 4

e−2U+2α
(−∆δ(U −

1

2
α) +

1

2
|∇U |2 − 1

2ρ
∂ρα+

ρ2e−2α

8
(ρ∂zB − ∂ρA)2) (4.5.14)

Applying this formula, all terms in the integrand become nonnegative, and we can apply the

dominated convergent theorem to obtain

m =
1

16π

∫
R3

[R(3) +
1

2
ρ2e−4α+2U (ρ∂zB − ∂ρA)2]e−2U+2α + 2|∇U |2dx3. (4.5.15)

Observe that this is precisely Equation 3.9 in [13]. Since R(3) ≥ 0 by hypothesis we conclude

m ≥ 0. We now demonstrate when m is finite. Note that R3 is bounded in each AC end. Further

e−2U+2α = O( 1
r2
i
) near each AC end. Thus R3e−2U+2α is integrable near each puncture represent-

ing an AC end. Similarly for AF ends R3 = O(r2+`
i ) and e−2U+2α = O( 1

r4
i
), so R(3)e−2U+2α is

integrable near each puncture representing an AF end. Since e−2U+2α → 1 as r → ∞ we have∫
R3 R

(3)e−2U+2αdx3 <∞ if and only if R(3) ∈ L1(R3).

Now since α is bounded
∫
R3 ρ

2e−2α(ρ∂zB−∂ρA)2dx3 <∞ if and only if ρ(ρ∂zB−∂ρA) ∈ L2(R3).

We conclude m <∞ if and only if R(3) ∈ L1(R3), DU, ρ(Aρ,z −Az,ρ) ∈ L2(R3).

Finally suppose m = 0, then arguments identical to those in [13] show that g is flat, and thus by

simple connectedness isometric to R3. Since we assumed g has at least 2 ends, this is impossible, so

we must have m > 0.

4.6 Uniqueness of Brill Type Coordinates

We will discuss the uniqueness of Brill coordinates systems, as well as the pseudospherical and Weyl

coordinates used above. In any case we show that the coordinates are essentially unique once one

chooses a cross section N for M/U(1).

We begin with the case where (M, g) is an axisymmetric, simply connected Riemannian 3-

manifold with one asymptotically flat end. By Theorem 2.7 in [13], we know there exists a global

Brill coordinates system for (M, g). We prove the following uniqueness theorem:

Theorem 4.6.1. Let (M, g) be a simply connected axisymmetric Riemannian manifold which is

the union of a compact set and an asymptotically flat end. Let (ρ, z, φ) and (ρ̃, z̃, φ̃) be two Brill

coordinate systems for M satisfying the conclusions of Theorem 2.7 in [13]. Then

ρ = ρ̃, z = z̃ + c, φ = φ̃+ f(ρ, z), U = Ũ , α = α̃, and ∂zAρ + ∂ρAz = ∂zÃρ + ∂ρÃz, (4.6.1)

where c is a constant and f is a smooth axisymmetric function satisfying f = b+ o1(r−`).

Let (ρ, z, φ) and (ρ̃, z̃, φ̃) be two Brill coordinate systems for (M, g). The two coordinate systems

can be seen as the result of applying Chruściel’s construction of Brill coordinates using two different

cross sections, N and Ñ , of the orbit space M/U(1); however we do not assume the coordinates were

obtained in this way. The Theorem follows from a series of lemmas.
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Lemma 4.6.2. Given the two coordinate systems (ρ, z, φ) and (ρ̃, z̃, φ̃) for the manifold (M, g) defined

above, we have ρ = ρ̃ and z = z̃ + c for some constant c.

Proof. Consider the orbit space M/U(1). For the coordinate system (ρ, z, φ) we have ∂φ = η, so

the hypersurface φ = 0 intersects each orbit of η precisely once. Thus (ρ, z) are global coordinates

for M/U(1). By the definition of the quotient metric we have q = e−2U+2α(dρ2 + dz2). Since U

and α are axisymmetric functions and g is smooth we have ∂2k+1
ρ (−2U + 2α)(0, ρ) = 0 for all k.

Thus (M/U(1), q) can be doubled across its boundary and by allowing ρ ∈ (−∞,∞) we obtain

a smooth metric on R2 equal to q = e−2U+2α(dρ2 + dz2). By definition U(−ρ, z) = U(ρ, z) and

α(−ρ, z) = α(ρ, z).

Since the quotient metric q is independent of the choice of cross section, we may use the same

procedure to obtain q = e−2Ũ+2α̃(dρ̃2 + dz̃2), where we now allow (ρ̃, z̃) ∈ R2.

Thus (ρ, z) and (ρ̃, z̃) are both isothermal coordinate systems for q. A standard argument shows

that the map (ρ, z)→ (ρ̃, z̃), satisfies the Cauchy Riemann equations and thus is a conformal bijection

from R2 to R2. A standard argument using Picard’s Theorem implies such a map must be complex

linear, so if we write ζ = ρ+ iz and ζ̃ = ρ̃+ iz̃ then ζ̃ = f(ζ) = aζ + b for some complex numbers a

and b. Since η vanishes precisely where ρ and ρ̃ vanish, f fixes the imaginary axis, ρ = 0, so a ∈ R
and ib ∈ R. By definition a = ∂p1

∂ρ and 0 = ∂p1

∂z . Thus ∂ρ = a∂ρ̃.. By our falloff hypotheses q(∂ρ, ∂ρ)

and q(∂ρ̃, ∂ρ̃) both approach 1 as r and r̃ approach infinity respectively. By the form of f , f = az+b,

r̃ goes to infinity as r goes to infinity. Thus |a| = 1. Since f preserves orientation we conclude that

ζ̃ = f(ζ) = ζ + b where ib ∈ R and thus ρ = ρ̃ and z = z̃ + b as desired.

With this relationship between the coordinates we can now compare the metric parameters.

Lemma 4.6.3. Let (ρ, z, φ) and (ρ̃, z̃, φ̃) be two coordinate systems for a manifold (M, g), in which

the metric takes the form of Equation 1.0.10. Further suppose ρ = ρ̃ and z = z̃ + c. Then U(ρ, z) =

Ũ(ρ, z + c) and α(ρ, z) = α̃(ρ̃, z̃ + c)

Proof. From the proof of Lemma 4.6.2 we have q = e−2U+2α(dρ2+dz2) = e−2Ũ+2α̃(dρ2+dz2) and the

relationship between (ρ, z) and (ρ̃, z̃) implies dρ2 = dρ̃2 and dz2 = dz̃2. Thus −2U + 2α = −2Ũ + 2α̃

as functions on M/U(1). Since both sides of the equation are constant on the orbits of η we have

−2U + 2α = −2Ũ + 2α̃ globally. We see from the form of g that g(η, η) = g(∂φ, ∂φ) = ρ2e−2U .

However we also have g(η, η) = g(∂φ̃, ∂φ̃) = ρ̃2e−2Ũ . Since g(η, η) is a geometric quantity and ρ = ρ̃

we conclude U(ρ, z) = Ũ(ρ̃, z̃+ c). Now using −2U + 2α = −2Ũ + 2α̃ we obtain α(ρ, z) = α̃(ρ̃, z̃+ c)

as desired.

For future use we note that in general we do not have ∂ρ = ∂ρ̃ because ∂φ
∂ρ̃ 6= 0. However most

of the functions, f , we encounter are axisymmetic, i.e. they satisfy ∂φf = 0. In this case we do in

fact have ∂ρf = ∂ρ̃f , and ∂zf = ∂z̃. When dealing with axisymmetric functions we will use ∂ρ and

∂ρ̃ interchangeably.

Lemma 4.6.3 implies that the only components of the metric that can change significantly are

φ,Aρ and Az. We now put the desired constraints on their behavior.

Lemma 4.6.4. Let (ρ, z, φ) and (ρ̃, z̃, φ̃) be two coordinate systems for a manifold (M, g), in which

the metric takes the form of Equation 1.0.10. Further suppose ρ = ρ̃, z = z̃+ c, U(ρ, z) = Ũ(ρ, z+ c)
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and α(ρ, z) = α̃(ρ̃, z̃+ c). Then we have φ = φ̃+ f(ρ, z) and ∂zAρ− ∂ρAz = ∂z̃Ãρ− ∂ρÃz. Here f is

a smooth axisymmetric function satisfying f = c+ o1(r−`).

Proof. Consider the function φ− φ̃ on M . Since η = ∂φ = ∂φ̃ we have ∂φ(φ− φ̃) = ∂φ̃(φ− φ̃) = 0 so

the difference is independent of φ and we can write φ− φ̃ = f(ρ, z). From the form of the metric we

see Az = Ãz + ∂zf and Aρ = Ãρ + ∂ρf . Thus we compute

∂zAρ − ∂ρAz = ∂zÃρ + ∂z∂ρf − ∂ρÃz − ∂z∂ρf = ∂zÃρ + ∂ρÃz. (4.6.2)

Thus we have the desired relationship between Az, Aρ, Ãz, and Ãρ. To obtain the desired falloff

for f we simply note that the falloffs for Az and Ãz imply that ∂zf = o(r−`−1) and ∂ρf = ρo(r`−2).

Integrating these falloffs gives f = c + o1(r−`). We know f is independent of φ and smooth away

from the z axis because the coordinate charts are smooth. Since ∂ρf = 0 on the z−axis we conclude

f is globally smooth and axisymmetric.

Theorem 4.6.1 is a direct consequence of applying Lemmas 4.6.2, 4.6.3, and 4.6.4 to the given

coordinates. In addition we can prove what essentially amounts to a converse of Theorem 4.6.1.

Theorem 4.6.5. Let (M, g) be a simply connected axisymmetric Riemannian manifold which is the

union of a compact set and an asymptotically flat end. Let (ρ, z, φ) be Brill coordinates with metric

functions U,α,Az, Aρ. Suppose Ãz, Ãρ are axisymmetric functions, smooth away from the axis, and

satisfying the compatibility condition ∂zAρ − ∂ρAz = ∂z̃Ãρ − ∂ρÃz as well as the falloff conditions

Ãz = o(r−`−1) and Ãρ = ρo(r`−2) . Then there exist coordinates (ρ, z, φ̃) where g is in Brill form

with metric functions U,α, Ãz, Ãρ.

Proof. Define fρ(ρ, z) = Aρ− Ãρ, and fz(ρ, z) = Az− Ãz. The equation ∂zAρ−∂ρAz = ∂z̃Ãρ−∂ρÃz
implies ∂zfρ = ∂ρfz, and the falloff conditions for Az, Aρ, Ãz, and Ãρ imply that fρ and fz are

integrable on R2
+. Now define f(ρ, z) by first by f(0, 0) = 0, then f(ρ, 0) =

∫ ρ
0 fρ(0, s)ds and finally

f(ρ, z) =

∫ z

0
fz(ρ, w)dw + f(ρ, 0). (4.6.3)

By the compatibility condition

∂ρf(ρ, z) =

∫ z

0
∂ρfz(ρ, w)dw + ∂ρf(ρ, 0) =

∫ z

0
∂wfρ(ρ, w)dw + fρ(ρ, 0) = fρ(ρ, z), (4.6.4)

and clearly ∂zf(ρ, z) = fz(ρ, z). Thus if we define φ̃ = φ + f(ρ, z) and take φ̃ modulo 2π it

is easily seen that the coordinates (ρ, z, φ̃) form a Brill coordinate system for (M, g) with metric

functions U,α, Ãz, Ãρ.

Similarly we may consider (M, g) and (M̃, g̃), two manifolds with Brill coordinates (ρ, z, φ) and

(ρ̃, z̃, φ̃) such that U = Ũ and α = α̃ as functions on R+
2 and such that Az, Aρ, Ãz and Ãρ satisfy the

compatibility condition as functions on R+
2 . The above argument implies that the map defined by

ρ = ρ̃, z = z̃ and φ = φ̃+ f is an isomorphism between (M, g) and (M̃, g̃).

Now we by make the necessary modifications to the above arguments in the case where there are

multiple asymptotically flat or asymptotically cylindrical ends. We prove the following:
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Theorem 4.6.6. Let (M, g) be a simply connected axisymmetric Riemannian manifold which is

the union of a compact set and a finite number of asymptotically flat or asymptotically cylindrical

ends. Let (ρ, z, φ) and (ρ̃, z̃, φ̃) be two Brill coordinate systems for M with coordinate ranges (ρ, z) ∈
R2

+ \ {ai}ni=2 and (ρ̃, z̃) ∈ R2
+ \ {bi}ni=2. Finally we assume that both coordinates systems have the

same end at infinity. In particular we assume that there exists a neighborhood Vi of each ai, such

that the image of Vi under the map (ρ, z, φ)→ (ρ′, z′, φ′) is a bounded set. Then

ρ = ρ̃, z = z̃ + c, φ = φ̃+ f(ρ, z), U = Ũ , α = α̃, and ∂zAρ + ∂ρAz = ∂zÃρ + ∂ρÃz, (4.6.5)

where c is a constant and f is a smooth axisymmetric function satisfying f = b+ o1(r−`).

Proof. The main step of the proof is again to show that ρ = ρ̃ and z = z̃+c. Once this is established

the remaining conclusions follow precisely as in the one end case. We again have the quotient metric

defined by q = e−2U+2α(dρ2 + dz2) = e−2Ũ+2α̃(dρ̃2 + dz̃2). By doubling we obtain a smooth metric

on R2 \ {ai} and R2 \ {bi}. Since (ρ, z) and (ρ̃, z̃) are isothermal coordinates the map (ρ, z)→ (ρ̃, z̃)

is conformal and can be thought of as a complex holomorphic bijection f : C \ {ai} → C \ {bi}.
We claim f can be extended to a bijection from C → C. First we extend he range and consider

f : C \ {ai} → C. Let ai be one of the removed points. Then by hypothesis we know f is bounded in

a neighborhood of ai. Thus ai is a removable singularity of f and we may define f(ai) = limz→aif(z).

Applying this procedure to all of the removed points we obtain a holomorphic map f : C→ C.

To show f is a bijection let z0 6∈ {ai} and suppose f(z0) = f(a1). Choose ε so small that Bε(z0)

and Bε(a1) are disjoint. Since f is conformal it maps the open balls Bε(z0) and Bε(a1) to two balls

around open balls around f(z0). Thus

f(Bε(z0)) ∩ f(Bε(a1) \ {a1}) 6= ∅. (4.6.6)

This contradicts the fact that f is bijective on C \ {ai}. Thus f(a1) = bj for some j and filling

in one hole we obtain a bijection f : C \ {ai}{i 6=1} → C \ {bi}{i 6=j}. Repeating this procedure we

conclude f maps {ai} bijectively onto {bi}. Thus we obtain a bijection f : C→ C. Since f fixes the

imaginary axis the same argument used in the proof for one end implies f(ζ) = ζ + ic where c ∈ R.

Thus ρ = ρ̃, and z = z̃ + c for some constant c as desired.

We can use similar techniques to analyze the uniqueness of the pseudoshperical and Weyl coor-

dinates. We prove the following:

Theorem 4.6.7. Let (M, g) be a simply connected axisymmetric Riemannian manifold with boundary

which is the union of a compact set and an asymptotically flat end. Let (ρ, z, φ) and (ρ̃, z̃, φ̃) be two

pseudospherical coordinate systems for M with coordinate ranges (ρ, z) ∈ R2
+ \{ρ2 + z2 ≤ m2

1/4} and

(ρ′, z′) ∈ R2
+ \ {ρ2 + z2 ≤ m2

2/4}. Then m1 = m2 and

ρ = ρ̃, z = z̃ + c, φ = φ̃+ f(ρ, z), U = Ũ , α = α̃, and ∂zAρ + ∂ρAz = ∂zÃρ + ∂ρÃz, (4.6.7)

where c is a constant and f is a smooth axisymmetric function satisfying f = b+ o1(r−`).
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Proof. The proof that m1 = m2 is given in [19]. This proof is essentially complete if we can show

ρ = ρ̃ and z = z̃. We again consider the doubled quotient metric q on R2 \ {ρ2 + z2 ≤ m2
1/4}. The

map

f : R2 \ {ρ2 + z2 ≤ m2
1/4} → R2 \ {ρ̃2 + z̃2 ≤ m2

1/4}, (4.6.8)

is again conformal bijection. By performing an inversion about the circle or radius m1/2 in both the

domain and range we obtain a conformal bijection

f̃ : {ρ2 + z2 ≤ m2
1/4} \ {(0, 0)} → {ρ̃2 + z̃2 ≤ m2

1/4} \ {(0, 0)}. (4.6.9)

Since f̃ is bounded near 0, 0 is a removable singularity and we may define f̃(0) = limz→0 f̃(z). As

in he multiple end case, the bijectivity of f̃ on {ρ2 + z2 ≤ m2
1/4} \ {0} implies that the extension

satisfies f̃(0) = 0. Thus we obtain a conformal bijection f̃ : {ρ2 + z2 ≤ m2
1/4} → {ρ̃2 + z̃2 ≤ m2

1/4}.
Thus f̃ is a Mobious transformation. Since f̃ fixes the origin it must be a rotation, and since f̃ fixes

the imaginary axis and preserves the orientation it must the identity. Using the equation for the

circle inversion we conclude

ρ

r2
=

ρ̃

r̃2
and

z

r2
=

z̃

r̃2
. (4.6.10)

We can square these equations and sum them to obtain ρ2+z2

r4 = ρ̃2+z̃2

r̃4 and thus 1
r2 = 1

r̃2 . Hence we

must in fact have ρ = ρ̃ and z = z̃ as desired.

The remaining equalities in the proof follow from Lemmas 4.6.3 and 4.6.4 just as in the proof of

Theorem 4.6.1.

We can use the uniqueness for pseudospherical coordinates to immediately obtain uniqueness of

Weyl coordinates.

Theorem 4.6.8. Let (M, g) be a simply connected axisymmetric Riemannian manifold with boundary

which is the union of a compact set and an asymptotically flat end. Let (ρ, z, φ) and (ρ̃, z̃, φ̃) be

two Weyl coordinate systems for M with coordinate ranges (ρ, z) ∈ R2
+ \ {ρ = 0, |z| < m1} and

(ρ′, z′) ∈ R2
+{ρ = 0, |z| < m2}. Then m1 = m2 and

ρ = ρ̃, z = z̃ + c, φ = φ̃+ f(ρ, z), U = Ũ , α = α̃, and ∂zAρ + ∂ρAz = ∂zÃρ + ∂ρÃz, (4.6.11)

where c is a constant and f is a smooth axisymmetric function satisfying f = b+ o1(r−`).

Proof. In [19], Chruściel defines a rotated Joukovsky transformation given by ζ = f(ζS) = ζS −
m2

1
4ζS

where ζ = ρ + iz represent the Weyl coordinates and ζS = ρS + izS represents pseudospherical

coordinates. The map f is a holomorphic bijection from R2 \ {ρ2
S + z2

S ≤ m2
1/4} → R+

2 . We can

perform the inverse map , f−1, to both the (ρ, z) coordinates and the (ρ̃, z̃) coordinates to obtain two

sets of pseudospherical coordinates (ρS , zS) and (ρ̃S , z̃S). By Theorem 4.6.7 the (ρS , zS) and (ρ̃S , z̃S)

coordinates must coincide. We conclude ρ = ρ̃ and z = z̃ and the remainder of the theorem follows

from Lemmas 4.6.3 and 4.6.4.
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4.7 Killing Vector Estimates

Throughout the body of this paper we take g to be of the form g = h(θ)2( 1
r2dr

2 + dθ2 + f(θ)2dφ2).

For this section we will reparametrize θ and set τ = log r so that g can be written as g := h̃(θ)2dτ2 +

a(dθ2 + f̃(θ)2dφ2) for some functions h̃ and f̃ . As h̃ and f̃ satisfy the same hypotheses as h and

f respectively, we will abuse notation and also refer to these functions as h and f . In (τ, θ, φ)

coordinates the falloff of g becomes ||g − g||g = ok(e
−`τ ) as τ → ∞, and in particular in (τ, θ, φ)

coordinates we have

g = h(θ)2dτ2 + a(dθ2 + f(θ)2dφ2) +Gij(τ, φ, θ)dx
idxj , (4.7.1)

where Gij = ok(e
−`τ ), Giφ = fok(e

−`τ )f and Gφφ = ok(e
−`τ )f2 where i, j ∈ {θ, τ}.2

The purpose of this section is to prove Proposition 4.2.4. The main step is to show that if ηi∂i
is a killing vector for g with periodic orbits of period 2π, then after perhaps a change of coordinates

on S2 we have ||ηi∂i− ∂φ||g = ||ηidxi− af2dφ||g = ok(e
−`τ ). Before estimating the killing vectors we

must prove a few properties of g and g.

Lemma 4.7.1. Let h(θ) be a smooth positive function on S2 which is independent of φ. If h satisfies

the equation

hh′′ − h′h′ = b, (4.7.2)

for a constant b, then h is a constant function.

Proof. Suppose Equation (4.7.2) holds. We claim b must equal 0. Since h is a smooth function on S2

we must have h′(0) = h′(π) = 0. To show b = 0 we split into three cases based on the sign of h′′(0).

If h′′(0) = 0 then since h′(0) = 0 Equation (4.7.2) directly implies b = 0.

Now suppose h′′(0) > 0. Then since h > 0, Equation (4.7.2) at θ = 0 implies b > 0. Further since

h′′(0) > 0 we know h′ > 0 on some interval (0, δ). If t is the next zero of h′ we must have h′′(t) ≤ 0.

We know such a zero exists because h′(π) = 0. Then Equation (4.7.2) at θ = t implies b ≤ 0. This is a

contradiction so we cannot have h′′(0) > 0. The h′′(0) < 0 case is identical, so we conclude h′′(0) = 0

and furthermore b = 0.

Now since h > 0, Equation (4.7.2) with b = 0 implies h′′ = h′h′

h ≥ 0. Thus h′ is a nondecreasing

function. Since h′(0) = h′(π) = 0 we must have h′ = 0, so h is a constant function.

Lemma 4.7.2. Let gs be a metric on S2 of the form gs := a2(dθ2 + f(θ)2dφ2) where (θ, φ) are the

standard global coordinates. Let ηi be a killing one form for gs. Then either ηidx
i = a2f2dφ, or

f = sin2 θ, in which case gs is the standard round metric on the sphere of radius a.

Proof. Let ηi be a killing one form for gs. Then ηi satisfies the following equations,

∂φηφ + ff ′ηθ = 0 (4.7.3)

∂θηφ + ∂φηθ − 2
f ′

f
ηφ = 0 (4.7.4)

2Throughout this section we will use u = ok(e−`τ ) to mean all derivatives of u up to kth order by vector fields
of bounded length are O(e−`τ ). In particular if k ≥ 1 then ∂τu = O(e−`τ ), ∂θu = O(e−`τ ), 1

f ∂φu = O(e−`τ ).
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∂θηθ = 0 (4.7.5)

We can solve this system by taking the θ derivative of Equation (4.7.3) and using Equation (4.7.4)

to obtain

0 = ∂θ∂φηφ + (ff ′)′ηθ = ∂φ(−∂φηθ + 2
f ′

f
ηφ) + (ff ′)′ηθ = −∂2

φηθ − 2(f ′)2ηθ + (ff ′)′ηθ. (4.7.6)

Thus we have the equation ∂2
φηθ + ((f ′)2− ff ′′)ηθ = 0 where we know ηθ is independent of θ and

((f ′)2 − ff ′′) is independent of φ. Taking the θ derivative gives the equation ((f ′)2 − ff ′′)′ηθ = 0.

Since ηθ is independent of θ we must have either ηθ = 0 everywhere or ((f ′)2 − ff ′′)′ = 0.

Suppose ((f ′)2 − ff ′′)′ = 0. This gives us the ODE (f ′)2 − ff ′′ = b for some constant b. Since gs
must be a smooth metric for S2 we have the initial conditions f(0) = f ′′(0) = 0 and f ′(0) = 1. Thus

b = 1, and the general solution to this equation is f(θ) = ±C1 sin(C1(x+C2)). Our initial conditions

imply C2 = 0, and since f ′(0) = 1 we conclude that f = sin(θ). Thus in this case gs is the standard

round metric.

Now note the metrics g and g have a coordinate singularity at θ = 0 and θ = π, and that

not all Christoffel symbols are bounded as we approach these singularities. For ε > 0 and define

Aε = {(τ, θ, φ) : θ ∈ [ε, π − ε]}.

Lemma 4.7.3. In the coordinates (τ, θ, φ), the metric g = h(θ)2dτ2+a2(dθ2+f(θ)2dφ2)+Gij(τ, θ, φ)dxidxj

has Christoffel symbols and curvature components which satisfy

Γijk = Ok−1(1) (4.7.7)

.

Rijkl = Ok−2(1) (4.7.8)

on the set Aε.

Proof. First note that Equation (4.7.8) follows from Equation (4.7.7), and the expression of curvature

in coordinates Rlijk = ∂iΓ
l
jk− ∂jΓlik + ΓsjkΓ

l
is−ΓsikΓ

l
js. Now to prove Equation (4.7.7) we just use the

standard expression for the Christoffel symbols Γkij = 1
2g
km(∂igjm + ∂jgim − ∂mgij). All derivatives

of metric components are Ok−1(1), and all metric components of the diagonal metric g = h(θ)2dτ2 +

a(dθ2 + f2dφ2) are bounded away from zero on Aε. Thus gij = Ok(1) on Aε. Further the falloff of g

gives us gij = gij + ok(e
−`τ ) on Aε. Thus we conclude Γkij = Ok−1(1) on Aε as desired.

We can now obtain a weak bound for the components of a killing one forms for g. Now will use

an analog of a proof by Chruściel to show the following:

Proposition 4.7.4. Suppose ηi is a killing one form for the metric g = h(θ)2dτ2+a(dθ2+f(θ)2dφ2)+

Gij(τ, θ, φ)dxidxj where Gij = ok(e
−`τ ) for some k ≥ 2. Then for some constant β we have ηi =

o1(eβτ ) on the set Aε.
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Proof. We will make use of the following equations,

∂τηi = ∇τηi + Γkτiηk (4.7.9)

∂τ∇iηj = ∇τ∇iηj + Γlτ i∇lηj + Γlτj∇iηl (4.7.10)

∇i∇jηk = Rmijkηm (4.7.11)

The first two equations hold for any vector field and follow from the expression for the covariant

derivative in coordinates. The third equation follows from the killing equation ∇iηj +∇jηi = 0 and

the Bianchi identity. Define ψ := Σiηi
2 + Σi,j(∇iηj)2. We claim that |∂τψ| ≤ Cψ pointwise. To show

this we begin by computing

∂τψ = 2(Σiηi(∂τηi) + Σi,j(∇iηj)(∂τ∇iηj)). (4.7.12)

To estimate the first term on the right hand side we apply Equation (4.7.9) and Young’s inequality

to obtain

Σiηi(∂τηi) = Σiηi(∇τηi + Γkτiηk) = C(Σiη
2
i + Σi(∇τηi)2) ≤ Cψ (4.7.13)

for some constant C, where we have used the fact that the Christoffel symbols are bounded.

Bounding the term Σi,j(∇iηj)(∂τ∇iηj) similarly follows from Equations (4.7.10), (4.7.11) and several

applications of Young’s inequality. Together these bounds imply |∂τψ| ≤ Cψ as desired.

Now since |∂τψ| ≤ Cψ, we apply Gronwall’s inequality to obtain |ψ(τ, θ, ψ)| ≤ C1(1+e
∫ τ
1 C2dτ ) ≤

C1(1 + eβτ ) for some β ≥ 0. Since ηi ≤
√
ψ, and ∂iηj ≤

√
ψ we have ηi = O1(eτβ/2). Thus for β′ ≥ β

2

we have ηi = o1(eβ
′τ ) as desired.

We will need estimates for the higher order derivatives of ηi. To do this we will use the killing

equations of g. We will work on the set Aε so we can assume gij = gij + ok(e
−`τ ) and the Christoffel

symbols of g satisfy Γkij = Γ
k
ij + ok−1(e−`τ ).

We now prove a general regularity result for killing one forms.

Proposition 4.7.5. Suppose ηi is a killing one form for a 3-manifold g, and let (xi) be a coordinate

system for g under which the Christoffel symbols of g are Ok−1(1). Further suppose that ηi = o1(eβτ )

where β ≥ 0. Then for all s ≤ k we have ηi = os(e
βτ ).

Proof. Suppose ηi = o1(eβτ ). Then by the hypothesis on the Christoffel symbols we have Γkijηk =

o1(eβτ ). Thus the killing equations, ∂iηj + ∂jηi = 2Γkijηk, can be written as

∂iηj + ∂jηi = o1(eβτ ) (4.7.14)

∂τητ = o1(eβτ ) (4.7.15)

∂φητ + ∂τηφ = o1(eβτ ) (4.7.16)

∂θητ + ∂τηθ = o1(eβτ ) (4.7.17)

∂φηφ = o1(eβτ ) (4.7.18)
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∂θηφ + ∂φηθ = o1(eβτ ) (4.7.19)

∂θηθ = o1(eβτ ) (4.7.20)

We first establish that ηi = o2(eβτ ). First setting i = j in Equation (4.7.14) implies ∂m∂iηi =

O(eβτ ). Since we may commute partials it remains to estimate ∂i∂jηk when i, j, and k are all distinct.

Taking the θ derivative of Equation (4.7.14) when i = φ, j = τ , the φ derivative when i = θ, j = τ ,

and the τ derivative when i = θ, j = φ gives

∂θ∂φητ + ∂θ∂τηφ = O(eβτ ) (4.7.21)

∂φ∂θητ + ∂φ∂τηθ = O(eβτ ) (4.7.22)

∂τ∂θηφ + ∂τ∂φηθ = O(eβτ ) (4.7.23)

Solving this system and using the fact that partial derivatives commute gives ∂i∂jηk = O(eβτ )

as desired.

We prove higher order estimates by induction on s. Suppose ηi = os(e
βτ ) for some 2 ≤ s ≤ k− 1.

Now the right hand side of Equation (4.7.14) can be replaced by os(e
βτ ).

We will use this to estimate the derivatives of the components of order s+ 1. Again setting i = j

we have ∂ζ∂iηi = O(eβτ ) for any multi-index ζ with |ζ| ≤ s.
Thus for ητ it remains to estimate ∂ζητ when ζ is a multi-index of the form (0, p, q) where

p+ q = s+ 1. Since s+ 1 ≥ 3 either p ≥ 2 or q ≥ 2.

If p ≥ 2 then let γ = ζ − (0, 1, 0), and take ∂γ of Equation (4.7.14) with i = φ, j = τ to obtain

∂ζητ = O(eβτ ) − ∂ζ∂τηφ. Since p − 1 6= 0, our estimate for ∂ζ∂φηφ implies ∂γ∂τηφ = O(eβτ ) so we

have ∂ζητ = O(eβτ ). If q ≥ 2, an analogous argument using Equation (4.7.14) with i = θ, j = τ

implies ∂ζητ = O(eβτ ). We conclude ητ = os+1(eβτ ). An analogous argument implies ηφ = os+1(eβτ )

and ηθ = os+1(eβτ ). By induction we conclude that for any s ≤ k we have ηi = os(e
βτ ) as desired.

We can apply the above Proposition to conclude that ηi = ok(e
βτ ) on Aε. Our next task is to

reduce the exponent β. Recall that on the set Aε we have gij = gij + ok(e
−`τ ) and the Christoffel

symbols of g satisfy Γkij = Γ
k
ij + ok−1(e−`τ ).

Note that the only nonzero Christoffel symbols for g are given by Γ
τ
τθ = Γ

τ
θτ = h′

h , Γ
θ
ττ = −hh′,

Γ
φ
φθ = Γ

φ
θφ = f ′

f and Γ
θ
φφ = −ff ′ where primes represent derivatives with respect to θ. Since

Γkij = Γ
k
ij + ok−1(e−`τ ) we have the following killing equations

∂τητ + hh′ηθ = os(e
(β−`)τ ) (4.7.24)

∂φητ + ∂τηφ = os(e
(β−`)τ ) (4.7.25)

∂θητ + ∂τηθ − 2
h′

h
ητ = os(e

(β−`)τ ) (4.7.26)

∂φηφ + ff ′ηθ = os(e
(β−`)τ ) (4.7.27)

∂θηφ + ∂φηθ − 2
f ′

f
ηφ = os(e

(β−`)τ ) (4.7.28)
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∂θηθ = os(e
(β−`)τ ) (4.7.29)

In order to get the improved estimate we will show ηi = O(e(β−`)τ ) and ∂iηj = O(e(β−`)τ ) for all

i and j. Then we may apply Proposition 4.7.5 to obtain higher order estimates. To begin we prove

the following Lemma:

Lemma 4.7.6. Suppose s ≥ 2 and β ∈ R. Then Equations (4.7.24) (4.7.26) and (4.7.29) imply that

either h is constant, or ηθ = os−1(e(β−`)τ ).

Proof. Taking the θ derivative of Equation (4.7.24) and applying Equation (4.7.26) we have

os−1(e(β−`)τ ) = ∂θ∂τητ + ∂θ(hh
′ηθ) = ∂τ (−∂τηθ + 2

h′

h
ητ + os(e

(β−`)τ )) + (hh′)′ηθ + hh′∂θηθ (4.7.30)

Simplifying the right hand side an absorbing terms of order os−1(e(β−`)τ ) we have

os−1(e(β−`)τ ) = −∂2
τηθ + 2

h′

h
∂τητ + (hh′)′ηθ (4.7.31)

Now using Equation (4.7.24) to replace ∂τητ this becomes

os−1(e(β−`)τ ) = −∂2
τηθ − 2(h′)2ηθ + (hh′)′ηθ = −∂2

τηθ + (hh′′ − h′h′)ηθ (4.7.32)

Taking one more θ derivative and again using that ∂θηθ = os(e
(β−`)τ ) we can conclude

(hh′′ − h′h′)′ηθ = os−2(e(β−`)τ ) (4.7.33)

Now since (hh′′ − h′h′)′ is independent of τ we must have either (hh′′ − h′h′)′ = 0, or ηθ =

os−2(e(β−`)τ ). If (hh′′ − h′h′)′ = 0, then by Lemma 4.7.1 we must have h constant. Thus either h is

constant or ηθ = os−2(e(β−`)τ ) as desired.

We can now prove the following reduction of β.

Proposition 4.7.7. Let ηi be a killing one form for the metric g = h(θ)2dτ2 + a(f(θ)2dφ2 + dθ2) +

Gij(τ, φ, θ)dx
idxj, with Gij = ok(e

−`τ ) for some k ≥ 4. Further assume that on Aε, ηi = os(e
βτ ) for

some constant β > 1− `, and 4 ≤ s ≤ k. Then we can improve the estimate to ηi = os(e
(β−`)τ ) on

Aε.

Proof. As discussed above we must show only ηi = O(e(β−`)τ ) and ∂iηj = O(e(β−`)τ ) for all i

and j. By Lemma 4.7.6 we know h is constant or ηθ = os−2(e(β−`)τ ). In either case Equation

(4.7.24) implies ∂τητ = os−2(e(β−`)τ ). We can integrate this quantity with respect to τ to obtain

ητ = c(φ, θ)+os−2(e(β−`)τ ) for some differentiable function c on S2 which can be taken to be c(φ, θ) =

ητ (1, φ, θ). Since c is a smooth function on the sphere, c and all of its derivatives are bounded. Since

β > 1− `, c = O(1) ≤ O(e(β−`)τ ), and ∂ic = O(1) ≤ O(e(β−`)τ ). Hence ητ = os−2(e(β−`)τ ), so we

have the desired estimates for ητ and all of its derivatives.

Now, using Equation (4.7.25), we can write ∂τηφ as a difference of functions which are os−3(e(β−`)τ ),

so we have ∂τηφ = os−3(e(β−`)τ ). If we integrate this estimate with respect to τ we obtain ηφ =

c(φ, θ) + os−3(e(β−`)τ ), and again since β − ` > 0 we have ηφ = os−3(e(β−`)τ ). Since s ≥ 3 by

hypothesis, we have the desired estimate on ηφ and all of its derivatives.
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Similarly Equation (4.7.26) and our estimate ητ = os−2(e(β−`)τ ) imply that ∂τηθ = os−3(e(β−`)τ ),

and integration with respect to τ gives ηθ = os−3(e(β−`)τ ). We conclude ηi = o1(e(β−`)τ ) for all i.

Applying Proposition 4.7.5 we conclude ηi = os(e
(β−`)τ ) as desired.

Note that if we apply the above process starting with ηi = os(e
βτ ) for β ≤ 1− ` be obtain ηi and

all of its derivatives are uniformly bounded. Furthermore Lemma 4.7.6 applies for any value of β

and hence either h is constant, or ηθ = ok−2(e−`τ ). Thus iterating Proposition 4.7.7, we obtain the

following Corollary

Corollary 4.7.8. Let ηi be a killing one form for the metric g = h(θ)2dτ2 + a(f(θ)2dφ2 + dθ2) +

G(τ, φ, θ), with Gij = ok(e
−`τ ) for some k ≥ 5. Then on the set Aε, ηi = Ok(1) where the subscript

k denotes that the derivatives up to order k are also O(1). Further either h is constant or ηθ =

ok−2(e−`τ ) on Aε.

In order to show that our killing one form converges to a killing one form on the sphere as τ →∞,
we must obtain a better estimate on the τ derivative of the components.

Proposition 4.7.9. Let ηi be a killing one form for g = h(θ)2dτ2+a(f(θ)2dφ2+dθ2)+Gij(τ, φ, θ)dx
idxj,

with Gij = ok(e
−`τ ) for some k ≥ 6. Then on the set Aε we have ∂τηi = ok−6(e−`τ ).

Proof. We know ηi = Ok(1) by Corollary 4.7.8, so we have the following killing equations

∂τητ + hh′ηθ = ok−1(e−`τ ) (4.7.34)

∂φητ + ∂τηφ = ok−1(e−`τ ) (4.7.35)

∂θητ + ∂τηθ − 2
h′

h
ητ = ok−1(e−`τ ) (4.7.36)

∂φηφ + ff ′ηθ = ok−1(e−`τ ) (4.7.37)

∂θηφ + ∂φηθ − 2
f ′

f
ηφ = ok−1(e−`τ ) (4.7.38)

∂θηθ = ok−1(e−`τ ) (4.7.39)

Our goal now is to show that this system of equations implies ∂τηi = ok−6(e−`τ ). Lemma 4.7.6

applies as above and implies that either ηθ = ok−3(e−`τ ) or h = 0, so will will treat these two cases.

Suppose ηθ = ok−3(e−`τ ). Then immediately the above equations become

∂τητ = ok−3(e−`τ ) (4.7.40)

∂φητ + ∂τηφ = ok−1(e−`τ ) (4.7.41)

∂θητ − 2
h′

h
ητ = ok−4(e−`τ ) (4.7.42)

∂φηφ = ok−1(e−`τ ) (4.7.43)

∂θηφ − 2
f ′

f
ηφ = ok−4(e−`τ ) (4.7.44)
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Note that Equation (4.7.42) is equivalent to

h2∂θ(
ητ
h2

) = ok−4(e−`τ ). (4.7.45)

Dividing by h2, integrating with respect to θ, and multiplying by h2 we have ητ = ok−4(e−`τ ) +

h2B(τ, φ). Further we can take B independent of τ because ∂τητ = ok−3(e−`τ ).

Similarly Equation (4.7.44) implies ηφ = ok−4(e
−τ
2 ) + f2C(τ). We now plug these equations for

ητ and ηφ into Equation (4.7.41) to obtain

h2∂φB(φ) + f2∂τC(τ) = ok−5(e−`τ ) (4.7.46)

Now the first term on the left hand side is independent of τ, and the second term is independent of

φ. Thus taking the τ derivative yields

∂τ∂τCτ (τ) = ok−6(e−`τ ) (4.7.47)

Hence we can write ∂τC(τ) = c + ok−6(e−`τ ) for some constant c. In the same way ∂φB(φ) =

b+ ok−6(e−`τ ) for some constant b. Returning to Equation (4.7.46) we obtain

h2b+ f2c = ok−6(e−`τ ). (4.7.48)

Since h and f are independent of τ this implies

h2b+ f2c = 0. (4.7.49)

Now since limθ→0 f = 0 and limθ→0 h 6= 0, by taking ε small enough, we must have b = 0. Since

f is not identically zero we must also have c = 0. Hence ∂τηφ = ok−5(e−`τ ) + f2∂τD(τ) = ok−6(e
−τ
2 ).

Thus we have the desired estimate on the τ derivative of all components.

Now suppose instead we have h = 0. Then we have the following killing equations

∂τητ = ok−1(e−`τ ) (4.7.50)

∂φητ + ∂τηφ = ok−1(e−`τ ) (4.7.51)

∂θητ + ∂τηθ = ok−1(e−`τ ) (4.7.52)

∂φηφ + ff ′ηθ = ok−1(e−`τ ) (4.7.53)

∂θηφ + ∂φηθ − 2
f ′

f
ηφ = ok−1(e−`τ ) (4.7.54)

∂θηθ = ok−1(e−`τ ) (4.7.55)

First, taking the θ derivative of 4.7.52 we obtain

∂2
θητ + ∂θ∂τηθ = ok−2(e−`τ ) (4.7.56)

Commuting ∂θ and ∂τ and using (4.7.39) this implies

∂2
θητ = ok−2(e−`τ ). (4.7.57)
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Similarly by taking the τ derivative of (4.7.52), commuting partials, and applying (4.7.55) we have

∂2
τηθ = ok−2(e−`τ ). (4.7.58)

Taking the τ derivative of (4.7.51), commuting partials and applying (4.7.50), we have

∂2
τηφ = ok−2(e−`τ ). (4.7.59)

Taking the τ derivative of (4.7.53) we obtain ∂τ∂φηφ+ff ′∂τηθ = 0. Commuting partial derivatives

and using (4.7.41) we can write the first term as −∂φ∂φητ , so we have

−∂φ∂φητ + ff ′∂τηθ = ok−2(e−`τ ). (4.7.60)

Taking two θ derivatives of the equation we note that −∂θ∂θ∂φ∂φητ = ∂φ∂φ∂θ∂θητ = ok−4(e−`τ )

by Equation (4.7.57). Further ∂θ∂τηθ = ∂τ∂θηθ = ok−2(e−`τ ) by Equation (4.7.55). Thus we have

(ff ′)′′∂τηθ = ok−4(e−`τ ) (4.7.61)

Now since ∂θ∂τηθ = ok−2(e−`τ ) we must either have ∂τηθ = ok−4(e−`τ ) or (ff ′)′′ = 0 everywhere.

Suppose to the contrary (ff ′)′′ = 0. Then ff ′ = aθ + b for some a, b ∈ R. However, since gs is a

smooth metric on S2 we have f(0) = 0 which implies b = 0 and f(π) = 0 which implies a = 0. Thus

ff ′ = 0. Now f must be positive on (0, 2π), so f ′ = 0 on (0, 2π). Thus f is constant on (0, 2π) and

by continuity f(0) = 0 implies f = 0. This is a contradiction and we conclude

∂τηθ = ok−4(e−`τ ). (4.7.62)

By (4.7.52) this immediately gives

∂θητ = ok−4(e−`τ ) (4.7.63)

If we take the θ derivative of (4.7.51) we have

∂θ∂τηφ = ok−5(e−`τ ) (4.7.64)

Finally if we take the τ derivative of (4.7.38) we have

2
f ′

f
∂τηφ = ok−5(e−`τ ) (4.7.65)

Since f ′

f is independent of τ, we must have f ′

f = 0 everywhere or ∂τηφ = ok−5(e−`τ ). We know

f ′(0) = 1 so, again assuming ε is small enough, we must have ∂τηφ = ok−5(e−`τ ). We thus have the

desired estimates on τ in all cases.

We can now obtain the desired convergence result.

Proposition 4.7.10. Let ηi be a killing one form for g = h(θ)2dτ2+a2(f(θ)2dφ2+dθ2)+Gij(τ, φ, θ)dx
idxj,

with Gij = ok(e
−`τ ) for some k ≥ 7. Further suppose η has periodic orbits with period 2π. Then by

changing coordinates on S2 if necessary ηidx
i = a2f2dφ+ ok(e

−`τ ) on Aε.
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Proof. Since ∂τηi = ok−6(e−`τ ) on Aε, the functions ηi(τ, φ, θ) converge uniformly in τ to functions

Yi(φ, θ) on S2 ∩Aε. Further, since k ≥ 7 we have ∂τ∂jηi = O(e−`τ ), so ∂jηi converges uniformly in τ

to a function on S2∩Aε. Since convergence is uniform we can interchange the limit and differentiation

and obtain

lim
τ→∞

∂jηi = ∂jYi (4.7.66)

for j ∈ {θ, φ}. Further letting ε go to zero we can define Yi on S2 except at θ = 0 and θ = π,

and Equation (4.7.66) still holds. Equation (4.7.66), along with Equations (4.7.37), (4.7.38), and

(4.7.39) imply that Yi is a killing one form for gs. Since Yi defined except at isolated points, it can

be completed to a global killing field for gs. By Lemma 4.7.2, either Yθ = 0 or gs is a standard

round metric. Furthermore Corollary 4.7.8 implies that either Yθ = 0 or h is constant. Thus the only

case when Yθ 6= 0 occurs when g = dτ2 + a(dθ2 + sin2 θdφ2). In this case we can make a coordinate

change on S2 so that Yθ = 0. Thus we may assume without loss of generality that Yθ=0. The killing

equations for S2, and the fact that the orbits of η have period 2π imply Yidx
i = a2f2dφ. Our task

is now to show ηidx
i = af2dφ2 + os(e

−`τ )dxi on Aε for all s ≤ k. This is done by induction on s

and is clearly equivalent to showing ηi − Yi = os(e
−`τ ). The case s = 1 follows from the fact that

∂τηi = O(e−`τ ) and ∂τ∂jηi = O(e−`τ ). Now suppose that for 2 ≤ s ≤ k we have ηi−Yi = os−1(e−`τ ).

To show the next order estimate we will show ∂k∂j(ηi − Yi) = os−2(e−`τ ). We take the difference of

the killing equations for ηi and the killing equations for Yi to obtain

∂τ (ητ − Yτ ) + hh′(ηθ − Yθ) = os−1(e−`τ ) (4.7.67)

∂φ(ητ − Yτ ) + ∂τ (ηφ − Yφ) = os−1(e−`τ ) (4.7.68)

∂θ(ητ − Yτ ) + ∂τ (ηθ − Yθ))− 2
h′

h
(ηφ − Yφ) = os−1(e−`τ ) (4.7.69)

∂φ(ηφ − Yφ) + ff ′(ηθ − Yθ) = os−1(e−`τ ) (4.7.70)

∂θ(ηφ − Yφ) + ∂φ(ηθ − Yθ)− 2
f ′

f
(ηφ − Yφ) = os−1(e−`τ ) (4.7.71)

∂θ(ηθ − Yθ) = os−1(e−`τ ). (4.7.72)

The induction hypothesis implies that the zeroth order terms on the left hand side can be absorbed

into the right hand side. Thus every equation is of the form ∂j(ηi−Yi)+∂i(ηj−Yj) = os−1(e−`τ ). As

in the proof of Proposition 4.7.5 we can differentiate and solve this system to obtain ∂k∂j(ηi− Yi) =

os−1(e−`τ ). By induction we conclude ηidx
i = af2dφ2 + ok(e

−`τ ) on Aε as desired.

The above Proposition implies |ηi∂i − Y i∂i|g = |ηidxi − Yidxi|g = Ok(e
−`τ ) on Aε for any ε. By

changing coordinates on S2 so there is no singularity at θ = 0 and θ = π and using the fact that

|g − g| = Ok(e
−`τ ) if follows that |ηi∂i − Y i∂i|g = |ηidxi − Yidxi|g = Ok(e

−`τ ) globally. This can be

seen using a technique similar to that of Proposition 4.7.4.

Proposition 4.7.11. Let ηi be a killing one form for a metric g satisfying ||g − g||g = Ok(e
−`), for

some k ≥ 7. Further suppose η has periodic orbits with period 2π. Then by changing coordinates on

S2 if necessary ||ηi − ∂φ||g = O(e−`).
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Proof. Given a point (θ, φ) on S2, Proposition 4.7.10 implies that ||ηi(θ, φ) − ∂φ(θ, φ)||g = O(e−`)

as τ → ∞, except possibly at the points θ = 0 and θ = π. By compactness, the global estimate

||ηi − ∂φ||g = O(e−`) follows if we can show the pointwise estimate, ||ηi(θ, φ)− ∂φ(θ, φ)||g = O(e−`),

also holds for θ = 0 and θ = π. We will show the case θ = 0.

Let (x, y) be geodesic coordinates for gs about the point θ = 0. We will use (τ, x, y) as our

coordinate system about the line θ = 0 in R× S2. We will again use Γijk and Γ
i
jk as the Christoffel

symbols for g and g respectively. In this coordinate system the Christoffel symbols are clearly

bounded near θ = 0 and the falloff ||g − g||g = Ok(e
−`) implies Γijk − Γ

i
jk = ok−1(e−`). Let Yidx

i

represent the one form dual to ∂φ in these coordinates. By the pointwise estimate obtained above,

we know ηi(x, y)− Yi(x, y) = Ok(e
−`τ ) except possibly at the origin.

Consider a point (τ, x, 0) for some x > 0. We have ηi(x, 0)− Yi(x, 0) = ok(e
−`τ ). As in the proof

of Proposition 4.7.4 define

ψ := Σi(ηi−Yi)2 + Σi,j(∇i(ηj −Yj)2). We claim that |∂xψ| ≤ Cψ+D where C is a constant and

D = ok(e
−`τ ). To show this we begin by computing

∂τψ = 2(Σiηi(∂τηi) + Σi,j(∇iηj)(∂τ∇iηj)). (4.7.73)

Now a modified version of Gronwalls inequality implies that ηi(0, 0)−Yi(0, 0) ≤ ηi(x, 0)∗f(x) and

similarly ∂j(ηi(0, 0)− Yi(0, 0)) ≤ ηi(x, 0) ∗ f(x). Since x is fixed we have ηi(0, 0)− Yi(0, 0) = o1(e`τ ).

The techniques of Proposition 4.7.5 allow us to bootstrap to obtain ηi(0, 0)−Yi(0, 0) = ok(e
`τ ). Since

the coordinate vector fields in (τ, x, y) coordinates have length bounded away from zero we conclude

|ηi − Yi|g = ok(e
−`τ ) globally.

We are now ready to return to the (r, θ, φ) coordinates used in the body of the paper. Note

that in (r, θ, φ) coordinates we still have Y i∂i = ∂φ, and thus the above estimate translates to

|ηi∂i − Y i∂i|g = ok(r
−`). We can now prove Proposition 4.2.4. We will use (x, y, z) to denote the

standard Cartesian coordinates corresponding to the spherical coordinates (r, θ, φ).

Proof of Proposition 4.2.4. This is primarily an exercise in changing coordinates. The above argu-

ments imply that we may assume |η − ∂φ|g = ok(r
−`).

Now using the fact that 1
r2dr

2 + dθ2 + sin2 θdφ2 = 1
r2 δ and dφ2 = 1

ρ4 (xdy − ydx)2) we see that

in Cartesian coordinates g = h(θ)2( 1
r2 δ + 1

ρ4 (f(θ)2 − sin2 θ)(xdy − ydx)2). Further we see from

this representation that for i ∈ {x, y, z}, c
r2 ≤ |∂i|g ≤ C

r2 for some constants c, C. Thus the falloff

|g − g|g = ok(r
−`) translates to |gij − gij | = ok(r

−`−2). Thus Equation (4.2.6) holds.

Similarly since ∂φ = x∂y − y∂x and |ηi∂i − ∂φ|g = |ηidxi − h2f2dφ|g = ok(r
−`) we have Equation

(4.2.7) and Equation (4.2.8).
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[10] Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford University Press,

2009.

[11] D. Christodoulou, Reversible and irreversible transformations in black- hole physics, Phys. Rev.

Lett., 25 (1970), 1596-1597.
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